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Abstract

Several techniques exists that allow order queries to be executed on cipher-
texts. In order to give insight into the properties of two of these techniques —
Order-Revealing Encryption (ORE) and Garbled Circuits (GC) — this research
aims to compare them in terms of performance. To this end, a tool has been de-
veloped that can measure the performance of each technique. The tool features
a simulation of a client and a server, in which the client sends order queries to
the server, which stores the encrypted data. Furthermore, a small collection of
tests is available to validate the functionality of both techniques and the spe-
cialized data structure — treaps — being used to store the ciphertexts. One
of the outcomes of this research is an outline of future research that needs to
conducted in order for the experimentation to be completed.



Contents

1 Introduction 4
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 Treaps and Related Data Structures . . . . . . . . . . . . . . . . 6

2.1.1 Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Binary Search Trees . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Binary Heaps . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Treaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Cryptographic Techniques . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Order-Revealing Encryption . . . . . . . . . . . . . . . . . 9
2.2.2 Garbled Circuits . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Branch-Chained Garbled Circuits . . . . . . . . . . . . . . 11

3 Activities 14
3.1 Analysis of the Status Quo . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Client–Server Communication . . . . . . . . . . . . . . . . 14
3.1.2 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 GC Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 GC Communication . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 GC Comparing . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Discussion and Conclusion 18
4.1 State of the Project and Product . . . . . . . . . . . . . . . . . . 18
4.2 Advice for Future Research and Development . . . . . . . . . . . 18
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A Functional Block Diagrams 21
A.1 client.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
A.2 server.py: Database . . . . . . . . . . . . . . . . . . . . . . . . 23
A.3 treap.py: treap . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.4 treap.py: treap node . . . . . . . . . . . . . . . . . . . . . . . . 25

1



A.5 node.py: Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

B Unit Tests 27
B.1 TestGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B.2 TestORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
B.3 TestPlain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
B.4 TestTreap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

C Implementation 42
C.1 GC Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
C.2 Pack & Unpack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2



Acronyms

BST Binary Search Tree. 7–9

CPA Chosen-Plaintext Attack. 10

GC Garbled Circuits. 1, 4–6, 10–19, 42, 43

OPE Order-Preserving Encryption. 9, 10

ORE Order-Revealing Encryption. 1, 4–6, 9, 10, 14, 15, 17–19

PPE Property-Preserving Encryption. 9

3



Chapter 1

Introduction

Security is one of the greater challenges of the IT industry. Encryption is a great
tool to secure data, either by encrypting complete systems or individual data
objects. When applying the latter technique to data stored in databases, data is
encrypted by a client, sent to — and stored by — a server, only to be decrypted
by the client. A problem with this approach is that queries to the server by the
client will be applied to the encrypted data instead of the underlying plaintext.
This means that the client will be unable to request specific data. Several
techniques exist to solve this issue, by allowing order queries to be applied to
encrypted data. Two of these methods will be the main focus of this report,
ORE and GC, allowing the use of earlier research.

This chapter introduces the problems to be solved by the research and the
approach used to find a solution. Furthermore, the works related to the subject
of this research are described in section 1.2.

1.1 Problem Definition

This project will result in the following deliverables:

Code In order to perform the experiments, the provided code base might re-
quire alteration, extension or improvement. Therefore, the code base will
be “returned” at the end of the internship to ensure reproducibility of the
experiments.

Report The current report is an account of the various activities undertaken
during the internship, but also provide documentation of the code and a
concise description of various theoretical concepts in the form of a litera-
ture review. This knowledge is key to understanding the intricate workings
of the code base.

Results To support further work on this subject, data will be collected during
experiments with the code-base.
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In order to compare the two encryption techniques for order queries, a re-
search tool will be utilized. This tool will provide insight into the properties of
both techniques in terms of performance. The tool is based on earlier work by
Grim and Wiersma [2017]. However, the functionality of this tool is incomplete,
and requires analysis and further implementation. Therefore, the tool’s software
will be investigated by using testing methods that are appropriate to the used
techniques. The results from these tests will be used to specify which parts of
the software require further implementation. Finally, after having implemented
the missing or incomplete functionality, the experiments can be executed.

1.2 Related Works

Earlier work on a similar projects has resulted in the master’s thesis A Secure
Roundtrip Index for Range Queries by Tobias Boelter, Rishabh Poddar and
Raluca Ada Popa. Here, the authors extend the GC scheme, which the current
project aims to analyze. This work will be the main reference for understanding
the concept of GC and the extended scheme.

In the initial version of the code, a library produced by Kevin Lewi and David
J. Wu is used to realize ORE. To ensure correspondence between this library and
the understanding of ORE, their accompanying work Practical Order-Revealing
Encryption with Limited Leakage will be consulted for definitions and theory.

During the implementation of code for the product, the handbook Clean
Code by Robert C. Martin1 will be consulted for best practices and conventions
to ensure readability and maintainability. This is crucial for a project that
will be handed over between different researchers that have different levels of
understanding of the subject at hand. Furthermore, the Python-specific code
conventions defined by Guido van Rossum in PEP 82 will be applied to the
Python code.

1ISBN 978-0-13-235088-4
2https://www.python.org/dev/peps/pep-0008/
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Chapter 2

Background

This chapter will provide a review of the knowledge that is fundamental to the
subject of order queries. The subjects covered are that of treaps, OREs and
GCs, the prior of which is dealt with in section 2.1. In section 2.2 the subjects
of the cryptographic techniques ORE and GC are explored.

2.1 Treaps and Related Data Structures

Whereas the binary search tree and binary heap data structures provide distinct
characteristics, treaps combine the capabilities of both, hence its name being
a portmanteau of “tree” and “heap”. In this section, the specifics of both
binary search trees and binary heaps will be recapped, allowing for a smooth
transition to the definition of treaps. In the literature, one may find a concept
closely related to treaps called randomized binary search trees, which will not
be covered in this report. Both the binary search tree and the binary heap
are extensions upon the concept of a binary tree. For completeness sake, the
definition of binary trees is also covered in this section.

2.1.1 Binary Trees

Liang [2013] shows us that the binary tree is a data structure, consisting of
nodes, each of which optionally has a left child or right child, which are nodes as
well. A node that is not a child of any other node in the tree is called the root,
while a node having neither a left nor right child is called a leaf. Nodes that are
a child of the same node — i.e. the parent — are called siblings. The length of
the path between a node and the root is referred to as depth, allowing for sets
of nodes having the same depth to be defined as a level. We can construct sub-
trees by considering a node in the tree to be a root. Several of these concepts
have been illustrated in Figure 2.1.
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v

Left child Right child

Root

Sibling

Figure 2.1: An illustration of several definition related to binary trees. Each
label refers to the relation of the node in question to node v.

2.1.2 Binary Search Trees

According to Liang [2013], what separates the Binary Search Tree (BST) from
an “ordinary” binary tree is that, for every node v in a binary tree, having a
left child and a right child being the roots of sub-trees A and B respectively:

∀a ∈ A,∀b ∈ B : a < v < b.

Intuitively, this means that every node in a BST will have nodes of a lower
value on its left and nodes of a higher value on its right when traversing down
the tree structure. As a result, visiting the nodes in a BST using in-order
traversal will result in a list of nodes ordered by increasing value. This concept
is illustrated in Figure 2.2.

20

19 24

21

1

2 3
4

5

Figure 2.2: An example of a BST. Note that for each node, the left child sub-
tree only contains nodes with a lower value, while the right child subtree only
contains nodes with a higher value. The dashed arrows indicate the path that
emerges when visiting each node using in-order traversal, resulting in the or-
dered listing of the node values: 19, 20, 21, 24.
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2.1.3 Binary Heaps

A binary heap is a binary tree that meets the heap property, as explained by
Liang [2013]. This property states that for each node v in a heap, having a left
child and a right child a and b respectively:

max(a, b) ≤ v,

or, depending on the application:

min(a, b) ≥ v.

Intuitively this means that every node has a value greater or equal to its left
child and right child. The nodes of a binary heap can be stored in an array,
where the left and right child of a node at position i can be found at position
2i+ 1 and position 2i+ 2 respectively. An illustration of this concept has been
included in Figure 2.3.

42

32

22 29

39

Figure 2.3: An example of a binary heap. Note that the left child and right
child of each node has a smaller value than the node itself, i.e. max(a, b) ≤ v.
The nodes in this heap can be stored as the array [42, 32, 39, 22, 29].

2.1.4 Treaps

As mentioned before, treaps combine the features of BSTs and binary heaps.
Concretely, this means that a treap has the property of order identical to that
of the BST and the heap property. This is achieved by assigning two values to
each node, a key and a priority. In the context of treaps, we can define a node
as a tuple containing a key and priority a follows: (k, p). Given a treap having a
node (vk, vp) having a left child (αk, αp) and a right child (βk, βp), both of which
are roots of the sub-trees A and B respectively, then the following proposition
must be true:

(∀(ak, ap) ∈ A,∀(bk, bp) ∈ B : ak < vk < bk) ∧ (max(αp, βp) ≤ vp).
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Intuitively this means that a tree constructed from the keys of each node in
a treap must be a valid BST and a tree constructed from the priorities of each
node in a treap must be a valid binary heap. An example of a treap is provided
in Figure 2.4.

1, 8

2, 3

5, 3

6, 2

8, 3

9, 5

Figure 2.4: An example of a treap. Note that the key — the left part of each
label — maintains the ordering property of a BST while the priority — the
right part of each label — preserves the heap property, which is defined as
min(a, b) ≥ v.

2.2 Cryptographic Techniques

This section describes the workings of the cryptographic techniques that are
considered in this project. In general, these techniques are used to convert
plaintext into ciphertext while still allowing to perform certain computations
over the latter as if it where the prior. The goal of cryptography is to reduce
the possibilities of reversing this process without the required prior knowledge,
i.e. a key.

2.2.1 Order-Revealing Encryption

In order to gain a solid understanding of the concept of ORE, it is useful to be
familiar with the related concept of Order-Preserving Encryption (OPE). Lewi
and Wu [2016] describe an OPE as an encryption scheme that allows for the
comparison of encrypted values. Being able to compare values means knowing
the order of values. This is achieved by having the comparison operation result
in an indication of the difference of one value to another, e.g. -1, 0 or 1 if value
a is respectively smaller than, equal to or greater than value b. Lewi and Wu
[2016] explain that OPE is a so-called Property-Preserving Encryption (PPE),
an encryption scheme that allows for ciphertexts to reveal a specific property of
the underlying plaintext. Unfortunately, research referenced by Lewi and Wu
[2016] has shown that this mechanism within OPE also results in a significant
amount of information leaks about the encrypted plaintexts.
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The issue of information leakage in OPE is resolved in the definition of
ORE, provided in Lewi and Wu [2016]. They state that, in contrast to OPE,
ORE does not impose any constraints on ciphertexts — e.g. ordered numeric
values — but requires that a comparison function is provided that is able to
compute comparisons between ciphertexts. The ORE scheme consists of three
algorithms: ORE.Setup, ORE.Encrypt and ORE.Compare. The (simplified)
properties of the algorithms as described in Lewi and Wu [2016] and Chenette
et al. [2015] are:

ORE.Setup() → k The algorithms returns a secret key k.

ORE.Encrypt(k,m) → c Given a secret key k and a plaintext input message
m, the algorithms returns a ciphertext c.

ORE.Compare(c1, c2) → b Given two ciphertexts c1 and c2, the algorithm
returns a value b ∈ {0, 1}.

Note that the scheme does not include a decryption algorithm. Chenette
et al. [2015] explain that this is due to the generic nature of the ORE scheme.
They argue that this functionality can be implemented using the available algo-
rithms or by extending the encryption algorithm to be Chosen-Plaintext Attack
(CPA) secure, meaning a symmetric encryption key is required.

2.2.2 Garbled Circuits

Boelter et al. [2016] describe GCs as a cryptographic technique that “encrypts”
logical circuits such that the functionality is preserved. Due to the encrypts, the
internal logic of the circuit cannot be evaluated in a meaningful way, allowing for
critical information to be obscured. Furthermore, Boelter et al. [2016] provide
an overview of the GC scheme, which consist of four algorithms: GC.Garble,
GC.Encode, GC.Eval and GC.Decode. A graphical representation of the data
flow when using a GC has been included in Figure 2.5. Next, the definitions
of these algorithms will be presented as they have been given by Boelter et al.
[2016]:

GC.Garble(f) → (F, e, d) Given a binary circuit f , the algorithm returns a
garbled circuit F , encoding information e and decoding information d.

GC.Encode(e, x) → X Given encoding information e and plain input x, the
algorithms returns a garbled input X, provided that x is a valid input for
f .

GC.Eval(F,X) → Y Given a garbled circuit F and a garbled input X, the
algorithm returns a garbled output Y .

GC.Decode(d,Y ) → y Given decoding information d and garbled output Y ,
the algorithm returns plain output y.
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2.2.3 Branch-Chained Garbled Circuits

In their master’s thesis, Boelter et al. [2016] introduce the notion of branch-
chained garbled circuits. These constructions are treaps where each node is
a GC. When traversing the tree, starting at the root, the output of the GC
at each node determines which of its two children will be the next node to
visit. Considering the branch-chained GC as a scheme of its own, Boelter et al.
[2016] define it to consist of three algorithms: BCGC.Generate, BCGC.Encode
and BCGC.Eval. In Figure 2.6 a graphical representation is included of the
data streams when using branch-chained GCs. Boelter et al. [2016] provide
algorithms for the aforementioned methods, which are included in this report
in a simplified form:

BCGC.Generate(f, e1, e2) → (F, e) Given a boolean circuit f and encoding
information e1 and e2, the algorithm returns a branch-chained garbled
circuit F and encoding information e.

BCGC.Encode(e, x) → X Identical to the encode algorithm for GC schemes
as presented in subsection 2.2.2.

BCGC.Eval(F,X1) → (b,X2) Given a branch-chained garbled circuit F and
a garbled input X1, the algorithm returns a bit b indicating whether the
next node will be the left or right child of F and a garbled input X2 to be
used as input for the evaluation of the next garbled circuit.

11
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Figure 2.5: Graphical illustration of the data flow when using a GC, demon-
strating how client B can be utilized to evaluate binary circuit f with input
x without ever knowing about what these objects are due to the garbling and
encoding applied by client A.
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Figure 2.6: Graphical representation of the data flow when using branch-chained
GC. Client A has provided client B with a collection of GCs earlier, generated
as described in subsection 2.2.3. The output of each evaluation can be used to
determine which GC to use next. In the context of this report, client B stores
the GCs in a treap data structure.
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Chapter 3

Activities

In this chapter the various activities are reported in chronological order. As
explained in chapter 1 this starts out with analyzing the current state of the
software. This analysis — in combination with the theory collected in chapter 2
— leads to an overview of the code that requires to be fixed or implemented.

3.1 Analysis of the Status Quo

In order to get a clear image of the work that still needs to be done, the current
state of the software is analyzed. This is done by mapping the architecture, i.e.
the components that make up the software and how they are related. Further-
more, the functionality of the software is tested using unit tests. Using these
tests it can be determined whether the software meets the requirements that
have been defined in chapter 2.

3.1.1 Client–Server Communication

As order queries are particularly useful to client–server communication, the ini-
tial code base provides ways to simulate such a use-case. To be able to use this
software, it is important to understand how it is implemented, which component
does what and how these components are related. The code for the client and
server — client.py and server.py respectively — can be run in order to simu-
late the communication between a server and client in a real-life use-case. Both
components utilize treap nodes to store data and communicate via XML-RPC.
The process of inserting node into the server’s database has been visualized in
Figure 3.1. Different configurations can be used to store date either as plain
text, ORE or GC. The client can be provided with a number that represents
that amount of nodes to be inserted into the treap. Each node contains either
plaintext or data encrypted with either ORE or GC, encapsulated in a wrapper
class.
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compare
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setitem
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GC

Node

Server
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Treap Node

Figure 3.1: Illustration of the function sequence trigged when the client inserts
nodes into the database, starting at insert nodes and ending at the evaluate

method. This visualization assumes that GC is used.

3.1.2 Unit Testing

In order to test whether the functionality of the implementations for the treap,
ORE and GC are such as they have been defined in chapter 2, unit tests are im-
plemented. These tests can be executed separately from the main programming
and test the behavior of specific components of the software. Four unit test
classes have been implemented. All the unit tests are implemented in Python
and are included in Appendix B.

Executing the unit test with the initial version of the code results in four
errors, all of which occur at tests that are part of TestGC. The complete results
of these tests are included in section B.5. Upon further inspection of the code
the cause is evident, as the implementation for the GC wrapper is incomplete.
Therefore, in order to be able to compare the ORE and GC methods, this
particular part of the software must be implemented in a next step.
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3.2 Implementation

Due to the fact that initial software is not ready to be used for experimenting,
several changes and additions have to be made. These changes are documented
and their necessity is argued in this section.

3.2.1 GC Wrapper

As concluded in subsection 3.1.2, the initial version of the software lacked a
completely implemented wrapper for the GC library. The signature of the initial
version of the wrapper’s encode method must be altered to allow two parameters
for plaintext x and encoding information e, as is evident from the GC definition
in chapter 2. The completed implementation of the GC wrapper has been
included in section C.1 and has been verified to be correct using unit testing.

3.2.2 GC Communication

As a result of enabling actual GCs to be communicated between the client and
server, a peculiar problem becomes apparent. Due to the specification of the
XML-RPC, only 32-bit signed integers are supported, as seen in Winer [1999].
However, GC encoded data of values that exceed 32-bits, resulting in the error
message OverflowError: int exceeds XML-RPC limits. In order to resolve
this issue the decision has been made to convert every integer to a string in
favor of implementing the communications using another protocol in order to
safe time. Two methods, pack and unpack have been implemented to add this
functionality and are included in section C.2. In order to distinguish between
actual strings and packed integers, each converted integer is prefixed with a
substring int .

3.2.3 GC Comparing

Taking in use the GC-base client–server communication has lead to the identi-
fication of another problem. Namely, the incorrect comparison of GCs, encap-
sulated in a node. As the code snippet in Listing 3.1 shows, each node relies of
the evaluate method of the GC wrapper.

Listing 3.1: Code snippet of the compare method in the Node class.

def compare ( s e l f , b ) :
i f s e l f . type == ”ORE” :

return ORE. compare (
s e l f . va lue [ 0 ] ,
b . va lue [ 1 ]

)
e l i f s e l f . type == ”GC” :

return GC. eva luate (
s e l f . value ,
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b . va lue
)

e l i f s e l f . type == ”PLAIN” :
return PLAIN. compare (

s e l f . value ,
b . va lue

)

As explained in chapter 2, the evaluation method of the GC is not a compar-
ison function between two GCs, but an evaluation of a garbled input by the GC.
This does not conform to the architecture of the programming, which assumes
that the client provides a node containing a GC to be compared to another GC.
The node class does not appear to be designed to encapsulate anything else than
the wrapper class for ORE, GC or plaintext data, suggesting that the actual
requirements for GCs have not been considered during any of the early stages
of development. This is however necessary to communicate complete treaps in
order to support the usage of GCs. Looking at the current implementation of
the client-server communication it is evident that there is a major discrepancy
between the requirements and available solution. Due to the significant size
of the task of re-implementing the client-server communications, this is left for
future researchers to implement.
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Chapter 4

Discussion and Conclusion

Although the activities described in this report have lead to significant progres-
sion regarding the goal of the project, work still has to be done in order to be
able to perform the experiments. This chapter will discuss the current state of
the project and give insight into the changes that still need to be made in order
to make the comparison tool ready for further research.

4.1 State of the Project and Product

The activities described in this document have lead to some crucial advance-
ments of the product and the project. First and foremost, the product has been
analyzed in its initial state. Documentation of the product and its usage was
severely lacking, a problem that has been solved for a great part with this re-
port. Furthermore, several components that where identified to be incomplete
have been completed by either altering existing programming or implementing
them completely. This allowed for experimenting with the software to further
test its functionality. This ultimately lead to the problem of comparing GCs,
as described in subsection 3.2.3. As has been explained in the aforementioned
section, solving this problem requires significant changes to the code-base. Sec-
tion 4.2 provides insight into these changes for future work.

4.2 Advice for Future Research and Develop-
ment

The focus of future continuations of the project should be that of rewriting
server programming. The mechanisms it contains to compare GCs should be
redesigned, keeping in mind that the ultimate goal of the experiments is to
compare the performance of the GC and ORE in combination with treap data
structures. A major delaying factor during the project was that of a lack of
documentation of both programming and concepts. Documentation conventions
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can be enforced using lint tools, e.g. PyLint. Correct functionality can be
ensured using unit tests. Conventions for clean code can be taken from literature
such as Clean Code by Robert C. Martin. Putting an effort in maintaining
a high quality of code, documentation and functionality using the mentioned
resources will ultimately result in an easier to manage product that can be
handed over between researchers more easily. Many of these principles have
been demonstrated in the source code provided in Appendix C.

In the current state of the software, an effort is made to unify the client-
server communication for both ORE and GC. As defined in section 2.2, these
methods have very different requirements, as ORE simply encrypts data in such
a way that comparisons can still be made while GC encrypts both the data and
the comparison logic. Thus, implementing a client and server for both methods
individually will be worth the effort in order to prevent having to program
exceptions for each in the current implementation.

4.3 Conclusion

As a result of the work done during this project, new insight has been gained
into the requirements of the software that is needed to compare ORE and GC
order query encryption methods. Some improvements have been made to the
existing software, but more advancements must be made before experimentation
can begin. However, the software has been analyzed and documented for the
better part, allowing for easier adoption by other researchers in the future, who
can work on solving the problems that have been identified.
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Appendix A

Functional Block Diagrams

This appendix contains several function block diagrams representing compo-
nents of the code base presented at the start of the project. These diagrams
provide an overview of the flow of execution that can occur upon calls to certain
functions within the code. Each block represents such a function and operators
indicate whether a specific set of blocks is called (∧) or if one or none of a
specific set of blocks is called (∨). The order of execution of a set of block is
strictly speaking not indicated by these diagrams, but might be hinted at by
the order in which they are listed from top to bottom. In some cases relations,
blocks and operators are drawn with dashed lines, indicating that some logical
details have been omitted in favor of readability.

21



A
.1

c
l
i
e
n
t
.
p
y

c
l
i
e
n
t
.
p
y

∧

i
n
s
e
r
t
r
e
c
o
r
d
s
(
)

∧

s
e
r
v
e
r
.
i
n
s
e
r
t
(
)

∧

s
e
r
v
e
r
.
q
u
e
r
y
(
)

g
e
n
e
r
a
t
e
n
o
d
e
(
)

∧

N
o
d
e
(
)

∨

O
R
E
.
e
n
c
r
y
p
t
(
)

G
C
.
g
e
n
e
r
a
t
e
(
)

L
e
w
i
W
u
O
R
E
B
l
k
L
F
.
e
n
c
r
y
p
t
(
)

a
r
x
g
c
.
g
e
n
e
r
a
t
e
(
)

22



A.2 server.py: Database

Database ∨

Database.insert() ∧

Node()

treap.insert()

Database.count() treap. len ()

Database.smallest() ∧

treap.find min()

treap.find()

Database.biggest() ∧

treap.find max()

treap.find()

Database.find() ∧

Node()

treap.find()

Database.query() ∧

Node()

treap.root.find node clostest()

treap.successor()
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A.3 treap.py: treap

treap ∨

treap.insert() ∧

treap node()

root.insert()

len ()

treap.find() Node.compare()

treap.successor() ∧ treap node.find min node()

treap.predecessor() ∧ treap node.find max node()

treap.find max()

treap.find min()
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A.4 treap.py: treap node

treap node ∨

treap node.insert() ∨

treap node()

∧

∨

treap node.rotate with left()

treap node.rotate with right()

treap node.insert()

treap node.find min node()

treap node.find max node()

treap node.rotate with left()

treap node.rotate with right()

treap node.find node clostest() Node.compare()
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A.5 node.py: Node

Node.compare() ∨

ORE.compare() LewiWuOREBlkLF.compare()

GC.evaluate() arxgc.evaluate()

PLAIN.compare()
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Appendix B

Unit Tests

In this appendix, the source code for the unit test can be found. These tests
are implemented as described in subsection 3.1.2. In order to run these tests,
all dependencies of the OrderQ software must be installed as described on the
relevant Git repository1. Furthermore, the unittest Python module must be
installed. All tests can be executed at once with the command python -m

unittest discover -s test, given that it is executed from the root directory
of the OrderQ project.

B.1 TestGC

Listing B.1: test gc.py

1 ”””
2 Test the f u n c t i o n a l i t y o f the GC database implementat ion .
3 ”””
4
5 from u n i t t e s t import TestCase
6
7 # Have PyLint i gnore the abundance o f p u b l i c methods ,
8 # as t h i s i s in the very nature o f a un i t t e s t .
9 #

10 # py l i n t : d i s a b l e=too−many−pub l i c−methods
11 from arx import GC
12
13
14 class TestGC( TestCase ) :
15 ”””
16 Test the f u n c t i o n a l i t y o f the GC database . More
17 s p e c i f i c a l l y t e s t the custom wrapper f o r the GC

1https://github.com/fturkmen/Private_OrderQ
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18 l i b r a r y .
19 ”””
20
21 def setUp ( s e l f ) :
22 ”””
23 Set up the GC database .
24 ”””
25 s e l f . gc = GC( )
26
27 def t e s t g e n e r a t e ( s e l f ) :
28 ”””
29 Asser t t ha t the database re turns ∗ something ∗
30 when genera t ing a ga r b l e d c i r c u i t .
31 ”””
32 s e l f . assert IsNotNone ( s e l f . gc . generate (58) )
33
34 def t e s t e n c o d e ( s e l f ) :
35 ”””
36 Asser t t ha t the database re turns ∗ something ∗
37 when encoding a va lue .
38 ”””
39 s e l f . assert IsNotNone (
40 s e l f . gc . encode (99 , s e l f . gc . generate (45) )
41 )
42
43 def t e s t e v a l u a t e e q ( s e l f ) :
44 ”””
45 Asser t t ha t the database re turns 0 when
46 comparing a va lue to an equa l va lue .
47 ”””
48 e = s e l f . gc . generate (34)
49 x = GC. eva luate (
50 e ,
51 s e l f . gc . encode (43 , e )
52 )
53 s e l f . a s s e r tEqua l (
54 0 ,
55 GC. eva luate (
56 e ,
57 s e l f . gc . encode (43 , e )
58 ) [ ” r e s u l t ” ]
59 )
60
61 def t e s t e v a l u a t e l t ( s e l f ) :
62 ”””
63 Asser t t ha t the database re turns 1 when
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64 comparing a va lue to a g r ea t e r va lue .
65 ”””
66 e = s e l f . gc . generate (92)
67 s e l f . a s s e r tEqua l (
68 1 ,
69 GC. eva luate (
70 e ,
71 s e l f . gc . encode (86 , e )
72 ) [ ” r e s u l t ” ]
73 )
74
75 def t e s t e v a l u a t e g t ( s e l f ) :
76 ”””
77 Asser t t ha t the database re turns 0 when
78 comparing a va lue to a l e s s e r va lue .
79 ”””
80 e = s e l f . gc . generate (50)
81 s e l f . a s s e r tEqua l (
82 0 ,
83 GC. eva luate (
84 e ,
85 s e l f . gc . encode (87 , e )
86 ) [ ” r e s u l t ” ]
87 )

B.2 TestORE

Listing B.2: test ore.py

1 ”””
2 Test the f u n c t i o n a l i t y o f the ORE database
3 implementat ion .
4 ”””
5
6 from u n i t t e s t import TestCase
7
8 from ore import ORE
9

10
11 # Have PyLint i gnore the abundance o f p u b l i c methods ,
12 # as t h i s i s in the very nature o f a un i t t e s t .
13 #
14 # py l i n t : d i s a b l e=too−many−pub l i c−methods
15 class TestORE( TestCase ) :
16 ”””
17 Test the f u n c t i o n a l i t y o f the ORE database . More
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18 s p e c i f i c a l l y t e s t the custom wrapper f o r the ORE
19 l i b r a r y .
20 ”””
21
22 def setUp ( s e l f ) :
23 ”””
24 Set up the ORE database .
25 ”””
26 s e l f . ore = ORE( )
27
28 def t e s t e n c r y p t ( s e l f ) :
29 ”””
30 Asser t t ha t the database re turns ∗ something ∗
31 when encryp t ing a va lue .
32 ”””
33 s e l f . assert IsNotNone (
34 s e l f . ore . encrypt (98)
35 )
36
37 def t e s t compare eq ( s e l f ) :
38 ”””
39 Asser t t ha t the database re turns 0 when
40 comparing a va lue to an equa l va lue .
41 ”””
42 s e l f . a s s e r tEqua l (
43 0 , ORE. compare (
44 s e l f . ore . encrypt (18) [ 0 ] ,
45 s e l f . ore . encrypt (18) [ 1 ]
46 )
47 )
48
49 def t e s t c o m p a r e l t ( s e l f ) :
50 ”””
51 Asser t t ha t the database re turns −1 when
52 comparing a va lue to a g r ea t e r va lue .
53 ”””
54 s e l f . a s s e r tEqua l (
55 −1, ORE. compare (
56 s e l f . ore . encrypt (29) [ 0 ] ,
57 s e l f . ore . encrypt (77) [ 1 ]
58 )
59 )
60
61 def t e s t compare g t ( s e l f ) :
62 ”””
63 Asser t t ha t the database re turns 1 when
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64 comparing a va lue to a l e s s e r va lue .
65 ”””
66 s e l f . a s s e r tEqua l (
67 1 , ORE. compare (
68 s e l f . ore . encrypt (63) [ 0 ] ,
69 s e l f . ore . encrypt (61) [ 1 ]
70 )
71 )

B.3 TestPlain

Listing B.3: test plain.py

1 ”””
2 Test the f u n c t i o n a l i t y o f the p l a i n database
3 implementat ion .
4 ”””
5
6 from u n i t t e s t import TestCase
7
8 from p l a i n import PLAIN
9

10
11 # Have PyLint i gnore the abundance o f p u b l i c methods ,
12 # as t h i s i s in the very nature o f a un i t t e s t .
13 #
14 # py l i n t : d i s a b l e=too−many−pub l i c−methods
15 class TestPla in ( TestCase ) :
16 ”””
17 Test the f u n c t i o n a l i t y o f the p l a i n database , which
18 i s a benchmark f o r the ORE and GC.
19 ”””
20
21 def t e s t compare eq ( s e l f ) :
22 ”””
23 Asser t t ha t the database re turns 0 a va lue to an
24 equa l va lue .
25 ”””
26 s e l f . a s s e r tEqua l (
27 0 , PLAIN. compare (87 , 87)
28 )
29
30 def t e s t c o m p a r e l t ( s e l f ) :
31 ”””
32 Asser t t ha t the database re turns −1 when
33 comparing a va lue to a g r ea t e r va lue .
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34 ”””
35 s e l f . a s s e r tEqua l (
36 −1, PLAIN. compare (82 , 90)
37 )
38
39 def t e s t compare g t ( s e l f ) :
40 ”””
41 Asser t t ha t the database re turns 1 when
42 comparing a va lue to a l e s s e r va lue .
43 ”””
44 s e l f . a s s e r tEqua l (
45 1 , PLAIN. compare (64 , 12)
46 )

B.4 TestTreap

Listing B.4: test treap.py

1 ”””
2 Test the f u n c t i o n a l i t y o f the t reap implementat ion .
3 ”””
4
5 from u n i t t e s t import TestCase
6
7 import t reap
8
9 # Example nodes a v a i l a b l e f o r the t e s t case , taken from

10 # the example t reap in Micha ë l ’ s report , s t r u c t u r ed as
11 # i l l u s t r a t e d in Fig . 1 , Fig . 2 and Fig . 3 , d i s p l a y i n g
12 # e i t h e r the order index , keys or p r i o r i t i e s
13 # r e s p e c t i v e l y . Each node i s a t u p l e con ta in ing the node
14 # data in the f o l l ow i n g order : key , va lue , p r i o r i t y ,
15 # depth and d i s t ance from the l e f t in nodes .
16 #
17 # +−−−−−−−−−−−+ +−−−−−−−−−−−+ +−−−−−−−−−−−+
18 # | 4 | | 6 | | 2 |
19 # | / \ | | / \ | | / \ |
20 # | 2 5 | | 2 8 | | 3 3 |
21 # | / \ \ | | / \ \ | | / \ \ |
22 # | 1 3 6 | | 1 5 9 | | 8 3 5 |
23 # +−−−−−−−−−−−+ +−−−−−−−−−−−+ +−−−−−−−−−−−+
24 # Fig . 1 Fig . 2 Fig . 3
25
26 NODE 1 = (1 , ’ eggs ’ , 8 , 2 , 0)
27 NODE 2 = (2 , ’ham ’ , 3 , 1 , 0)
28 NODE 3 = (5 , ’ bacon ’ , 3 , 2 , 1)
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29 NODE 4 = (6 , ’ spam ’ , 2 , 0 , 0)
30 NODE 5 = (8 , ’ sausage ’ , 3 , 1 , 1)
31 NODE 6 = (9 , ’ beans ’ , 5 , 2 , 3)
32
33 NODE MIN = NODE 1
34 NODE MAX = NODE 6
35
36 NODE = NODE 1
37
38 NODES = [
39 NODE 4,
40 NODE 2,
41 NODE 1,
42 NODE 3,
43 NODE 5,
44 NODE 6
45 ]
46
47
48 NODES ORDERED = [
49 NODE 1,
50 NODE 2,
51 NODE 3,
52 NODE 4,
53 NODE 5,
54 NODE 6
55 ]
56
57
58 # Have PyLint i gnore the abundance o f p u b l i c methods ,
59 # as t h i s i s in the very nature o f a un i t t e s t .
60 #
61 # py l i n t : d i s a b l e=too−many−pub l i c−methods
62 class TestTreap ( TestCase ) :
63 ”””
64 Test the f u n c t i o n a l i t y o f the treap , us ing the nodes
65 o f the t reap example in Micha ë l ’ s r epor t as t e s t
66 cases where needed .
67 ”””
68
69 def setUp ( s e l f ) :
70 ”””
71 Set up the t reap to be the s u b j e c t o f the
72 t e s t i n g .
73 ”””
74
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75 # Have PyLint i gnore t reap not be ing c a l l a b l e ,
76 # as t h i s i s an i n co r r e c t assumption .
77 #
78 # py l i n t : d i s a b l e=not−c a l l a b l e
79 s e l f . t reap = treap . t reap ( )
80 for key , value , p r i o r i t y , , in NODES:
81 s e l f . t reap . i n s e r t ( key , value , p r i o r i t y )
82
83 # Have PyLint i gnore the cas ing o f t h i s method ,
84 # in favor o f the cas ing convent ions o f the u n i t t e s t
85 # module .
86 #
87 # py l i n t : d i s a b l e=inva l i d−name
88 def assertNodeEqual ( s e l f , key , node ) :
89 ”””
90 A shorthand func t i on t ha t a s s e r t s e q u a l i t y in
91 the s p e c i f i e d key and the key o f the s p e c i f i e d
92 node .
93
94 : param key :
95 The key o f a node .
96 : param node :
97 A node having a key .
98 ”””
99 s e l f . a s s e r tEqua l (

100 key , node . key
101 )
102
103 def t e s t f i n d n o d e ( s e l f ) :
104 ”””
105 Asser t t ha t an i n s e r t e d node can be found in the
106 t r eap by i t s key .
107 ”””
108 key , value , , , = NODE
109 node = s e l f . t reap . f ind node ( key )
110 s e l f . a s s e r t L i s t E q u a l (
111 [
112 key ,
113 value
114 ] , [
115 node . key ,
116 node . va lue
117 ]
118 )
119
120 def t e s t i n s e r t ( s e l f ) :

34



121 ”””
122 Asser t t ha t a node i s conta ined in the t reap
123 a f t e r i n s e r t i o n .
124 ”””
125 key , , , , = NODE
126 s e l f . a s s e r t I n ( key , s e l f . t reap )
127
128 def te s t remove ( s e l f ) :
129 ”””
130 Asser t t ha t a node i s not conta ined in the t reap
131 a f t e r removal .
132 ”””
133 key , , , , = NODE
134 s e l f . t reap . remove ( key )
135 s e l f . a s s e r tNot In ( key , s e l f . t reap )
136
137 def test remove min ( s e l f ) :
138 ”””
139 Asser t t ha t the min node i s not conta ined in the
140 t r eap a f t e r min removal .
141 ”””
142 key , , , , = NODE MIN
143 s e l f . t reap . remove min ( )
144 s e l f . a s s e r tNot In ( key , s e l f . t reap )
145
146 def test remove max ( s e l f ) :
147 ”””
148 Asser t t ha t the max node i s not conta ined in the
149 t r eap a f t e r max removal .
150 ”””
151 key , , , , = NODE MAX
152 s e l f . t reap . remove max ( )
153 s e l f . a s s e r tNot In ( key , s e l f . t reap )
154
155 def t e s t g e t k e y ( s e l f ) :
156 ”””
157 Asser t t ha t the key o f an i n s e r t e d node can be
158 found in the t reap .
159 ”””
160 key , , , , = NODE
161 s e l f . a s s e r tEqua l (
162 key , s e l f . t reap . ge t key ( key )
163 )
164
165 def t e s t f i n d ( s e l f ) :
166 ”””
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167 Asser t t ha t an i n s e r t e d node can be found in the
168 t r eap .
169 ”””
170 key , value , , , = NODE
171 s e l f . a s s e r tEqua l (
172 value , s e l f . t reap . f i n d ( key )
173 )
174
175 def t e s t f i n d m i n ( s e l f ) :
176 ”””
177 Asser t t ha t the min node can be found in the
178 t r eap .
179 ”””
180 key , , , , = NODE MIN
181 s e l f . a s s e r tEqua l (
182 key , s e l f . t reap . f ind min ( )
183 )
184
185 def t e s t f i nd max ( s e l f ) :
186 ”””
187 Asser t t ha t the max node can be found in the
188 t r eap .
189 ”””
190 key , , , , = NODE MAX
191 s e l f . a s s e r tEqua l (
192 key , s e l f . t reap . f ind max ( )
193 )
194
195 def t e s t p r e d e c e s s o r ( s e l f ) :
196 ”””
197 Asser t t ha t the predeces sor o f a node can be
198 found .
199 ”””
200 key 1 , , , , = NODE 1
201 key 2 , , , , = NODE 2
202 s e l f . assertNodeEqual (
203 key 1 , s e l f . t reap . p r edec e s s o r (
204 s e l f . t reap . f ind node ( key 2 )
205 )
206 )
207
208 def t e s t s u c c e s s o r ( s e l f ) :
209 ”””
210 Asser t t ha t the succe s sor o f a node can be found .
211 ”””
212 key 1 , , , , = NODE 1
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213 key 2 , , , , = NODE 2
214 s e l f . assertNodeEqual (
215 key 2 , s e l f . t reap . s u c c e s s o r (
216 s e l f . t reap . f ind node ( key 1 )
217 )
218 )
219
220 def t e s t i n o r d e r t r a v e r s a l ( s e l f ) :
221 ”””
222 Asser t t ha t the t reap i s t r a v e r s ed in the
223 expec ted order .
224 ”””
225 nodes = i ter (NODES ORDERED)
226
227 def v i s i t ( v i s i t k e y , v i s i t v a l u e ) :
228 next key , next va lue , , , = next ( nodes )
229 s e l f . a s s e r t L i s t E q u a l (
230 [
231 next key ,
232 next va lue
233 ] , [
234 v i s i t k e y ,
235 v i s i t v a l u e
236 ]
237 )
238
239 s e l f . t reap . i n o r d e r t r a v e r s a l ( v i s i t )
240
241 def t e s t d e t a i l e d i n o r d e r t r a v e r s a l ( s e l f ) :
242 ”””
243 Asser t t ha t the t reap i s t r a v e r s ed in the
244 expec ted order .
245 ”””
246 nodes = i ter (NODES ORDERED)
247
248 def v i s i t (
249 node ,
250 v i s i t k e y ,
251 v i s i t v a l u e ,
252 v i s i t d e p t h ,
253 v i s i t f r o m l e f t
254 ) :
255 next key , next va lue , , \
256 next depth , n e x t f r o m l e f t = next ( nodes )
257 s e l f . assertNodeEqual ( next key , node )
258 s e l f . a s s e r t L i s t E q u a l (
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259 [
260 next key ,
261 next va lue ,
262 next depth ,
263 n e x t f r o m l e f t
264 ] , [
265 v i s i t k e y ,
266 v i s i t v a l u e ,
267 v i s i t d e p t h ,
268 v i s i t f r o m l e f t
269 ]
270 )
271
272 s e l f . t reap . d e t a i l e d i n o r d e r t r a v e r s a l ( v i s i t )
273
274 def t e s t c h e c k t r e e i n v a r i a n t p r e s e r v e d ( s e l f ) :
275 ”””
276 Asser t t ha t the t r e e i n va r i an t i s preserved ,
277 i . e . a < v < b .
278 ”””
279 s e l f . a s se r tTrue (
280 s e l f . t reap . c h e c k t r e e i n v a r i a n t ( )
281 )
282
283 def t e s t c h e c k h e a p i n v a r i a n t ( s e l f ) :
284 ”””
285 Asser t t ha t the heap in va r i an t i s preserved ,
286 i . e . a < v > b .
287 ”””
288 s e l f . a s se r tTrue (
289 s e l f . t reap . check heap inva r i an t ( )
290 )
291
292 def t e s t de p t h ( s e l f ) :
293 ”””
294 Asser t t ha t the depth o f the t reap i s c o r r e c t .
295 ”””
296 s e l f . a s s e r tEqua l (
297 3 , s e l f . t reap . depth ( )
298 )
299
300 def t e s t i t e r k e y s ( s e l f ) :
301 ”””
302 Asser t t ha t the keys in the t reap can be
303 i t e r a t e d .
304 ”””
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305 keys = [ k for k , , , , in NODES]
306 for key in s e l f . t reap . i t e r k e y s ( ) :
307 s e l f . a s s e r t I n ( key , keys )
308 keys . remove ( key )
309
310 def t e s t k e y s ( s e l f ) :
311 ”””
312 Assume tha t t h i s f u n c t i o n a l i t y i s i d e n t i c a l to
313 t r eap . i t e r k e y s ( ) .
314 ”””
315 s e l f . t e s t i t e r k e y s ( )
316
317 def t e s t i t e r a t o r ( s e l f ) :
318 ”””
319 Assume tha t t h i s f u n c t i o n a l i t y i s i d e n t i c a l to
320 t r eap . i t e r k e y s ( ) .
321 ”””
322 s e l f . t e s t i t e r k e y s ( )
323
324 def t e s t i t e r v a l u e s ( s e l f ) :
325 ”””
326 Asser t t ha t the va l u e s in the t reap can be
327 i t e r a t e d .
328 ”””
329 va lues = [ v for , v , , , in NODES]
330 for value in s e l f . t reap . i t e r v a l u e s ( ) :
331 s e l f . a s s e r t I n ( value , va lue s )
332 va lue s . remove ( va lue )
333
334 def t e s t v a l u e s ( s e l f ) :
335 ”””
336 Assume tha t t h i s f u n c t i o n a l i t y i s i d e n t i c a l to
337 t r eap . i t e r v a l u e s ( ) .
338 ”””
339 s e l f . t e s t i t e r v a l u e s ( )
340
341 def t e s t i t e r i t e m s ( s e l f ) :
342 ”””
343 Asser t t ha t the node in the t reap can be
344 i t e r a t e d .
345 ”””
346 items = [ ( k , v ) for k , v , , , in NODES]
347 for key , va lue in s e l f . t reap . i t e r i t e m s ( ) :
348 s e l f . a s s e r t I n ( ( key , va lue ) , i tems )
349 items . remove ( ( key , va lue ) )
350
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351 def t e s t i t e m s ( s e l f ) :
352 ”””
353 Assume tha t t h i s f u n c t i o n a l i t y i s i d e n t i c a l to
354 t r eap . i t e r i t em s () .
355 ”””
356 s e l f . t e s t i t e r i t e m s ( )
357
358 def t e s t r e v e r s e i t e r a t o r ( s e l f ) :
359 ”””
360 Asser t t ha t the nodes in the t reap can be
361 i t e r a t e d in r e v e r s e .
362 ”””
363 keys = reversed ( [
364 key for key , , , , in NODES ORDERED
365 ] )
366 for a , b in zip (
367 keys , s e l f . t reap . r e v e r s e i t e r a t o r ( )
368 ) :
369 s e l f . a s s e r tEqua l ( a , b )

B.5 Results

Listing B.5: The results of executing the unit tests on the initial version of the
code.

1 EEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 =========================================================
3 ERROR: t e s t e n c o d e ( t e s t g c . TestGC)
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 Traceback ( most r e c ent c a l l l a s t ) :
6 F i l e ” [PROJECT ROOT] / t e s t / t e s t g c . py ” , l i n e 40 , in

t e s t e n c o d e
7 s e l f . gc . encode (99 , s e l f . gc . generate (45) )
8 TypeError : encode ( ) takes 2 p o s i t i o n a l arguments but 3

were g iven
9

10 =========================================================
11 ERROR: t e s t e v a l u a t e e q ( t e s t g c . TestGC)
12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 Traceback ( most r e c ent c a l l l a s t ) :
14 F i l e ” [PROJECT ROOT] / t e s t / t e s t g c . py ” , l i n e 53 , in

t e s t e v a l u a t e e q
15 s e l f . gc . encode (43 , e )
16 TypeError : encode ( ) takes 2 p o s i t i o n a l arguments but 3

were g iven
17
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18 =========================================================
19 ERROR: t e s t e v a l u a t e g t ( t e s t g c . TestGC)
20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 Traceback ( most r e c ent c a l l l a s t ) :
22 F i l e ” [PROJECT ROOT] / t e s t / t e s t g c . py ” , l i n e 81 , in

t e s t e v a l u a t e g t
23 s e l f . gc . encode (87 , e )
24 TypeError : encode ( ) takes 2 p o s i t i o n a l arguments but 3

were g iven
25
26 =========================================================
27 ERROR: t e s t e v a l u a t e l t ( t e s t g c . TestGC)
28 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 Traceback ( most r e c ent c a l l l a s t ) :
30 F i l e ” [PROJECT ROOT] / t e s t / t e s t g c . py ” , l i n e 67 , in

t e s t e v a l u a t e l t
31 s e l f . gc . encode (86 , e )
32 TypeError : encode ( ) takes 2 p o s i t i o n a l arguments but 3

were g iven
33
34 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 Ran 36 t e s t s in 0 .003 s
36
37 FAILED ( e r r o r s =4)
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Appendix C

Implementation

C.1 GC Wrapper

This section contains the completed implementation for the GC wrapper. Note
that the initial version of this class did not contain any functionality and had
an incorrect signature for the encode method.

Listing C.1: Completed implementation of the GC wrapper in arx.py.

1 import arxgc
2
3
4 class GC:
5
6 # de f i n i t ( s e l f , a d i c t=None) :
7 # ”””
8 # Convert a d i c t i ona r y to a c l a s s
9 # @param : ad i c t Dic t ionary

10 # ”””
11 # i f ad i c t i s not None :
12 # s e l f . d i c t . update ( a d i c t )
13 # for k , v in ad i c t . i tems () :
14 # i f i s i n s t a n c e ( v , d i c t ) :
15 # s e l f . d i c t [ k ] = GC( v )
16 #
17 #
18 # de f g e t o b j e c t ( a d i c t ) :
19 # ”””
20 # Convert a d i c t i ona r y to a c l a s s
21 # @param : ad i c t Dic t ionary
22 # @return : c l a s s : S t ruc t
23 # ”””
24 # return GC( ad i c t )
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25
26
27 def generate ( s e l f , f ) :
28 ”””
29 Given boo lean c i r c u i t f , re turn encoding
30 in format ion e .
31 ”””
32 return arxgc . generate ( f )
33
34 def encode ( s e l f , x , e ) :
35 ”””
36 Given p l a i n t e x t x and encoding in format ion e ,
37 re turn ga r b l e d input X ( i . e . e x t r a c t e d l a b e l s ) .
38 ”””
39 return arxgc . encode (x , e )
40
41 @staticmethod
42 def eva luate ( e , X) :
43 ”””
44 Given encoding in format ion e and ga r b l e d
45 input X ( e x t r a c t e d l a b e l s ) f o r an input x , re turn

eva l ua t i on .
46 ”””
47 return arxgc . eva luate (
48 e [ ”gc” ] ,
49 e [ ” i n p u t l a b e l s ” ] ,
50 e [ ” o u t p u t l a b e l s ” ] ,
51 e [ ” a r x t a b l e z e r o l a b e l s ” ] ,
52 e [ ” a r x t a b l e o n e l a b e l s ” ] ,
53 X
54 )

C.2 Pack & Unpack

Listing C.2: Implementation of the function to convert all integers in GC data
to string and vice versa.

1 def pack ( va lue ) :
2 ”””
3 Recur s i v e l y conver t any i n t s in the s p e c i f i e d
4 c o l l e c t i o n to s t r i n g s as t h e i r va lue may exceed
5 32 b i t s . Each s t r i n g has a p r e f i x f o r easy
6 unpacking .
7 ”””
8 i f type ( va lue ) i s int :
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9 return ” i n t ” + str ( va lue )
10 e l i f type ( va lue ) in ( l i s t , tuple ) :
11 return l i s t ( [ pack ( v ) for v in value ] )
12 e l i f type ( va lue ) i s dict :
13 return {k : pack ( v ) for k , v in value . i tems ( ) }
14 else :
15 return value
16
17
18 def unpack ( va lue ) :
19 ”””
20 Recur s i v e l y unpack the s p e c i f i e d va lue by ca s t i n g
21 s t r i n g s s t a r t i n g wi th a s p e c i f i c p r e f i x to
22 i n t e g e r s .
23 ”””
24 i f type ( va lue ) i s str \
25 and value . s t a r t s w i t h ( ” i n t ” ) :
26 return int ( va lue [ 7 : ] )
27 e l i f type ( va lue ) in ( l i s t , tuple ) :
28 return tuple ( [ unpack ( v ) for v in value ] )
29 e l i f type ( va lue ) i s dict :
30 return {k : unpack ( v ) for k , v in value . i tems ( ) }
31 else :
32 return value
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