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Abstract: Recent research in the domain of Reinforcement Learning (RL) has often focused on
the popular deep RL algorithm Deep Q-learning (DQN). A different deep RL algorithm, similar
to DQN, called Deep Quality-Value Learning (DQV), has received much less attention, albeit its
great potential in outperforming DQN due to DQV’s theoretical advantage of having an increased
learning speed due to only approximating a state-value mapping instead of a state-action-value
mapping as a target network. This thesis focuses on comparing these two aforementioned deep
RL algorithms on their performances in learning to play different Atari 2600 games provided
by the OpenAI gym. The impact of different exploration strategies on the learning performance
of DQN and DQV will be examined, more specifically, a diversity-driven approach (Div-DQN
and Div-DQV) and a noisy network approach (NoisyNet-DQN and NoisyNet-DQV) will be
compared to traditional implementations of DQN and DQV. The results show that the standard
DQV algorithm outperforms DQN and that DQV-based variants in general slightly outperform
DQN-based variants. The NoisyNet approach shows the overall best training outcome, followed
by DQV, the diversity-driven approach, and DQN.

1 Introduction

Reinforcement Learning (RL) is a Machine Learn-
ing approach in which an agent is trained by re-
ceiving either reward or punishment while inter-
acting with the environment (Russell & Norvig,
2016). Due to the generality of this approach, it
can be applied to a variety of real-life applications,
including the control of aerial and autonomous ve-
hicles, robotic arms, and humanoid robots (Kober
et al., 2013). Other approaches, not dealing with
physically embodied robots, use RL for tasks as di-
verse as stock market predictions (Lee, 2001) or to
explore effective strategies for peer-to-peer teach-
ing in a cooperative multiagent RL setting (Kim et
al., 2019). Common practice often used in assess-
ing and comparing the learning ability of different
RL algorithms involves comparing these algorithms
based on their performance in learning to play
video games from raw pixel data, a termination sig-
nal, and a corresponding reward signal (Mnih et al.,
2013). This is because video games offer a complex

and challenging environment to be mastered even
for human players (Mnih et al., 2015), while also
maintaining an intuitive and easily comparable per-
formance measure in the form of scores. Following
this popular approach of training different RL al-
gorithms on playing video games and assessing the
quality of the algorithms’ respective learning out-
comes by comparing the evaluation scores obtained
by the trained agents, in this thesis the two deep
RL algorithms Deep Q-learning (Mnih et al., 2013)
and Deep Quality-Value Learning (Sabatelli et al.,
2018) will be contrasted with each other alone and
in combination with the two exploration strategies
Div-DQN (Hong et al., 2018) and NoisyNet (Fortu-
nato et al., 2017) on their performances in learning
to play four Atari 2600 games.

1.1 Background

The field of Reinforcement Learning (RL) is con-
cerned with algorithms that learn how to optimally
behave in a given environment by learning an op-
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timal policy from a reward signal observed while
interacting with the environment, where the opti-
mal policy dictates the algorithm, or agent, which
action to choose in a given state in order to maxi-
mize the agent’s expected total reward (Russell &
Norvig, 2016). Furthermore, an RL agent is not as-
sumed to have any prior knowledge about the re-
ward signal or environment it has to learn to behave
in (Russell & Norvig, 2016).

This approach assumes a Markov Decision Pro-
cess (MDP) underlying the environment the agent
is situated in (Sutton & Barto, 2017). That is, the
agent faces a sequential decision problem with accu-
mulative rewards in a fully observable environment,
in which actions have a stochastic outcome and
where the transition model is Markovian. Marko-
vian refers to the environment’s property that, for
each state s, the probability of transitioning into
successor state s’ depends on no state except s
(Russell & Norvig, 2016).

Thus, by repeatedly observing rewards obtained
by taking different actions in different states and
progressively adjusting its policy, an agent gradu-
ally learns which actions it must take in each state
in order to maximize its expected total reward (Sut-
ton & Barto, 2017). The outcome of this process is
called the optimal policy (Russell & Norvig, 2016).

Initially, RL often relied on tabular representa-
tions of the optimal policy (Watkins et al., 1992;
Sutton & Barto, 2017). As Busoniu et al. (2017)
point out, however, this approach is only tractable
for problems with a limited state-action space since
otherwise an employed table may grow too large.

In response to this limitation, the deep RL algo-
rithm Deep Q-learning has been introduced (Mnih
et al., 2013), which is an extension of Q-learning,
where an associated agent implementing Deep Q-
learning is called the Deep Q-Network (DQN).

In Q-learning, being one instance of RL, an agent
learns the expected value, or utility, of taking a par-
ticular action in a particular state for all actions
in each state (Russell & Norvig, 2016). This yields
the so-called action-utility function, also known as
Q-function (Russell & Norvig, 2016), where the
learned utility of taking action a in state s is the
sum of both the observed immediate reward for tak-
ing a in s plus the discounted maximal expected
utility from executing the best possible action in
the next state (Sutton & Barto, 2017).

When exploiting a learned policy, following the

Bellman equation, in each state a Q-learning agent
selects the action that yields the maximal expected
utility given the current state (Mnih et al., 2013).

Mnih et al. (2013) extended this approach by
substituting the Q-function of classical Q-learning
with a Convolutional Neural Network (CNN) ar-
chitecture, and hence a universal function approxi-
mator (Hill, 1994), being able to generalize the op-
timal policy to be learned from seen states to yet
unseen but similar states (Mnih et al., 2015; Sut-
ton & Barto, 2017). In this approach, instead of
precisely learning the Q-function, the agent learns
to approximate the Q-function. Also, by using a
CNN, a deep RL agent becomes capable of work-
ing on raw imagery state representations for tasks
to be learned instead of relying on a more compact
state representation, possibly including the usage
of hand-crafted features, as was often the case in
the past (Mnih et al., 2013).

DQN makes use of the following techniques. The
weights of the CNN are trained using stochastic
gradient descent on minibatches of experiences. An
experience is an observed state transition, contain-
ing the state from which the agent transitioned,
the action chosen by the agent in the state, the re-
ward observed in response to executing the action
in the state, the information whether the state is
a terminal state, and, if the state is not a terminal
state, the consecutive state. As will be explained
in section 3, experience replay, the ε-greedy explo-
ration strategy, and the target network approach
are used for sampling of minibatches, action se-
lection, and computing future utilities, respectively
(Mnih et al., 2013).

Since the introduction of DQN, many researchers
have proposed modifications to the standard DQN
algorithm aiming at improving various aspects
about it of which an overview and a correspond-
ing evaluation are presented in Mnih et al. (2018).
Two proposed modifications are as follows.

One diversity-driven exploration strategy for
DQN, called Div-DQN, has been proposed by Hong
et al. (2018). In this approach, the standard loss
function of a deep RL agent gets replaced by a
variant that rewards the discovery of novel, insuffi-
ciently explored states. As training progresses, re-
wards for novel discoveries decrease in magnitude
to promote convergence to the optimal policy.

In a second exploration strategy, called
NoisyNet-DQN (Fortunato et al., 2017), the
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standard linear layers of DQN get replaced
by modified linear layers being disturbed by
parametrized noise. In this approach, the value of
taking a certain action in a given state depends on
both sets of parameters learning the agent’s policy
and sets of parameters being altered by Gaussian
noise to an extent learned by the agent.

The importance of good exploration strategies in
RL for achieving better training outcomes has been
highlighted by Kaelbling et al. (1996).

A distinct deep RL algorithm, similar to DQN,
is Deep Quality-Value Learning (DQV) proposed
by Sabatelli et al. (2018), which is a modifica-
tion of the QV(λ) Learning algorithm proposed by
Wiering (2005). This approach differs from DQN
in that during training both a Q-function and a
V-function get approximated in parallel and the
periodically updated CNN constituting the target
network in DQV is based on the approximation of
the V-function instead of the Q-function, as is the
case in DQN. The V-function directly assigns an
utility to a state, where a state’s utility is the sum
of the reward the agent receives for being in the
current state and the expected discounted cumu-
lative reward the agent will obtain when continu-
ing to follow its policy from the next state onward
(Sabatelli et al., 2018). The intuition motivating
this difference is the idea that the V-function might
converge faster onto a single utility per state than
the Q-function would converge onto a set of utilities
per action per state, possibly accelerating training
(Sabatelli et al., 2018).

1.2 Contributions

Although the effects of introducing many modi-
fications to DQN on its performance in learning
optimal policies have been studied extensively al-
ready, little research has focused on the compari-
son of DQN and DQV. Also, the effects of intro-
ducing many of the extensions designed for DQN
to DQV on DQV’s learning performance are still
understudied. Therefore, this thesis aims at com-
paring the two algorithms DQN and DQV based on
their performance in learning to play the four Atari
2600 games Breakout, Q*Bert, Centipede, and En-
duro from the open-source OpenAI gym. The the-
sis compares the two algorithms in their original
forms and in combination with both the variations
Div-DQN and NoisyNet, as mentioned earlier, sep-

arately, yielding 6 variants.
For the evaluation, the algorithmic variants will

be ranked per game based on the test scores they
obtain playing the learned games. The final com-
parison of the variants will be based on the aver-
age rank each algorithmic variant obtains across
the four games.

2 The Games

The training and testing environments used in this
research are the four Atari 2600 games Breakout,
Q*Bert, Centipede, and Enduro simulated through
the Arcade Learning Environment (Bellemare et
al., 2012) and provided by the open-source Ope-
nAI gym, which provides a standardized interface
across the four game environments.

Each game environment has a frame rate of 60
Hz (Mnih et al., 2013) and an agent can issue action
commands by sending integers drawn from a set of
valid actions to an environment. Each issued action
is then executed k times, where k is uniformly sam-
pled from the set of values {2,3,4}. Thus, the games
chosen implement frame skipping. In response to an
action command, in this research, an agent receives
from an environment the updated imagery state
representation of the environment, i.e. a frame, the
reward the agent obtains for the execution of the
action, and a boolean value indicating whether the
game has terminated after execution of the com-
manded action or not. Throughout a given game,
all actions remain valid continually.

A frame is an array of dimension 210× 160× 3,
containing the RGB color values of an environ-
ment’s momentary imagery state representation.

Rewards are float-values, which may be positive,
negative, or 0. Due to varying reward signals across
the four games, in this research, all positive re-
wards are clipped to 1.0 and all negative rewards
are clipped to –1.0 in order to be able to use the
same agent hyperparameters across the different
games.

Below, the individual games will be presented.

2.1 Breakout

The goal of Breakout (version Breakout-v0 ) is to
destroy rows of bricks along the top of the screen
by hitting a ball against the bricks, which lets a hit
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brick disappear and makes the ball bounce back
toward the bottom of the screen. The player must
prevent the ball from hitting the screen’s bottom by
commanding a paddle in such a way that it bounces
the ball towards the bricks again. The ball may hit
the ground maximally 5 times before the game ter-
minates and must be reset. Each time that a ball
hits the ground or that a game is over due to win-
ning or losing it, either of these events is going to be
encoded as a terminal game state. Hitting a brick
yields a positive reward. In Breakout, an agent can
choose from 4 valid actions in each state. Action 0
has no effect. Choosing action 1 for the first time
starts the game, but has no effect anymore after-
wards. Actions 2 and 3 move the paddle right and
left, respectively.

2.2 Q*Bert

In Q*Bert (version Qbert-v0 ), a character has to re-
color all cubes in a scene by jumping on top of them
at least once. One level of the game is completed as
soon as all cubes in the scene have been recolored.
At the same time, the agent must avoid enemies
and obstacles since making contact with either of
them would cost the agent a life and would there-
fore indicate a terminal state to the agent. Also
having won or lost an entire game or level yields a
terminal state, as well as falling off cubes does. An
agent has 3 lives before the game terminates and
has to be reset. Recoloring a yet unvisited cube
yields a positive reward. In Q*Bert, an agent can
choose from 6 valid actions in each state. Action 0
has no effect. Choosing action 1 for the first time
starts the game, but has no effect anymore after-
wards. The remaining actions make the character
jump in the directions right-back, right-front, left-
back, and left-front, respectively.

2.3 Centipede

In Centipede (version Centipede-v0 ), a character
has to destroy all parts of a centipede travelling
downward a scene, where the centipede is moving
from left to right or vice versa, changing its direc-
tion and descending one row in the scene whenever
it encounters an obstacle or the left or right edge of
the game’s environment. When the character makes
direct contact with a centipede or another enemy,
it loses a life. To avoid this, the character can es-

cape enemies by moving up, down, left, right or in a
combination of two directions. An agent has 3 lives
and besides losing a life, losing or winning a game
or level also marks a terminal state. Positive re-
wards can be earned by destroying a static block in
a scene shooting at it repeatedly and by destroying
parts of a centipede, hitting it with a laser beam.
If hit in the middle, a centipede splits into two in-
dependent parts. In Centipede, there are 18 valid
actions in each state. Action 0 has no effect. The ac-
tions 1 through 5 are shoot, go up, go right, go left,
and go down, respectively. The remaining actions
are combinations of the aforementioned actions.

2.4 Enduro

The goal of the racing game Enduro (version
Enduro-v0 ) is to pass a given number of compet-
ing racers per game level by driving faster than
them and overtaking them. If a player does not
pass 200 racers in the first level and 300 racers per
consecutive level, the player loses the game. This
yields a terminal state, as well as winning a game
or level does. A player’s character drives automat-
ically and a player or agent controls the speed and
steering (left vs right) of its racer to avoid crash-
ing into competing racers since a collision throws
the agent’s racer back on the racing track. Mean-
while, other racers may overtake the agent’s racer
again, which then have to be overtaken by the agent
again. The maximal number of competitors to be
overtaken may not exceed a level’s initial count.
Overtaking a competitor yields a positive reward
and being overtaken yields a negative reward. One
level finishes as soon as a given number of com-
petitors has been overtaken. In Enduro, an envi-
ronment’s visual appearance changes over time and
there are 9 valid actions in each state. Action 0 has
no effect. Action 1 speeds up the car and actions 2
and 3 make the car steer the right and left, respec-
tively. The remaining actions are combinations of
the aforementioned actions.

3 System Description

3.1 Reinforcement Learning

Reinforcement Learning (RL) has become one of
the most popular and most widely used machine
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learning techniques (Sutton & Barto, 2017). One
of the major benefits of the reinforcement learning
approach is the fact that it acts largely independent
from human supervision, that means no human
intervention is required at any time, all the nec-
essary information and feedback is taken directly
from the problem environment. RL is usually, as in
this thesis, applied in the form of an agent that is
confronted with a problem or an environment and
through interaction with this environment learns to
optimize its behaviour with regards to being suc-
cessful in the world it has to deal with. The agent
has to respond to different states of the world mak-
ing a decision at each step, in other words, in each
state the agent has to choose an action which leads
to a different, ideally more favourable, state. The
only means by which the agent can evaluate its be-
haviour and learn are rewards it receives from the
environment. Thus the agent’s behaviour is driven
towards obtaining higher rewards, which in most
environments corresponds to solving the problems
at hand.

Reinforcement Learning problems can in prin-
ciple be described as Markov Decision Processes
(MDP). MDPs consist of a finite set of states (in
many RL environments this set might in fact be
continuous and therefore infinite), a finite set of
actions, a calculated probability of reaching a suc-
cessor state through a specific action and a reward
for reaching that state. Distant rewards are gener-
ally discounted and immediate rewards have con-
sequently a stronger influence on the agent’s be-
haviour.

The overall expected gain (G), that is the pre-
dicted total reward of a specific state-action chain
is calculated through the following function:

G =

∞∑
t=0

γt ∗ rt (3.1)

where the discount factor is denoted by γ and the
reward at time t is denoted by rt. The discount
factor is a number between 0 and 1, where a lower
number leads to a stronger focus on immediate re-
wards while a discount factor of 1 would value dis-
tant rewards just as highly as immediate ones. In
Atari 2600 games the reward is given in the form
of the score achieved after performing an action, or
more specifically the difference in two subsequently
observed scores following a state transition. In or-

der to be consistent between different games the im-
plementations discussed in this paper make use of
reward clipping, i.e. positive rewards received from
the environment are clipped to 1 while negative re-
wards are clipped to -1.

There are, however, some particularities that dis-
tinguish RL problems, especially in combination
with neural networks as will be the case in this pa-
per, from plain MDPs. As already mentioned, the
state space in applied RL problems is often not fi-
nite, which also entails that it is impossible for the
agent to know the best action in a given state; usu-
ally there is no single optimal action to choose. For
this reason function approximators are used that,
instead of calculating the probability of each action
leading to a specific state, predict an estimated fu-
ture reward based on each action given the current
state. From this the agent can ultimately choose
the most promising action. Applying those approx-
imators results in a very flexible learning process
and makes RL feasible in environments with very
large or infinite state spaces. It is also worth noting
that in large environments, like Atari games, re-
wards are usually sparse as most state transitions
bring no reward at all, so here again using function
approximators to predict (potentially quite distant)
future rewards is a very useful learning strategy.

3.2 Q-Learning

Q-learning is a type of reinforcement learning in
which so called quality-values (Q-values) are used
to indicate the expected future rewards of actions
based on a current state (Watkins, 1989). The al-
gorithm predicts the Q-values of all state-action
pairs, that is of all possible actions in a state,
and thereby determines which action is the most
promising choice in the current situation. The ac-
tion with the highest Q-value bares the highest
prospective reward. Q-values are updated over time
based on experience following the update rule in
Eq. 3.2:

Qnew(st, at)← Q(st, at) + α

∗(rt + γ ∗max
a

Q(st+1, a)−Q(st, at))
(3.2)

where st is the state at t, at the action taken at t, rt
the reward obtained at t (i.e. the reward obtained
for performing at in st), α a learning rate, and γ a
discount factor.
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In standard Q-learning implementations the Q-
values of each state-action pair are stored in a look-
up table, however, in large and diverse environ-
ments, such as games, this is clearly not feasible for
various reasons. Storing specific values for all indi-
vidual state-action pairs leads to an unmanageable
amount of information and very restricted and in-
flexible behaviour as states that have not been pre-
viously encountered do not have a Q-value assigned
to them and a corresponding action can therefore
not be chosen if the agent is not able to generalize
from its existing knowledge. Aside from that, with
a large or possibly infinite state space it would be
very inefficient in terms of memory and process-
ing speed to explicitly store Q-values and iterate
through all of them every time a decision has to be
made. A better solution is thus to use a deep neu-
ral network as a function approximator to estimate
Q-values. This allows for efficient decision making
based on the network’s weight tuning regardless of
whether the state at hand is known or not. The
network’s weights are updated through backpropa-
gation of the experienced rewards and so over time
it can be trained to respond to world states by gen-
erating Q-values for the possible actions. Instead of
looking up explicit Q-values in a table, the system
then feeds the current observation (the state of the
world) into the neural network which in turn pro-
duces estimations of the possible actions’ Q-values
for this state, based on the current tuning of the
network, from which the agent can then choose
the most promising one. This empowers a flexible
and efficient decision making process in the agent.
When using a function approximator for Q-learning
the update function becomes:

Qnew(st, at) = rt + γ ∗max
a

Q(st+1, a) (3.3)

for non-terminal states, and:

Qnew(st, at) = rt (3.4)

for terminal states.

3.3 Architecture

For the reasons provided above, all RL implemen-
tations discussed in this thesis make use of Con-
volutional Neural Networks (CNN) (LeCun et al.,
1998) as their function approximators. The net-
work’s architecture was taken from DeepMind’s

original DQN paper (Mnih et al., 2013) and con-
sists of two convolutional layers, followed by one
fully-connected hidden layer and one output layer.
The first convolutional layer contains 16 filters of
size 8 ∗ 8 with a stride of 4, the second one con-
tains 32 filters of size 4 ∗ 4 with a stride of 2, the
fully-connected layer consists of 256 nodes, and fi-
nally the output layer has as many output nodes as
there are possible actions for a given game (varying
from 4 to 18). All layers except the output layer use
the rectified linear unit (ReLU) activation function.

The states that are fed into the network consist
of four frames, the current one and the three pre-
vious ones, that have been rescaled to 84x84 pixels
and transformed into greyscale in order to reduce
each frame’s dimensionality from three (RGB) to
only one, resulting in a network input of 84x84x4.
The Atari learning environment as used in this
project already implements a non-stochastic form
of frame skipping (Bellemare et al., 2012) that au-
tomatically repeats every issued action for k con-
secutive frames, where k is uniformly sampled from
{2,3,4}. Rewards experienced during these consec-
utive frames are summed up. This leads to a clear
computational advantage as less decisions have to
be made by the agent for any given number of
frames, thus increasing the number of visited states
in a given number of decisions, and additionally
results in a greater difference between consecutive
states which is beneficial when using a function ap-
proximator as states become easier to distinguish.

States in which the current game ends or the
agent loses a life are marked as terminal, so that
during training they can be excluded from reward
projection and do not benefit from predicted future
rewards which should not be attributed to states
that lead to the end of the game.

States are not immediately used for network
training as they occur but first stored in a replay
memory (Lin, 1992) with a maximum capacity of
1,000,000, once the capacity limit is reached the
oldest state in the memory gets replaced with the
new one. In order to train the network and update
its weights, 32 experiences (i.e. states with corre-
sponding actions and rewards) are randomly and
uniformly sampled from the replay memory and
used as a batch. This form of batch training in com-
bination with a replay memory has numerous ad-
vantages over online training in which the observed
states are directly used for training and then dis-
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carded. Stored experiences can be used for training
multiple times and usually states stacked together
in a single batch are not consecutive, this breaks in-
terdepence and correlation between different states
which would otherwise negatively effect the train-
ing. It is, however, important that the batches are
independent and identically distributed in order to
avoid any bias towards individual states.

3.4 DQN

In 2013 the DeepMind team introduced a new ap-
proach to deep reinforcement learning which they
called Deep Q-Learning (Mnih et al., 2013). The
networks on which this algorithm is applied are
called Deep Q-Networks, or DQNs in short. A DQN
is essentially a CNN trained with Q-Learning. That
means it takes as its input a world state (in this
case four frames of an Atari 2600 game) and pro-
duces as its output Q-values for each possible ac-
tion the agent can take. After every action the net-
work is updated, using replay memory batch train-
ing, through back-propagation of the experienced
reward and a projected discounted future reward.
The discount factor used for predicted rewards was
chosen to be 0.99 since rewards in the Atari envi-
ronments are very sparse and often actions taken
lead to a reward that is only experienced in the fu-
ture, immediacy does not play an important role.
RMSprop was selected as the optimizer while the
mean-squared error was used as the loss function:

1

n

n∑
i=1

(Y pi − Y ti)2 (3.5)

where n is the batch size, i one element from the
batch, Y p is the predicted Q-value and Y t is the
target Q-value.

A technique that stabilizes training is the addi-
tion of a second network, a so called target network
(Mnih et al., 2013). Such a network has exactly the
same architecture as the main Q-network (the pol-
icy network) but is only updated periodically with a
delay, thus the target network’s weight tuning does
most of the times not represent the current state of
the Q-network but lags slightly behind in terms of
training. The target network is used to calculate the
predicted future rewards that are used for updating
the Q-network. Since the target network is not up-
dated with every new experience it helps avoid pos-
itive feedback loops which in single-network setups

could prevent the network from learning properly
and instead make it stick to suboptimal behaviour.

The standard exploration method used in DQN
learning is diminishing ε-greedy (Sutton and Barto,
2017). In this simple technique the agent either
chooses a completely random action or consults
the Q-network for action selection. The decision for
which method to follow is based on random num-
ber generation and a threshold ε which is decreased
over time, so the probability of the agent using the
network for action selection increases with every
training step. In the implementation used for this
thesis ε was linearly annealed by subtracting a fixed
value after each network update. A fixed minimum
value for ε ensures that exploration always occurs
to a certain degree during training.

3.5 DQV

A variation of standard Q-learning is Quality-
Value-Learning (QV-Learning) introduced by
Wiering in 2005 in which a state-value func-
tion (V-function) additional to the Q-function
is tracked and used for updating the Q-values
(Wiering, 2005). This increases training speed as
the V-function only considers states instead of
state-action pairs and the policy is consequently
updated more frequently than the Q-function
and therefore converges faster to optimal values.
QV-Learning can naturally be applied to the DQN
model which is then called DQV (Sabatelli et al.,
2018). The update function becomes then

Vnew(st) = rt + γ ∗ Vtarget(st+1) (3.6)

for the V-values and

Qnew(st, at) = rt + γ ∗ Vtarget(st+1) (3.7)

for the Q-values.
DQV in principle follows the workings of DQN,

the crucial difference is found in the network setup.
In DQV three networks are used: a standard Q-
network, a V-network and a target network based
on the V-network. The two V-networks follow the
same architecture as the Q-network but differ in
that they only have a single output node instead of
one for every action. As in DQN, the target network
is used for the prediction of future rewards and
is for stabilization purposes not updated continu-
ously. It is important to note, though, that in DQV
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the target network follows the V-network instead
of the Q-network. Both the Q-network and the V-
network are updated based on the reward predic-
tion made by the V-target network using identi-
cal loss functions and optimizers which were again
chosen to be the mean-squared error and RMSprop
respectively.

3.6 Diversity-Driven Exploration

One approach to improve the learning performance
of the standard DQN algorithm is to replace the
rather basic diminishing ε-greedy exploration strat-
egy with a more sophisticated and efficient tech-
nique. One such advanced exploration strategy is a
diversity driven exploration strategy introduced by
Hong and colleagues in 2018 (Hong et al., 2018).
This strategy can be applied to various off- and on-
policy reinforcement learning algorithms, including
DQN, which is then called Div-DQN. In this paper
the diversity driven exploration is also applied to
a DQV implementation which shall thus be called
Div-DQV.

The crucial idea of the diversity driven approach
is to make the agent explore a wide state space
in a directed and efficient way. So instead of just
introducing a degree of randomness into the algo-
rithm, which may lead to unpredictable and un-
satisfying learning outcomes as the to be explored
state space grows larger, this strategy implements
a distance measure which compares the network’s
current prediction to previous predictions and can
reward decisions that lead to the discovery of pre-
viously unencountered situations.

In order to drive the learning progress to explore
a broader horizon and escape local optima the agent
receives imaginary rewards for visiting unknown
states. This is realized through a modification of
the loss function used for updating the Q-values.
More specifically, the standard DQN loss function
(traditionally the mean-squared error) is extended
by a distance measure in the form of a Kullback-
Leibler (KL) divergence. The KL-divergence is zero
for identical values and grows larger as the dif-
ference between the two values increases. In or-
der to compute this distance measure the Q-values
encountered in each state are additionally stored
in the replay memory. During training, a softmax
function is applied to both the stored Q-values for
the sampled state as well as the newly predicted Q-

values for said state. The actual distance measure is
now determined by calculating the KL-divergence
of the two softmax results:

L = α ∗DKL(π(a|s)||π′(a|s)) (3.8)

with DKL indicating the KL-divergence, π(a|s) be-
ing the softmax result of the newly predicted Q-
values, π′(a|s) being the softmax result of the Q-
values retrieved from the replay memory and α be-
ing an exploration factor determining how much
exploration should be emphasized. Hong et al. men-
tion an adaptive scaling strategy for α in their pa-
per, however, the implementation used in this thesis
uses a linear annealing strategy for α for reasons of
simplicity.

The new loss function is now arrived at by simply
subtracting the loss term in Eq. (3.8) from the stan-
dard MSE loss term. All other elements and prop-
erties of the underlying DQN algorithm remain un-
changed. Since the distance measure is subtracted
from the standard loss term, the loss is lower for
larger distances which encourages the agent to ex-
plore states that differ greatly from the ones already
known.

In terms of computational resources the diversity
driven exploration does not add too much overhead
in comparison to standard DQN/DQV. The addi-
tional storage of Q-values in the replay memory
requires some additional memory and the compu-
tation of the loss function involves a few more steps
as two softmax and one KL-divergence calculation
are added. Overall, the training cost is not notably
increased through the use of the diversity driven
approach.

3.7 NoisyNet

NoisyNet (Fortunato et al., 2017) is an explo-
ration strategy aiming at overcoming limitations of
ε-greedy and other state-independent exploration
strategies in deep RL, as will be outlined below.

The intuition behind this approach is to promote
exploration by constantly disturbing the weights
and biases of a deep RL agent by noise during the
agent’s training process. By inducing noise into the
agent’s predictions, exploration is encouraged since
the predictions, which determine which state the
agent will visit next, do not exclusively depend on
the agent’s present training outcome any longer,
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but also on the induced noise. This works by replac-
ing all linear layers of an artificial neural network
used in a deep RL agent by so-called noisy layers.

Each noisy layer is composed of two internal lin-
ear layers, each containing both a set of weights
and a set of biases. The input to a noisy layer is
multiplied by both internal sets of weights sepa-
rately and both respective outcomes are summed
up to a single outcome. Then both sets of biases
are added to the combined output of the previous
step. The result marks the final output of the noisy
layer. While one internal layer is a standard linear
layer, the weights and biases of the second inter-
nal layer get scaled by random values, i.e. noise (as
will be explained in detail below), whenever a for-
ward pass through the network is executed. In the
course of this, the agent trains one set of weights
that learns the predictions the agent has to produce
in the absence of noise once training has finished,
and hence the policy, and a second set of weights
which determines the extent to which the induced
noise affects a prediction of the agent given the in-
put data during training.

Thus, the NoisyNet approach is a state-
dependent exploration strategy, whereas state-
independent exploration strategies, like the tradi-
tional ε-greedy exploration strategy, often fail to
lead to large-scale deviations from the agent’s cur-
rent policy which would be necessary during train-
ing for efficient exploration (Fortunato et al., 2017).

Assumptions about the distribution by which
noise is injected into the agent’s weights can be
neglected since the extent to which the noise af-
fects the predictions is learned automatically by the
agent during training.

Considering computing time, the number of pa-
rameters to be trained in each linear layer of a net-
work doubles due to having to train two sets of
weights and biases instead of one per linear layer
in a NoisyNet. Also, repeated computation of noise
in a NoisyNet adds on top of the regular training
time needed for training a standard deep RL algo-
rithm.

The NoisyNet approach is implemented into
DQN and DQV as follows. Since the NoisyNet ap-
proach is an exploration strategy itself, it replaces
the ε-greedy exploration strategy. All linear layers
with their respective input and output dimensions
in a standard deep RL algorithm get replaced by
noisy layers of the same input and output dimen-

sions. The loss function of a given standard deep
RL agent remains unchanged, except for the fact
that both the policy network and the target net-
work employed for computing the loss get replaced
by the introduced NoisyNets. Backpropagation in
a NoisyNet happens as usual with respect to the
computed loss for all parameters, including both
those that learn the policy and those that learn to
incorporate the noise. To keep the different deep
RL algorithms tested in this research comparable,
the overall model architecture and all hyperparam-
eter settings, including the backpropagation algo-
rithm, remained unchanged from those in the stan-
dard deep RL algorithms tested here.

Implementing a noisy layer works as follows. The
setup of a standard linear layer is described by:

y = wx+ b (3.9)

where y denotes the output of the linear layer, w
the weights of the layer, x the input to the layer,
and b the layer’s biases. In a noisy layer, while in
general equation 3.9 to compute y remains intact,
w and b from equation 3.9 get replaced as follows:

w = µw + σw � εw (3.10)

b = µb + σb � εb (3.11)

Let p and q denote the input and output dimensions
of a given noisy layer, respectively. µw and σw de-
note the sets of weights, each of dimension q × p,
that learn the network’s policy and the weighting
of the noise, respectively. µb and σb denote the sets
of biases, each of dimension q, that get tuned to
the network’s policy and the weighting of the in-
jected noise, respectively. εw and εb contain fac-
torised Gaussian noise, as introduced by Fortunato
et al. (2017), of dimensions q×p and q, respectively.
The symbol � denotes element-wise multiplication.

Sampling noise, i.e. factorised Gaussian noise,
works as follows. Two sets of random values, εj and
εi, of dimension p and q, respectively, are sampled
from a Gaussian distribution with a mean value of
0.0 and a standard deviation of 1.0. Then, the noise
values of both εw and εb are computed as follows:

εwi,j = f(εi)f(εj) (3.12)

εbi = f(εi) (3.13)

where f is defined as f(x) = sgn(x)
√
|x|, as pro-

posed by Fortunato et al. (2017).
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Noise gets resampled each time before a forward
pass through a NoisyNet is executed during train-
ing. In cases of a batch being passed to a NoisyNet,
as happens during batch training, noise is resam-
pled only once before the entire batch is passed
through the network.

As suggested by Fortunato et al. (2017), each µi,j

is initialized to a value randomly drawn from an

independent uniform distribution U [−
√

1
p ,+

√
1
p ]

and each σi,j is initialized to 0.5√
p , where p denotes

a layer’s input dimension.
For evaluation of the training progress of an

agent, a partial copy of the agent’s NoisyNet is cre-
ated, which contains the unmodified convolutional
layers and from each noisy layer the subset of pa-
rameters trained on the agent’s policy, i.e. µw and
µb. The resulting non-noisy policy network is then
employed for playing evaluation games.

4 Experiments

4.1 Experimental Setup

In order to be able to compare the training per-
formance of the six deep reinforcement learning
algorithms discussed in this paper, a number of
tests were conducted. Four Atari game environ-
ments from the OpenAI gym were chosen in which
the algorithms’ learning performances, that is the
achieved scores, and more specifically the develop-
ment of achieved scores over the course of the train-
ing, were measured: Breakout, Centipede, Q*Bert
and Enduro. Each individual run consisted of ex-
actly 10,000,000 network updates, with the excep-
tion of Enduro which, due to time issues, has only
been trained for 7,000,000 network updates. When
the agent loses a life or finishes the game an epoch
ends and the environment is reset. In order to eval-
uate the agents’ training after its conclusion, 20
evaluation games were played every 10,000 network
updates and their mean scores recorded. Since these
evaluation games exclusively used the network’s
output to choose an action, the scores obtained
here are fully representative of the agent’s train-
ing progress and therefore the algorithm’s perfor-
mance. For each reinforcement learning algorithm
discussed in this thesis ten independent runs were
performed for each of the chosen games. A com-
plete training run consisted of 10 million network

updates (7 million for Enduro), including 20 thou-
sand evaluation games (14 thousand for Enduro).

4.2 Hyperparameters

The tuning and setup of the learning algorithms
was taken from the 2015 DeepMind article (Mnih
et al., 2015) and always kept consistent so that a
proper comparison can be made. Actual training of
the agents, that is updating of the networks, always
commenced after 50,000 states had been visited and
stored in the replay memory. This was supposed to
ensure that there always was a large enough col-
lection of previous states to sample from. Actions
in the states preceding the 50,000 mark were cho-
sen completely randomly. The replay memory had
a capacity of 1,000,000 experiences where one state
consisted of 4 consecutive frames, the batch size of
experiences to be used for updating the network
was kept at 32. An agent’s target network used for
reward prediction was updated to match the Q-
network or V-network every 10,000 updates. The
discount factor for rewards was 0.99, the learning
rate 0.00025 and the linear ε decay rate 1e-06 with
a minimum ε of 0.1. The RMSProp optimizer used
a gradient momentum of 0.95 and a minimum gra-
dient of 0.1.

Since the paper by Hong et al. (2018) does not
state a decay rate for the factor α it was set to 1e-
06 with a minimum α of 0.1 in order to match ε in
the standard implementations.

4.3 Resources

The complete code of the implementations used in
this thesis and the raw output data of the experi-
ments can be found in the following GitHub repos-
itory: /Jannik0/RUG ReinforcementLearning.

5 Results

5.1 Collection of Scores

In order to obtain scores representative of the train-
ing process and outcome of the six different algo-
rithms while training on each of the four games,
the scores of 20 evaluation games that are played
every ten thousand frames (and therefore network
updates) were recorded and averaged. Those scores
were then again averaged over ten independent full

10

https://github.com/Jannik0/RUG_ReinforcementLearning


training runs of ten million frames (seven million
in the case of Enduro).

The plots of the individual results obtained that
way can be found in Appendix C. In those graphs
the thick line represents the average score the re-
spective algorithm achieved at each evaluation ses-
sion over 20 games and 10 runs. The graphs ad-
ditionally contain error bars for every data point
that are based on the lowest and highest average
score achieved over the 20 evaluation games at this
evaluation session by any of the 10 runs.

The key results and the comparison between the
six algorithms will be dealt with in the following.

5.2 Key Results

The plots included in this section contain
smoothened training curves of all six tested algo-
rithms, the results have been bundled for each of
the four games to make a comparison more intu-
itive. For detailed and unsmoothened individual re-
sults with error bars please refer to appendix C.
The tables presented here contain measurements of
the very last evaluation sessions (after ten million
network updates - or after seven million in the case
of Enduro) of the ten independent runs.

5.2.1 Breakout

All six algorithms clearly learned to play the game
of Breakout as the learning curves in Figure 5.1 in-
dicate. The three DQV based algorithms, namely
the standard DQV, the diversity-driven DQV and
the NoisyNet DQV, improved their performance
significantly faster in the beginning compared to
all three DQN algorithms. However, they also set-
tle earlier than the standard DQN implementa-
tion which towards the end of the training pro-
cess achieves the highest scores among all algo-
rithms. Interesting to note is furthermore that the
more sophisticated exploration strategies did not
have the desired effect in the training of Breakout
as they do not reach the performance of their re-
spective underlying algorithm at any point, with
NoisyNet DQV being the only exception as it man-
ages to outperform the base DQV towards the very
end of the training process. The training curves
of the two DQN variants (Div-DQN and NoisyNet
DQN) are almost identical and slightly favour the
diversity-driven approach while the DQV variants’

curves show great discrepancies with the NoisyNet
clearly achieving better scores throughout most
of the training process. When comparing the two
diversity-driven implementations it is observable
that the DQV variant has a better start than the
DQN variant but quickly transitions into an almost
linear training progress while the progress made by
Div-DQN is slightly exponential and even surpasses
Div-DQN by a marginal degree near the end of the
training.

Figure 5.1: Average results of the six algo-
rithms’ evaluation games while learning to play
Breakout (10 million updates with 20 evalua-
tion games every 10 thousand updates; lines are
smoothened)

Table 5.1 shows the results of the last evalua-
tion sessions of the ten training runs for each al-
gorithm after training on Breakout. Here it be-
comes apparent that the algorithms with the lowest
average scores (namely Div-DQN, Div-DQV and
NoisyNet-DQN) also have the largest spread be-
tween their lowest and highest achieved scores and
especialy show a significant deterioration of their
scores’ lower bound when compared to the three
better performing algorithms. The algorithms with
the highest average score, DQN, also achieved the
highest lower and upper bounds.

5.2.2 Centipede

In Figure 5.2 the training results of the six algo-
rithms for the game Centipede can be found. Al-
though none of the algorithms really managed to
clearly improve their performance throughout the
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Table 5.1: Summary of scores achieved in the
last evaluation session after 10 million updates
in the game Breakout

Algorithm
Average
Score
(±SE)

Min.
Score

Max.
Score

DQN
64.9
(±1.9)

58.2 76.4

DQV
49.3
(±2.7)

37.7 62.2

Div-DQN
35.5
(±5.6)

10.7 54.3

Div-DQV
35.2
(±3.8)

17.9 52.5

Noisy-DQN
31.5
(±6.6)

2.1 53.2

Noisy-DQV
55.0
(±2.4)

45.3 70.4

training, some progress can be observed in the be-
ginning, especially for the DQN family of algo-
rithms. The three DQN implementations also out-
perform all three DQV algorithms during the last
two thirds of the training process. Additionally, a
clear order of variants becomes apparent which ap-
plies to both the DQN as well as the DQV fam-
ily: The NoisyNet architecture achieves the high-
est scores, followed by the diversity-driven explo-
ration strategy. Both exploration extensions lead
to improved performance over their base algorithms
and progress fairly similarly over the course of the
training duration, only the comparison between the
DQN variants shows a larger difference towards the
end of the training.

The two algorithms that on average performed
best in the game of Centipede, NoisyNet DQN
and Div-DQN, achieved the highest lower bound
of scores (as can be seen in Table 5.2) which is an
important contributing factor to their comparably
high average scores. However, the highest overall
score in a any single run, by a considerable margin,
was obtained by the NoisyNet variant of DQV, but
this algorithm also has a rather low lower bound of
scores leading to an overall worse average perfor-
mance compared to the two aforementioned algo-
rithms.

Figure 5.2: Average results of the six algorithms’
evaluation games while learning to play Cen-
tipede (10 million updates with 20 evaluation
games every 10 thousand updates; lines are
smoothened)

Table 5.2: Summary of scores achieved in the
last evaluation session after 10 million updates
in the game Centipede

Algorithm
Average
Score
(±SE)

Min.
Score

Max.
Score

DQN
2784
(±234)

1260 4017

DQV
2603
(±272)

1380 4421

Div-DQN
2938
(±232)

2211 4607

Div-DQV
2505
(±203)

1720 3542

Noisy-DQN
3383
(±130)

2776 4172

Noisy-DQV
2709
(±337)

1484 5106

5.2.3 Q*Bert

Figure 5.3 summarizes the results obtained during
the training process with the game Q*Bert. Now
again, all six algorithms clearly managed to learn
to play the game and greatly improve their perfor-
mances over the course of the training. The DQV
algorithms once again have a more successful ini-
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tial learning period but this time they also man-
age to maintain this advantage throughout the en-
tirety of the training process. Ultimately the three
DQV implementations achieve higher scores than
their respective DQN counterparts and for the most
part even higher than all three DQN algorithms,
only the base DQV implementation is eventually
outperformed by the diversity-driven DQN vari-
ant. In Q*Bert the extended exploration strate-
gies show their strengths and clearly perform better
than their corresponding base algorithms in both
the DQN and DQV families. In DQN the diversity-
driven exploration strategy maintains a relatively
stable advantage over the NoisyNet architecture,
even though the difference is not too distinct. Both
extensions display a faster and more stable train-
ing process than the base DQN implementation
whose performance even decreases towards the end
of the training. The curves of the three DQV im-
plementations take a very similar course among
each other, however, here again both the diversity-
driven exploration as well as the NoisyNet archi-
tecture clearly outperform the base DQV algorithm
throughout almost the entire training process. Here
the performance difference between Div-DQV and
NoisyNet DQV is even smaller than between Div-
DQN and NoisyNet DQN and even though the
diversity-driven approach achieves higher scores
during the largest part of the training the NoisyNet
implementation takes over in the last third and ul-
timately reaches a higher average score at the end
of the tranining.

As can be seen in Table 5.3, DQN achieves con-
siderably worse results in Q*Bert than any other
implementation. The average score as well as the
lowest and highest score are far below that of the
other compared implementations. One interesting
observation is that the Div-DQN and NoisyNet
DQN implementations achieve maximum scores
comparable to those of the three DQV algorithms,
however, their lower bound of scores is far below
that of the DQV family which explains the over-
all performance difference. Even though Div-DQV’s
average score is above that of the base DQV imple-
mentation both the lower and upper bounds are
below that of DQV, this indicates that more Div-
DQV runs came close to the algorithm’s highest
scores compared to DQV. By far the highest lower
score bound belongs to the overall best performing
algorithm, NoisyNet DQV.

Figure 5.3: Average results of the six algo-
rithms’ evaluation games while learning to play
Q*Bert (10 million updates with 20 evalua-
tion games every 10 thousand updates; lines are
smoothened)

Table 5.3: Summary of scores achieved in the
last evaluation session after 10 million updates
in the game Q*Bert

Algorithm
Average
Score
(±SE)

Min.
Score

Max.
Score

DQN
485
(±117)

144 1413

DQV
3187
(±255)

2039 4310

Div-DQN
3339
(±325)

700 4201

Div-DQV
3449
(±221)

2024 4000

Noisy-DQN
2883
(±357)

568 4111

Noisy-DQV
3726
(±87)

3393 4290

5.2.4 Enduro

The training progression of the six algorithms in the
game Enduro can be seen in Figure 5.4. All imple-
mented algorithms showed very consistent and rig-
orous improvements in their performance in playing
the game. Overall, the maximum scores obtained by
any of the implementations towards the end of the
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training is very similar, however, the learning onset
and speed of improvement differs greatly between
the different algorithms. The three DQV-based al-
gorithms outperform their respective DQN counter-
parts by a significant degree, even though the differ-
ence is not as prominent between the two NoisyNet
implementations. Still, all three DQV implementa-
tions start improving earlier than their DQN coun-
terparts and also maintain this advantage until the
end of the training. When comparing the different
exploration strategies a clear tendency becomes ap-
parent as well. The more sophisticated exploration
strategies led to a very distinct improvement in
performance over their base algorithms with Div-
DQN and NoisyNet-DQN clearly and consistently
outperforming the standard DQN, and Div-DQV
and NoisyNet-DQV clearly and consistently out-
performing the standard DQV. Both NoisyNet ex-
tensions have a clear advantage over the standard
DQN and DQV from the beginning of the training
all the way through to the end. However, by far the
best learning results were achieved by the diversity-
driven exploration strategy with both Div-DQN as
well as Div-DQV showing considerable advantages
over the other four algorithms with an earlier im-
provement onset, especially for Div-DQV, and a
much earlier performance peak, while also main-
taining the smoothest and thus most stable learn-
ing curve. Ultimately, however, in the game of En-
duro the differences between the tested algorithms
lie more in the speed of performance increase rather
than the final achieved scores.

Once more, the base DQN algorithm performs
the worst among the six algorithms with the lowest
average and maximum scores, as Table 5.4 shows.
The ranking of the final scores is for the most part
consistent between the average score and the lowest
score with the only grave exception being the min-
imum final score of Noisy-DQN which is by far the
lowest while the algorithm’s average final score is
only the second lowest. Similar observations can be
made about the final maximum scores. Here Noisy-
DQN, the algorithm with the overall second worst
training performance and average score, has the
third highest score, while the ranking of the other
five algorithms remains faithful to the other two
scoring categories. Div-DQV obtained the highest
scores in all three categories and furthermore, the
difference between Div-DQV’s lowest and highest
scores is also the smallest which also explains its

Figure 5.4: Average results of the six algorithms’
evaluation games while learning to play Enduro
(7 million updates with 20 evaluation games ev-
ery 10 thousand updates; lines are smoothened)

overall high and stable results. Aside from that, the
final scores reinforce the impression of the training
curves with the DQV-based algorithms outperform-
ing their DQN-based counterparts and the explo-
ration extensions leading to an advantage over the
standard implementations with the diversity-driven
approach yielding the best results.

Table 5.4: Summary of scores achieved in the
last evaluation session after 7 million updates in
the game Enduro

Algorithm
Average
Score
(±SE)

Min.
Score

Max.
Score

DQN
524.9
(±26.6)

359.8 596.3

DQV
580.1
(±9.0)

504.5 601.1

Div-DQN
598.8
(±6.1)

560.3 617.3

Div-DQV
611.0
(±21.3)

591.2 635.4

Noisy-DQN
536.3
(±44.8)

152.2 621.6

Noisy-DQV
589.7
(±11.2)

502.9 622.6
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6 Conclusion and Discussion

Throughout this thesis we compared the deep RL
algorithms DQN and DQV in their original forms
and in combination with both the diversity-driven
and the NoisyNet exploration strategies separately.

As can be seen from the results, it is uncertain
how informative the evaluation scores obtained for
the game Centipede are since learning performance
is low on this game across all algorithms. A likely
reason for that may be the usage of a too small
model architecture since previous research success-
fully training an agent on playing this game used a
larger model architecture than used in this research
(Mnih et al., 2015; Hessel et al., 2017). Still, test
scores obtained on Centipede will be included in
this conclusion and discussion.

A ranking based on the results of how the algo-
rithms performed across the four games in terms
of final evaluation scores is presented in table D.1
in appendix D. Ranking is done because of varying
reward signals across the games, which prevents a
direct comparison of the evaluation scores across
games.

The ranking can be summarized as follows.
While both NoisyNet variants, NoisyNet-DQN and
NoisyNet-DQV, outperformed all other algorithms
and share the first rank, the second rank is shared
by DQV and Div-DQN. They are followed by Div-
DQV and DQN on the third and fourth rank, re-
spectively.

Supporting the results found by Sabatelli et al.
(2018), DQV demonstrated better learning per-
formance throughout the four games than DQN.
Moreover, it can be concluded that also DQV prof-
its from at least a subset of the exploration strate-
gies originally introduced to DQN. This is sup-
ported by the observation that the standard DQV
algorithm only scored rank 2 across the four games,
while NoisyNet-DQV scored rank 1.

Only the ranks 3 and 4 are not shared by both a
DQN and DQV variant. At this point in the rank-
ing, a DQV variant, i.e. Div-DQV, outperforms a
DQN variant, i.e. the standard DQN algorithm.
From this, it can be concluded that DQV-based
variants have an overall slight advantage over DQN-
based variants with respect to the final learning
outcome given a fixed amount of training, which
entails a slightly increased learning speed of DQV
variants compared to DQN variants.

Besides focusing on obtained evaluation scores,
further differences of the algorithms can be ob-
served over the course of training with respect to
training speed and the spread of the evaluation
scores obtained during training, as can be seen in
figures C.1 through C.24. From these figures, it
seems that the learning process of DQV variants
is more gradual and steady than that of DQN vari-
ants. Also, the spread between the highest and low-
est evaluation scores obtained in a single evaluation
session is smaller in DQV variants than in DQN
variants. This holds for Breakout and Q*Bert. In
Enduro, particularly the high learning speed of the
diversity-driven approaches until their convergence
onto a certain evaluation score stands out.

Another important observation is that DQV did
not only outperform DQN with respect to final
evaluation scores, but also showed faster training
speed than DQN over long initial periods of train-
ing across all games, as can be seen from the figures
in the results section.

Overall, the NoisyNet approache seems to out-
perform both the diversity-driven approach and
the standard algorithms DQN and DQV, while the
diversity-driven approach seems to largely outper-
form only DQN.

Generally, whether enhanced exploration bene-
fits training outcome seems to be dependent on
the concrete learning objective at hand. While the
standard DQN, using the standard ε-greedy explo-
ration strategy, outperformed all other algorithms
in Breakout, it showed unstable learning Q*Bert,
where evaluation scores dropped again after some
initial successful training. This observation em-
phasizes the importance of the search for a well-
adjusted balance between exploration and exploita-
tion.

The last observation to notice is that previous re-
search using the same DQN model architecture as
used in this thesis reported larger evaluation scores
for DQN on the games Breakout and Q*Bert and
lower scores on Enduro (Mnih et al., 2013). The
question remains whether this difference is caused
by the fact that Mnih et al. (2013) used a fixed
frame skipping rate, while in this research a vari-
able frame skipping rate was used. Investigating the
influence of differing frame skipping techniques on
an algorithm’s learning performance may be sub-
ject to further research.
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A Division of Work

Table A.1:
Implementations and Experiments

Algorithm Contributor
DQN Daniel & Jannik
DQV Daniel & Jannik
Div-DQN Jannik
Div-DQV Jannik
NoisyNet DQN Daniel
NoisyNet DQV Daniel

Table A.2:
Thesis Writing

Section Contributor
Abstract Daniel & Jannik
Introduction Daniel
The Games Daniel
System Description (except NoisyNet) Jannik
System Description (only NoisyNet) Daniel
Experiments Jannik
Results Jannik
Conclusion and Discussion Daniel
Quality assurance and improvements of all sections Daniel & Jannik
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B Hyperparameters

Table B.1:
Parameter Values

Parameter Value
replay memory capacity 1000000
training start 50000
target network update 10000
minibatch size 32
discount factor 0.99
learning rate 0.00025
RMSProp gradient momentum 0.95
RMSProp gradient minimum 0.01
exploration start (ε/α) 1
exploration decay (ε/α) 1e-06
exploration minimum (ε/α) 0.1

C Individual Results

The graphs found on the following pages show the unsmoothened results of the evaluation games per-
formed by the agents at multiple stages during training (see section Experimental Setup for more de-
tails). The values are the average scores achieved over 10 independent runs, each with 20 evaluation
games played at each interval, and include error bars based on the best and worst performing run at
each evaluation session.
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Figure C.1: Individual results for DQN in Breakout

Figure C.2: Individual results for DQV in Breakout
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Figure C.3: Individual results for Div-DQN in Breakout

Figure C.4: Individual results for Div-DQV in Breakout
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Figure C.5: Individual results for NoisyNet-DQN in Breakout

Figure C.6: Individual results for NoisyNet-DQV in Breakout
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Figure C.7: Individual results for DQN in Centipede

Figure C.8: Individual results for DQV in Centipede
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Figure C.9: Individual results for Div-DQN in Centipede

Figure C.10: Individual results for Div-DQV in Centipede
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Figure C.11: Individual results for NoisyNet-DQN in Centipede

Figure C.12: Individual results for NoisyNet-DQV in Centipede
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Figure C.13: Individual results for DQN in Q*Bert

Figure C.14: Individual results for DQV in Q*Bert
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Figure C.15: Individual results for Div-DQN in Q*Bert

Figure C.16: Individual results for Div-DQV in Q*Bert
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Figure C.17: Individual results for NoisyNet-DQN in Q*Bert

Figure C.18: Individual results for NoisyNet-DQV in Q*Bert
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Figure C.19: Individual results for DQN in Enduro

Figure C.20: Individual results for DQV in Enduro
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Figure C.21: Individual results for Div-DQN in Enduro

Figure C.22: Individual results for Div-DQV in Enduro
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Figure C.23: Individual results for NoisyNet-DQN in Enduro

Figure C.24: Individual results for NoisyNet-DQV in Enduro
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D Ranking of Algorithms

This appendix contains the final ranking of how the algorithms performed across all four games compared
to each other.

The ranking happens as follows. Firstly, it is assumed that all algorithms performed equally well on
each game. Given this null hypothesis, initially each algorithm gets the ranking interval 1 – 6 assigned for
all games. In the next step, a non-parametric significance test, the Wilcoxon rank-sum test, is applied
to test whether the final test scores obtained by any two algorithms on their ten training runs per
game differ significantly or not. A non-parametric test was chosen since not all obtained test scores were
normally distributed. Whenever the significance test indicates that the final test scores obtained by the
two currently considered algorithms differ significantly given the same game, with p = 0.05, the top
rank position of the algorithm associated with the lower of the two mean final test scores worsens by
one position, i.e. the top rank position value gets incremented by one, while the lowest possible rank
for the currently considered algorithm with the higher average score decreases by one. This happens for
each of the four games individually. The result of that step is shown in the table below in the columns
Breakout through Enduro. Afterwards, ranks obtained on the four games get summed to a total score
per algorithm, where each rank interval is represented by its mid-value. These results are shown in the
column Total Score in the table below. Finally, the algorithms are ranked with respect to their total scores
computed in the previous step. The result is shown in the column Total Rank in the table below. The
lower an algorithm’s absolute value of its total rank, i.e. the higher the rank, the better the performance
of the algorithm with respect to the remaining algorithms. Below, the table performing this ranking is
shown.

Table D.1: Ranking of algorithms across the four games Breakout, Centipede, Q*Bert, and Enduro.
Total Score indicates the sum of ranks obtained by the algorithm. Total Rank indicates the overall
rank obtained by an algorithm across the four games. Rank 1 indicates the top rank among all
competing algorithms.

Algorithm Breakout Q*Bert Centipede Enduro
Total
Score

Total
Rank

DQN 1 6 2 – 6 5 – 6 16.5 4
DQV 2 – 5 1 – 5 2 – 6 2 – 5 14 2
Div-DQN 3 – 6 1 – 5 1 – 6 1 – 5 14 2
Div-DQV 4 – 6 1 – 5 2 – 6 1 – 4 14.5 3
NoisyNet-DQN 3 – 6 1 – 5 1 – 2 1 – 6 12.5 1
NoisyNet-DQV 2 – 3 1 – 5 2 – 6 1 – 5 12.5 1

31


	Introduction
	Background
	Contributions

	The Games
	Breakout
	Q*Bert
	Centipede
	Enduro

	System Description
	Reinforcement Learning
	Q-Learning
	Architecture
	DQN
	DQV
	Diversity-Driven Exploration
	NoisyNet

	Experiments
	Experimental Setup
	Hyperparameters
	Resources

	Results
	Collection of Scores
	Key Results
	Breakout
	Centipede
	Q*Bert
	Enduro


	Conclusion and Discussion
	Division of Work
	Hyperparameters
	Individual Results
	Ranking of Algorithms

