
thijs van der knaap

R E D U C I N G O P E R AT I O N A L C O S T S O F
M I C R O S E RV I C E S B Y M E A N S O F A D E P L O Y M E N T

T U N E R

R E D U C I N G O P E R AT I O N A L C O S T S O F M I C R O S E RV I C E S B Y
M E A N S O F A D E P L O Y M E N T T U N E R

thijs van der knaap

supervisors:
V. Andrikopoulos

A. Lazovik

Groningen, August 2019

Thijs van der Knaap: Reducing operational costs of microservices by means
of a deployment tuner © August 2019

supervisors:
V. Andrikopoulos
A. Lazovik

location:
Groningen

time frame:
August 2019

A B S T R A C T

Running a microservices architecture on the cloud can have significant
cost advantages, especially when load on the system varies. Opera-
tional cost can be minimised by ensuring that just enough resources
are requested, without harming performance. Autoscalers have been
developed which analyse the system and scale accordingly, but even
more cost can be saved by applying deployment tuning.

This work researches the financial benefits of expanding the stan-
dard Kubernetes autoscaler with an automated deployment tuner. The
tuner reduces operational cost by actively searching for deployments
that require less resources. The tuner is able to modify the current
deployment and acts when the deployment is stable, this ensures
that it does not compete with the autoscaler. It tunes based on the
current load, deployment and stored previous deployments. When
no cost gains can be made the tuner still expands its knowledge by
performing small changes to the deployment, which also prevents the
system getting stuck in a local minimum.

The evaluation shows that the tuner decreases operational cost of a
cluster consisting of a single microservice. These savings do come with
a decrease in performance. Further evaluation with a full microservice
system is needed to judge the full cost saving potential of deployment
tuning.

v

A C K N O W L E D G M E N T S

First, I would like to thank my supervisor Vasilios Andrikopoulos
for all the interesting discussions and useful insights. Without his
guidance this research would not have been possible.

Second, I would also like to thank my colleague students Bogdan
Petre and Patrick Vogel. They were always available to listen to my
complaints and provide constructive feedback.

vii

C O N T E N T S

1 introduction 1

1.1 The deployment tuner 1

1.2 Document structure . 2

2 background and related work 3

2.1 Background . 3

2.1.1 Microservices . 3

2.1.2 Containerisation 4

2.1.3 Orchestration . 4

2.1.4 Autoscaling . 5

2.1.5 MAPE-K . 5

2.2 Related work . 6

3 architecture 9

3.1 Requirements . 9

3.2 Design . 10

3.2.1 Knowledge . 12

3.2.2 Monitor . 12

3.2.3 Analyse . 13

3.2.4 Plan . 15

3.2.5 Execute . 16

3.2.6 Reiterating the loop 17

4 implementation and testing 19

4.1 Kubernetes cluster . 19

4.1.1 Autoscaler . 19

4.2 Local machine . 20

4.3 Knowledge base . 20

4.4 Tuner . 22

4.4.1 Monitor . 22

4.4.2 Analyse . 25

4.4.3 Plan . 28

4.4.4 Execute . 29

4.4.5 Running the tuner 31

4.5 Testing . 32

4.5.1 Test application: PHP-Apache 32

4.5.2 Visualisation . 32

4.5.3 Execute actions 32

5 evaluation 37

5.1 Experimental setup . 37

5.1.1 Benchmark application 37

5.1.2 Load generator 37

ix

x contents

5.1.3 Hardware . 38

5.1.4 Experiment . 38

5.2 Results . 39

5.2.1 Phase 1 . 39

5.2.2 Phase 2: Finding the source of node addition . . 46

5.2.3 Phase 3 . 49

6 conclusion and future work 57

6.1 Conclusion . 57

6.2 Future work . 58

bibliography 61

a code listings 65

a.1 Find removable node . 65

a.2 Node matching . 69

a.3 Migration set generation 74

a.4 Verify migration set . 76

b test output 79

b.1 Add pod . 79

b.2 Migrate pod . 79

b.3 Remove pod . 80

b.4 Remove node . 80

c evaluation plots 83

c.1 Phase 3: pattern 1 . 83

c.2 Phase 3: pattern 2 . 86

c.3 Phase 3: pattern 3 . 88

L I S T O F F I G U R E S

Figure 2.1 MAPE-K loop [5] 6

Figure 3.1 Logical view . 10

Figure 3.2 Process view, using BPMN 11

Figure 4.1 Physical view 20

Figure 4.2 Graph database structure 21

Figure 4.3 Increase of PHP-Apache pods with increasing rps 24

Figure 4.4 Load extraction measure Bytes received 24

Figure 4.5 Add pod . 33

Figure 4.6 Migrate pod . 34

Figure 4.7 Remove pod . 34

Figure 4.8 Remove node 35

Figure 5.1 Load pattern 1 40

Figure 5.2 Load pattern 2 40

Figure 5.3 Operational cost pattern 1 41

Figure 5.4 Latency pattern 1 42

Figure 5.5 Logarithmic latency pattern 1 42

Figure 5.6 Operational cost pattern 2 43

Figure 5.7 Latency pattern 2 44

Figure 5.8 Logarithmic latency pattern 2 44

Figure 5.9 CPU and memory utilisation 45

Figure 5.10 Resource utilisation, no random migrations . . 46

Figure 5.11 Load pattern single narrow peak 47

Figure 5.12 CPU and memory utilisation, single narrow peak 47

Figure 5.13 Resource utilisation, no node removals 48

Figure 5.14 Cost no node removal 49

Figure 5.15 Load pattern 1 50

Figure 5.16 Load pattern 2 50

Figure 5.17 Load pattern 3 51

Figure 5.18 Cost all combined pattern 1 52

Figure 5.19 Cost all combined pattern 2 53

Figure 5.20 Cost all combined pattern 3 54

Figure C.1 Cost with node removal pattern 1 83

Figure C.2 Cost without node removal pattern 1 84

Figure C.3 Cost simulated node removal pattern 1 84

Figure C.4 Latency with node removal pattern 1 85

Figure C.5 Latency without node removal pattern 1 85

Figure C.6 Cost with node removal pattern 2 86

Figure C.7 Cost without node removal pattern 2 86

Figure C.8 Cost simulated node removal pattern 2 87

Figure C.9 Latency with node removal pattern 2 87

Figure C.10 Latency without node removal pattern 2 88

xi

Figure C.11 Cost with node removal pattern 3 88

Figure C.12 Cost without node removal pattern 3 89

Figure C.13 Cost simulated node removal pattern 3 89

Figure C.14 Latency with node removal pattern 3 90

Figure C.15 Latency without node removal pattern 3 90

L I S T O F TA B L E S

Table 5.1 Savings pattern 1 41

Table 5.2 Savings pattern 2 43

Table 5.3 Savings no node removal 48

Table 5.4 Savings overview pattern 1 52

Table 5.5 Savings overview pattern 2 53

Table 5.6 Savings overview pattern 3 54

L I S T I N G S

Listing 4.1 Retrieve deployment from knowledge base . . 22

Listing 4.2 Calculate current cost 25

Listing 4.3 Calculate cost node removal 26

Listing 4.4 Deployment retrieval query 27

Listing A.1 Find removable node 65

Listing A.2 Node matching 69

Listing A.3 Migration set generation 74

Listing A.4 Verify migration set 76

xii

1
I N T R O D U C T I O N

Microservices is an approach applied where there many services that
have their own life cycle and collaborate together [1]. Microservices
are becoming an industry standard for cloud based solutions. Their
growth in popularity is still increasing [2]. Big companies like Netflix
and Amazon [3] have already transitioned. As with all software, also
each microservice eventually runs on hardware. This hardware is
bought or rented which generates operational cost.

The aim of this research is to investigate if re-deployment capabil-
ities and operational history awareness as a component working in
collaboration with an autoscaler can lead to the reduction of opera-
tional costs. The proposed component is a deployment tuner which is
introduced in Section 1.1. The process of re-deployment using history
awareness will from now on be called deployment tuning. This results
in the following research question:

Can deployment tuning reduce the operational cost of
microservices?

This research is applied on microservices, because one of the core
abilities of microservices is the ability to scale each service indepen-
dently [1]. This allows the system to acquire to correct scale for every
component to deal with all the incoming load while minimising the
required resources.

Autoscalers are applied to automate this scaling. An autoscaler is
a program that dynamically allocates and deallocates resources for a
particular application [4]. To perform this scaling the autoscaler needs
to be aware of the workload that is put on the application. The goal of
an autoscaler is to keep the application cost effective while ensuring
that the quality of service is maintained. Autoscalers are covered in
depth in Section 2.1.

Autoscalers are normally dedicated to scaling a single component.
They can not optimise the system from a multiple component perspec-
tive. The deployment tuner, which is introduced in the next section,
will be able to make decisions and changes using this perspective.

1.1 the deployment tuner

To perform the deployment tuning a tuner is needed. An important
decision while building this tuner was to let the tuner run next to
the original autoscaler. This allows the tuner to enhance the quality
of the scaling performed by the autoscaler. The tuner will only act

1

2 introduction

when the system is stable, meaning that the current deployment is
able to handle the current incoming load. This ensures that it will not
compete with the autoscaler, but will instead act when the autoscaler
is inactive.

The design of the tuner is based on the MAPE-K loop proposed
by IBM [5], providing an architecture for autonomic systems. The
Knowledge base proposed in this architecture enables the awareness
of deployments. The MAPE-K loop is further explained in Section 2.1.

The decision to maintain the normal autoscaler and only let the
tuner act in stable situation has two large advantages.

The first advantage is that the tuner only has to focus on the actual
redeployment for the current load. As scaling up and down due to
load change does not have to be considered, it adheres to the principle
set by Doug McIlroy, one of the founders of the UNIX tradition, "Make
each program do one thing well" [6]

The second advantage gained by not replacing autoscaling, is that
the tuner does not have to respond in real-time. The tuner should still
be able to act in a reasonable amount of time, but this does not have to
be instantaneous. This allows the tuner to perform a more advanced
analysis, while the quick scalability is still ensured by the original
autoscaler.

The goal of this work is to verify if a deployment tuner is able to
reduce the cost of a microservice system and to give a clear explanation
on how a tuner can be designed. By using the MAPE-K architecture
also the design of single components of this loop can be useful for
other self-optimising systems. Special care is taken in the design of the
tuner to allow for the usage of previous deployments while ensuring
that the tuner also tries to visit new states.

1.2 document structure

This research thesis including the introduction consists in total of seven
chapters. Chapter 2 discusses the background for the technologies used
and the related work. Chapter 3 covers the requirements for the tuner
and its design. Chapter 4 explains how the design is implemented and
tested. The tuner is evaluated in Chapter 5. Conclusions concerning the
whole research and interesting future work can be found in Chapter 6.

2
B A C K G R O U N D A N D R E L AT E D W O R K

This chapter consists of two sections. Section 2.1 covers all relevant
technologies that where used in this work. Section 2.2 covers papers
related to reducing cost in a scalable environment.

2.1 background

2.1.1 Microservices

Microservices are autonomous services that work together [1]. Each
service should be exactly focused on only one thing. All functionality
in a service should be directly concerned with its purpose, ensuring
high cohesion. Low coupling is acquired by standardising the com-
munication between services, this allows for the modification of one
service without affecting others. High cohesion and low coupling
are only attained when the boundaries between services are set up
correctly.

When these boundaries are correctly constructed and maintained
you gain a lot of advantages. The most important ones and their
implications are listed below [1].

• Technology Heterogeneity: Every service can use its own tech-
nologies, for example the programming language used. The
communication between services is standardised, and as long as
both parties keep to that standard the used local implementation
has no effect outside of its service.

• Resilience: A single service can fail, but this does not have to
bring down the whole system. The service in question can simply
be removed and replaced by a new copy.

• Scaling: As stated before every service can be scaled indepen-
dently, allowing single services to be scaled when their load
increases.

• Ease of deployment: A change to a service only has to be de-
ployed on that service, therefore versions can be iterated quickly.
The change can also be rolled back quickly, easing the develop-
ment even more.

3

4 background and related work

2.1.2 Containerisation

To acquire many of the microservice benefits stated in the previous
section it is essential that every service runs in its own environment.
This ensures that services can only communicate using the intended
means.

Running a (virtual) machine for every instance of a service results in
a significant overhead. Therefore containerisation has been developed
allowing each service to run in a lightweight container. This allows for
the same benefits as a full fledged (virtual) machine per service, but
only produces a fraction of the overhead [7]. Next to this reduction
in overhead containerisation also aids in standardising the services,
allowing general solutions to be build. The most used containeri-
sation tool currently used is Docker [8]. Docker allows lightweight
containerisation that can run on almost every machine.

2.1.3 Orchestration

Due to the standardisation acquired by containerisation more ad-
vanced tools could be constructed. One of these tools is orchestration.
An orchestration tool allows the user to define the desired deploy-
ment and the tool will ensure that this deployment is created and
maintained [9].

Two well know orchestration tools are Docker swarm and Ku-
bernetes. Docker swarm allows the user to specify which contain-
ers should run in the system. Next to this one or multiple (vir-
tual)machines can be provided to run these containers. Docker swarm
will then place the given containers on the available machines.

Kubernetes allows the user to define per service how it should be
deployed. Such a service definition runs then at least one pod. A pod
is a grouping of one or multiple containers and is the smallest scalable
unit in Kubernetes. This service definition states how many of the
given pods should at all time be present in the system. This amount of
pods is then scheduled on the machines available in the system. These
machines are called nodes.

Every pod can have a requested and a limit CPU and memory value
set. The requested value indicates how much of this resource the
pod needs to function properly. The limit value states the maximum
amount that the pod is allowed to use. The requested value for both
CPU and memory is used to schedule pods on nodes. The sum of all
requested values of pods present on a node will never succeed the
amount of resources present on the node.

There are three types of deployments possible in Kubernetes, each
having their own characteristic behaviour.

2.1 background 5

• Deployment: This is the most basic option and is used for state-
less containers. Pods being part of a deployment can be killed
and later restarted.

• Stateful set: As the name already suggests these pods have a
state. Therefore they should be treated with more care and can
not simply be removed from the system. This is used for example
for a database.

• Daemon set: A daemon set specifies pods that have to run on
every node in the system. This is normally not used for real
services aimed at the client, but are pods that support the actual
services. A use cases for a daemon set is for example monitoring,
as metrics from every node are required.

2.1.4 Autoscaling

The autoscaler is responsible for scaling the deployment of a system,
so that it is able to cope with the load that is put on the system. A
good autoscaler does not only allow the system to cope with the load,
but also ensures that it is doing this while not wasting resources. This
scaling can be performed both vertical and horizontal [10]. Vertical
scaling means that the resources available for the already running
container(s) of a service changes. With these acquired resources the
changed load can be handled. Horizontal scaling means that the
amount of containers that provide the service is scaled. Every container
requests a certain amount of CPU and when you scale the number
of containers you also change the amount of CPU dedicated to this
service.

There are two types of autoscalers, Reactive and proactive [4]. Reac-
tive scaling means that the autoscaler only looks at the current state
and based on this the deployment is scaled. The downside to this
approach is that the scaling will always be too late, as the necessity
of scaling is only noticed when the extra resources are already re-
quired. Examples of reactive scaling are the Kubernetes pod [11] and
cluster [12] autoscaler or work by Soundararajan et al. [13]. Proactive
scaling tries to solve this problem by predicting the required resources
in the future. This allows the autoscaler to scale the system before
the load increase actually arrives. Of course this prediction can also
be wrong, resulting in either wasted resources or under provisioning.
Examples of a proactive autoscaler can be found in work by Chen et
al. [14] and Ashraf et al. [15].

2.1.5 MAPE-K

The proposed tuner will be an autonomic system striving for cost
optimisation. It will be active when the autoscaler is not making

6 background and related work

Figure 2.1: MAPE-K loop [5]

changes due to the load being constant. To attain this autonomic
behaviour the MAPE-K loop architecture [5] is used. The architecture
discusses all the elements needed to build a self-optimising system.

The MAPE-K loop consists of five components: monitor, analyse,
plan, execute and knowledge. All these components are needed to
build the self-optimising system and every step is performed in se-
quence as can be seen in Figure 2.1. The next list covers every compo-
nent and their purpose.

• Monitor is concerned with retrieving the current state of the
managed system and aggregating these results.

• Analyse uses the results found during the monitor-step and
combines this with the knowledge stored in the knowledge base
and generates a change request if change is desired. A change
request is only generated when the resulting change will improve
the performance of the managed system.

• Plan receives the change request and creates a change plan. This
represents the desired set of changes that have to happen to
reach the requested state.

• Execute is responsible for actually changing the state of the
managed resource, it receives the change plan and executes its
desired steps.

• Knowledge stores the knowledge gained by the system. Every
iteration of the loop this knowledge will be extended making
the system smarter as it runs longer.

2.2 related work

This section covers four papers that each take a different approach on
how deployment selection should be performed. All the papers use
their deployment selection strategy to minimise the operational cost
of the deployment.

2.2 related work 7

Sharma et al. [16] present in their paper a provisioning framework
called Kingfisher. This framework is designed to reduce the cost of
running a system consisting of multiple virtual machines. The frame-
work uses replication and migration of virtual machines to perform
scaling while minimising the cost.

Their decision logic is based on an initial analysis where the load
handling of each component is analysed on the different available
machines in the system. Due to this static analysis the Kingfisher
framework only performs actions when the load changes. the result-
ing deployment should already be optimal. The static analysis does
yield a downside, as the analysis has to be performed again when a
component gets modified. They limit the search space in the paper
by supplying only one small, one medium and one large machine as
possible options for running a virtual machine.

The framework does not only decide what the ideal configuration
is, but it also generates and executes the required changes to acquire
the configuration. In addition to rental costs of the hardware they also
take into account supplementary costs induced by transitioning from
the current deployment to the preferred deployment. Their results
show that especially the migration option is essential for attaining effi-
cient use of resources in a heterogeneous environment. The migration
option replaces multiple smaller virtual machines for fewer bigger
machines. The paper only contains an evaluation for increasing the
load on the system, but the concept should also work for down-scaling.

Chen et al. [14] propose an autonomic provisioning system based on
machine learning to ensure that their database meets the set Service
Level Agreements (SLA) while minimising over-provisioning. The
provisioning system performs pro-active scaling by using K-nearest-
neighbours (KNN) classifier as the prediction algorithm. This work
is a continuation on their previous paper [13], where they create and
verify a reactive system for the same use-case that scales when SLA
are broken. The pro-active provisioning breaks less SLAs than their
reactive version.

The KNN classifier is trained using data generated by the same
source as is also used for the verification. They found that using a
KNN classifier gives more stable results than direct aggregation of the
learning data. This is interesting, because our proposed tuner uses
the historical data directly. It might be beneficial to apply machine
learning on the knowledge base to enhance the knowledge extracted
from it.

The proposed solution does have the same disadvantage as the
scaling solution proposed by Sharma et al. in the previous paper. The
constructed machine learning algorithm requires training data. This
makes changes to the system more costly as the KNN classifier has
to be retrained. In our use-case online machine learning would be

8 background and related work

required to enhance the knowledge base data while the data is being
gathered. The investigation in an online machine learning algorithm
for provisioning is also listed by the paper as interesting future work.

Andrikopoulos [17] opts that cloud systems should have dynamic
topology selection. The option space when working with topologies
explodes quickly, therefore he argues that it could be dealt with by
treating it as a graph and performing transitions on them. This same
property was also used in designing the tuner presented in this thesis,
Going over every possible option is impossible. The only options
considered are a result of a direct change to the current deployment
to reach new unknowns or going back to a remembered stored option
which was better.

Andrikopoulus stresses that it is really important to not only gener-
ate and use different topologies, but also to evaluate their performance
after usage. This also holds for deployments, as keeping track of pre-
vious deployments without being able to evaluate them reduces the
value of the knowledge dramatically.

Townend et al. [18] discuss achieved savings on electrical cost by
implementing a holistic Kubernetes scheduler. In their research a
private cloud with a constant amount of machines is used. The cost
saving is achieved by trying to put the ideal load to electricity balance
on as many nodes as needed, and idling the rest of the nodes.

The idling cost almost no power and can be compared to our case
of shutting down a machine. Due to their idling they are able to
quickly spin up a node again, since it is still available. Their scheduler
therefore is able to respond quicker to the changing situation than our
tuner combined with an autoscaler that has to start and stop machines.

3
A R C H I T E C T U R E

The tuning system presented in this chapter is build to work with
Kubernetes, but the concepts covered can be applied on any orchestra-
tion tool. The chosen orchestrations tool does have to allow the tuner
control over the placement of the containers.

3.1 requirements

The requirements are divided into functional and non-functional re-
quirements.

Functional requirements

FR01 The system must be able to retrieve the current load on the
deployment.

FR02 The system must be able to retrieve the current deployment.

FR04 The system is able to check that the current deployment is able
to handle the incoming load and therefore is stable.

FR05 The optimisation and knowledge addition are only performed
when the deployment is stable.

FR06 The structure of a stable deployment must be stored.

FR07 The system must never select a more expensive distribution if a
valid cheaper one is available.

FR08 The system must remain searching for better options to circum-
vent getting stuck in a local minimum concerning cost.

FR09 The system must be able to add/migrate/remove specific pods
on specific nodes.

FR10 The system must be able to remove a node from the deployment.

FR11 The system must verify the success of every action.

FR12 The system must not perform actions with stateful containers.

FR13 The system should reach the desired state in the least amount of
changes possible.

9

10 architecture

Non-functional requirements

NFR01 The system must minimise the required cost to run the deploy-
ment.

NFR02 The system should not harm performance of the deployment.

3.2 design

The architecture presented in this section is designed to fill the re-
quirements set in the previous section. The tuner is designed using
the MAPE-K loop (Section 2.1) as the backbone of the tuner system.

The logical view which can be seen in Figure 3.1 shows all the main
components of the system. All the components of the MAPE-K loop
are present and they are managed by the Moderator. The Moderator
performs the interactions between the components and runs the actual
loop. The Kubernetes system is treated as an external component from
which information can be extracted and changes can be performed on.

Tuning system

Extract status Store
deploymentMonitor

Retrieve previous deployments

Analyse

Perform changes Execute

Plan

Request load

Find best action

Get transition plan

Perform transition plan

ModeratorKubernetes

Knowledge
base

Figure 3.1: Logical view

The process view, Figure 3.2, shows the actual steps that are per-
formed in the tuner’s MAPE-K loop. The colour coding indicates for
every step to which component it belongs. The following sections will
discuss what actually happens at each of these steps.

3.2 design 11

Check stability

Yes

NoDeployment
stable?

Previous
deployments

AddAdd deployment to
knowledge base

Calculate cost node
removal

Extract

Calculate cost
cheapest previous

deployment
Calculate current

cost

Select cheapest

Find most efficient
transition

Execute transitionTransition
failed

Wait for time
window

Legend:

Monitor

Analyse

Plan

Execute

Knowledge

Extract current load

Wait for retry
window

Remove

Figure 3.2: Process view, using BPMN

12 architecture

3.2.1 Knowledge

The knowledge base consists of a database that holds the actual struc-
ture of deployments of previous execution time windows and the load
these deployments dealt with. It is important to store this information
as it allows the system to return to this deployment when it sees that
it is favourable over the current deployment.

3.2.2 Monitor

The monitoring is concerned with retrieving the actual current metrics
concerning the containers and machines of the current deployment
and the load that is applied on this deployment. More specifically, it
performs the following functionalities:

Checking stability

The stability check is performed by comparing the deployment of
the system at the start and end of the time window. The amount
of machines and the amount of containers of every different group
are compared and only when both have not changed the system is
deemed stable.

When the deployment is unstable the tuner will wait for the speci-
fied amount of time (retry window) to check the stability again. The
retry window is added to allow the user to specify the retry frequency
of the sliding window.

Extract the current load

When the current deployment is stable the system needs to find the
load on the system that this deployment was able to deal with. The
load extraction is project dependent as different type of applications
will receive different types of load. When implementing the load ex-
traction it is important to ensure that the load measured is directly
representative for the size of the deployment. A load extraction vari-
able can be found by first analysing the scaling of the system, and then
finding a variable that follows a similar pattern. Section 4.4 provides
an example.

Add deployment to knowledge base

The current deployment is stored in the knowledge base using the
load value the deployment dealt with as its key. This allows the tuner
system to later query the knowledge base for deployments that where
able to deal with a certain amount of load.

3.2 design 13

3.2.3 Analyse

The analysis component actually is the real brains of the system. The
rest of the components are simply there to provide data and tools to
aid the analysis. The tuner is able to perform three different actions.
The analysis component predicts the resulting cost of these actions
and decides which action requires least operational cost. The resulting
transitions, needed to execute the chosen action, are then forwarded
to the planner and executor to be performed.

The three paragraphs below explain each one of the possible actions
of which the resulting cost has to be predicted. The paragraph covers
the selection of the cheapest action using the predicted costs.

Calculate current cost

The cost per hour of the current deployment is calculated by multi-
plying the amount of cores and memory in the deployment by their
appropriate costs. The user sets the chance that a random pod migra-
tion is performed. For this random migration space has to be available
on a receiving node to ensure that the migration can be successful.
This does not reduce the cost of the system, but does allow the system
to enhance its knowledge base and reduces the chance that the system
gets stuck in a local minimum as the deployment keeps on changing.

Calculate cost node removal

To remove a node from the current deployment there has to be a
enough space available on the other nodes to hold the pods currently
present on the node that is to be removed. This check is performed
using a Depth First Search (DFS). The depth of the search tree is equal
to the amount of pods that have to be rescheduled, therefore DFS will
always provide the most efficient option. In addition there should also
be no stateful sets on the node as these can not be migrated. The cost
is calculated of the deployment with the node removed. When it is
impossible to remove a node the resulting cost will be infinite.

Calculate cost cheapest previous deployment

To find the cheapest previous deployment able to deal with the load
the knowledge base is used. All previous deployments that dealt with
a similar load are retrieved. From these the cheapest is selected and
the nodes are matched to nodes in the current deployment. This can
not be simply done using the name of the nodes, but is performed
using node contents.

The current nodes therefore have to be matched to the desired
nodes. Every current node is compared to every desired node using a
scoring scheme. The scoring scheme is designed to give preference to
matching stateful sets, as these can not be moved. A pod being part

14 architecture

of a stateful set is worth 100 points and a normal pod 1 point. This
distinction is made to give major preference to stateful sets as these
can not be moved. When two nodes are compared plus points are
given for each matching pod. Points are subtracted when pods do not
match and therefore have to be added or removed. The mapping from
each current node to nothing is also added, as this is the idea of going
to an previous deployment, reducing the amount of nodes needed.
Using the found scores each current node is matched to an desired
node resulting in the highest overall score.

The matched nodes are then inspected to check if no stateful sets
have to be moved. If they have to be moved the chosen previous
deployment becomes unattainable. Its entry will be removed from the
knowledge base and the search will be performed again to find the new
best candidate. When the cheapest attainable previous deployment is
found its running cost is calculated.

Select cheapest

Each of the before explained actions have a resulting cost. The action
resulting in the cheapest deployment is selected, as the goal of the
tuner is to minimise the the cost of the deployment. Of course it is
possible that more then one action results in the cheapest deployment.
When there is a draw the following rules are used to decide between
them. These rules are based on the principle that impact of the tuner
on the deployment has to be minimised, therefore the least amount of
changes are preferred. The following listing will consider all possible
draw cases and explain why the resulting action is preferred.

• costcurrent 6= costnode_removal
When it is possible to remove a node from the current deploy-
ment, it will always result in a lower cost. If this is not possible
the cost of node removal will be infinite.

• costnode_removal = costprevious_cheapest → node_removal
When the deployment with a node removed has the same cost
as a the cheapest previous deployment, it means that the cheap-
est previous deployment also clears one node. Getting to the
previous deployment might require additional actions next to
emptying the to be removed node. The node removal option will
not require this and therefore needs less actions. In addition this
also enhances the knowledge base further as a deployment that
was not yet in the knowledge base might be reached.

• costcurrent = costprevious_cheapest → current
When the current cost is equal to the cheapest previous de-
ployment then changing to this previous deployment will not
yield any cost benefits. Staying with the current deployment and

3.2 design 15

maybe migrating one pod is always less changes then chang-
ing to the found previous deployment. Therefore the current
deployment is preferred.

Using these comparison rules an algorithm can be constructed to
ensure that always the correct action is chosen. This pseudo code for
the comparison can be found in Algorithm 1.

Data: deploymentcurrent, loadcurrent

Result: transitionscheapest
1 costcurrent, transitionscurrent =

CalculateCurrentCost(deploymentcurrent)

2 costnode_removal , transitionsnode_removal =

CalculateCostNodeRemoval(deploymentcurrent)

3 costprevious_cheapest, transitionsprevious_cheapest =

ExtractPreviousCheapestDeployment(loadcurrent)

4 if costnode_removal ≤ costprevious_cheapest then
5 transitionscheapest = transitionsnode_removal
6 else if costcurrent ≤ costprevious_cheapest then
7 transitionscheapest = transitionscurrent

8 else
9 transitionscheapest = transitionsprevious_cheapest

10 end
Algorithm 1: Select cheapest action

When the cheapest previous deployment action gets selected as
being the preferred option the selected deployment its entry is re-
moved from the knowledge base. Removing the entry ensures that a
single good run does not cause the system to keep striving for this
deployment. It can actually be seen as a verification step, because the
system is changing back to the found deployment and if the load does
not change it should be able to endure the whole next time window.
When the time window is finished with the deployment still being
stable it will be added back to the knowledge base. This keeps our
knowledge base reliable.

3.2.4 Plan

The plan component receives the desired changes that have to happen
to each of the nodes currently in the system. These changes consist
of a list of additions and a list of removals that have to be performed.
The goal of the plan step is translate this list of changes into the least
amount of actions possible which will eventually be performed in the
execution step. The system is able to perform four operations on the
deployment of the Kubernetes cluster:

• Adding a pod to a node.

16 architecture

• Removing a pod from a node.

• Migrating a pod from one node to another.

• Deleting a node.

Find most efficient transition

When a pod has to be removed from one node and that same type
has to be added to another it is preferred to perform this action using
a migration. This affects the system less then performing a separate
removal and addition. Therefore the goal of the planning step is
to perform the transition with the maximum amount of migrations
possible. Sometimes migrations are not possible, for example in case
where two nodes are totally filled and two pods have to be migrated
between them. This would be possible by first removing one pod then
migrating the other and after that adding the first one again.

Constructing the planning starts with identifying all possible migra-
tions. All possible migration combinations and orders are then found
using a recursive loop over all found migrations. Before performing
this loop all migrations are shuffled, to ensure that the migrations are
evenly spread out over the whole cluster and not one node at a time
is changed a lot. A migration is deemed possible when the current
requested CPU on the node of the already present pods plus the
requested CPU of the pod is less then the actual CPU cores available.
The migration plan containing the most migrations is chosen.

When the best migration plan is known the pod additions and
removals can be aggregated, by removing the migrations from the
initial desired change. All the pod additions, pod migrations, pod
removals and node removals are formatted such that the execute step
can perform them.

3.2.5 Execute

The execute component is responsible for actually realising all the
plans that the planner suggests. It can perform the four actions that
the planner introduced. After an action has been performed the result
should also be verified. If the action succeeds the transition can con-
tinue with the next step. If the action failed, for example a pod was
scheduled on the wrong node, the transition is stopped, because the
desired deployment can not be reached anymore using the provided
plan. The tuner will be idle till the end of the next time window,
because the transition might also have failed due to the autoscaler
scaling the deployment while the transition is happening.

3.2 design 17

3.2.6 Reiterating the loop

After the execution step is completed an iteration of the MAPE-K loop
is finished. The tuner will wait for the specified time window, before
starting a new iteration of the loop with the monitor step.

4
I M P L E M E N TAT I O N A N D T E S T I N G

This chapter will discuss how the tuner is implemented and its features
are tested.

Figure 4.1 shows the physical view of the implementation. There is
a Kubernetes cluster present that contains a variable amount of nodes
and pods. On the right of the cluster the local machine can be seen. It
runs the actual tuner software and holds the knowledge base. In the
following sections all the components will be explained in more detail
and the implementation of the tuner will be discussed.

4.1 kubernetes cluster

Initial development of the tuner was performed using Minikube1 (Ver-
sion 1.0.0) which allows the user to create a Kubernetes cluster with
a single node on a private machine. As the system expands multiple
nodes are needed to test and verify the behaviour of the system. There-
fore the decision was made to transfer to Google Kubernetes Engine2.
Here virtual machines are used that contain 2 virtual CPU cores (Intel
Xeon Scalable Processor running with a 2.0 GHz base frequency) and
7.5 Gigabytes of virtual Random Access Memory. Automatic node
scaling is used to allow the system to dynamically react to increase
and decrease of required resources. The system runs with Kubernetes
version 1.11.8 and the nodes are located in zone europe-west3-c.

4.1.1 Autoscaler

The standard autoscaler of Kubernetes which is used next to the tuner
is a reactive horizontal autoscaler. An autoscaler is defined per service.
This autoscaler normally scales on CPU usage, but can be configured
to scale on a custom value like size of a job queue [11]. If you set the
value of the autoscaler to 80 percent of CPU then the autoscaler will
make/remove as many pods such that each remaining pod is using
80 percent of its requested CPU amount.

The scaling of nodes in Kubernetes is done indirectly. The amount
of nodes will scale up when all nodes in the cluster are full and a
new pod needs to be added. Scaling down is performed by checking
whether there are nodes in the system that do not run pods anymore,
except for daemon set pods. These nodes are only removed after a
certain time of inactivity.

1 https://github.com/kubernetes/minikube

2 https://cloud.google.com/kubernetes-engine/

19

https://github.com/kubernetes/minikube
https://cloud.google.com/kubernetes-engine/

20 implementation and testing

Figure 4.1: Physical view

4.2 local machine

The local machine runs the actual tuner system and a Neo4j graph
database which functions as the knowledge base (Section 4.3). The
local machine that is used for testing is a HP ZBOOK Studio G5. It
contains an Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz containing 6

cores. There is 16 gigabyte DDR4 RAM present, consisting of two 8

gigabyte cards running at 2667 MHz. The long term storage is a 256

gigabyte SSD.

4.3 knowledge base

The knowledge base is implemented using the graph database Neo4j3

(Version 3.5.8) running locally in a docker container. It holds the ac-
tual structure of previous execution time windows. A graph database
is chosen because it allows to directly store the actual structure of the
deployments. The graph structure could also allow for future struc-
ture mining. Cypher4 is the query language used by Neo4j, which is
a powerful and expressive language that allows for intuitive usage.
Figure 4.2 shows the structure of multiple execution windows stored
in a graph structure. On the top left of the figure you can see the
legend, the first row concerns the vertexes and the second covers the
edges. The green vertexes are executions, they represent an execution
window. This execution window has properties like start and end
time. It also had certain Kubernetes nodes that where running during

3 https://neo4j.com/

4 https://neo4j.com/docs/cypher-manual/current/

https://neo4j.com/
https://neo4j.com/docs/cypher-manual/current/

4.3 knowledge base 21

Figure 4.2: Graph database structure

its execution, those are the red vertexes that are connected with a
HasNode relationship. Every Kubernetes node ran pods which are
represented by the Ran relationship. These Ran relationships point
to a deployment pod description which are the yellow vertexes. The
whole structure is shaped like an centre core with multiple mantels.
The pod descriptions form the centre. The Kubernetes nodes are the
first shell and the executions are the final layer.

To further clarifying the structure, one of the executions in Fig-
ure 4.2 is used as an example. The example focuses on the execution
represented by vertex 184 (top left). The colour of the vertex is green,
identifying it as an execution. When this execution is examined the
start and end time of the execution window can be found. In this case
the window started on 2019-06-18, 15:05:46.39 and ended on 2019-06-
18, 15:05:51.39. This can not be seen in the figure, but are properties
stored in the vertex. Vertex 184 has four edges labelled with HasNode
that point to four node vertexes, this shows that the execution had four
nodes running during the execution window. Vertex 186 represents
one of the nodes running in execution vertex 184. When inspecting
the properties of this vertex the CPU and RAM can be found. This
node contained 2 cores CPU and 7.5 Gigabytes of RAM (again not
visible in the figure). The node ran four pods which can be seen by
the Ran edges connecting this vertex to Pod vertexes. Every Ran edge

22 implementation and testing

represents one pod of the vertex Pod type. So node vertex 186 ran one
pod of type 107, one of type 117 and two pods of type 3. Looking into
Pod vertex 3 the deployment name and type of deployment (State-
fulSet, DaemonSet or Deployment) can be found. All this data can be
retrieved using the Cypher query shown in Listing 4.1 by providing
the execution_id of an previous deployment.

1 MATCH (e:Execution) WHERE ID(e) = execution_id

2 MATCH (e) -[:HasNode]-> (n:Node)

3 MATCH (n) -[r:Ran]-> (p:Pod)

4 WITH e, n, COLLECT({name:r.name, generate_name:p.generate_name,

kind:p.kind, deployment_name:p.deployment_name}) AS pods

5 RETURN ID(e) AS id, e.start_time.epochMillis AS start_time, e.end
_time.epochMillis AS end_time, COLLECT({name:n.name, cpu:n.

cpu, pods:pods, memory:n.memory}) AS nodes",

Listing 4.1: Retrieve deployment from knowledge base

4.4 tuner

The tuner is implemented in Python5 3.7.3 using the native requests
package (Version 2.22.0) to perform all API requests. The knowledge
base is queried using the neo4j package (Version 1.7.4) for Python.
The tuner runs on the local machine. The following sections will
cover the implementation of the tuner using again the process view
displayed in the design section Figure 3.2.

4.4.1 Monitor

As already discussed in the monitor section of the architecture chapter
(Section 3.2) the monitor needs to extract two different types of data,
performance data and structural data. To retrieve the performance
data cAdvisor6 (Version 0.32.0) and Node Exporter7 (Version 0.18.1)
are used as shown in the physical view (Figure 4.1). cAdvisor moni-
tors the internals of nodes and retrieves metrics concerning pods and
containers in these pods. Node Exporter retrieves metrics covering
the performance of nodes and their status. cAdvisor is also used for
monitoring of Kubernetes itself [19] and therefore is automatically
already present in every pod. The Node Exporter has to be present
on every node and by using a daemon set this is ensured. Both moni-
tors are industry standards and have shown to work very well with
the chosen performance metrics database Prometheus. Prometheus8

(Version 2.2.1) is a time series database. The data from both sources
are directly piped to Prometheus for storage.

5 https://www.python.org/

6 https://github.com/google/cadvisor

7 https://github.com/prometheus/node_exporter

8 https://prometheus.io/

https://www.python.org/
https://github.com/google/cadvisor
https://github.com/prometheus/node_exporter
https://prometheus.io/

4.4 tuner 23

To retrieve the actual structure of the current deployment the Ku-
bernetes web API is queried using GET requests. The received data is
then prepared for usage in the system by storing it in a standardised
dictionary structure. Initially the tuner system was build to use the
Kubernetes API9 specially built for Python, but this proved unreliable
and would fail after a random amount of time for no apparent reason.

Monitoring stability

The stability of the system is verified by retrieving the current deploy-
ment from the Kubernetes API and comparing this to the deployment
at the start of the time window. The deployment at the start of the
time window is retrieved from Prometheus.

Extract current load

The load extraction is project dependent. The chosen load value re-
trieved should represent the size of the current deployment, for exam-
ple when the deployment scales up due to an increase in requests, the
retrieved load value should also increase.

To explain the load extraction the testing application that is intro-
duced in Section 4.5 is used as an example. Testing is performed with
a PHP-Apache container that performs an action for each received
request. The load of this application therefore increases when the
amount of requests increase. To get an insight in this relationship the
test application was put under a load pattern where each two minutes
the amount of requests per second increased with two requests. This
pattern started at 2 requests per second and continued till 40 requests
per second. Figure 4.3 shows the found relation between requests per
seconds and the amount of scaling present that is required to handle
the incoming load.

The next step is to find a metric that shows the same behaviour as
the scaling when the amount of requests changes. For our use-case
it was decided that the amount of bytes received over the network
might be a good fit as every request received by our service would
be of the same size. The verify this assumption the relation between
bytes received and requests per seconds was analysed, using the same
load pattern as before. The resulting plot can be seen in Figure 4.4.
Comparing this to Figure 4.3, it shows that both the scaling and the
bytes received show a linear growth when the amount of requests per
second increases. Therefore bytes received can be used as an indicator
to establish the amount of scaling required in this use-case.

9 https://github.com/kubernetes-client/python

https://github.com/kubernetes-client/python

24 implementation and testing

Figure 4.3: Increase of PHP-Apache pods with increasing rps

Figure 4.4: Load extraction measure Bytes received

4.4 tuner 25

4.4.2 Analyse

Calculate current cost

To calculate the current cost the price of a core and of a gigabyte
of memory is given in the run settings. The current deployment is
retrieved from Kubernetes and the resources present in every node
are extracted. The resources are multiplied by their given price as can
be seen in function calc_cost in Listing 4.2 and the resulting cost is
found.

1 def calc_cost(nodes, settings):

2 """

3 Calculates the operational cost of running the given nodes

using the prices provided in the settings.

4 """

5 cost = 0.0

6 for node_info in nodes.values():

7 cost += node_info["cpu"] * settings["price_per_core"]
8 cost += node_info["memory"] * settings["price_per_gb"]
9 return cost

Listing 4.2: Calculate current cost

The current cost case has a chance to perform a random migration
to ensure that the deployment does not get stuck in a local minimum.
The probability for this migration is set in the settings and is set to
0.5. The random migration is performed by first selecting a pod. A
check is performed to verify that the pod can be moved, and therefore
is not stateful. If this is the case a new random pod is selected. A
random destination node is selected and the available CPU space
is checked to verify that the pod fits on the node. If the pod fits a
random migration has been found. If it does not fit the whole process
restarted by selecting first a new random pod and then a destination.
The tuner performs 1000 attempts to find a suitable pod to migrate.
The 1000 was set because the probability of covering all interesting
cases is very high. The tuner does not perform an exhaustive search as
there are numpod ∗ (numnode − 1) possibilities and with large systems
this can grow very large. If this has failed for 1000 times the tuner
concludes that no random migration can be performed as all the nodes
are already totally filled.

Calculate cost node removal

To find the running cost of the deployment where one node is removed
the tuner first has to find if and which node can be removed. The code
performing this analysis can be found in the Appendix on page 65

in Listing A.1. Finding the best option for node removal is initiated
by calling empty_node_transitions. This function first retrieves the
current state of the system. The nodes that can not be removed are

26 implementation and testing

filtered by select_removable_nodes, it looks at every node and checks
that it does not contain pods that can not be moved. After filtering all
the nodes a check is performed to verify that there are still potential
nodes remaining that can be removed. least_transitions_removable
counts the pods that have to be moved for the remaining nodes,
daemonset pods are ignored in this count. The node that requires the
least amount of movements to be emptied is selected.

The next step is to find a new node for every movable pod present on
the node that is selected to be removed. To find all possible resulting
deployments the function recursive_find_new_distributions iter-
ates through all possibilities using a depth first search. Each iteration
one pod from the reschedule_pods is assigned to one of the remaining
nodes if possible. Every time all pods have a new assigned location
the found deployment gets added to the list of possible deployments.
If the list containing possible resulting deployments is empty then the
pods can not be rescheduled and the node can not be removed. If the
list has one or more entries the node can be removed as all its pods
can find a new place on a different node.

To select between multiple found deployments function select_-

lowest_max_requested selects the one with the most even spread of
requested CPU. This is implemented by retrieving the node with
the largest CPU requested value from each possible deployment and
comparing them. The lowest is selected. This should allow the system
to be more resilient to a sudden increase in load.

The found deployment still has to be put in the standardised format
that the planner step prefers. This is performed by change_selected_-

distribution_into_transitions. Specific information of this format
can be found in the plan step.

The resulting operational cost of the node removal is calculated
using calc_removal_resulting_cost provided in Listing 4.3. Here
the current state of the system has to be provided together with the
name of the node that has to be removed. This function removes the
appropriate node and then uses the cost calculation function given in
Listing 4.2.

1 def calc_removal_resulting_cost(nodes, node_removed, settings):

2 copy_nodes = copy.deepcopy(nodes)

3 del copy_nodes[node_removed]

4 return calc_cost(copy_nodes, settings)

Listing 4.3: Calculate cost node removal

Calculate cost cheapest previous deployment

Using the current load on the deployment the knowledge database
is queried to retrieve all applicable deployments. The query can be
seen in Listing 4.4 and returns the used resources and the id of the
execution. The user can set the delta load difference in the settings, this

4.4 tuner 27

is used to specify the load offset allowed for it to still be retrieved. For
example if the deployment is currently receiving a load of 3000 and the
load delta is 0.10 then all previous deployments are selected that have
a load between 3000 ∗ (1− 0.10) = 2700 and 3000 ∗ (1 + 0.10) = 3300.

1 MATCH (e:Execution) -[:HasNode]-> (n:Node)

2 WHERE $load_min <= e.load <= $load_max

3 RETURN ID(e) AS execution_id, COLLECT({name:n.name, cpu:n.cpu,

memory:n.memory}) AS nodes

Listing 4.4: Deployment retrieval query

The next step is to select the cheapest option from the retrieved
previous deployments. Every previous deployment contains the nodes
and the resources those ran with, therefore the cost can easily be
calculated. When multiple previous deployments are the cheapest, the
one with the on average lowest CPU usage is selected. This is based on
the same argument as used for the node removal: adding to resilience
to load increase.

Now the cost of the desired deployment is found and the total
deployment is retrieved from the knowledge base by providing the
execution_id to the query in Listing 4.1. Verification is needed to
ensure that the current deployment can be modified to acquire the
desired deployment. To perform this verification each node present
in the current deployment has to be matched to a node in the desired
deployment.

The matching is performed by code that can be found in the Ap-
pendix on page 69 in Listing A.2. The matching depends on a scoring
system that distinguishes removable pods and pods that can not be
removed as can be seen in function scoring. The get_scores function
iterates over all possible combinations of current and desired nodes
and calculates for each combination the resulting scoring using func-
tion calc_score_per_node. This function iterates over all the pods
present in the current node and compares these to the destination
node. Every matching pod provides an increase in score and every
mismatch decreases the score.

When all the possible node combinations have their appropriate
score it is time to find the best mapping from current nodes to desired
nodes. This is performed by an recursive iteration over all possible
mapping combinations which each time returns the best found option
for its iteration. When the last step of this recursion returns, the result
is a mapping where all the current nodes are mapped to desired ones.
This is performed by rec_find_highest_score.

The next step is to analyse our found best mapping and verify
that pods that can not be moved are supposed to move in this map-
ping. This is performed by valid_transition by iterating over all the
required changes and inspecting the provided info of the pod.

28 implementation and testing

When the mapping has been verified it still has to be put into a
standardised format for the planner. This is performed by the second
part of find_transitions_execution_change using a loop over all the
required changes.

The cost of this cheapest previous deployment was already calcu-
lated in the first step when it was compared to other deployments and
this cost is used as its resulting price.

Select cheapest

This component simply compares the three found costs and selects the
cheapest. The if statement present in the pseudo code of Algorithm 1

in the analysis section (Section 3.2) is implemented. The resulting
transitions required to reach the cheapest deployment are returned
and can be passed to the planning step.

4.4.3 Plan

Find most efficient transition

The plan step receives all the changes that have to be performed
per node. These changes include which pods have to be added and
removed from the node and if the node has to be terminated. The
goal of the planning step is to perform these changes with the most
migrations possible.

The first step in finding the most migrations possible is to extract all
possible migration combinations. The code performing this first step
can be found in the appendix on page 74 in Listing A.3. The extrac-
tion of possible migration is performed using recursion performed by
function recurse_find_all_migrations_sets. This function removes
the first add action in the transition it can find. If no add action could
be found and therefore is empty the base case has been found and
the whole transition has been processed and empty migration set
can be returned. If the add action is not empty it is used to find
all possible migration by matching it to pods listed in the removes

of nodes using find_suitable_migration_sets. The loop is then re-
peated with one add action less resulting eventually in the base case.
find_all_migrations_sets initiates this recursive loop and sorts the
resulting migration sets on decreasing length. This ensures that the
largest possible number of migrations will always be evaluated first.

The next step is to find an order to perform the largest possible
migration set. This process starts with find_suitable_migrations

which can be found together with the other functions discussed in
the appendix on page 76 in Listing A.4. It takes the first entry of the
generated migration sets and checks if there is an order in which
all the given migrations could be executed. When the check fails the

4.4 tuner 29

next migration set is selected from the provided list and the check is
performed again until it succeeds or the list becomes empty.

The check is performed using the recursive function called recur-

sive_construction_migration_order. The base case of this function
is receiving an empty list, then every migration present in the initial
migration set could be executed. When the function receives a non
empty list it will select the first migration in the list and simulate
performing the migration using helper_recursive_construction_mi-

gration_order. This helper function then calls recursive_construc-

tion_migration_order again but then with a deployment where the
selected migration from the previous iteration is performed. This pro-
cess is repeated until all migrations are performed, reaching the base
case. A possible migration order is then found. If the list is not yet
empty but the rest of the migrations can not be executed anymore the
recursive function will backtrack and try a new branch of the search
tree. The actual simulation of the migration to modify the provided de-
ployment is performed by simulate_migration and the deployment
is afterwards verified using verify_deployment to ensure no node
holds more pods than its capacity.

The largest possible migration is now know, indicating that any
other changes in the given transition have to be performed by add
and remove actions. These are all extracted by removing the found
migrations from the provided transitions. All the actions including
the node removals are prepared to be passed to the execution step.

4.4.4 Execute

The current standard when building a cluster with Kubernetes is to
use deployments. A deployment specifies how many pods should run
of a specific pod description; more information concerning Kubernetes
deployments can be found in Section 2.1. Due to the specified use of
deployments a newly created pod can not simply be assigned to its
destination node. The system has to be massaged in scheduling the
pod on the desired node. To achieve this node affinity [20] is used.
Each deployment gets an unique label added to its description of the
pods. When there is a node having that same label the Kubernetes
system will put preference on placing the new pod on the labelled
node. This does mean that the system is only able to move pods that
are added by the cluster owner, pods that are present to ensure the
functioning of Kubernetes itself can not be labelled and therefore can
not be scheduled.

Node affinity prefers the presence of a label, but does not require
it. The weak binding was deliberately chosen, as it does not effect the
behaviour of the deployment when a label is not present. This allows
Kubernetes to still perform its normal scaling without effects. Because
Kubernetes is able to ignore the weak binding, it is uncertain that

30 implementation and testing

the pod is scheduled on the correct node. Therefore an verification is
added to every action to verify that the preferred action was performed
as expected. When this is not the case, the whole transition is stopped.

All the actions described in the sections below are enforced us-
ing command-line calls performed using the subprocess package in
Python. The commands are all performed using kubectl10 version 1.14.

Execute transition

This section will cover all four actions that the execute component can
perform, starting with pod deletion.

Before the pod can be deleted the initial deployment has to be
stored, this is later used to verify that the deletion was successful. After
the initial state has been stored the pod is deleted. The deployment
scale of the pod type is decreased by one to ensure that no new
pod gets scheduled. The stored initial deployment is compared to
the current deployment and the deletion is verified. If the deletion
failed, for example because a different pod was deleted an exception is
raised. This also stops further transitions that were still planned. The
following enumeration lists all the steps performed for a pod deletion.

1. Delete the designated pod

2. Reduce the deployment scale of the given pod type by one

3. Verify that the correct pod is deleted

The migration action does not change the deployment scale, but
it uses it to its advantage. As with every action first the initial de-
ployment is stored. Then the destination node of the migrated pod is
labelled with the label of the deployment. The pod is deleted from its
original node, and the deployment will therefore automatically create
a new pod to meet required number of pods. The applied node-label
will give this new pod preference to the labelled node. A verification
check is ran to verify that the new pod was actually assigned to the
correct node. When the movement has been verified the label is re-
moved from the node. Even if the verification fails and an exception is
raised the system still removes the label from the node.

1. Label the destination node using the pod type

2. Delete the designated pod

3. The pod should be scheduled on the labeled node

4. Verify if the pod is scheduled on the correct node

5. Remove the label from the destination node

10 https://kubernetes.io/docs/reference/kubectl/kubectl/

https://kubernetes.io/docs/reference/kubectl/kubectl/

4.4 tuner 31

The add action is very similar to the migration action. First it stores
the initial deployment for verification. Then it labels the destination
node with the corresponding label of the deployment of the pod that
has to be moved. Now the add action deviates from the migration,
because instead of deleting a pod, the deployments required number
of pods is simply increased by one. This causes the deployment to
create a new pod, which again has preference for a node with the
deployment label. The addition on the correct node is verified by
comparing it to the initial state and after success of failure the label is
removed again from the node.

1. Label the destination node using the pod type

2. Increase deployment scale of the given pod type by one

3. The pod should be scheduled on the label node

4. Verify if the pod is scheduled on the correct node

5. Remove the label from the destination node

The node removal action is fairly simple, as the node should already
be totally emptied. The first step of removing a node is to drain it. This
is redundant as it is already confirmed that it does not contain any
pods, but ensures that no new pods get scheduled on the node. When
the node is drained successfully it can be deleted using the delete
command. This command is passed with the -ignore-daemonsets

flag, to allow the removal while there are still daemonsets present.
These daemonsets are only present for the monitoring and killing
them will not affect performance. The next step is to verify that the
node is actually deleted, when this has been verified the next node
can be removed.

1. Drain the given node

2. Remove the node

3. Verify that the node has been removed

4.4.5 Running the tuner

Before the tuner can be started the Neo4j container must be running
and the cluster including Prometheus is available and can be reached
from the machine that is running the tuner. Also the local Kubectl,
command line interface with Kubernetes, must be linked to the ap-
propriate cluster as the tuner uses this to perform its actions. The
Kubernetes API should also be reachable by the tuner. Lastly, ensure
that the addresses of all the previously mentioned components are
correctly set in the settings.json.

32 implementation and testing

The tuner can be started using Python3 TopologyGenerator/main.py

<Path to settings.json>. An additional logging flag -l <custom

log path> can be passed to provide a custom destination for the
log file.

4.5 testing

Most of the components are tested using unit-testing these test-cases
can be found in the Github repository11. Some components that in-
teract with Kubernetes can not be tested using unit-testing and are
therefore covered in the following sections.

4.5.1 Test application: PHP-Apache

To develop all the required components and to verify that they actually
work a testing application is needed. The decision was made to opt
for the simplest testing application possible to ease the development.
Therefore the PHP-Apache deployment was chosen. The application
consists of only one microservice. The microservice consists of a pod
that runs a Apache server on which PHP code is running. The PHP
code performs a million square root calculations for every request it
receives, therefore generating CPU load. The deployment files can be
found on the Github repository12

4.5.2 Visualisation

To visualise the state of the deployment Grafana13 (Version 5.3.4) is
used. This is a visualisation tool that is specialised in creating online
dashboards filled with plots and other metrics. It can use Prometheus
as a data source and perform API calls retrieving real time data. The
created dashboard used for visualising the state of the deployment
can be retrieved from the Github repository14. The plots used in the
testing are all extracted from this dashboard.

4.5.3 Execute actions

All the specific pod and node names are shortened to their unique
part of the name to make the testing more readable.

11 https://github.com/Gezzellig/DynamicTopologySelection/tree/master/

TopologyGenerator/SmartKubernetesSchedular/tests

12 https://github.com/Gezzellig/DynamicTopologySelection/tree/master/demo

13 https://grafana.com/

14 https://github.com/Gezzellig/DynamicTopologySelection/blob/master/

visualisation/grafana_dashboard.json

https://github.com/Gezzellig/DynamicTopologySelection/tree/master/TopologyGenerator/SmartKubernetesSchedular/tests
https://github.com/Gezzellig/DynamicTopologySelection/tree/master/TopologyGenerator/SmartKubernetesSchedular/tests
https://github.com/Gezzellig/DynamicTopologySelection/tree/master/demo
https://grafana.com/
https://github.com/Gezzellig/DynamicTopologySelection/blob/master/visualisation/grafana_dashboard.json
https://github.com/Gezzellig/DynamicTopologySelection/blob/master/visualisation/grafana_dashboard.json

4.5 testing 33

Figure 4.5: Add pod

Add pod

To verify that a pod can be added to the deployment the pod addition
was run. As can be seen in Figure 4.5 the initial state contained four
pods present in the deployment. Both node 83rr and d2dq contain two
pods.

The add pod part of the tuner is executed to add podtype php-

apache to node 83rr.
As can be seen in the same figure, the amount of pods increases

from four to five, and the new php-apache pod is scheduled on node
83rr. More detailed output of the test can be found in the Appendix
on page 79. The pod has been successfully added to the node, therefore
the test succeeded.

Migrate pod

To verify that the tuner can migrate a pod a pod migration was
executed to move pod h6fkb, being part of a php-apache deployment,
from node 83rr to node d2dq. Figure 4.6 shows the results of the
migration. The initial deployment consisted of four php-apache pods.
Three of these are present on node 83rr and one is on node d3dq

The migration succeeded. This can also be seen in the figure, the
amount of php-apache pods stays constant but now both nodes contain
two of those pods. More detailed output of the test can be found in
the Appendix on page 79. The pod was successfully migrated.

34 implementation and testing

Figure 4.6: Migrate pod

Figure 4.7: Remove pod

Remove pod

To verify that the tuner can delete a pod from the deployment, the pod
removal to remove pod bmtcb was run. Figure 4.7 shows the whole
test. Initially the system was running five php-apache pods as can be
seen in the graph on the right. node 83rr contained three of those
pods and node d3dq had two.

Pod bmtcb, which is part of the php-apache deployment, was situ-
ated on node d3dq was removed using the removal part of the tuner.

As can be seen in the figure the total amount of php-apache pods
decreases and the total amount of pods on node d3dq also decreases.
More detailed output of the test can be found in the Appendix on
page 80. The pod was succesfully removed from the deployment.

4.5 testing 35

Figure 4.8: Remove node

Remove node

To verify that the tuner can remove a node from the deployment, the
node removal was ran to remove node 1sq8. Figure 4.8 shows the
whole test of node removal. The left graph displays the total sum
of available, requested and used CPU cores in the system. The right
shows the requested amount for every separate node. Initially the
system was running three nodes.

Node 1sq8 is removed using the node removal part of the tuner.
This node contained only daemonset pods. These are required for
Kuberenetes and the monitoring. These are the same daemonset pods
as would be present when the tuner is running and is removing a
node. These daemonset pods request in total a 0.211 from the CPU.

As can be seen in the left graph of the figure the total amount
of cores present in the deployment decreases by two. The graph on
the right shows that the line representing the amount requested for
node 1sq8 stops. More detailed output of the test can be found in the
Appendix on page 80. The node was successfully removed.

5
E VA L UAT I O N

To evaluate the ability of the tuner to reduce operational cost it needs
to run in a controlled environment. Section 5.1 will explain the setup
used for the evaluation and provides all the necessary information to
reproduce the results. Section 5.2 will show these results and analyse
them to evaluate the performance of the tuner.

5.1 experimental setup

5.1.1 Benchmark application

A lot of effort was spend on finding a proper scalable benchmark
application running in Kubernetes on which we could generate load.
Preferably this application would be one consisting of many services
that allow scaling to simulate a proper microservice architecture un-
der load. After multiple failed attempts trying the Robotshop1, the
Sockshop2 and Gitlab3 eventually the decision was made to use the
PHP-Apache application introduced in the testing section (Section 4.5).
This application only consists of a single pod, but it is scalable and
allows for easy load generation. Therefore it does allow the tuner
to show that it can save cost, however the advantages acquired by
moving different type of containers around can not be evaluated.

An autoscaler was applied on the PHP-Apache deployment to enable
its scaling. The autoscaler tries to keep the total percentage of CPU
usage of PHP-Apache pods on 80 percent of the requested value. The
requested value for an PHP-Apache pod is 0.2 core. The autoscaler will
scale the deployment between 1 and 50 instances. The scaling in the
following evaluation will never come close to 50, therefore the system
behaves like there is no upper bound. The deployment file of the
autoscaler can be found on the Github repository4.

5.1.2 Load generator

To generate load on the deployment a load generator is needed. Ar-
tillery5 (Version 1.6.0-28 running on Node.js Version 10.15.2) was
chosen as it is able to generate load on API endpoints using web

1 https://github.com/instana/robot-shop

2 https://microservices-demo.github.io/

3 https://gitlab.com

4 https://github.com/Gezzellig/DynamicTopologySelection/blob/master/demo/

php-apache-hpa.yaml

5 https://artillery.io/

37

https://github.com/instana/robot-shop
https://microservices-demo.github.io/
https://gitlab.com
https://github.com/Gezzellig/DynamicTopologySelection/blob/master/demo/php-apache-hpa.yaml
https://github.com/Gezzellig/DynamicTopologySelection/blob/master/demo/php-apache-hpa.yaml
https://artillery.io/

38 evaluation

requests. Artillery allows the user to provide a load pattern using a
YAML file. This allows an easy and robust way of running the same
load pattern multiple times. It keeps track of every request and reports
on its response time and success or failure.

5.1.3 Hardware

The hardware is the same as used in the testing section (Section 4.5).
The Kubernetes cluster is running on Google Kubernetes Engine. The
virtual machines used contain 2 virtual CPU cores (Intel Xeon Scalable
Processor running with a 2.0 GHz base frequency) and 7.5 Gigabytes
of virtual Random Access Memory. Automatic node scaling is used
to allow the system to dynamically react to increase and decrease of
required resources. The node scaling was set to a minimum of one and
a maximum of eight nodes. As all experiments run in this evaluation
use seven nodes maximum this should behave like there was no upper
limit. While receiving no load on the PHP-Apache and therefore only
having one pod the system needed two nodes to place all the support
pods for Prometheus and Grafana. The system runs with Kubernetes
version 1.11.8 and the nodes are located in zone europe-west3-c.

The tuner and knowledge base are located on the local machine
which is an HP ZBOOK Studio G5. Further specifications can be found
in the testing section (Section 4.5).

The load generator is also located on the local machine. The load
generation and the tuner both require few resources and as there are
plenty available, this should not effect the results.

5.1.4 Experiment

Multiple interesting load patterns will be ran to perform the evalu-
ation. These load patterns will be introduced in the Results section
(Section 5.2). To circumvent explaining the processing of the patterns
multiple times this section will explain the processing and the sources
of the data used.

Per interesting load pattern the whole pattern will be run multiple
times with and without the tuner enabled. A single pattern is run
multiple times to ensure that the results are representative. The found
operational cost can then be compared between running the pattern
with and without the tuner, giving an insight in the operational cost
the tuner saves.

The cost metrics are retrieved from Prometheus by multiplying the
used resources in the used machines by their appropriate cost. The
prices used in the evaluation to calculate the operational costs are
€0.0280 per CPU core and €0.0038 per Gigabyte of memory. These
prices are the current prices for Google Compute Engine [21] and are

5.2 results 39

transferred to euros using the exchange rate of the first of July 2019

where 1 dollar is 0.8859 Euro.
Reducing operational cost is the eventual goal of this research, but it

is also very important to establish at what quality cost these reductions
are attained. The performance of the deployment will be measured
using the response time of every request as it shows how quickly each
user could be served. The resulting response times are retrieved from
the output file generated by Artillery.

5.2 results

The evaluation of the tuner was performed in three phases. The first
phase was used to get an insight in the performance of tuner. The
second phase was used to analyse some anomalies found in the first
phase. The third phase is the final evaluation where the load patterns
are all set to a comparable load to allow for comparison of performance
between the different patterns.

Every load pattern that is used will be explained and visualised in its
appropriate phase. For every load pattern ran will start with displaying
the results. These results consist of a comparison of operational cost
where the same load pattern is run with and without the tuner. The
effect on performance is measured using the average latency needed to
handle all incoming requests. The analysis section uses the presented
results and identifies interesting trends.

5.2.1 Phase 1

All the tests shown in phase 1 where ran at least two times and
the results shown are the average results of the different runs. The
evaluation in phase 1 consists of two different load patterns, one with
wide peaks and one with narrow peaks and have the same width of
the valleys. These two patterns where chosen to see if the width of
the peak has any impact on the performance of the tuner. The load
pattern with wide peaks can be seen in Figure 5.1 and the pattern
with small peaks can be seen in Figure 5.2. The settings used in this
phase can be found in the Github repository6

6 https://github.com/Gezzellig/DynamicTopologySelection/blob/master/

TopologyGenerator/settings-phase1.json

https://github.com/Gezzellig/DynamicTopologySelection/blob/master/TopologyGenerator/settings-phase1.json
https://github.com/Gezzellig/DynamicTopologySelection/blob/master/TopologyGenerator/settings-phase1.json

40 evaluation

Figure 5.1: Load pattern 1

Figure 5.2: Load pattern 2

5.2 results 41

Figure 5.3: Operational cost pattern 1

Load pattern 1: Wide peaks

Figure 5.3 shows the cost per hour needed for running the deployment.
Normal means running the system without the tuner active, Tuner
are the costs when the tuner is active. The average execution costs
for running the load with and without tuner can be seen in Table 5.1.
The latency for both the normal runs and runs with tuner can be
seen in Figure 5.4. The figure shows for both with and without tuner
the median latency for every time step and the 95th percentile. As
these results only show two large peaks Figure 5.5 provides the same
data but then with a logarithmic scale, to allow better insight in the
performance on other moments than the peaks.

Total cost with tuner active €0.669

Total cost without tuner active €0.691

Saved by tuner €0.022

Percentage saved by tuner 3.2%

Table 5.1: Savings pattern 1

42 evaluation

Figure 5.4: Latency pattern 1

Figure 5.5: Logarithmic latency pattern 1

5.2 results 43

Figure 5.6: Operational cost pattern 2

Load pattern 2: Narrow peaks

Figure 5.6 shows the cost per hour needed for running the deployment.
The average execution costs can be found in Table 5.2. The latency for
both the normal runs and runs with tuner can be seen in Figure 5.7.
The latency on a logarithmic y-axis can be found in Figure 5.8.

Total cost with tuner active €0.311

Total cost without tuner active €0.381

Saved by tuner €0.069

Percentage saved by tuner 18.2%

Table 5.2: Savings pattern 2

Analysis

As can be seen in the results of both load patters their savings tables
(Tables 5.1 and 5.2), the tuner reduced operational costs. The perfor-
mance in both tests did decrease as can be seen in Figures 5.5 and
5.8.

Looking closer into cost over time (Figures 5.3 and 5.6) both patterns
show some weird bumps where the tuner is active, indicating that
more nodes are requested on those moments. Investigation into the
cause of these anomalies is required.

44 evaluation

Figure 5.7: Latency pattern 2

Figure 5.8: Logarithmic latency pattern 2

5.2 results 45

Figure 5.9: CPU and memory utilisation

This increase might be caused by the system lacking resources at
those moments. Figure 5.9 shows the total available, requested and
used CPU and memory in the deployment for one of the executions
for load pattern 1. This data is retrieved from Prometheus and shows
resource usage on cluster level. This figure shows that both CPU and
memory are abundantly present compared to what is requested and
being used. After further investigation it shows no pods are being
scheduled on newly added nodes. This behaviour was found over all
runs with both load patterns. Therefore it was concluded that it is not
caused by resource shortage.

Since we know this behaviour only appears when the tuner is
running it is highly likely that the tuner throws the autoscaler off
balance due to some actions. After some consideration two possible
actions performed by the tuner were identified that might trouble the
autoscaler. The first is the random migrations performed when no
improvement can be found. As this might appear for the autoscaler as
problems with a certain node and therefore it requests a replacement.
The second hypothesis is that the active removal of nodes causes
some kind of problem, as the autoscaler expects that it is the only one
actively changing the deployment. The next phase of the analysis is
concerned with investigating these phenomena.

46 evaluation

Figure 5.10: Resource utilisation, no random migrations

5.2.2 Phase 2: Finding the source of node addition

The first hypothesis was tested using the narrow peaks load pattern.

No random migration

The first hypothesis is that the unexpected scaling of nodes is caused
by the random migrations performed when no cost could be saved.
Therefore the tuner is run while putting the migration_chance in the
settings to 0.0, as this will ensure that the random migrations are never
performed. Figure 5.10 shows the resulting resource usage in the test.
Again the anomalies are still present, indicating that the behaviour is
not caused by random migration.

No node removals

To test the second hypothesis and get a clearer view of the problem
it was decided that a load pattern with only a single narrow peak
would be enough to analyse the problem. The load pattern can be
seen in Figure 5.11. The advantages are that each run takes less time
and enabling a longer valley to investigate the long term effect.

To verify that the unexpected behaviour also appears with this new
load pattern, a control test was ran with the tuner running. Figure 5.12

shows the resource usage of this test. Again the anomalies are present
and the used and requested line shows that the scaling is not caused
by resource shortages.

The second hypothesis is that the scaling is caused by the hard
removal of the nodes which are performed by the tuner. The removal
of nodes was turned off by setting the remove_nodes value to false.

5.2 results 47

Figure 5.11: Load pattern single narrow peak

Figure 5.12: CPU and memory utilisation, single narrow peak

48 evaluation

Figure 5.13: Resource utilisation, no node removals

Figure 5.13 shows the resource utilisation of running the single narrow
peak pattern without node removal. As shown in this figure the
anomalies are not present. Therefore the source of the unexpected
scaling is identified.

Figure 5.14 shows the cost for running the deployment with the
tuner while node removal is disabled and the cost of running without
tuner. Both cost lines in the figure are almost identical. This can also
be seen in Table 5.3. The cost for running with and without the tuner
are exactly the same.

Total cost with tuner active €0.252

Total cost without tuner active €0.252

Saved by tuner €0.000

Percentage saved by tuner 0.0%

Table 5.3: Savings no node removal

5.2 results 49

Figure 5.14: Cost no node removal

5.2.3 Phase 3

This phase used three different load patterns to analyse the cost-saving
performance of the tuner. These three patterns are chosen because
together they cover most general load behaviour that can appear on
a deployment. The first pattern, shown in Figure 5.15 contains wide
peaks and valleys, representing slow change of deployment load. The
second pattern (Figure 5.16) has three sharp peaks and long valleys,
representing sudden short bursts of load on the system. The third
pattern (Figure 5.17) represents a highly variable load where every 10

minutes the load increases or decreases.
Every load pattern lasts 3.5 hours and in total 151200 requests are

sent in every pattern. As this is equal for all three patterns the results
found can also be compared between them, this gives an insight in
which use-cases the tuner is more effective. All the presented results
are the average of three runs.

As in phase 1 the found results are compared to running the de-
ployment on the same load without the tuner. In addition to running
it just with the tuner, also the results of running the tuner with the
node removal is disabled are ran and analysed. All the node removal
actions that where supposed to be executed in these runs are logged.
These logs are used to simulate the cost reduction of the tuner when
Kubernetes would not restart the nodes. A "deleted" node is added
back to the cost calculation when pods are assigned again on the node.

50 evaluation

Figure 5.15: Load pattern 1

Figure 5.16: Load pattern 2

5.2 results 51

Figure 5.17: Load pattern 3

Improvement over previous phases

The tuner now uses a sliding window to try again when the deploy-
ment is deemed unstable instead of a tumbling windows. The sliding
window is set to 10% of the normal window size, increasing the chance
that the tuner will quickly spot a stable deployment. The warm-up
time of the load is increased from 5 minutes to 30 minutes, since it
was noticed that anomalies can be caused up till 15 minutes after the
last scaling. The new settings file can be found in the repository7.

Load pattern 1: Wide peaks

Figure 5.15 shows the load pattern that was used. The pattern consists
of two wide peaks that have equal width to the valleys that follow.
Both the peaks and valleys last for 40 minutes with a transition period
of 5 minutes.

The cost of running the tuner with node removal can be seen in
Figure C.1. Figure C.2 shows the cost when running the tuner without
node removal. Figure C.3 shows the cost for the simulated node
removal. In Figure 5.18 are all these cost combined to allow for easy
comparison. Table 5.5 provides an overview of the total cost for the
three options.

7 https://github.com/Gezzellig/DynamicTopologySelection/blob/master/

TopologyGenerator/settings-phase3.json

https://github.com/Gezzellig/DynamicTopologySelection/blob/master/TopologyGenerator/settings-phase3.json
https://github.com/Gezzellig/DynamicTopologySelection/blob/master/TopologyGenerator/settings-phase3.json

52 evaluation

Node removal With Without Simulated

Total cost with tuner active €1.014 €1.005 €0.992

Total cost without tuner active €1.012 €1.012 €1.012

Saved by tuner €−0.002 €0.007 €0.020

Percentage saved by tuner −0.19% 0.67% 1.95%

Table 5.4: Savings overview pattern 1

Figure 5.18: Cost all combined pattern 1

The latency for running the system with and without node removal
compared to running the system without the tuner can be seen in
Figures C.4 and C.5.

Load pattern 2: Narrow peaks

The load pattern used can be found in Figure 5.16. Here you can
see that the load pattern consists of three narrow peaks separated by
valleys of 50 minutes.

The cost for running the system with and without the tuner while
having node removal enabled can be found in Figure C.6. Figure C.7
showing the cost when node removal is disabled and Figure C.8
shows the cost for the simulated node removal. Figure 5.19 merges
the previous figures and allows for comparison between the different

5.2 results 53

Figure 5.19: Cost all combined pattern 2

options. The total cost of running the system using the different modes
can be found in Table 5.5.

Node removal With Without Simulated

Total cost with tuner active €1.308 €1.367 €1.343

Total cost without tuner active €1.342 €1.342 €1.342

Saved by tuner €0.034 €−0.025 €0.001

Percentage saved by tuner 2.54% −1.84% −0.11%

Table 5.5: Savings overview pattern 2

The latency of running the deployment with a tuner that allows for
node removal can be seen in Figure C.9. Figure C.10 shows the latency
when the tuner was not allowed to remove nodes.

54 evaluation

Figure 5.20: Cost all combined pattern 3

Load pattern 3: High frequency

As Figure 5.17 shows this load pattern consist of many peaks and
valleys which last 10 minutes. In total there are seven oscillations.

Figure C.11 shows the cost for running the deployment using the
tuner with node removal enabled. The cost of running the deployment
when node removal is not allowed can be seen in Figure C.12. Fig-
ure C.13 shows the cost for the simulated node removal. All the costs
are also combined for easy comparison in Figure 5.20. The total costs
for running the different options can be found in Table 5.6.

Node removal With Without Simulated

Total cost with tuner active €1.057 €1.127 €1.113

Total cost without tuner active €1.115 €1.115 €1.115

Saved by tuner €0.058 €−0.013 €0.001

Percentage saved by tuner 5.16% −1.16% 0.10%

Table 5.6: Savings overview pattern 3

The latency for running the deployment using the tuner with node
removal can be seen in Figure C.14. Figure C.15 shows the latency for
applying the tuner without node removal.

5.2 results 55

Analysis

The first observation that can be made is that the node reappearing
after deletion is still present in this analysis as can be seen in the
valleys of Figures C.1, C.6 and C.11.

When looking at the total cost results for every load pattern (Ta-
bles 5.4, 5.5 and 5.6) it is observed that the tuner with node removal
allowed is only able to make a minor improvement, and in the third
load pattern this does cause a decrease in performance as can be seen
in Figure C.14. The other two load patterns did not have this decrease
in performance as can be seen in Figure C.4 and C.9. In these load
patterns the valleys where wide enough for the node reappearing
anomalies to happen without negatively affecting the scaling needed
for the next increase of load. Using this knowledge it is concluded
that the tuner should not be applied on any deployments where the
frequency of changing load is significantly larger than the time to
scale a node up and down. In addition, it can be concluded that the
tuner should not be applied on systems where performance is critical.

The resulting cost for applying the tuner without node removal
(Tables 5.4, 5.5 and 5.6) did not yield a significant reduction in cost as
was already expected from the results found in phase 2.

The total cost results of running the tuner while simulating the
node removals (Tables 5.4, 5.5 and 5.6) resulted in less cost savings
than initially expected. When looking at the end of every peak in
Figures C.3, C.8 and C.13 the tuner does allow for a slightly faster
down-scaling and therefore decrease in cost, but this effect is smaller
then expected. This shows that the current autoscaler of Kubernetes is
already very capable of scaling a single service actively.

The initial use-case where the tuner would be applied on a more
complex microservice system could not be evaluated, due to the
absence of appropriate microservice applications. In this use-case the
tuner might still yield improvements over the current Kubernetes
autoscaler as it is able to evaluate the total deployment of all different
pods and can apply redistribution. Each Kubernetes autoscaler can
only optimise its own type of pods while lacking the knowledge of
the overall deployment. To verify this future evaluation and analysis
is needed.

6
C O N C L U S I O N A N D F U T U R E W O R K

In this final chapter the findings of the thesis are concluded and future
work is identified.

6.1 conclusion

This thesis has shown that it is possible to create a deployment tuner
that runs in parallel with an autoscaler. The tuner is able to monitor
the state of the deployment. When the deployment is stable the tuner
analyses how the deployment can be improved to make it more cost
effective for the current load. The analysis is aided by a knowledge
base that holds previous deployments and their cost effectiveness.
A planning is constructed that contains the required modifications
to reach the envisioned deployment using the least amount of ac-
tions. The planned modifications are performed on the deployment
in the given order and each modification is verified before the next is
performed until reaching the envisioned deployment. Subsequently
the tuner will wait for the given time window, after which the next
optimisation cycle is initiated.

The evaluation of the deployment tuner consisted of comparing the
resulting operational cost of running a cluster with and without the
tuner. The comparison was performed with different load patterns to
simulate different types of systems. Using these results the research
question can be answered.

Can deployment tuning reduce the operational cost of
microservices?

The short answer is yes. As is shown in the evaluation the tuner is
able to reduce the operational cost, although only by a few percent.
The long answer is a bit more nuanced. Yes, the tuner was able to
save cost, but the current savings are mainly realised by harming the
performance of the system as can be seen by the resulting increase in
latency in the evaluation. Using this insight the tuner should only be
applied on systems where high performance is not critical.

As the concept of deployment tuning is designed to work with larger
deployments that allow the tuner to find beneficial combinations, the
real potential of the tuner is not yet established. To properly evaluate
the cost reduction that can be achieved, the tuner should be applied
on a complete microservice system instead of a single service as part
of future work.

57

58 conclusion and future work

6.2 future work

Five other interesting future works are identified and listed below. The
first three focus on expanding and improving the tuner allowing it
to make smarter decisions. The last two are focus on providing more
evaluation for the concept of deployment tuning.

Improve deployment tuning

• The current implementation of the tuner only takes into account
the CPU usage of pods, memory is not taken into account. There-
fore the tuner struggles when memory heavy pods are present
in the system. It would be really interesting to combine both
metrics to ensure that both resources of nodes are used efficiently.
A possible optimisation in such a system would be to put pods
with high CPU requirements together with pods needing a lot
of memory, thus making maximal use of the available resources
and allowing less nodes to be required.

• It would be very interesting to enhance the redistribution capa-
bilities of the tuner to include communication between pods. If
two pods communicate a lot they should be placed on the same
node thereby reducing communication overhead and increasing
efficiency of the system.

• Implement the execute component directly into Kubernetes. This
allows more control over the pod placement and precludes usage
of labels and verification. Another large benefit is that this im-
plementation will probably solve the problem with reoccurring
nodes, as the node removal call can now be performed from
inside Kubernetes.

Further analysis on the potential of deployment tuning

• As described in the architecture chapter (Chapter 3), the tuner
is designed as not orchestration tool specific. It would be very
interesting to implement the tuner for another orchestration
tool and compare its operational cost saving abilities with this
research.

• Currently, the purpose of the tuner is to reduce the operational
cost of a deployment, but deployment tuning could also be ap-
plied to improve other metrics. An example of such a metric
is balancing the usage of resource over all nodes. Many of the
concepts used in this work can still be used, only the analysis
component needs to be re-implemented to allow for the optimisa-
tion of the newly chosen metric. This is especially interesting for

6.2 future work 59

private clouds as their hardware is purchased instead of rented,
therefore it does not make sense to optimise on operational cost.

B I B L I O G R A P H Y

[1] Sam Newman. Building Microservices. 1st. O’Reilly Media, Inc.,
2015. isbn: 1491950358, 9781491950357.

[2] Camunda. New Research Shows 63 Percent of Enterprises Are Adopt-
ing Microservices Architectures Yet 50 Percent Are Unaware of the
Impact on Revenue-Generating Business Processes. https://www.
globenewswire.com/news-release/2018/09/20/1573625/0/

en/New-Research-Shows-63-Percent-of-Enterprises-Are-

Adopting- Microservices- Architectures- Yet- 50- Percent-

Are-Unaware-of-the-Impact-on-Revenue-Generating-Business-

Processes.html. [Online; accessed 24-July-2019]. 2019.

[3] Laura Mauersberger. Why Netflix, Amazon, and Apple Care About
Microservices. https://blog.leanix.net/en/why- netflix-
amazon-and-apple-care-about-microservices. [Online; ac-
cessed 24-July-2019]. 2019.

[4] R. S. Shariffdeen, D. T. S. P. Munasinghe, H. S. Bhathiya, U. K. J.
U. Bandara, and H. M. N. D. Bandara. “Workload and Resource
Aware Proactive Auto-scaler for PaaS Cloud.” In: 2016 IEEE
9th International Conference on Cloud Computing (CLOUD). 2016,
pp. 11–18. doi: 10.1109/CLOUD.2016.0012.

[5] An Architectural Blueprint for Autonomic Computing. Tech. rep.
IBM, June 2005.

[6] M. D. McIlroy, E. N. Pinson, and B. A. Tague. “Unix Time-
Sharing System Forward.” In: The Bell System Technical Journal
57.6, part 2 (1978), p.1902.

[7] L. Baresi, S. Guinea, G. Quattrocchi, and D. A. Tamburri. “Mi-
croCloud: A Container-Based Solution for Efficient Resource
Management in the Cloud.” In: 2016 IEEE International Con-
ference on Smart Cloud (SmartCloud). 2016, pp. 218–223. doi:
10.1109/SmartCloud.2016.42.

[8] Datadog. 8 suprising facts about real docker adoption. https://www.
datadoghq.com/docker-adoption/. [Online; accessed 24-July-
2019]. 2019.

[9] Emiliano Casalicchio. “Autonomic Orchestration of Contain-
ers: Problem Definition and Research Challenges.” In: Proceed-
ings of the 10th EAI International Conference on Performance Eval-
uation Methodologies and Tools on 10th EAI International Confer-
ence on Performance Evaluation Methodologies and Tools. VALUE-
TOOLS'16. Taormina, Italy: ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineer-
ing), 2017, pp. 287–290. isbn: 978-1-63190-141-6. doi: 10.4108/

61

https://www.globenewswire.com/news-release/2018/09/20/1573625/0/en/New-Research-Shows-63-Percent-of-Enterprises-Are-Adopting-Microservices-Architectures-Yet-50-Percent-Are-Unaware-of-the-Impact-on-Revenue-Generating-Business-Processes.html
https://www.globenewswire.com/news-release/2018/09/20/1573625/0/en/New-Research-Shows-63-Percent-of-Enterprises-Are-Adopting-Microservices-Architectures-Yet-50-Percent-Are-Unaware-of-the-Impact-on-Revenue-Generating-Business-Processes.html
https://www.globenewswire.com/news-release/2018/09/20/1573625/0/en/New-Research-Shows-63-Percent-of-Enterprises-Are-Adopting-Microservices-Architectures-Yet-50-Percent-Are-Unaware-of-the-Impact-on-Revenue-Generating-Business-Processes.html
https://www.globenewswire.com/news-release/2018/09/20/1573625/0/en/New-Research-Shows-63-Percent-of-Enterprises-Are-Adopting-Microservices-Architectures-Yet-50-Percent-Are-Unaware-of-the-Impact-on-Revenue-Generating-Business-Processes.html
https://www.globenewswire.com/news-release/2018/09/20/1573625/0/en/New-Research-Shows-63-Percent-of-Enterprises-Are-Adopting-Microservices-Architectures-Yet-50-Percent-Are-Unaware-of-the-Impact-on-Revenue-Generating-Business-Processes.html
https://www.globenewswire.com/news-release/2018/09/20/1573625/0/en/New-Research-Shows-63-Percent-of-Enterprises-Are-Adopting-Microservices-Architectures-Yet-50-Percent-Are-Unaware-of-the-Impact-on-Revenue-Generating-Business-Processes.html
https://blog.leanix.net/en/why-netflix-amazon-and-apple-care-about-microservices
https://blog.leanix.net/en/why-netflix-amazon-and-apple-care-about-microservices
https://doi.org/10.1109/CLOUD.2016.0012
https://doi.org/10.1109/SmartCloud.2016.42
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://doi.org/10.4108/eai.25-10-2016.2266649
https://doi.org/10.4108/eai.25-10-2016.2266649

62 bibliography

eai.25-10-2016.2266649. url: https://doi.org/10.4108/eai.
25-10-2016.2266649.

[10] Luis M. Vaquero, Luis Rodero-Merino, and Rajkumar Buyya.
“Dynamically Scaling Applications in the Cloud.” In: SIGCOMM
Comput. Commun. Rev. 41.1 (Jan. 2011), pp. 45–52. issn: 0146-4833.
doi: 10.1145/1925861.1925869. url: http://doi.acm.org/10.
1145/1925861.1925869.

[11] Kubernetes. Horizontal Pod Autoscaler. https://kubernetes.io/
docs/tasks/run-application/horizontal-pod-autoscale/.
[Online; accessed 24-July-2019]. 2019.

[12] Google. Cluster autoscaler. https://cloud.google.com/kubernetes-
engine/docs/concepts/cluster-autoscaler. [Online; accessed
22-August-2019]. 2019.

[13] Gokul Soundararajan, Cristiana Amza, and Ashvin Goel. “Database
Replication Policies for Dynamic Content Applications.” In:
SIGOPS Oper. Syst. Rev. 40.4 (Apr. 2006), pp. 89–102. issn: 0163-
5980. doi: 10.1145/1218063.1217945. url: http://doi.acm.
org/10.1145/1218063.1217945.

[14] Jin Chen, G Soundararajan, and C Amza. “Autonomic Provision-
ing of Backend Databases in Dynamic Content Web Servers.”
In: vol. 2006. July 2006, pp. 231 –242. doi: 10.1109/ICAC.2006.
1662403.

[15] A. Ashraf, B. Byholm, and I. Porres. “CRAMP: Cost-efficient Re-
source Allocation for Multiple web applications with Proactive
scaling.” In: 4th IEEE International Conference on Cloud Comput-
ing Technology and Science Proceedings. 2012, pp. 581–586. doi:
10.1109/CloudCom.2012.6427605.

[16] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. “Kingfisher: Cost-
aware elasticity in the cloud.” In: 2011 Proceedings IEEE INFO-
COM. 2011, pp. 206–210. doi: 10.1109/INFCOM.2011.5935016.

[17] Vasilios Andrikopoulos. “Engineering Cloud-Based Applica-
tions: Towards an Application Lifecycle.” In: Advances in Service-
Oriented and Cloud Computing. Ed. by Zoltán Ádám Mann and
Volker Stolz. Cham: Springer International Publishing, 2018,
pp. 57–72. isbn: 978-3-319-79090-9.

[18] P. Townend, S. Clement, D. Burdett, R. Yang, J. Shaw, B. Slater,
and J. Xu. “Invited Paper: Improving Data Center Efficiency
Through Holistic Scheduling In Kubernetes.” In: 2019 IEEE
International Conference on Service-Oriented System Engineering
(SOSE). 2019, pp. 156–15610. doi: 10.1109/SOSE.2019.00030.

[19] Kubernetes. cAdvisor standard in Kubernetes. https://kubernetes.
io/docs/tasks/debug-application-cluster/resource-usage-

monitoring/#cadvisor. [Online; accessed 24-June-2019]. 2019.

https://doi.org/10.4108/eai.25-10-2016.2266649
https://doi.org/10.4108/eai.25-10-2016.2266649
https://doi.org/10.4108/eai.25-10-2016.2266649
https://doi.org/10.4108/eai.25-10-2016.2266649
https://doi.org/10.1145/1925861.1925869
http://doi.acm.org/10.1145/1925861.1925869
http://doi.acm.org/10.1145/1925861.1925869
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-autoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-autoscaler
https://doi.org/10.1145/1218063.1217945
http://doi.acm.org/10.1145/1218063.1217945
http://doi.acm.org/10.1145/1218063.1217945
https://doi.org/10.1109/ICAC.2006.1662403
https://doi.org/10.1109/ICAC.2006.1662403
https://doi.org/10.1109/CloudCom.2012.6427605
https://doi.org/10.1109/INFCOM.2011.5935016
https://doi.org/10.1109/SOSE.2019.00030
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/##cadvisor
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/##cadvisor
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/##cadvisor

bibliography 63

[20] Kubernetes. Assigning Pods to Nodes. https://kubernetes.io/
docs/concepts/configuration/assign- pod- node/. [Online;
accessed 20-August-2019]. 2019.

[21] Google. All pricing. https://cloud.google.com/compute/all-
pricing. [Online; accessed 1-July-2019]. 2019.

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://cloud.google.com/compute/all-pricing
https://cloud.google.com/compute/all-pricing

A
C O D E L I S T I N G S

a.1 find removable node

1 def movable(pod_info):

2 """

3 Returns if the given pod can be moved.

4 """

5 return pod_info["deployment_name"] is not None

6

7 def removable(pod_info):

8 """

9 Returns if the given pod can be removed.

10 """

11 return movable(pod_info) or pod_info["kind"] == "DaemonSet"
12

13 def node_removable(pods_info):

14 """

15 Checks if the given pods are removable.

16 """

17 for pod_info in pods_info:

18 if not removable(pod_info):

19 return False

20 return True

21

22

23 def select_removable_nodes(nodes):

24 """

25 Filters the nodes that can’t be removed from the provided

nodes.

26 """

27 removable_nodes = []

28 for name, node_info in nodes.items():

29 if node_removable(node_info["pods"]):
30 removable_nodes.append(name)

31 return removable_nodes

32

33

34 def find_pods_to_be_rescheduled(pods):

35 """

36 Returns all pods that have to be rescheduled on a node.

37 """

38 reschedule = []

39 for pod in pods:

40 if extract_pods.movable(pod):

41 reschedule.append(pod)

42 return reschedule

65

66 code listings

43

44

45 def least_transitions_removable(removable_nodes, nodes):

46 """

47 Selects the node that can be removed with the least amount of

changes.

48 """

49 least_transitions = math.inf

50 least_transitions_node = None

51 for node_name in removable_nodes:

52 num_pods = len(find_pods_to_be_rescheduled(nodes[

node_name]["pods"]))
53 if num_pods < least_transitions:

54 least_transitions = num_pods

55 least_transitions_node = node_name

56 return least_transitions_node

57

58

59 def recursive_find_new_distributions(reschedule_pods, new_nodes):

60 """

61 Recursive function that tries all possible migrations and

returns possible distributions.

62 """

63 #Base case no pods have to be rescheduled anymore

64 if not reschedule_pods:

65 return [new_nodes]

66

67 #Recursive step

68 suitable_distributions = []

69 pod = reschedule_pods.pop()

70 for node_name in new_nodes.keys():

71 new_new_nodes = copy.deepcopy(new_nodes)

72 new_new_nodes[node_name]["pods"].append(pod)
73 if node_request_fits(new_new_nodes[node_name]):

74 suitable_distributions +=

recursive_find_new_distributions(copy.deepcopy(

reschedule_pods), new_new_nodes)

75 return suitable_distributions

76

77

78 def find_new_distributions(reschedule_pods, new_nodes):

79 """

80 Helper function to start the recursive search for possible

new distributions.

81 """

82 return recursive_find_new_distributions(copy.deepcopy(

reschedule_pods), copy.deepcopy(new_nodes))

83

84

85 def get_max_requested(distribution):

86 """

A.1 find removable node 67

87 Return the requested value of the node the has the largest

requested value of the given distribution

88 """

89 max_requested = 0.0

90 for node_info in distribution.values():

91 requested = node_sum_requested(node_info)

92 if requested > max_requested:

93 max_requested = requested

94 return max_requested

95

96

97 def select_lowest_max_requested(distributions):

98 """

99 Return the distribution that has the lowest maximum requested

value over all nodes from the given distributions.

100 """

101 lowest_max_requested = math.inf

102 lowest_max_requested_distribution = None

103 for distribution in distributions:

104 max_requested = get_max_requested(distribution)

105 if max_requested < lowest_max_requested:

106 lowest_max_requested = max_requested

107 lowest_max_requested_distribution = distribution

108 return lowest_max_requested_distribution

109

110

111 def change_selected_distribution_into_transitions(

candidate_node_name, selected_distribution,

original_distribution):

112 """

113 Translate the node removal into a standardised format that

the planner understands.

114 """

115 transitions = {

116 candidate_node_name: {

117 " delete ": True,

118 "add": [],

119 "remove": []

120 }

121 }

122 for node_name, node_info in selected_distribution.items():

123 for pod in node_info["pods"]:
124 if pod not in original_distribution[node_name]["pods"

]:

125 if pod["node_name"] not in transitions:

126 transitions[pod["node_name"]] = {"add": [], "
remove": []}

127 transitions[pod["node_name"]]["remove"].append(
pod["pod_name"])

128 if node_name not in transitions:

129 transitions[node_name] = {"add": [], "remove"
: []}

68 code listings

130 transitions[node_name]["add"].append(pod["
pod_generate_name"])

131 return transitions

132

133

134 def empty_node_transitions():

135 """

136 Find if any node can be emptied and removed

137 """

138 nodes = extract_nodes.extract_all_nodes_cpu_pods()

139 removable_nodes = select_removable_nodes(nodes)

140 candidate_node_name = least_transitions_removable(

removable_nodes, nodes)

141 if candidate_node_name is None:

142 log.info("No node could be shutdown for improvement,
because al l nodes have a statefull set ")

143 return False, None, None

144

145 reschedule_pods = find_pods_to_be_rescheduled(nodes[

candidate_node_name]["pods"])
146 nodes_node_removed = copy.deepcopy(nodes)

147 del nodes_node_removed[candidate_node_name]

148 distributions = find_new_distributions(reschedule_pods,

nodes_node_removed)

149 if not distributions:

150 log.info("No node could be shutdown for improvement,
because al l the resources are needed")

151 return False, None, None

152 selected_distribution = select_lowest_max_requested(

distributions)

153 return True, candidate_node_name,

change_selected_distribution_into_transitions(

candidate_node_name, selected_distribution, nodes)

Listing A.1: Find removable node

A.2 node matching 69

a.2 node matching

1 def scoring(pod_info, not_movable_score, movable_score):

2 """

3 This function return the appropriate score for the given pod

type.

4 """

5 if pod_info["kind"] == "DaemonSet":
6 return 0

7 if movable(pod_info):

8 return movable_score

9 else:

10 return not_movable_score

11

12

13 def pod_score(pod_a_name, pod_a, node_b, copy_node_a, copy_node_b

, not_movable_score, movable_score):

14 """

15 Tries to find a pod of the deployement of pod_a in the node_b

.

16 """

17 for pod_b_name, pod_b in node_b["pods"].items():
18 if pod_a["pod_generate_name"] == pod_b["pod_generate_name

"]:
19 if pod_b_name in copy_node_b["pods"]:
20 del copy_node_b["pods"][pod_b_name]
21 del copy_node_a["pods"][pod_a_name]
22 return scoring(pod_a, not_movable_score,

movable_score)

23 return 0

24

25

26 def remaining_pods_score(copy_node, not_movable_score,

movable_score):

27 """

28 Returns the score that will be subtracted as it are pods that

are not matched.

29 """

30 score = 0

31 for pod_info in copy_node["pods"].values():
32 score += scoring(pod_info, not_movable_score,

movable_score)

33 return score

34

35

36 def calc_score_per_node(node_a, node_b, not_movable_score,

movable_score):

37 """

38 Returns the score of matching the contents of two nodes.

39 """

40 copy_node_a = copy.deepcopy(node_a)

41 copy_node_b = copy.deepcopy(node_b)

70 code listings

42 score = 0

43 for pod_a_name, pod_a_info in node_a["pods"].items():
44 score += pod_score(pod_a_name, pod_a_info, node_b,

copy_node_a, copy_node_b, not_movable_score,

movable_score)

45

46 score -= remaining_pods_score(copy_node_a, not_movable_score,

movable_score)

47 score -= remaining_pods_score(copy_node_b, not_movable_score,

movable_score)

48 return score

49

50

51 def get_scores(current_state, desired_state):

52 """

53 Generates all possible combinations between nodes and

calculates the score for each combination.

54 """

55 not_movable_score = 100

56 movable_score = 1

57

58 #Current -> Desired

59 scores = {}

60 for node_current_name, node_current_info in current_state.

items():

61 score = {None: -remaining_pods_score(node_current_info,

not_movable_score, movable_score)}

62 for node_desired_name, node_desired_info in desired_state

.items():

63 cur_score = calc_score_per_node(node_current_info,

node_desired_info, not_movable_score,

movable_score)

64 score[node_desired_name] = cur_score

65 scores[node_current_name] = score

66 return scores

67

68

69 def rec_find_highest_score(current_state_list, desired_state_list

, scores):

70 """

71 Uses recursion to find the highest scoring mapping of current

nodes to desired nodes.

72 """

73 if not current_state_list:

74 return 0, {}

75

76 copy_current_state_list = list(current_state_list)

77 node_name = copy_current_state_list.pop()

78 max_score = -math.inf

79 max_mapping = None

80 for node_b_name in desired_state_list:

81 score = scores[node_name][node_b_name]

A.2 node matching 71

82 copy_desired_state_list = list(desired_state_list)

83 copy_desired_state_list.remove(node_b_name)

84 prev_score, prev_mapping = rec_find_highest_score(

copy_current_state_list, copy_desired_state_list,

scores)

85 cur_score = prev_score + score

86 prev_mapping[node_name] = node_b_name

87 cur_mapping = prev_mapping

88 if cur_score > max_score:

89 max_score = cur_score

90 max_mapping = cur_mapping

91 # CHANGE IT Mapping is from current -> desired

92 return max_score, max_mapping

93

94

95 def find_highest_score_mapping(current_state_list,

desired_state_list, scores):

96 """

97 Helper function to start the recursion loop to find the

highest scoring mapping of current nodes to desired nodes

.

98 """

99 for i in range(0, len(current_state_list)-len(

desired_state_list)):

100 desired_state_list.append(None)

101 score, mapping = rec_find_highest_score(current_state_list,

desired_state_list, scores)

102 return mapping

103

104

105 def match_nodes_desired_with_current_state(current_state,

desired_state):

106 """

107 Retrieves first the matching scores and uses this to initiate

the search for the best mapping. This mapping is

returned.

108 """

109 scores = get_scores(current_state, desired_state)

110 return find_highest_score_mapping(list(current_state.keys()),

list(desired_state.keys()), scores)

111

112

113 def already_on_node(des_pod_info, current_state_pods, remove_list

):

114 """

115 Checks if the given node is already present. Taking into

account previously matched node using the remove_list.

116 """

117 for cur_pod_name, cur_pod_info in current_state_pods.items():

118 if des_pod_info["pod_generate_name"] == cur_pod_info["
pod_generate_name"]:

119 if cur_pod_name in remove_list:

72 code listings

120 remove_list.remove(cur_pod_name)

121 return True

122 return False

123

124

125 def remove_daemon_sets(state):

126 """

127 Deamonsets do not have to be taken into account when matching

nodes, and therefore can be removed.

128 """

129 state_copy = copy.deepcopy(state)

130 for node_name, node_info in state.items():

131 for pod_name, pod_info in node_info["pods"].items():
132 if pod_info["kind"] == "DaemonSet":
133 del state_copy[node_name]["pods"][pod_name]
134 return state_copy

135

136

137 def valid_transition(add_list, remove_list, pods):

138 """

139 Verifies that no unmovable pods have to be moved.

140 """

141 for name in add_list:

142 for pod_info in pods.values():

143 if pod_info["pod_generate_name"] == name:

144 if not removable(pod_info):

145 return False

146 for name in remove_list:

147 if not removable(pods[name]):

148 return False

149 return True

150

151

152 def find_transitions_execution_change(current_state,

desired_state):

153 """

154 First matches the nodes.

155 Verifies the matching.

156 Generates the transition description that can be used by the

planner.

157 """

158 transitions = {}

159 node_mapping = match_nodes_desired_with_current_state(

current_state, desired_state)

160

161 daemon_less_current_state = remove_daemon_sets(current_state)

162 daemon_less_desired_state = remove_daemon_sets(desired_state)

163

164 for cur_node_name, cur_node_info in daemon_less_current_state

.items():

165 des_mapped_node_name = node_mapping[cur_node_name]

166 add_list = []

A.2 node matching 73

167 remove_list = list(cur_node_info["pods"].keys())
168 if des_mapped_node_name is not None:

169 for des_pod_info in daemon_less_desired_state[

des_mapped_node_name]["pods"].values():
170 if not already_on_node(des_pod_info,

cur_node_info["pods"], remove_list):

171 add_list.append(des_pod_info["
pod_generate_name"])

172

173 if not valid_transition(add_list, remove_list,

cur_node_info["pods"]):
174 return False, None

175

176 transitions[cur_node_name] = {

177 "add": add_list,

178 "remove": remove_list

179 }

180

181 if node_mapping[cur_node_name] is None:

182 transitions[cur_node_name][" delete "] = True

183 return True, transitions

Listing A.2: Node matching

74 code listings

a.3 migration set generation

1 def merge_found_migrations_sets(migration, migrations_sets):

2 """"

3 Adds the given migration to all elements present in

migration_sets.

4 """

5 for other in migrations_sets:

6 other.append(migration)

7 migrations_sets.append([migration])

8 return migrations_sets

9

10

11 def find_suitable_migrations_sets(selected_add, destination_node,

transitions):

12 """

13 For one add action finds all possible suitable remove actions

to and lists them in the migration sets.

14 """

15 migrations_sets = []

16 for source_node, content in transitions.items():

17 for pod_remove in content["remove"]:
18 if re.match(" { } * ".format(selected_add), pod_remove):

19 migration = {"pod_name": pod_remove, "source":
source_node, "destination": destination_node}

20 new_trans = copy.deepcopy(transitions)

21 new_trans[source_node]["remove"].remove(
pod_remove)

22 migrations_sets += merge_found_migrations_sets(

migration, recurse_find_all_migrations_sets(

new_trans))

23 return migrations_sets

24

25

26 def recurse_find_all_migrations_sets(transitions):

27 """

28 Recursively generates all possible migration sets that can be

retrieved from the transitions.

29 """

30 selected_add = None

31 selected_node = None

32 for node_name, content in transitions.items():

33 if content["add"]:
34 selected_add = content["add"].pop(0)
35 selected_node = node_name

36 break

37

38 # Base case

39 if selected_add is None:

40 return []

41

42 # migrate

A.3 migration set generation 75

43 migrations_sets = find_suitable_migrations_sets(selected_add,

selected_node, transitions)

44

45 # don’t migrate

46 migrations_sets += recurse_find_all_migrations_sets(copy.

deepcopy(transitions))

47 return migrations_sets

48

49

50 def find_all_migrations_sets(transitions):

51 """

52 Starts the recursive function to retrieve all migration sets,

and then orders them decreaslingy on length.

53 """

54 migrations_sets = recurse_find_all_migrations_sets(copy.

deepcopy(transitions))

55 migrations_sets.append([])

56

57 # Sort the result so that the longest migration is in front,

as we want to try this one the first

58 migrations_sets.sort(key=len, reverse=True)

59 return migrations_sets

Listing A.3: Migration set generation

76 code listings

a.4 verify migration set

1 def extract_deployment(pods, nodes):

2 """

3 Transforms the given pods and nodes into a dictionary where

the pods running on a node are added in a list under the

node names key.

4 """

5 deployment = {}

6 for node_name in nodes:

7 deployment[node_name] = []

8 for pod_name, info in pods.items():

9 node = info["node_name"]
10 deployment[node].append(pod_name)

11 return deployment

12

13

14 def simulate_migration(cur_deployment, migration):

15 """

16 Generates the resulting deployment after the given migration

would be performed

17 """

18 pod_name = migration["pod_name"]
19 source = migration["source"]
20 destination = migration["destination"]
21 cur_deployment[source].remove(pod_name)

22 cur_deployment[destination].append(pod_name)

23 return cur_deployment

24

25

26 def verify_deployment(deployment, pods, nodes):

27 """

28 Checks for every node if the amount of requested cpu does not

excel the available cpu.

29 """

30 for node_name, pod_names in deployment.items():

31 cpu_available = nodes[node_name]["cpu"]
32 cpu_needed = 0.0

33 for pod_name in pod_names:

34 cpu_needed += pods[pod_name][" total_requested"]
35 if cpu_needed > cpu_available:

36 return False

37 return True

38

39

40 def helper_recursive_construction_migration_order(migration,

migrations, cur_deployment, pods, nodes):

41 """

42 Helps with finding of the given set of migrations can be

performed and return its found order

43 """

44 migrations.remove(migration)

A.4 verify migration set 77

45 cur_deployment = simulate_migration(cur_deployment, migration

)

46 if not verify_deployment(cur_deployment, pods, nodes):

47 return False, []

48 return recursive_construction_migration_order(migrations,

cur_deployment, pods, nodes)

49

50

51 def recursive_construction_migration_order(migrations,

cur_deployment, pods, nodes):

52 """

53 Recursively searches for a possible order of migrations to

perform the provided migrations.

54 When this is found it is returned.

55 """

56 # Base case no more migrations to schedule

57 if not migrations:

58 return True, []

59

60 for migration in migrations:

61 success, result =

helper_recursive_construction_migration_order(

migration, list(migrations), copy.deepcopy(

cur_deployment), pods, nodes)

62 if success:

63 return True, [migration] + result

64 return False, []

65

66

67 def find_suitable_migrations(transitions, migrations_sets, pods,

nodes):

68 """

69 Finds the first and therefore largest migrations set that can

be executed and returns its order.

70 """

71 for migrations_set in migrations_sets:

72 local_pods_removed = remove_non_migrated_remove_pods(

transitions, migrations_set, pods)

73 cur_deployment = extract_deployment(local_pods_removed,

nodes)

74 result, migration_order =

recursive_construction_migration_order(migrations_set

, cur_deployment, local_pods_removed, nodes)

75 if result:

76 return migration_order

Listing A.4: Verify migration set

B
T E S T O U T P U T

b.1 add pod

Initial state

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

php-apache 4 4 4 4 12d

NODE POD

gke-demo-cluster-1-default-pool-6f471531-d2dq php-apache-5f657688bc-bmtcb

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-h6fkb

gke-demo-cluster-1-default-pool-6f471531-d2dq php-apache-5f657688bc-pxbw8

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-zsj99

Log output

INFO -- Creating pod: php-apache on gke-demo-cluster-1-default-pool-6f471531-83rr

INFO -- Addition succeeded, pod name: php-apache-5f657688bc-mwtjl

Final state

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

php-apache 5 5 5 5 12d

NODE POD

gke-demo-cluster-1-default-pool-6f471531-d2dq php-apache-5f657688bc-bmtcb

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-h6fkb

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-mwtjl

gke-demo-cluster-1-default-pool-6f471531-d2dq php-apache-5f657688bc-pxbw8

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-zsj99

b.2 migrate pod

Initial state

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

php-apache 4 4 4 4 12d

NODE POD

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-h6fkb

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-mwtjl

gke-demo-cluster-1-default-pool-6f471531-d2dq php-apache-5f657688bc-pxbw8

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-zsj99

Log output

INFO -- moving: php-apache-5f657688bc-h6fkb to gke-demo-cluster-1-default-pool-6f471531-d2dq

INFO -- pod php-apache-5f657688bc-h6fkb is deleted

INFO -- Movement succeeded

79

80 test output

Final state

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

php-apache 4 4 4 4 12d

NODE POD

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-mwtjl

gke-demo-cluster-1-default-pool-6f471531-d2dq php-apache-5f657688bc-pxbw8

gke-demo-cluster-1-default-pool-6f471531-d2dq php-apache-5f657688bc-vg87c

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-zsj99

b.3 remove pod

Initial state

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

php-apache 5 5 5 5 12d

NODE POD

gke-demo-cluster-1-default-pool-6f471531-d2dq php-apache-5f657688bc-bmtcb

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-h6fkb

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-mwtjl

gke-demo-cluster-1-default-pool-6f471531-d2dq php-apache-5f657688bc-pxbw8

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-zsj99

Log output

INFO -- Deleting pod: php-apache-5f657688bc-bmtcb

INFO -- Deletion pod: php-apache-5f657688bc-bmtcb successful

Final state

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

php-apache 4 4 4 4 12d

NODE POD

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-h6fkb

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-mwtjl

gke-demo-cluster-1-default-pool-6f471531-d2dq php-apache-5f657688bc-pxbw8

gke-demo-cluster-1-default-pool-6f471531-83rr php-apache-5f657688bc-zsj99

b.4 remove node

Initial state

NAME STATUS ROLES AGE VERSION

gke-demo-cluster-1-default-pool-6f471531-1sq8 Ready <none> 4m22s v1.12.8-gke.10

gke-demo-cluster-1-default-pool-6f471531-83rr Ready <none> 45m v1.12.8-gke.10

gke-demo-cluster-1-default-pool-6f471531-d2dq Ready <none> 45m v1.12.8-gke.10

Log output

INFO -- Deleting node: gke-demo-cluster-1-default-pool-6f471531-1sq8

INFO -- Deletion successful, node: gke-demo-cluster-1-default-pool-6f471531-1sq8

B.4 remove node 81

Final state

NAME STATUS ROLES AGE VERSION

gke-demo-cluster-1-default-pool-6f471531-83rr Ready <none> 48m v1.12.8-gke.10

gke-demo-cluster-1-default-pool-6f471531-d2dq Ready <none> 48m v1.12.8-gke.10

C
E VA L UAT I O N P L O T S

c.1 phase 3 : pattern 1

Figure C.1: Cost with node removal pattern 1

83

84 evaluation plots

Figure C.2: Cost without node removal pattern 1

Figure C.3: Cost simulated node removal pattern 1

C.1 phase 3 : pattern 1 85

Figure C.4: Latency with node removal pattern 1

Figure C.5: Latency without node removal pattern 1

86 evaluation plots

c.2 phase 3 : pattern 2

Figure C.6: Cost with node removal pattern 2

Figure C.7: Cost without node removal pattern 2

C.2 phase 3 : pattern 2 87

Figure C.8: Cost simulated node removal pattern 2

Figure C.9: Latency with node removal pattern 2

88 evaluation plots

Figure C.10: Latency without node removal pattern 2

c.3 phase 3 : pattern 3

Figure C.11: Cost with node removal pattern 3

C.3 phase 3 : pattern 3 89

Figure C.12: Cost without node removal pattern 3

Figure C.13: Cost simulated node removal pattern 3

90 evaluation plots

Figure C.14: Latency with node removal pattern 3

Figure C.15: Latency without node removal pattern 3

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 The deployment tuner
	1.2 Document structure

	2 Background and related work
	2.1 Background
	2.1.1 Microservices
	2.1.2 Containerisation
	2.1.3 Orchestration
	2.1.4 Autoscaling
	2.1.5 MAPE-K

	2.2 Related work

	3 Architecture
	3.1 Requirements
	3.2 Design
	3.2.1 Knowledge
	3.2.2 Monitor
	3.2.3 Analyse
	3.2.4 Plan
	3.2.5 Execute
	3.2.6 Reiterating the loop

	4 Implementation and Testing
	4.1 Kubernetes cluster
	4.1.1 Autoscaler

	4.2 Local machine
	4.3 Knowledge base
	4.4 Tuner
	4.4.1 Monitor
	4.4.2 Analyse
	4.4.3 Plan
	4.4.4 Execute
	4.4.5 Running the tuner

	4.5 Testing
	4.5.1 Test application: PHP-Apache
	4.5.2 Visualisation
	4.5.3 Execute actions

	5 Evaluation
	5.1 Experimental setup
	5.1.1 Benchmark application
	5.1.2 Load generator
	5.1.3 Hardware
	5.1.4 Experiment

	5.2 Results
	5.2.1 Phase 1
	5.2.2 Phase 2: Finding the source of node addition
	5.2.3 Phase 3

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future work

	 Bibliography
	A Code listings
	A.1 Find removable node
	A.2 Node matching
	A.3 Migration set generation
	A.4 Verify migration set

	B Test output
	B.1 Add pod
	B.2 Migrate pod
	B.3 Remove pod
	B.4 Remove node

	C Evaluation plots
	C.1 Phase 3: pattern 1
	C.2 Phase 3: pattern 2
	C.3 Phase 3: pattern 3

