faculty of science
and engineering

university of
groningen

REINFORCEMENT LEARNING FOR THE GAME OF SOCCER
IN FLEXIBLE ENVIRONMENTS

Bachelor’s Project Thesis

Julian Hegeman
Yujin Kim
Supervisor: dr. Marco A. Wiering

Abstract: The soccer game is one of the most popular sport games. Even though the game
is easy to play for humans, it requires a wide range of intelligent abilities. With this lens, the
game of soccer is a very intriguing topic in Artificial Intelligence. In this research, we apply
reinforcement learning techniques, which have been successful in various games, such as Go and
Atari. Using these techniques, we focus on whether it is possible to design a system that performs
in simulations with multiple team and field sizes at an equal level as a multilayer perceptron
(MLP) based Q-learning agent that receives information from all points in a grid modeling the
game of soccer and is trained specifically on one field size. This reference player is also trained
on varying team sizes. The results illustrate that the vision grid player performs better than the
reference player on all tested setups except the one with the smallest team and field size (9 by 9
cells and 1 player per team). The vision grid player is therefore flexible regarding the size of the
field it plays in and the number of players it plays with, and able to outperform the reference
player that is only trained using a varying number of players per team. The influence of the
activation function in the hidden layer of the MLP is also researched. It is found that for this

simulation, the sigmoid activation function works best.

1 Introduction

The game of soccer is recognized as a game that
is easy to play for humans but the cognitive pro-
cesses of the game player are not as simple as what
we imagine. The players are required to have a wide
range of intelligent abilities. It is not only impor-
tant to have the ability to monitor the game con-
sistently, but also to make the best decision in dy-
namic situations. Moreover, each player should con-
sider speed, space, angles, nearby opponents, and
available teammates.

This perspective shows that the game of soccer
has a variety of different possible configurations and
a dynamic environment, that is hard to predict.
This makes the game an intriguing topic to the field
of artificial intelligence, as is shown by numerous re-
search papers such as those regarding the Robocup
soccer competition (Macalpine, Torabi, Pavse, Sig-
mon, and Stone, 2019) and other soccer simulations
(Littman, 1994). Laird also suggests that the cre-

ation of software agents, that obtain good results
in dynamic environments, provides novel insights
to the field of artificial intelligence (Laird, 2001).

In reality, the game of soccer has too many pos-
sible configurations and considerations to achieve
its goal so we will cut these down in a discrete en-
vironment in this experiment. In this discrete envi-
ronment, the action set will also be discrete.

To train the agents in the virtual game of soc-
cer, we apply reinforcement learning techniques
which have been successful in various games such as
Go (Silver, Schrittwieser, Simonyan, Antonoglou,
Huang, Guez, Hubert, Baker, Lai, Bolton, Chen,
Lillicrap, Hui, Sifre, van den Driessche, Graepel,
and Hassabis, 2017) and the Atari 2600 games
(Mnih, Kavukcuoglu, Silver, Rusu, Veness, Belle-
mare, Graves, Riedmiller, Fidjeland, Ostrovski,
Petersen, Beattie, Sadik, Antonoglou, King, Ku-
maran, Wierstra, Legg, and Hassabis, 2015). The
purpose of this experiment is to observe whether
we can design a system with a changing number

of players and size of the field which performs at
a similar level as a multilayer perceptron (MLP)-
based Q-learning agent that receives information
from all cells in a grid modeling the game of soc-
cer. For this goal, a vision grid agent was designed
(Knegt, Drugan, and Wiering, 2018). The same vi-
sion grid agent will be able to play with a variety
of team and field sizes as the size of the input to its
MLP is independent of both. This approach will en-
able us to train and test the same agents in flexible
environments which have multiple situations with
different field and team sizes.

Besides, the performance of using the rectified
linear unit (ReLU) function and of using the sig-
moid function as the activation function for the
hidden layer in the MLP.

In section 2, we provide a brief background of the
learning approaches such as Q-learning, MLPs and
vision grids. Then, we will explain the reason why
we apply these methods. In section 3, we present
a detailed state representation of our soccer game
and its experimental setup. Section 4 demonstrates
our results and the paper is concluded in section 5.

2 Reinforcement Learning

Reinforcement learning is a machine learning
method that allows agents to learn to optimize their
behavior through its interaction with an environ-
ment automatically (Sutton and Barto, 2015).

The agent initiates from an unknowing state in
which it doesn’t have any background knowledge
about its environment. After that, it learns the way
to choose and execute the optimal action by receiv-
ing rewards from the interaction with its environ-
ment over many time steps. The main purpose of
the agent is to maximize the cumulative discounted
reward sum which is also called the return.

T—t
Ry =Y 'y =i+ 7R
i=0

Where v € [0,1] is the discount factor and T is
the Time, at which the current episode ends.

At every time step t, the agent updates its beliefs
using its observation of the reward and state that
follows choosing a particular action in a particular
state. It will also pick a new action based on the
current state.

(2.1)

2.1 Q-learning

One approach for learning the optimal policy is
to apply Q-learning (Watkins, 1989). Q-learning is
based on the use of Q-values. A Q-value is the ex-
pected sum of rewards the player expects to receive
after choosing an action a in a state s. Therefore,
each combination of an action and a state avail-
able in the game has an associated Q-value for the
player.

Q-learning agents use a function to obtain their
estimated Q-value from the state and action under
consideration. This function is referred to as the Q-
function and often written as Q(s, a), where s is a
state, a is an action and Q(s,a) is the estimated
Q-value for that state-action combination.

Through exposure to the world and the results
of its actions, the estimates of the future sum of
rewards will move closer to the actual average sum
of rewards an agent will receive for that state-action
combination.

This is done by generating a new Q-value esti-
mate at the next time the player was prompted to
act again, using the reward it received directly after
performing its action and the sum of future accu-
mulated rewards the agent is expected to receive
from being in the new state. This sum of rewards
is most often taken to be the maximum of the Q-
values for all actions available in that state.

Using the maximum Q-value makes this ap-
proach off-policy as the action is not only decided
by finding the action with the maximum Q-value
but often also uses an exploration technique to im-
prove learning. There are other ways to obtain the
new Q-value estimate, such as State-action-reward-
state-action (SARSA) (Singh, Jaakkola, Littman,
and Szepesvari, 2000). However, this was not elab-
orated upon in this paper.

This new estimate is found using the formula in
equation 2.2, where e is the new estimate, r;_1 is
the reward received after the previous action, s; is
the current state and a is used to iterate over all
the actions.

e =ri—1 +ymaxQ(s;,a) (22)
a
The Q-function is then updated to move the es-
timate it generates, closer to this new estimate.

There exist multiple Q-functions, that have spe-
cific ways of generating and updating their Q-value

estimates.

One of these Q-functions is based on a lookup
table in which for each state-action combination,
the Q-value estimates are stored separately. To find
a Q-value - the expected sum of future rewards - for
a given state and action, the Q-function just looks
up the value in the corresponding cell of the table.
The update works similarly.

After updating, the updated Q-value is a
weighted average of the new Q-value estimate that
is generated based on the received reward and
current state, and the previous Q-value, that was
stored in the table.

The weights of the weighted average are based
on the provided learning rate. This weighted aver-
age is shown in equation 2, where « is the learn-
ing rate, e is the generated Q-value estimate, the
Q(st—1,a1—1) on the right side is the previous Q-
value and the Q(s;—1,a:—1) on the left side is the
updated Q-value.

Q(st—1,at-1) + (1—a)*Q(st—1, a1—1)+axe (2.3)

Another type of Q-function is based on a neu-
ral network. It does not store the Q-values for each
state-faction combination explicitly. Rather, it uses
its neural network to generate a Q-value for each
action by providing a number of values, that repre-
sent the state the agent is in, as input. To update
its estimates, it finds the output neuron that corre-
sponds to the action it chose and sets the target of
that neuron to the new estimate. It then performs
backward propagation to update the network, such
that the output moves closer to this target. Since a
new estimate can only be found for the action that
was chosen, the Q-function does not have new tar-
gets for the other output neurons. Therefore, these
targets are simply set to the value that neurons put
out.

In this research, the latter approach is used as
the number of states possible in the simulation is
assumed to be too large for the former to learn in
a reasonable amount of time. The neural network
used is an MLP, a relatively simple fully connected
neural network.

If the input size is big and the input values
are spatially related, it has been shown that a Q-
function based on a convolutional neural network
might perform better (Mnih et al., 2015). However,
this was not explored in this research.

2.2 Multilayer Perceptron (MLP)

As discussed earlier tabular Q-learning stores a Q-
value for each state-action combination. The large
state space requires this approach to need more
memory then is feasible. Moreover, there is such
a variety of states that all need to be visited mul-
tiple times to obtain correct Q-values that learning
would take too much time. To solve this problem,
we apply an MLP to Q-learning which means that
state-action combinations do not have individually
stored Q-values.

An MLP is a feed-forward neural network, so the
Q-value estimates are approximated by the network
when demanded through giving a state representa-
tion as input and yielding Q-values for all actions
as output.

The detailed procedure is the following. Firstly,
it runs the forward propagation using the represen-
tation of the state as input. Then, the targets are
set for the backward propagation. Because all Q-
values are approximated at the same time, targets
have to be provided for each action. However, since
we only want to update one estimate, the targets
are set equal to estimates that were just produced
for all actions except the action that has to be up-
dated. This target is set to the newly founded Q-
value estimate. After that, the backward propaga-
tion is used to move the estimate of the state-action
combination closer to the newly found estimate.

2.3 Function Approximator
2.3.1 Activation Function

Each neuron in the neural network receives input
from the neurons in the previous layer and outputs
a value. This is output is used as input to the neu-
rons in the next layer if the neuron is hidden, or as
a final resultant value of the network if the neuron
is part of the output layer.

The sum of the values coming in is not necessar-
ily equal to the value the neuron puts out. Each
neuron uses a function to derive the value to put
out from the input value. This function is called the
activation function.

In this research, three different activation func-
tions are used. In the first, the output value is equal
to the input value. This type of activation function
is known as the linear unit activation function. It is
used in the output layer so as not to limit the range

of the output and therefore the range of the esti-
mates. This function is restricted in its complexity
so that it has limited power to learn complicated
functional mappings from the input.

The hidden neurons, on the other hand, used
non-linear activation layers as it makes it possible
for the network to learn and perform more complex
tasks than linear regression.

Two different kinds of non-linear activation func-
tions were tested: ReLU and sigmoid.

Firstly, ReLU, short for rectified linear unit func-
tion, is the most successful and widely-used activa-
tion function (Prajit, Barret, and Quoc, 2017). The
range of the ReLLU exists between zero and positive
infinity. It is equal to the linear unit function for
values greater than or equal to zero, while it out-
puts zero for all input values lower than zero. The
ReLU activation function can increase the learning
speed of the networks by avoiding the vanishing
gradient problem which leads the updates by the
stochastic gradient to be very small (Hidenori and
Takio, 2017).

The other one is the sigmoid function. This func-
tion transforms the weighted sum of inputs for a
hidden neuron to a value between 0 and 1.

2.3.2 Reward Function

Reinforcement learning (RL) agents alter their be-
havior based on the rewards they obtain. The re-
ward function indicates the amount of reward the
agent will receive for every possible state. While
designing an RL system, a reward function can be
chosen. Since the agents alter their behavior to op-
timize the rewards they will obtain, the choice can
be made based on the desired behavior. In this re-
search, the agents are desired, like in the real game,
to win the matches they play. This means that they
have to maximize the number of goals their team
scores and minimize the amount of goals the op-
posing team scores.

The used rewards for the experiment are shown
in table 2.1.

The value of the rewards has been decided to
distinguish between positive and negative actions
clearly. If the type of the goal is an own goal or
the goal is made by the opposite team, the pun-
ishing reward -1 is given. Otherwise, if the player
itself made the goal or the player’s team scored the
goal, the positive reward is provided to promote

the same active behavior for maximizing the total
reward intake.

2.4 Vision Grid

The input the vision grid receives is derived from
an area of constant size around the player, which
makes the input size independent of the number of
players and the size of the field.

The soccer pitch considered in this research is
built up using a grid. This means that all possible
locations are discrete points on the pitch. These
discrete points will be referred to as cells. The cells
in the field can be occupied by four different types
of units: agents, goals, walls, and the ball. For the
MLP reinforcement learning player, the data about
all the cells of the field are given to the player.
This allows the agents to be able to learn for even
complicated situations of the world and leads to
finding the optimal action.

However, the size of the input to the player is de-
pendent on the number of cells in the field. There-
fore, we have to find a different approach if we want
to design a player that performs well independent of
the size of the field. One of the approaches we con-
sidered was the use of a vision grid. The vision grid
is based on the idea that a player rarely needs to
know the exact state of all possible locations in the
field and that the region directly surrounding the
agent includes most of the data that is important
in making good decisions. Therefore, a vision grid
only uses the data of a fixed number of cells sur-
rounding the agent. This decreases the number of
input neurons needed so the learning process will be
faster. Importantly, the input size is also indepen-
dent of both the size of and the number of agents
on the field.

In this research, the vision grid used in Knegt’s
research (Knegt et al., 2018) was extended. Usu-
ally, each cell in the vision grid corresponds to one
cell of the environment. This leads to the trade-off

Table 2.1: Reward function

Event Reward
Goal from player itself +1
Goal from same team player | +1
Own goal -1

Goal from opposite team -1

between having a small amount of input if you use
a small vision grid, and being able to ’see’ more of
the environment if you use a large vision grid.

This approach was altered to make a system that
can have a small input size, and see more of the
environment. To do this, it was decided that the
player does not have to know data for each cell
that is further away, and that an aggregated sum-
mary of a group of cells would suffice. For example,
it suffices to know that the ball is around 10 cells
to left of the agent. Knowing whether it is actually
10 or maybe 11 or 12 cells is not expected to in-
fluence the behavior of the player in a significant
way. Therefore, it is chosen to use a vision grid sys-
tem that groups and aggregates data for the cells
around the agent.

This was implemented by having a variable num-
ber of layers with variable sizes. The center cell of
the vision grid always has a size of 1 by 1 and con-
tains the current agent. The layers of the vision grid
are present around this center cell.

L

Figure 2.1: An example of a vision grid system
with layers of different size. The inner has a size
of 1, the outer a size of 3.

The layer sizes are illustrated in figure 2.1. In
this figure, you can see the center cell containing
the agent. The shown vision grid has two layers
with two different layers: the inner layer has a size
of 1 and the outer a size of 3.

The vision grids are always created with this kind
of shape. To make sure that each cell has one cell
adjacent to it on each side, the vision grid cell do
not have to be square. For example, in the top row
of the vision grid in the figure, the cells are of size 3
by 3, 1 by 3, 1 by 3, 1 by 3, and 3 by 3 respectively.
This approach also makes changing the layer sizes
easier, as it guarantees that the cells are properly
aligned.

2.5 Exploration Methods

If the agent always chooses the action with the
maximum Q-value from the state, it cannot ex-
plore the results of other possible actions in the
state. This will cause the agent not to learn the
optimal Q-function. Therefore, exploration actions
are necessary to be able to learn how to choose the
optimal Q-values and policy. However, it is also im-
portant to exploit its current knowledge stored in
its learned Q-values to receive the maximized re-
wards. This results in the exploration-exploitation
dilemma (Thrun, 1992).

Although there are many different exploration
methods, two undirected strategies were considered
for this research: e-greedy and softmax.

2.5.1 e-greedy

e-greedy is one of the most used exploration meth-
ods. The parameter e stands for the percentage of
actions that are randomly chosen. It exists in the
range between 0 and 1, where 0 means that only the
exploitation method is used and 1 is that only the
exploration method is used. The agent selects the
action which has the highest Q-value with probabil-
ity 1 — ¢, and a random action is chosen otherwise.

2.5.2 Softmax

One limitation of e-greedy is that it is equally pos-
sible to choose the worst action as the action for
exploration, as it is to choose the second-best ac-
tion. It is because all exploration actions are ran-
domly chosen in the e-greedy method. The softmax
method can solve this problem by using the Boltz-
mann distribution to assign a probability to all ac-
tions based on their relative Q-values. Through as-
signing the probability to the actions, the softmax

exploration chooses actions with higher Q-values
with higher probability.

3 Experiments

©® tutorial

Score: 2 -2

Figure 3.1: A visualized example of the simula-
tion environment. The white circle indicates the
ball, the blue circles indicate team 1 and the red
circles indicate team 2. The white outline is the
border of the field and the black bars are the
goals

3.1 Simulation Environment

The model used for this paper was a two-
dimensional representation of the game of soccer.
This model has a grid structure. The use of this
model was chosen to reduce the complexity of the
game.

Each cell in this grid structure can generally con-
tain one of the following elements: an agent, a ball,
a part of a wall, or a part of a goal. Only at the lo-
cations of the goals, these elements can overlap. At
the goals, the wall is still present as that made the
creation of the program easier. It should not have
a detrimental influence on the course of the game
though as the program will first test whether the
new location of the ball is a goal before it checks
whether it is a wall. It does, however, mean that
agents can not move into the goals.

Within this model, each player controls one
agent. A player can choose from 18 actions each

time it is prompted to take action. It can choose to
move to any of the eight cells that surround it, or
to kick the ball or do nothing at all. There are nine
actions for kicking the ball. The player can choose
to have its agent kick the ball at one of three differ-
ent speeds, and in one of three different directions.
To kick the ball, the agent has to be in a cell sur-
rounding the ball. If the player chooses to kick the
ball when the ball is not close enough, the ball will
not move and the effect of the kicking action is the
same as doing nothing at all.

To move the ball, the agents can push the ball, by
moving into the cell of the ball. The ball will then
be displaced by one cell in the same direction as
the agent moved. The program will check whether
the ball is allowed to move into the new cell. If the
location is already occupied by a player or a wall
and not by a goal, the ball will stay in its original
cell, and the pushing agent will return to its original
cell.

Another way to get the ball to move is to kick it.
The player can choose three different directions for
the kick and these depend on the location of the
ball relative to the agent. The available directions
are always the direction to the ball from the point
of view of the agent and the directions to the ’left’
and right’ of it.

If we assume a grid that has compass directions,
an agent can, for example, kick a ball that is to
the northwest of it in three directions: the same
direction as the ball is from the point of view of
the ball, northwest; the direction to the left of that,
west; and the direction to the right of that, north.

For each of these directions, the player has the
choice between three speeds: 1, 2, and 3. This speed
indicates the number of cells the ball is kicked. The
ball will then try to move this distance before the
next player is prompted to choose an action.

The movement will be fulfilled in steps of one
cell. After each step, the program checks whether
the ball has collided with another object similar to
what happens after pushing the ball. The difference
between this and pushing the ball is that here the
ball can keep moving after hitting an object. When
the ball hits a wall, this results in a bounce. The
bounce is achieved by reversing the direction along
the x or y-axis depending on the wall that it hit.
If the ball hits a corner, both direction components
are reversed.

When the ball enters one of the goals, the team

that has to score in that goal receives a point and
the field is reset.

The simulation has two possible options for gen-
erating an initial state: one with the agents of each
team lined up along the wall with their goal, and
one where the agents of both teams are placed ran-
domly in free cells in the field. In both cases, the
ball is placed in the center of the field. The chosen
method is used at the start of the match and when
resetting the field.

3.2 State Representation

Based on the units present on the field and the fact
that both the agents and goals can be either of the
own team, or the opponent team, each player has
six different relevant types of units. These are the
agents of its own team, the agents of its opponent
team, the ball, the walls, its own goal, and the goal
of the opponent. Therefore, each player will gener-
ally be provided with information on each of these
units.

In this paper, two types of reinforcement learning
players are considered. They both use an MLP as
their Q-function, but differ in the input they pro-
vide to the MLP as the state representation. The
first gives information on the state of all cells in
the field to its MLP. It provides binary data for the
unit types to indicate whether a unit is present at
that cell. Therefore, the agent would receive sev-
eral binary values per cell in the field. As may be
clear, this means that the size of the input depends
on the number of cells in the field. Therefore, this
approach is fundamentally unable to work on dif-
ferent field sizes as we are trying to research in this
paper. It is believed that a player that has all cell
data about the world available to it, should be able
to perform well on the field size that it is trained on.
Because of this, it was decided that this approach
is a good reference to which we can compare our
methods that work independent of the field and
team sizes.

The second type is based on a vision grid. It rec-
ognizes that giving information about all the indi-
vidual cells limits the generalizability of the player.
It is based on the vision grid used in Shantia’s
research (Shantia, Begue, and Wiering, 2011) dis-
cussed earlier in the paper. It centers the perception
of the player around its own agent on the field and
only looks at a set amount of cells around it. This

means that the number of cells it looks at is inde-
pendent of the number of players and the size of
the field. Therefore, a single one of these players
can play on any size of the field.

The number of input values for the vision grid
player will be lower than the number of cells in the
field it works on with high probability. This means
that, with a standard vision grid, in which the cells
correspond one to one to the cells of the field, a
player can only receive information about a very
limited number of cells around it. This would limit
the effectiveness of the system severely. When the
ball is on the opposite side of the field, for exam-
ple, the player has no clue where the ball might
be. It is hypothesized that this is detrimental to
the performance of the player. To counter this, we
adapted the vision grid system such that the layers
are of variable size. This allows us to make the fi-
nal layer big enough to include the rest of the field.
Currently, the size of the final layer is static and
set to be big enough for the vision grid to cover
the biggest field we use, from any location on that
field. Therefore the player will always have an idea
in which direction the ball, other players, walls and
goals are, even though they do not exactly know in
what location they are.

Assuming that the field size is constant, the num-
ber of possible states can be approximated. An ex-
ample can be seen in table 3.1. Similar tables for
the field sizes of 15 by 15 and 25 by 25 are shown
in appendix A.

To limit the amount of data in the grid, it was
assumed that the information about the walls was
irrelevant, since they will always be in the same
location. To reduce the number of inputs further,
we made the size of the goals static, through which
the goal cells also remain in the same location. This
means that three of the six values per cell are ir-
relevant and can be removed. This leads to table
3.2.

Table 3.1: An example of the amount of available
states for a field of 9 by 9 cells

Width | Height | No. players | No. states

9 9 1 479,808

9 9 2 996,664,704

9 9 5 5.1291835e+18
9 9 7 9.1832587e+24

The vision grid system can be set up to run with
various layers. The number of input values depends
on the number of layers the vision grid is set up
with, and the number of values per cell in this grid.
To find the number of input neurons based on these
values, the following formula 3.1 can be used:

i=2*1+1)*%v (3.1)
where 7 is the number of input values to the neural
network, [is the number of layers in the vision grid,
and v is the number of values per cell in the vision
grid.

Each player needs six values per cell to get a
complete picture of the world around it. This leads
to table 3.3.

The base player is helped by the fact that most of
its input is zero at any moment. The number of ones
in the input is always equal to the total number of
agents on the field plus the number of balls on the
field. In our trials, we found that this allows the
input size to be bigger without compromising the
performance of the MLP. The vision grid, on the
other hand, represents the walls and goals as well,
which can be spread over multiple different cells
and therefore this increases the number of non-zero
input values significantly.

As an extension to this research, we propose that
the final layer of the vision grid can be made vari-
able and be made to scale with the size of the field.

Table 3.2: The input size for the MLP players
based on the size of the field

Width | Height | Values per cell | Input size
9 9 3 243

15 15 3 675

25 25 3 1575

Table 3.3: The relation between the number of
layers and the input size for the vision grid play-
ers

Number of layers | input size
1 54

2 150

3 296

4 486

3.3 Experimental Setup

Each player will be trained from the ground up to
play against random agents in ten separate runs.
In each run, the player will play 15,000 training
matches.

At the start of each training match, the size of the
field and the teams are randomly generated. The
field size is generated from an equal distribution
over the inclusive range of 9 to 25. The team size
is generated from an equal distribution over the
inclusive range of 1 to 7. The team size is varied
for all players during training, while the field size
is only varied for the vision grid players.

The matches consist of 10,000 steps each. At each
step, the program cycles through the players to re-
quest them to choose an action. The players are
prompted in the same order at each step. The ac-
tions are executed directly after the player chooses
it, which leads to an asynchronous update step. In
the training matches, the agents are placed in ran-
dom locations separate from each other and the
ball, when the field is initialized or reset.

After the training matches, the player is tested
through a number of test matches. The field sizes
used in testing are 9 by 9, 15 by 15, and 25 by 25.
The base players are tested on only one field size,
while the vision grid players are tested on each of
the available test sizes. This is because the base
players are trained on the three field sizes sepa-
rately, while the vision grid players learn to play
with a varying field size.

For each of the tested field sizes, the player will be
tested with four team sizes: 1, 2, 5, and 7. For each
combination of a field and a team size, the player
will be tested using 100 test matches per run. In
the test matches, the agents are placed along the
wall that has the goal they have to defend, when
the field is initialized or reset.

3.3.1 Players

In this research, six types of players are tested.
These are split into three groups each of which is
tested using the ReLLU activation function and the
sigmoid activation function. The first of these is the
base player that receives data from all cells in the
field. The other two are vision grid players. These
two differ in the layer sizes they use. One has the
layer sizes (1, 1). The other has the layer sizes (1,

30). This means that the latter player is always able
to receive information about all the cells in the field
albeit in an aggregated way.

Because the base player has to be trained sepa-
rately on each field size, the total number of differ-
ent training runs is ten.

As a summary, the following five settings are
trained and tested using the ReLLU activation func-
tion and the sigmoid activation function.

1. Base player trained and tested on a field of 9
by 9 cells.

2. Base player trained and tested on a field of 15
by 15 cells.

3. Base player trained and tested on a field of 25
by 25 cells.

4. Vision grid trained on varying field sizes be-
tween 6 by 6 and 25 by 25 with layer sizes 1,
1.

5. Vision grid trained on varying field sizes be-
tween 6 by 6 and 25 by 25 with layer sizes 1,
30.

Since the vision grid players run more test
matches after training than the base players, the
total amount of test matches per combination of
field size, team size, and type of player is always
1,000.

Apart from this input representation, the players
are set up in the same way. They use a fully con-
nected MLP as their Q-function. This MLP is set
up with a learning rate of 0.01 and its weights are
initiated randomly in the range of -0.01 and 0.01.
It has one hidden layer consisting of 50 hidden neu-
rons. The number of input neurons depends on the
used input representation, while the number of out-
put neurons is 18, the number of available actions.
The hidden layer uses the activation function cor-
responding to the type being tested, ReLU or sig-
moid, and the output layer always uses the linear
unit function as its activation function.

Besides the MLP, the players use the same dis-
count factor of 0.99. They also use the same ex-
ploration function. In this research, the e-greedy
exploration method is used. Softmax was also con-
sidered in our trials, but was not found to perform
at the same level. During the training phase, the
value of €, was linearly decreased. The initial value

of € is 0.5. It will then decrease to a value of 0,
which occurs first after 13 million training steps,
which is two million training steps before the end.
This means that € is linearly decreased during the
first 13,000 matches and remains at 0 for the last
2,000 matches. In these last matches, the player
will not explore anymore and will only use the best
actions it finds.

There is one reward and one punishment. If a
player makes a goal, then each player in its team
will receive a reward of 41, while each player in
the opponent team receives a punishment of -1.
There are no rewards or punishments attached to
any other action, such as pushing or kicking the
ball.

The events that happened in the simulation are
stored in a queue. There are only events related to
goals in the queue for this simulation. The events
can be elaborated by adding options such as push-
ing or kicking the ball, but that is not explored in
this research.

The players learn in episodes to ground their
Q-values, such that the learned Q-values should
not exceed the reward obtained from scoring. An
episode ends either when the match ends, or when
a goal is scored. After an episode, the locations
of the ball and players are reset, and any events,
such as goals that occurred are removed from their
queue. To make sure that each player has updated
their Q-function using all events in the episode, the
program will cycle through the players and update
their Q-functions when the episode ends. If this is
not done, all players that did not score the goal
themselves would not receive a reward or punish-
ment after an episode ended because a goal had
been scored. At the last update step of the episode,
the next state is not considered. Normally, the es-
timated value of the next state is multiplied with
the discount factor and added to the reward, to get
a target QQ-value estimate to train the MLP with.
However, for this last update step, only the direct
reward is used as the target, with which the MLP
is trained. This direct reward is simply the reward
the player received between the last action it chose
and the end of the episode.

Each player in the team of reinforcement learn-
ing players uses the same Q-function and the same
reward function. This means that the players learn
quicker, as knowledge obtained by one player is di-
rectly shared with all other agents.

4 Results

The results of this research are split into two sec-
tions: the goal difference during training and the
goal difference during the final test sets.

The performance improvement during this phase
is shown in figures 4.1 and 4.2. To improve the leg-
ibility of the graphs, the data were grouped into
blocks of 100 matches for each of the ten differ-
ent training sessions per setting. Therefore, each
data point shown in the graphs is the mean of 1,000
training matches: 100 from each of the ten training
sessions.

To improve readability, these variations are con-
densed into two tables: tables 4.1 and 4.2.

Table 4.1 shows the summarized performance
of players using the ReLU and sigmoid activation
function. For this table, the data split on the num-
ber of players are grouped.

Table 4.2 shows the summarized performance of
players in configurations with different team sizes.
For this table, the data split on the type activation
function are grouped.

The remarkable points of table 4.1 are the fol-
lowing. Firstly, the size of the field corresponds to
the performance of the player. When the field size
is smaller, the players can make more goals. More-
over, the vision grid (1, 1) demonstrates the best
performance on each of the sizes of the fields.

Table 4.2 also shows some remarkable points.
Firstly, the number of players per team influences
the performance of the player. The reference play-
ers perform worse with bigger teams, while both
types of vision grid player perform better with big-
ger team sizes. For these types, 7 players per team
illustrates the best performance in most cases.

5 Conclusions

In this paper, two elements are researched with re-
gards to the used soccer simulation. One is whether
it is possible to make an RL agent that can learn
to play with different field and player sizes and per-
forms on an equal level or better than an MLP
agent that receives input from all the cells of a field.
The other is whether the use of the sigmoid function
as the activation function for the hidden neurons
in the MLP instead of ReLU, influences the perfor-
mance of the player. The results illustrate that the

vision grid approach with the sigmoid activation
function shows the best performance. There are two
benefits of using this approach. First of all, the use
of the vision grid can overcome the problems which
often occur by applying reinforcement learning in
large state spaces. For example, it decreases mem-
ory usage and the time complexity so that it learns
faster. Moreover, it not only increases the training
speed, but also shows better performance. Since it
reduces the number of inputs compared to using a
full grid, the speed of learning becomes faster.

5.1 Discussion

As mentioned in the conclusion, after 150,000
games of training across all methods, the vision
grid (1, 1) using the sigmoid activation function
has been found to perform the best.

Several influential factors lead to a higher
amount of scoring: the number of players, field size,
and activation function. A smaller field size with
more players which use the sigmoid activation func-
tion has shown better results in this experiment.
However, there are several interesting possible fu-
ture research topics.

The most surprising element of the results is that
the vision grid with two layers of a size of 1 per-
formed better than the vision grid player with an
inner layer with size 1, and an outer layer with
size 30. It was expected that the latter would per-
form better than the former, because it allowed the
player to ’see’ the entire field. Therefore, this player
would be able to know it had to move in a certain
direction to find the ball, whereas the former player
would have no clue, if the ball is further than two
cells away.

It might be that the input for the latter player
is more complex, as the values are more often non-
zero compared to the former player. A more com-
plex input can mean that it takes longer to learn the
desired behavior and that it might be harder even
to get to a satisfactory result. Even though the cur-
rent results show barely any improvements in the
last stages, it is interesting to see whether training
the players on more matches might provide an im-
provement that sees the latter vision grid perform
better than the former vision grid.

Furthermore, the performance of the vision grid
might be improved by choosing a different number
of layers, with other layer sizes. Besides this, the

10

500

400

300

200

Performance

100

-100

Training performance with RelLU

vision_grid_results 1 1

vision_grid_results

| | 1
——mlp_9 9 results
=——=mlp_25_25 results
' 1 =—=mlp_15 15 results
50 99 148
Game played (x 1074)

Figure 4.1: The performance score for training with ReLU over 1.5 million training games

900

800

700

600

500

400

Performance

300

200

100

-100

Training performance with Sigmoid

vision_grid_sigmoid_results 1 1

vision_grid_sigmoid_results

——=mlp_9 9 sigmoid_results

"ul‘, ——mlp_25_25 sigmoid_results

——mlp_15 15 sigmoid results

50 99

148

Game played (x 10/4)

Figure 4.2: The performance score for training with Sigmoid over 1.5 million training games

11

Table 4.1: The table for the test result with standard error

Activation function

Type Field | ReLU (SE) Sigmoid Total

MLP 9x9 0.24 0.24 151.5 6.8 75.9 3.5
VG 1-1 9x9 103.1 2.6 331.0 6.5 | 217.0 3.7
VG 1-30 9x9 53.1 2.0 128.8 2.4 90.9 1.6
MLP 15 x 15 -1.0 0.07 -0.9 0.07 -0.9 0.05
VG 1-1 15x 15 4.2 0.2 60.6 2.04 32.4 1.1
VG 1-30 15x 15 7.0 0.6 3.1 0.13 5.0 0.3
MLP 25 x 25 -0.07 0.02 0.12 0.02 0.03 0.01
VG 1-1 25 x 25 0.01 0.02 9.8 0.8 4.9 0.4
VG 1-30 25x25| -0.05 0.02 0.10 0.02 | 0.03 0.013
Total 18.50 0.41 76.01 1.24 | 47.26 1.48

Table 4.2: The table for the test result based on the team size with standard error

Number of players per team

Type Field 1 (SE) 2 5 7 Total

MLP 9x9 199.3 13.3 33.1 2.4 26.7 0.8 44.4 14 75.9 3.5
VG 1-1 9x9 76.6 6.9 | 159.3 81]297.1 76| 3352 54| 217.0 3.7
VG130 9x9 -0.6 02| 36.3 15| 101.1 26| 2268 42| 909 1.6
MLP 15x 15 | -0.07 0.05 -0.5 0.07 -1.3 0.1 -1.9 0.14 -0.9 0.05
VG1-1 15x15 3.4 02| 133 09| 538 30| 593 27| 324 1.1
VG130 15x 15 -0.1 0.05 | -0.04 0.07 45 04] 158 1.0 50 0.3
MLP 25x25| 0.01 0.01]-001 0.02| 0.08 0.03| 0.02 0.03| 0.03 0.01
VG1-1 25x25| 0.04 0.01| 014 0.02| 105 1.2 9.1 1.0 49 04
VG 1-30 25x25| -0.01 0.01| 0.02 0.02| 0.05 0.03| 0.04 0.04| 0.03 0.01
Total 30.95 1.73 | 26.84 1.03 | 54.71 1.18 | 76.52 1.20 | 47.26 1.48

outside layer can be made to be variable in size,
such that the vision grid always includes all cells of
the field. This is opposed to the hard limit of 30,
which limited the field sizes that could be tried out.

Another interesting topic to consider is the use of
different roles for the players in a team. The perfor-
mance could be better, if certain players are tasked
with defending and others with attacking, instead
of all being trained to perform similar behavior in
similar environments. We could see attacking play-
ers being more tended to move towards the op-
ponent’s goal, while the defending players tend to
track back towards their own goal more. Real-life
soccer players also get instructions on their role to
get them to perform better as a team, which might
also hold true in this case. This leads to the next
point of interest: is it possible to add a coaching
figure that allows instructions to be given to play-
ers? Would it be able to select approaches based

on the beliefs it holds about the way the opponent
will play? Is it possible to have certain players that
can perform better in certain areas than others, like
dedicated strikers are often better at shooting than
their defending counterparts?

These elements of realism could be hard to real-
ize. However, some aspects can be altered to make
it closer to real life and allow for interesting re-
sults. The players can have the option, for exam-
ple, to run at varying speeds, and there might be
more randomness to kicking the ball, which simu-
lates the inaccuracies that a normal soccer player
faces. The ball can move for multiple time steps.
If the information about the current speed is not
included in the input representation of the player,
it is no longer a Markovian process. This might be
solved by using a Partially Observable Markov De-
cision Process(POMDP), or providing an input for
the speed of the ball.

12

Another approach to make the simulation more
realistic, is moving away from the current two-
dimensional representation in favor of a three-
dimensional one. The players, in this case, could
choose a direction and speed of the ball by speci-
fying the values of a three-dimensional movement
vector, or two angles and speed. An example of a 3D
soccer simulation can be found in (Macalpine et al.,
2019). The simulation itself will already be a bit
harder to make than the current two-dimensional
simulation, and it will be harder for an RL player
to learn to play it, but it would certainly lead to
some interesting examples.

A further interesting research topic is to apply
a convolutional neural network (CNN). Convolu-
tional neural networks are known to save memory
and decrease the complexity. Moreover, they are
suited for the cases in which it is needed to ex-
tract the relevant information at a low computa-
tional cost, compared to a fully connected MLP.
Although we apply the vision grid approach in our
case, it would be great to compare this approach
with vision grids.

The next possible future research is perform-
ing this research with more activation functions,
and with various exploration approaches. Accord-
ing to the research (Knegt et al., 2018), there are
some benefits to using the ELU activation func-
tion over the sigmoid function. Especially, the ELU
function performs much better than the sigmoid
function, when receiving less noisy updates due to
having more deterministic opponents. Furthermore,

References

I. Hidenori and K Takio. Improvement of learning
for CNN with ReLLU activation by sparse regular-
ization. International Joint Conference on Neu-
ral Networks IEEE Anchorage, pages 2684—2691,
2017.

S. Knegt, M. Drugan, and M. Wiering. Oppo-
nent modelling in the game of Tron using rein-
forcement learning. In International Conference
on Agents and Articial Intelligence (ICAART),
pages 29-40, 2018.

J. Kormelink, M. Drugan, and M. Wiering. Ex-
ploration methods for connectionist Q-Learning
in Bomberman. In International Conference
on Agents and Articial Intelligence (ICAART),
2018.

J. E. Laird. Using a computer game to develop
advanced Al. Computer, 34 (7):70-75, 2001.

Michael L. Littman. Markov games as a frame-
work for multi-agent reinforcement learning. The
Eleventh International Conference on Interna-
tional Conference on Machine Learning (ICML),
11:157-163, 1994.

Patrick Macalpine, Faraz Torabi, Brahma Pavse,
John Sigmon, and Peter Stone. UT Austin Villa:
RoboCup 2018 3D Simulation League Champi-
ons, pages 462-475. 08 2019. ISBN 978-3-030-
27543-3. doi: 10.1007/978-3-030-27544-038.

another research argues that the Max-BoltzmannVolodymyr Mnih, Koray Kavukcuoglu, David Silver,

exploration approach performs better than the e-
greedy approach (Kormelink, Drugan, and Wier-
ing, 2018).

The last interesting future research is to com-
pare the MLP players which learn a generalization
to a third class of players: the MLP players that
are trained specifically on one field size and one
team size. It is expected that this improves the per-
formance in the world that the player is designed

Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidje-
land, Georg Ostrovski, Stig Petersen, Charles Beat-
tie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg,
and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):
529-533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

for. However, this is not included in this research.R = prajit, Z. Barret, and V. L. Quoc. Searching for

Therefore, it might be interesting to see if the MLP
player, that performed rather poorly with a bigger

activation functions. arXiv preprint, 2017.

field and team sizes, could perform better if it doesA. Shantia, E. Begue, and M. Wiering. Connection-

not have to generalize for situations with a different
number of players.

ist reinforcement learning for intelligent unit micro-
management in Starcraft. The 2011 International

13

Joint Conference on Neural Networks (IJCNN),
IEEE, pages 1794-1801, 2011.

David Silver, Julian Schrittwieser, Karen Simonyan,
Toannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai,
Adrian Bolton, Yutian Chen, Timothy Lillicrap,
Fan Hui, Laurent Sifre, George van den Driess-
che, Thore Graepel, and Demis Hassabis. Mas-
tering the game of go without human knowl-
edge. Nature, 550:354—, October 2017. URL
http://dx.doi.org/10.1038/nature24270.

S. Singh, T. Jaakkola, M. Littman, and C. Szepes-
vari. Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine Learn-

ing 38(3), pages 287-308, 2000.

R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing : An Introduction. Bradford Books, 2015.

S. Thrun. Efficient exploration in reinforcement learn-
ing. Technical Report, 1992.

Christopher Watkins. Learning from delayed rewards.
01 1989.

A Appendix

Table A.1: The example of available states for a
field of 15 by 15 pixels

Width | Height | No. players | No. states
15 15 2 34,581,456
15 15 4 9.4764796e+11
15 15 10 1.6834605e+25
15 15 14 1.0108538e+34

Table A.2: The example of available states for a
field of 25 by 25 pixels

Width | Height | No. players | No. states

25 25 2 1,806,590,016
25 25 4 4.9893215e+14
25 25 10 1.0038425e+31
25 25 14 7.1452763e+41

B Division of work

We started off working together to find out what we
should do and to make the simulation environment
in which the players should run. Later, we started
working on the different agents. We split this work
into two parts. Firstly, we researched with vision
grid and the base player, to see which performs
best. We also researched the difference in perfor-
mance between using the ReLLU activation function
and the sigmoid activation function. Yujin did the
comparison between the activation functions, while
Julian compared the vision grid player with the
base player. Since Yujin had the password of the
peregrine, she trained and tested the program. For
the report, Yujin wrote the first draft of the pa-
per, after that Julian elaborated on it. We went
over the paper together afterwards to combine ev-
erything properly and iron out any mistakes that
were made.

14

