
Scalable smart building simulation

Emiel Pasman

August 22, 2019

Supervisors: M. Medema, Prof. Dr. A. Lazovik

1

Contents

1 Introduction 3

2 Related work 3
2.1 Parallelizing simulation . 4
2.2 Actors . 4
2.3 Rules . 5
2.4 Constraint programming . 5

3 Architecture 5
3.1 Synchronization . 5
3.2 Independent simulations . 6

4 Implementation 7
4.1 Sensors . 7
4.2 Actuators . 8
4.3 Evaluators . 8

5 Results 9
5.1 Number of evaluators . 10
5.2 Number of events . 12

6 Conclusion 13

7 Future work 14

2

1 Introduction

A smart building is a building in which operations are automatically controlled.
Usually, sensors are used to make intelligent decisions about these operations, in
order to ensure comfortable conditions for users with minimal energy consump-
tion. Smart buildings are becoming increasingly important due to the need
of saving energy. Buildings consume an estimated 20-40% of electricity and
part of this energy is wasted [1]. Smart buildings should eliminate this waste
by controlling systems such as lighting, heating and ventilation to provide opti-
mal comfort only when people are present and in the most efficient way possible.

With the information provided by sensors, some control system is to make
decisions on the optimal operations of the building. To test control algorithms,
a simulation can be used to save time and resources. In order to make this
possible, the aim of this project is to create a program that can simulate smart
buildings in a scalable manner.

Simulation of smart buildings and city districts is currently a topic of active
research. The optimization of energy usage has become increasingly important.
Simulating the effectiveness of control policies that aim to reduce it is not only
a useful way of determining optimal policies without testing them in a physical
environment, it can also be used to predict the need for energy in the future
allowing the needs of the users of buildings to be met more precisely and pre-
venting the generation of excess energy. With simulations, the resulting energy
usage, user comfort and other parameters could then be used to compare dif-
ferent methods of control.

Simulating larger scale models is difficult due to the dependencies in the
parameters to be predicted. For this bachelor’s thesis, a program was to be
made that enables scalable simulation of smart buildings by exploiting indepen-
dence in parts of the data using parallelization. In order to this, information is
gathered to determine how simulations can be made scalable and how a smart
building specifically could be simulated efficiently. Then, an architecture is de-
cided upon based on this information and a Scala implementation made. This
implementation will be tested for results. This way, a method should be found
and tested to effectively make simulations of smart buildings scalable.

2 Related work

Publications on simulation of smart buildings and cities focus on the accuracy
of the sensor values in it, which can be achieved by using a detailed model of the
building or by analyzing historical data [2]. The method of acquiring correct
sensor states is not a topic of focus of this project. Each sensor will have its own
function that computes the correct state based on the state of actuators, which

3

can consist of some computations or a request to another program to compute
a value. These functions must be provided to the program in order to obtain
correct results, and tests performed using the program for this project use sim-
ple functions that do not represent any physical or statistical relationship.

2.1 Parallelizing simulation

As performance of simulations is the main area of research related to this project,
different types of simulation will be explored in order to determine the different
possibilities with regard to modelling. In order for applications to be scalable,
they must be parallelizable. However, in order for simulations to be accurate
they must correctly represent the causal relations between events that occur as
time goes on. Research on parallelizing such simulations is done in the field of
Parallel Discrete Event Simulation (PDES), and within this field methods can
be divided into two categories: optimistic and conservative methods [3].

Conservative methods involve making processes wait at synchronization points
if it might be affected other processes [4]. Once it is certain that no potential
effects have been left out, the process will continue to the next point. In parallel
programs, blocking is undesirable as there may not be enough tasks available for
all processors if threads are blocked. However, the more processes are present,
the more likely it is that there will still be some task to perform. Therefore, a
simulation with many elements can still perform well in the conservative method.

The optimistic approach is to let them continue processing new events and
undoing their effect up to when the synchronization should have happened, if
necessary [5]. For example, in the case of a smart building, a light sensor might
be providing information about the light levels based at each point in time in the
simulation. The sensor may already have computed the light level of time t=5
when the control algorithm decides that at time t=2 a light should be turned
on. In this case, all events processed by the sensor after t=2 are undone and the
event representing the light turning on is processed. After this, the process will
continue from that event, having added the previously processed events to the
queue again. This approach is most useful in situations in which few rollbacks
are necessary.

2.2 Actors

In order to create concurrently running processes that communicate through
messages regardless of the physical location of each process and are resilient to
failures, the Akka library can be used. Akka is a library that provides an imple-
mentation of actors made to allow for the creation of distributed applications.
It is available for Scala and Java.

4

2.3 Rules

In a smart building, users set rules which the system can use to determine what
the state of the actuators within the building should be based on the state of the
sensors. There are different ways to formulate these rules, convert them into a
solvable problem and solve the problem. One way to do so is by using constraint
satisfaction problem (CSPs) [6] [7]. A constraint satisfaction problem consists
of a number of variables, each with a given domain, and constraints. A solver
uses some search strategy to find values for each variable within their domains
such that all constraints are satisfied. An objective function can be used to
give each solution a value which can then be minimized or maximized. This is
done by optimizing a variable for a single objective or by optimizing a scalar
combination of multiple variables, where the scalar values represent weights.
For example, energy consumption and user comfort could each be given their
own weights, resulting in a solution that attempts to balance the two.

2.4 Constraint programming

Some programming languages and libraries allow for simple creation and solu-
tion of CSP models. One such library for Java is the Choco solver, which allows
users to create a model object, post constraints to it and then solve, with many
options for both constraint types and search strategy.

3 Architecture

To model actuators and sensors in the building, events can be simulated across
multiple processes representing them, similar to a PDES. All actuators and
sensors are processes that communicate through messages. To solve the syn-
chronization problem brought up in the related work section, a conservative
approach is used. Whenever a sensor sends a value, it waits for influences from
any actuators that could change states as a result. Sensors only send values
as a response to a message containing a vector clock of last update times of
actuator states. With this information, the sensor can determine if it has the
most recent values from each actuator that it is receiving data from. Actuators
are, as a result, always synchronized even without checking clocks as actuators
only receive their new states as a consequence of a sensor’s state change.

3.1 Synchronization

The conservative method of PDES means that a process can only continue when
it is certain that no event can be added in the future with a lower timestamp
than the one that is currently due to be processed. In the case of this smart
building simulation, this is guaranteed if sensors know which actuators to wait
for and there is a single process that requests values from all sensors. After the
sensors’ values are requested, they cannot receive events preceding the time of

5

the request except from actuators, since requests for sensor values are sent from
a single process in chronological order each time the rules are evaluated and
sensors never send messages to each other directly.

If sensors all have their own event queues like most processes in a simula-
tion, the process of not sending messages early would be much more difficult,
as sensors may still be influenced by other sensor values that are sent first and
thus must wait for these. However, it cannot know that all preceding events
have been processed without sorting all sensor events to ensure that its turn is
now. Therefore, having a single process that maintains a sorted queue of sensor
events is preferable. Similarly, if there was no clock to indicate which actuators
have been updated at what timestep, sensors could never be certain that it is
safe to proceed. At any point in time, the sensor could still be receiving a new
actuator value in the future so sending a state would not be safe.

3.2 Independent simulations

With this structure to the processes, all sensors can update their values simulta-
neously as they should all be receiving updated actuator values shortly after the
rules have been applied. However, in order to parallelize further, it is possible
to also solve multiple CSPs at the same time if none of the sensors and actu-
ators influence each other’s value in any way. If there is an independent part
of the model, solving these independent parts can happen in parallel as well.
Two processes are considered independent if the state of one process cannot be
influenced by the other, directly or indirectly. If a sensor, through the rules,
affects an actuator that, in turn, affects a different sensors these sensors must
still be considered dependent on each other as the state of the latter sensor
can be influenced by the state of the first through a change in the rules. This
particular dependency relation is therefore transitive.

The independent parts of the simulation are split by creating different sets
of sensors and actuators that are unaware of each other. Splitting up the sim-
ulations prevents these processes from having to wait for any that have no
dependency relation, increasing the parallel performance. The resulting CSPs
to be solved will be smaller, containing only the sensors with values that depend
on each other.

The program requires all information on sensors, actuators and rules as in-
put. This means that each sensor must be given its own initial state, a list of
influences each actuator connected to it has on the sensor’s state as a function
of time and that actuator’s state and a function that returns the effect of the
environment or use case. Additionally, a number should be provided for each
actuator that will be used to scale the actuator’s state in order to determine
the energy cost. With this input, a model can be created of the building and
any parameters of interest can be messaged or logged by the processes in order

6

to create output.

4 Implementation

The simulation program is made in the Scala language. In the program, sensors
and actuators are modeled as actors. There are also evaluators that evaluate
the rules and ask for sensor values in the right order. In the program, each of
these actors are of a class derived from the Akka actor class.

4.1 Sensors

Sensor actors contain and send information on the state of the building. Be-
cause the sensor actors are part of a simulation, no physical environment exists
which information can be taken from. Therefore, the sensor actors receive all
information that is needed to determine the value of the parameter that is to
be measured in the form of functions that can be evaluated by the sensor at
points in time when the state must be sent. Sensors can have either a state
that changes only when events occur or continuously. Each sensor has its own
local time. Sensors with a continuously changing state send their state to the
evaluator at regular intervals, as opposed to sending state whenever a change
occurs. These regular intervals are specified when the objects are created. Af-
ter the state and the accompanying timestamp have been sent, the sensor must
wait until the state changes in actuators brought about by the evaluator have
been received, as allowing each sensor to send its state again immediately would
allow the sensors to advance in time without knowing the effect of state changes
in actuators within that timeframe, breaking causal ordering.

Figure 1: Sensor workings

7

4.2 Actuators

Actuator actors receive their desired state and send it to any sensors that may
need it. These actors hold their state and know the sensors that must receive
the state, but do nothing further as the sensors calculate their effect based on
the state they receive. With a completely simulated environment, the actuator
actors serve little purpose as the information about actuator states could be
relayed to the sensors directly. The only difference is that messages can be sent
to multiple sensors by multiple actors at the same time. Another advantage of
this approach is the resemblance to a real situation which is useful when the
program might interact with other software or hardware systems.

4.3 Evaluators

Evaluator actors receive the state of sensors and determines what the state of
actuators in the system should be, after which they send new states to these ac-
tuators. Multiple evaluators can exist if some part of the rules can be evaluated
independently of the rest, as this allows concurrent running of multiple evalua-
tions. This actor contains the most recent values received from each connected
sensor and a function that converts these values into desired actuator states.
This function first determines which constraints should be active currently. Af-
ter this, it creates a new model in the Choco solver, in which actuator states
are considered variables and constraints are the rules that are currently active.

Figure 2: Actors and the states they send

8

Rules must be evaluated whenever a sensor sends a value and sent sensor
values should be evaluated in the order of their timestamps. To guarantee this,
evaluation should wait until all effects of actuator state changes have been calcu-
lated. To allow for this, the evaluator asks sensors for the values in accordance
with the event it is processing, also sending a vector clock with a time value for
each of the actuators. The sensor should then reply with its current state after
it has waited for its clock to be synchronized again.

Thus, a time step is resolved as follows: first, the evaluator dequeues an
event from the queue of events. The event should be processed and as a result,
the evaluator requests the values of one or more sensors depending on their up-
date intervals and the current time. These values are then used to replace the
old values of these sensors, after which the rules are applied to them, resulting
in states for the actuators that should be sent out if they are different than in
the previous step. The actuators store these new states and send them to all
affected sensors.

Figure 3: Evaluator processing an event

5 Results

In order to determine the performance of the application, tests will be performed
to determine the runtime of the program and the effects on it of changing the
number of independent rooms and the number of events. Each test will be
performed with different numbers of cores to determine the speedup at different

9

numbers of cores. All tests were performed on an Intel i5 4460 at 3.2 GHz.
The test all used a virtual ’room’ that consists of 4 sensors and actuators.

Each sensor calculates its new value based on one of the actuators by scaling it
and then adding that number to the old sensor value.

There is a set of rules for each sensor and the connected actuator, specifying
3 ranges in which the value of the sensor can fall and a value for the actuator
for each of these sensor value ranges.

5.1 Number of evaluators

To test how the program performs when there are many independent parts of the
simulation, this scenario consists of a varying number of rooms with 4 sensors
and actuators in each of them. Each of these rooms have their own evaluator,
allowing the program to independently solve for each. 10 Events will be pro-
cessed by each of these evaluators.

Figure 4: Runtime for different numbers of evaluators

This figure shows that as the number of rooms increases, the runtime increases
linearly. However, the rate of change for the higher numbers of rooms is lower
than 1, likely due to the parts of the program that have a runtime constant
with the number of rooms becoming less and less influential on the total run-
time. There is a clear problem with the results of this test: the results for 4
cores are almost the same as for 3 cores. It is unclear why this is the case, and
the next test has the same problem. One possible explanation of this could be
that other tasks running in the background on the machine are preventing the
efficient use of the maximum number of cores.

10

Figure 5: Speedup for different numbers of evaluators

Figure 6: Runtime for different numbers of cores

The speedup at 3 and 4 cores is, as visible from the previous figure, the same.
However, the speedup looks acceptable for 2 and 3 cores across the board. In
this figure, the spike that occurs at 50 rooms is more visible than in the previous
one. It seems to be present in each of the numbers of cores, which is strange
as one would expect that the peaks would occur at random points if the cause
was simply a random variation in runtime. However, I expect that this is just
a random occurrence nevertheless.

11

5.2 Number of events

To test how the program responds to larger numbers of events, the total number
of events was increased for different numbers of cores. The rooms were left the
same as in the previous test. The results should be somewhat similar to the
previous test, but the speedup should be lower as the calculations must all be
run in sequence in this case.

Figure 7: Runtime for different numbers of events

The runtime figure looks almost identical to the one indicating the runtime de-
pending on the number of rooms. One clear difference, however, is that 100000
events can be processed in a shorter time on 1 evaluator than 10 events on
10000 evaluators. Thus, the overhead of creating all of these evaluators may be
greater in this simple situation than the benefit of having multiple, completely
independent threads.

As expected, the speedup in this case is lower than in the prior test. Whereas
the speedup for 3 and 4 cores hovered around 3 when there were many evalu-
ators, the speedup when there are many events is around 2. Since there is no
increased parallelization, the speedup remains constant, although the first data
point for 4 cores seems to be a slight outlier with a speedup of 3.

12

Figure 8: Speedup for different numbers of events

6 Conclusion

For this project, a program was made that can be used to run PDES like sim-
ulations for smart buildings. The program is very basic and could use more
optimization. Overall, the performance in simple cases looks acceptable. As
outlined in the future work section, however, the program is lacking in several
ways.

Running simulations of smart buildings using the actor model looks to be an
appropriate way of simulating smart buildings to test control programs, if the
right data is available in order to create a realistic situation. Smart buildings
specifically can be simulated in a simplified way due to the fact that only one
type of process, the sensors, must wait. With no method of comparing the data
to some other method of simulation, for example an optimistic version, however,
it is difficult to know exactly how valuable this architecture is to the simulation
of smart buildings.

It is clear from the results, however, that solving for different parts of the
model independently increases performance as the speedup in the first test as
the number of independent rooms increased quickly reached around 3, higher
than the speedup in the case where the number of events was increased. As
such, using actors in a conservative approach to synchronization seems to be
an efficient method of making simulations of larger smart buildings or grids
possible on many cores, although performance could not be tested on a machine
with more than 4 cores.

13

7 Future work

For this project, a program was made that is capable of running a distributed
simulation of smart buildings, given some building, a set of user rules, the events
that should occur during the time frame and the simulated physical relation be-
tween actuator and sensor states. Each of these aspects are required in order
to generate realistic results.

The program could still potentially be improved within its original scope.
A version of the program could be made that uses optimistic methods, rolling
back events whenever necessary. This would render the program much more
parallelizable, although not all of the computations performed will be useful
due to the rollbacks. It could result in a faster simulation, however, as events
that could have been related without ending up being so will be performed si-
multaneously, unlike in the program as it is.

Another possibility is the optimization of the use of the CSP solver. Cur-
rently, a new model is made whenever solving is necessary. A better version of
the program would modify the model instead, removing constraints that are no
longer active and adding newly active constraints.

The program in its current iteration is very simple. To improve its usability,
file IO for rules and simulated buildings would be essential as well as some UI
that allows the use of files to run simulations and to show visualizations of
generated data. Furthermore, some possibility should exist for users to insert
external simulation functions or programs such that the simulation can rely on
data and calculations from other programs to determine sensor states.

14

References

[1] L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy
consumption information,” Energy and Buildings, vol. 40, no. 3, pp. 394 –
398, 2008.

[2] F. Amara, K. Agbossou, A. Cardenas, Y. Dubé, and S. Kelouwani, “Com-
parison and simulation of building thermal models for effective energy man-
agement,” Smart Grid and renewable energy, vol. 6, no. 04, p. 95, 2015.

[3] R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM,
vol. 33, pp. 30–53, Oct. 1990.

[4] D. M. Nicol, “The cost of conservative synchronization in parallel discrete
event simulations,” J. ACM, vol. 40, pp. 304–333, Apr. 1993.

[5] S. Jafer, Q. Liu, and G. Wainer, “Synchronization methods in parallel and
distributed discrete-event simulation,” Simulation Modelling Practice and
Theory, vol. 30, pp. 54 – 73, 2013.

[6] V. Degeler and A. Lazovik, “Dynamic constraint satisfaction with space
reduction in smart environments,” International Journal on Artificial Intel-
ligence Tools, vol. 23, p. 1460027, 12 2014.

[7] P. H. Shaikh, N. B. M. Nor, P. Nallagownden, I. Elamvazuthi, and
T. Ibrahim, “A review on optimized control systems for building energy
and comfort management of smart sustainable buildings,” Renewable and
Sustainable Energy Reviews, vol. 34, pp. 409 – 429, 2014.

15

