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1,500 years ago, everybody knew that the Earth was the center of the universe. 500 
years ago, everybody knew that the Earth was flat. And 15 minutes ago, you knew that 

humans were alone on this planet. Imagine what you'll know tomorrow." 

From the movie "Men in Black" 

 

O homem primeiro tropeça, depois anda, depois corre, um dia voará. 

 José Saramago," Memorial do Convento" 
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Abstract 

 As humans, we became a curious species, and one of the biggest targets of that 
curiosity is the distant Universe around us. One of the questions we started asking 
ourselves is: are there any other planets like Earth? With the amount of stars in the 
Milky Way, other star systems like our own Solar System might exist. Recently, 
technology started to evolve in such a way we can start observing these stellar systems 
with very powerful telescopes. However, this is still a somewhat "recent" technology, 
and one of the challenges is to develop reliable deformable mirrors capable of 
correcting the wavefront that arrives to us from these distance systems. The Netherlands 
Institute for Space Research recently proposed a new design for a deformable mirror 
that makes use of the hysteretic nature and properties of a chosen material to increase 
the performance of these deformable mirrors. This new approach relies on the control of 
the remnant deformation of such material, to which the corresponding deformation loop 
might not even be a single hysteretic loop, but a butterfly loop. These loops are modeled 
using non-linear models, which, together with the shape of the butterfly loop itself, 
makes the controlling a challenging step to the new design. This thesis will present a 
new approach for a controlling algorithm for the remnant deformation of these 
actuators. 
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1 - Introduction 

 A great effort has been made in the past decades to detect and study planets in 
stellar systems of the Milky Way. These are called Exoplanets, and recently many 
projects and instruments have been developed to survey these objects. Almost 4000 of 
these planets have been confirmed to exist, with many more waiting for confirmation, 
from projects like the Kepler and TESS missions being some of the most recent ones 
[1]. 

 

 However, very few of the exoplanets detected have been observed by direct 
imaging. To the present day, the two most used methods for exoplanet detection have 
been radial velocity and transits [2], as seen in Figure 1. Radial velocity techniques rely 
on the effect that the orbiting planet has on the star position, which follows a small orbit 
due to the gravity of the planet. The motion of the star is very small, but it can be 
detected from Earth, and by calculating how that star position changes relative to Earth, 
we can obtain properties like the size and orbit radius of the planet(s) that orbits the 
start. On transit techniques, the luminosity of the start is observed, and periodic changes 
in luminosity indicates the moments when a planet passes in front of the star and blocks 
part of its light. This method can also give us important information about the size and 
orbit of the planet(s). Figure 2 shows the application of these techniques. 

Figure 1 - Number of exoplanets discovered by year, and by detection technique. 
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 Although indirect methods have played a c
exoplanets and their stellar system, the
to size and mass of the planet(s) and radius of it(s)
understand exoplanets means that other methods have to be considered, and the best 
scenario would be to be able to do d
imaging one can study other properties of the planet, such has 
atmosphere, soil and cor
detection depend on the recent imaging technologies, and most of 
developed and improved. Only in
close to the size of Jupiter,
first exoplanet observed by direct imaging, is a example of such

 There are 2 main 
imaging for exoplanet detection

 Firstly, the exoplanets and their
so the angular separation between the hos
as 0.1" 

 Secondly, since planets do not
brightness of the hosting start and its planet can be as low as 
that the planets will be obfuscated by the
 
 

Figure 2 - On top, effect on the WASP
On bottom, example on how a exoplanet can af

indirect methods have played a crucial role in the detection of
stellar system, the properties obtained from these a

of the planet(s) and radius of it(s) orbits. The desire to better 
understand exoplanets means that other methods have to be considered, and the best 
scenario would be to be able to do direct imaging of these planets. Only with direct 
imaging one can study other properties of the planet, such has the composition

re. Unfortunately, direct imaging methods
depend on the recent imaging technologies, and most of them

eloped and improved. Only in cases where the planet is big enough to be observed, 
close to the size of Jupiter, reliable direct imaging has been achieved. 2M1207b, the 
first exoplanet observed by direct imaging, is a example of such large planets 

main problems that must be overcome to be able to use direct 
for exoplanet detection [4]: 

Firstly, the exoplanets and their stellar systems are extremely far from Earth, and 
so the angular separation between the hosting star and its planets can be as small 

planets do not have proper light, the contrast ration between the 
brightness of the hosting start and its planet can be as low as 
that the planets will be obfuscated by the star's light. 

On top, effect on the WASP-14 start system on the radial velocity by its exoplanet. 
On bottom, example on how a exoplanet can affect the perceiving luminosity of the hosting 

star. 
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Finding a solution to these problems has proven to be a very interesting and big 

engineering challenge over the last years, and even in existing instruments, these 
problems have not been solved to a degree of satisfaction. Future projects demand for a 
better performance of optical instruments, and this performance can be achieved by the 
use of Adaptive Optic Systems (AOS). 

1.1 - Coronagraph and Deformable Mirror (DM) 

 The coronagraph was first introduced in 1939 by Bernard Lyot [5]. Its initial 
purpose was to be able to study the corona ("atmosphere") of the sun, by blocking the 
light that directly came from it, but the same principle can be used to observe exoplanets 
near a start. In Figure 3, it is shown a simplified scheme of a coronagraph. 

 

 

 After the first lens, a mask is placed in the focal point of that same lens. If the 
coronagraph instrument is aligned with the star (blue in image), the light from the star 
will be blocked by such mask. Any ray of light with a small angular deviation from that 
direction, for example, the light coming from the orbiting planet (red in image), will not 
hit the focal point, and so it will pass through. 

 The coronagraph was developed taking into account the sun/corona system, 
where the angular separation is not a big problem. But for exoplanet detection, this is a 
crucial point, and any ray of light from the hosting start that slightly deviates from the 
observing direction will block the planet's light. Due to the distance of the stellar 
system, scattering of light before it reaches the instrument is highly probable, and the 
instrument itself can scatter light as well. Furthermore, atmospheric scattering happens 
for ground-based telescopes. All these scattering processes will prevent a plane 
wavefront to reach the sensors, and so some of the star's light will pass through the 
mask, and block the planet's light. Wavefront correction must then be implemented with 
the use of a Adaptive Optics Systems (AOS) based on a deformable mirror (DM).  

 

 

 

Figure 3 - Simplified schematic of a coronagraph. 
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 In Figure 4, a simple vi
is shown. Because of the distance of the star system, the light that reach the instrument 
can be seen as a wavefront. Due to 
wavefront will not be plain
DM that copies the deformation of the wavefront, we will have a corrected plane 
wavefront, and so all the light from the star will be blocked by the coronagraph's mask.

 There are several designs for a DM used for wavefront correction, being the 
piston-based DM's the more simple and versatile design. However, for high definition 
imaging, the high number of actuators 
as well as the spacing between them.
WFIRST, have shown to use DM's with 
with DM's dimensions that can be just around 
big challenge for the design of 
bulky hardware needed to contro
amount of energy necessary to operate the complete DM.

1.2 - Presenting a solution for deformable mirror: HDM

 To overcome the challenges that current designs of deformable mirror present, 
the Netherlands Institute for Space Research
instrument: an hysteresis deformable mirror
the properties of a piezoelectric material to solve some of these problems.

1.2.1 - Piezoelectricity

 Piezoelectricity was first 
Curie, in 1880 [8]. The piezoele
applied mechanical stress, an electric field is generated 
true: when an electrical field is applied in a certain direction of the material, it will 
deform. By having a model for the deformation of the give piezoelectric material
would be possible to control the height of a
correct potential in such direction. This is the reason why piezoelectric material have a 
very promising application
phenomenon occurring in these materials to which the DM technology can further 
improve its performance: hysteresis.

Figure 4 - Wavefront correction using a deformable mirror.

, a simple visual explanation of the function of the deformable mirror 
. Because of the distance of the star system, the light that reach the instrument 

can be seen as a wavefront. Due to the previous mentioned refraction
wavefront will not be plain, and so it will scatter when reaching the lens. If we apply a 
DM that copies the deformation of the wavefront, we will have a corrected plane 
wavefront, and so all the light from the star will be blocked by the coronagraph's mask.

 

There are several designs for a DM used for wavefront correction, being the 
based DM's the more simple and versatile design. However, for high definition 

imaging, the high number of actuators increases the complexity of the DM 
as well as the spacing between them. Current missions for exoplanet detection, 

have shown to use DM's with arrays of 64 × 64 actuators (4096 in total)
that can be just around some centimeters. This has shown to be a 

big challenge for the design of suitable DM's, not only due to the complexity of the 
bulky hardware needed to control each actuator individually, but also due to the large 
amount of energy necessary to operate the complete DM. 

Presenting a solution for deformable mirror: HDM 

To overcome the challenges that current designs of deformable mirror present, 
Netherlands Institute for Space Research has proposed new concept for such 

instrument: an hysteresis deformable mirror (HDM) [7]. Such mirror will make use of 
the properties of a piezoelectric material to solve some of these problems.

Piezoelectricity 

Piezoelectricity was first described by the French brothers Pierre and Ja
piezoelectric materials have the interesting property of, when 

applied mechanical stress, an electric field is generated [9].  The inverse process is also 
electrical field is applied in a certain direction of the material, it will 

model for the deformation of the give piezoelectric material
would be possible to control the height of a thin layer of the material by inputting the 
correct potential in such direction. This is the reason why piezoelectric material have a 

ing application for deformable mirror. However, there is an important 
occurring in these materials to which the DM technology can further 

: hysteresis. 

Wavefront correction using a deformable mirror.

sual explanation of the function of the deformable mirror 
. Because of the distance of the star system, the light that reach the instrument 

refraction sources, the 
, and so it will scatter when reaching the lens. If we apply a 

DM that copies the deformation of the wavefront, we will have a corrected plane 
wavefront, and so all the light from the star will be blocked by the coronagraph's mask. 

 

There are several designs for a DM used for wavefront correction, being the 
based DM's the more simple and versatile design. However, for high definition 

the complexity of the DM substantially, 
Current missions for exoplanet detection, such as 

(4096 in total) [6], 
s. This has shown to be a 

the complexity of the 
but also due to the large 

To overcome the challenges that current designs of deformable mirror present, 
has proposed new concept for such 

. Such mirror will make use of 
the properties of a piezoelectric material to solve some of these problems. 

by the French brothers Pierre and Jacques 
have the interesting property of, when 

The inverse process is also 
electrical field is applied in a certain direction of the material, it will 

model for the deformation of the give piezoelectric material, it 
material by inputting the 

correct potential in such direction. This is the reason why piezoelectric material have a 
for deformable mirror. However, there is an important 

occurring in these materials to which the DM technology can further 

Wavefront correction using a deformable mirror. 



 

1.2.2 - Hysteresis 

 Hysteresis was first described by Sir James Alfred
Ewing observed that the relation between the magnetization of a ferro
and the magnetic field applied between the limits of the material was not linear, and 
even had a "lagging" effect, meaning that when applying 
material and removing it, 
originally had when no magnetic field was present
5 one of the first registered
Ewing. 

 Piezoelectric materials can also have this behavior: the relation between the 
applied electric field and the deformation of the material 
will depend on past states of the material. The result
two more concepts that will further improve the design of the HDM: remnant 
deformation and multiplexing.

 A schematic example of 
hold the material at a certain thickn
signal to the material, as it 
and so the amount of energy necessary to hold the mirror in a constant positio
significantly reduced. 

 

 

Figure 5 - Hysteresis Loop 
described by Ewing in his 

publication. 

Hysteresis was first described by Sir James Alfred Ewing [10]. In his works, 
observed that the relation between the magnetization of a ferro

field applied between the limits of the material was not linear, and 
even had a "lagging" effect, meaning that when applying the magnetic
material and removing it, it will result in a different magnetization from the one it 

when no magnetic field was present: the material has memory. In Figure 
ed figures of an hysteretic behavior of a material made by 

materials can also have this behavior: the relation between the 
applied electric field and the deformation of the material might also be
will depend on past states of the material. The resulted hysteresis will allow us to use 
two more concepts that will further improve the design of the HDM: remnant 
deformation and multiplexing. 

schematic example of the remnant deformation is illustrated in Figure 
hold the material at a certain thickness, there is no need to apply a continuous input 

it is in the current case for the designs of deformable mirror
and so the amount of energy necessary to hold the mirror in a constant positio

Figure 6 - Schematic of the resulting remnant 
deformation (c) as the result from applying 

𝑢௜௡௣௨௧ (b) when starting from 0

Hysteresis Loop 
described by Ewing in his 

5 

Ewing [10]. In his works, 
observed that the relation between the magnetization of a ferroelectric material 

field applied between the limits of the material was not linear, and 
magnetic field to the 

will result in a different magnetization from the one it 
: the material has memory. In Figure 

avior of a material made by 

materials can also have this behavior: the relation between the 
be not linear and 

ed hysteresis will allow us to use 
two more concepts that will further improve the design of the HDM: remnant 

is illustrated in Figure 6. To 
a continuous input 

of deformable mirrors, 
and so the amount of energy necessary to hold the mirror in a constant position can be 

 

 

he resulting remnant 
deformation (c) as the result from applying 

0𝑉 (a). 
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1.2.3 - Multiplexing 

 Since there is no need to maintain a constant signal in every actuator due to the 
remnant deformation, it is not required for every single actuator to have a dedicated 
control channel, and so several actuators can share the same control channel by doing a 
time-division control. This is called multiplexing, and gives a very practical solution for 
the problem most deformable mirror have regarding the complexity of the wiring. If 
every actuator would need its dedicated channel in a 𝑁 × 𝑁 grid, it would be necessary 
𝑁ଶ dedicated channels, in total. But with multiplexing, and as illustrated in Figure 7, 
only 2𝑁 control channels would be required, drastically decreasing not only the 
complexity of the wiring, but reducing again the amount of energy necessary for the 
system. 

 

 

1.3 - The proposed HDM 

 As stated before, this thesis is inserted in HDM project started by the 
Netherlands Institute for Space Research (SRON). A simple schematic of the cross-
section of a standard MEMS DM (Micro-electro-mechanical system deformable mirror)  
is presented in Figure 8.  

 The core idea of the proposed DM is to stack layers of actuator strips, where the 
direction of each layer is orthogonal to the previous one, and so making the intersection 
points our actuators, and in between each layer of actuators, a film layer of the desired 
piezoelectric material will be applied. On top of it all, a layer of reflective material 
would be placed. Figure 9 shows one layer of the piezoelectric film in between two 
layer of actuator strips. Figure 10 shows a simulation when applying voltage to one of 
the actuators. 

 

Figure 7 - Example of a system with multiplexing. 
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Figure 10 - Result of a simulation made with the Figure 9 Schematic, when applying 
to one of the top actuators 100𝑉 and grounding one of the bottom ones. We can see 
on the right how only the region between the 2 actuators is significantly affected by 

the electric field 

Figure 9 - Schematic for the arrangement of the actuators, with the material film. 

Figure 8 - Cross section of a MEMS DM. When an electric signal is applied in the 
electrode, the actuator moves, and so will the mirror sheet attached to it. 
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1.4 - Problem definition, research goal, and research questions 

 Because of the nonlinear behavior of the hysteretic behavior, it is not a simple 
task to control the deformation of the material. Independently of the design, using 
piezoelectric materials as the fundamental basis of the actuators of the HDM technology 
requires a deep understanding of the hysteretic behavior, and how would be possible to 
control the deformation of the material.. 

  The first task would be to have a model that well describes the hysteretic 
behavior. This point will be further discussed in Chapter 2. After that, and assuming that 
a well behaved model is reached, the next step is to find a process to control the remnant 
deformation of the material. Therefore, the problem statement and research goals for 
this thesis will be defined as: 

Problem statement: The HDM control system does not have a algorithm to control the 
remnant deformation of the material. 

Research Goal: Develop a time efficient algorithm, to control the remnant deformation 
of a piezoelectric material whose behavior is described by an Operator-based model. 

 To achieve the Research goal proposed, there are two main questions that need 
to be answered. The first one would be: 

Question 1: Is it possible to develop a mathematical method to control the remnant 
deformation of a piezoelectric material? 

 Chapter 3 will be dedicated to evaluate properties of the butterfly loop, and 
based on such properties, use known mathematical methods to develop an algorithm for 
the control of the remnant deformation. The follow up question would then be: 

Question 2: How fast is the algorithm when considering a full 64 × 64 matrix of 
piezoelectric actuators? 

 The size proposed is considered a reasonable size for a DM application in an AO 
system dedicated to exoplanet detection, as it has been referred before. The calculations 
should take, in maximum, around 2 minutes to do, for this grid size. This will be a "back 
of the envelope" goal for the computing time, and the sub-question that can follow 
would be: 

Question 2.a: What other properties of the algorithm chosen can improve the 
computing time? 

 In Chapter 4 the results for the algorithm chosen and the computing times will 
be first presented, followed by a discuss interpreting these results as a way to answer the 
research questions. 
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2 - Preliminaries 

 To chose how to control the remnant deformation of a piezoelectric material, it 
must be discussed how can hysteresis loops be modeled. In this chapter, it will be 
shown how some hysteresis loop are characterized. After that, it will be presented the 
different types of models that exist, and for the case of the Operator-Based ones, some 
examples of existing models. 

2.1 - Hysteresis loops 

 In Figure 11, on the left, it is presented a simple non-linear hysteresis loop, 
where the vertical axis corresponds to the deformation of the material, compared to a 
initial condition, and the horizontal axis corresponds to the input potential applied to the 
material. This is not the only case of hysteretic behavior, and the right plot in Figure 11 
show the case of a butterfly hysteresis loop. Butterfly loops are important for the study 
in question, for two main reasons: first, their modeling and control is not as easy as for 
single loop hysteresis, and in fact, most of the existing models for single-loop hysteresis 
can't describe a butterfly loop [11]; second, most materials that are used for this type of 
applications, including the ones that have been developed for the purpose of this project, 
have shown to have a butterfly hysteretic curves when the deformations needs to be 
significant. 

 

 

 

 

 

 

 

Figure 11 - Examples of the shape of an hysteretic behavior on piezoelectric materials: 
on the left, the single loop hysteresis; on the right, the butterfly loop hysteresis  
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2.2 - Physics based models 

 Physics-Based models try to relate the non-linear behavior of hysteresis with 
electric and magnetic laws. They consider the physical properties of the material and the 
electrical and/or mechanical forces applied on it to simulate the hysteretic curve. This 
help give a direct relation to the origins of the hysteretic performance of the material, 
which can be important and helpful to understand the hysteretic behavior as a 
phenomenon. However, this models are too mathematically complex, heavily dependent 
on the considered system, and as of to date, no physics-based model can explain the 
butterfly behavior, so these models will not be considered in this work. 

2.3 - Differential equation based models 

 To try to simplify the complexity of the physics-based models, one can try to 
approach a phenomenological modeling. This means to try to strip away the direct 
applications of the physical properties of the material in the model, but to try to fit the 
hysteretic behavior to a simpler numerical model, and then have a indirect relation 
between the model parameters and the material properties. Models like these often 
consist of simpler first order differential equations that make a direct relation between 
the input electric field and the deformation of the material. This approach will simplify 
the model itself, but make it harder to take a physical meaning out of it. 

 Again, even though these models are simple to work with, and easier to control, 
as demonstrated in works made in this work group already [12], to this date no 
differential model can describe a butterfly loop. 

2.4 - Operator based models 

 Another phenomenological approach is the use of a linear superposition of 
several relay operators, known as hysterons, each with its own weight, and whose state 
will depend on the input field applied. These are Operator-Based models. Typically, 
there will be a weight function, or how will from now on be referred as, a density 
function, that can be fitted to the considered loop, and the sum of all the relay states 
with their respective density function value will give the final deformation for the 
applied input field. 

 Operator-based models are able to reproduce butterfly hysteretic loops. For this 
reason, the control method developed in this work will focus on them. We will give 
examples of some of the most used operator based models in current literature. 
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2.4.1 - Preisach model 

 The Preisach model was first introduced by Ferenc Preisach in 1935 [13]. The 
Preisach operator is the result of integrating a set of infinitesimal relay operators. The 
relay operator ℛ can be seen as a simple on/off switch, where the input 𝑢 will be 
compared to two values 𝛼 and 𝛽 < 𝛼. When 𝑢 becomes bigger that 𝛼, the switch will 
turn "on", and when it becomes smaller that 𝛽, it will turn "off". Mathematically, this 
can be expressed as: 

ℛ(ఈ,ఉ)(𝑢(𝑡)) = ቐ

1 if 𝑢(𝑡) ≥ 𝛼

−1 if 𝑢(𝑡) ≤  𝛽

ℛ(ఈ,ఉ)(𝑢(𝑡 − 𝑇)) if 𝛽 ≤ 𝑢(𝑡) ≤ 𝛼

   

where 𝑇 is the refresh time (for discrete case, can be seen as sampling time). 

 A graphical representation of this relay is shown in Figure 12. To obtain the 
deformation depending on the input potential, the following integral in applied: 

𝑦൫𝑢(𝑡)൯ = ඵ ℛ(ఈ,ఉ)൫𝑢(𝑡)൯𝜇(𝛼, 𝛽)
ఈஹఉ

𝑑𝛼𝑑𝛽 

or, in a discrete case: 

𝑦൫𝑢(𝑡)൯ = ෍ ෍ ℛ൫ఈೕ,ఉ೔൯൫𝑢(𝑡)൯𝜇൫𝛼௝ , 𝛽௜൯

௠

௝ୀ௜ାଵ

௠

௜ୀଵ

 

where 𝑦൫𝑢(𝑡)൯ is the deformation of the material and 𝜇(𝛼, 𝛽) is the density function, 

giving us a 2D density plane. 

 The representation of the relay states can be simplified in a plane representation 
as well, known as Preisach plane. An example of such plane can be seen in Figure 13. 
This Preisach plane will have two domains, 𝑃  and 𝑃ା, where we will have that: 

ℛ(ఈ,ఉ) =  ൜
1 (𝛼, 𝛽) ∈ 𝑃ା

−1 (𝛼, 𝛽) ∈ 𝑃
 . 

 The line that divides 𝑃  from 𝑃ା, 𝐿(𝑡), will change with the evolution of the 
input 𝑢(𝑡), and its where the memory of the material can be seen. 
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2.4.2 - Prandtl-Ishlinskii model 

 For the Prandtl-Ishlinskii Model (PI Model from now on), the relay used will 
have a form of a play operator. The play operator can be mathematically written as: 

ቊ
ℬ൫𝑢(𝑡)൯ = max ൣ𝑢(𝑡) − 𝑟, minൣ𝑢(𝑡) +  𝑟, 𝑦൫𝑢(𝑡 − 𝑇)൯൧൧

ℬ൫𝑢(0)൯ = 𝑦଴                                                                              
  

where 𝑇 is the refresh time, and 𝑟 is the relay's threshold. The final deformation will be 
given as: 

𝑦൫𝑢(𝑡)൯ = ෍ ℬ(𝑢(𝑡), 𝑟௜)𝜇(𝑟௜)

௠

௜ୀଵ

 

where 𝜇(𝑟) is now a density vector. A representation of the play operator can be seen in 
Figure 14. 

 For the purpose of a simpler comprehension of the play operator, this can be 
seen as a form of the relay operator used in the Preisach model, where 𝛼 = 𝛽 , and there 
is a slope when the switch is about to change. This slope will allow for the switch to be 
able to have middle states besides being only "on" or "off". 

2.4.3 - Krasnosel’skii-Pokrovkii model 

 The last operator model presented is the Krasnosel’skii-Pokrovkii model (KP 
model from now on). The relay operator in this case can be observed in Figure 15, and 
can be calculated from the following expression: 

𝐾𝑃൫𝑢(𝑡)൯ =  ቐ

max൫𝐾𝑃൫𝑢(0)൯, 𝑠(𝑢(𝑡), 𝛼) ൯ if 𝑢̇ > 0

min൫𝐾𝑃൫𝑢(0)൯, 𝑠(𝑢(𝑡), 𝛽) ൯ if 𝑢̇ < 0

𝐾𝑃(𝑢(𝑡) − 𝑇) if 𝑢̇ = 0

  

𝑠(𝑢, 𝑥) =  ൞

−1                       if 𝑢 ≤ 𝑥                

−1 +
2

𝑎
(𝑢 − 𝑥) if 𝑥 < 𝑢 ≤ 𝑥 + 𝑎

+1                       if 𝑥 + 𝑎 < 𝑢         

  

where 𝑎 is a parameter that will be fitted depending on experimental data, and it will 
define the slope of the operator. 

 Again, this operator shares a strong resemblance to the one in the Preisach 
model. In fact, if 𝑎 = 0, the Preisach model is applied. In other words, the KP model is 
a more general definition of the Preisach and PI models. It shares both the non-
reversibility of the PI operator, giving the slope, while having the input boundaries of 
the switches to happen in non-symmetrical configurations. The result will give a density 
plane, similar to the case in the Preisach model, but where the Preisach plane values will 
not be just only 1 or −1, but any value between those. 
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Figure 15 - The KP Operator Figure 14 - The PI Play Operator 

Figure 13 - An example of a Preisach plane 

Figure 12 - The Relay Operator 
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3 - Method 

 Only one of the discussed operator-based models will be tested in this thesis: the 
Presiach model. From previous work done in the research group [14], the Preisach 
model is the one that best fits the application of controlling a piezoelectric remnant 
deformation, due to having the smallest amount of error when predicting inner loops 
behavior, although this error are still significantly high, as it will be discussed later on. 
It is however important to note that since both the PI and KP Model are somewhat an 
extension on the Preisach model, the same methods described next can be applied to 
them as well. 

 This chapter will be dedicated to reveal the method and algorithm used to 
control the remnant deformation, based on the chosen model for the butterfly loop. 

3.1 - Monotonicity of the remnant deformation 

 To find a method to control the remnant deformation of the material, it is 
assumed that it is already given a density plane that well describes the outer loop of its 
butterfly hysteresis curve. 

 In Figure 14, we have a butterfly loop, where the zone starting from 0𝑉 to the 
operating limits has been divided into 4 sections, where the division points are the local 
minimums (or maximums, depending on the shape of the loop). Each one of these 
sections defines a area of the loop where the deformation is monotonic (derivative of the 
deformation over time maintain its sign) between its limits. 

 When only operating in one of this sections, the "return" path of the material to 
its remnant deformation will always be the same (this correspond to the black sections 
in Figure 16). This means that, when in this returning path, the same relays will be 
turned off, if going back in the negative direction, or turned on, if going back in the 
positive direction, independently of the input applied. The remnant deformation will 
depend on the amount of relays that, when going for the desired input, switched state 
and cannot be switched back on the returning path. Together with the fact that the 
deformation in the path going in the direction of the desired input is monotonic, this 
gives that the remnant deformation will also be a monotonic function of the maximum 
or minimum input applied. 

 This is, however, an empirical observation of the butterfly loop behavior, and it 
can depend on the values of the density plane. Mathematical proof for this should be 
investigated. For the purpose of this thesis, it will be assumed this behavior is true, and 
in Appendix A a deeper explanation of this is assumption and the testing made to reach 
this conclusion is presented. 

 The monotonic behavior of the remnant deformation in the selected section of 
the loop was introduced due to the fact of being one of the requirement for the Root 
Finding method that will be discussed in section 3.3. 
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3.2 - Root Finding problem 

 Recall the definition for the remnant deformation as a function of the input 
potential 𝑢 applied, when starting at 0𝑉, as 𝑟(𝑢). Having 𝑟௙ as the desired remnant 

deformation, and having the function: 

𝑅(𝑢) = 𝑟(𝑢) − 𝑟௙ 

the goal now becomes to find 𝑢ௗ such that: 

𝑅(𝑢ௗ) = 𝑟(𝑢ௗ) − 𝑟௙ = 0. 

 This can be defined as a Root Finding problem. 

 There are several methods to solve a Root Finding problem [15], but the only 
one we will discuss is the Bisection method. Although slower than some other methods 
like the Newton-Raphson method, these methods depend on also getting the derivative 
of the deformation, which can be calculated, but at the cost of time, since there is no 
direct method to have the derivate beforehand and saved like the density plane. The 
amount of time needed to compute the derivatives would defeat the purpose of its 
preference. Methods like Van Wijngaarden–Dekker–Brent method do not require 
computing derivatives and so they can be applied, but they are far more complex that 
the Bisection for this type of implementation, and for the sake of the timeframe of this 
thesis, they will not be discussed. The second most simple method to apply would be 
the Secant method. But, again, given the timeframe of this thesis, only one method 
could be chosen. 

 

Figure 16 - The 4 evaluated sections for the algorithm.   



 

3.3 - Bisection 

 Let 𝑓(𝑥) be a function 
continuous and monotonic. Let's say that 
be one and only one value 𝑧

 Let us define 𝑐ଵ =

𝑎ଶ =  𝑎ଵ and  𝑏ଶ = 𝑐ଵ. If 
repeated until it is reached the condition:

where 𝜖 is a desired threshold for the
discrete functions, the minimal error possible
look on an 1D plot. 

3.4 - Memory resetting

 It has been assumed that going only from 
good enough solution, when that might not be true, or even possible. Because the final 
deformation of the material depends not only on the final value of input, but also the 
path it took before, it might be necessar
inputting the desired voltage. Resetting means that the memory of the material is 
completely wiped by increasing the input voltage to one of its operational extremes. 
This process takes almost no computing time,
be larger and to achieve the best input electric field for the desired remnant deformation. 
It is therefore important to consider the case of resetting when testing the optimal 
applied input for the final remnant de

 

 

Figure 17 - Graphical example of the steps of the Bisection method  

a function such that, in a certain interval 𝑥 ∈ [

monotonic. Let's say that 𝑓(𝑎ଵ) < 0 and 𝑓(𝑏ଵ) >  0. Then, there must 
𝑧 such that 𝑓(𝑧) = 0. 

(𝑎ଵ + 𝑏ଵ)/2 and evaluate 𝑓(𝑐ଵ). If 𝑓(𝑐ଵ) >

. If 𝑓(𝑐ଵ) < 0, we do 𝑎ଶ =  𝑐ଵ and 𝑏ଶ = 𝑏ଵ. 
the condition: 

|𝑎௡ − 𝑏௡| < 𝜖 

is a desired threshold for the error when computing 𝑧 =  𝑐௡

, the minimal error possible. Figure 17 show how this process would 

 

esetting 

It has been assumed that going only from 0𝑉, to 𝑢ௗ, and back to 
good enough solution, when that might not be true, or even possible. Because the final 
deformation of the material depends not only on the final value of input, but also the 
path it took before, it might be necessary to reset the memory of the material before 
inputting the desired voltage. Resetting means that the memory of the material is 
completely wiped by increasing the input voltage to one of its operational extremes. 
This process takes almost no computing time, allows for the deformation bandwidth to 
be larger and to achieve the best input electric field for the desired remnant deformation. 
It is therefore important to consider the case of resetting when testing the optimal 
applied input for the final remnant deformation. 

Graphical example of the steps of the Bisection method  

17 

[𝑎ଵ, 𝑏ଵ], 𝑓(𝑥) is 
. Then, there must 

( ) > 0, we now do 
. The process is 

௡, or, in case of 
show how this process would 

 

, and back to 0𝑉, will give a 
good enough solution, when that might not be true, or even possible. Because the final 
deformation of the material depends not only on the final value of input, but also the 

y to reset the memory of the material before 
inputting the desired voltage. Resetting means that the memory of the material is 
completely wiped by increasing the input voltage to one of its operational extremes. 

allows for the deformation bandwidth to 
be larger and to achieve the best input electric field for the desired remnant deformation. 
It is therefore important to consider the case of resetting when testing the optimal 

Graphical example of the steps of the Bisection method   
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3.5 - Applying Bisection to the Preisach model: the steps of the 
algorithm 

 Given the model chosen, these are now the steps that must be followed to find 
the maximum input that will give the desired deformation: 

1. From 𝑟௜, the initial remnant deformation, pick the 2 extreme input values from 
the section chosen to be 𝑎 and 𝑏 

2. Compute 𝑐 = (𝑎 + 𝑏)/2 
3. Calculate 𝑟(𝑐) using the chosen model, and compare with 𝑟௙ 

4. Depending on the result of the previous step, change 𝑎 or 𝑏 to 𝑐, and repeat the 
steps 2,3 and 4 until an input 𝑐 = 𝑧 = 𝑢ௗ  is reached. 

5. Repeat steps 1 - 4 for each monotonic sections of the loop, and for both cases of 
resetting or not resetting the material's memory, and compare the eight results to 
decide which is the best option 

In pseudo-code, it can go as follows: 

u_max  // Maximum electric field input of the section. 
u_min  // Minimum electric field input of the section. 
e_max  // Maximum admitted error. 
final_rd // Final desired remnant deformation. 
 
def rd=Model(u) // Depending on the chosen model, define the 
   function that returns the remnant deformation  
   when given the desired field input. 
a = u_max 
b = u_min 
 
rd_a = Model(a) 
rd_b = Model(b) 
 
e = abs(a-b) 
while e>e_max 
  
 c = (a-b)/2 
 rd_c = Model(c) 
  
 // The "if" and "else" conditions might have to be chanced 
 around depending on the gradient of the remnant deformation 
 as a function of the applied input on the chosen section. 
 The code must be able to detect which case to chose from. 
 
 if final_rd > rd_c 
  b = c 
 else 
  a = c 
 end 
 e = abs(a-b) 
end 
return c 
 
 



19 
 

4 - Results and discussion 

4.1 - Result for a 𝟔𝟒 × 𝟔𝟒 grid 

 This chapter will be dedicated to present the performance result from the 
algorithm. The algorithm will be ran as if trying to control a 64 × 64 grid of actuators 
modeled by the same density plane. Random input conditions (remnant initial 
deformation and respective Preisach plane) will be applied, as well as random final 
remnant deformation. Randomizing will assure it is possible to get an overview of all 
the possible variations in the remnant deformations, within the bandwidth of the 
material, and that the algorithm is capable of handling any variation of the remnant 
deformation. 

 The density plane used to control the data has been acquired following the 
methods described in previous work in the HDM group [13]. In Table 1 the results from 
different n × n sizes of the density plane are presented. These results are obtained by 
making a statistical analysis of the error distributions for the 4096 actuators, for each 
density plane. Figure 18 shows an histogram of the error distribution for the case of 
𝑛 =  200, for the purpose of exemplification. The histograms for each test are presented 
in Appendix B. The error distribution correspond to the error between the computed 
remnant deformation after applying the input resulted from running the algorithm, and 
the desired random deformation. The bandwidth of the remnant deformation was 
empirically observed from the outer butterfly loop to be 570nm. 

 The code used to create the algorithm and obtain these results are presented in 
Appendix C. 

 

n 
Standard Deviation 

(nm) 
Standard Deviation 
(% of bandwidth) 

error < 1% 
(%) 

error < 2% 
(%) 

Computing 
Time (s) 

10 80,32 14,09 13,35 25,22 1,57 
20 31,72 5,57 25,54 40,45 1,78 
25 22,33 3,92 34,23 53,42 1,63 
50 10,40 1,83 52,81 74,49 4,45 
75 6,20 1,09 69,68 90,09 8,81 
100 4,70 0,82 78,78 97,39 16,64 
125 3,75 0,66 87,01 99,27 23,97 
150 3,22 0,56 90,72 99,76 33,27 
200 2,70 0,47 95,26 99,61 58,06 
250 2,12 0,37 98,61 99,83 102,69 
300 1,74 0,31 99,73 99,85 181,11 
400 1,55 0,27 99,56 99,76 621,88 
500 1,45 0,26 99,66 99,78 1081,22 

Table 1 - The results of the performance of the algorithm for an 64 × 64 array of 
actuators   
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 The second and third column represent the standard deviation of the error 
distributions, in nanometers and in percentage of the remnant deformation bandwidth, 
respectively. The fourth and fifth columns give the percentage of the actuators that got 
an error less that 1% and 2% of the remnant deformation bandwidth, respectively. In 
Figure 18, these correspond to the green and yellow areas of the histogram. The sixth 
column represents the total time it took for the algorithm to compute the desired inputs 
for the 4096 actuators. 

 

 

 An overall look to these results indicates that, for reasonable sizes of the density 
plane, the algorithm works, and no major errors were detected. 

 A first interesting conclusion from these results is that the errors in the final 
computed remnant deformation do not seem to come from the algorithm. In fact, from 
theory, the algorithm will find the best possible solution for the constrains we indicated, 
so these error should only depend on the model chosen to describe the hysteretic 
behavior. However, as discussed in Appendix A, the monotonic behavior of the remnant 
is not completely guaranteed, and so errors might occur from this assumption. However, 
from the obtained results, if these errors exist, they seem to be irrelevant compared to 
the ones caused by the model. 

 If the algorithm has no influence in the error, the only important factor for the 
consideration of the algorithm is its speed, to which it can be concluded that the 
algorithm performs very satisfactorily. Given the considered results, for 𝑛 = 300 there 
is still a reasonable runtime of around 3 minutes. It is also important to notice that these 
tests were run into a home laptop, which computing power is far from the one on the 
hardware that would be implemented in an actual space mission, so bigger sizes of the 
density matrix could potentially be considered for these timeframes, and that Matlab© 
might not be the fasted programming tool to run such methods. 

Figure 18 - Error distribution for the case of an 200 × 200 density plane 
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 The columns for the errors bellow 1% and 2% of the bandwidth give important 
information about the minimal sizes of the density matrix, given the chosen model. 
With 𝑛 = 125, the percentage of actuators with an error bellow 2% is above 99% for 
the first time, but the errors under 1% is still below 90%. But at 𝑛 = 150, it becomes 
above 90%, so this would be the minimal size for an ideal density plane. With this size, 
the computing time for the algorithm is around 30 seconds. 

4.2 - Problems with the Preisach Model prediction 

 Despite the obtained result showing a very promising process to control the 
remnant deformation of a piezoelectric actuator modeled by a Preisach model, these 
results do not take into account the bad predictive behavior of the Preisach model for 
inner loops [16]. This would increase the errors significantly. The same problem will 
also rise from the other discussed models. 

 Without considering the use of a different model that would predict the behavior 
for inner loops better that the Preisach model, one solution to solve the problem with its 
predictions would be to run the algorithm in an "open loop", where for every calculation 
we did for a single actuator, a new density plane would be fitted, with operational input 
limits just a fraction bigger that the input result in the previous itineration. One of the 
problems with this approach would be the multiplicative effect it would have on the 
computing times, to the point where some of the sizes for the density planes could no 
longer be considered. The other big problem is the computing of the density plane, 
which not only also requires much longer to compute, so adding even more computing 
time, but would also require to have some type of system where we could obtain the 
inner loop without actually operate the actuator, so the initial conditions would not have 
to be reproduced again, or be forced to reset the memory of the operator every time the 
algorithm had to be ran. 

 One other solution would be to just have an arbitrary number of density planes, 
for different value of maximum operational limits, and when running the algorithm, test 
only to the one that has a remnant deformation of the outer loop closest to the desired 
output. The advantage of this is that the system could work in a closed loop, avoiding 
the computing time to obtain new density plane, since this would be already saved in 
memory, but the prediction error would still exist, but just at a smaller scale. The 
biggest disadvantage is that the initial condition would have to be carefully and 
precisely chosen in order to make sure they would correspond to the right loop, and that 
would also require to operate the actuator so he would be in the proper initial state, and 
that would cost energy. 

 Testing how the predictions of the Preisach plane would influence the result 
from the algorithm created in an actual physical setup of the system is a very important 
step for this project. Unfortunately, no experiment setup was available to perform this 
tests. 
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4.3 - Improvements to the algorithm 

  If the implemented algorithm has to be further improved for smaller computing 
times, this section will be dedicated to propose some modifications of the algorithm 
with which it would be possible to obtain better computing times. 

 Root Finding Method 

 As briefly discussed in Section 3.2, there are other Root Finding Methods that 
could potentially be used for the purpose of this thesis. The chosen method, Bisection, is 
one of the slowest ones. Choosing any other methods will have advantages when it 
comes to computing time, but the complexity and requirement to the use of these 
methods can prevent them from being better choices. The best candidates would likely 
be the Secant method and Van Wijngaarden–Dekker–Brent method, since these do not 
require to compute derivatives of the remnant deformation. 

 Reducing the number of tests for a single actuator 

 As it is, for every single computation for one actuator, the algorithm performs 8 
tests: depending if it needs to go to the positive inputs or the negative inputs, which 
section in that input direction would be tested, and if resetting the material is necessary. 
Currently, the algorithm makes a brute force test to each combination of these 
conditions, and returns the one with the smallest absolute error. If it would be possible 
to find that for a given computation some of these conditions would not give the desired 
result before computing it, this would reduce the number of test for a single 
computation significantly. For example, knowing if the material needs resetting or not 
before testing or if we need to go to the positive or negative directions of the input could 
potentially reduce the computing time by half. The problem becomes to identify these 
cases. Further study of these condition could be made to make sure brute force of all 
conditions is not necessary, and that way improve the computing times. 

 Preisach's planes reduction 
 

 An interesting observation from the Preisach plane with that the boundary 𝐿(𝑡) 
always evolves in the negative direction of 𝛼, and the positive of 𝛽, as illustrated in 
Figure 19. Also, since it is being considered the remnant deformation at 0𝑉, the 
boundary 𝐿(𝑡) will always have the finishing point at (𝛼, 𝛽) = (0,0) . These two 
conditions give that any relays with 𝛼 < 0 will belong to 𝑃ା, and the ones with 𝛽 > 0 
will belong to 𝑃 , for all the cases. This means that only the area where 𝛼 ≥ 0 and 
𝛽 ≤ 0 need to be evaluated for the control, since the rest of the Preisach plane will 
remain constant. This can be very useful to make the control algorithm be faster by 
significantly reducing the size of the computed matrixes. However, and despite the fact 
that would be a small adjustment to the implemented code, this was not used on the 
control algorithm presented in this thesis, only because the code written was simplified 
in order to easily adapt it to be used for other operator based models, to which this 
"trick" cannot be applied. But in an application where the Preisach plane is considered, 
this property should be taken into account to improve the algorithm's performance. 
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 Resetting the material's memory for every computation 

 
 One simple implementation that would reduce the computing times significantly 
would be to force a reset on the material for every single new calculation. This would 
force for the initial condition to be always the same, and so it would be possible to store 
in memory the function of the remnant deformation as depending on the applied 
maximum input, saving significant computing time. This would also allow to compute 
and store the derivative of it, allowing to use other Root Finding methods like Newton 
method without having to make time consuming calculations for the derivatives. The 
biggest disadvantage of this would be the operational cost: resetting every single time 
not only would require more power to be spent for every single time a new remnant 
deformation had to be achieved, but it could also potentially degrade the HDM much 
faster, since the physical stress applied on it would be much larger. This is therefore 
related to the durability of the HDM, and intensive physical test for it had to be 
conducted to know if resetting the material for every itineration is possible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19 - Example of the evolution of an Preisach plane with the applied input, from 
a (at 0V) to b (to a maximum applied input) and to c (back to 0V). 

a b c 
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5 - Conclusion 

 The works on this thesis proposed to start the research on how the remnant 
deformation on a piezoelectric material could be controlled, assuming we would be 
dealing with a butterfly loop, have been reached. The main goal, which would be to try 
to develop a control algorithm to such system, no matter what the performance would 
be, was achieved. Following that, it could be concluded that, even for the primary and 
most rudimentary form of the algorithm, as it is now, still shows promising result 
regarding its performance, meaning that with some of the already proposed 
modifications to the algorithm, its performance would be even better. However, this 
results do not take into account the bad prediction of some of the models when 
modeling inner loop of the displacement loop of the material, and some of the proposed 
solutions can increase the computing times significantly. 

 The follow up works on this subject, based on the results of this thesis, should be 
focused first on applying the algorithm to an actual actuator and evaluate the results. 
More problems could arrive from this observations that are impossible to predict only 
by simulating the chosen hysteretic model. 

 Following the test on actual hardware, the next step should not be focused to 
improving the algorithm just yet, but to first find a better model to describe the 
hysteretic behavior of the material. As stated before, the algorithm already finds the best 
solution for the chosen model, and since the time performance is already relatively 
good, the biggest problem is the errors that arise from the predictions of the model. 
Only after the modeling of the hysteretic behavior has been well predicted, the 
performance of the algorithm should be improved based on some of the propositions 
made in Section 4.3.  

 

 

 

 

 

 

 

 

 

 

 



26 
 

 

 

 

 

 

 

 

 

 

 

 

[Blank Page] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

Appendix A - Monotonicity of the Remnant deformation 

 Using the Bisection method requiers the function being evaluated to be 
monotonic. Proving that the remnant deformation is in fact monotonic as a function of 
the maximum applied input, for any initial condition of the Preisach plane, shown to be 
a challenge. It was not possible to find a mathematical proof of such behavior. 
However, this chapter will provide an explanation based on empirical observations of 
the model to show the remnant deformation has a prominent monotonic behavior. 

 A test to observe the gradient of the remnant deformation as a function of the 
maximum applied input is implemented. Starting from a random initial condition of the 
Preisach plane at 0𝑉, the variation of the remnant deformation depending on the 
maximum input is registered. With it, the derivative of the remnant deformation is taken 
using the Euler's method. The maximum and minimum value of the derivatives are 
registered. If, for the same section, the sign of these maximum and minimum 
derivatives do not change, then we have monotonic behavior. This was repeated 5000 
times, for two sections of the butterfly loop: from 0𝑉 to the input that gives the local 
minimum of the deformation in the positive direction of the input, and from such same 
input to the maximum operational input of the loop. An histogram with the result is 
presented in Figure A.1. The density matrix used for this test is 200 × 200. 

 

 

 

 It can be seen that, for the same section, there were points where the derivative 
changes sign, which would refute the existence of the monotonic behavior. However, is 
possible to notice that the variations to the opposite side, represented by the red graphs 
in Figure A.1 are much smaller in the order of magnitude of the maximum values, in 
blue. The bandwidth of the derivative around the turning point is itself much smaller 
than the average value of the derivatives. Therefore, it is reasonable to neglect these 
small variations, and to consider the remnant deformation has a monotonic behavior as 
a function of the maximum applied input, for the purpose of this thesis. 

Figure A.1 - The distributions for the maximum values (in blue) and the minimum 
values (in red) of the derivatives of the remnant deformation. 
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 Furthermore, these small variation might be the result of approximation errors, 
such as inaccurate calculations of the derivative, where the Euler methods is not precise 
enough, or due to the fact the density function used has fitting errors itself. 

 These observations do not prove that the remnant deformation always has a 
monotonic behavior, but it can be clearly seen that in most of the times, it is the main 
behavior. In fact, when running the control algorithm based on the bisection, no 
problems detecting the zero point due to non-monotonic behavior were ever found. 

 But let us assume that these small variations would indeed result in errors on the 
algorithm. The remnant deformation could not be assumed to be monotonic for any 
initial condition. The easiest solution for this would be to find a initial condition, for a 
certain section (as referred in Section 3.1, in Figure 16), that would guarantee a 
monotonic behavior. One obvious initial condition to consider would be to just reset the 
material's memory. Testing for a 200 × 200 density matrix, resetting shows to give a 
monotonic behavior for all the four section of the loop, for the considered density plane, 
as it can be seen in Figure A.2. This would require for the material to be reset every 
time a new remnant deformation would be needed. In chapter 4, the advantages and 
disadvantages of this constant resetting have been presented. 

 

 

 

 

 

 

 

 

Figure A.2 - Remnant deformation as a function of the maximum applied input, when 
the memory of the material is reset to the negative operational maximum (left plot) 
and to positive operational maximum (right side). Again, each plot divided into the 

sectors that show a monotonic behavior (red and blue in each graph). 
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Appendix B - Error distributions 
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Appendix C - Codes 

 The codes created in Matlab© to achieve the results published  in this thesis are 
here presented. 

C.1 - Pseudo-random Preisach plane 

function P = Random_Preisach_Plane(alpha, beta) 
    % Generates a pseudo-random Preisach Plane 
    % 
    % INPUTS: 
    % 
    % alpha - alpha column vector 
    % beta  - beta row vector 
    % 
    % OUTPUTS: 
    % P - Random Preisach Plane 
     
    N_alpha = length(alpha); 
  
    % Random number of turning points 
    R = 9;  % Changes number of turning points 
    n = round(R*rand()) + 1;  
    flag = round(rand()); 
  
    % Random turning points 
     
    rand_u = []; 
    for i = 1:n 
        if rem(flag+i,2) == 0 
        rand_u(i) = alpha(1+round(0.5*(N_alpha-1)*rand())); 
        else 
        rand_u(i) = alpha(round(0.5*N_alpha*(1+rand()))); 
        end 
    end 
    P = -1.*sign(rand_u(1)).*ones(N_alpha); 
    for j = 1:length(rand_u) 
        u = rand_u(j); 
        if u>0 
            P(alpha<=u,:) = 1;  
        else 
            P(:,beta>=u) = -1; 
        end 
    end 
       
    P(alpha<=0,:) = 1;  
    P(:,beta>=0) = -1; 
     
    Z = triu(ones(size(P))); 
    Z = rot90(Z); 
     
    P = P.*Z; 
end 
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C.2 - Evolving the Preisach plane 

function P = Evolve_P(P,input,index,direction) 
    % Calculates the final state of the Preisach plane when going from  
    % the initial state to a desired input 
    % 
    % The goal of having this as a separate function is so that its 
    % possible to easily change to anotehr model 
    % 
    % INPUTS: 
    % 
    % P         - initial state of the Preisach plane 
    % input     - index input to which we desire to go 
    % index     - alpha and beta index vector 
    % direction - defines if we are moving to the desired input 
towards 
    %             the maximum input (increasing inpput, then back to 
0) 
    %             or minimum input (decreasing input) 
    % 
    % OUTPUTS: 
    % 
    % P - Final state of the Preisach plane 
     
    if direction == 0 
        P(index>=input,:) = 1; 
    else 
        P(:,index>=input) = -1; 
    end 
  
end 
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C.3 - Finding the maximum applied input using Bisection 

function [input, P_final, yf_calc, error, time, steps_check, steps_ab, 
reset_flag] = Find_max_input(density_plane, alpha, beta, P, yf, 
steps_check, steps_ab) 
 
    % Compute the input necessary to achieve desire remnant 
deformation 
    % 
    % INPUTS: 
    % 
    % density_plane     - the denisty plane that models our actuator 
    % alpha             - alpha column vector 
    % beta              - beta row vector 
    % P                 - initial Preisach plane 
    % yf                - desired final remnant deformation 
    % steps_check       - flags if the local minimums of the butterfly 
loop 
    %                   have already been found (0 if not, 1 if yes) 
    % steps_ab          - returns the index in alpha and beta vectors 
that 
    %                   limit the sections the algorithm runs. It's 
only 
    %                   computed 1 time, if steps_check == 0 
    %  
    % OUTPUTS: 
    % 
    % input             - the voltage input needed to be applied to 
    %                   achieve the desired remnant deformation 
    % P_final           - final Preisach plane (for debugging) 
    % yf_calc           - the computed final remnant deformation, 
according 
    %                   to the chosen model and computed input 
    % error             - difference between the desired and the 
computed 
    %                   final remnant deformation 
    % time              - time to compute the input necessary 
    % steps_check       - (check INPUTS section) 
    % steps_ab          - (check INPUTS section) 
    % reset_flag        - Indicates if the result input voltage is 
applied 
    %                   after reseting the material 
     
    % Defining alpha and beta's Zeros, and Z 
============================== 
  
    ab_index = 1:length(alpha); 
  
    alpha_zero_find = alpha; 
    alpha_zero_find(alpha_zero_find<0) = max(alpha_zero_find); 
    alpha_zero = find(alpha_zero_find == min(alpha_zero_find)); 
  
    beta_zero_find = beta; 
    beta_zero_find(beta_zero_find<0) = max(beta_zero_find); 
    beta_zero = find(beta_zero_find == min(beta_zero_find)); 
  
    ab_zero = [alpha_zero, beta_zero];  % saves the index of the zeros 
in 
                                        % alpha and beta vectors 
  
    Z = triu(ones(size(density_plane))); 
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    Z = rot90(Z); 
     
    % Finding Max Input 
=================================================== 
     
    tstart = tic;   % clocks the time for the calculation 
    results = {};   % list to compare different input, and wich is the 
best 
    for reset = 0:1 
        % reset the memory of the material, making it go to one of the 
        % input limits 
        for direction = 0:1 
            % direction defines if we are moving to the desired input 
            % towards the maximum input (increasing inpput, then back 
to 0) 
            %  or minimum input (decreasing input) 
             
            P_temp = P; 
             
            if reset == 1 && direction == 0 
                P_temp = Evolve_P(P_temp,1,ab_index,1-direction).*Z; 
                P_temp = Evolve_P(P_temp,ab_zero(2-
direction),ab_index,direction).*Z; 
            elseif reset == 1 && direction == 1 
                P_temp = Evolve_P(P_temp,max(ab_index),ab_index,1-
direction).*Z; 
                P_temp = Evolve_P(P_temp,ab_zero(2-
direction),ab_index,direction).*Z; 
            end 
             
            % Calculating local minimuns 
            if steps_check == 0 
                % calculates it once, and passes it on to the next 
                % iteneration of the loop, to save time. 
                steps_check = 1; 
                [steps_ab(1,:),steps_ab(2,:)] = 
Find_steps(density_plane, alpha, beta,ab_index,ab_zero,Z); 
            end 
  
            if direction == 0  
                steps = steps_ab(1,:); 
            else 
                steps = steps_ab(2,:); 
            end 
  
            for i = 0:length(steps)-2   % based on the direction, pick 
the 
                                        % section we will be 
evaluating 
                % Bisection starts here 
                 
                % Getting the first 2 limits for bisection 
                top = steps(end-i-1); 
                bot = steps(end-i); 
  
                P_top = Evolve_P(P_temp,top,ab_index,direction).*Z; 
                P_top = Evolve_P(P_top,ab_zero(2-
direction),ab_index,1-direction).*Z; 
                y_top = sum(sum(P_top.*density_plane)); 
  
                P_bot = Evolve_P(P_temp,bot,ab_index,direction).*Z; 
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                P_bot = Evolve_P(P_bot,ab_zero(2-
direction),ab_index,1-direction).*Z; 
                y_bot = sum(sum(P_bot.*density_plane)); 
                 
                flag = 1; 
  
                while flag == 1 
                    mid = round((top+bot)/2); 
                    if mid == top || mid == bot % best possible result 
                        flag = 0; 
                    else 
                        P_mid = 
Evolve_P(P_temp,mid,ab_index,direction).*Z; 
                        P_mid = Evolve_P(P_mid,ab_zero(2-
direction),ab_index,1-direction).*Z; 
                        y_mid = sum(sum(P_mid.*density_plane)); 
                         
                        % Bisection conditions 
                        if y_top > y_bot 
                            if y_mid > yf  
                                top = mid;      
                            else 
                                bot = mid; 
                            end 
                        else 
                            if y_mid > yf  
                                bot = mid;      
                            else 
                                top = mid; 
                            end 
                        end 
                         
                    end 
                end 
  
                P_top = Evolve_P(P_temp,top,ab_index,direction).*Z; 
                P_top = Evolve_P(P_top,ab_zero(2-
direction),ab_index,1-direction).*Z; 
                y_top = sum(sum(P_top.*density_plane)); 
  
                P_bot = Evolve_P(P_temp,bot,ab_index,direction).*Z; 
                P_bot = Evolve_P(P_bot,ab_zero(2-
direction),ab_index,1-direction).*Z; 
                y_bot = sum(sum(P_bot.*density_plane)); 
                 
                % max_index - ab_index that correspond to the desired 
input 
                % P_max     - final Preisach plane state 
                % yf2       - final outup, for calculated input 
                if abs(y_bot-yf)<abs(y_top-yf) 
                    max_index = bot; 
                    P_max = P_bot; 
                    yf2 = y_bot; 
                else 
                    max_index = top; 
                    P_max = P_top; 
                    yf2 = y_top; 
                end 
  
                results{(length(steps)-1)*direction + i + 1 + 4*reset, 
1} = direction; 



42 
 

                results{(length(steps)-1)*direction + i + 1 + 4*reset, 
2} = P_max;  
                results{(length(steps)-1)*direction + i + 1 + 4*reset, 
3} = yf2;  
  
                error = (yf2-yf); % error for the calculated input 
                results{(length(steps)-1)*direction + i + 1 + 4*reset, 
4} = error; 
  
                % Saves the calculated input 
                if direction == 0  
                    results{(length(steps)-1)*direction + i + 1 + 
4*reset, 5} = alpha(max_index); 
                else 
                    results{(length(steps)-1)*direction + i + 1 + 
4*reset, 5} = beta(max_index); 
                end 
                results{(length(steps)-1)*direction + i + 1 + 4*reset, 
6} = reset;  
            end 
        end 
    end 
    results; 
     
    % Check which is the best input, with the smallest absolute error 
    E = [results{:,4}]; 
    error_index = find(min(abs(E))==abs(E)); 
    error_index = error_index(1); 
     
    P_final = results{error_index,2}; 
    yf_calc = results{error_index,3}; 
    error = results{error_index,4}; 
    input = results{error_index,5}; 
     
    reset_flag = results{error_index,6}; 
     
    time = toc(tstart); % ends clock 
  
end 
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C.4 - Generating the Error distributions 

clear all 
clc 
  
% Defining Density Plane 
================================================== 
load('Marco_Fit_200.mat') 
density_plane = Marco_density_plane{1}; 
beta = Marco_density_plane{2}; 
alpha = rot90(beta); 
offset = Marco_density_plane{3}; 
  
% Random Desired Displacements 
============================================ 
  
y_max = -230;   % these valus were empiricly obtained, by observing 
the 
y_min = -800;   % outer butterfly loop 
  
yf_desired = []; 
yf_calc = []; 
initial_P = {}; 
time = []; 
error_dist = []; 
u = []; 
  
% Calculating optimum inputs 
============================================== 
  
steps_check = 0; 
steps_ab = []; 
R = 0; 
N = 64;     % Size of the square actuator grid, 
  
for m = 1:N*N 
     
    yf_desired(m) = (y_max-y_min)*rand()+y_min; % random desired 
remnant 
                                                % deformation 
     
    Pi = Random_Preisach_Plane(alpha, beta);    % random initial 
Preisach 
                                                % Plane 
%     initial_P{m} = Pi;  % only needed for debugging 
     
    [u(m), Pf, yf_calc(m), error_dist(m), time(m),steps_check, 
steps_ab, reset] = Find_max_input(density_plane, alpha, beta, Pi, 
yf_desired(m), steps_check, steps_ab); 
     
    R = R + reset;  % saves the ammount of times it was requested to 
reset 
                    % the material's memory to achieve the best result 
     
%     final_P{m} = Pf;    % only needed for debugging 
     
end 
  
average_error = mean(error_dist)    % average error compared to 
remnant 
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                                    % deformation bandwidth, should be 
                                    % equal(close)to 0 
                                     
standard_deviation = sqrt(sum((error_dist-
average_error).^2)/(length(error_dist)-1)) 
                                    % standar deviation for the error 
                                    % distribution, result presented 
in 
                                    % nanometers 
                                     
std_dev_perc = (standard_deviation/(y_max-y_min))*100 
                                    % standard deviation for the error 
                                    % distribution, result presented 
in 
                                    % percentage compared to remnant 
                                    % deformation bandwidth 
one_percent = abs(y_max-y_min)*0.01; 
less_one_percent_error = sum(abs(error_dist)<one_percent)/(N*N)*100 
                                    % percentage of the result which 
have 
                                    % less that 1% of error of the 
                                    % bandwidth 
two_percent = abs(y_max-y_min)*0.02; 
less_two_percent_error = sum(abs(error_dist)<two_percent)/(N*N)*100 
                                    % percentage of the result which 
have 
                                    % less that 2% of error of the 
                                    % bandwidth 
                                     
total_time = sum(time)              % total elapsed time 
  
%% Plots 
================================================================== 
  
% Error histogram (percental compared to bandwidth) 
figure(1) 
histogram((error_dist/(y_max-y_min))*100, 
21,'Normalization','probability') 
xlabel('Error (% of the bandwidth)') 
title('Error distribution') 
axis([-4*std_dev_perc 4*std_dev_perc 0 0.35]) 
legend(strcat('n = ', int2str(length(alpha)))) 
grid on 
hold on 
rectangle('position',[-1 0 2 1], 'FaceColor', [0 1 0 0.2]) 
rectangle('position',[-2 0 4 1], 'FaceColor', [1 1 0 0.2]) 
hold off 
 

 

 

 

 

 



45 
 

References 

[1] - NASA/JPL-Caltech , "NASA Exoplanet Arquive", 
https://exoplanetarchive.ipac.caltech.edu/index.html (10/05/2019) 

[2] – D. A. Fischer, A. W. Howard, G. P. Laughlin, B. Macintosh, S. Mahadevan, J. 
Sahlmann, J. C. Yee. "Exoplanet Detection Techniques" In: Protostar and Planets VI, 
Heidelberg, Germany, 2013 

[3] - G. Chauvin, A. M. Lagrange, C. Dumas, B. Zuckerman, D. Mouillet, I. Song, J. L. 
Beuzit, P. Lowrance. "A giant planet candidate near a young brown dwarf" In: 
Astronomy and Astrophysics 425, L 29-32, 2004 

[4] – M. Julien, M. Dimitri, M. David, K. Markus, G. Julien. "Adaptive optics in high-
contrast imaging" In: Cornell University Library, 1701.00836v1, 2017 

[5] – B. Lyot. "The study of the solar corona and prominences without eclipses" In: 
Monthly Notices of the Royal Astronomical Society, Vol. 99, 1939 

[6] - D. Spergel, N. Gehrels et al., "WFIRST-AFTA Final Report", 2013 

[7] - C. de Jonge, “Concept of a deformable mirror,” from Internal HDM group reports. 

[8] - P. Curie, J. Curie, " Lois du degagement de l'electricite par pression, dans la 
tourmaline", in Comptes Rendus 92:186-188, 1880 

[9]  D. Skoog, F. Holler S. Crouch, " Principles of Instrumental Analysis", 6th edition, 
Thoivision + Brooks/Cole, 2007,  page 9 

[10] - J. Ewing , "The Strength of Materials", in Cambridge University Press, 1899 

[11] - B. Drinčić et al, "Why are some hysteresis loops shaped like a butterfly?", in 
Automatica, 2011 

[12] - L. Kuik, " Remnant Control of Piezoelectric Actuators in Hysteretic Deformable 
Mirrors", Bachelor Thesis at the University of Groningen, 2017 

[13] - F. Preisach, "Über die magnetische nachwirkung", in Zeitschrift für physik, 94 (5-
6), 277–302., 1935 

[14] - W. van de Beek, " Operator-Based Modeling of Single Loop and Butterfly 
Hysteresis Phenomena in Piezoelectric Actuators", Master Thesis at the University of 
Groningen, 2018 

[15] - W. Press et al., "Numerical Recipes in C: The Art of Scientific Computing", 2nd 
Edition, Cambridge University Press, Chapter 9, 1992 

 

 



46 
 

Image references 

Figure 1: NASA/JPL-Caltech, "Exoplanet Plots" 
https://exoplanetarchive.ipac.caltech.edu/exoplanetplots/ (10/05/2019) 

Figure 2(top): (Unknown Author) "WASP-14b", http://exoplanets.org/detail/WASP-
14_b (10/05/2019) 

Figure 2(bottom): N. Smolenski, "Planetary Transit", 
https://en.wikipedia.org/wiki/Methods_of_detecting_exoplanets#Transit_method 
(10/05/2019) 

Figure 3: M. Kenworthy , "Direct Imaging of Exoplanets" 
https://home.strw.leidenuniv.nl/~kenworthy/direct_imaging.html (10/05/2019) 
(adapted) 

Figure 4: Wikipedia user '2pem' , " Deformable mirror correction", 
https://en.wikipedia.org/wiki/Deformable_mirror (10/05/2019) (adapted) 

Figure 5: J. Ewing, “Experimental researches in magnetism,” in Philosophical 
Transactions of the Royal Society of London, vol. 176, 1885, page 645. 

Figures 7, 8, 9 and 10: C. de Jonge, “Concept of a deformable mirror,” from Internal 
HDM group reports. 

Figures 11: B. Jayawardhana et al., "Modeling and analysis of butterfly loops via 
Preisach operators and its application in a piezoelectric material", in 57th IEEE 
Conference on Decision and Control, pages 6894-6899, 2019 

Figure 12 - W. van de Beek, " Operator-Based Modeling of Single Loop and Butterfly 
Hysteresis Phenomena in Piezoelectric Actuators", Master Thesis at the University of 
Groningen, 2018 

Figure 14 - V. Hassani et al. Modeling hysteresis with inertial-dependent Prandtl-
Ishlinskii model in wide-band frequency-operated piezoelectric actuator. Smart 
Materials Research, 2012 (adapted) 

Figure 15 - W. S. Galinaitis, "Two methods for modeling scalar hysteresis and their use 
in controlling actuators with hysteresis" Unpublished doctoral dissertation in Virginia 
Tech, 1999 (adapted) 

Figure 17 - J. Carstensen, " Interval Bisection Method ", https://www.tf.uni-
kiel.de/matwis/amat/comp_math/kap_1/backbone/r_se19.html (15/5/2019) 

 

 

 

 



47 
 

 

 

 

 

 

 

 

 

 

 

 

[Blank Page] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

 

 

 

 

 

 

 

 

 

 

 

[Blank Page] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


