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Abstract: In this thesis, a novel racing environment for OpenAI Gym is introduced. This envi-
ronment operates with continuous action- and state-spaces and requires agents to learn to control
the acceleration and steering of a car while navigating a randomly generated racetrack. Different
versions of two actor-critic learning algorithms are tested on this environment: Sampled Policy
Gradient (SPG) and Proximal Policy Optimization (PPO). An extension for SPG is introduced
that aims to improve learning performance by weighting action samples during the policy update
step. The effect of using experience replay (ER) is also investigated. To this end, a modification
to PPO is introduced that allows for training using old action samples by optimizing the actor
in log space. Finally, a new technique for performing ER is tested that aims to improve learning
speed without sacrificing performance by splitting the training into two parts, whereby networks
are first trained using state transitions from the replay buffer, and then using only recent expe-
riences. The results indicate that experience replay is not beneficial to PPO in continuous action
spaces. The training of SPG seems to be more stable when actions are weighted. All versions of
SPG outperform PPO when ER is used. The ER trick is effective at improving training speed
on a computationally less intensive version of SPG.

1 Introduction

Reinforcement Learning (RL) (Sutton and Barto
(2018)) is an Artificial Intelligence paradigm which
aims to develop policies for arbitrary tasks using a
reward function as a supervision signal. By trying
different actions in some environment and observ-
ing the outcome, an agent should be able to develop
an idea of what to do in which situation in order to
maximize the reward signal. A popular framework
for this is actor-critic learning (Konda and Tsitsik-
lis (2000)). This method uses two neural network
function approximators, often called the actor and
critic networks; the former selects actions to take in
the environment, and the latter judges the quality
of actions. As the actor interacts with the environ-
ment, the critic learns how its actions affect the re-
ward signal. It can then teach the actor to perform
better actions. The longer this process is repeated,
the better both networks become at their tasks.

Because of the large data requirement and
amount of trial and error necessary to learn a good

policy, RL algorithms are usually trained in a simu-
lated environment. This can be an abstract control
task, a video game or a recreation of the real-world
environment the agent will be deployed in.

In simulated environments, it is easy to provide
the agent with a carefully selected set of features in
order to maximize its performance. It is also pos-
sible to have the agent simply select one out of a
list of predefined actions at each timestep, since the
environment handles the actual execution of the ac-
tions. For robots to act in the real world however,
it is important that they are able to understand
the data produced by their sensors, which is al-
most always of continuous nature. They also often
have to be able to exert precise control over their
actuators in order to interact with their environ-
ment effectively. For these reasons, it is important
to develop reinforcement learning algorithms that
can deal with continuous state- and action-spaces.

In this thesis, a racing environment for the
OpenAI Gym (Brockman, Cheung, Pettersson,
Schneider, Schulman, Tang, and Zaremba (2016))
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baseline is introduced. In this task agents control
a car and try to drive as far along a racetrack as
they can, obtaining rewards based on their speed.
In order to gain the highest reward possible, the
agent has to learn to steer and accelerate or brake
as necessary.

The main focus of this thesis will be the actor-
critic learning algorithms Sampled Policy Gradient
(SPG) (Wiehe, Stolt Ansó, Drugan, and Wiering
(2018)) and Proximal Policy Optimization (PPO,
Schulman, Wolski, Dhariwal, Radford, and Klimov
(2017)). SPG is an algorithm that updates the actor
using action samples chosen by a Q-value network.
It acts as a bridge between Continuous Actor Critic
Learning Automaton (CACLA) (Van Hasselt and
Wiering (2007)) and Deterministic Policy Gradient
(DPG) (Silver, Lever, Heess, Degris, Wierstra, and
Riedmiller (2014)). Two different configurations of
SPG will be tested on the racing environment and
the effect of prioritizing action samples based on
their Q-value will be investigated. SPG will also
be compared to an implementation of PPO that
does not use experience replay (ER), and a version
of PPO with a modified objective function that is
able to utilize ER.

1.1 Contributions of this paper

• The racing environment is interesting for re-
search since it acts as a simple baseline for
continuous control, but can be extended in a
large variety of ways. It also models a real-
world task, making it particularly useful. For
example, an agent could be pretrained using
progressively more complex versions of the rac-
ing environment before being deployed in a real
robot, minimizing the amount of trial and er-
ror required to reach good performance.

• SPG is compared to a state-of-the-art learn-
ing algorithm (PPO), a version of which was
used in OpenAI’s Dota 2 agent OpenAI Five∗.
This comparison is especially important since
both of these approaches are fairly new and
this comparison has not been made before.

• A modification of PPO is introduced that al-
lows for the use of experience replay in a
continuous-action environment.

∗https://blog.openai.com/openai-five/

• An extension to SPG is introduced that aims
to improve training performance by weighting
action samples during the actor update step.

• An extension to experience replay is intro-
duced that aims to improve learning speed
while retaining the advantages of full ER.

1.2 Outline of the paper

Section 2 explains the background of the algorithms
used in this paper. Section 3 describes the environ-
ment, the PPO and SPG modifications, the experi-
ence replay trick and the experimental setup. The
results are presented in section 4, followed by their
discussion in section 5.

2 Reinforcement learning

A reinforcement learning problem is generally mod-
eled as a Markov Decision Process (MDP). An
MDP is a process that takes an agent from one
state to another, whereby the transition probabil-
ities between different states depend only on the
current state and the action the agent takes. For
each state transition, the agent is given a reward
rt. The aim of the agent is to maximize the sum of
future discounted rewards, also known as the gain
(G), at every timestep t:

Gt =

∞∑
k=t

rkγ
k−t (2.1)

γ is the discount factor, which controls how rewards
are weighed. A lower discount factor means that
immediate rewards are preferred, while a discount
factor close to 1 should be used for environments
in which actions have long-lasting consequences.

2.1 Actor-critic algorithms

The algorithms used in this paper are similar to the
advantage actor-critic (A2C) (Konda and Tsitsik-
lis (2000)) learning method. At the core of this ap-
proach are two neural networks: one called the ac-
tor (or policy network) and one called the critic (or
value network). The actor takes the current state
st as its input and returns an action to be taken.
This action at is then passed to the environment, in
which it is executed, producing a new state. This is
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repeated for a set number of steps or until the agent
has reached its goal. This sequence is considered as
one episode. During an episode, every timestep is
assigned a reward rt depending on a reward func-
tion. The rewards are used by the critic to learn to
estimate the gain for each step. The critic is there-
fore defined as:

V π(s) = Êπ[Gt|st = s] (2.2)

The Monte-Carlo learning rule used to update the
critic is:

V π(st)← V π(st) + α(Gt − V π(st)), (2.3)

where α is the learning rate.
The difference between the actual discounted re-

ward for some state and the critic’s prediction for it
can be considered as an estimate of how much bet-
ter/worse than expected it is. This value is known
as the advantage Ât, defined as:

Ât = Gt − V π(st) (2.4)

The advantage can be used to train the actor so
that actions that resulted in unexpectedly good
outcomes are made more likely, and ones that re-
sulted in worse outcomes are made less likely.

2.2 Continuous action RL

Many reinforcement learning algorithms such as Q-
learning (Watkins and Dayan (1992)) use discrete
action spaces, which is sufficient for most tasks that
are used in research. However, in some applications
it is not possible to discretize the action space, ei-
ther because it would result in too many discrete
choices, or because precise control is needed. This
paper will discuss approaches that work in a con-
tinuous action space.

A central question in RL research is the explo-
ration vs exploitation dilemma. In other words, to
what degree should the agent try different things
to learn more about its environment vs use its al-
ready acquired knowledge to perform as well as it
can? This problem can be handled in various ways,
such as ε-greedy or softmax exploration (Tijsma,
Drugan, and Wiering (2016)) (in the case of Q-
learning) or by having the policy network output a
probability for each action to be taken.

In order for the agent to act and explore in a
continuous action space, Gaussian noise could be

added to the output of the actor with a decreas-
ing standard deviation, similarly to ε-greedy explo-
ration. In this paper however a different approach
is used for both PPO and SPG, in which the pol-
icy network is given two output heads which cor-
respond to the µ and σ parameters of a normal
distribution. The actions that are taken in the en-
vironment are sampled from this distribution. The
policy is updated by minimizing or maximizing the
log likelihood of the action being taken, depend-
ing on the advantage. The corresponding objective
function, which needs to be maximized, is

JPG(θ) = Êt[log πθ(at|st)Ât)]. (2.5)

This allows for dynamic control over the explo-
ration factor for each dimension of the action space
separately. If accelerating is always correlated with
higher reward, for example, the actor will reduce
the standard deviation on the throttle output and
focus on steering instead. If the continued acceler-
ation then leads to crashes, the exploration on the
throttle is increased again.

This paper will explore the effectiveness of two
fairly recent actor-critic learning algorithms that
are able to function in continuous spaces, which
will be described now.

2.3 PPO

One problem of traditional actor-critic methods is
that there is no guarantee for policy improvement;
if the advantage at some state is negative, we only
know that the action taken at that state should be
made less likely, but not how much less likely. If
multiple epochs of gradient descent are performed,
it is easy for the gradient update to become too
large, resulting in the policy being moved to an
entirely unexplored (and potentially worse) area of
the action space.

The idea of trust regions was introduced by
Schulman, Levine, Abbeel, Jordan, and Moritz
(2015) to combat this problem. It guarantees an im-
proving policy by constraining the size of the policy
update based on the KL-divergence of the old and
the current policy. This has been shown to improve
performance, however it comes at the cost of sim-
plicity. Trust Region Policy Optimization (TRPO)
is not easy to implement and is also not compatible
with certain network architectures.
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This led to the introduction of Proximal Policy
Optimization (Schulman et al. (2017)), which aims
to combine the simplicity of vanilla policy gradient
with the robustness and efficiency of TRPO. It does
this by defining a probability ratio pt(θ):

pt(θ) =
πθ(at|st)
πθold(at|st)

(2.6)

This ratio denotes the change the policy has gone
through within an episode of training. πθold is the
policy at the beginning of the update. This means
that during the first training epoch, pt(θ) = 1.

The clipped surrogate objective function
JCLIP (θ) is then maximized to update the policy:

JCLIP (θ) = Êt[min(clip(pt(θ), 1− ε, 1 + ε)Ât,

pt(θ)Ât)] + βH(πθ(st)),
(2.7)

where ε is a hyperparameter specific to PPO.

The entropy H of a normal distribution is defined
as:

H =
1

2
ln(2πeσ2) (2.8)

Here, the entropy of the normal distribution given
by πθ(st) is multiplied by a factor β and added to
the objective to discourage premature convergence
(Williams and Peng (1991)). While this is not nec-
essary, it was found to increase performance signif-
icantly.

The ε and β values used in this research can be
found in the appendix, along with all other hyper-
parameters discussed in this thesis.

The clipped objective removes the incentive to
move the policy far away from the old one, allow-
ing for multiple epochs of optimization. Taking the
minimum of the clipped and unclipped terms re-
sults in the objective only being clipped if its value
is improved by the new policy. If the value of the
objective is worse under πθ than under πθold , the
update is allowed to be larger.

2.4 SPG

In Sampled Policy Gradient (Wiehe et al. (2018))
the critic, which is usually a state-value estimator,
instead maps state-action pairs to Q-values. The
term Q-value is used here because the critic archi-
tecture is the same as in Q-learning (Watkins and

Dayan (1992)); it tries to predict the quality (Q) of
a state-action combination:

Qπ(s, a) = Êπ[Gt|st = s, at = a] (2.9)

In the original SPG paper, temporal difference
(TD) learning is used to update the critic in an off-
policy way. TD-learning relies on a process called
bootstrapping to update the critic with regard to
an existing estimate of the gain Gt. This, com-
bined with off-policy learning and function approx-
imation, forms the ”deadly triad” of reinforcement
learning (Sutton and Barto (2018)), which is known
to cause instability and divergence of the critic. In
this research, a variant of SPG that utilizes Monte-
Carlo learning is used instead. The update rule for
the critic is therefore:

Qπ(st, at)← Qπ(st, at)+α(Gt−Qπ(st, at)) (2.10)

In the policy update step, instead of performing
gradient descent using the action that was taken
and its corresponding advantage, actions as are
sampled from the action space. The critic is then
used to obtain a Q-value for each of the actions. The
sampled action with the highest Q-value is used as
the backpropagation target for the gradient update
of the actor:

Target(st) = argmax
as

Qπ(st, as) (2.11)

The objective function for the actor that needs to
be maximized is defined as:

JSPG(θ) = Êt[log πθ(Target(st)|st)]. (2.12)

Several extensions to SPG are explained in the
original paper. The algorithm also allows for any
search strategy to be used for sampling actions. In
this thesis however, the standard algorithm is used
with a simple Gaussian exploration strategy; ac-
tions are sampled around the taken action at with
an initial standard deviation T that decays by some
factor γT after every episode. The original action at
is also included in the Q-value comparison.

SPG is comparable to Deterministic Policy Gra-
dient (DPG) (Silver et al. (2014)) since it uses the
same critic architecture. However, whereas DPG
updates the actor deterministically by taking the
derivative of the value function towards the action
and updating the actor based on this, SPG employs
a more global search strategy. In theory, this makes
it much less likely to get stuck in local optima.
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Figure 3.1: Screenshot of the environment de-
picting the agent in red with rays going towards
the sides of the racetrack.

3 Methods

3.1 Environment

For this research, we introduce a simple racing
game environment, in which agents are represented
as a car. They have to learn to accelerate, brake
and steer as appropriate in order to navigate a race-
track. The agent perceives its environment by the
means of five distance sensors pointing away from
the car at fixed relative angles. They measure the
distance between the car and the side of the race-
track. The current speed is also known to the agent.
This set of sensors has been shown to be optimal
(Togelius, Lucas, and De Nardi (2007)). It also en-
sures that the only information that is utilized to
make decisions is data that would be available to
a real robot, e.g. in the form of LiDAR and mo-
tor sensors. Figure 3.1 shows a visualization of the
environment and the distance sensors.

The actions the agent can take at any given time
consist of throttle control and steering. The former
denotes the velocity the car is trying to reach; the
motor will accelerate or brake as needed until it
matches the desired speed. The latter controls the
rotation of the car and is dependent on its velocity;
the faster it is, the less it can turn. When the speed
is low, there is a minimum turn radius that prevents
it from making u-turns too quickly.

Both the states and actions are continuous and
normalized between -1 and 1. The throttle control
is remapped so that it outputs a value between 0
and the top speed of the car.

The racetrack is randomly generated and is made
of a number of quadrilateral polygons that act as

checkpoints. If the agent drives off the racetrack,
the car is placed in the middle of the last passed
checkpoint with a speed of zero.

The reward given to the agent every timestep is
its current velocity (in pixels/sec) divided by its top
speed. In order to gain the highest amount of total
reward, the agent must learn to manage its speed
to be as fast as possible, while avoiding crashing
into walls. The reasoning behind this choice of re-
ward metric is that it could also be measured by
the agent in a real-world scenario and does not re-
quire the use of external tools or knowledge about
the racetrack. Furthermore, a reward of -10 is given
if the agent leaves the racetrack, however this is
only necessary in this simulated environment where
agents respawn immediately after crashing. A real
robot would lose reward implicitly by being stuck
on a wall; alternatively, another set of sensors could
be used to detect collisions.

3.2 Experience replay methods

In order to use the information gained during learn-
ing as efficiently as possible, it should be used in
multiple episodes of training. A method called ex-
perience replay (Lin (1993)) is often used to allow
this. The idea is that instead of only using the state
transitions from the current episode in memory to
train the agent, experiences are instead stored in a
memory buffer. The buffer keeps experiences until
it is full, at which point the oldest experiences are
replaced. The agent’s value and policy networks can
be trained using this larger collection of data, al-
lowing them to train in a more robust way without
requiring more interactions with the environment.

An issue with this method is that agents are now
slower to incorporate new information. For exam-
ple, assume an agent has been training for a while.
It has improved to the point where it now encoun-
ters a new obstacle that it has never seen before.
With experience replay enabled, only a small frac-
tion of the learning step will actually deal with
this new problem, since the memory still consists
of mostly old experiences. Only once the agent con-
sistently encounters the problem for a while does it
learn how to deal with it effectively. The result is
slower training.

A potential solution to this issue is to split the
training process into two parts: first, the agent is
trained using experiences from the replay buffer.
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Then the same process is repeated with just ”new”
experiences, that is, ones that were obtained dur-
ing the most recent episode. In theory, this allows
the agent to retain the increased robustness gained
from experience replay while also being able to re-
act to new discoveries quickly.

3.3 PPO with experience replay

PPO is an on-policy learning algorithm, in which
the optimizer uses actions that were taken under
the current policy π. In theory, this prevents the
use of experience replay (Mnih, Kavukcuoglu, Sil-
ver, Graves, Antonoglou, Wierstra, and Riedmiller
(2013)). However, in practice it has been shown
that combining on-policy learning with experience
replay is useful under certain conditions (Sovrano
(2019)).

Just using the normal PPO implementation with
experience replay does not work in a continuous-
action environment. The reason for this is that to
compute the loss value, PPO uses the probabil-
ity ratio pt(θ) as described in equation 2.6, work-
ing with the assumption that the action was taken
under πθold . If this is not the case, and the pa-
rameters of the action sampling distribution have
changed since the action was recorded, πθold(at|st)
can quickly tend towards 0, making pt(θ) tend to-
wards infinity. If the advantage associated with at
is negative, the ratio is not clipped, and the loss
takes on an extraordinarily large value, leading to
exploding gradients.

In order to be able to use PPO with experience
replay, the solution we propose is to convert the
algorithm to log space.

Let πθ(at|st) equal the log likelihood of selecting
an action at at state st. The probability ratio is
then defined as follows:

pt(θ) = πθ(at|st)− πθold(at|st) (3.1)

Under this equation, pt(θold) = 0.

The final step is to modify the clipping operator.
It is possible to use a hyperparameter εlog for this
and clip between −εlog and εlog, but to allow for
a fair comparison, the same hyperparameter ε is
used as in default PPO and the objective is clipped
between log(1−ε) and log(1+ε). The full objective

term that needs to be maximized then becomes:

LCLIP (θ) = Êt[min(clip(pt(θ), log(1− ε),
log(1 + ε))Ât, pt(θ)Ât)] + βH(πθ(st))

(3.2)
The log-space transformation itself should not neg-
atively affect PPO’s performance, since log(x) is
monotonic with respect to x. In fact, gradient de-
scent methods are generally better at optimizing a
function in log space when dealing with probabil-
ities, since the gradient of log(p(x)) is more well-
scaled than the one of p(x). Additionally, it is more
numerically stable and not at risk of running into
underflow problems.

3.4 Prioritized SPG

In most on-policy actor-critic algorithms such as
PPO, each action is assigned an advantage based on
its relative value. This advantage acts as a weight
during the actor update step; it controls not only
the direction but also the amount of the policy
shift. For example, if an action led to a significantly
worse outcome than expected, it is more important
to make this action less likely to occur than if it
only slightly worsened the agent’s expected perfor-
mance.

SPG does not have access to advantage values for
sampled actions, and does not require their use: the
estimated quality of the target action Target(st) is
always equal to or higher than that of the original
action at, so it should never be made less likely.
However, weighting the actions might still provide
some benefit, and is made quite easy thanks to the
Q-value estimation: the advantage of an action can
be defined as the increase of its Q-value over that
of the original action at. Therefore,

Ât = Q(st, Target(st))−Q(st, at) (3.3)

and the new objective function becomes:

JSPG−p(θ) = Êt[log πθ(Target(st)|st))Ât] (3.4)

This way, sampled actions that only offer a slight
increase in Q-value do not affect the policy as much,
while ones that are estimated to be more useful are
weighed more heavily.

The SPG variant that uses prioritization will be
denoted as SPG-p.
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Figure 3.2: The five random racetracks used for
the experiments.

3.5 Experiment setup

Due to the fact that SPG requires action samples
to be evaluated by the critic for every step in an
episode, the overhead associated with it is quite
high. This is especially the case when the policy
optimizer is run for multiple epochs. Hence, two
versions of SPG with different hyperparameters will
be compared: one that uses the same learning hy-
perparamters as PPO, meaning the actor update
step is essentially run multiple times in a row with
a low learning rate; and one in which the update
is only performed once per episode, with a higher
learning rate.

These two SPG configurations will be tested
three times each: once without experience replay,
so the actor and critic are updated using only the
most recent episode’s experiences; once with purely
experience replay, meaning that after an episode
the collected experiences are added to the replay
buffer and then the networks are trained using the
whole buffer; and once with the hybrid approach in
which the networks are first trained using only the
replay buffer, and then using new experiences. In
this case, both steps use half the amount of experi-
ences so the total amount of state transitions given
to the optimizer stays constant.

Additionally, the original PPO implementation
using only recent experiences will be compared to
the logarithmic version with and without experi-
ence replay, as well as to the different SPG variants.

An entropy bonus that encourages exploration
was added to PPO’s loss function since perfor-
mance suffered significantly without it. It was de-

termined in prior experiments that this entropy
bonus does not negatively affect PPO’s final per-
formance. SPG did not have any issues of this sort.
In fact it performed slightly worse with the entropy
bonus, hence it was omitted.

All the experiments are repeated five times,
where each time a different racetrack is used. The
different seeds used to generate the racetracks are
the same across algorithms to preserve fairness.
Figure 3.2 shows the racetracks produced by these
seeds.

Multilayer perceptrons (MLPs) are used as func-
tion approximators for the actor and critic. Their
architecture is the same in all algorithms. The critic
network consists of two hidden layers with 100 neu-
rons each and the actor has one hidden layer with
100 neurons. The activation function of the hidden
layers is tanh. No activation function is applied to
the critic’s output layer. The actor uses tanh and
softplus for the µ and σ output heads, respectively.
The critic and actor are optimized independently
of each other after every episode. This means a dif-
ferent number of epochs can be used for the value
and policy networks. The critic is optimized first
so that new experiences are already incorporated
when it is used by SPG to sample actions during
the actor update. Every epoch, a minibatch of data
is sampled from the experiences of the most recent
episode or the replay buffer and used to perform
gradient descent on the networks.

All hyperparameters used for this research can be
found in the appendix. They were initially selected
according to the original papers’ recommendations
and then tuned in preliminary experiments.

4 Results

All reward curves are produced by recording the
reward obtained by the agent in each episode and
averaging the results over the five racetracks.

It is evident from figures 4.1 to 4.4 that weighting
actions based on their Q-values does not have much
effect on training speed or final performance; the
learning curves of the two variants are very similar,
whether one or multiple epochs of training is used.
However, it does seem like training is slightly more
stable with prioritization. This is characterized by
fewer downward spikes in the learning curves and
overall lower variance.
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Figure 4.1: SPG reward curves with multiple
training epochs.

Figure 4.2: SPG reward curves with multiple
training epochs and prioritization.

Since the difference between the results of these
two variants is so small, only SPG-p is used for all
other comparisons.

Looking at the performance of just the multiple
epoch variants of SPG (figures 4.1, 4.2), we can ob-
serve that experience replay gives it a large advan-
tage. Training is more reliable and results in higher
final performances. The hybrid variant that trains
on both recent and old experiences seems to have
equal or even better performance.

In figures 4.3 and 4.4 the learning curves of the
faster variant of SPG that trains using only one
epoch each episode are shown. When experience
replay is used, the final performance here is close
to the one reached by the slower method. However,
the learning process is initially much slower and

Figure 4.3: SPG reward curves with one training
epoch.

Figure 4.4: SPG reward curves with one training
epoch and prioritization.

only overtakes the recent-only performance when
run for a sufficient number of episodes. Here, the
algorithm benefits from the hybrid method, which
seems to combine the learning speed of using re-
cent experiences with the good final performance
of experience replay.

Figure 4.5 shows that the linear space and log
space versions of PPO have nearly identical per-
formance when no experience replay is used. When
SPG is used without experience replay, it is out-
performed by PPO in both configurations. The
multiple-epoch version of SPG offers no improve-
ment over the faster version in this case. It even
seems to be less stable, with some trials suffering
from occasional temporary drops into negative re-
ward, characterized by large downward spikes of
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Figure 4.5: Reward curves of different ap-
proaches when no experience replay is used.

Figure 4.6: Log-space PPO reward curves with
and without experience replay.

the reward curve.
From figure 4.6 it is evident that experience re-

play does not improve the performance of PPO
much. The variant with half new and half old expe-
riences had issues with exploding gradients, despite
using the log space. It was not able to run for 200
episodes without this problem occurring, and was
therefore omitted from the results.

Figure 4.7 shows that the faster SPG method us-
ing the hybrid approach matches the performance
of the slower multiple epoch variant. Both outper-
form PPO from episode 30 onwards.

Table 4.1 outlines the performance of all setups
at the end of training. PPO outperforms SPG when
only recent experiences are available, but it is out-
performed by all SPG variants that use experience

Figure 4.7: Reward curves of SPG variants using
both recent and old experiences compared to
PPO.

replay.

5 Discussion

The results show that while PPO is very proficient
at incorporating new information, its potential is
still hindered; SPG benefits much more from the
use of experience replay, making it a promising al-
gorithm for continuous-action reinforcement learn-
ing.

Prioritizing action samples in SPG seems to lead
to increased stability of the learning process. This
can be attributed to the fact that the policy is only
changed significantly if an action sample is consid-
ered to have high relative quality.

The downward spikes of SPG’s multiple-epoch
performance when only recent experiences are used
might be caused by the critic wrongly classifying
certain places in the state-action space to have very
high values; the actor may be better at finding these
places due to the increased number of total action
samples. The problem does not occur when experi-
ence replay is used because the critic is more stable
thanks to the increased amount of training data.

Figure 4.6 outlines an important issue with on-
policy experience replay. It does not seem to im-
prove the performance of PPO much, if at all. It is
possible that this issue occurs because of the log-
space implementation, however the highly similar
training curves in figure 4.5 indicate that log-PPO’s
performance is representative of linear-PPO’s per-
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formance. Since Sovrano (2019) showed that PPO
can benefit from ER in a discrete action environ-
ment, it stands to reason that the stagnation of
ER performance in this research has to do with the
continuous-action variant of PPO.

When SPG is given more samples to train on
(e.g. using experience replay), the value network
gets more and more accurate. The policy network
improves as well as a direct result of this, since it
is trained using samples chosen by the critic. In
PPO, on the other hand, the policy network can
only be trained using actions that have been taken
in the past. As both the actor and the critic learn,
more and more of the old actions will be considered
as ”bad” and assigned a negative advantage. This
means that instead of the policy moving towards
the best possible action, like in SPG, it only moves
away from bad actions, which does not guarantee
policy improvement.

As the policy changes, the old action samples
not only become relatively worse, but also become
less likely to be chosen by the current policy. When
the probability of choosing an action πθold(at|st) is
extremely low, the probability ratio becomes very
large. Combined with a negative advantage, this
causes a high loss value, which moves the neural
network weights by a large amount. This makes
the action even more unlikely in the next epoch,
leading to a snowball effect that causes exploding
gradients. While the effect is reduced significantly
by using log space, allowing for the use of experi-
ence replay, the variant using alternating old and
new experiences still suffered from this problem.
This can be attributed to the old and new actions
pushing the gradients in different directions, mak-
ing each other more and more unlikely.

The core issue preventing efficient use of PPO
with experience replay in a continuous environment

therefore seems to be twofold: firstly, actions taken
under a different policy are not able to update the
current policy efficiently; and secondly, actions with
a very low likelihood of being chosen under the cur-
rent policy affect the gradients more because they
lead to a large loss value.

As shown in table 4.1, using multiple epochs of
gradient descent on SPG seems to yield an improve-
ment in learning capability. It is not hindered by
large policy updates in the way that a vanilla actor-
critic implementation would be. This can likely be
attributed to the action sampling; instead of mov-
ing towards or away from the same actions multiple
times, each epoch uses different samples from the
action space, which ultimately converge to a more
global solution. This does come at the cost of in-
creased computation overhead however.

In situations where computation time is critical,
the single-epoch variant of SPG can be used. It is
able to achieve a high performance when used with
experience replay, but only after a large number
of episodes. Here, the trick of using half old and
half new experiences to train the actor seems to in-
crease learning speed significantly. Figure 4.7 shows
that when this tweak is applied, the learning curve
is very similar to the one of the slower, more ac-
curate SPG variant. It is able to outperform PPO
relatively quickly this way.

Despite this, computation time is usually not the
limiting factor of reinforcement learning and the
trick does not seem to help much when used on
the higher-performance SPG variant. However, this
might be a problem with the task itself; the aim of
the trick is to facilitate overcoming new obstacles
that require adaptation of the policy. But the na-
ture of the racing task is such that once the agent
has learned to steer and slow down when it needs
to, there is not much left to learn. The rest of the

PPO,
linear

PPO,
log

SPG,
single

SPG,
multiple

SPG-p,
single

SPG-p,
multiple

Recent 121.5± 5.8 119.5± 4.6 94.4± 3.8 91.9± 7.5 101.2± 2.6 95.8± 4.7

Memory 124.2± 4.9 133.5± 5.7 138.2± 4.9 130.6± 5.2 141.1±5.7

Both 132.1± 6.7 140.9± 4.0 129.1± 6.9 135.9± 6.2

Table 4.1: Final performance of all configurations with standard error values. The rewards of the
last 20 episodes of training are averaged to obtain these values.
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training is then only focused on tweaking the policy
slightly, which the trick is not very useful for.

It would be interesting to research if Prioritized
Experience Replay (Schaul, Quan, Antonoglou, and
Silver (2015)) would improve on the currently used
ER variants. Additionally, the performance of SPG
could be investigated when compared to other off-
policy methods that allow for continuous action
spaces, such as NAF (Gu, Lillicrap, Sutskever, and
Levine (2016)), Trust-PCL (Nachum, Norouzi, Xu,
and Schuurmans (2017)), or TD3 (Fujimoto, Hoof,
and Meger (2018)).
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Appendix

Hyperparameters

General

Steps per episode 200
ER buffer size (state transitions) 10000
Discount factor γ 0.9
Frame skip 0

Network setup (all algorithms)

# Critic hidden layers 2
# Actor hidden layers 1
# Neurons per hidden layer 100
Hidden layer activation function tanh
Optimizer Adam

PPO, both versions

Critic learning rate 0.0005
Actor learning rate 0.001
Entropy factor β 0.02
Epsilon ε 0.2
# Value epochs 50
# Policy epochs 10
Minibatch size 200

SPG, one epoch

Critic learning rate 0.0005
Actor learning rate 0.01
Entropy factor β 0.0
# Action samples 5
Initial exploration temperature T 1.0
Exploration temperature decay γT 0.01
# Value epochs 50
# Policy epochs 1
Minibatch size 200

SPG, multiple epochs

Critic learning rate 0.0005
Actor learning rate 0.001
Entropy factor β 0.0
# Action samples 5
Initial exploration temperature T 1.0
Exploration temperature decay γT 0.01
# Value epochs 50
# Policy epochs 10
Minibatch size 200

Code

The code for this project, including the rac-
ing task and SPG and PPO implementations as
well as the results obtained can be found at
https://github.com/mario-holubar/RacingRL.
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