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1 Introduction

Multi-agent modeling, or also called agent-based modeling, is a way of ex-
amining how complex large-scale phenomena emerge from the interactions
of interdependent individuals. While simple models can also be mathemati-
cally analyzed, most agent-based models rely on computational simulations.
In social science, the first uses of this methodology date back to the sixties
[6] but the creation of agent-based social simulations (ABSS) first gained
real prominence with the introduction of the “Sugarscape” model by Joshua
Epstein and Robert Axtell in 1996 [4].

ABSS are at the intersection of social science, agent-based computing
and computer simulations and have the advantage that they can be used
to test the logical validity of hypotheses, which helps to build and improve
theoretical foundations of further experiments and informs the design of
empirical research. One specific niche in the research on social phenomena
is the field of opinion dynamics, where the polarization of opinions of a
population and the emergence of consensus through social influence are of
special interest. Social influence describes the phenomenon that individuals
“modify their opinions, attitudes, beliefs or behaviour towards resembling
more those of others they interact with” [7]. One of the most influential
investigations into the macro-level effects of social influence on the opinion
distribution of a population was presented by Axelrod in 1997 [2], when
he asked the question how individuals who can only grow more similar,
still exhibit cultural differences on a global scale. Since then, the research
community is still tackling this question with new approaches and different
kinds of models.

Much of this work builds on previous models and theories, claiming to
alter only parts of it to check new assumptions and hypotheses. However,
for implementing a computational simulation, the theory and all assump-
tions must be described explicitly and formally, with every parameter having
concrete values. Often researchers make implicit assumptions in their ex-
periments that are not necessarily reported. A survey by Marco Janssen in
2017 showed that only 10 percent of all publications on agent-based mod-
eling actually make their source code publicly available [12]. This leads to
the problem that other researchers have to start from scratch when they
want to replicate, modify or extend existing simulation models. When these
models are recreated, often only from a verbal description, small changes in
the implementation can change the outcome of the experiment. Replication
and extension of other scholars’ simulation models is therefore a difficult
and error-prone process. A framework for the creation of these experiments
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helps to alleviate some of these problems as the researchers do not have to
re-implement whole simulations from scratch.

Another issue of computational simulations is their scalability. Network
size and connectivity of the network are themselves variables that can in-
fluence the dynamics of processes in the network. Because of the stochastic
elements of the simulations, some outcomes have a higher probability to hap-
pen in smaller networks simply by chance. Therefore we cannot necessarily
infer from simulations with 100 agents what happens in a population with
100,000 agents. Results of smaller experiments thus have to be explicitly
confirmed for experiments with a larger network of agents. For simulations
with high computational complexity, up-scaling by such proportions can lead
to enormous run-times and the need for powerful computational resources.
Scalability in this context then means, that it is possible to execute an ex-
periment with more computational resource, proportional to the up-scaling
in network size or connectivity, so that the run time of the experiment does
not increase extensively.

In this report, I will present a python package with the working title
“MAMF - A multi-agent modeling framework”. This package is a modular
framework for the creation of agent-based simulations on social influence,
that offers researchers to exchange sub-parts of a simulation specification,
while keeping everything else as is, and at the same time a scalable way of
executing the simulation.

While there already exist many frameworks for the creation of multi-
agents system models like Ascape [16], Swarm [1], and the Multi-Agent
Simulation Suite MASS [10], none of them specialize on the topic of opinion
dynamics. The advantage of this framework over the existing ones is that it
already offers pre-implemented building blocks and especially the infrastruc-
ture around setting up a simulation that other researchers can use, which is
an attempt to unify methodology and theory of a growing field in the area
of computational social science.

The following section will give background information that is useful for
understanding the architecture of the software package on the one hand,
and an overview of the sociology literature on which the implementation
of many components of the MAMF package are built on the other hand.
Section 3 presents the framework’s general structure, each component in
detail and also a validation of the results that it produces. In section 4 and 5 I
evaluate the two main requirements for this package, namely its modularity
and scalability respectively. The report finished with a discussion and a
conclusion.
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2 Literature Review

The aim of the package presented here is to be on the one hand modular and
extensible and on the other hand scalable in execution time. Therefore I will
first address the literature on programming methods that tackle these issues.
Afterwards I refer to the sociology literature that the already implemented
components of are based on.

2.1 Software Architecture

Since the framework is devised in a way that combines multiple exchange-
able components, interfaces that prescribe input, output and behaviour of
each component need to be defined. Each component will then have mul-
tiple realizations that all implement the same interface. A classic design
pattern used for the creation of different objects that share the same inter-
face is the factory method pattern already described by the “Gang of Four”
[8]. Situations where this pattern is applicable have the following charac-
teristics. A client (an application or component of an application) depends
on a concrete implementation of an interface, but which implementation is
used is variable, and further implementations could be added. In this situ-
ation a factory method is implemented that is responsible for instantiating
the implementations of the interface. The client can then request a specific
instantiation from the factory method with the help of an identifier, that
determines which implementation is chosen. The factory method returns
the concrete implementation according to the value of the identifier to the
client, who can then use that object just like any other object. This pat-
tern offers encapsulation and separation of concerns because the object and
its creation are decoupled from another. The client does not care how the
object is created, and they do not need to change if the object changes, as
long as the object still satisfies the interface. If another implementation is
added, that implementation has to be added only in one place, namely the
factory method, which makes maintenance of the code base much easier.

Another fundamental principle of programming is the SOLID principle
[14], which is more of a set of programming guidelines. One of these guide-
lines, the interface-segregation principle (ISP) [14] is very important for a
modular and extensible system. Since interfaces typically force anyone that
is using that interface to implement any function that it specifies, large in-
terfaces potentially run into the problem of forcing individual clients, i.e.
the class that implements the interface, to implement methods it does ac-
tually not need. The ISP therefore recommends to keep interfaces as small
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as possible, creating so called role interfaces that just define one method.
This avoids situations in which the change of one part of an interface forces
every of its clients to change as well, even though they might not even be
addressed by that change.

Besides being modular and extensible, the other requirement for the
simulation framework presented here is a scalable execution, meaning that
it is possible to increase the network size, network connectivity or number
of simulations without an explosion in computation time as long as the
computational resources are increased accordingly. This can be achieved by
parallelizing the execution of the experiment and distributing the necessary
computations to multiple cores or different machines. The research fields of
parallel computing and distributed computing study how this can be done
optimally, so a short introduction into this topic follows.

Since the yearly increase of processing power of computer chips has been
curbed by physical limitations, manufacturers are relying on putting multi-
ple cores into one central processing unit to increase performance [15]. Each
core is able to run its own tasks independently from the other cores and if
they need to communicate they can do it easily because they are all located
on the same chip. Despite the fact that this hardware architecture has
potential for running computationally intensive programs, most programs
cannot by nature exploit this potential. They often have to be modified or
completely rewritten in order to be executed parallely.

Although there is no clear distinction between parallel computing and
distributed computing, there seems to be agreement that parallel comput-
ing entails that multiple tasks are run on cores that are physically close to
each other, usually on the same machine, while distributed programming
describes the execution of independently created programs running on dif-
ferent loosely coupled machines that work together on solving the same tasks
[15].

Another distinction can be drawn along the lines of memory. The pro-
cessing units can either all share the same working memory, so that each unit
can read and write to each location in the shared memory, or alternatively
each unit has their own working memory. In a shared-memory system the
processing units can be coordinated through updates of the same memory lo-
cations while in a distributed-memory system the units must be coordinated
explicitly with messages through a network [15].

In distributed computing programs, each machine in the system, also
called node, will definitely have their own memory, while a parallel program
can run on a shared-memory system or a distributed-memory system.

Broadly generalized this leaves us with two ways of parallelizing a task.
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Either by running it on multiple cores or processors of one computer (multi-
processing) or by distributing it to a cluster of multiple computers. Further-
more, there is a third way applicable to programs where coordination and
communication does not matter at all. These are so called “embarrassingly
parallel” programs. This is often the case if we want to run the same pro-
gram with different parameter inputs, or trivially repetitions with the same
parameters, because then we can just run one instance of the program on
each processing unit available.

The framework presented in this report will make use of a mixture of
these three approaches by calling a number of nodes in a cluster indepen-
dently from each other with different parameters. Every node then computes
its part of the problem on all of its cores in a multi-processing approach.

2.2 Types of Social Influence Models

The social influence process as it is implemented in this package is based
mainly on the paper “The Dissemination of Culture” by Robert Axelrod,
published in 1997 [2], and subsequent variations and extensions of it. Ax-
elrod tried to find an answer to the question why we observe high diversity
in culture on the macro level even though individuals tend to be influenced
by others, getting more similar culturally on the micro level. He created a
agent-based model and wanted to find out whether it is possible to observe
multiple distinct cultures if the only assumptions are that culture is repre-
sented as a set of multiple categorical traits, more similar people are more
likely to interact (homophily), which also includes the assumption that there
is no interaction between maximally dissimilar individuals, and people that
interact a lot grow more similar (positive influence). Each agent has a vec-
tor with multiple features that could represent for example favourite band,
favourite dish and favourite football club, that can take values from a finite
set of traits e.g. Iron Maiden, Jethro Tull or Beatles for favourite band,
spaghetti carbonara, hamburger or sauerkraut and sausages for favourite
dish, etc. His simulation has discrete time steps and in each step an agent is
picked randomly from the network, another agent from their neighborhood
is picked and with a probability proportional to the share of cultural traits
they have in common, the agent selected first adopts a trait, they previously
disagreed on, from the other agent. If their cultural similarity is 0, i.e. they
do not share any traits, they cannot influence each other. As soon as the
cultural similarity between each connected agent in the network is either
1 or 0, the simulation converged because no influence can happen since all
agents are either totally similar, or totally dissimilar.
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Axelrod’s results showed that higher numbers of features decrease the
overall cultural diversity in equilibrium because a larger feature vector in-
creases the probability that there is at least some cultural overlap, enabling
agents to become more similar. If the number of traits per features is higher,
the opposite effect is true and there are multiple clusters of agents with the
same feature vector at the point of convergence.

Multiple follow-up simulation experiments were carried out after this
study. One important addition was the introduction of different, so-called,
“communication regimes” that determine how the agents interact. Flache
and Macy [5] tested a model where an agent was not influenced by one other
agent, but rather by multiple of its neighbors at the same time. Keijzer,
Mäs and Flache [13] implemented a communication regime representing the
broadcasting communication on social media, where one agent influences
multiple other neighbors per time step.

Other modifications include the use of continuous instead of categorical
features, often combined with a threshold value at which it is assumed that
agents are too dissimilar to still interact [9, 3]. At this threshold the ’bounds
of confidence’ into the expertise or integrity of the other person are reached,
so they are also called “bounded confidence” models [7].

The literature offers many more extensions such as a public and private
opinion with different influence functions [17] or models of negative or also
called repulsive influence [11] and there are still many possible assumptions
and theories unexplored. This framework therefore aims to facilitate the
combination of different model assumption, and the extension of the theory
that has been tested so far.

3 The Framework

This package’s purpose is to provide a framework for the creation of multi-
agent simulation experiments on social influence and similar social processes.
The design of the framework rests on the idea that the core process of any
social influence model is on an abstract level the same. On the structural
level, there is always a number of agents with certain attributes in a network.
In each time step of the simulation an agent from the network will be picked,
a subset of the other agents in the network are chosen, and then they exert
either one-directional or bi-directional influence on each other.

The framework builds upon the python package networkx, which is a
tool for the creation of graphs with nodes, edges and possibly attributes for
both of these. It furthermore offers functions to analyze and visualize these

6



graphs and thus provides essential elements for a program that is supposed to
simulate and analyze the processes that emerge in a social network of agents.
Additionally, the pandas package is used to create so called “DataFrames”,
which are tabular data structure objects used in this case to store the output
of the simulations.

The main goal of this package is the possibility to exchange specific parts
of an existing model, or to extend it with new parts, while keeping everything
else the same. To achieve this modularity, the process of the simulation is
split into different components, so that each component is only responsible
for one maximally reduced part of the process. For these components a
generalized interface is defined that prescribes the input, behaviour and
output of the components’ functions. This way, each component can be
implemented in various ways, and the concrete realization can be replaced
as long as each implementation adheres to the defined interface.

To achieve easy handling of multiple concrete implementations of the
same interface, the factory method pattern was used. Since python does not
support interfaces, abstract base classes serve as the interfaces. An abstract
base class is a class with fields and methods like any other class except that
it can also contain abstract methods that have no body and are marked
with a ”@abstract” decorator tag. Any class that inherits from the abstract
base class must then provide an implementation for each abstract method
or it cannot be instantiated. For each component a factory method exists
that receives a string as an identifier and based on this identifier chooses the
concrete implementation of the component.

Since all methods of the components are “static” methods, i.e. class
methods, and are thus not called on an instance of the class but the class
itself, the factory method pattern is here not applied in its pure form, be-
cause the factory methods do not return instances of the requested classes
but rather call the relevant method on that class and return the output, if it
exists. This is also the reason why in most components the factory function
is named after the main method of the respective class it produces. It can
be distinguished by its additional parameter “realization” which serves as
the identifier for the factory.

As every implementation of the functions could be parameterized in their
own specific way, which could not be captured by a generalized abstract func-
tion, there needs to be an option to pass implementation-specific parameters
to these functions. In python this can be elegantly done with the **kwargs
argument shown in listing 1. It stands for “key-worded arguments” and is a
dictionary object containing as the dictionary key the name of a parameter,
and as the dictionary value the parameter’s value. This way, the concrete
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implementation of an abstract method can receive multiple parameters as
arguments additional to the arguments specified by the interface for that
function.

1 # a function defined with one necessary argument and the kwargs

argument

2 def kwargs_example(parameter1 , ** kwargs):

3 print("parameter ’parameter1 ’ has value %s" % parameter1)

4 for key , value in kwargs.items():

5 print("parameter ’%s’ has value %s" % (key ,value))

6 # can be called like this

7 kwargs_example("first_parameter",

8 parameter2="second_parameter",

9 parameter3="third_parameter")

10 # or with an unpacked dictionary (unpacking is achieved through

the two asteriks):

11 parameter_dict = {"parameter2": "second_parameter",

12 "parameter3": "third_parameter"}

13 kwargs_example("first_parameter", ** parameter_dict)

14

15 # and produces the following output:

16 parameter ’parameter1 ’ has value first_parameter

17 parameter ’parameter2 ’ has value second_parameter

18 parameter ’parameter3 ’ has value third_parameter

Listing 1: Example code showing how the **kwargs argument can be used

Figure 1 shows the overall structure of the package with all of its relevant
subpackages. Not shown are folders related to documentation purposes and
test, as well as the setup.py file that is needed for installing the package.The
“ init .py” files are empty files that designate which folders function as
python (sub)packages

The framework specifies two components for the initialization of a sim-
ulation (network init and agents init) four components for running a simu-
lation (focal agent sim, neighbor selector sim, influence sim,
network evolution sim) and a component that is responsible for determin-
ing how “dissimilarity” or “distance” is defined (dissimilarity component).
There is one subpackage for each component plus an additional subpackage
called tools that contains various functionalities that are not crucial for the
execution of a simulation but support it in some way. While these com-
ponents could be imported and used directly by the user, the package also
offers two modules containing classes that automatically plug the compo-
nents together and allow for an easier setup of either a single simulation
or an experiment consisting of multiple simulations. These modules are
therefore called Simulation and Experiment and can be found in the root
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package.
Except for the network init component and the tools subpackage, the

subpackages are all structured in the same way. Each has one module with
the same name as the component which contains the abstract base class and
a factory function. Furthermore, it has one module for each concrete imple-
mentation of the abstract base class, distinguished by their names in camel
case instead of snake case. The reason for separating the implementations
from the base class into different modules was to have independent imports
and to avoid that it turns into one very long, unreadable, module as more
implementations get added to the package.
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mamf

network init

init .py

network init.py

agents init

init .py

agents init.py

RandomCategoricalInitializer.py

RandomContinuousInitializer.py

focal agent sim

init .py

focal agent sim.py

RandomSelector.py

neighbor selector sim

init .py

neighbor selector sim.py

RandomNeighborSelector.py

influence sim

init .py

influence sim.py

Axelrod.py

BoundedConfidence.py

network evolution sim

init .py

network evolution sim.py

NetworkHomophily.py

dissimilarity component

init .py

dissimilarity calculator.py

HammingDistance.py

EuclideanDistance.py

tools

init .py

NetworkDistanceUpdater.py

OutputMeasures.py

ClusterExecutionScript.py

init .py

Experiment.py

Simulation.py

Figure 1: The relevant package structure.
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Figure 2: A UML diagram showing which class or module calls which mod-
ules. The Experiment class is left out because it does not call any other
classes’ methods but only creates Simulation instances.
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3.1 Components

Figure 2 shows a diagram that depicts which class calls methods of other
classes or modules. Most of the function calls go out from the Simulation
class, but the influence sim module also has access to the DissimilarityCal-
culator class and the NetworkDissimilarityUpdater because it might need to
calculate and update the dissimilarity between agents in the network. Each
subpackage and module of the main package will be described in more detail
in the following sections.

3.1.1 network init

The task of the network init component is to create the networkx graph
object around which the rest of the simulation process revolves. While this
package is still designed along the lines of the factory method pattern, it
is the only package without an abstract base class because the product is
the already defined networkx graph. Nevertheless, there are still differ-
ent kinds of networks that can be created. This happens in the functions
” produce grid network”, ” produce ring network”, and
” produce spatial random graph” shown in figure 3. The factory method
in this module is called ”generate network” that takes the desired network
topology and potential parameters for its creation as an argument and then
calls one of those three function to return the respective graph object. Fur-
thermore it includes the function ”read network” that either takes a path
to a file containing an edge list or a numpy array with an adjacency matrix
as arguments and from this creates a networkx graph.

This subpackage is the only component where the products and the fac-
tory function are together in the same module. The reason for this is that
the range of possible network structures that the package would offer in a
finished version is rather limited. If a user wants a very specific network
topology they should create it manually and pass it to the Experiment or
Simulation class, that will be later described, as an argument. It is not the
task of this package to offer a large range of possible network topologies.
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Figure 3: The functions of the network init module.

3.1.2 agents init

In the agents init component the attributes of the agents in the network are
initialized. The module contains the abstract base class AttributesInitializer
which has two already implemented method ”set categorical attribute” and
”set continuous attribute” that give to each agent in the network a new at-
tribute and draw its value from a given distribution. These methods can
be used by the concrete implementations of this class. The base class fur-
ther defines the ”initialize attributes” method. Its arguments are the graph
object on which the agents shall be initialized and a key-worded arguments
dictionary, that contains potential arguments to the concrete implementa-
tions of this method. The implementations then determine how exactly the
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attributes of an agent get initialized, e.g. randomly, dependent on the posi-
tion in the network, or correlated to the attributes of its neighbors. Which
implementation is used to initialize the agents can be decided with the fac-
tory function that is also located in the agents init module. The whole
structure of the subpackage is visualized in fig. 4

Implementations of the AttributesInitializer can potentially be used to
set all kinds of attributes, also those that are not able to change through the
process of influence as for example sex and age. Combinations of discrete
and continuous attributes are therefore theoretically possible, however in the
current version there is no DissimilarityCalculator that supports a mixture
of both types.
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Figure 4: A more detailed diagram of the agents init subpackage. The
following components’ subpackages are designed in the same way.
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3.1.3 focal agent sim

The only responsibility of this component is to pick the focal agent for the
next influence step from the network. Specified by the interface FocalA-
gentSelector is thus only the ”select agent” method which returns the index
of the chosen agent. This focal agent will then either be the source or the
target of influence, depending on the communication regime. The agent
could be chosen randomly, or from a distribution that makes e.g. agents
with more ties more likely to be picked, reflecting the potential mechanism
that more popular agents get more chances to influence, or be influenced.
The decision of how the agent is chosen will then be made in the concrete
implementations of the FocalAgentSelector

3.1.4 neighbor selector sim

Similar to the focal agent sim component, this component is responsible for
choosing the partner(s) of the focal agent for the influence process. The
abstract base class NeighborSelector defines the ”select neighbors” method
that receives the index of the focal agent and the communication regime
under which the agents operate, and returns the indices of the selected
agents. In the one-to-one case, one single neighbor from the focal agent
is chosen, while in the one-to-many and in the many-to-one case multiple
neighbors are chosen.

The NeighborSelector’s responsibility is explicitly not to select the neigh-
bors based on their dissimilarity to the focal agent, because this is consid-
ered to be part of the influence component, described in the next subsection.
Rather this component focuses only on the attributes of the actors which
could e.g. select agents from the opposite sex with a lower probability to
model segregational mechanisms.

3.1.5 influence sim

The influence component certainly has the most important task in the pro-
cess and has also the most extensive interface. The module contains the In-
fluenceOperator as an abstract base class which defines the ”spread influence”
method. It receives the indices of the focal agent as well as those of the se-
lected neighbors, a list of attributes that are allowed to be changed in the
influence step, the communication regime, a dissimilarity calculator that will
be used to update changed distances, and a key-worded argument dictionary
for potential parameters of the concrete influence function. From that it de-
termines whether the actors are able to influence each other, by checking
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their dissimilarity, decides how they influence each other, e.g. determine the
attribute that will get modified, and then changes the influenced attributes
on the respective agents. The list of attributes is needed because the agents
could potentially have attributes like sex or age that are not able to be
influenced.

In an earlier version, the abstract class defined the ”one to many” method
and the ”many to one” method, as any other communication regime is just
a special instance of one of these two. However, since some influence func-
tions are not meant to work in both regimes, the interface was too large,
violating the interface segregation principle, so it was reduced to just one
method that takes the communication regime as a parameter.

3.1.6 network evolution sim.

The idea behind this component is that the network structure might change
over time. The abstract base class ”NetworkModifier” defines the method
”rewire network” that removes existing ties or adds new ones depending on
the attributes of the agents, their position in the network, or simply ran-
domly. Its arguments are simply the network that will be modified and a
key-worded arguments dictionary with possible parameters. This way mech-
anisms like homophily in tie selection can be incorporated in the simulation.

3.1.7 dissimilarity component

The dissimilarity component contains the ”DissimilarityCalculator” class
which is the abstract base class that defines the interface for the classes that
are used to determine how dissimilar two agents are to each other. This
dissimilarity could either be based on their attributes or other conceptions
of similarity, e.g. how many neighbors they have in common.

The interface defines two methods, ”calculate dissimilarity”, that cal-
culates the dissimilarity between two agents and returns that value, and
”calculate dissimilarity networkwide” which is called once after the initial-
ization of the network. It calculates the distance between each neighbor in
the network and sets that value as an attribute on the edge between them.
This way it can be easily accessed by the influence function and does not
have to be computed each time, which saves computation time.

3.1.8 Simulation and Experiment

All of the previously mentioned components can be seen as building blocks
to create one’s own simulation of social influence processes, so they can all
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be used directly. However, to increase user experience quality and to have
a simple and accessible way to set up the experiments, the package includes
the Simulation class and, as a wrapper around it, the Experiment class. All
parameters and methods of these classes are shown in fig. 5.

Figure 5: A UML diagram with parameters, their types and default values,
and the methods of Simulation and Experiment class

The constructor of a Simulation takes among other arguments the spec-
ifications of which realization of each component should be used. This can
be either done by passing a string that will then be used as an identifier
for the respective factory methods, or by passing an instance of a class the
implements the respective interface. This way the user can implement their
own realization of a component and still use the Simulation class to auto-
matically run the simulation.

Other parameters of this class include the communication regime, the
maximum number of iterations it shall run, and more importantly, it gets
a dictionary that contains all additional parameters that need to be passed
to the specific simulation components. This dictionary contains the name
of the parameter as a key and the value for it as a value. Each component
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receives this dictionary and accesses via the key the parameter it needs.
After a Simulation object is created, the user has two options for running
the simulation. Either the simulation can be initialized and run manually
with the two functions ”initialize simulation” and ”run simulation step”, or
one can use the fully automatic ”run simulation” method that itself calls the
previous two methods. For the use of this method a stop-condition has to be
determined which defaults to running the maximum number of iterations.
The other currently available stop conditions either check whether influence
is theoretically still possible and stop if it is not, or check whether the
network has not changed for a certain amount of time steps.

Because a proper experiment does not consist of only one simulation, the
package also offers with the Experiment class a way to easily create and
run multiple simulations, if needed, at the same time. The Experiment
takes almost the same arguments as the Simulation, but the difference is
now that the parameter values can be a list of multiple values. Inside the
” create parameter dictionaries” method of the class, a dictionary is created
for each possible combination of values from these lists. All of these dictio-
naries are then combined in a list. Since the results of one simulation do
not have much meaning because of the stochastic nature of the process, an
additional argument determines the number how often each simulation shall
be repeated.

The Experiment class has also two methods for the user to run all sim-
ulations. The ”run” method either creates and runs one simulation after
the other for each parameter combination from the input parameters, or it
runs multiple simulations in parallel on the different cores of the machine
if the “parallel” parameter is set to “true”. The number of cores that shall
be used for that can be set with the ”num cores” parameter. This method
makes use of the ”multiprocessing” python package, which allows for the
utilization of all processors of the machine on which the experiment is run.
Each processor creates and runs a simulation with one parameter combi-
nation from the list of parameter dictionaries, returns the results and then
receives the next parameter combination to run. All results are combined
to one DataFrame object.

Alternatively one can also use the ”run on cluster” method if the exper-
iment shall run on a SLURM-based high performance computing cluster.
SLURM is a workload manager for supercomputers and computer clusters.
It is a software used in the majority of the TOP500 supercomputers to dis-
tribute jobs, i.e. computational tasks, to the right machines in the cluster.
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Other workload managers that use a similar interface for submitting jobs
can also be supported in future versions.

By distributing the experiment on a cluster its execution can be paral-
lelized on multiple machines instead of only one. If this method is called,
the list of parameter combinations is shuffled, split into chunks and then
for each chunk, a job is submitted to the cluster manager. Each job calls
the ClusterExecutionScript script contained in the tools subpackage, which
runs all parameter combinations from one chunk in parallel on one machine.
Each job creates their own csv file as output, which have to be merged to
one file to get the results for the whole experiment. The list of parameter
dictionaries is shuffled before it is split into chunks, so that each job takes
approximately the same time.

The ”run on cluster” takes parameters that modify the settings for the
job on the cluster such as the desired partition from which the node shall
be selected and the time that is allocated to the job. Other parameters
determine where the files that are produced by the method will be stored.
The most important parameter is the “chunk size” because it will specify to
how many different machines on the cluster the execution of the simulations
will be distributed.

3.1.9 tools

The tools package includes all modules that are not necessarily part of a
simulation but still support it in some way. The NetworkDistanceUpdater
contains the function update dissimilarity() which receives a list of nodes and
a DissimilarityCalculator and then uses that calculator to recalculate the
dissimilarity between the agents in the list and all of their neighbors. This
function is usually called by the InfluenceOperator after the feature vectors
of one or multiple agents changed. Furthermore, the module contains the
check dissimilarity() function which checks for every edge in the network
whether its dissimilarity attribute is lower than a given threshold. If all of
them are lower, False is returned because no change is possible anymore.
This function is called by the Simulation class to check for convergence.

Another modules contains a function for each output measure that is
taken from the network either after convergence or in-between time steps
and is called by the Simulation class or by the user manually.

The last module, “ClusterExecutionScript”, is used as a script and called
by the Experiment class when it is run on a cluster. The script receives three
arguments when it is executed. First, the index of the chunk of parameter
combinations it is supposed to run, second, the path to a folder of serialized
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python objects that contain all parameters necessary for running the simu-
lations, and third the path to the folder where the output shall be written
to.

3.2 Validation

To validate whether the package works as intended the experiment on cul-
tural complexity from [13] was replicated. This experiment extends a vari-
ation of the classical social influence experiment by Axelrod with the ’one-
to-many’ communication regime. That means that every time step the focal
agent interacts with all of its neighbors, as long as they are not perfectly sim-
ilar or dissimilar. The focal agent then influences them regarding a feature
on which he disagrees with at least one neighbor.

The experiment in question investigates what effect cultural complexity,
i.e. the dimensionality of the feature vector and the number of possible
traits, has on the cultural diversity of a population at the point of conver-
gence.

Figure 6, 7 and 8 show comparisons between the two communication
regimes on the level of the experiment but also comparisons between the code
that was used for the experiments published in [13] and the same experiment
implemented with the MAMF package. Both experiments show qualitatively
the same results. A higher number of features gives more opportunities to
be similar, increasing the probability that an agent can be influenced. Over
time, it is then more likely that all agents eventually adopt the same traits
for each feature.

Increasing the number of traits per feature has the opposite effect. It
becomes increasingly unlikely that two agents have any features in common,
creating boundaries where no agents can influence each other anymore. This
leads to a higher number of isolates and a lower chance of consensus in the
network.

While this does not prove the correctness of the framework package, it
indicates that the implemented Axelrod influence function behaves as it is
supposed to and the surrounding infrastructure does not add negative side
effects.
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(a) Original Code (b) With Framework

Figure 6: Comparing the relationship of the number of traits to the homo-
geneity

(a) Original Code (b) With Framework

Figure 7: Comparing the relationship of the number of features to the ho-
mogeneity

(a) Original Code (b) With Framework

Figure 8: Comparing the number of isolates
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4 Modularity and Extensibility

4.1 Modularity

The architecture of this framework was designed in such a way that many
different implementations of each component can be added independently
from another, so that it eventually offers a suite of building blocks that can
all be combined with each other to cover the majority of relevant social
influence simulations. The package can naturally grow with new theoretical
discoveries and is open to custom implementations of the components, so
that each researcher can adapt the package to their needs.

Even though the components are supposed to be decoupled from each
other through their interfaces there are still some dependencies that need
to be considered when creating a simulation. The decision with the most
impact on the other modules is the choice of the attribute type of the agents.
On the one hand you can run into problems because the combination of at-
tribute type and DissimilarityCalculator might work but not give meaningful
results, like calculating the Hamming distance between two continuous fea-
ture vectors, which will always be close to one even though they might be
quite similar. On the other hand some combinations are on a practical level
not possible as for example calculating the euclidean distance between two
nominal feature vectors. The choice of attribute type is equally relevant
for the influence sim component as certain influence functions calculate for
example the average of the feature values or subtract or add values to them
and thus presuppose continuous values.

To create a package that only accepts working input would certainly
be an ambitious project, because every possible combination would need
to be tested for validity. It was for this framework rather decided that
the responsibility of creating valid input lies within the user and it is the
package’s responsibility to only throw informative errors and warnings if the
user chooses incompatible building blocks.

4.2 Extensibility Example Case: Bounded Confidence

The first version of the framework included only an implementation of the
classic Axelrod experiment. That means that there are only categorical
features, the distance between the agents is determined with the hamming
distance, and the Axelrod influence function in which the probability to
influence each other is dependent on the dissimilarity between each other.
The basic version of the package was supposed to include at least one other

23



known influence model, so I decided to implement the “bounded confidence”
model because it also presupposes in most cases continuous attributes [9].

In this section I describe how to add a new model to the package at the
example of the bounded confidence model. This model is based on theories
from cognitive psychology as well as social psychology and assumes that
agents’ opinions move closer to each other when they interact, unless they
disagree to much, in which case no influence is possible.

Since in this model opinions gradually approach other opinions, it as-
sumes a continuous feature space and thus a new AttributesInitializer was
needed. The class RandomContinuousInitializer was created in a new mod-
ule with the same name in the agents init subpackage and it inherits the
abstract base class AttributesInitializer. To be able to call it easily from the
Simulation class, the option to choose this realization of the AttributesIni-
tializer had to be added to the factory method in the agents init module.
To make this addition also visible to the user, the documentation of the
Experiment and Simulation class needed to be changed.

Since the selection of the agents for the influence process stays the same,
no new FocalAgentSelector or NeighborSelector had to be implemented.

Because the Hamming Distance produces no sensible results for con-
tinuous features, another distance measure had to be added. The class
EuclideanDistance was created in the a module of the same name in the
dissimilarity component subpackage. It inherits from the DissimilarityCal-
culator class and thus implements the

”
calculate dissimilarity“ method and

”
calculate dissimilarity networkwide” method. It calculates, as the name

suggests, the euclidean distance of the feature vectors of two agents. Again,
the respective factory method, the “select calculator” method, which follows
the original factory pattern and returns an instance of that calculator, had
to be extended to include the new measure and again the documentation of
the Simulation and Experiment class needed to be adapted.

Last but not least, the new influence function itself had to be imple-
mented. For this the new class “BoundedConfidence” in the module of the
same name in the influence sim subpackage inherits from the InfluenceOp-
erator class and is called by the “spread influence” factory method in the
influence sim module. As with every other component, the documenta-
tion of the two interface classes Experiment and Simulation needed to be
changed, so that the user can see what options for the influence function
parameter are available.
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It can be seen that the addition of a new realization of one of the compo-
nents calls for a change in the existing code in only one place, the respective
factory method, and a change in documentation in the interface classes.

The framework is also extensible in other ways. It could be decided
to add another output measure to the ”OutputMeasures” module in the
tools package. This module is used in the ”create output table” method in
the ”Simulation” class, where the new output measure would need to be
included. Furthermore, new stop conditions could be added that also take
components with noise into account. Certain kinds of noise are a problem
for the existing stop conditions because noise makes change always possible
and the simulation never “converges” completely. If such a stop condition
has to be added to the package, it would be done by creating a new private
method in the Simulation class. This method initializes the simulation and
calls the “run simulation step” methods iteratively until it converges. The
option to call that method has to be added to the “run simulation” method
and the documentation has to reflect that change.

5 Scalability

5.1 Minimal Execution Time and Scaling in Network Size

The time it takes a simulation run to converge is always dependent on the
type of influence function, the complexity of the feature vector of the agents,
the number of agents, and the communication regime that is simulated.
Measuring how much time a full simulation takes is therefore not a mean-
ingful criterion to evaluate the execution time of the algorithm.

To assess how much time the overhead of the package infrastructure
adds to the simulation process, I implemented an ”empty” influence function
that represents the most minimal influence function possible, accessing the
feature vectors of the agents that are influenced, and rewriting one value.
It is then measured how much time it takes to run 100,000 simulation steps
with a random FocalAgentSelector and a random NeighborSelector.

In order to also check how the execution time scales with network size,
this experiment was tested with a small network of 49 agents and a large
network of 100,000 agents, each agent connected to 4 neighbors. The ini-
tialization of the network, such as the setting of the attributes, was done
beforehand and is not included in the time measurement. The 100,000 time
steps were run 100 times and the shortest run time was recorded.

Table 1 shows that the network size has, as expected, almost no effect
on the execution time of the simulation steps. The reason is that each
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Test condition Minimum time (seconds)
one-to-one, 49 Agents 1.21
one-to-many, 49 Agents 1.55
one-to-one, 100,000 Agents 1.21
one-to-many, 100,000 Agents 1.59

Table 1: 100*100,000 steps with an ’empty’ influence function

time step, only a subset of the whole network is selected for the influence
process. The execution time will however scale with the number of network
neighbors per agent if the communication regime is either ”one-to-many”
or ”many-to-one”, as the influence function will iterate through the list of
neighbors.

If 100,000 simulation steps are run with an actual empty influence func-
tion, the minimal execution time is 0.917 seconds, which represents the time
it takes to select the agents randomly.

To give a way for researchers to estimate the time it will take their
simulations to run, I also measured 100,000 time steps with the “Axelrod”
influence function and the “Bounded Confidence” influence function for a
small network, testing all communication regimes. It should be noted that
the list of attributes was passed to the function as an argument, so that it
does not have to be called from the graph object in each time step, which
would increase the computation time significantly. The results can be seen
in tables 2 and 3.

Test condition Minimum time (seconds)
one-to-one, 49 Agents 2.09
one-to-many, 49 Agents 4.70
many-to-one, 49 Agents 19.16

Table 2: 100*100,000 steps with the “Axelrod” influence function

Test condition Minimum time (seconds)
one-to-one, 49 Agents 1.5
one-to-many, 49 Agents 1.78
many-to-one, 49 Agents 1.83

Table 3: 100*100,000 steps with the “Bounded Confidence” influence func-
tion
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5.1.1 Memory

Next to the limits in computation time, scaling experiments up is also heav-
ily limited by memory constraints. With the help of the “pympler” Python
package it is possible to monitor memory allocation of complex python ob-
jects and detect memory leaks in a running program. The package was used
to determine how memory requirements scale with network size, network
density, i.e. the number of edges in the graph, and number of attributes
including node attributes and edge attributes.

The first goal was to determine the amount of memory that is needed
to store one single node. With the networkx package it is possible to create
empty graphs that contain only node without any edges between them, so
I created between 2000 graphs with 1 to 2000 nodes and measured the size
of the graph object. Figure 9 shows how this size increases. At one single
node, the graph object starts with a size of 2048 bytes and each further
node that is added increases this size by 512 bytes, except for a pattern of
exponentially increasing intervals, where adding another agent adds also an
exponentially increasing amount of memory size to the object. Figure 10
shows this relationship more clearly. The mechanism behind this are internal
memory re-allocations of the array that contains the pointers to the node
objects inside the graph object. It seems like the nodes are iteratively added
when such a graph is constructed and thus the array has to be increased in
size every time it gets filled.

This does not pose a serious problem to the up-scaling of the simulations,
as these re-allocations only happen very rarely at larger network sizes so that
overall the memory requirements of the graph object scale linearly with the
number of nodes.
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Figure 9: Size of the graph object in bytes in relation to number of nodes

Figure 10: Increase in memory size (in bytes) when adding node number
i+2
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Similar experiments were executed to gather information about the ob-
ject size in memory of one edge, one node attribute and one edge attribute.
I created a graphs with 10,000 nodes and added 100 times 10,000 edges to
the graph between two random nodes. Fig. 11 shows that the memory
size of the graph object also increases fairly linear with more edges, but
the detailed look at the incremental difference of each edge shows a more
complicated pattern, which can be seen in fig 12.

Figure 11: Size of the graph object in megabytes in relation to number of
edges.
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Figure 12: Increase in memory size (in bytes) when adding edge number i+2

Another experiment has indicated seem to be similar memory re-allocations
for node attributes, they most definitely do not matter much because the
agents in the simulations will not have that many attributes that this will
weight in any way.

Edge attribute size scaled completely linearly so that the memory re-
quirements of a network can be estimated with the following formula:

object size (bytes) = 512 × number of nodes

+24 × number of nodes× number of attributes

+300 × number of edges

+80 × number of edges× number of edge attributes

(1)

Where 24 is the number of bytes that get allocated for each node at-
tribute if it is a continuous attribute and thus represented by a float vari-
able. If the attributes are nominal, this number would need to be replaced
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by the size of the string objects, if it is chosen to represent the attributes as
strings. The number of bytes per edge, in the formula given as 300, would
be dependent on the number of edges.

To see how much memory is allocated for the graph objects in practice
I created 4 different conditions, a small sparse graph, a small dense graph,
and the same for a large graph. Their sizes where then measured right after
creation, after initializing 5 node attributes and then after calculating the
distances, thus setting one edge attribute.

Test condition Size in MB 5 attributes edge attribute
100 nodes, 200 edges 0.11 0.122 0.127
100 nodes, 4950 edges 1.67 1.708 1.827
100,000 nodes, ca. 200,000 edges 109.5 121.5 126.32
100,000 nodes, ca 5,000,000 edges 1853.9 1865.9 1986.0

Table 4: Object sizes in memory for different conditions.

Most of the operations during one simulations modify one and the same
graph object. Only in few functions that object is copied. Consequently, one
needs approximately two times the estimated graph object size as availabe
working memory on the machines that are supposed to run the simulations,
to not run out of memory.

5.2 Speed-up in Comparison to Existing Solution

Before demonstrating the advantage of the cluster mode of the experiment
I will first point out the importance of multiprocessing on a single machine.
To show the speed-up of calling the Experiment’s ”run” method with the
”parallel” parameter set to True, I created a simplified version of the classical
Axelrod experiment that only tests 54 different parameter combinations and
distributed its execution over a varying number of cores. Each core number
setting was tested 10 times and the shortest time was recorded.

In figure 13 one can see the time it took to run the experiment on different
number of cores, forming the curve shape that is typical for parallel com-
puting experiments. On a single core the experiment takes 158.25 seconds
but using a second processor already reduces the time to 92.18 seconds. The
marginal improvement in time decreases and reaches its limit at the full 24
cores that the nodes on the Peregrine cluster offer, when the full experiment
only takes 20.15 seconds, showing a speed-up of factor 7.86.
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Figure 13: Minimal execution time of 54 simulations with multiple cores

Even though measuring the execution time of full simulation might not
be a very meaningful measure in absolute terms, we can still inspect whether
execution time improves to already existing implementations of the same
simulation. For this purpose, the time it took to run the experiment de-
scribed in section 3.2 was compared to the time it took to run the same
experiment with the original code that was used to produce the results pub-
lished in [13].

Both experiments are distributed among 24 cores of one node, so that
the conditions are the same. The experiments run 100 different parameter
settings and repeat each of these 100 times, thus running 10,000 simulations.

In figure 14 it can be seen that the same experiment takes with 27:03 min
over 25% longer if it is implemented with the MAMF package. This is to be
expected to some degree, because the framework adds a certain amount of
overhead through the infrastructure it provides, as for example the factory
methods that need to select the desired realization of each component each
time step.

Nevertheless, the Experiment class offers with the ”run on cluster” method
another way to decrease computation time by distributing the simulations
not only to multiple cores on one machine but to multiple nodes in a cluster.
To see what speed-up comes from this execution mode, the same experiment
was distributed once to 5 and once to 10 nodes on the Peregrine cluster, a
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powerful high-performance cluster located in Groningen. Each node was
running its chunk of the simulations on all of its 24 cores. Ignoring the wait-
ing time in the queue of the cluster’s job manager, the computation time of
the node that ran the longest was taken as the total time of the experiment.

Figure 14 shows that using multiple nodes cuts down the execution time
down by a significant margin. Running the 10,000 simulations on 5 machines
took between 05:13 min and 05:38 min and cutting the chunk size in half,
thus each machine running a chunk of 1000 simulations, took between 02:44
min and 03:02 min. The limit of this speed-up would be set by the time
it takes one simulation to converge, since the Experiment could in a maxi-
mally optimal way be split up into chunks of 24 simulations, such that each
processor computes one simulation. This would obviously only make sense
for very long simulations where few parameter combinations are explored.

Figure 14: The execution time of 10,000 simulations on multiple cores and
multiple nodes

6 Discussion

The goal of this framework was to provide the infrastructure for researchers
in the field of opinion dynamics to save time on setting up their experi-
ments as well as running them. The modular structure of the framework,
even though it has its limits, allows users to combine many different build-
ing blocks to create experiments that explore new theories or validate the
behaviour of existing models by testing them under new conditions. The
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option to pass the Simulation or the Experiment your own implementations
of the components gives researchers the opportunity to tailor the package to
their needs while reusing those parts of a simulation that are almost always
the same. Thus, a lot of time spend coding can be saved.

Nevertheless, the package comes with some weaknesses in its current
form. One major disadvantage is that it currently supports only undirected
graphs as many of the pre-implemented components break when used on
directed graphs. This is, however, not something inherent to the nature of
those components and will be changed in future versions.

Another drawback that is more inherent to the architecture of the frame-
work, is the way how the distance between agents is stored as edge attributes
on the edge that connects them. This means that any kind of model that
assumes influence between agents that are not directly connected, have to re-
calculate the distances between the relevant agents in each time step, which
takes longer time than accessing the attribute of the edge that connects
them.

A third problem comes from the fact that every parameter name that
is defined for a specific implementations of a component has to be unique,
since they are all stored in the same dictionary in the Simulation. This
bears potential for conflict in the process of maintaining and extending the
framework, as every contributor has to check for that and there might be
disagreement on which names to use for what.

Even though the cluster mode of the Experiment class is not implemented
in a true distributed programming approach, because the nodes do not com-
municate with each other, one advantage comes from this “embarrassing”
parallelization. The user can run their experiment with a simple python
script and does not have to deal with setting up the batch files that are nec-
essary to submit jobs to the cluster. This makes the use of super computer
clusters that use SLURM more approachable for researchers in this field an
might allow some to run larger experiments they would otherwise not have
tried.

7 Conclusion

In this report I presented the new python package “MAMF” that offers
researchers in the field of opinion dynamics a framework with a library of
classes and functions that help to create and run computational simula-
tions of social influence. The framework consists of multiple building blocks
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or components, that can either be used directly, or plugged together with
accessible interface classes. The users are not limited to the component im-
plementations that are included in the package, but can implement their own
version of each building block and combine it with the other components
to run their simulations. The interface classes make use of multiprocessing
and distributed computing to minimize the time it takes to execute multiple
simulations.
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8 Appendix

The appendix contains the documentation of the package in pdf form. How-
ever, I recommend to read the documentation online on https://antonlaukemper.

github.io/mamf/ instead for better readability.
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Here you can find the API documentation for the world’s first package on social influence simulations. I recommend
to start with the Simulation class and the Experiment class to understand how to create your own multi-agent
system experiment.

Here are some examples of how to create experiments:

# creating an Experiment with the default values, which recreates the classic axelrod
→˓experiment conditions
# in this example we want to try all kinds of communication regimes 1000 times

# Alternative way to import the experiment:
# from mamf import Experiment
# experiment = Experiment()

import mamf

import networkx as nx
from typing import List
from mamf import dissimilarity_calculator

experiment = mamf.Experiment(communication_regime=["one-to-one", "one-to-many", "many-
→˓to-one"], repetitions=1000)
results = experiment.run()
print(results)

#creating a Simulation
simulation = mamf.Simulation()
results = simulation.run_simulation()
print(results)

# creating a Simulation with your own influence function and running it step by step
class my_influence_function(mamf.InfluenceOperator):

@staticmethod
def spread_influence(network: nx.Graph, agent_i: int, agents_j: List[int] or int,

→˓regime: str,
dissimilarity_measure: dissimilarity_calculator, attributes:

→˓List[str]=None, **kwargs) -> bool:
# print("enter your implementation here")
pass

simulation = mamf.Simulation(influence_function=my_influence_function())
simulation.initialize_simulation()
for i in range(100):

simulation.run_simulation_step()
results = simulation.create_output_table()

# using the building blocks manually with the respective factory methods
# only the influence function is here used directly (just as an example to show how
→˓to import it, you could also use:
# mamf.InfluenceOperator.spread_influence(network, "axelrod", focal_agent,neighbors,
→˓"one-to-one", mamf.HammingDistance())
# instead of using the factory method you can alway import the classes directly from
→˓the respective module

from mamf.influence_sim.Axelrod import Axelrod # import the axelrod infuence function

network = mamf.generate_network("ring")

(continues on next page)
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(continued from previous page)

mamf.agents_init.initialize_attributes(network, realization="random_categorical")
calculator = mamf.dissimilarity_calculator.select_calculator("euclidean")
calculator.calculate_dissimilarity_networkwide(network)

for i in range(100):
focal_agent = mamf.focal_agent_sim.select_focal_agent(network, "random")
neighbors = mamf.neighbor_selector_sim.select_neighbors(network, "random", focal_

→˓agent, "one-to-one")
Axelrod.spread_influence(network, focal_agent, neighbors, regime="one-to-one",

→˓dissimilarity_measure=mamf.HammingDistance())

results = mamf.OutputMeasures.clustercount(network)
print(results)

# using the building blocks manually with your own influence function
network = mamf.generate_network("ring")
mamf.agents_init.initialize_attributes(network, realization="random_categorical")
calculator = mamf.dissimilarity_calculator.select_calculator("euclidean")
calculator.calculate_dissimilarity_networkwide(network)

for i in range(100):
focal_agent = mamf.focal_agent_sim.select_focal_agent(network, "random")
neighbors = mamf.neighbor_selector_sim.select_neighbors(network, "random", focal_

→˓agent, "one-to-one")
my_influence_function.spread_influence(network, focal_agent, neighbors, regime=

→˓"one-to-one",
dissimilarity_measure=mamf.

→˓HammingDistance())

results = mamf.OutputMeasures.clustercount(network)
print(results)

2 CONTENTS
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CHAPTER

ONE

HERE IS A LIST OF ALL COMPONENTS OF THIS FRAMEWORK:

1.1 mamf

1.1.1 Experiment module

class mamf.Experiment.Experiment(network: networkx.classes.graph.Graph = None, communica-
tion_regime: List[T] = ’one-to-one’, topology: str = ’grid’,
network_parameters: dict = {}, attributes_initializer: str =
’random_categorical’, attribute_parameters: dict = {}, fo-
cal_agent_selector: str = ’random’, focal_agent_parameters:
dict = {}, neighbor_selector: str = ’random’, neigh-
bor_parameters: dict = {}, influence_function: str =
’axelrod’, influence_parameters: dict = {}, influence-
able_attributes: list = None, network_modifier: str =
’random’, network_modifier_parameters: dict = {}, dis-
similarity_measure: str = ’hamming’, stop_condition: str
= ’max_iteration’, stop_condition_parameters: dict = {},
max_iterations: int = 100000, repetitions: int = 1)

Bases: object

The main class for creating and running experiments. Each simulation consists of 7 modular components, where
each component is independent from the others and can thus be replaced by a different implementation of that
component. These components are:

The network structure - Can either be loaded from empirical data or initialized with the NetworkGenerator.

The AttributesInitializer - This component initializes the attributes of each agent in the network and can also be
used to add attributes during the simulation.

The FocalAgentSelector - Each simulation step, this component picks an agent from the network, either ran-
domly or based on their characteristics.

The neighborhoodSelector - Selects a subset of the agents in the network based on the focal agent given by the
FocalAgentSelector

The InfluenceFunction - Determines how the selected agent and the selected neighborhood influence each other.

The NetworkModifier - Changes the structure of the network during the simulation.

The DissimilarityCalculator - Determines how the dissimilarity/distance between two agents is calculated

These components have different concrete implementations that might take specific parameters that are passed
as a dictionary. In these dictionaries, the keys are the names of the parameters and the values their respective
value. It is also possible to pass a list of values as the dictionary value, which then creates a simulation for each
value, making it possible to easily compare simulation runs with e.g. different number of agents.

3
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Parameters

• network (nx.Graph, np.array or String) – This is either a preloaded net-
workx graph, an adjacency matrix as a numpy array, or the full path to a file with and
edge list.

• communication_regime (List or String = "one-to-one") – Options are
“one-to-one”, “one-to-many” and “many-to-one”. For this parameter, it is possible to pass a
list of multiple of these options.

• topology (String = "grid") – Options are “grid”, “ring” and “spa-
tial_random_graph”.

• network_parameters (dict = {}) – This dictionary should contain all optional pa-
rameters for creating the network structure. Refer to the specific documentation of the net-
work types to see what can be modified.

• attributes_initializer (String = “random_categorical” or
AttributesInitializer) – Either be a custom AttributesInitializer or a string
that selects from the predefined choices: [“random_categorical”, “random_continuous”. . . ]

• attribute_parameters (dict = {}) – Optional dictionary that includes the name
of attributes you want to set and a list of possible values for each.

• focal_agent_selector (str = “random” or FocalAgentSelector) – Either a
custom FocalAgentSelector or a string that selects from the predefined options [“random”,
. . . ]

• focal_agent_parameters (dict = {}) – Optional dictionary that includes the pa-
rameters for the FocalAgentSelector.

• neighbor_selector (str = “random” or NeighborSelector) – Either a custom
NeighborSelector or a string that selects from the predefined options [“random”, . . . }

• neighbor_parameters (dict = {}) – Optional dictionary that includes the param-
eters for the NeighborSelector.

• influence_function (str = “axelrod” or InfluenceOperator) – Either a cus-
tom influence function or a string that selects from the predefined options [“axelrod”,
“bounded_confidence”, . . . }

• influence_parameters (dict = {}) – Optional dictionary that includes the pa-
rameters for the InfluenceFunction.

• influenceable_attributes (list = []) – With this list you select all attributes
that are allowed to be changed by the influence function. If the list is empty, all attributes
are affected by influence.

• network_modifier – (String = “random” or NetworkModifier) Either a custom
NetworkModifier or a string selecting from the predefined options [“random”, . . . ]

• dissimilarity_measure (String = “hamming” or
DissimilarityCalculator) – Either a custom DissimilarityCalculator or a
string that selects from the predefined options [“hamming”, “euclidean”, . . . }

• stop_condition (String = "pragmatic_convergence") – Determines at
what point a simulation is supposed to stop. Options include “strict_convergence”, which
means that it is theoretically not possible anymore for any agent to influence another, “prag-
matic_convergence”, which means that it is assumed that little change is possible anymore,
and “max_iteration” which just stops the simulation after a certain amount of time steps.

4 Chapter 1. Here is a list of all components of this framework:
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• stop_condition_parameters (dict = {}) – This dictionary should contain all
optional parameters that influence how convergence is determined.

• max_iterations (int = 100000) – The maximum number of iterations a Simula-
tion should run.

• repetitions (int = 1) – How often each simulation should be repeated.

estimate_runtime()
This function creates the parameterDictList if that hasn’t happened already and then infers from its length
the runtime of the whole experiment.

Returns estimated time of simulation in seconds

run(parallel: bool = False, num_cores=8)→ pandas.core.frame.DataFrame
Starts the experiment by first creating the parameter_dict_list if that hasn’t happened already and then
creates a simulation for each parameter combination in the parameter_dict_list. If parallel is true, the
simulations are run on multiple cores on the machine, their number determined by num_cores.

Parameters

• parallel – Boolean that determines in which mode the simulations will run.

• num_cores – Determines the number of cores in the machine that will be utilized for the
execution.

Returns A dataframe that contains one row per Simulation.

run_on_cluster(chunk_size: int = 2400, batch_path: str = ’batchscripts’, output_path: str = ’out-
put’, walltime: str = ’30:00’, partition: str = ’short’)

This method can be used to execute large Experiments on a SLURM cluster. It creates a number of sbatch
scripts that are immediatly executed to send jobs to the SLURM job manager. To be able to use this method
the script with the Experiment must be executed on a SLURM server.

Parameters

• chunk_size – Determines how many Simulations should run per node in the cluster.

• batch_path – The path to the folder where the batchscripts will be created. If the folder
not exists yet, it will be created.

• output_path – The path to the folder where the output will be saved. If the folder not
exists yet, it will be created.

• walltime – The expected time one node maximally needs for computing its chunk of
simulations.

• partition – If the SLURM cluster has multiple partitions, it can be decided where to
run the jobs with this parameter.

1.1.2 Simulation module

class mamf.Simulation.Simulation(network=None, topology: str = ’grid’, attributes_initializer:
str = ’random_categorical’, focal_agent_selector: str = ’ran-
dom’, neighbor_selector: str = ’random’, influence_function:
str = ’axelrod’, influenceable_attributes: List[T] = None,
dissimilarity_measure: str = ’hamming’, network_modifier:
str = ’random’, stop_condition: str = ’max_iteration’,
max_iterations: int = 100000, communication_regime: str =
’one-to-one’, parameter_dict={}, seed=None)

Bases: object

1.1. mamf 5

45



MAMF, Release 12.07.2019

This class is responsible for initializing and running a single experiment until the desired stop criterion is
reached. The Simulation class contains three different stop criterion implementations as methods, but more
can be added. The class is initialized in a similar way as the Experiment class but it does not accept multiple
parameter values per parameter and also all optional parameters are passed in one combined dictionary.

Parameters

• network (nx.Graph=None) – A Graph object that was created from empirical data.

• topology (String = "grid") – Options are “grid”, “ring” and “spa-
tial_random_graph”.

• attributes_initializer (String = “random_categorical” or
AttributesInitializer) – Either be a custom AttributesInitializer or a string
that selects from the predefined choices: [“random_categorical”, “random_continuous”. . . ]

• focal_agent_selector (str = “random” or FocalAgentSelector) – Either a
custom FocalAgentSelector or a string that selects from the predefined options [“random”,
. . . ]

• neighbor_selector (str = “random” or NeighborSelector) – Either a custom
NeighborSelector or a string that selects from the predefined options [“random”, . . . }

• influence_function (str = “axelrod” or InfluenceOperator) – Either a cus-
tom influence function or a string that selects from the predefined options [“axelrod”,
“bounded_confidence”, . . . }

• influenceable_attributes (List = None) – This is a list of the attribute names,
that may be changed in the influence step

• dissimilarity_measure (String = “hamming” or
DissimilarityCalculator) – Either a custom DissimilarityCalculator or a
string that selects from the predefined options [“hamming”, “euclidean”, . . . }

• network_modifier – (String = “random” or NetworkModifier) Either a custom
NetworkModifier or a string selecting from the predefined options [“random”, . . . ]

• stop_condition (str = "max_iteration") – Determines at what point a simula-
tion is supposed to stop. Options include “strict_convergence”, which means that it is theo-
retically not possible anymore for any agent to influence another, “pragmatic_convergence”,
which means that it is assumed that little change is possible anymore, and “max_iteration”
which just stops the simulation after a certain amount of time steps.

• communication_regime (str = "one-to-one") – Options are “one-to-one”,
“one-to-many” and “many-to-one”.

• parameter_dict – A dictionary with all parameters that will be passed to the specific
component implementations.

run_simulation()→ pandas.core.frame.DataFrame
This method initializes the network if none is given, initializes the attributes of the agents, and also com-
putes and sets the distances between each neighbor. It then calls different functions that execute the simu-
lation based on which stop criterion was selected.

Returns A pandas Dataframe that contains one row of data. To see what output the output
contains see create_output_table()

initialize_simulation()
This method initializes the network if none is given, initializes the attributes of the agents, and also com-
putes and sets the distances between each neighbor.

6 Chapter 1. Here is a list of all components of this framework:
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run_simulation_step()
Executes one iteration of the simulation step which includes the selection of a focal agent, the selection of
the neighbors and the influence step. If the user passed their own implementations of those components,
they will be called to execute these steps, otherwise the respective factory functions will be called.

create_output_table()→ pandas.core.frame.DataFrame
This method measures multiple characteristics of the network in its current state and writes them to a
dataframe. It currently contains the following columns:

Seed: The random seed that was used.

Network Topology: Which network topology was used.

Simulation Steps: For how many iterations the simulation ran (so far).

Successful Influences: How often an agent was successfully influenced by another agent.

Number of Clusters: The total number of clusters in the network #todo reference to what a cluster is

Cluster Sizes: A list containing the sizes of each cluster in descending order.

Number of Isolates: How many isolates the network contains. #todo here also want a reference to what an
isolate is

Homogeneity: A number between 0 and 1 representing the ratio of the size of the biggest cluster to the
number of agents in the network. #todo and again a reference would be nice

Returns A pandas Dataframe with one row.

_run_until_pragmatic_convergence()
Pragmatic convergence means that each “step_size” time steps it is checked whether the structure of the
network and all attributes are still the same. If thats the case, it is assumed that the simulation converged
and it stops.

Parameters step_size (int=100) – determines how often it should be checked for a change
in the network.

_run_until_strict_convergence()
Here the convergence of the simulation is periodically checked by assessing the distance between each
neighbor in the network. Unless there is no single pair left that can theoretically influence each other, the
simulation continues.

Parameters

• threshold (float=0.0) – A value between 0 and 1 that determines at what distance
two agents can’t influence each other anymore.

• check_each_step (boolean=True) – A boolean that determines whether conver-
gence should be checked each step or only every hundreth step to save time.

_run_until_max_iteration()

1.2 network_init

1.2.1 network_init module

mamf.network_init.network_init.generate_network(name: str, **kwargs) → net-
workx.classes.graph.Graph

This is the factory method that returns a specific network.

Parameters

1.2. network_init 7

47



MAMF, Release 12.07.2019

• name – A string with the name of the network type. Possible options: “spa-
tial_random_graph”, “ring”, “grid”

• kwargs – A dictionary containing the parameter names as keys and their respective values
as values to be passed to the function that produces the network.

Raises ValueError if not one of the possible network topologies is selected.

Returns A networkx Graph object.

mamf.network_init.network_init.read_network(network_input: numpy.ndarray)
This function takes the structure of an empirically measured network, provided as an adjacency matrix, and
creates a network graph object out of it.

Parameters network_input – Either an adjacency matrix where the entry (i,j) represents
whether an edge between i and j exists or if applicable, its strength, or the path to a file con-
taining an edge list

mamf.network_init.network_init._produce_grid_network(**kwargs) → net-
workx.classes.graph.Graph

This method produces a grid graph, connected to itself as a torus. Each agent on the grid is connected to its
neighborhood depending on the parameters “neighborhood” and “radius”.

Parameters

• num_agents (int=49) – How many agents the network contains.

• neighborhood (String=moore) – Either “von_neumann” or “moore”. Von Neumann
connects each agent to its 4 neighbors in each cardinal direction. In a Moore neighborhood,
each agent is connected to their 8 immediate neighbors.

• radius (int=1) – Increases the number of connections further than the immediate neig-
bourhood. An agent in a Moore neighborhood with radius 2 has 24 connections.

Returns A networkx Graph object.

mamf.network_init.network_init._produce_ring_network(**kwargs) → net-
workx.classes.graph.Graph

This method produces a ring network with varying number of neighbors. Furthermore it is possible to rewire the
network following the Maslov-Sneppen algorithm todo: put in reference . to vary the transitivity of the network.

Parameters

• num_agents (int=49) – How many agents the network contains.

• num_neighbors (int=2) – The number of neighbors of each agent must be an even
number.

• ms_rewiring (float=0) – 1 means that num_agents agents are drawn from the network
to be rewired. If one wants to be sure that most agents are rewired, this number should be
higher than 1.

Returns A networkx Graph object. #todo: is this a correct description?

mamf.network_init.network_init._produce_spatial_random_graph(**kwargs) → net-
workx.classes.graph.Graph

This method produces a spatial random graph constructed by rewiring a grid network. Spatial random graphs
resemble real social networks to some degree as the have low tie density, short average geodesic distance, a
high level of transitivity, a positively skewed actor-degree distribution, and a community structure. #todo: fill in
reference here

Parameters

• num_agents (int=49) – How many agents the network contains.

8 Chapter 1. Here is a list of all components of this framework:

48



MAMF, Release 12.07.2019

• min_neighbors (int=8) – How many neighborhood each agent should have at least.

• proximity_weight (float=1) – Determines how much spatial distance in the grid
matters in the rewiring process.

Returns A networkx Graph object.

1.3 agents_init

1.3.1 agents_init module

class mamf.agents_init.agents_init.AttributesInitializer
Bases: abc.ABC

Initializes and changes attributes of nodes in the network.

static initialize_attributes(network: networkx.classes.graph.Graph, **kwargs)
Gives initial values to the nodes in the network. Values could e.g. be based on their position in the network.

Parameters

• network – The network that will be modified.

• kwargs – This dictionary contains all the implementation-specific parameters.

mamf.agents_init.agents_init.set_categorical_attribute(network: net-
workx.classes.graph.Graph,
name: str, values: list, dis-
tribution: str = ’uniform’,
**kwargs)

Adds a categorical attribute to all nodes in a network. The values for that attribute are drawn from a list of
possible values provided by the user.

Parameters

• network – The graph object whose nodes’ attributes are modified.

• name – the name of the attribute. This is used as a key to call the attribute value in other
functions.

• values – A list that contains all possible values for that attribute.

• distribution – ‘gaussian’, ‘uniform’, or ‘custom’ are possible values.

• kwargs – a dictionary containing the parameter name and value for each distribution, these
are:

for gaussian: loc and scale. loc would be the index of the most common value in the values
list

for custom distribution: c. an array-like containing the probabilities for each entry in the
values list.

mamf.agents_init.agents_init.set_continuous_attribute(network: net-
workx.classes.graph.Graph,
name: str, shape: tuple = 1,
distribution: str = ’uniform’,
**kwargs)

adds a possibly multidimensional attribute to all nodes in a network. The values of the attribute are drawn from
a distribution that is set by the user.

1.3. agents_init 9
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Parameters

• network – The graph object whose nodes’ attributes are modified.

• shape – sets the output shape of the attribute value. Allows e.g. for multidimensional
opinion vectors

• name – the name of the attribute. This is used as a key to call the attribute value in other
functions

• distribution – “gaussian”, “exponential”, “beta” are possible distributions to choose
from

• kwargs – a dictionary containing the parameter name and value for each distribution, these
are:

loc, scale for gaussian

scale for exponential

a, b for the beta distribution

mamf.agents_init.agents_init.initialize_attributes(network: net-
workx.classes.graph.Graph,
realization: str, **kwargs)

This function works as a factory method for the AttributesInitializer component. It calls the initialize_attributes
function of a specific implementation of the AttributesInitializer and passes to it the kwargs dictionary.

Parameters

• network – The network that will be modified.

• realization – The specific AttributesInitializer that shall be used to initialize the at-
tributes. Options are “random”, ..

• kwargs – The parameter dictionary with all optional parameters.

1.3.2 RandomCategoricalInitializer module

class mamf.agents_init.RandomCategoricalInitializer.RandomCategoricalInitializer
Bases: mamf.agents_init.agents_init.AttributesInitializer

Implements the AttributesInitializer as a random initialization of arbitrary discrete features.

static initialize_attributes(network: networkx.classes.graph.Graph, **kwargs)
Randomly initializes a number of discrete features for each node.

Parameters

• network – The graph object whose nodes’ attributes are modified.

• num_features (int=5) – How many different attributes each node has.

• num_traits (int=3) – The range of values each attribute can take. 3 means that an
attribute can be either 0, 1 or 2

1.3.3 RandomContinuousInitializer module

class mamf.agents_init.RandomContinuousInitializer.RandomContinuousInitializer
Bases: mamf.agents_init.agents_init.AttributesInitializer

Implements the AttributesInitializer as a random initialization of arbitrary continuous features.

10 Chapter 1. Here is a list of all components of this framework:
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static initialize_attributes(network: networkx.classes.graph.Graph, **kwargs)
Randomly initializes a number of continuous features between 0 and 1 for each node.

Parameters

• network – The graph object whose nodes’ attributes are modified.

• num_features (int=1) – How many different attributes each node has.

1.4 focal_agent_sim

1.4.1 focal_agent_sim module

class mamf.focal_agent_sim.focal_agent_sim.FocalAgentSelector
Bases: abc.ABC

This class is responsible for sampling the focal agent for the influence process.

static select_agent(network: networkx.classes.graph.Graph, agents: List[int] = [], **kwargs)
→ int

This method selects an agent from a network for the influence process. Based on the communication
regime, the selected agent is either the source or the target of influence.

Parameters

• network – the network from which the agent shall be selected.

• agents – A list of the indices of all agents in the network

:returns The index of the selected agent.

mamf.focal_agent_sim.focal_agent_sim.select_focal_agent(network: net-
workx.classes.graph.Graph,
realization: str, agents:
List[int] = [], **kwargs)
→ int

This function works as a factory method for the FocalAgentSelector component. It calls the select_agent func-
tion of a specific implementation of the FocalAgentSelector and passes to it the kwargs dictionary.

Parameters

• network – The network from which the focal agent will be selected

• realization – The specific FocalAgentSelector that shall be used to sample the focal
agent. Options are “random”, . . .

• agents – A list of the indices of all agents in the network.

:returns The index of the focal agent in the network.

1.4.2 RandomSelector module

class mamf.focal_agent_sim.RandomSelector.RandomSelector
Bases: mamf.focal_agent_sim.focal_agent_sim.FocalAgentSelector

Implements the FocalAgentSelector as a uniformly random process

static select_agent(network: networkx.classes.graph.Graph, agents: List[int] = [], **kwargs)
→ int

This method selects a random agent from a network for the influence process.

1.4. focal_agent_sim 11
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Parameters

• network – The network from which the agent shall be selected.

• agents – A list of the indices of all agents in the network.

:returns The index of the selected agent.

1.5 neighbor_selector_sim

1.5.1 neighbor_selector_sim module

class mamf.neighbor_selector_sim.neighbor_selector_sim.NeighborSelector
Bases: abc.ABC

The NeighborSelector is responsible for picking certain agents from the environment of the focal agent. These
agents are then either the source or the target in the following influence step. Possible ways to select neighbors is
either by picking all other agents, i.e. global influence (simulation influence from news and polls), all neighbors
in the immediate neighborhood, or only single neighbors.

static select_neighbors(network: networkx.classes.graph.Graph, agentID: int, regime: str,
**kwargs)→ Iterable[int]

This method selects a subset of agents from the network that are in some way relevant for the influence
process regarding the focal agent. This subset could be e.g. a single agent from the direct neighborhood,
the whole neighborhood, or all agents, excluding the focal agent.

Parameters

• network – the network from which the agent shall be selected.

• agentID – the index of the focal agent, who is either the source or target of influence.

• regime – Whether the focal agent interacts with only one or many agents from his or her
neighborhood. If “one-to-one”: One neighbor to which the focal agent has an outgoing tie
is selected. If “one-to-many”: All neighbors to which the focal agent has an outgoing tie
are selected. If “many-to-one”: All neighbors from which the focal agent has an incoming
tie are selected.

• kwargs – Additional parameters specific to the implementation of the neighborSelector.

Returns a list of the indices of the relevant other agents.

mamf.neighbor_selector_sim.neighbor_selector_sim.select_neighbors(network:
net-
workx.classes.graph.Graph,
realization:
str, agen-
tID: int,
regime: str,
**kwargs)
→ Iter-
able[int]

This function works as a factory method for the neighborSelector component. It calls the select_neighbors
function of the specific neighborSelector and passes to it the index of the focal agent and the communication
regime.

Parameters

• network – The network from which the agents are selected.

12 Chapter 1. Here is a list of all components of this framework:
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• realization – The specific implementation of the neighborSelector. Options are “ran-
dom”, . . .

• agentID – An integer that represents the index of the focal agent in the network.

• regime – Either “many_to_one”, “one_to_many” or “one_to_one”.

• kwargs – Additional parameters specific to the implementation of the neighborSelector.

Returns A list with the indices of the selected other agents.

1.5.2 RandomneighborSelector module

class mamf.neighbor_selector_sim.RandomNeighborSelector.RandomNeighborSelector
Bases: mamf.neighbor_selector_sim.neighbor_selector_sim.NeighborSelector

Implements the neighborSelector in such a way that either all neighbors are selected in the case of one-to-many
and many-to-one communication, or a random neighbor in the case of one-to-one communication.

static select_neighbors(network: networkx.classes.graph.Graph, agentID: int, regime: str,
**kwargs)→ Iterable[int]

Selects a random agent from the direct neighborhood of the focal agent in the case of one-to-one commu-
nication, and all direct neighbors otherwise.

Parameters

• network – The network from which the agent shall be selected.

• agentID – The index of the focal agent, who is either the source or target of influence.

• regime – Whether the focal agent interacts with only one or many agents from his or her
neighborhood. If “one-to-one”: One neighbor to which the focal agent has an outgoing tie
is selected. If “one-to-many”: All neighbors to which the focal agent has an outgoing tie
are selected. If “many-to-one”: All neighbors from which the focal agent has an incoming
tie are selected.

• kwargs – Additional parameters specific to the implementation of the InfluenceOperator.

Raises ValueError if not one of the possible options for the communication_regime is chosen.

Returns A list of the indices of the relevant other agents.

1.6 influence_sim

1.6.1 influence_sim module

class mamf.influence_sim.influence_sim.InfluenceOperator
Bases: abc.ABC

The InfluenceOperator is responsible for executing the influence function of the simulation. The influence
function can be something like bounded confidence, negative influence or only positive influence.

static spread_influence(network: networkx.classes.graph.Graph, agent_i: int,
agents_j: List[int], regime: str, dissimilarity_measure:
mamf.dissimilarity_component.dissimilarity_calculator.DissimilarityCalculator,
attributes: List[str] = None, **kwargs)→ bool

This function is responsible for executing the influence process. The call of this function can be seen as
an interaction between agents that either results in successful influence or not. Unsuccessful influence

1.6. influence_sim 13
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attempts can also be interpreted as no interaction at all. The function returns true if influence was success-
fully exerted.

Parameters

• network – The network in which the agents exist.

• agent_i – the index of the focal agent that is either the source or the target of the influ-
ence

• agents_j – A list of indices of the agents who can be either the source or the targets of
the influence. The list can have a single entry, implementing one-to-one communication.

• attributes – A list of the names of all the attributes that are subject to influence. If
an agent has e.g. the attributes “Sex” and “Music taste”, only supply [“Music taste”] as
a parameter for this function. The influence function itself can still be a function of the
“Sex” attribute.

• regime – This string determines the mode in which the agents influence each other. In
‘one-to-one’ the focal agent influences one other agent, in ‘one-to-many’ multiple other
agents and in ‘many-to-one’ the focal agent is influenced by multiple other agents in the
network.

• dissimilarity_measure – An instance of a DissimilarityCalculator.

Returns true if agent(s) were successfully influenced

mamf.influence_sim.influence_sim.spread_influence(network: net-
workx.classes.graph.Graph,
realization: str, agent_i: int,
agents_j: List[int], regime:
str, dissimilarity_measure:
mamf.dissimilarity_component.dissimilarity_calculator.DissimilarityCalculator,
attributes: List[str] = None,
**kwargs)→ bool

This function works as a factory method for the influence component. It calls either the many_to_one or the
one_to_many function of a specific implementation of the InfluenceOperator and passes to it the kwargs dictio-
nary. Which function is called is based on the selected communication regime.

Parameters

• network – The network that will be modified.

• realization – The specific implementation of the InfluenceOperator. Options are
“stochasticOverlap”, “axelrod”.

• agent_i – the index of the focal agent that is either the source or the target of the influence

• agents_j – A list of indices of the agents who can be either the source or the targets of
the influence. The list can have a

• attributes – A list of the names of all the attributes that are subject to influence. If
an agent has e.g. the attributes “Sex” and “Music taste”, only supply [“Music taste”] as a
parameter for this function. The influence function itself can still be a function of the “Sex”
attribute.

• regime – Either “many_to_one”, “one_to_many” or “one_to_one”.

• dissimilarity_measure – An instance of a DissimilarityCalculator.

Returns true if agent(s) were successfully influenced

14 Chapter 1. Here is a list of all components of this framework:
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1.6.2 Axelrod module

class mamf.influence_sim.Axelrod.Axelrod
Bases: mamf.influence_sim.influence_sim.InfluenceOperator

Implements the InfluenceOperator in a way that recreates the original Axelrod experiment.

static spread_influence(network: networkx.classes.graph.Graph, agent_i: int,
agents_j: List[int], regime: str, dissimilarity_measure:
mamf.dissimilarity_component.dissimilarity_calculator.DissimilarityCalculator,
attributes: List[str] = None, **kwargs)→ bool

In the influence function as Axelrod modeled it #todo insert reference agents are more likely to influence
each other if they are more similar. If an agent successfully influences one or more agents, the influenced
agents adopt one feature on which they disagreed from the influencing agent. In the case of many-to-one
communication, the influenced agent adopts the mode value of a feature on which there is no consensus
among the influencing agents.

Parameters

• network – The network in which the agents exist.

• agent_i – the index of the focal agent that is either the source or the target of the influ-
ence

• agents_j – A list of indices of the agents who can be either the source or the targets of
the influence. The list can have a single entry, implementing one-to-one communication.

• attributes – A list of the names of all the attributes that are subject to influence. If
an agent has e.g. the attributes “Sex” and “Music taste”, only supply [“Music taste”] as
a parameter for this function. The influence function itself can still be a function of the
“Sex” attribute.

• regime – Either “one-to-one”, “one-to-many” or “many-to-one”

• dissimilarity_measure – An instance of a DissimilarityCalculator.

• kwargs – Additional parameters specific to the implementation of the InfluenceOperator.

Returns true if agent(s) were successfully influenced

1.6.3 BoundedConfidence module

class mamf.influence_sim.BoundedConfidence.BoundedConfidence
Bases: mamf.influence_sim.influence_sim.InfluenceOperator

static spread_influence(network: networkx.classes.graph.Graph, agent_i: int,
agents_j: List[int], regime: str, dissimilarity_measure:
mamf.dissimilarity_component.dissimilarity_calculator.DissimilarityCalculator,
attributes: List[str] = None, **kwargs)→ bool

The bounded confidence model is from the family of similarity bias models. These models assume that
how strongly agents influence each other is dependent on how similar they are. In the bounded confidence
case the influence ‘strength’ is either the ‘convergence-rate’ or 0, if the agents are more similar than the
threshold ‘confidence_level’ or below it, respectively. In the one-to-one communication regime, the agents
can also influence each other if the ‘bi-directional’ parameter is set to true.

Parameters

• network – The network in which the agents exist.

• agent_i – the index of the focal agent that is either the source or the target of the influ-
ence

1.6. influence_sim 15
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• agents_j – A list of indices of the agents who can be either the source or the targets of
the influence. The list can have a single entry, implementing one-to-one communication.

• attributes – A list of the names of all the attributes that are subject to influence. If
an agent has e.g. the attributes “Sex” and “Music taste”, only supply [“Music taste”] as
a parameter for this function. The influence function itself can still be a function of the
“Sex” attribute.

• regime – Either “one-to-one”, “one-to-many” or “many-to-one”

• dissimilarity_measure – An instance of a DissimilarityCalculator.

• kwargs – Additional parameters specific to the implementation of the InfluenceOperator.
Possible parameters are the following:

• confidence_level (float=0.8) – A number between 0 and 1 determining the cut-
off value for the dissimilarity at which agents do not interact anymore. 1 means that even
the most dissimilar agents still interact, 0 means no interaction.Passed as a kwargs argu-
ment.

• convergence_rate (float=0.5) – A number between 0 and 1 determining how
much an agent adopts other agents features. If it is one, the influenced agent takes the
value of the influencing agent. Passed as a kwargs argument.

Returns true if agent(s) were successfully influenced

1.7 network_evolution_sim

1.7.1 network_evolution_sim module

class mamf.network_evolution_sim.network_evolution_sim.NetworkModifier
Bases: abc.ABC

The NetworkModifier changes the structure of the network. It can build or remove edges based on how agents
are connected and what attributes they have.

static rewire_network(network: networkx.classes.graph.Graph, **kwargs)
Creates new connections or deletes existing ones. Can be used to implement coevolution of networks and
model selection processes.

Parameters network – The network that will be modified.

mamf.network_evolution_sim.network_evolution_sim.rewire_network(network: net-
workx.classes.graph.Graph,
realization:
str, **kwargs)

This function works as a factory method for the NetworkModifier component. It calls the rewire_network
method of a specific implementation of the AttributesInitializer and passes to it the kwargs dictionary.

Parameters

• network – The network that will be modified.

• realization – The specific NetworkModifier that shall be used to initialize the at-
tributes. Options are “maslov_sneppen”, ..

• kwargs – The parameter dictionary with all optional parameters.

16 Chapter 1. Here is a list of all components of this framework:
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1.7.2 NetworkHomophily module

class mamf.network_evolution_sim.NetworkHomophily.MaslovSneppen
Bases: mamf.network_evolution_sim.network_evolution_sim.NetworkModifier

static rewire_network(network: networkx.classes.graph.Graph, **kwargs)
This function picks random agents from the network and connects them to each other.

Parameters network – The network that is modified.

1.8 dissimilarity_component

1.8.1 DissimilarityCalculator module

class mamf.dissimilarity_component.dissimilarity_calculator.DissimilarityCalculator
Bases: abc.ABC

This class is responsible for determining the distance between nodes, either from one node to another, or for
every agent in the network to another. The distance could be based on their attributes or actual geodesic distance.

static calculate_dissimilarity(network: networkx.classes.graph.Graph, agent1_id: int,
agent2_id: int)→ float

This function calculates how dissimilar two agents are based on their attributes and/or their distance in the
network. Can for example be used to determine whether a neighbor is selected for the influence process.

Parameters

• network – The network in which the agents exist.

• agent1_id – The index of the first agent.

• agent2_id – The index of the agent to compare with.

:returns a float value, representing the distance between the two agents

static calculate_dissimilarity_networkwide(network: net-
workx.classes.graph.Graph)

Calculates the distance from each agent to each other and sets that distance as an attribute on the edge
between them.

Parameters network – The network that is modified.

mamf.dissimilarity_component.dissimilarity_calculator.select_calculator(realization:
str)
→
mamf.dissimilarity_component.dissimilarity_calculator.DissimilarityCalculator

This function works as a factory method for the dissimilarity_component. It returns an instance of the Calculator
that is asked for.

Parameters realization – The type of DissimilarityCalculator. Possible options are [“ham-
ming”, “euclidean”]

Returns An instance of a DissimilarityCalculator

1.8. dissimilarity_component 17
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1.8.2 EuclideanDistance module

class mamf.dissimilarity_component.EuclideanDistance.EuclideanDistance
Bases: mamf.dissimilarity_component.dissimilarity_calculator.
DissimilarityCalculator

Implements the DissimilarityCalculator as a calculator of the euclidean distance

static calculate_dissimilarity(network: networkx.classes.graph.Graph, agent1_id: int,
agent2_id: int)→ float

Calculates euclidean distance of the agents’ feature vectors.

Parameters

• network – The network in which the agents exist.

• agent1_id – The index of the first agent.

• agent2_id – The index of the agent to compare with.

Returns A float value, representing the distance between the two agents.

static calculate_dissimilarity_networkwide(network: net-
workx.classes.graph.Graph)

Calculates the distance from each agent to each other and sets that distance as an attribute on the edge
between them.

Parameters network – The network that is modified.

1.8.3 HammingDistance module

class mamf.dissimilarity_component.HammingDistance.HammingDistance
Bases: mamf.dissimilarity_component.dissimilarity_calculator.
DissimilarityCalculator

Implements the DissimilarityCalculator as a calculator of the Hamming distance

static calculate_dissimilarity(network: networkx.classes.graph.Graph, agent1_id: int,
agent2_id: int)→ float

Computes the Hamming Distance between two Agents, i.e. returns the proportion of features that the two
agents have not in common. 1 means therefore total dissimilarity, and 0 is total overlap. Only works with
categorical attributes.

Parameters

• network – The network in which the agents exist.

• agent1_id – The index of the first agent.

• agent2_id – The index of the agent to compare with.

:returns a float value, representing the distance between the two agents

static calculate_dissimilarity_networkwide(network: net-
workx.classes.graph.Graph)

Calculates the distance from each agent to each other and sets that distance as an attribute on the edge
between them.

Parameters network – The network that is modified.

18 Chapter 1. Here is a list of all components of this framework:
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1.9 tools

1.9.1 NetworkDistanceUpdater module

mamf.tools.NetworkDistanceUpdater.update_dissimilarity(network: net-
workx.classes.graph.Graph,
agents: List[int], calculator:
mamf.dissimilarity_component.dissimilarity_calculator.DissimilarityCalculator)

This method recomputes the edges between a certain set of agents and all their neighbors and then modifies the
edges between them respectively.

Parameters

• calculator – An implementation of the DissimilarityCalculator class

• network – The network that is updated.

• agents – A list containing the indices of all agents whose edges should be updated.

mamf.tools.NetworkDistanceUpdater.check_dissimilarity(network: net-
workx.classes.graph.Graph,
threshold: float)

This function is used to check whether influence is theoretically still possible. For that is checked whether any
edge has a dissimilarity value inbetween a certain range of possible values that allow for further influence steps.
This range has 1 as the upper limit and a given threshold as lower limit.

Parameters

• network – The network that is checked.

• threshold – The lower limit of dissimilarity that makes it possible for agents to influence
each other.

Returns True if there is still change possible, False otherwise

1.9.2 OutputMeasures module

mamf.tools.OutputMeasures.homogeneity(network)
A measure of how much consensus exists in the network.

Parameters network – The network to be measured.

Returns The homogeneity measure ‘S_max / N’

mamf.tools.OutputMeasures.isol(network)
Counts how many agents belong to no cluster.

Parameters network – The network to be measured.

Returns The count of isolates in the graph.

mamf.tools.OutputMeasures.clustercount(network)
Counts how many clusters exist in the network. #todo: reference on what a cluster is

Parameters network – The network to be measured.

Returns The number of clusters in the network.

mamf.tools.OutputMeasures.regionscount(network)
Counts how many agents belong to each cluster in the network and returns a list of these numbers.

Parameters network – The network to be measured.

1.9. tools 19
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Returns A list with the size of all the clusters in the graph.

1.9.3 ClusterExecutionScript module

class mamf.tools.ClusterExecutionScript.parallelSimulation
Bases: object

This class exists solely for the purpose of running a chunk of different parameter combinations in parallel on
one machine. This script is called from the command line with 3 arguments.

Parameters

• index of the chunk that this instance shall run. (The) –

• path to the folder with the pickle files from which the
Simulation parameters are read. (The) –

• path to where the output shall be written. (The) –

main()

create_and_run_simulation(parameter_dict)

20 Chapter 1. Here is a list of all components of this framework:
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