
Master’s Thesis

Predicting online article popularity
based on text-generated features

Panagiotis Giagkoulas
S3423883

Department of Artificial Intelligence
University of Groningen, The Netherlands

Internal Supervisor: Dr. M.A. Wiering (Artificial Intelligence, University of Groningen)
External Supervisor: Wouter Storteboom (theFactor.e, Friesestraatweg 215A, Groningen)

January 22, 2020

Abstract

Predicting the popularity of online content can have great value for all parties involved, from content
creators and editors to technical and marketing personnel. Many methods have been developed and
they either rely on the first available indicators of popularity right after publication of the content
or rely solely on the content itself in order to make a prediction well before publication. This latter
approach is called cold-start prediction and it will be the focus of this thesis.

Content-wise we will focus on online news articles. We will employ embedding techniques, that
have not yet been investigated thoroughly in cold-start popularity prediction, to encode the main
text of our articles. We will use these encodings to train simple predictive models for both binary
classification and regression tasks. Our main aim is to develop a proof of concept for the suitability
of our embedding methods of choice in this task.

To develop a reliable and informative proof of concept we experiment with three encoding methods
to represent the texts of the articles, namely tf-idf indexes, Word2Vector averaged word embeddings
and Document2Vector document embeddings. For predictive models, we experiment with Logistic
Regression, Support Vector Machines for classification (SVCs) and regression (SVRs) and Linear
Regression.

Our system shows promise in the binary classification task while it performs poorly on the regres-
sion task. The best performing models are Document2Vector for encoding in both tasks while SVCs
are the best performing classifiers and SVRs are the regressors that showed the most potential. The
quality of the embeddings can be improved to lead to better results in both tasks and more complex
models can be used to utilize fully the information encapsulated in the document embeddings. In
total our proof of concept shows that our methods of choice for encoding and prediction can be
successfully applied on cold-start popularity prediction, although improvements are necessary for
real-world usage.

1

Acknowledgements

I would like to express my gratitude to all the people who supported me in this project. First,
Dr. M.A. Wiering, for accepting to be my supervisor and for his advice and guidance throughout
the project. Second, I would like to thank my external supervisor, Wouter Storteboom, and the
whole team of theFactor.e, that welcomed me, provided me with a friendly environment and all the
resources and assistance I needed to conduct my research. I would also like to thank my friends and
family for their continuous support in all my endeavors that helped keep moving forward and achieve
my goals.

Finally, I would like to pay some tribute to the 286 cups of tea that were consumed throughout
this project. You definitely added flavour to my everyday routine.

Panagiotis Giagkoulas
January 22, 2020

i

Contents

List of Figures iv

List of Tables v

1 Introduction 1

2 Language Representation 3
2.1 Count Vectorization . 3
2.2 Word Embeddings . 3

2.2.1 Word2Vector . 4
2.3 Averaging Word Embeddings . 7
2.4 Document2Vector . 8

3 Models 10
3.1 Classification . 10

3.1.1 Logistic Regression . 10
3.1.2 Support Vector Machines . 11

3.2 Regression . 13
3.2.1 Linear Regression . 13
3.2.2 Support Vector Regression . 14

4 Experimental Design 15
4.1 Dataset . 15

4.1.1 Acquisition and Analysis . 15
4.1.2 Preprocessing . 17
4.1.3 Dataset Enrichment . 17
4.1.4 Data Encoding . 18

4.2 Models . 19
4.2.1 Classification . 20
4.2.2 Regression . 20
4.2.3 Combined Models . 21

5 Results 22
5.1 Classification Results . 22

5.1.1 Logistic Regression . 22

ii

5.1.2 SVM Classification . 26
5.1.3 Misclassifications . 30

5.2 Regression Results . 31
5.3 Combined Model Results . 33
5.4 Embeddings . 33

6 Discussion and Conclusion 35
6.1 Discussion . 35

6.1.1 Research Questions . 35
6.1.2 Future Work . 37

6.2 Conclusion . 38

References 39

Appendix 44

iii

List of Figures

2.1 Architecture illustration of Word2Vec as introduced in [31], taken from [43] 4
2.2 Architecture illustration of Paragraph vector as introduced in [26], taken from [10] . . 9

3.1 Support Vector Machine . 12

4.1 Histograms of sentence and word counts in the articles of the Emerce dataset. The
word count is organized in 100 bins and the sentence count in 50 bins. 16

4.2 Histogram of view counts in the dataset. A natural shape can be seen with a very
sharp and narrow normal distribution on the left with a right tail and a wide normal
distribution on the right, also with a right tail. The two shapes will represent the two
classes of the classification task. 17

5.1 Confusion matrix of the best performing Logistic Regression model based on tf-idf
vectorized documents. 23

5.2 Confusion matrix of the best performing Logistic Regression model based on Word2Vector
averaged embeddings. 24

5.3 Confusion matrix of the best performing Logistic Regression model based on Docu-
ment2Vector embeddings. 26

5.4 Confusion matrix of the best performing SVM classification model based on tf-idf
vectorized documents. 27

5.5 Comparison of confusion matrices of the best performing Word2Vector embeddings
per architecture. 28

5.6 Comparison of confusion matrices of the best performing Document2Vector encodings
per architecture. 30

5.7 Histograms of false positives and false negatives of the best classifiers per predictive
model. On the left is the best Logistic Regression model and on the right the best
SVM model. For both histograms the false positives are organized in 50 bins and the
false negatives in 150 bins. Misclassifications over 100000 are not shown for clarity. . . 31

5.8 Plot of true view count (x-axis) against predicted view count (y-axis) of the best
performing SVM regression model based on Document2Vector embeddings. Views
are in natural logarithmic scale. 33

6.1 Histogram of view counts in the dataset. A natural shape can be seen with a very
sharp and narrow normal distribution on the left with a right tail and a wide normal
distribution on the right, also with a right tail. The two shapes will represent the two
classes on the classification task. 44

iv

List of Tables

4.1 Parameter search space for PV-DM and PV-DBOW. Some parameter values are ex-
plored more extensively for PV-DM while others are investigated in more detail for
PV-DBOW, based on preliminary performance tests. 19

4.2 Parameter search space for SVM classification. Bold values represent the first stage
of grid search, applied to all cases. Normal values represent the second stage grid
search, performed only in the case of an edge value being selected as the best parameter. 20

4.3 Parameter search space for SVM regression. Bold values represent the first stage of
grid search, applied to all cases. Normal values represent the second stage grid search,
performed only in the case of an edge value being selected as the best parameter. . . . 21

5.1 Results of Logistic Regression models using Word2Vector averaged embeddings. In
bold are the best performing models and in italics the worst performing models. . . . 24

5.2 Results of Logistic Regression models using Document2Vector embeddings. In bold
are the best performing models and in italics the worst performing models. 25

5.3 Results of SVM classification models using Word2Vector averaged embeddings. In
bold are the best performing models and in italics the worst performing models. . . . 28

5.4 Results of SVM classification models using Document2Vector embeddings. In bold
are the best performing models and in italics the worst performing models. 29

5.5 Best performing regression models per encoding method. In bold are the best per-
forming models. 32

5.6 Most similar articles to ’NOS staakt ondersteuning Smart TV app voor veel toestellen’
based on their Word2Vector averaged embeddings. The class of each article is also
shown. 34

5.7 Most similar articles to ’NOS staakt ondersteuning Smart TV app voor veel toestellen’
based on their Document2Vector embeddings. The class of each article is also shown. . 34

v

Chapter 1

Introduction

We are in an era in which internet users have access to vast amounts of media content from a wide
variety of sources and, more often than not, need to filter out low quality or unreliable content.
Finding trustworthy sources of information and high-quality content is a strenuous process for the
users but with the numerous available alternatives, it is easy for them to follow a trial and error
approach and disregard unwanted sources entirely. If the personal preferences and characteristics
of the users are also taken into account, then it becomes apparent that attracting and maintaining
a loyal online audience is no simple task. Therefore content creators need to provide high-quality,
reliable and personalized content to attract audiences. In order to achieve that, a wide variety of
tools is employed with the most recent being machine learning which has already been successfully
applied in recommender systems [39], offering users personalized content projection.

The Factor.e is a full-service digital agency that offers personalized web and digital services to
clients. Many of their clients are content creators or have considerable online content in their websites;
more specifically online articles. The goal is to develop a system that will predict the popularity of
an online article prior to its publication. News articles from the Emerce website1 will be used and
their popularity will be measured by using the number of views they receive. Being able to assess
in advance whether an article will be popular or not provides important insight when choosing the
content to be published. For editors, knowing which articles are the most promising, will allow them
to make better decisions during the editorial stage. Content creators can improve their articles and
customize them, if they know how they will appeal to their audience. Finally, this prior knowledge
can also be utilized for more technical purposes, e.g. making the most promising content readily
available for mobile devices, which are heavily affected by connectivity issues and network strength
fluctuations.

Online content presents great variety, from blog and news articles to social media posts to videos.
Being able to predict the most prominent content provides publishers with a competitive advantage
as they can successfully provide their audience with desirable content. Additionally, given that
most companies invest heavily in online marketing [23], detecting the most promising content early
allows for efficient and effective planning of advertising campaigns. Popularity prediction can also
contribute to the efficiency of content distribution in the net (example of active research by Mehrizi
et al. in [30]).

One of the main areas of research for popularity prediction focuses on online articles. Different

1https://www.emerce.nl/

1

https://www.emerce.nl/

metrics have been used to measure popularity and a variety of predictors has been employed to allow
statistical and machine learning models to predict the popularity of online articles. The approaches
to this problem can be broadly separated into two categories, namely post-publication and cold-
start prediction. The former category employs early publication information to predict the future or
eventual popularity of the content ([54, 50, 20, 1]) while the latter relies solely on features extracted
from the content and possible metadata of the involved parties, for example publisher, author or
publication time. Cold-start predictions have mainly been addressed in the context of recommender
systems (for example in [28, 44, 53, 57]). However this thesis deals with the cold-start popularity
prediction of online news articles, following the works of [3, 2, 15].

From the aforementioned approaches, only [15] employed word embeddings to represent the titles
and texts of the articles. We aim to expand on that approach by employing different embedding
techniques to encode the article information in a meaningful way. The first is to encode the articles
using word-level embeddings based on Word2Vector [31] and use their sum, weighted sum or weighted
average to represent the full article. The second technique encodes texts in their entirety using
Paragraph Vector, also known as Document2Vector [26], an extension of Word2Vector for embedding
larger structures of text, like sentences, paragraphs or even documents in their entirety.

As the effectiveness of such encoding methods has not yet been extensively studied in the context
of cold-start popularity prediction, the models that will be developed in this thesis will serve as proof
of concept for their applicability on this task. For that reason the popularity problem will be tackled
both as a classification task (predicting popular or not popular) and a regression task (predicting the
exact number of views). The focus will be on simpler models, namely Logistic Regression, Support
Vector Machine classification and regression and different Linear Regression models.

More specifically this project aims to answer the question:

Can we predict the popularity of an online article, before its publication, based solely on
text-generated features?

Which can be decomposed into the following sub-questions:

• How can we assess whether an article is popular or not?

• Which text encoding method performs the best in predicting an article’s popularity?

• Which predictive model is the most appropriate for this task?

This thesis focuses on two main aspects of the popularity prediction problem. The first is the
informative encoding of the article texts using the most fitting methods. The second is the selection
and tuning of the most appropriate predictive models. Examining these two aspects extensively will
provide a sufficient outlook in the applicability of the selected methods on the cold-start popularity
prediction problem and will support possible future extensions employing more complex methods.

The structure of the thesis is as follows. Chapter 2 provides the theoretical background on the
encoding methods applied in this project and Chapter 3 explains the details behind the methods
used for popularity prediction. Chapter 4 provides a detailed overview of the configurations for
the methods and experiments. Chapter 5 presents the results of the experiments which are finally
discussed in Chapter 6 in which also a conclusion of the whole project is provided.

2

Chapter 2

Language Representation

One of the major difficulties encountered in Natural Language Processing (NLP) tasks is the repre-
sentation of the input. Statistical or machine learning models require informative representations of
linguistic components like words or sentences in order to produce meaningful results. This is achieved
by transforming words to a numeric format that can be mapped to a continuous vector space by a
vector space model (VSM) [40]. Numerous methods have been developed to that end, each utilizing
a different aspect of the text and encapsulating it into vector form. In this section popular encoding
methods are discussed, both on word and on document level.

2.1 Count Vectorization

A simple and frequently followed approach in NLP is to encode a word occurring in a text using
a vocabulary-long vector, whose elements are all zero, apart from the position of the word in the
vocabulary that is one. This method, although very intuitive, can be highly inefficient in big datasets
as it leads to increasingly sparser representations as the vocabulary increases. In this case, a complete
document would be represented by the counts of each of its words, in a Bag of Words (BoW) manner.
An interesting extension uses the term frequency-inverse document frequency (tf-idf) [29, 18] of the
words to represent a complete text, thus transitioning from simple counts to informative indexes of
the importance of a word for a specific document within a given corpus.

However the representation still has significant disadvantages. Regardless of the meaning of the
numeric used, words are still encoded into sparse representations and the BoW approach disregards
any syntactic and semantic structure of the text, thus failing to encapsulate important information.
Nevertheless BoW approaches are still popular and are applied not only on text-related tasks but
also on image recognition and classification [49, 33, 35, 41].

2.2 Word Embeddings

Word embeddings were introduced as a more efficient alternative for word encoding. Instead of using
sparse representations, the words are embedded into a continuous vector space, designed to encapsu-
late semantic relationships of words. Word embeddings can be broadly grouped into co-occurrence
counts models and context-predicting models [25]. Count models form the initial word embeddings
using raw co-occurrence counts and then move on to perform a series of transformations on them, for

3

example re-weighting co-occurrence counts to improve informativeness and dimensionality reduction
for smoothing. Prediction models however directly adjust the vector weights to maximize the prob-
ability of predicting a word’s context, without first collecting context vectors. This approach causes
words occurring in similar contexts to have similar vectors. Another significant difference between
the two is that prediction models train vectors in a supervised manner while count models do so,
mostly, in an unsupervised manner. The two styles have been extensively evaluated by by Lavelli et.
al in [25] and Baroni et al. in [4]. In this thesis context-predicting methods will be used and thus
will be further described in this section.

(a) Continuous Bag of Words
(b) Continuous Skip-gram

Figure 2.1: Architecture illustration of Word2Vec as introduced in [31], taken from [43]

2.2.1 Word2Vector

Word2Vector is an implementation of the algorithms proposed by Mikolov et al. in [31]. It was
developed by Mikolov and his team during their employment at Google. It is a tool that provides an
efficient alternative to its contemporary methods in generating word embeddings, based on context-
predicting methods. It consists of two architectures for word representation, the Continuous Bag of
Words (CBOW) and the Continuous Skip-gram (CSG), both seen in figure 2.1. The idea behind these
two architectures was to reduce the computational complexity by removing the non-linear hidden
layer that was used in Neural Network Language Models (NNLM) [5].

4

Continuous Bag of Words

The CBOW architecture’s aim is to predict a target word wt from its surrounding C context words
wI . A window is defined to select words preceding and following the target word. The context words
are transformed to one-hot encoded vectors xk ∈ RV , where V is the length of the vocabulary. These
vectors constitute the network’s input. They are averaged and then multiplied with a weight matrix
W ∈ RV×N , where N is the selected dimensionality of the embeddings, to produce the hidden layer
output h ∈ RN :

h =
1

C

C∑
i=1

W T
V×Nxi (2.1)

The rows wi of the weight matrix are the word embeddings vwi of the words in the vocabulary. Then
to calculate the scores uj for each word, the hidden layer output is multiplied with w′j , where w′j is

the j-th column of the second weight matrix W ′ ∈ RN×V .

uj = w′
T
j h (2.2)

Finally the scores are passed through a softmax function to produce the network output, the
word posterior distribution.

p(wt|wI) =
exp(uj)∑V
j′=1 exp(uj′)

(2.3)

The purpose of training this network is to find the weights that maximize the likelihood that the
target output word wt occurs within the given word context wI . The loss function to achieve this is
based on the log probabilities of the softmax:

E = uj∗ − log

V∑
j′=1

exp(uj′) (2.4)

where E = − log p(wt|wI) is the loss function to minimize and j∗ is the target word in the output
layer. The training process is carried out using stochastic gradient descent and back-propagation.
The weights of the hidden-to-output matrix will be adjusted, based on the partial derivatives of the
loss function on the weight matrix W ′:

w′
new
ij = w′

old
ij − η

∂E

∂w′oldij

= w′
old
ij − η

∂E

∂uj

∂uj

∂w′oldij
(2.5)

= w′
old
ij − η · (yj − tj) · hi

where η ∈ [0, 1] is the learning rate and tj is 1 if j∗ = j and 0 otherwise. Having updated the values
for W ′, the first weight matrix constituting the word embeddings is updated. First the derivative of

5

E to the hidden layer is calculated:

∂E

∂hi
=

V∑
j′=1

∂E

∂uj

∂uj
∂hi

=

V∑
j′=1

(yj − tj) · w′ij := EHi (2.6)

where Hi is the i-th hidden unit in the hidden layer and EHi ∈ RN is the sum of the output vectors
of all words in the vocabulary, weighted by their prediction error: (yj− tj). Then following the chain
rule, the derivative of E for each element of W can be calculated:

∂E

∂wki
=
∂E

∂hi

∂hi
∂wki

= EHi · xk = xEHT (2.7)

Finally the embeddings are updated. Since only one element of x is non-zero, it is excluded and
only the embeddings corresponding to the context words vwI,c are updated:

vnewwI,c
= voldwI,c

− 1

C
· η · EHT (2.8)

where vwI,c is the row of W that had a non-zero derivative and thus is the only one updated at that
step.

Continuous Skip-gram

The continuous skip-gram architecture aims to predict context words wI based on a target word wt.
In essence CSG is the opposite of CBOW. In this case, since there is one input word, the input-
to-hidden layer practically copies the row (embedding) corresponding to this word from the weight
matrix W . The forward propagation is carried out as in CBOW, the difference being that the output
is C word posterior probabilities, one for each of the context words. Each of the outputs is calculated
using the same W ′ matrix:

yc,j = p(wc,j = wO,c|wt) =
exp(uc,j)∑V
j′=1 exp(uc,j′)

(2.9)

The loss function along with the update function for the hidden-to-output weight matrix is
adjusted to accommodate the C different outputs:

E = − log p(wO,1, wO,2, ..., wO,C |wt)

= − log
C∏
c=1

exp(uc,j)∑V
j′=1 exp(uc,j′)

(2.10)

= −
C∑
c=1

(uj∗c + C · log

V∑
j′=1

exp(uc,j′))

w′
(new)
ij = w′

(old)
ij − η ·

C∑
c=1

(yc,j − tc,j) · hc,i (2.11)

The update function for the input-to-hidden matrix remains the same as in (2.8).

6

Negative Sampling

The CSG architecture of Word2Vector trains embeddings so as to maximize the probability of a
context words wI given a target word wt, namely P (wI |wt). But this process takes into account the
probabilities of all the other words in the vocabulary, leading to a high number of computations.
Mikolov et al. [32] introduced negative sampling, a simplified version of Noise Contrastive Estimation
(NCE)[16], to optimize the training process. In that case only the probability P (wI |wt) is maximized
while the probability of a selected number of negative samples is minimized.

Following [43], using negative sampling produces the following error function:

E = − log σ(v′
T
wO
h)−

∑
wj∈Wneg

log σ(−v′Twj
h) (2.12)

where σ represents the softmax function, Wneg is the set of negative sample words, v′w. is the
embedding of a word w. and h is the input-to-hidden output. Negative Sampling can also be applied
in the CBOW architecture, given the appropriate modifications.

Sub-sampling Frequent Words

Frequent words in big datasets usually have a negative impact on the prediction task of language
models. Therefore techniques like stop-word removal is a widely used pre-processing step. Another
approach to the same issue in the case of Word2Vector is the sub-sampling of frequent words. As
presented in [32], sub-sampling is used to counter the unavoidable imbalance between frequent and
infrequent words in a dataset. The probability of a word being sub-sampled is determined by:

P (wi) = 1−

√
t

f(wi)
(2.13)

where f(wi) is the frequency of word wi and t the chosen threshold, which is usually 10−5. Words
with frequency higher than the chosen threshold t will be sub-sampled and the frequency ordering
will be preserved. Even though the formula was decided heuristically, it has been shown to improve
both learning times and accuracy of rare-word embeddings [32].

2.3 Averaging Word Embeddings

Given a successful embedding of words, the next step is to encode complete text structures, for
example a paragraph. One of the most simplistic yet quite broadly used approach is that of summing
or averaging word embeddings in a BoW manner. This approach is mainly used as a baseline in
different cases such as in [22, 10, 55, 46, 17].

Using averaging, a paragraph embedding ti would be calculated by averaging all of its word
embeddings wj , j = 1...Ni, where Ni is the number of words in the paragraph:

ti =
1

Ni

Ni∑
j=1

wj (2.14)

Although intuitive and simple to compute, such paragraph embeddings fail to capture important
aspects of the text. As in any BoW approach, the syntactic and semantic structure from a text

7

is lost leading to loss of important information. Therefore other embedding techniques have been
developed in an attempt to properly represent the meaning of a text structure larger than a word.

2.4 Document2Vector

Many sophisticated methods have been developed to generate elaborate document embeddings, like
Skip-through Vectors [21], Sent2Vector [34] and Paragraph Vector [26] which is the one applied
in this thesis. Le and Mikolov [26] further explored the embeddings of texts and developed the
Paragraph Vector, a method to encode texts of variable length, like sentences, paragraphs or even
documents in their entirety. In their work Le and Mikolov apply their method on paragraph level,
encoding each paragraph of a document separately. Paragraph Vector consists of two architectures,
the Distributed Memory model of Paragraph Vector (PV-DM) and the Distributed Bag of Words
model of Paragraph Vector (PV-DBOW) which follow the principles of the Bag of Words and Skip-
gram models respectively, as seen in [31].

PV-DM, seen in figure 2.2a, is similar to Word2Vec’s CBOW model, the main difference being
that alongside the words’ weight matrix W , a second weight matrix D ∈ RUxM is used to encode
the paragraphs. U is the number of paragraphs in the dataset and M is the selected dimensionality
of the paragraph embeddings. Thus every paragraph is mapped to a row dj of the paragraph weight
matrix D, which are unique, real-valued vectors and represent the paragraph embeddings tj . The
input of the network is a concatenation of the context words’ and the paragraph’s embeddings.
Word embeddings are shared across all paragraphs in the dataset but paragraph embeddings are
shared only for context generated from the same paragraph and not across the whole dataset. The
embeddings of the paragraphs are randomly initialized at the beginning of the training process, like
the word embedding are, and their final values are determined during the training process.

The training is carried out like in Word2Vec’s CBOW, as explained in Section 2.2.1. The difference
is that in addition to the word matrix update, the paragraph embeddings are also updated using
back propagation, similar to equation 2.8:

tnewdI,c
= tolddI,c −

1

C
· η · EHT (2.15)

where tdI,c is the row of D that had a non-zero derivative and therefore is the only one updated at
that step. Thus, even if the paragraph matrix is large, the updates on the matrix are sparse, allowing
the training process to maintain time and calculation efficiency.

8

(a) Paragraph Vector - Distributed Memory. In-
put consists of a concatenation among the word
embeddings and the embedding of paragraph they
belong to.

(b) Paragraph Vector - Distributed Bag of Words.
Input is simply the embedding of the paragraph
at question.

Figure 2.2: Architecture illustration of Paragraph vector as introduced in [26], taken from [10]

PV-DBOW, seen in figure 2.2b, follows the notion of the Skip-gram model and aims to maximize
the probability distribution over the words that belong to a paragraph given its embedding. The
main advantage of this approach, as stated by the creators, is that it allows for faster training as
only the weights of the output layer need to be stored during the process, contrary to both output
layer weights weights and word embeddings in the case of PV-DM.

Le and Mikolov utilize both architectures and combine the generated paragraph embeddings for
their experiments.

9

Chapter 3

Models

In this section the models used to tackle the popularity prediction problem are discussed. Popularity
prediction is handled both as a classification and as a regression task and therefore the following
subsections describe models of both categories.

3.1 Classification

In machine learning, classification is the problem of correctly identifying the category an instance
belongs to, based on previously observed instances whose category is known. This choice is made
based on a set of explanatory variables called features. These features can be categorical (country
of residence), ordinal (clothing size) or numerical (weight, number of page views). Another way
to decide the category an instance belongs to is by measuring its distance from or similarity to
previously observed instances. The algorithms that implement classification are called classifiers.

3.1.1 Logistic Regression

Logistic regression is a statistical method used to model a binary dependent variable, using one or
more independent variables. The term was first coined by Berkson in [6]. Given that the two classes
of the dependent variable are 0 (negative) and 1 (positive), logistic regression yields the probability
that an instance belongs to the positive class. This probability is given using a logistic/sigmoid
function. Classification is carried out by placing a cutoff point on the yielded probability to decide
which class an instance is more likely to belong to. The exact value of the cutoff point can be decided
based on the cost of false positives against false negatives, but for a balanced classification task a
value of 0.5 is usually chosen.

In the multivariate case, a linear approximation of the independent variables is used and the
regression function has the following form:

βTX = β0 + β1x1 + β2x2 + ...+ βnxn,

hβ(x) =
1

1 + e−βTX
(3.1)

In order to find the best set of parameters β, a cost function needs to be optimized. Simple
Mean Squared Error (MSE) would not be the optimal option in this scenario as the exponent makes

10

equation 3.1 non-convex, leading to many local optima. Thus a global optimal solution would not
be guaranteed using methods like Stochastic Gradient Descent (SGD). Therefore the Logistic Loss
is used, to formulate a convex cost function that guarantees an optimal solution:

J(β) =
1

m

m∑
i=1

Cost(hβ(xi), yi) (3.2)

where m is the number of instances used in this update step, hβ(xi) is the predicted class for instance
i, yi is the actual class of instance i and Cost is defined in equation 3.3:

Cost(hβ(xi), yi) =

{
− log(hβ(xi)), if yi = 1

− log(1− hβ(xi)), if yi = 0
⇒

Cost(hβ(xi), yi) = −yi log(hβ(xi))− (1− yi) log(1− hβ(xi)) (3.3)

Finally, after substituting equation 3.3 in equation 3.2:

J(β) =
1

m

m∑
i=1

[−yi log(hβ(xi))− (1− yi) log(1− hβ(xi))] (3.4)

The now convex equation 3.4 is the final cost function that is minimized with SGD, in order to
find the optimal coefficients β. The derivative of 3.4 is:

∂J

∂β
=

1

m

m∑
i=1

[(hβ(xi)− yi)xi] (3.5)

and thus an update step of the coefficients can be calculated as follows:

βt+1 = βt − α∂J
∂β
⇒

βt+1 = βt − α 1

m

m∑
i=1

[(hβ(xi)− yi)xi] (3.6)

3.1.2 Support Vector Machines

Support Vector Machines (SVMs) [9] are supervised models that, based on a training set, classify
instances into one of two classes. The purpose of SVMs is to linearly separate the two classes
with the largest possible gap between them, by calculating the maximum-margin hyper-plane. This
hyper-plane is calculated using only the most difficult-to-discern cases among the instances of the
two classes, namely the support vectors, as seen in figure 3.11.

1Larhmam (https://commons.wikimedia.org/wiki/File:SVM_margin.png),
https://creativecommons.org/licenses/by-sa/4.0/legalcode

11

https://commons.wikimedia.org/wiki/File:SVM_margin.png
https://creativecommons.org/licenses/by-sa/4.0/legalcode

Figure 3.1: Support Vector Machine

Given that the problem is linearly separable, a plane in the form of wx − b = 0 requires that
the two classes are clearly separated by a margin, spreading out on either side of the plane. The
boundaries of the margin are given by the equations:

wxi − b =

{
1, instances of class labeled 1

−1, instances of class labeled -1
(3.7)

To constrain instances from landing in the margin, the decision boundary is defined as:

wxi − b =

{
≥ 1, for yi = 1

≤ −1, for yi = −1
⇒ yi(wxi − b) ≥ 1 (3.8)

Finally the purpose is to maximize the margin, which is equal to 2
||w|| , or in other words, to

minimize ||w|| and to accomplish this, 1
2 ||w||

2 is minimized, subject to equation 3.8. This leads to
the following function in Lagrangian form:

L =
1

2
||w||2 +

n∑
i=1

λi(1− yi(wxi − b)) (3.9)

However many problems are not linearly separable. In order to accommodate for that, SVMs use
two methods: the soft-margin variant and the kernel trick. With the soft-margin the SVM allows
for a degree of misclassification among the instances. Thus by introducing a penalty factor ξi for
misclassified instances the constraint in equation 3.8 becomes:

yi(wxi − b) ≥ 1− ξi (3.10)

12

and the function to minimize becomes:

L =
1

2
||w||2 + C

n∑
i=1

ξi +

n∑
i=1

λi(1− ξi − yi(wxi − b)) (3.11)

where C is the factor that determines the trade-off between maximum margin around the hyper-plane
and allowed level of misclassification.

The kernel trick is a more elaborate alternative, as it maps the instances in a higher-dimensional
space where they can be linearly separated. This mapping is achieved by applying kernel functions on
the data. Complicated, non-linear hyper-planes with optimal margins can be calculated in this new
feature space. The most often used functions include the polynomial and the radial-basis function
kernels.

The aforementioned methods refer to binary classification tasks. However SVM functionality
can be extended to multi-class classification tasks. There are two approaches that rely on training
multiple binary classifiers to that end. The first is called one-versus-all (OVA), where each class is
discerned from all the others, and the second is called one-versus-one (OVO), where all classes are
differentiated in a pair-wise fashion.

3.2 Regression

Regression analysis represents a group of statistical methods that aim to model and analyze the
relations between at least one independent variable and a dependent variable, also referred to as
predictor. In its most common application, regression analysis evaluates the average value of the
dependent value given that all other independent variables are fixed. This is carried out by an
estimated function of the independent variables called regression function. The different methods
that have been developed can be organized into two categories, parametric and non-parametric. It
can be used for prediction and forecasting but also for variable selection, as it explores the relation
between each independent variable and the predictor.

In the scope of this thesis regression models will be employed to face popularity prediction as a
regression problem, by predicting the number of views an article has accumulated. Starting from
simple solutions like linear regression and leading up to support vector regression, we explore which
model can best fit the data and predict their popularity.

3.2.1 Linear Regression

Linear regression models are used to estimate a linear approximation between a dependent variable
and one (simple linear regression) or more (multiple linear regression) independent variables. It is
assumed that there is a linear relationship between the dependent and independent variables. To
model this relationship a function of the following form is estimated:

yi = β0 + β1xi,1 + β2xi,2 + ...+ βpxi,p + εi (3.12)

where yi is the dependent variable, xi,j are the independent variables as observed in the data and
εi is the error variable, a random variable that adds noise to the relation between the variables.

Different methods have been developed to estimate the parameters of a linear model. Often
Ordinary Least Squares (OLS) estimation is used, either as is or with slight variations by penalizing

13

the cost function, examples being ridge and lasso regression. The term Least Squares is credited to
Carl Friedrich Gauss [8] and first published by Adrien-Marie Legendre [48].

In ordinary Least Squares the aim is to estimate the best parameters β by minimizing the sum
of squares of the residuals:

L(β) =

n∑
i=1

[yi − f(xi, β)]2 (3.13)

where yi is the true value of instance i and f(xi, β) is the linear function of input instance xi
with parameters β ∈ Rm, with m being the number of features for each instance i. Since equation
3.13 is convex, a global minimum can be found with zero gradient.

Although simple and intuitive, the OLS approach is sensitive to outliers that can heavily influ-
ence the residuals and can not handle cases where multicollinearity occurs. To counter these issues
penalized versions of the OLS have been developed, namely ridge and lasso regressions. Both vari-
ations minimize a penalized version of OLS cost function. Ridge regression [52, 37], also known as
Tikhonov regularization or weight decay, is used to apply regularization on ill-posed problems. Its
main aim is to counter the problem of multicollinearity that is encountered in models that make
use of a large number of parameters. LASSO [51] is an acronym for Least Absolute Shrinkage and
Selection Operator and is a method applied for variable selection and regularization. Its aim is to
boost the accuracy of the models it is applied on.

3.2.2 Support Vector Regression

Support vector machines can also be used for regression, called Support Vector Regression (SVR)
[12]. The main principles of SVMs are maintained, namely support vectors and maximal margin.
However given the continuous nature of the target values, a precise prediction would be impossible.
In essence the aim of an SVR model is to fit all the prediction errors within a specific margin and
thus estimating a hyper-plane. Similar to SVM the aim is to minimize the margin 1

2 ||w||
2, subject

to −ε ≤ yi − wxi − b ≤ +ε, where ±ε represents the limits within which all predictions should
fall. Usually slack variables are included to accommodate cases where the hard-margin problem is
infeasible.

14

Chapter 4

Experimental Design

In order to answer the research questions posed in the introduction a number of approaches and
factors need to be examined through different experiments. The scenarios and factors we examine are
described in this section. First, details on the acquisition of the dataset are given along with a short
exploratory analysis, the data preprocessing and dataset enrichment. Second, a description of the
different data encoding techniques is provided. Finally, the predictive models and their configurations
are presented in detail.

4.1 Dataset

In this subsection the details of the data acquisition, preprocessing and enrichment are presented.
Additionally a brief exploratory analysis on the data is provided.

4.1.1 Acquisition and Analysis

The dataset for this project is comprised of articles from the Emerce website, one of the most visited
sites for media, marketing and e-business news articles in the Netherlands. The dataset was scraped
from the website using a custom web spider developed with Scrapy1 and includes the article’s title
and the text, the author, channel/sub-channel and view count, as displayed on the articles’ page.
The articles are in Dutch, span a period from the 27th of February 2015 until the 6th of June 2019
and were scraped on the 21st of October 2019, to obtain a stabilized view of viewer traffic. In total
20263 articles are scraped and 20056 remained after removing instances with missing values, for
example articles that do not include any text but only media, like an informative poster.

The intended audience of the Emerce website is mainly CEOs and administrative personnel from
the business world, therefore most of the articles are short and concise. The dataset contains around
3.65 million words in total. The vast majority of the articles consists of no more than 336 words,
centered mainly around 181 words, as seen in figure 4.1b. However there is a small number of articles
that reach more than 1000 words, with the largest reaching 5602 words. The number of sentences
follows a similar pattern (figure 4.1a).

1https://scrapy.org/

15

https://scrapy.org/

(a) Distribution of sentences in the articles. (b) Distribution of words in the articles.

Figure 4.1: Histograms of sentence and word counts in the articles of the Emerce dataset. The word
count is organized in 100 bins and the sentence count in 50 bins.

Text generated features will be used as independent variables, more specifically embeddings.
The dependent variable used to represent popularity is the number of views. This measurement is
obtained along with the articles from the Emerce website, as the view count of each article is publicly
available. Article views range from 43 to over 320 thousand. An informative overview of the article
view distribution can be seen in figure 4.2. Only 66 articles in the dataset have a View count of over
100 thousand and are thus excluded for better legibility of the graph. A full graph is provided in the
Appendix.

View count has been previously used as an interpretation of popularity in [19, 2] and although it
is rare for a news portal to publicly share this information, in the case of Emerce, it is available. The
main downside in using the publicly available view count is the lack of precision. Up until before one
thousand views, the exact view count is displayed (e.g. 827 views). However for view counts over
one thousand the number is abbreviated in a decimal form in the magnitude of the thousands with
precision on the first decimal, meaning that an article with 12983 views will be displayed as ’12.9K’.

As seen in figure 4.2 the view count follows a bimodal distribution. This shape will be used
to separate the classes for the classification task. After preliminary tests, the best split is in two
classes, non-popular or regular and popular articles. The threshold used for the separation of classes
is 19000 views. It also becomes apparent that the two classes are highly unbalanced. This issue
will be handled in different, subtle ways, through the predictive models, as the different sampling
techniques are out of the scope of this thesis. Additionally for the regression task the target values
will first be converted into natural logarithmic form. This will allow for faster training and easier
hyper-parameter optimization of the regressors and suffer less from outliers.

16

Figure 4.2: Histogram of view counts in the dataset. A natural shape can be seen with a very sharp
and narrow normal distribution on the left with a right tail and a wide normal distribution on the
right, also with a right tail. The two shapes will represent the two classes of the classification task.

4.1.2 Preprocessing

In NLP, the datasets are usually preprocessed in order to produce informative inputs. The following
preprocessing steps are applied in this thesis to prepare the data for encoding. First all punctuation
marks, digits and hyperlinks are removed. Given the formal nature of news articles, extensive and
varied use of punctuation is not expected and therefore punctuation marks are not included in the
vocabulary due to lack of informative strength. Digits and numbers in general could provide some
insight or allow the detection of patterns but given the wide range of topics in the dataset, it is
considered counter-productive to include numerical characters to the vocabulary. Hyperlinks are
removed again due to lack of informativeness and great variation that can be observed for the same
hyperlink, possibly deteriorating the quality of the vocabulary.

Another proprocessing step is tokenization to separate word structures in the text, using the
word tokenize functionality of Natural Language Toolkit (NLTK) [7]. Furthermore NLTK’s list of
Dutch stop words is used for stop word removal, to exclude high frequency words that do not
contribute significantly to generating informative representations.

4.1.3 Dataset Enrichment

Although the Emerce dataset consists of around 20000 usable articles, the language structures ob-
served in it are expected to be relatively limited compared to the Dutch language’s capacity and ex-
pressibility, since we deal only with news articles of specific topics. Therefore we enrich the dataset
with articles from the Dutch Wikipedia and examine whether the produced embeddings improve
prediction quality or not.

17

The Wikipedia articles were acquired via the Wikipedia dumps2. The .xml form of only the
articles’ text snapshot of the 20th of September 20193 was downloaded, so as to save space and
processing efforts in extracting the texts. The articles were extracted from the .xml files using the
attardi-wikiextractor4.

The Dutch Wikipedia contains almost two million articles. Since the size is almost a hundred
times greater than our Emerce dataset, mixing the two datasets should be done with care. Only a
small number of Wikipedia articles will be used to enrich our dataset, so as not to dominate over the
Emerce articles. The ratios that will be experimented with are 1:1 and 2:1, in favour of the Emerce
dataset. Namely the first case will have the full Emerce dataset and an approximately equal number
of Wikipedia articles while the second will only have approximately half as many Wikipedia articles.

4.1.4 Data Encoding

The first stage of the prediction problem pertains the encoding of the data. The different methods
used in this thesis are described in detail in this section.

Tf-idf and BoW

The initial encoding of the articles is aimed in forming a comparison base for the embedding tech-
niques that we explore in this project and thus the simple Bag of Words approach is used, in
combination with tf-idf as described in Section 2.1. To obtain a vectorized form of the articles,
NLTK’s CountVectorizer is used with a 1500 features in its vocabulary. The words are stemmed
and stop words are removed using NLTK’s Snowball stemmer [38] for Dutch and NLTK’s list of
stop Dutch words respectively. Only unigrams are used to form the count vectors, since preliminary
tests demonstrated lower overall performance and higher tendency to predict the dominant class
when bigrams and/or trigrams were employed. The next step is responsible for the transformation
from counts to tf-idf indexes. This is achieved by using Scikit-learn’s [36] TfidfTransformer, with L2
normalization and smoothing to avoid zero-occurrence words.

Embeddings

The experiments revolve around document-level embeddings. Two approaches are taken, averaged
word embeddings to represent a document using Word2Vector and complete document embeddings
using Document2Vector. Initially custom-made implementations were employed to generate word
and document embeddings. However the performance of the implementations was sub-optimal with
regard to processing speed and overall flexibility and embedding quality. Thus gensim (Generate Sim-
ilar) [42] was selected for the generation of embeddings, since it provides highly efficient, configurable
tools both for word- and document-level embeddings.

For the generation of word-level embeddings gensim’s Word2Vec model is used. The parameters
used to train models are inspired by Mikolov’s implementation5 and other popular, pre-trained
embeddings 6 and both CSG and CBOW architectures are used. The embedding dimension is 300,

2https://dumps.wikimedia.org/
3https://ftp.acc.umu.se/mirror/wikimedia.org/dumps/nlwiki/20190920/
4https://github.com/attardi/wikiextractor
5https://code.google.com/archive/p/word2vec/
6http://vectors.nlpl.eu/repository/, https://nlp.stanford.edu/projects/glove/

18

https://dumps.wikimedia.org/
https://ftp.acc.umu.se/mirror/wikimedia.org/dumps/nlwiki/20190920/
https://github.com/attardi/wikiextractor
https://code.google.com/archive/p/word2vec/
http://vectors.nlpl.eu/repository/
https://nlp.stanford.edu/projects/glove/

negative sampling is set to 5 words and the window size is 5 for CSG and 10 for CBOW. Only
the number of epochs varies between 5, 10, 20 and 50 epochs. The generated word embeddings are
averaged over the number of words for each text to form document embeddings.

For the document-level embeddings gensim’s Doc2Vec model is used. Different sets of embeddings
are generated and the best sets are decided based on rudimental visual inspection and mainly on
their performance on the prediction task. Inspiration for the parameters of the embeddings is taken
from the original paper on Paragraph Vector by Le and Mikolov [26] and the follow-up work by
Lau and Baldwin [24]. Lau and Baldwin propose different parameter settings and their experiments
demonstrate the superiority of PV-DBOW, contrary to the results of Le and Mikolov that support
PV-DM. For this reason both model architectures are experimented with. Table 4.1 presents the
scope of parameter values that will be explored.

Table 4.1: Parameter search space for PV-DM and PV-DBOW. Some parameter values are explored
more extensively for PV-DM while others are investigated in more detail for PV-DBOW, based on
preliminary performance tests.

Parameter Values

Embedding dimension 200, 300

Training epochs 100, 250, 300, 400

Window size 5, 15

Negative samples 5

Down-sampling threshold 1e− 6

4.2 Models

In this subsection the parameters of the predictive models used in the experiments are presented
along with the methods employed to find the best performing parameter sets. All parameter tuning
processes described in the following parts are carried out using 5-fold cross validation to increase
the generalization capability of the models, by avoiding issues like over-fitting and selection bias
[14]. We are employing 5-fold cross validation by using sklearn’s GridSearchCV that allows for cross
validation over a grid search.

More particularly the GridSearchCV method receives an estimator, a set of parameters to be
tested, the evaluation metric of choice and the number of folds for n-fold cross validation. When it
is fit to a dataset, is splits the data internally in n different ways using StratifiedKFold for classifiers
and simple KFold for any other kind of estimator. Then the differently parametrized models are
trained over the different splits and their performance is compared using the selected evaluation
metric. Once the best parameter set is found, a new estimator is trained using that set over the
whole dataset that was provided. We employ this method by first splitting the complete dataset into
train and test subsets and fitting it only on the former. The best estimator that the method returns
is then tested on the test set and that performance is reported.

For classification the dataset is split in 70% train and 30% test subsets. This amounts to 14039
and 6017 articles respectively. We want to focus on the generalization power and reliability of the
models and therefore a more challenging set-up for our data is adopted. For the regression tasks,
given the difficulty of accurately predicting the number of views over a great range of values, the

19

data is split in 85% training and 15% test subsets. This translates into 17048 and 3008 articles
respectively.

The evaluation metrics used are weighted F1-score for classification and R2 for regression. The
weighted F1-score calculates the metrics for each label and averages them based on the true instances
of each label, in order to account for label imbalance.

4.2.1 Classification

For logistic regression the LogisticRegression model from sklearn is used. To optimize its performance
we experiment with the parameters solver and class weight. For the solvers, the choice is between
SAG [27], SAGA [11] and LIBLINEAR [13], based on the recommendations given in the sklearn
documentation regarding dataset size and dimensionality. Class weight is used to penalize the mis-
classified examples of each class. By default all classes have equal weights. In this case however we
attempt to counter the problem of the imbalanced dataset by penalizing the minority class more.
Therefore the weights of the two classes (labeled 0 for not popular and 1 for popular) range from
[0:0.8, 1:0.2] to [0:0.2, 1:08] in steps of 0.1.

The SVC model from sklearn is used for SVM classification. To optimize its performance a
log-scale grid search over diverse values of C and gamma is carried out to find the optimal set of
parameters. For edge cases a second grid search takes place, where the scope is adjusted accordingly.
The parameter values we experiment with are presented in table 4.2. The kernel function used in
all cases is the radial basis function, as preparatory analysis showed clearly superior performance to
the other options (linear, polynomial and sigmoid). These parameter values are used for all different
encoding methods. If any results lead us to exceed these ranges, it will be explicitly mentioned in
the results section.

Table 4.2: Parameter search space for SVM classification. Bold values represent the first stage of
grid search, applied to all cases. Normal values represent the second stage grid search, performed
only in the case of an edge value being selected as the best parameter.

Parameter Values

C 1e−6, 1e−4,1e−2,1,1e2, 1e4, 1e6

Gamma 1e−4, 1e−3,1e−2,1e−1,1, 5, 10, 20, 50

Additionally we utilize the class weight parameter and set it to ”balanced”, which adjusts the
weights of the classes inversely proportional to the class frequency in the data. This aims to ameliorate
the effects of class imbalance during SVM training.

4.2.2 Regression

SKlearn’s Ridge model is used for Linear Regression, given the high number of parameters we utilize
from the embedded articles. Thus we aim to mitigate the issue of possible multicollinearity between
the different dimensions of the embeddings. We let the model choose the best solver and optimize
for the alpha parameter among the values [1e−6, 1e−4, 1e−2, 1].

For regression with SVMs the SVR model from sklearn is used. The optimization is performed
with grid search over C, gamma and epsilon. The values we experiment with are listed in table 4.3.

20

Table 4.3: Parameter search space for SVM regression. Bold values represent the first stage of grid
search, applied to all cases. Normal values represent the second stage grid search, performed only in
the case of an edge value being selected as the best parameter.

Parameter Values

C 1e−6, 1e−4,1e−2,1,1e2, 1e4, 1e6

Gamma 1e−4, 1e−3,1e−2,1e−1,1, 5, 10, 20, 50

Epsilon 1e−2, 1e−1, 0.5,1, 5

Similarly to SVM classification, further grid search is performed when an edge parameter value
is chosen as optimal.

4.2.3 Combined Models

Given the difficulty of accurately predicting the view count through regression, we also experiment
with a combination of models. First a binary classifier decides whether an article is popular or not
and then each of the two classes are used to train a regressor, whose goal is to predict the view count
of the articles in that class specifically. With this attempt we aim to improve the performance of the
regressors, since they will be trained on subsets of the data that exhibit smaller spreads of values
and will allow them to predict these values more accurately.

To implement this approach we will use the best performing models of classification and regres-
sion, as will be shown by our aforementioned experiments. More specifically, the best encoding and
classification model will be chosen to carry out the initial distinction of the articles. It will not be
trained again but rather the saved model for the classification task will be used. For regression, two
new, different regressors will be trained and optimized, specifically for each class. Again in the case
of the regressors we will rely heavily on the outcome of the previous models and will experiment only
with the most prominent ones.

21

Chapter 5

Results

In this Chapter the results of the experiments described in Chapter 4 are presented. We have
experimented extensively with different parameters both for encoding and predictive models. The
results shown here demonstrate the performance of different model combinations.

Regarding the encoding we have three different cases, tf-idf vectorization, averaged Word2Vector
word embeddings and Document2Vector document embeddings. A single case for tf-idf is applied,
to serve as a baseline. For Word2Vector we employ both CGS and CBOW and train a total of 24
models. Similarly for Document2Vector we employ both PV-DM and PV-DBOW, training a total of
52 different encodings. These numbers also include embeddings trained the enriched datasets. With
regard to the predictive models we experiment with Logistic Regression, SVM classification, Linear
Regression and SVM Regression.

As our experiments are extensive, we have only included the most prominent or interesting results
in the main body of the text. For a complete picture of the results and for reference for our more
general remarks, we refer to the complete experiment results in the Appendix.

5.1 Classification Results

This subsection is dedicated to the results of the binary classification approach to the problem of
popularity prediction.

5.1.1 Logistic Regression

The results of Logistic Regression based on each encoding method will be presented here. We first
present the results for each encoding individually and at the end provide the best performing encoding
method for Logistic Regression.

Tf-idf vectorization

First we report on the performance of Logistic Regression that utilizes our baseline encoding, the
tf-idf vectorized texts. The parameters of the best predictive model are LIBLINEAR for solver and
class weights 0.6 for non-popular and 0.4 for popular and this results in an f1-score of 0.78. The
class-specific accuracy is presented in the confusion matrix of figure 5.1. The popular class is quite

22

accurately predicted while in the case of the non-popular class the accuracy is only slightly better
than 50%.

Figure 5.1: Confusion matrix of the best performing Logistic Regression model based on tf-idf
vectorized documents.

Word2Vector averaged embeddings

We will now examine the performance of Logistic Regression with averaged Word2Vector embed-
dings as input. The best performing encoding is produced by the CBOW architecture with a vector
dimension of 300, a window size of 10 words, trained for 50 epochs and based on the two-to-one
ratio enriched dataset of Emerce and Wikipedia articles. The parameters of the best Logistic Re-
gression model are SAGA for solver and class weights 0.6 for non-popular and 0.4 for popular. The
combination of the given encoding and predicting models achieve an f1-score of 0.76.

The best performing models per dataset and architecture along with the overall worst performing
models per architecture can be seen in table 5.1. Regarding the encoding options, the first important
observation is that the embeddings that are trained longer perform better. Only one of the 6 best
performing models were trained for 20 epochs while the remaining 5 were all trained for the maximum
of 50 epochs. Furthermore training the same models on the enriched datasets leads to marginally
different results with relative increase in accuracy being, at best, 0.4% in the case of CBOW. In total
the best performing encodings of CSG and CBOW lead to a 1.14% and 3.2% relative increase in
f1-score respectively compared to the worst performing ones.

23

Table 5.1: Results of Logistic Regression models using Word2Vector averaged embeddings. In bold
are the best performing models and in italics the worst performing models.

Embedding Parameters Classifier Parameters
F1-Score

Model Dataset Dimension Window Epochs Solver class weight

CSG E 300 5 50 sag 0: 0.6, 1: 0.4 0.757

CSG E=W 300 5 20 sag 0: 0.6, 1: 0.4 0.756

CSG E=2W 300 5 50 sag 0: 0.6, 1: 0.4 0.757

CSG E 300 5 5 liblinear 0: 0.6, 1: 0.4 0.748

CBOW E 300 10 50 saga 0: 0.6, 1: 0.4 0.757

CBOW E=W 300 10 50 sag 0: 0.6, 1: 0.4 0.754

CBOW E=2W 300 10 50 saga 0: 0.6, 1: 0.4 0.76

CBOW E=W 300 10 5 sag 0: 0.6, 1: 0.4 0.736

Figure 5.2: Confusion matrix of the best performing Logistic Regression model based on Word2Vector
averaged embeddings.

Moving on to the Logistic Regression models themselves, the first observation is that the ideal
class weight is 0.6 for non-popular and 0.4 for popular articles, as it is selected by every model. The
best performing solver is SAG, selected by 12 of the models, followed by LIBLINEAR with 7 and
SAGA with 5. The class-specific accuracy of the best performing model can be seen in the confusion
matrix in figure 5.2. We can see that high accuracy is achieved in the majority class however the
best Logistic Regression model predicts correctly around 50% of the minority class.

24

Document2Vector embeddings

Next we address the performance of Logistic regression based on Document2Vector-generated input.
The best performing encoding is produced by the PV-DBOW architecture with a vector dimension
of 300, a window size of 15 words, trained for 400 epochs and based on the one-to-one ratio enriched
dataset of Emerce and Wikipedia articles. The parameters of the best Logistic Regression model are
LIBLINEAR for solver and class weights 0.6 for non-popular and 0.4 for popular. The combination
of the aforementioned encoding and predicting models achieves an f1-score of 0.777.

The best performing models per dataset and architecture along with the overall worst performing
models per architecture can be seen in table 5.2. Regarding the encoding options, we observe
again that longer training for embeddings is related to higher performance. Ceteris paribus, all
embeddings trained for 100 epochs perform the worst compared to all their respective alternatives.
Using selectively trained embeddings on the enriched dataset leads to better performing predictive
models in both architectures. The impact of the enriched dataset becomes more apparent in the case
of PV-DBOW with a 13.9% relative improvement in performance between the best performing pure
and enriched dataset configurations. In the case of PV-DM the relative improvement in performance
is just 2.9%. Compared to the worst performing encodings of each architecture we have a relative
improvement of 19% for PV-DBOW and 11.6% for PV-DM.

Table 5.2: Results of Logistic Regression models using Document2Vector embeddings. In bold are
the best performing models and in italics the worst performing models.

Embedding Parameters Classifier Parameters
F1-Score

Architecture Dataset Dimension Window Epochs Solver class weight

PV-DBOW

E 200 5 400 liblinear 0: 0.6, 1: 0.4 0.682
E=W 300 15 400 saga 0: 0.6, 1: 0.4 0.777
E=2W 300 15 300 liblinear 0: 0.6, 1: 0.4 0.775

E 300 15 100 sag 0: 0.6, 1: 0.4 0.653

PV-DM

E 300 5 400 saga 0: 0.6, 1: 0.4 0.746
E=W 300 5 400 liblinear 0: 0.6, 1: 0.4 0.764
E=2W 300 5 300 liblinear 0: 0.6, 1: 0.4 0.762

E 200 5 100 liblinear 0: 0.6, 1: 0.4 0.685

25

Figure 5.3: Confusion matrix of the best performing Logistic Regression model based on Docu-
ment2Vector embeddings.

Regarding the predictive models, we observe again that the ideal class weight is 0.6 for non-
popular and 0.4 for popular articles, as it is selected by almost every model. In this case 6 models
select a different ratio during the hyper-parameter optimization. The choice of solvers during the
optimization step shows that each solver is selected equally, namely SAGA and LIBLINEAR 17 times
each and SAG 18 times. The class-specific accuracy of the best performing model can be seen in
the confusion matrix in figure 5.3. Overall we can see that the predictions are more accurate for the
majority class. For the minority class we observe that the misclassification percentage is more than
double compared to the majority class but still correctly classifies more than 60% of the instances.

Best performing Encoding for Logistic Regression

The best encoding for Logistic Regression are the Document2Vector-based embeddings. Both ar-
chitectures perform very well when applied with their best parameters with PV-DBOW showing a
marginally better performance. Although the produced f1-score is lower than the one generated with
the tf-idf-based encoding, the document embeddings exhibit much better class-wise accuracy, as we
discovered by investigating the confusion matrices.

5.1.2 SVM Classification

In this subsection the results of SVM classification based on each encoding method will be presented.
We first present the results for each encoding individually and at the end provide the best performing

26

encoding method for SVM classification.

Tf-idf vectorization

The first results come from investigating the performance of SVM classification that utilizes our base-
line encoding, the tf-idf vectorized texts. The parameters of the best SVM are C=1 and gamma=1
and produced an f1-score of 0.78. The class-specific accuracy is presented in the confusion matrix of
figure 5.4. The instances of the popular class are correctly predicted with more than 80% accuracy.
For the non-popular class the accuracy is almost 70%.

Figure 5.4: Confusion matrix of the best performing SVM classification model based on tf-idf vec-
torized documents.

Word2Vector averaged embeddings

Next we present the results of SVM classification based on Word2Vector averaged embeddings. The
best performing encoding is produced by the CSG architecture with a vector dimension of 300, a
window size of 5 words, trained for 50 epochs and using only the Emerce dataset. The best SVM
parameters are C = 1 and gamma = 1 and gave an f1-score of 0.799.

An overview of the best and worst performing models is presented in table 5.3. The best per-
forming embeddings are decisively the ones trained for 50 epochs, as they were chosen by every
set-up with only one exception. This is further supported by the fact that the embeddings that are
trained for 5 epochs displayed the worst performance for both Word2Vector architectures. Enriching
the dataset for the training stage of the embeddings did not produce consistently better performing

27

encodings. For CSG the performance is marginally worse while in CBOW a slight improvement can
be observed between the Emerce-only and the enriched datasets. Compared to the worst performing
models a relative improvement of 2.8% in performance is achieved in CSG and 6.1% in CBOW.

Table 5.3: Results of SVM classification models using Word2Vector averaged embeddings. In bold
are the best performing models and in italics the worst performing models.

Embedding Parameters Classifier Parameters
F1-Score

Model Dataset Dimension Window Epochs C gamma

CSG

E 300 5 50 1 1 0.799
E=W 300 5 20 1 1 0.793
E=2W 300 5 50 1 1 0.794

E 300 5 5 10000 0.01 0.777

CBOW

E 300 10 50 1 0.1 0.789
E=W 300 10 50 1 0.1 0.794
E=2W 300 10 50 1 0.1 0.793
E=W 300 10 5 1000 0.1 0.749

(a) CSG architecture, f1-score=0.799 (b) CBOW architecture, f1-score=0.794

Figure 5.5: Comparison of confusion matrices of the best performing Word2Vector embeddings per
architecture.

Regarding the predictive models, we can observe that the ideal value for C is 1, as it is selected by
all best performing models. The best gamma value for SVMs trained on CSG embeddings is 1 and
on CBOW embeddings is 0.1. The worst performing models of each architecture require very high
values of C, showing the need to decrease the margin of the SVM and thus reducing misclassifications
on the train set. However the accuracy of the models does not improve considerably as the value C
increases. Gamma demonstrates a stable behaviour per architecture with the sole exception being
the worst performing model for CSG where its value drops to 0.01. The class-specific accuracy of
the best performing model can be seen in the confusion matrix in figure 5.5a. The majority class is
predicted correctly with 83% accuracy and the minority class reaches 70% accuracy. Next to it in

28

figure 5.5b we show the confusion matrix of the second best performing model, based on CBOW.
We can see that the marginal difference in f1-score translates into great differences in class-specific
accuracy. The accuracy of the majority, popular class increases by 4% but the minority, non-popular
class experiences a 9% drop in accuracy. The comparison in figure 5.5 supports our choice of best
encoding and predictive model.

Document2Vector embeddings

The last results of SVM classification are based on Document2Vector-generated input. The best
performing embeddings are produced by the PV-DM architecture with a vector dimension of 300,
a window size of 5 words, trained for 300 epochs and based on the pure Emerce dataset. The
parameters of the best SVM model are C = 1 and gamma = 0.1. The combination of the given
encoding and predictive models gave an f1-score of 0.811.

The best performing models per dataset and architecture along with the overall worst performing
models per architecture can be seen in table 5.4. The pattern of longer training for embeddings
leading to better performing predictive models is generally observed in this case as well, although
continuously higher number of epochs does not always lead to better predictive models. Selectively
training embeddings on the enriched dataset leads consistently to better performance for the PV-
DBOW architecture. In its case we observe a relative improvement in performance of 17.2% between
the best performing pure and enriched dataset configurations. In the case of PV-DM the embeddings
trained on the pure dataset lead to better performing SVMs with the best of them performing 3.6%
better than the best enriched dataset embeddings. When comparing the best to the worst performing
models we see a 28.7% relative improvement in PV-DBOW and a 10% for PV-DM.

Table 5.4: Results of SVM classification models using Document2Vector embeddings. In bold are
the best performing models and in italics the worst performing models.

Embedding Parameters Classifier Parameters
F1-Score

Model Dataset Dimension Window Epochs C gamma

PV-DBOW

E 200 5 400 1 0.1 0.689
E=W 200 5 300 1 0.1 0.804
E=2W 200 15 300 1 0.1 0.808

E 300 5 100 1 0.1 0.628

PV-DM

E 300 5 300 1 0.1 0.811
E=W 200 5 300 1 0.01 0.783
E=2W 300 5 300 1 0.01 0.781
E=W 200 15 300 1 0.1 0.738

29

(a) PV-DM encoding, f1-score=0.811 (b) PV-DBOW encoding, f1-score=0.808

Figure 5.6: Comparison of confusion matrices of the best performing Document2Vector encodings
per architecture.

Looking into the SVM configuration in more detail, there is a noteworthy consistency in the se-
lection of parameters. All the best performing models select C=1 and almost all of them gamma=0.1
with two exceptions in PV-DM that select gamma=0.01. Even in the case of the worst performing
models the parameter selection is still consistent. The class-specific accuracy of the best predictive
model can be seen in the confusion matrix in figure 5.6a. The results show approximately 70%
accuracy in the non-popular class and 85% in the popular class. This is also another case where
f1-score is not wholly representative of a model’s performance. The confusion matrix in figure 5.6b
shows the second best performing SVM, which utilizes PV-DBOW-generated embeddings. Although
it performs predictions in the popular class with great accuracy, in the order of 91%, it achieves only
58% accuracy in the non-popular class.

Best performing Encoding for SVM classification

With regard to f1-score, the best performing encoding for SVM classification are the embeddings
generated by the PV-DM architecture of Document2Vector. However it is important to point out
that this performance is very similar to that of the SVM that is based on Word2Vector averaged
embeddings generated from the CSG architecture. The difference in f1-score stems clearly from the
size of the two classes, which weights the 4% accuracy increase of the popular class more than the
1% accuracy decrease of the non-popular class. Choosing the best of the two depends on which
misclassifications are considered more important in the particular setting that is being examined.

5.1.3 Misclassifications

In the two histograms of figure 5.7 we can see the distribution of the misclassified instances over
their original view count for the best performing Logistic Regression and SVM. This allows us to
investigate the reasons of the misclassifications and estimate whether there is a pattern in the errors
of our model or a tendency to misclassify specific instances.

30

(a) Misclassifications of best Logistic Regression
model based on Document2Vector. Out of 6017
articles, 1434 are misclassified.

(b) Misclassifications of best SVM model based
on Document2Vector. Out of 6017 articles, 1166
are misclassified.

Figure 5.7: Histograms of false positives and false negatives of the best classifiers per predictive
model. On the left is the best Logistic Regression model and on the right the best SVM model.
For both histograms the false positives are organized in 50 bins and the false negatives in 150 bins.
Misclassifications over 100000 are not shown for clarity.

The histograms are generated from the performance of the classifiers on the same test set which
numbers 6017 articles. False positives are the instances that are predicted as popular while they
are non-popular and false negatives are the opposite, predicted non-popular while they are popular.
Both kinds of misclassifications follow the distribution of their class, as we saw in the graph of the
view distribution in section 4.1. It is not only the articles near the threshold that are misclassified
and no other pattern is observed. This happens in the misclassifications of both the best Logistic
Regression model and the best SVM model.

5.2 Regression Results

This Section lists the results of the regression approach to the popularity prediction problem. Gen-
erally the performance of the regression models was poor, with small variations between the different
encoding and predictive models. Therefore we present only a representative overview of the best
performing models.

We first establish a baseline for regression using Ridge Regression and the tf-idf vectorized texts.
The best model has a value of α = 1 and achieves an R2 score of 0.247. The best performing
Word2Vector averaged embeddings in Ridge Regression come from the CSG architecture with a
dimension of 300, a window size of 5 words and trained for 50 epochs only on the Emerce dataset. The
regressor has a value of α = 1 and produced an R2 score of 0.238. Regarding the Document2Vector
embeddings, the best performing model comes from the PV-DBOW architecture with a dimension
of 300, a window size of 15 and trained for 400 epochs on the two-to-one enriched dataset of Emerce
and Wikipedia articles to achieve R2 = 0.267. Thus Ridge Regression performs the best when it uses
Document2Vector embeddings as input.

31

We then move on to SVM regression. First with tf-idf vectorized texts, the optimal set of
parameters for the SVM are C = 100, gamma = 1 and epsilon = 0.1, obtains R2 = 0.311. For
Word2Vector embeddings, the best performing one is generated by the CSG architecture and has a
dimension of 300, a window size of 5 and trained for 10 epochs on the one-to-one enriched dataset.
The optimal SVM parameter set is C = 1, gamma = 1, epsilon = 0.5 and achieves a score of
R2 = 0.354. Finally the PV-DM architecture of Document2Vector produces the best performing
document embedding with a vector dimension of 200, a window size of 5, trained for 400 epochs
and using the pure Emerce dataset. The parameters of the regressor are C = 1, gamma = 0.01,
epsilon = 0.5 and this results in a score of R2 = 0.368. SVM regression performs the best using
Document2Vector embeddings as input.

A point of interest regarding the two architectures of Document2Vector is that although PV-
DM leads to the best results in SVM regression models, PV-DBOW leads to a similar performance.
However that performance is achieved only when PV-DBOW trains on the enriched dataset, like it
does in Ridge Regression, allowing the predictive model to go from less than 0.1 R2 score to 0.339.
An overview of the results can be seen in table 5.5.

Table 5.5: Best performing regression models per encoding method. In bold are the best performing
models.

Predictive Model Encoding R2-score

Ridge Regression
tf-idf 0.247

Word2Vector - CSG 0.238
Document2Vector 0.267

SVM Regression
tf-idf 0.311

Word2Vector 0.354
Document2Vector 0.368

Since R2 is not, strictly speaking, an accuracy metric, a visual representation of the best perform-
ing regressor is shown in figure 5.8, to assist in interpreting the actual effectiveness of the model. The
first important finding is that great errors occur in the view prediction of the less popular articles.
The cluster of instances above the diagonal to the left of the graph demonstrates that most errors in
prediction are overestimations. The worst of the overestimations are errors in the scale of 4 logarith-
mic units. Underestimations are not as numerous, although they too reach a scale of 3 logarithmic
units, as we can see from the lower tail of the cluster at the right. We also see a uniform spread with
regard to the range of the errors and the actual view counts, without a particular pattern.

32

Figure 5.8: Plot of true view count (x-axis) against predicted view count (y-axis) of the best perform-
ing SVM regression model based on Document2Vector embeddings. Views are in natural logarithmic
scale.

5.3 Combined Model Results

For the Combined model we first apply the best performing classifier, the SVM trained on the
embeddings of the PV-DM architecture, as described in Section 5.1. The results are as expected,
since the dataset and the data split are the same. We first separate the dataset into train and test,
as described in Section 4.2. Then each subset is separated into non-popular and popular articles, in
order to train the two new regressors. The performance of the regression is worse than before, based
both on R2 score (achieved less than 0.1) and visual inspection of the true versus predicted view
counts of different models.

5.4 Embeddings

After presenting the performance of the predictive models, we present a brief inspection of the
embeddings, to provide some insight into their quality. The following tables 5.6 and 5.7 show some
examples of article similarity, based on their embeddings and cosine similarity in the vector space. We
present and argue on the basis of classification since it is the most promising of the two approaches to
the popularity prediction problem. This shows that features that contribute to an article’s popularity

33

are not as successfully encapsulated in the generated embeddings.

Table 5.6: Most similar articles to ’NOS staakt ondersteuning Smart TV app voor veel toestellen’
based on their Word2Vector averaged embeddings. The class of each article is also shown.

Articles Title Label

Reference
NOS staakt ondersteuning Smart TV app voor veel
toestellen

Non-Popular

Most similar

IFA: ‘Volgende Android TV stuk gebruikersvriendelijker’ Popular
Consumentenbond: apps op slimme televisies snel verouderd Popular
Asus lanceert smartphone met tv-tuner Non-Popular
Ziggo GO straks ook voor Apple TV en Android TV Non-Popular
Consumentenbond: Fabrikanten van Android-smartphones
stoppen te snel met updaten

Popular

KPN zendt EK-wedstrijden in 4K uit Popular
Nederlandse omroepen nog niet op nieuwe Apple TV Popular
KPN trekt stekker uit online tv dienst Play Popular
Consumentenbond: miljoenen Nederlanders hebben onveilig
Androidtoestel

Popular

Table 5.7: Most similar articles to ’NOS staakt ondersteuning Smart TV app voor veel toestellen’
based on their Document2Vector embeddings. The class of each article is also shown.

Articles Title Label

Reference
NOS staakt ondersteuning Smart TV app voor veel
toestellen

Non-Popular

Most similar

Nederlandse omroepen nog niet op nieuwe Apple TV Popular
Consumentenbond: Fabrikanten van Android-smartphones
stoppen te snel met updaten

Popular

IFA: ‘Volgende Android TV stuk gebruikersvriendelijker’ Popular
KPN trekt stekker uit online tv dienst Play Popular
Consumentenbond: apps op slimme televisies snel verouderd Popular
KPN zendt EK-wedstrijden in 4K uit Popular
Ziggo GO straks ook voor Apple TV en Android TV Non-Popular
Consumentenbond: miljoenen Nederlanders hebben onveilig
Androidtoestel

Popular

Asus lanceert smartphone met tv-tuner Non-Popular

We can see that the embeddings in both cases provide articles that are indeed similar to the one
we reference, at least regarding the topic. However the similarity they achieve does not encapsulate
popularity well. ’NOS staakt ondersteuning Smart TV app voor veel toestellen’ is an article that
belongs to the non-popular class but only 2 out of the nine most similar articles are also from the
same class. The rest belong to the popular class.

34

Chapter 6

Discussion and Conclusion

In this chapter we will discuss the results presented in the previous chapter with regard to the
research question raised in the introduction of this thesis. We will also provide our insights in
directing possible future research by outlining the main strengths and weaknesses of the methods we
applied. Finally we will conclude the thesis.

6.1 Discussion

6.1.1 Research Questions

First we address the research questions with regard to our findings.

How can we assess whether an article is popular or not?

For this project, popularity of an article is interpreted as the number of views an article receives.
However the number of views, which stems directly from the click rate of an article, might not
constitute the most informative index of popularity. This perspective was investigated in the work of
Agarwal et al. in [1], that promoted the idea of a more informative index based on different post-read
actions. Furthermore in the work of Yangjie and Yao [56] it is shown that the articles that people
read, share and comment on can be very different and highly topic-dependent. Therefore using the
view count as the sole measurement of popularity, especially for a broad scope of article topics, might
have been adequate for the research scope of this thesis but we estimate it to be sub-optimal for a
business product that should be robust and applicable over a broad scope of articles.

Which text encoding method performs the best in predicting an article’s popularity?

For the encoding models themselves, we can see that our selected embedding techniques can perform
adequately well in a relatively narrow, binary classification task. Even the most simplistic method,
that of tf-idf, performs well, regardless of its shortcomings in class-wise accuracy, which is an inherent
problem of the dataset. Regarding the regression task, the encodings do not achieve considerable
accuracy and additionally the errors cover a great range, both in sense of instances being wrongly
predicted and of magnitude of errors. Nevertheless there are differences among encoding methods,
which shows that more sophisticated encoding methods can obtain better results as they encapsulate
more of the underlying elements that can influence popularity.

35

All in all Document2Vector embeddings lead to better performing predictive models. In classifi-
cation the models utilizing these embeddings reach better f1-scores and have a more balanced and
consistent class-wise accuracy. In regression the ones reaching the highest R2 score are again the
models that use the Document2Vector embeddings, even though the score is still low. There are
cases where the distinction is not as clear between Word2Vector and Document2Vector, as we saw
in section 5.1, but the latter performs the best over all tasks and predictive models.

Following our closer inspection of the embeddings and their relations in subsection 5.4, we see
that both Word2Vector and Document2Vector generate embeddings with a good degree of similarity
between articles regarding their topic but not as much regarding their class. This is a good indicator
that the main reason the accuracy of our models could not improve further is the encoding method
we employ and its limitations. This statement is also supported by the distribution of misclassifi-
cations for both Logistic Regression and SVMs and could also explain the poor performance of the
regressors. This shows that some information regarding popularity is not perfectly encapsulated in
the embeddings and thus our predictive models make wrong predictions for articles from the whole
scope of view counts.

It is also important to discuss the differences in performance of the two Document2Vector archi-
tectures. PV-DM performs better than PV-DBOW when the pure Emerce dataset is used and that
becomes even more apparent from the regression results. A model that uses Emerce-only PV-DBOW
embeddings barely performs at all, but when it utilizes embeddings trained on the enriched dataset,
it achieves an R2 score comparable to that of the best performing model. That fact shows us that the
approach of PV-DBOW in training document embeddings requires one important thing, more data.
It requires more data than PV-DM, as even the two-to-one enriched dataset generates document em-
beddings that lead to higher performing models. The difference in model performance is significant
and consistent in both classification and regression. PV-DM also benefits from the enriched datasets
but in its case the results are not as consistent. Nevertheless, the use of an extended dataset affects
positively the performance of Document2Vector embeddings.

Another important observation is the number of training epochs. This observation is not as obvi-
ous, but in almost all cases PV-DBOW embeddings that are trained longer lead to better performing
predictive models. This is observed over different model combinations, not exclusively in PV-DBOW,
and could thus be a general remark for the embedding method, that in principle Document2Vector
requires more training epochs to generate informative encodings of texts.

We have two final remarks on the embeddings. First, it should be mentioned that each encoding
method comes at a cost. Tf-idf leads to worse performing models but the process of generating the
encodings is faster than the Word2Vector and Document2Vector that lead to beter results. Although
we have not documented time costs of each method, it is a general observation that stems from our
experience throughout this project. Second, it is more difficult to encode new instances when using
Word2Vector and even more so Document2Vector. Elaborate techniques are present for the former
but the latter requires careful handling, as its vocabulary does not consist of words but of text
structures and in our case complete documents. It should be noted that gensim’s Doc2Vec model
did not possess a method to extend the vocabulary on a trained model and continue training. This
is an important point for the further development of this system.

36

Which predictive model is the most appropriate for this task?

First, we have to mention that binary classification models achieve adequately good results while
even the best regression models underperform. We estimate that the reason behind this difference is
that our features, meaning the encoding methods we utilize, are not informative enough to accurately
predict the number of views an article will gather. Our observations are in line with the work of
Bandari et al. in [3]. Using different features they encounter the same effect, where classification
is performing well while the performance of regression is lacking. This could be the result of the
embeddings failing to encapsulate features that represent popularity or that the models are not fit
to extract and utilize such information from the embeddings.

Focusing on classification, both Logistic Regression and SVMs are performing well, especially
when they utilize informative encodings. The main flaw of all classifiers is the class-wise accuracy
imbalance, that stems from the imbalance that is inherent in the dataset. We attempted to counter
this issue by penalizing the misclassifications of the minority class more than those of the majority
class. This is accomplished by utilizing the available functionality of the Sklearn models. Their
final results show a clear superiority of SVM in that front. Although the quality of the encodings
also influences performance, the best SVM models have significantly improved class-wise accuracy.
This is evident as the best of the high-performing Logistic Regression models achieves 62% and
84% accuracy for the non-popular and popular classes while the worst of the high-performing SVMs
achieves 69% and 82% respectively. Therefore, from the two classification methods we tested, SVMs
are the best option, regardless of possible extra time costs for training.

For regression, although the overall performance is low, we should point out our observations.
First of all using SVM regression with a high number of features that can not be interpreted separately
(although various attempts have been made such as in [47, 45]) and, as such, can not be meaningfully
prioritized, is not efficient. Second, the SVM regressors require considerably more time to train and
optimize and it is possible that different dimensions of the input are highly correlated or even not
informative at all, deteriorating the performance of the regressor.

Last, the performance of the hybrid model is the most surprising. We expected the regression
models to perform better, as the range of values they had to estimate did not exhibit such great
differences. However the regressors performed even worse and essentially could not fit the data at
all. This could be an indication that R2 is not suitable for such a regression task and comparison
and thus when the regressors had to be optimized on a narrower range of values, the optimization
process failed.

6.1.2 Future Work

Popularity prediction on the internet is affected by a multitude of factors. We attempted to narrow
down the scope and only examine the content of the news articles and we did so in a compact
and abstract way by employing embedding techniques. Improved performance could be achieved
by including more interpretable features of an article or by taking into consideration meta-data
surrounding its publication. Additionally, we interpreted popularity as the number of views an
article received, which is not the most representative and definitely not the only measurement of
popularity. Employing more elaborate measurements of popularity is sure to benefit any predictive
model.

Regarding the predictive models, testing different or multiple performance metrics is a valid first
step in improving performance in a robust way, as we saw how similar scores can translate into

37

significantly different behaviour in a model. After establishing a reliable metric, experimenting with
more elaborate models is a valid route to improve overall performance. We saw significant and
consistent improvement as the complexity of the models increased. More experiments could also
answer the question whether the performance of the predictive models is caused by the restrictions
they have themselves or by the restrictions of the embedding methods.

Lastly, broadening the scope of application is also of high interest, both from a research and a
business perspective. A popularity prediction model that utilizes content from multiple sources can
prove to be more stable and reliable. However that route should be investigated with caution as
word and document embeddings have been proven to be highly domain dependent.

6.2 Conclusion

In this thesis we set out to predict the popularity of online news articles before publication. We
focused only on the main text of the articles and encoded it using embedding techniques. Our
aim was to investigate the performance of these techniques for cold-start popularity prediction and
therefore we applied both classification and regression. The former performed adequately well and
demonstrated specific shortcomings while the latter performed poorly. That serves to show that the
embedding techniques we utilized are more appropriate for classification and less so for regression,
at least in combination with the predictive models we experimented with. More steps can be taken
to produce better performing systems and we outlined the main points of interest, based on our
research and experience.

38

Bibliography

[1] Deepak Agarwal, Bee-Chung Chen, and Xuanhui Wang. Multi-faceted ranking of news articles
using post-read actions. In Proceedings of the 21st ACM International Conference on Infor-
mation and Knowledge Management, CIKM ’12, pages 694–703, New York, NY, USA, 2012.
ACM.

[2] Ioannis Arapakis, B. Barla Cambazoglu, and Mounia Lalmas. On the feasibility of predicting
news popularity at cold start. In Social Informatics: 6th International Conference, SocInfo 2014,
Barcelona, Spain, November 11-13, 2014. Proceedings, pages 290–299, Cham, 2014. Springer
International Publishing.

[3] Roja Bandari, Sitaram Asur, and Bernardo Huberman. The pulse of news in social media:
Forecasting popularity. ICWSM 2012 - Proceedings of the 6th International AAAI Conference
on Weblogs and Social Media, 2012.

[4] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! a system-
atic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 238–247, Baltimore, Maryland, June 2014. Association for Computational Lin-
guistics.

[5] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic
language model. J. Mach. Learn. Res., 3:1137–1155, March 2003.

[6] Joseph Berkson. Application of the logistic function to bio-assay. Journal of the American
Statistical Association, 39(227):357–365, 1944.

[7] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O’Reilly
Media, Inc., 1st edition, 2009.

[8] Otto Bretscher. Linear Algebra With Applications (3rd ed.). NJ: Prentice Hall, Upper Saddle
River, 2013.

[9] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Machine Learning, pages
273–297, 1995.

[10] Andrew M. Dai, Christopher Olah, and Quoc V. Le. Document embedding with paragraph
vectors. CoRR, abs/1507.07998, 2015.

39

[11] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradi-
ent method with support for non-strongly convex composite objectives. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 1646–1654. Curran Associates, Inc., 2014.

[12] Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alex J. Smola, and Vladimir Vapnik.
Support vector regression machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing Systems 9, pages 155–161. MIT Press, 1997.

[13] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLIN-
EAR: A library for large linear classification. Journal of Machine Learning Research, 9:1871–
1874, 2008.

[14] C. Cawley Gavin and L. C. Talbot Nicola. On over-fitting in model selection and subsequent
selection bias in performance evaluation. Journal of Machine Learning Research, 11:2079–2107,
2010.

[15] X. Guan, Q. Peng, Y. Li, and Z. Zhu. Hierarchical neural network for online news popularity
prediction. In 2017 Chinese Automation Congress (CAC), pages 3005–3009, Oct 2017.

[16] Michael U. Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized sta-
tistical models, with applications to natural image statistics. Journal of Machine Learning
Research, Feb 2012.

[17] Mark Hughes, Irene Li, Spyros Kotoulas, and Toyotaro Suzumura. Medical text classification
using convolutional neural networks. CoRR, abs/1704.06841, 2017.

[18] Karen Spärck Jones. A statistical interpretation of term specificity and its application in re-
trieval. Journal of Documentation, 28:11–21, 1972.

[19] Yaser Keneshloo, Shuguang Wang, Eui-Hong (Sam) Han, and Naren Ramakrishnan. Predicting
the Popularity of News Articles, pages 441–449. Society for Industrial and Applied Mathematics,
2016.

[20] S. Kim, S. Kim, and H. Cho. Predicting the virtual temperature of web-blog articles as a mea-
surement tool for online popularity. In 2011 IEEE 11th International Conference on Computer
and Information Technology, pages 449–454, Aug 2011.

[21] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Skip-thought vectors. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28,
pages 3294–3302. Curran Associates, Inc., 2015.

[22] Alexandre Klementiev, Ivan Titov, and Binod Bhattarai. Inducing crosslingual distributed
representations of words. In Proceedings of COLING 2012, pages 1459–1474, Mumbai, India,
December 2012.

[23] Kristen Herhold. How Businesses Invest in Digital Marketing in 2018. https://themanifest.
com/digital-marketing/how-businesses-invest-digital-marketing, 2018.

40

https://themanifest.com/digital-marketing/how-businesses-invest-digital-marketing
https://themanifest.com/digital-marketing/how-businesses-invest-digital-marketing

[24] Jey Han Lau and Timothy Baldwin. An empirical evaluation of doc2vec with practical insights
into document embedding generation. CoRR, abs/1607.05368, 2016.

[25] Alberto Lavelli, Fabrizio Sebastiani, and Roberto Zanoli. Distributional term representations:
An experimental comparison. In Proceedings of the Thirteenth ACM International Conference
on Information and Knowledge Management, CIKM ’04, page 615–624, New York, NY, USA,
2004. Association for Computing Machinery.

[26] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and documents. CoRR,
abs/1405.4053, 2014.

[27] Nicolas Le Roux, Mark Schmidt, and Francis Bach. A Stochastic Gradient Method with an
Exponential Convergence Rate for Finite Training Sets. In NIPS’12 - 26th Annual Conference
on Neural Information Processing Systems (2012), Lake Tahoe, United States, 2012.

[28] Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. Facing the cold start problem
in recommender systems. Expert Systems with Applications, 41(4, Part 2):2065 – 2073, 2014.

[29] H. P. Luhn. A statistical approach to mechanized encoding and searching of literary information.
IBM Journal of Research and Development, 1(4):309–317, Oct 1957.

[30] S. Mehrizi, A. Tsakmalis, S. Chatzinotas, and B. Ottersten. Content popularity estimation in
edge-caching networks from bayesian inference perspective. In 2019 16th IEEE Annual Con-
sumer Communications Networking Conference (CCNC), pages 1–6, Jan 2019.

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. In 1st International Conference on Learning Representations, ICLR
2013, Scottsdale, Arizona, USA, Workshop Track Proceedings, 2013.

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed rep-
resentations of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 26, pages 3111–3119. Curran Associates, Inc., 2013.

[33] Emmanuel Okafor, Pornntiwa Pawara, Faik Karaaba, Olarik Surinta, Valeriu Cordeanu, Lamber
Schomaker, and Marco Wiering. Comparative study between deep learning and bag of visual
words for wild-animal recognition. In Symposium Series on Computational Intelligence (IEEE-
SSCI), Athens, 2016.

[34] Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning of sentence em-
beddings using compositional n-gram features. CoRR, abs/1703.02507, 2017.

[35] Pornntiwa Pawara, Emmanuel Okafor, Olarik Surinta, Lamber Schomaker, and Marco Wiering.
Comparing local descriptors and bags of visual words to deep convolutional neural networks
for plant recognition. In International Conference on Pattern Recognition Applications and
Methods, 2017.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

41

[37] David L. Phillips. A technique for the numerical solution of certain integral equations of the
first kind. J. ACM, 9(1):84–97, January 1962.

[38] Martin Porter and Richard Boulton. https://snowballstem.org/. 25-11-2019.

[39] Ivens Portugal, Paulo Alencar, and Donald Cowan. The use of machine learning algorithms in
recommender systems: A systematic review. Expert Systems with Applications, 97:205 – 227,
2018.

[40] Vijay V. Raghavan and S. K. M. Wong. A critical analysis of vector space model for information
retrieval. Journal of the American Society for Information Science, 37(5):279–287, 1986.

[41] Rindra Rantoson and Adrien Bartoli. A 3d deformable model-based framework for the retrieval
of near-isometric flattenable objects using bag-of-visual-words. Computer Vision and Image
Understanding, 167:89 – 108, 2018.

[42] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with Large Corpora.
In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages
45–50, Valletta, Malta, May 2010.

[43] Xin Rong. word2vec parameter learning explained. CoRR, abs/1411.2738, 2014.

[44] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock. Methods and
metrics for cold-start recommendations. In Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’02, pages
253–260, New York, NY, USA, 2002.

[45] Jamin Shin, Andrea Madotto, and Pascale Fung. Interpreting word embeddings with eigenvector
analysis. In NIPS 2018 Workshop IRASL, 2018.

[46] Lai Siwei, Xu Liheng, Liu Kang, and Zhao Jun. Recurrent convolutional neural networks for
text classification. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[47] Daniel Smilkov, Nikhil Thorat, Charles Nicholson, Emily Reif, Fernanda B. Viégas, and Martin
Wattenberg. Embedding projector: Interactive visualization and interpretation of embeddings.
In 30th Conference on Neural Information Processing Systems, 2016.

[48] Stephen M. Stigler. Gauss and the invention of least squares. Ann. Statist., 9(3):465–474, 05
1981.

[49] Olarik Surinta, Mahir F. Karaaba, Tusar K. Mishra, Lamber Schomaker, and Marco Wiering.
Recognizing handwritten characters with local descriptors and bags of visual words. In 16th
International Conference on Engineering Applications of Neural Networks (EANN), 2015.

[50] Alexandru Tatar, Jérémie Leguay, Panayotis Antoniadis, Arnaud Limbourg, Marcelo Dias
de Amorim, and Serge Fdida. Predicting the popularity of online articles based on user com-
ments. In Proceedings of the International Conference on Web Intelligence, Mining and Seman-
tics, WIMS ’11, pages 67:1–67:8, New York, NY, USA, 2011. ACM.

[51] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

42

https://snowballstem.org/

[52] A.N. Tikhonov, A. Goncharsky, V.V. Stepanov, and A.G. Yagola. Numerical Methods for the
Solution of Ill-Posed Problems. Mathematics and Its Applications. Springer Netherlands, 1995.

[53] Michele Trevisiol, Luca Maria Aiello, Rossano Schifanella, and Alejandro Jaimes. Cold-start
news recommendation with domain-dependent browse graph. In Proceedings of the 8th ACM
Conference on Recommender Systems, RecSys ’14, pages 81–88, New York, NY, USA, 2014.

[54] Manos Tsagkias, Wouter Weerkamp, and Maarten de Rijke. Predicting the volume of com-
ments on online news stories. In Proceedings of the 18th ACM Conference on Information and
Knowledge Management, CIKM ’09, pages 1765–1768, New York, NY, USA, 2009.

[55] Lyndon White, Roberto Togneri, Wei Liu, and Mohammed Bennamoun. How well sentence
embeddings capture meaning. In Proceedings of the 20th Australasian Document Computing
Symposium, ADCS ’15, pages 9:1–9:8, New York, NY, USA, 2015. ACM.

[56] Yangjie Yao and Aixin Sun. Are most-viewed news articles most-shared? In Rafael E. Banchs,
Fabrizio Silvestri, Tie-Yan Liu, Min Zhang, Sheng Gao, and Jun Lang, editors, Information
Retrieval Technology, pages 404–415, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[57] Zi-Ke Zhang, Chuang Liu, Yi-Cheng Zhang, and Tao Zhou. Solving the cold-start problem in
recommender systems with social tags. EPL (Europhysics Letters), 92(2):28002, oct 2010.

43

Appendix

Graphs

Figure 6.1: Histogram of view counts in the dataset. A natural shape can be seen with a very sharp
and narrow normal distribution on the left with a right tail and a wide normal distribution on the
right, also with a right tail. The two shapes will represent the two classes on the classification task.

44

Full experiment results

Table: Complete list of hyper-parameter optimization experiments of Logistic Regression models
using the Document2Vector embeddings trained on the Emerce dataset. In bold are the best per-
forming models of each architecture.

Embedding Parameters Classifier Parameters
F1-Score

Model Dimension Window Epochs Solver class weights

PV-DBOW

200

5
100 liblinear 0: 0.6, 1: 0.4 0.6532
250 liblinear 0: 0.6, 1: 0.4 0.6795
400 liblinear 0: 0.6, 1: 0.4 0.6821

15
100 saga 0: 0.6, 1: 0.4 0.6537
250 sag 0: 0.6, 1: 0.4 0.6775
400 sag 0: 0.6, 1: 0.4 0.6757

300

5
100 sag 0: 0.7, 1: 0.3 0.6556
250 saga 0: 0.6, 1: 0.4 0.6803
400 liblinear 0: 0.6, 1: 0.4 0.683

15
100 sag 0: 0.7, 1: 0.3 0.6528
250 saga 0: 0.6, 1: 0.4 0.6816
400 saga 0: 0.6, 1: 0.4 0.6784

PV-DM

200

5

100 liblinear 0: 0.6, 1: 0.4 0.6851
250 saga 0: 0.6, 1: 0.4 0.729
300 saga 0: 0.6, 1: 0.4 0.7392
400 saga 0: 0.6, 1: 0.4 0.7422

15

100 liblinear 0: 0.6, 1: 0.4 0.693
250 saga 0: 0.6, 1: 0.4 0.7076
300 liblinear 0: 0.6, 1: 0.4 0.7196
400 saga 0: 0.6, 1: 0.4 0.725

300

5

100 liblinear 0: 0.7, 1: 0.3 0.6873
250 saga 0: 0.6, 1: 0.4 0.7251
300 sag 0: 0.6, 1: 0.4 0.7371
400 saga 0: 0.6, 1: 0.4 0.746

15

100 liblinear 0: 0.7, 1: 0.3 0.6913
250 liblinear 0: 0.6, 1: 0.4 0.7135
300 saga 0: 0.6, 1: 0.4 0.7074
400 sag 0: 0.6, 1: 0.4 0.7261

45

Table: Complete list of hyper-parameter optimization experiments of Logistic Regression models
using the Document2Vector embeddings trained on the enriched datasets of Emerce and Wikipedia.
In bold are the best performing models of each architecture.

Data
ratios

Embedding Parameters Classifier Parameters
F1-Score

Model Dimension Window Epochs Solver class weight

O
n

e-
to

-O
n

e PV-DBOW

200
5

300 sag 0: 0.6, 1: 0.4 0.7738
400 sag 0: 0.6, 1: 0.4 0.7738

15
300 saga 0: 0.6, 1: 0.4 0.7723
400 liblinear 0: 0.6, 1: 0.4 0.7696

300
5

300 sag 0: 0.5, 1: 0.5 0.7737
400 sag 0: 0.5, 1: 0.5 0.7723

15
300 sag 0: 0.6, 1: 0.4 0.7759
400 sag 0: 0.6, 1: 0.4 0.7766

PV-DM
200 5

300

liblinear 0: 0.6, 1: 0.4 0.7582
saga 0: 0.6, 1: 0.4 0.7291

300 15
liblinear 0: 0.6, 1: 0.4 0.7576

saga 0: 0.6, 1: 0.4 0.7296

T
w

o-
to

-O
n

e PV-DBOW

200
5

300 liblinear 0: 0.6, 1: 0.4 0.7729
400 sag 0: 0.6, 1: 0.4 0.7721

15
300 liblinear 0: 0.6, 1: 0.4 0.7727
400 sag 0: 0.6, 1: 0.4 0.7636

300
5

300 liblinear 0: 0.6, 1: 0.4 0.7722
400 sag 0: 0.5, 1: 0.5 0.7682

15
300 saga 0: 0.6, 1: 0.4 0.7747
400 sag 0: 0.5, 1: 0.5 0.7696

PV-DM
200 5

300

sag 0: 0.6, 1: 0.4 0.7567
saga 0: 0.6, 1: 0.4 0.7232

300 15
liblinear 0: 0.6, 1: 0.4 0.7624

sag 0: 0.6, 1: 0.4 0.7313

46

Table: Complete list of hyper-parameter optimization experiments of SVMs using the Word2Vector
embeddings trained on the pure and enriched datasets. In bold are the best performing models of
each architecture.

Embedding Parameters Regressor Parameters
R2-Score

Model Dataset Dimension Window Epochs C gamma epsilon

CSG

E 300 5 10 1 1 0.5 0.3381
E=W 300 5 20 1 1 0.5 0.354
E=2W 300 5 50 1 1 0.5 0.3472
E=W 300 5 20 100 1 0.1 0.3158

CBOW

E 300 10 50 1 0.01 0.5 0.3234
E=W 300 10 50 1 0.01 0.5 0.3298
E=2W 300 10 50 1 0.01 0.5 0.3275

E 300 10 5 100 0.01 1 0.2563

47

Table: Complete list of hyper-parameter optimization experiments of SVMs using the Docu-
ment2Vector embeddings trained on the Emerce dataset. In bold are the best performing models of
each architecture.

Embedding Parameters Classifier Parameters
F1-Score

Model Dimension Window Epochs C gamma

PV-DBOW

200

5
100 100 5 0.6453
250 1 0.1 0.6693
400 1 0.1 0.6931

15
100 10000 5 0.6492
250 0.01 0.01 0.6692
400 1 0.1 0.6926

300

5
100 100 1 0.6311
250 0.01 1 0.6684
400 1 0.1 0.6876

15
100 100 5 0.6366
250 0.01 0.1 0.6664
400 1 0.1 0.6901

PV-DM

200

5

100 100 1 0.7591
250 1 0.1 0.7992
300 1 0.1 0.816
400 1 0.1 0.7867

15

100 1 10 0.7816
250 0.01 0.01 0.7943
300 1 0.1 0.8035
400 1 0.1 0.7786

300

5

100 100 1 0.7592
250 1 0.1 0.797
300 1 0.1 0.8112
400 1 0.1 0.7916

15

100 1 12 0.7802
250 1 0.1 0.7916
300 1 0.1 0.781
400 1 0.1 0.7816

48

Table: Complete list of hyper-parameter optimization experiments of SVMs using the Docu-
ment2Vector embeddings trained on the enriched datasets of Emerce and Wikipedia. In bold are
the best performing models of each architecture.

Data
ratios

Embedding Parameters Classifier Parameters
F1-Score

Model Dimension Window Epochs C gamma

O
n

e-
to

-O
n

e PV-DBOW

200
5

300 1 0.1 0.8042
400 100 0.01 0.7787

15
300 1 0.1 0.8015
400 1 0.1 0.7901

300
5

300 100 0.01 0.7887
400 100 0.01 0.7876

15
300 1 0.1 0.7975
400 10000 0.01 0.7892

PV-DM
200 5

300

1 0.01 0.7828
1 0.1 0.7409

300 15
100 0.01 0.776
100 0.01 0.7668

T
w

o-
to

-O
n

e PV-DBOW

200
5

300 1 0.1 0.8066
400 100 0.01 0.7934

15
300 1 0.1 0.8076
400 1 0.1 0.7915

300
5

300 1 0.1 0.804
400 100 0.01 0.7888

15
300 1 0.1 0.8037
400 10000 0.01 0.7931

PV-DM
200 5

300

100 0.01 0.7711
1 0.1 0.7603

300 15
1 0.1 0.781
1 0.1 0.7619

49

	List of Figures
	List of Tables
	Introduction
	Language Representation
	Count Vectorization
	Word Embeddings
	Word2Vector

	Averaging Word Embeddings
	Document2Vector

	Models
	Classification
	Logistic Regression
	Support Vector Machines

	Regression
	Linear Regression
	Support Vector Regression

	Experimental Design
	Dataset
	Acquisition and Analysis
	Preprocessing
	Dataset Enrichment
	Data Encoding

	Models
	Classification
	Regression
	Combined Models

	Results
	Classification Results
	Logistic Regression
	SVM Classification
	Misclassifications

	Regression Results
	Combined Model Results
	Embeddings

	Discussion and Conclusion
	Discussion
	Research Questions
	Future Work

	Conclusion

	References
	Appendix

