
LEARNING FROM DEMONSTRATION FOR ISOLATING
FOREST FIRES USING CONVOLUTIONAL NEURAL

NETWORKS
Bachelor’s Project Thesis

Yoes Ywema, y.ywema@student.rug.nl
Supervisor: dr. M.A. Wiering

Abstract: Nowadays there are frequently occurring forest fires. A forest fire can be remedied by spraying
water on it or digging firebreaks around it, so the fire cannot spread. The latter approach is studied in this
thesis. With learning from demonstration a system is trained to dig firebreaks in a simulation with different
forest fire environments. A deep convolutional neural network is used in this project to learn how to map
environmental input to useful moves. The network is trained with different amounts of data and compared
with a human interactive approach. In this human interactive approach the system asks a human to solve
fires that it cannot isolate itself. The system can be used very effectively in simple environments but has
to be expanded for more complex ones. In more complex environments a river and a number of houses
result in a more complex sequence of steps to isolate the fire. Furthermore extra training data provides a
way to improve most of the models that were previously trained with less data. Training models with extra
training data, generated by the human interactive approach, resulted in the largest number of improved
models.

1 Introduction

1.1 Forest Fires
Roughly since the industrial revolution, people began
to emit exponentially growing amounts of greenhouse
gases (GHGs). Today we know that these GHGs con-
tribute to the rise of the average temperature on earth.
This has many direct and indirect effects on our daily
life. Storms are getting more excessive, the sea level is
rising and the number of forest fires that occur is in-
creasing. The focus of this project will be on the lat-
ter. Forest fires are a threat to the inhabited world. Not
only is the fire able to hurt people, it also destroys our
forests. The fires on their turn contribute even more to
the amount of GHGs in the air.
Once a forest is dried out by the weather it gets sensitive
to the heat and the threshold to ignite drops. The spread-
ing of a fire depends on different parameters like the
wind, the substrate and the humidity of the area. A fire
can be extinguished by spraying water on it or digging
firebreaks around the fire. Both methods can be effec-
tive. For large forest fires spraying water will not help
much, therefore this project focuses on the last one: dig-

ging firebreaks. The breaks around the fire ensure that
the fire does not spread any further, but creating these
breaks requires coordination. Without having a bird’s-
eye view on the fire, it would be a dangerous job. A
person could be isolated and caught by the fire. In this
project simulated satellite views are used for coordinat-
ing the forest fire control.
Previous approaches have been researched to isolate
forest fires in simulations. One of these is the Reinforce-
ment Learning approach (Wiering and Doringo, 1998).
In this approach one or more agents receive rewards or
punishments for actions they perform. The agents are
getting rewards for digging firebreaks in correct direc-
tions, but will be punished for the size of the area that
is burned (including a big punishment when the agent
itself will burn).
Another approach is one in which evolutionary neural
networks are used to generate sub goals and to assign
agents to the different sub goals (Wiering et al., 2005).
In that project multiple agents are used to create and
solve different sub goals and therefore cooperate in or-
der to extinguish a forest fire in simulation. The simula-
tion is a quite simplistic one containing only forest.

1

1.2 Learning From Demonstration
This project will continue the research in this field by
using learning from demonstration (Schaal, 1997). The
strategy used in this approach is an agent that learns (of-
fline) to make the right choices based on examples that
a demonstrator provides.
Learning from demonstration (LfD) has been successful
in different areas. For example in robotics, for the task
to mimic human movements (Schaal, 1997). In that re-
search a 30 seconds long demonstration in pole balanc-
ing resulted in a reliable performance.
It will be interesting to see whether the algorithm is
able to generalise the actions of the agents (learned from
demonstrations) to isolate forest fires.
Also in the area of games, LfD proved its power. The
game of Go was long seen as one of the most challeng-
ing games in the world of Artificial Intelligence. An ap-
proach of solely convolutional neural networks was ap-
plied (Sutskever and Nair, 2008) on the game in which
36.9 % of the human player moves were correctly pre-
dicted. In 2016 (Silver et al., 2016) Alpha Go was able
to beat the European Go champion 5 out of 5 times. It
has achieved this great result by learning from human
experts before applying Reinforcement learning (RL).
In a study about the game ‘Donkey Kong’ (Ozkohen
et al., 2017) a Multi Layer Perceptron (MLP) is first
trained on how to play the Donkey Kong game (offline)
with demonstration data. Afterwards Temporal differ-
ence learning, a form of RL, was used to optimize ac-
tions of the player. It appears that LfD performed well
(successfully completes around 50% of the games), but
the RL algorithm wasn’t able to increase the perfor-
mance of the game player, it even led to a worse per-
formance. This is in contrast with the Deep Q-learning
from Demonstration approach on a variety of games
(Hester et al., 2018). This algorithm (DQfD) was able to
increase performances after learning from demonstra-
tion, via (online) Q-learning.
In this paper Deep Convolutional Neural Networks
(DCNN) for LfD are used. The DCNN already proved
to be very useful in playing Atari games (Mnih et al.,
2013). It was able to learn successful control policies
from raw pixel data (84×84 inputs).

1.3 This Research
The benefit of using a deep convolutional neural net-
work (LeCun et al., 1989) in this project is that the net-
work might be able to extract spatial information from
the map, which can be used to make a correct predic-
tion about whether to dig a firebreak or move in a cer-
tain direction. In this project the research question I’m
trying to answer is: ”Can learning from demonstration
with a deep convolutional neural network (DCNN) ef-
fectively be used to isolate forest fires in simulation?”.
Furthermore in this research I will have a look at a Hu-
man interactive DCNN (HI-DCNN) approach. I will in-
vestigate whether this approach will improve the perfor-

mance of the DCNN. Additionally this approach will be
compared with an approach in which the DCNN is im-
proved with just more data. The effects of these differ-
ent methods will be investigated on different map sizes
with different environments.

2 Method

2.1 Glossary
Episode: From the initial state (a randomly placed agent
and a starting fire on a map) towards the end of the
fire, the dead of the agent or until the fire has spread
all around the border.
Epoch: One round of using all training data once to
train a model with the DCNN. Often multiple epochs
are necessary to train a model well.
Model: Set of defined layers and model parameters in a
neural network that processes environmental input (via
computations) into an output (move).
Move: A move is one of the possible actions an agent
can take in a certain state. 5 different moves are possible
(heading N,S,W,E or Dig).

2.2 Environment
The environment which is used in this forest fire prob-
lem is a simulated satellite view on a forest. This will
give a n × n map with n2 cells. There are 9 different
types of cells. A cell can contain:

• An agent (bulldozer/woodcutter)

• Forest

• A house

• Water

• Dirt (a place where the bulldozer has been digging)

• Fire (burning forest)

• Fire (burning house)

• Burned forest

• Burned house

The type of the cell can be observed while looking at
the map. In figure 2.1 such a map is shown.

The cells also have some unobservable attributes.
Forest cells and houses have a current temperature, fuel
(determines how long something can be on fire), igni-
tion threshold (determines how easy something ignites)
and a heat potential (how much heat is applied to sur-
rounding cells). For houses the fuel is bigger than for
the forest cells, so an assumption that I make is that the
fire burns longer in the inhabited areas.
The agent has the opportunity to choose from 5 different
actions. Moving north, east, south, west (cardinal direc-
tions) or to dig at the place where the agent is at that

2

A

Figure 2.1: 40×40 map containing an agent (black), fire
(orange), forest (green) and a river (blue)

specific moment. All these actions last one time step.
There are also some restrictions on the movement of
the agent. The agent cannot traverse water and houses.
Once it will try to do this, the position of the agent will
not change while the fire is spreading. When the agent
tries to traverse fire, it will die.
The fire always starts in the middle of the map. The
agent will be positioned anywhere on a maximum ra-
dius of:

m(r) =
s

2
− 1 (2.1)

In which r is the radius and s is the size of the map (in
1 dimension). The latter prevents the agent from being
placed outside of the map, but the agent can still be
placed on the border. This way the initial positioning of
the agent is randomized.

In this thesis a distinction will be made between
simple and complex environments. There are two set-
tings which will have an influence on the environment:
the size of the map and the complexity. The size can
be either 10×10, 20×20 or 40×40, which will result in
a generated map with a width and height of this size.
There are four types of complexity:

• Only containing forest

• Containing forest and houses

• Containing forest and a river

• Containing forest, houses and a river

So the most simple environment is the one with a
10×10 sized map only containing forest, fire and an
agent. The most complex one is a 40×40 sized map
containing forest, fire, a river and multiple houses. In
total there are 12 different environments. The number

of houses that is placed on the map is determined by the
following formula:

h = 3∗
s2

100
(2.2)

This number of houses (h) is chosen to let the density
be equal over different map sizes (s).
The x and y coordinates of the houses are determined
randomly.
The river is generated by randomly specifying distances
(between 1 and 3) from the upper and lower border.
These values determine the range of the river in y-
coordinates. Then the x-coordinate of the upper starting
point of the river is randomly chosen (inside the range of
possible x-coordinates). Afterwards the river randomly
moves down, down-left or down-right through the for-
est until it has reached the determined distance from the
lower border. This also allows the river to be in between
the agent and the fire.
This way different random maps are generated for each
episode.

2.3 Representation Environment

For a DCNN the data preparation is an important step.
Also for our N×N maps, thinking about a suitable
representation is required. On the map there are N2

cells which have different properties. Not all properties
are necessary for the DCNN to know. For example, a
DCNN doesn’t benefit much from knowing about the
temperature of a cell. It requires less memory to only
show whether a cell is already on fire or not (binary rep-
resentation). As a result the system can learn to save the
cells that aren’t on fire yet. A continuous value for the
temperature would add some information about which
cell will ignite earlier but will make computations in the
system way more time consuming.
So the goal in the preparation step is to include relevant
information in a usable way. A way to do this is by using
multiple binary maps (vision grids) as input data (Knegt
et al., 2018). Showing a few layers of data with relevant
information in the form of a binary grid speeds up the
learning process.
A map with continuous values wouldn’t be appropriate
in this case. You might for example think about using
RGB values for the map to classify which action should
be taken. This is computationally much heavier than the
vision grid representation. In this forest fire problem the
input data isn’t complex and therefore this vision grid
representation is useful.
So for this problem the environment is represented by
the following 6 binary matrices:

• Agent position (1)

• Fire positions (2)

• Water positions (3)

3

• House positions (4)

• Dirt positions (5)

• Tree positions (6)

In figure 2.2 the translation from an environmental map
into 6 binary maps is shown.

A A

A

A

A

1 2

3 4

5 6

Figure 2.2: 10×10 map containing an agent (black), fire
(orange), forest (green), houses (red), a river (blue) and no
dirt (brown) translated into 6 binary maps where black is
1 and white is 0.

2.4 Input Data
This project uses learning from demonstration. There-
fore the data is created by a human. This means I control
the agent to solve the forest fires. All moves I perform
are collected in a folder with moves for a specific en-
vironment. The data is separated by size and complex-
ity. For all 12 different complexity settings, episodes are
played to create training data and to create validation
data.
Although with all settings the same amount of episodes
are played, there will be differences in the amount of
moves that are done. Especially the size of the map
will have a big influence on the amount of data gath-
ered since a larger map will result in agents that are
further away from the fire, and therefore require more
moves to reach and finally to isolate the fire. Also the
complexity will play a role in the number of moves that
must be done in order to isolate a fire, since walking
around obstacles (houses and water) will require more
moves. Whenever I accidentally did send the agent into
the fire, the last fatal move is removed. At that moment
the episode is finished. This was done in order to make
sure the agent is not going to imitate this detrimental
behavior.

3 Convolutional Neural Networks
A Convolutional Neural Network (CNN) is a neural net-
work that is used for example in image recognition,
classification and processing pixel data. Its foundation
lies in 1989 (LeCun et al., 1989). How it works and why
it is useful in these areas is explained below.

3.1 Neural Network
A Neural Network consists of three or more (then it is
called a ‘deep neural network’) layers with nodes. It
contains one layer with input nodes () one or more
layers with hidden nodes (h) and a layer with output
nodes (y). denotes the node of relevance in a specific
layer.
An input node () is attached with a weight (j) to a
hidden layer node (hj). The value for a hidden node is
computed by :

hj = ƒ (∗j) (3.1)

Where ƒ () is a nonlinear activation function. The values
for the output nodes are then computed by:

yk = ƒ (hj ∗jk) (3.2)

These layers are connected to each other with multi-
ple weights, which make parallel calculations. This way
the input is processed to get a desired output. In figure
3.1 a visual representation of a simple neural network is
shown.

X1

X2

h1

h2

h3

W 11

W
12

W
13

y1

y2

W 3
1

W 32

Input Hidden
layer Output

Figure 3.1: Simple neural network with 1 hidden layer

Training the network can be done by using an opti-
mization algorithm. In an optimization algorithm an in-
put example is presented to the network. The network
calculates an output. The difference between the output
value (yk) and the target (tk) value, called error, de-
termines how the weights should be adjusted in order to
come up with a more correct output the next time. The
target value is the value that you want your system to

4

give as output. For example for the y2 neuron the fol-
lowing update rule can be applied:

32 =32 + α∗ (t2 − y2)∗ h3 (3.3)

α is the learning rate which often is a small positive
number.
Updating all weights in the network back until the input
layer can be done with the backpropagation algorithm
(Rumelhart et al., 1986).

3.2 Convolution Layer
In a CNN a sequence of calculations is performed on its
input. These inputs can be represented by large matri-
ces, filled with values. An important step in a CNN is
the convolution operation. In this operation, the goal is
to extract relevant features from an input. One example
of this is shown in figure 3.2. Performing a convolution
with a 3×3 input matrix can tell you whether the pixel
in the middle is different from its surrounding pixels. In
figure 3.2 a filter is applied to two different inputs. The
output value 8 tells there is a big contrast between the
pixels, while the output 0 tells there is no contrast.

-1 -1 -1

-1 8 -1

-1 -1 -1

A =

0 0 0

0 1 0

0 0 0

1 1 1

1 1 1

1 1 1

*

*

= 8

= 0

Figure 3.2: A contrast detecting kernel ‘A’ applied on two
different inputs

Note that performing a convolution operation is not the
same as applying traditional matrix multiplication. With
convolution the operator shifts over the entire input ma-
trix. It computes a new value for each pixel in the mid-
dle of the window.
The result will be a new (almost) same sized matrix
containing the information about the presence of a spe-
cific feature, called a feature map. This is harder for
the pixels at the side of a picture since there are not
enough pixels to multiply with. To overcome this prob-
lem zero-padding can be used, which is a method to
surround the picture with pixels with a value of zero.
This makes it possible to apply filters on the sides of the
picture and therefore control the size of the feature map.
The amount of different convolution kernels you apply
on some input is called the depth. Each kernel results
in a different feature map. The size of the steps one uses
to shift over a picture in x and y direction is called the
stride.

3.3 Pooling Layer
In a pooling layer data is summarized. This can be done
in order to downsample a representation. There are mul-
tiple types of pooling, but the one that is used in this
project is max-pooling. Max-pooling works as follows.
Assume we have a 4×4 matrix, and we are going to per-
form max-pooling on it with a pool size of 2×2 and a
stride of 2. The maximum values for each 2×2 block
will be taken and will be put in one new cell afterwards.
In this way you can down sample a 4×4 input towards
a 2×2 input. A visual representation of this is shown in
figure 3.3.

32

-6 10

19 3.1

1.9

-33 -6.4 -1

-10 -23 -12

2.4

0.4

-6.5

-74

32

-6.4

3.1

-1

MAX-POOLING

Figure 3.3: Max-pooling with a 2×2 filter

3.4 Architecture
Now the architecture of the neural network that is used
in this project is described. The deep convolutional
neural network that is used consists of an input layer
(I), 4 hidden layers of which respectively a convolution
layer (II), a maximum pooling layer (III), two convolu-
tion layers (IV and V) and finally an output layer (VI).
The shape of the input data in layer I is of N×N×6.
Which means six 2D matrices with the size of the map
(N×N). The number 6 is because the environment is
represented by 6 layers of binary vision grids as we saw
in section 2.3.
Layer II is a convolution layer as described in section
3.2. This layer consists of 100 filters/kernels. The kernel
size of this layer is 2×2 and the activation function that
is used is the ReLU function. The ReLU function is
used because of its efficiency and effectiveness. There
is no padding applied and the stride is 1.
The third layer (III) is a maximum pooling layer. The
pool size is 3×3 and it shifts over the output from the
first layer with a stride equal to 1.
Layer IV is a convolution layer with 50 kernels, a
kernel size of 2×2, no padding and a stride of 1.
The last hidden layer (V) is again a convolution layer
but now with 25 kernels and again a kernel size of 2×2,
no padding and a stride of 1.
The output of this last layer is flattened. Which means
that it is translated into a 1D vector. This vector is
fully connected with weights to an output layer with
5 output nodes. The values from the output layer are
normalized by the Softmax function. This function

5

converts the outputs to probability like values between
0 and 1. These values can easily be compared to the
target values of the outputs (0 or 1).

3.5 Activation Functions
ReLU: The Rectified Linear Unit (ReLU) is a function
that passes all positive inputs just as they are as output,
but outputs negative inputs as 0:

otpt =
§

0, if npt ≤ 0
npt, otherwise (3.4)

Softmax: The softmax activation function is a function
that transforms all outputs of the neural network into
probability values between 0 and 1. It does this by the
following formula:

P(y) =
ey

C
j
eyj

(3.5)

In this equation y is the output of the neural network
for action . C is the total amount of possible actions and
P(y) is the translated output into a probability value.

3.6 Loss Function
Now training the model means adjusting all weights
between nodes in different layers in the whole neural
network in such a way that it reduces the loss (differ-
ence between output and target value). In this project
the categorical cross-entropy loss is used. After the out-
put has been normalized by the softmax function the
cross-entropy loss is calculated in the following way:

L = −C

t log(P(y)) (3.6)

In which L is the loss and t is the target output for ac-
tion (1 for the target desired action, 0 otherwise) .
The loss can be minimized. In figure 3.4 a visual rep-
resentation of an example loss function is shown with
a loss depending exclusively on weight . In a neu-
ral network the loss depends on multiple weight values.
Gradient g is the slope of the loss function to a specific
weight and can be used to minimize the loss L. This is
done by using an optimizer.

3.6.1 Adam Optimizer

In this project the loss is minimized by the Adam opti-
mizer (Kingma and Ba, 2014), which is an extension of
stochastic gradient descent. The Adam optimizer min-
imizes the loss by adaptive learning rate optimization.
The Adam optimizer is currently recommended as the
default algorithm to use (Ruder, 2016). As the inventors
of the Adam optimizer stated the advantages are that
it ”only requires first-order gradients with little mem-
ory requirement” and ”the method computes individual

Weight(w)

Lo
ss
(L
)

0

g

Figure 3.4: Example of a loss function with gradient (g)
and loss (L) depending exclusively on weight ()

adaptive learning rates for different parameters from es-
timates of first and second moments of the gradients”
(Kingma and Ba, 2014). This is in contrast with most
familiar methods at the time of publication in which the
learning rate is a constant value. For this method the first
(mt) and second (t) moment are calculated at each it-
eration:

mt = β1 ∗mt−1 + (1 − β1)∗ gt (3.7)

mt is the first moment at time step t, β1 is the expo-
nential decay rate for the first moment (by default 0.9).
mt−1 is the moment at the previous time step and gt
is the gradient of the loss function to a specific weight.
The second moment can be calculated the following:

t = β2 ∗ t−1 + (1 − β2)∗ g2
t

(3.8)

Where t is the second moment at time step t, β2 is
the exponential decay rate for the second moment (by
default 0.999), t−1 is the second moment at the previ-
ous time step and g2

t
is the squared gradient of the loss

function.
The next step is the bias correction. In other words a
correction for the fact that m0 = 0 and 0 = 0 since
these values are an initial guess (bias). The for bias cor-
rected first moment can be computed by:

m̂t =
mt

1 − βt1
(3.9)

m̂t is the for bias corrected first moment, βt1 is the ex-
ponential decay rate for the first moment to the power t
(time step). In the same way the for bias corrected sec-
ond moment is calculated:

̂t =
t

1 − βt2
(3.10)

6

̂t is the for bias corrected second moment, βt2 is the
exponential decay rate for the second moment also to
the power t (time step). Finally these values are used in
the following formula to update a particular weight:

 = − α
m̂

p
̂ + ε

(3.11)

α is the learning rate which is a hyper parameter that
can be set.

3.7 Validation

When training the system to reproduce your behaviour
(imitating moves from similar situations) the goal is to
stop training at the moment the system performs best.
But when is this? It is actually hard to have a solid
answer to this question. The accuracy of the system can
be computed each training epoch. The accuracy of the
model is determined by:

Accrcy =
cP

tP
(3.12)

A correct prediction (cP) means that the output of the
model (a predicted move) matches the true output (per-
formed move) of the validation data for some input. tP
represents the total number of all predicted moves in the
validation data.
Computing the accuracy based on training data is a bad
practice since this doesn’t prevent you from creating an
over-fitted model. You might perfectly predict each step
the model has to take after presenting an example of
data from the training set. But when presenting com-
pletely new/different input to the over-fitted model it
will not be able to predict useful moves.
Instead the validation data is collected to measure how
well the model is performing. This data isn’t used to
train the model, but only to give an impression about
how well target moves are predicted.

3.7.1 Early Stopping and Model Checkpoints

The accuracy on the validation data is optimized in or-
der to get the best model for your data. Early stopping
and model checkpoints are two methods to find the op-
timal model. With early stopping you stop the training
of a monitored value (accuracy or loss). You don’t stop
immediately when the system hasn’t improved, but in-
stead you use model checkpoints to save the best model
and go on with training. When after a number (patience)
of epochs the model hasn’t improved, the saved model
from the model checkpoint is finally selected.

4 Experimental Setup

4.1 Methods
4.1.1 DCNN

For all 12 different environments, I played 50 training
episodes and 20 validation episodes for which feedback
(corresponding action to environmental input) is pro-
vided. With this data 30 models are trained for each en-
vironment (360 models in total). After the models have
been trained the system is tested. Each model is tested
by letting it play 100 random new episodes.

4.1.2 DCNN with Extra Data

To find out what the influence is of using more data,
another 50 training and 20 validation episodes are gath-
ered. Now for each environment 100 training episodes,
and 40 validation episodes are played. Again 30 mod-
els are trained on this data, and to test 100 new random
episodes are played by each one of the models.

4.1.3 Human Interactive DCNN

Inspired by DAGGER (Data set Aggregation), which is
nowadays one of the most common algorithms for imi-
tation learning (Attia and Dayan, 2018), a new Human
Interactive LfD approach is introduced. First a model
is trained based on the 50 training and 20 validation
episodes from the DCNN. This trained model starts
playing random episodes. For each episode in which
the model fails to isolate the fire, the same episode starts
again and a human gets asked to control the agent to iso-
late the fire. This way another 50 training episodes and
20 validation episodes are gathered. Similarly 30 mod-
els are trained and each one is tested on 100 new random
episodes. The advantage of this method is that no data is
gathered for episodes that the system can already solve,
instead extra data for ‘harder’ episodes is created. In al-
gorithm 4.1 the pseudo-code for this method is shown.

Algorithm 4.1 Human Interactive DCNN
initialize D← getData()
π← DCNN(D) // Model is trained

i=1
while i ≤ N do

E = getRandomEpisode()
fireContained← play(π,E)
if fireContained == FALSE then

D← D ∪ humanReplay(E)
i = i + 1

end
end
π∗ ← DCNN(D)

4.2 Hyper Parameters
For this thesis in each DCNN the total loss on the val-
idation data is monitored by early stopping with a pa-

7

tience of 10. This means that the model has to keep re-
ducing the loss value each 10 epochs otherwise it will
stop training. This value appeared to be a good value
in preliminary experiments. The model that is saved as
model checkpoint is the one with the maximum accu-
racy on the validation data.
The loss function is optimized by the Adam optimizer
with the hyper parameters that are shown in table 4.1:

Table 4.1: Hyper parameters for the Adam optimizer

α 0.005
β1 0.9
β2 0.999
ε 10e-8

The last three (β1, β2, ε) are chosen by default while
with the first one (α) tests were done on 10×10 maps
with respect to the final performance rates. These ex-
periments couldn’t be done for each single environment
and algorithm since this would take too long. The value
of 0.005 for α resulted in stable performances.

4.3 Performance Measure
The performances of the three methods are measured
based on the number of fires that are isolated in the 100
episodes. Because 30 models are created for each sort
of map, the average number of isolated fires (μ) is com-
puted over the 30 samples. Additionally the standard de-
viations (σ) and standard errors (SE) are computed.

5 Results
The figures below show the results of averaged num-
bers of contained fires over multiple models. The yel-
low bars indicate the scores for DCNN with 50 exam-
ple episodes of training data. The orange bars show the
amount of isolated fires for 50+50 extra random ex-
amples of training episodes (DCNN-EXTRA). The red
bars represent the performance of the Human Interac-
tive DCNN with 50+50 episodes derived from replaying
failed episodes (HI-DCNN). The characters below the
figures show whether the environment consists of forest
(F), forest and houses (F+H), forest, houses and a river
(F+H+R) or forest and a river (F+R). The error bars in-
dicate one standard error (σ) of uncertainty above and
below the mean. In appendix A a table is provided with
mean values, standard deviations and standard errors for
each different environment and algorithm. In appendix
B statistics are set out to examine whether the results of
different methods are significantly different.

5.1 Results on 10×10 Maps
Figure 5.1 shows the results for the 10×10 map. The
first thing you see is that there is no bar for HI-DCNN in

F F+H F+H+R F+R
0

20

40

60

80

100

#F
ire

s C
on

ta
in

ed
(in

 1
00

 e
pi

so
de

s)

Contained fires for 10 x 10 map
 (tested on 30 models for 100 episodes)

DCNN(50 examples)
DCNN(100 examples)
HI-DCNN(100 examples)

Figure 5.1: Average number of fires contained (out of 100)
for 10×10 maps, F = forest, H = houses and R = river.

the forest (F) mode. This is due to the fact that DCNN
with 50 examples already performs very well and of-
ten (22/30 models) manages to isolate all (100/100) for-
est fires. Therefore it would be time consuming to find
50 episodes in which a DCNN model isn’t able to iso-
late the fire. Also DCNN-EXTRA with 100 example
episodes is able to isolate all fires for 30 models, so
therefore in this case HI-DCNN seems unnecessary.
In each environment except for the forest+houses
DCNN-EXTRA improves the performance of the
DCNN models. Furthermore from these results it be-
comes clear that for each environment HI-DCNN per-
forms better than both DCNN and DCNN-EXTRA.
This also holds statistically, as you can see in Appendix
B.1.

5.2 Results on 20×20 Maps

F F+H F+H+R F+R
0

20

40

60

80

100

#F
ire

s C
on

ta
in

ed
(in

 1
00

 e
pi

so
de

s)

Contained fires for 20 x 20 map
 (tested on 30 models for 100 episodes)

DCNN(50 examples)
DCNN(100 examples)
HI-DCNN(100 examples)

Figure 5.2: Average number of fires contained (out of 100)
for 20×20 maps, F = forest, H = houses and R = river.

In figure 5.2 the 20×20 maps show a slight decrease
in overall performance compared to the 10×10 maps.
In the forest mode extra data (DCNN-EXTRA) ex-
amples do not result in a statistically higher number
of contained fires. Nevertheless HI-DCNN actually

8

does increase the performance of DCNN and also
performs significantly better than using 50 extra train-
ing episodes (DCNN-EXTRA). In the forest+houses
and forest+houses+river environment both approaches
(DCNN-EXTRA and HI-DCNN) improve the perfor-
mance of DCNN. However whether the extra data is
derived from random training examples or failed exam-
ples doesn’t matter significantly. For the forest+river
environment no significant differences in performance
are found for the different algorithms.

5.3 Results on 40×40 Maps

F F+H F+H+R F+R
0

20

40

60

80

100

#F
ire

s C
on

ta
in

ed
(in

 1
00

 e
pi

so
de

s)

Contained fires for 40 x 40 map
 (tested on 30 models for 100 episodes)

DCNN(50 examples)
DCNN(100 examples)
HI-DCNN(100 examples)

Figure 5.3: Average number of fires contained (out of 100)
for 40×40 maps, F = forest, H = houses and R = river.

As can be seen in figure 5.3, performances of the
agents in the 40×40 maps are approximately the
same as for the 20×20 maps in the forest environ-
ment. For the other environments the performance
has dropped compared with the 20×20 maps. In
the forest environment HI-DCNN beats both other
approaches. Nevertheless DCNN-EXTRA is also able
to significantly increase the performance of DCNN
by using more training episodes. In the forest+houses
environment HI-DCNN significantly outperforms
DCNN, however no significance can be found between
HI-DCNN and DCNN-EXTRA. Also the extra training
examples from DCNN-EXTRA do not significantly
upgrade the models as compared to DCNN. In the
forest+houses+river environment DCNN-EXTRA
significantly improves the performance of DCNN,
HI-DCNN actually improves it even more and reaches
a significantly higher amount of contained fires than
DCNN-EXTRA. At last in the forest+river environment
DCNN surprisingly performs significantly better than
both DCNN-EXTRA and HI-DCNN. So in this case
more data actually made the performance of the model
worse. Between DCNN-EXTRA and HI-DCNN no
statistically significant difference can be found.

5.3.1 Observations

Something that happens in the forest+houses and for-
est+houses+river environments, is that the agent gets
stuck behind a house. Then it executes the same move
over and over, which results in being stuck while the fire
continues to spread. This also happens when an agent is
placed on one side of a river and the fire is on the op-
posite one. Then it is hard to move around the river and
isolate the fire. Instead it will sometimes get stuck at
one side of the river while the fire spreads around it.
Nevertheless, the agent is most of the times able to suc-
cessfully isolate fires that started next to a river. The
agent then uses a part of the river to isolate the fire like
in figure 5.4.

A

Figure 5.4: 10×10 map in which the agent (black) has used
the river (blue) to isolate the fire (orange).

6 Conclusions
In the forest environment 93% of the fires are con-
tained after training a HI-DCNN model with 100 exam-
ples for both 20×20 and 40×40 maps. This shows that
the learning from demonstration approach can be effec-
tively used in the forest fire problem for these strongly
simplified environments. With more data this percent-
age could probably be higher (by looking at the results
of using more data in this project).
For this kind of environment the results can be ex-
plained by the fact that models already isolate most of
the fires after initial training (DCNN). After creating a
model from the initial data, only the fires that are not
solved by this model are replayed by a human to gen-
erate new data. Providing solutions for exactly these
episodes in HI-DCNN did improve the performances
significantly more than the same amount of random
episodes in DCNN-EXTRA.
Even though specific input layers indicate at what po-
sitions houses are located in the forest+houses environ-
ment, the performance is lower than for the forest envi-
ronment. This means that the agent isn’t optimally able

9

to learn how to handle these obstacles (houses). This
also makes sense since the houses are randomly placed
and therefore confront the agent in different ways. Be-
cause the agent handles these obstacles in different ways
in the input data, this behaviour is hard to generalise.
In the forest+river environment some interesting things
happen. In the 10×10 maps more data results in (as ex-
pected) higher performances. For the 20×20 maps all
performances are about the same, so more data doesn’t
improve the models. Now the most surprising result is
that in the 40×40 maps extra data makes the perfor-
mance of the agent significantly worse. Apparently so-
lutions to forest fires, in which a river is involved, do
not benefit from the used amount of extra examples to
isolate the fire.
DCNN-EXTRA reaches significantly higher perfor-
mances in 7 out of 12 environments than DCNN. This
means that overall more data results in better outcomes
in the forest fire control problem. Nevertheless in this
research it also becomes clear that by improving the
models with a human interactive approach a larger
amount of models are improved. With this latter ap-
proach in 9 out of 11 environments the performances
of the models are significantly increased. Comparing
the performances of HI-DCNN and DCNN-EXTRA it
becomes clear that 6 out of 11 times HI-DCNN per-
forms better than DCNN-EXTRA. In the other 5 out of
11 models no statistical significance between the mod-
els can be shown. Therefore HI-DCNN is concluded to
be the most effective method in solving the forest fire
problem. Looking at the simpler environments, the an-
swer to the main research question (Can learning from
demonstration with a deep convolutional neural net-
work (DCNN) effectively be used to isolate forest fires
in simulation?) is yes. In the forest environment with
the HI-DCNN approach, more than 93 percent of the
fires were contained. For the other environments learn-
ing from demonstration is less accurate and is not al-
ways able to control the forest fires effectively. How-
ever in these more complex environments the use of ex-
tra data often shows higher numbers of contained fires.
Therefore with these methods, more data probably can
lead to effective forest fire control strategies.

7 Discussion

It must be said that for all different environments and
algorithms merely 50 or 100 examples of episodes
are used. This is, in the world of machine learning (in
which learning from demonstration can be placed),
a small number. Quite effortlessly more data could
be generated for a specific environment. But in this
research project there were many different environ-
ments and training took quite some time (about 6 hours
for the most intensive environments). Therefore no
more data is generated in this project. Although this
research provides indicative positive results for the

performances of the different algorithms in the forest
fire problem, because of the small amounts of data it is
not yet possible to draw firm conclusions.
Also the used environments in this project resembles
a simplified representation of a real forest fire. So the
results in this project do not account for real world
outcomes.
An improvement to the current methodology might be
data augmentation. This is a method in which inputs
can be flipped, cropped, rotated or shifted in order to
increase the diversity of the input data. This project
would probably benefit from this because this might
provide extra solutions for moving around obstacles
from different sides. Also rotated data might give the
system more information about isolating the fire from
different sides.
Another way to overcome the problem with avoiding
obstacles might be solved by a function that prohibits
the agent to make invalid moves. Also a boolean could
be added to the input data for the DCNN, in order to
state whether a move is an invalid one. I did develop
a function for avoiding invalid moves, but later on
disabled it again. This function made the problem
easier for the DCNN, but distorts a real and proper
understanding about what the neural network has
learned from demonstration data.
Finally in this thesis only single agents are used to iso-
late the forest fires. Of course this is not as effective as
using multiple agents that cooperate efficiently in order
to isolate a fire. This could be researched in future work.

References
Attia, A. and Dayan, S. (2018). Global overview of im-

itation learning. arXiv preprint arXiv:1801.06503.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M.,
Schaul, T., Piot, B., Horgan, D., Quan, J., Sendonaris,
A., Osband, I., et al. (2018). Deep Q-learning from
demonstrations. In Thirty-Second AAAI Conference
on Artificial Intelligence.

Kingma, D. and Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Knegt, S. J., Drugan, M. M., and Wiering, M. A. (2018).
Opponent modelling in the Game of Tron using rein-
forcement learning. In ICAART (2), pages 29–40.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W., and Jackel, L. D.
(1989). Backpropagation applied to handwritten zip
code recognition. Neural computation, 1(4):541–
551.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, A., Wierstra, D., and Riedmiller, M.

10

(2013). Playing atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602.

Ozkohen, P., Visser, J., van Otterlo, M., and Wiering,
M. (2017). Learning to play Donkey Kong using neu-
ral networks and reinforcement learning. In Benelux
Conference on Artificial Intelligence, pages 145–160.
Springer.

Ruder, S. (2016). An overview of gradient descent op-
timization algorithms. CoRR, abs/1609.04747.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning internal representations by error
propagation. In Rumelhart, D. E. and Mcclelland,
J. L., editors, Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, Volume 1:
Foundations, pages 318–362. MIT Press, Cambridge,
MA.

Schaal, S. (1997). Learning from demonstration. In
Advances in neural information processing systems,
pages 1040–1046.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,
Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel,
T., and Hassabis, D. (2016). Mastering the game of
Go with deep neural networks and tree search. Na-
ture, 529:484–503.

Sutskever, I. and Nair, V. (2008). Mimicking Go ex-
perts with convolutional neural networks. In Inter-
national Conference on Artificial Neural Networks,
pages 101–110. Springer.

Wiering, M. and Doringo, M. (1998). Learning to con-
trol forest fires. Proceedings of the 12th international
Symposium on ’Computer Science for Environmental
Protection’, pages 378–388.

Wiering, M., Mignogna, F., and Maassen, B. (2005).
Evolving neural networks for forest fire control.
Benelearn ’05: Proceedings of the 14th Belgian-
Dutch Conference on Machine Learning, pages 113–
120.

11

A Appendix

Table A.1: Statistical results for 10×10 maps: mean (μ), standard deviation (σ) and standard error (SE)

Environment Algorithm μ σ SE
Forest DCNN 99.20 1.96 0.36

DCNN EXTRA 100 0 0
Forest+Houses DCNN 79.97 4.79 0.89

DCNN EXTRA 80.20 3.75 0.70
HI-DCNN 87.90 4.22 0.78

Forest+Houses+River DCNN 52.3 7.65 1.42
DCNN EXTRA 57.37 6.04 1.12

HI-DCNN 62.23 5.10 0.95
Forest+River DCNN 60.87 6.54 1.21

DCNN EXTRA 67.70 4.38 0.81
HI-DCNN 72.97 4.45 0.83

Table A.2: Statistical results for 20×20 maps: mean (μ), standard deviation (σ) and standard error (SE)

Environment Algorithm μ σ SE
Forest DCNN 85.57 14.97 2.78

DCNN EXTRA 87.97 2.36 0.44
HI-DCNN 93.17 2.82 0.52

Forest+Houses DCNN 67.70 4.80 0.89
DCNN EXTRA 71.87 6.27 1.16

HI-DCNN 73.03 4.93 0.92
Forest+Houses+River DCNN 43.9 6.12 1.14

DCNN EXTRA 49.27 5.14 0.95
HI-DCNN 47.87 5.74 1.07

Forest+River DCNN 63.87 5.03 0.93
DCNN EXTRA 64.57 5.04 0.94

HI-DCNN 66.43 5.97 1.11

Table A.3: Statistical results for 40×40 maps: mean (μ), standard deviation (σ) and standard error (SE)

Environment Algorithm μ σ SE
Forest DCNN 87.24 5.85 1.02

DCNN EXTRA 90.40 3.81 0.71
HI-DCNN 93.47 2.25 0.42

Forest+Houses DCNN 54.47 7.11 1.32
DCNN EXTRA 57.13 6.08 1.13

HI-DCNN 58.47 5.94 1.10
Forest+Houses+River DCNN 32.7 6.69 1.24

DCNN EXTRA 38.47 4.37 0.81
HI-DCNN 43.50 5.67 1.05

Forest+River DCNN 61.47 3.96 0.74
DCNN EXTRA 58.40 5.94 1.10

HI-DCNN 58.43 4.24 0.79

12

B Appendix

Table B.1: Comparison to show significant differences between gathered results for 10×10 maps. Normality tested by
the Shapiro Wilk test. P-values for parametric tests are computed by a two tailed independent t-test, for non-parametric
tests the p-value is computed by a Wilcoxon rank-sum test.

Environment Comparison Parametric? t-value P-value Significant?
Forest DCNN - DCNN EXTRA NO -2.00 0.0459 YES

Forest+Houses DCNN - DCNN EXTRA YES -0.207 0.837 NO
DCNN - HI DCNN YES -6.69 1.04e-8 YES

DCNN EXTRA - HI DCNN YES -7.35 8.24e-10 YES
Forest+Houses+River DCNN - DCNN EXTRA NO -2.52 0.0117 YES

DCNN - HI DCNN NO -4.95 7.60e-7 YES
DCNN EXTRA - HI DCNN YES -3.32 0.00160 YES

Forest+River DCNN - DCNN EXTRA YES -4.68 2.21e-5 YES
DCNN - HI DCNN YES -8.23 6.14e-11 YES

DCNN EXTRA - HI DCNN YES -4.54 2.86e-5 YES

Table B.2: Comparison to show significant differences between gathered results for 20×20 maps. Normality tested by
the Shapiro Wilk test. P-values for parametric tests are computed by a two tailed independent t-test, for non-parametric
tests the p-value is computed by a Wilcoxon rank-sum test.

Environment Comparison Parametric? t-value P-value Significant?
Forest DCNN - DCNN EXTRA NO 0.0221 0.982 NO

DCNN - HI DCNN NO -4.82 1.44e-6 YES
DCNN EXTRA - HI DCNN NO -5.38 7.39e-8 YES

Forest+Houses DCNN - DCNN EXTRA YES -2.84 0.00632 YES
DCNN - HI DCNN NO -4.17 0.000102 YES

DCNN EXTRA - HI DCNN NO -0.787 0.434 NO
Forest+Houses+River DCNN - DCNN EXTRA YES -3.62 0.000637 YES

DCNN - HI DCNN YES -2.55 0.0136 YES
DCNN EXTRA - HI DCNN YES 0.978 0.332 NO

Forest+River DCNN - DCNN EXTRA YES -0.529 0.599 NO
DCNN - HI DCNN YES -1.77 0.0821 NO

DCNN EXTRA - HI DCNN YES -1.29 0.204 NO

13

Table B.3: Comparison to show significant differences between gathered results for 40×40 maps. Normality tested by
the Shapiro Wilk test. P-values for parametric tests are computed by a two tailed independent t-test, for non-parametric
tests the p-value is computed by a Wilcoxon rank-sum test. The * indicates that the first sample has a significantly higher
mean than the second sample (which is the other way around with all t-values below≤0)

Environment Comparison Parametric? t-value P-value Significant?
Forest DCNN - DCNN EXTRA NO -2.41 0.0157 YES

DCNN - HI DCNN YES -4.96 7.14e-7 YES
DCNN EXTRA - HI DCNN NO -3.25 0.00117 YES

Forest+Houses DCNN - DCNN EXTRA NO -1.54 0.130 NO
DCNN - HI DCNN YES -2.33 0.0237 YES

DCNN EXTRA - HI DCNN NO -0.845 0.401 NO
Forest+Houses+River DCNN - DCNN EXTRA NO -3.89 0.000301 YES

DCNN - HI DCNN NO -6.63 1.34e-8 YES
DCNN EXTRA - HI DCNN YES -3.79 0.000382 YES

Forest+River DCNN - DCNN EXTRA YES 2.28 0.0224 YES*
DCNN - HI DCNN NO 2.34 0.0195 YES*

DCNN EXTRA - HI DCNN NO 0.0370 0.971 NO

14

	Introduction
	Forest Fires
	Learning From Demonstration
	This Research

	Method
	Glossary
	Environment
	Representation Environment
	Input Data

	Convolutional Neural Networks
	Neural Network
	Convolution Layer
	Pooling Layer
	Architecture
	Activation Functions
	Loss Function
	Adam Optimizer

	Validation
	Early Stopping and Model Checkpoints

	Experimental Setup
	Methods
	DCNN
	DCNN with Extra Data
	Human Interactive DCNN

	Hyper Parameters
	Performance Measure

	Results
	Results on 1010 Maps
	Results on 2020 Maps
	Results on 4040 Maps
	Observations

	Conclusions
	Discussion
	Appendix
	Appendix

