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Summary 

Sea and ocean waves are a promising source of renewable energy. The device that is 

used for converting wave power into electrical or mechanical energy is called wave 

energy converter (WEC). Ocean Grazer B.V. (OG) is a company that has patented a 

design for WEC called Ocean Grazer 3.0. In this design, OG is using a honeycomb-

shaped grid of point absorbers (buoys). Each buoy is connected with a string to a piston, 

where the vertical movement of the buoy is converted into electric energy via a 

transmission system. The transmission ratio (TR) is a measure of added pumping force 

to the piston, in response to higher or lower energy waves. Ocean Grazer 3.0 has a 

design that allows tuning of the TR. Therefore, a fast computing algorithm is required 

that can predict the TR, which maximizes the power extraction of Ocean Grazer 3.0. 

With that said, a machine learning (ML) approach was used for optimizing the power 

output. 

 

Machine learning is an extension of artificial intelligence. An ML algorithm is designed 

to learn with minimum human interference, by recognizing the patterns within the 

input data. Consequently, the ML method called neural networks was used to construct 

an accurate predictor. 
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1. Introduction  

In the search for renewable sources of energy, the new findings confirm that “The ocean 

stores enough energy to meet the total worldwide demand for power many times over” 

(Owusu & Asumadu-Sarkodie, 2016). The energy that the ocean carries is released 

through different means, such as, waves, tide, currents, and heat. For instance, in the 

North region of the Atlantic Ocean, ocean-wind waves reach 19 meters high (World 

Meteorological Organization, 2020). Natural water waves, also called irregular waves, 

are unique from one another. Every wave crust possesses different characteristics such 

as the height and the time delay between two wave peaks. The Dutch startup company 

called Ocean Grazer B.V. (OG) has developed a conceptual model of a device for 

generating energy from ocean waves. Therefore, OG wants to investigate how their 

model responds to a wide range of ocean conditions and internal parameter settings. As 

the model developed further, it becomes more complex and the number of internal and 

external parameters increase exponentially.  Soon, the hydrodynamic models that were 

used up until now will no longer be able to handle this amount of data. Hence, a 

different approach by adopting a machine learning (ML) algorithm was investigated.  

With the help of ML, solving optimization problems is simplified. Machine learning is 

designed to learn by recognizing patterns within the data (Bishop, 2016). There is a wide 

range of ML algorithms that use different types of pattern recognition techniques, and 

the final choice largely depends on the function that machine learning has to perform.  
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Figure 1. Close view of the storage system (a) and overall design of Ocean Grazer 3.0 (b). 

 

Ocean Grazer is a company that has a vision of a sustainable future with hybrid energy 

sources. OG is currently developing three design projects revolving around offshore 

energy harvesting and storage. The specific design that was examined in this project is 

called Ocean Grazer 3.0 and serves the purpose of harvesting wave energy (figure 1b). 

Wave energy converter (WEC) is a device that is designed to use the wave energy to 

convert it into electricity. The wave energy converter of Ocean Grazer has undergone 

several redesign stages. The current design is numbered 3.0 and differs significantly 

from previous designs mostly because it is already coupled with offshore energy storage 

and a wind turbine (Wei et al., 2019). The cluster of point absorbers (buoys) of Ocean 

Grazer 3.0 in one honeycomb-shaped grid is referred to as the floater array. Thus, the 

basic working principle of the floater array is to translate the vertical displacement of 

the buoy into the piston oscillations (figure 1a). In turn, the piston pumps water from 

the reservoir in the upward direction to the bladder. Then, water returns to the reservoir 

through the water turbine, generating electricity. The transmission ratio of a wave 

energy converter is designed to regulate the pumping force of the piston in response to 

(a) (b) 
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higher or lower energy waves. In the multi-piston pump system (figure 2), the buoy is 

attached to multiple pistons with different diameters (Vakis and Anagnostopoulos, 

2016). Therefore, if a high energy wave acts on a buoy, activating a piston with the 

largest diameter ensures greater water flow through the turbine. On the other hand, if 

the wave is low energy then a piston with the largest area prevents the buoy from 

oscillating, generating zero electricity; hence, a smaller piston has to be used. 

 
Figure 2. Multi-piston pump. 

The data that has been generated by OG represents a certain range of wave parameters, 

such as wave height and wave frequency, that can potentially be encountered in the 

North Sea. By using complex hydrodynamic models, OG succeeded in computing the 

power production of Ocean Grazer 3.0 for a wide range of transmission ratio settings. 

Consequently, the complete dataset has been composed in a single matrix, called the 

power matrix. The computing time of the power matrix with existing hydrodynamic 

models is approximately equal to three days. Long waiting time is the result of large 

input data. Due to the reason that such computations are very time consuming, the need 

for a machine learning algorithm is emerging. 

 

In this project, machine learning was used to process the data that has been 

accumulated by Ocean Grazer. In the latest design of WEC presented by OG, it is 

assumed that the transmission ratio of every unit within the WEC array is the same. The 

previous work has been done on predicting the optimal transmission ratio of a single 

point absorber in regular waves; however, this project the design of a machine learning 

algorithm is extended to an entire array in irregular waves. In other words, the machine 

learning algorithm is programmed to reconstruct the power matrix without using the 

high fidelity models. As a result, optimal transmission ratios are computed to absorb the 

most power from a wave that Ocean Grazer 3.0 may encounter. 



4 

2. Problem analysis  

2.1 Problem definition 

Current hydrodynamic models that were developed by Ocean Grazer to compute 

theoretical power outputs from various sea states are very computationally expensive. 

By using these models, the power matrix was computed. The power matrix is composed 

of three dimensions; namely, wave height, peak period and transmission ratio. The 

matrix is recomputed every time OG wants to redesign the unit or compute power 

production for different wave parameters. Therefore, a new method is needed to make 

this process more efficient. One way to reduce the complexity is to use a machine 

learning algorithm. Machine learning can significantly reduce computational time by 

studying the relations between the variables and predicting the desired power output. 

Hence, the problem definition is stated as follows: 

 

“There is a need for a computationally inexpensive machine learning algorithm, which 

can accurately predict an optimal transmission ratio to maximize the power output of 

the WEC array.” 

 

2.2 Problem owner 

Alva Bechlenberg is a Ph.D. student who is currently working on the project revolving 

around power production efficiency of Ocean Grazer 3.0. At the moment, the power 

extraction calculation of WEC is not final. In the process of calculating the final value of 

power generated by Ocean Grazer 3.0, Alva will have to rebuild the power matrix several 

times. Hence, another quicker method of generating the same dataset is required. Thus, 

Alva will use the machine learning algorithm to generate new power matrices to help her 

research. 

 

2.3 Stakeholders 

One of the stakeholders of this integration project is the co-founder of Ocean Grazer 

Drs. Wout A. Prins. He and his colleagues developed a concept that later became a lab-

scale prototype of a wave energy converter. Therefore, by having an accurate image of a 

power supply of Ocean Grazer 3.0, W. A. Prins will have a deeper understanding of the 

utilization of the system. 

 

Another stakeholder of this project and also the co-founder of Ocean Grazer is prof. dr. 

A. Vakis. The stake of Antonis is to develop a feasible business case that can be 

presented to attract more investors. Apart from assigning correct transmission ratios, 
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Antonis wants the machine learning algorithm to be adaptable to alternative designs of 

the WEC.  

 

2.4 System description  

The system is illustrated in figure 3. The initial input was considered to be the power 

matrix, which is comprised of wave parameters, such as height, peak period and power 

outputs. Considering that the power matrix is provided by Ocean Grazer, this project did 

not study the methods behind the computation process of power outputs. In other 

words, hydrodynamic systems used to compute a theoretical power output were 

considered a black box.  

 

The system of the project was defined by a programming script that is using a machine 

learning algorithm to accurately reconstruct the power matrix and then predict optimal 

transmission ratios. The scope of the project was machine learning. First, the power 

matrix was used to train the machine learning algorithm and test the resulting accuracy. 

The criterion by which the final choice of a machine learning algorithm was selected is 

root mean squared error (RMSE). For the ML algorithm to be selected for the final 

design, a certain threshold of RMSE has to be passed. Next, an optimal machine 

learning algorithm was used to predict the optimal transmission ratios and compare the 

results with the initial power matrix. Finally, in the validation part, a final ML algorithm 

was applied to two cases of potential applications. The fitness of the algorithm was 

determined by a pre-established threshold of the mean average percentage error 

(MAPE). As a result, the two outputs of the system are a machine learning algorithm 

and possible applications of an algorithm.  
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Figure 3. System description. The system is defined as a programming script. The input of the system 

is the  initial power matrix and the outputs are potential applications and an ML algorithm. Within the 

system, the input to output transformation process is described. 
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3. Research design 

3.1 Design goal  

Previously, a bachelor project was conducted on researching the most time-efficient 

machine learning algorithm to predict the transmission ratios of Ocean Grazer 3.0. 

Currently, the newest machine learning algorithm for a single point absorber takes 4 

[h], 7 [min] and 25 [s] to obtain the trained algorithm (Manal, 2019). Moreover, the 

previous code only provided accurate results for a single floater of the WEC array in 

regular waves. Thus, this bachelor project extended the previous knowledge by 

accounting for a power extraction of an entire array of the buoys in irregular waves. 

Therefore, the design goal is stated bellow.  

 

“Develop a machine learning algorithm in the next 2 months, which can reconstruct 

the power matrix with at least 99% accuracy; and use the predicted power matrix to 

calculate the optimal transmission ratios that maximize the power harvested from 

irregular waves.” 

 

3.2 Research questions 

Due to the high nonlinearity of the system, it is difficult to adapt a machine learning 

algorithm to accurately approximate the power matrix. However, the ML type called 

neural networks is a promising method of dealing with nonlinear data. There are several 

types of neural networks that can be used for this problem. Therefore, the main research 

question is stated as follows:   

 “What is the best type of neural network algorithms to accurately reconstruct the 

power matrix?”  

 

While the different types of neural networks differ in some ways, they hold the same 

core structure of hidden layers (HL) and neurons, which was closely examined in the 

following sections. Thus, research sub-questions explore the configurations of the neural 

networks that give the best approximation of the input matrix. Moreover, possible 

applications of the resulting machine learning algorithm are investigated. Hence, 

research sub-questions are formulated as follows: 

1. What is the optimal number of hidden layers and neurons that are needed for a 

neural network algorithm to quickly and accurately replicate the dataset? 

2. What are the ways to reduce the computing time of the ML algorithm? 

3. Can a selected ML algorithm accurately predict the transmission ratios from a 

new data?  
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4. Literature review  

Machine learning is a technique that helps to give a prediction of the model or a process 

in the near future (Alpaydin, 2010). This is based on the assumption that the period for 

which the data is predicted is not much different from the time when the sample data 

was collected. The main function of ML is to recognize the regularities within the data to 

give an accurate approximation. Furthermore, it can learn and adapt to a changing 

environment. There are three types of machine learning, supervised, unsupervised and 

reinforcement learning. In the next subsections, these three types are further elaborated 

on.  

 

4.1 Supervised learning general overview 

Supervised machine learning is trained with practice data of predefined inputs and 

outputs. Supervised learning can perform two main tasks: classification and regression 

(Bishop, 2016). Classification is performed by assigning a new observation of a finite 

number of early established categories (Duda et al., 2001). Whereas, regression is using 

a method of fitting the data to a function, to predict the values of one or several 

parameters (Motulsky & Ransnas, 1987). An output of a regression task is always one or 

more continuous variables (Bishop, 2016).  

 

In some high dimensional problems, the basis function has to be first adapted to the 

data before doing regression. Basis function is a linear combination of nonlinear 

functions. Two methods can successfully assign basis functions to the input data. These 

methods are support vector machines (SVM) and neural networks (NN). The working 

principle of the support vector machines is to first define basis functions, and then 

group them during training. On the other hand, a neural network has to initially define 

the total number of parametric basis functions, and during training, basis functions are 

matched to the dataset by adjusting respective parameters. The two types of neural 

networks that are well suited for regression are called radial basis network (RBN) 

(Specht, 1991) and feed-forward neural network (FNN) (White, 1990), also known as the 

multilayered perceptron. According to Bishop 2016, NN models are more compact and 

hence faster to evaluate. Therefore, considering the speed of the algorithm as a 

constraint, it was decided to use neural network algorithms in this project.  

 

4.2 Unsupervised learning  

Comparing to supervised learning, unsupervised learning is trained with only input data 

(Alpaydin, 2010). Therefore, the main function of determining patterns and regularities 
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can only be performed on the input data. Unsupervised learning can be used for several 

tasks such as determining groups of data, called clustering, or to compute input data 

distribution, in other words, density estimation, or to visualize the data from a high 

dimensional space in lower dimensional graphical plots also known as visualization 

(Bishop, 2016).  

 

4.3 Reinforcement learning  

Reinforcement learning uses an external trainer to arrive at the best outcome (Barto & 

Sutton, 1997). This type of learning does not use training dataset. The reinforcement 

learning algorithm has to explore all possible outcomes by trial and error, and by 

guiding itself towards the highest reward.  

 

4.4 Introduction to neural networks  

A neural network is designed to represent mathematically how biological systems 

process information (Bishop, 2016). The simplest type of neural network consists of 

three layers and called an artificial neural network. The layers are interconnected with 

several nodes that are located in each hidden layer (figure 4).  

 
Figure 4. An artificial neural network is displayed that consists of three layers; namely, input, hidden 

and output layers (Innoarchitech, n.d.). 

 

The first layer is an input layer, where information is received. In NN the major 

influence on network performance has the selection of the number of hidden units 

(neurons) in the hidden layer. The number of neurons defines the degree of fit of NN. 

Once defined the number of neurons, in the first iteration NN generates a random fit to 
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the data, resulting in the highest error. Then, weights that determine the 

interconnections between the subsequent layers are updated during training.  

 

The following layer is called the hidden layer. Links between two layers contain certain 

information, such as weights and biases (Svozil, Kvasnicka & Pospichal, 1997). To 

calculate the pre-activation of a node in the hidden layer, the sum of values in the input 

vector multiplied by weights has to be calculated. Then, a bias value is added. Finally, 

the resulting value is updated with an activation function. In figure 5, this step is 

displayed graphically.  

 

 
Figure 5. The procedure of activation of a neuron (Medium, 2018). 

  

In the hidden layer, the pre-activation function is updated according to an activation 

function that is applied to the hidden layer. Finally, the values from the hidden layer are 

passed on to the output layer, where another activation function is applied to the data. 

As it was stated earlier, the basis function in regression is determined by a linear 

combination of nonlinear functions; hence, linear activation function has to be applied 

at the output layer.  

 

By constructing a neural network it is also important to avoid over-fitting. In NN, the 

larger the data, the more hidden units algorithm requires. Suppose there are too many 



11 

hidden units, then they are not able to approximate the general distribution of the data, 

but rather go through every point of the dataset. Poor accuracy is also a result of under-

fitting. In that case, the algorithm is oversimplifying the dataset and ignores some of the 

important data points.  

 

4.4.1 Feed-forward network  

The feed-forward network is a type of parametric network that is commonly using a 

sigmoidal activation function. The name of the network was determined by the property 

of one-directional flow of information, forward direction. FNN is not bound by one 

hidden layer; it can have multiple hidden layers with a different number of neurons in 

each hidden layer. While running an FNN algorithm, it is often observed that the 

accuracy varies every time the new network is trained. The neural network behaves this 

way because, at the initiation of the algorithm, weights are distributed randomly. 

Therefore, as the weights are updated, they lead to the closest local minima, even if it is 

non-optimal. While the global minimum is considered to be the smallest error value, it 

is not necessary to arrive at a global minimum to have an accurate approximation 

(Bishop, 2016). However, it is required to run the NN algorithm several times to explore 

the local minima of the network. To counteract the effect of arriving at non-optimal 

minima, different training functions can be applied.  

 

A case study has been conducted on predicting the displacement of the buoys at the sea 

by using feed-forward neural networks. The observed data that was used for this 

particular research was recorder at the “Belmullet Wave Energy Test Site on the western 

coast of Ireland” (E. S. J. Hesam, B. Ling & B. A. Batten, 2014). The research was aiming 

at training a feed-forward neural network with the observed data of buoy displacements 

and then using the network to predict water elevation at a particular point of time. The 

input wave parameters that were used in the research are wave height [m], and wave 

period [s]. Thus, the FNN was learning from a two-dimensional matrix. As a result of 

the research, the best performing FNN had two hidden layers with 30 neurons in each 

hidden layer. The training function that was used is Levenberg-Marquardt. The 

resulting optimal mean squared error was 0.244.  

 

4.4.2 Radial Basis network 

The type of neural network that is using a radial basis activation function is called a 

radial basis function network. This network is using a radial distance between data 

points and a center. Weights of this network are updated by the least squares. RBN is 
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very efficient in exact function approximation because if enough number of neurons is 

generated, radial basis functions fit precisely to every point of a training dataset (Bishop, 

2016). Therefore, to get a more accurate approximation, it is necessary to avoid 

overfitting to account for the noise in the input data.   
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5. Methods 

A neural network is a highly adaptive type of machine learning. This project was testing 

the performance of two types of neural networks; namely, feed-forward network and a 

radial-basis network. The programming language that was used for neural networks is 

MATLAB. In MATLAB, a rather large choice of network parameters can be adjusted. 

Thus, in the following sub-sections, an outline of testing the parameters of the two types 

of networks is discussed. Then, a method of determining the accuracy of the networks is 

introduced. The specifications of the computer used for this project are CPU E5-1650 v3 

processor and an installed memory (RAM) of 64.0 gigabytes, with Intel® Xeon® 

processor. 

 

 

5.1 Feed-forward network  

5.1.1 Number of hidden layers and neurons 

As was discussed earlier, the performance of the feed-forward network largely depends 

on the number of neurons in each hidden layer. A standard FNN consists of three layers; 

namely, input, hidden and output layers. In MATLAB, for both FNN and RBN, only the 

hidden layer depth can be altered. The number of neurons is directly correlated to the 

size of the input data. In this project, a rather large dataset was used. To estimate the 

optimal depth of the network, a trial and error approach must is adopted. A wide range 

of networks with different depths was tested to determine how the system responds to a 

changing number of hidden nodes. To minimize the effect of feed-forward network 

converging to non-optimal local minima, test runs were evaluated over five iterations 

and the mean output value of the five tests was computed. 

 

In the second test, networks with a different number of hidden layers were compared. 

First, an optimal number of neurons in one and two hidden layer networks was 

determined. Then, the shortened range of the most efficient network depths determined 

in the previous tests was applied to three hidden layer network. It is noteworthy, that no 

further number of hidden layers was investigated, because starting from the four-layer 

network, the computational speed rapidly decreases. Moreover, a computer that was 

used for training ML algorithms does not have enough memory to fit a large enough 

number of neurons in each of the four hidden layers.  
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5.1.2 Training function 

While constructing an FNN, it is also possible to specify a training function. The choice 

of training functions consists of nine options. However, only three best performing 

training functions for pattern recognition and function approximation were discussed; 

namely, Levenberg-Marquardt, BFGS Quasi-Newton and Resilient Backpropagation 

(Nl.mathworks.com, n.d.). It is important to distinguish two types of training functions, 

one that results in fast convergence of the algorithm and another type results in slow 

convergence. Each type has its pros and cons. For instance, a Levenberg-Marquardt 

(LM) training function is considered a fast convergence type (Nl.mathworks.com, n.d.). 

LM function is used in standard settings of neural networks in MATLAB. As it was 

already implied, the advantage of this training algorithm is in its speed. However, 

because of the fast convergence, the algorithm often converges to non-optimal local 

minima. On the other hand, BFGS Quasi-Newton and Resilient backpropagation 

training functions are of a slow convergence type. Unlike Levenberg-Marquardt, they 

rarely converge to the closest non-optimal local minima, considering that enough 

neurons in a hidden layer are provided.  

 

5.1.3 Activation function 

Activation function, also defined as a transfer function, is another important network 

parameter. It is a function that is used for updating an activation value of neurons in the 

hidden layer. The feed-forward network has two choices of sigmoidal activation 

functions. According to Nl.mathworks.com, for the regression problems, it is important 

to keep a sigmoidal activation function in the hidden layer and a linear function in the 

output layer. The two choices of sigmoidal transfer functions are hyperbolic tangent and 

logistic, which are perceived as ‘S’ shaped functions in the y-coordinate region between 

(-1;1) and (0;1) respectively.  

 

5.2 Radial Basis network   

The radial-basis network in MATLAB requires less parameter to operate, comparing to 

FNN. For example, the number of hidden layers is constant and always equals one. 

Furthermore, the network is using only one activation function in the hidden layer 

which is the radial-basis function, as the name suggests. Moreover, different training 

functions were not considered because once all the neurons were fitted to the data, the 

error was already low; so further training the network would cost a lot of time and do 

not significantly reduce the error. Finally, the only aspects that RBN was tested on are 

the number of neurons in the hidden layer and the optimal spread value.  
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5.2.1 Spread 

The only important parameter of RBN except for the number of neurons is spread. 

Spread determines the distance between the center of the basis function to the limit of 

its reach. In other words, if the spread is set to one (standard setting), then the basis 

function would respond to all the input points within a vector distance of one 

(Nl.mathworks.com, n.d.). 

 

5.4 Error functions 

Root-mean squared error (RMSE) and mean average percentage error (MAPE) was used 

as the measure of the performance of a machine learning algorithm. The error was 

calculated between the power matrix and an output of the neural network algorithm. 

The formulas for two types of error calculations are presented in equations (1) and (2). 

 

 

      √∑
   ̂      

 

 

   

 (1) 

  

      
∑

   ̂     
  ̂

    

 
 

 

 

(2) 

 

 

In the equation,   ̂ is the actual value,    is the predicted value and   is the total number 

of points. Firstly, the RMSE threshold was set to determine an optimal network choice. 

The lowest RMSE that the network should reach was calculated by determining an 

average power output from the power matrix and computing one percent of that value. 

Thus, the average power output is 2.24×105, so one percent of it is approximately equal 

to 2×103. Next, in validation section, the network performance in two cases was assessed 

with MAPE. In other words, different environments where the optimal network can be 

used to predict the transmission ratios were explored. To access the performance of the 

network, the allowable margin of MAPE was set to five percent. So if predicted optimal 

transmission ratios are deviated from the initial dataset by more than five percent, then 

the performance was considered unsatisfactory. 
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6. Training dataset 

The given power matrix has 4080 entries of possible power outputs. These entries 

correspond to 6 instances of wave heights (Hs), 17 instances of peak frequencies (Tp) and 

40 instances of transmission ratios. In reality, these parameters correspond to waves of 

1-6 [m], peak periods of 4-20 [s] (both with the step size of 1), and transmission ratios 

between 0.05 and 2 (with the step size of 0.05). The combination of all the variables 

results in a unique power output value. To understand the relation between variables 

and power outputs, a visual representation of the initial dataset was obtained. Due to 

the reason, that the power matrix is three dimensional, it is necessary to remove one 

variable to be able to plot the power output on the vertical axis. Therefore, the entire 

dataset was split into six parts with respect to different wave heights. As a result, six 

different 3D plots with a fixed wave height per plot were generated (Appendix A). 

 

It is noteworthy, that most of the power extraction is done in a short range of 

transmission ratio values, namely, between the ratios of 0.1 and 0.4. Furthermore, wave 

frequencies also similarly impact power production. The power production peaks at the 

wave periods that are between 10 and 15 [s]. Moreover, on the vertical axis the power 

extraction magnitude changes in some of the plots. For instance, the plot for power 

extraction from one-meter wave peaks at a value close to 40kW, however, for the waves 

of two, three and four meters the maximum power produced by WEC is 1.4MW, and the 

waves of 5, 6 meters high generate up to 3MW of power. 
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7. Data gathering 

In this section, following the layout described in part 5, various settings of the feed-

forward network were compared. This section consists of two main parts; namely, feed-

forward network and radial-basis network testing. To begin with, the feed-forward 

network was tested.  

 

7.1 Feed-forward network  

7.1.1 Number of neurons 

In the first test, an optimal number of neurons in a single hidden layer was investigated. 

Initially, the original setting of FNN parameters provided by MATLAB was considered. 

As it was already stated earlier, the training dataset is comprised of an input matrix and 

an output vector. To define an optimal network depth, an iterative algorithm was used 

where 70 networks were trained with a different number of hidden units ranging 

between 10 and 80 neurons, with a step size of one. The performance of different 

networks was compared by computing a root-mean-squared error (RMSE). 

Consequently, the results are graphically depicted in figure 6. 

 

 
Figure 6. RMSE values of the feed-forward network plotted against the number of neurons in a single 

hidden layer. 

 

× 

RMSE 

Regression × 
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In the graph above, the RMSE values are depicted with the blue graph. It is noticeable 

that the consistency in the results is very poor, considering that each point is the average 

RMSE computed over five iterations. Due to the reason that the error plot has large 

oscillations, a second-order polynomial was fitted to the data to identify the region of 

lowest RMSE. The regression line was generated by the least-squares method and 

depicted with the red line. By looking at the graph it is easy to observe that the region of 

lowest error is fluctuating between RMSE values of 3×104 [W] and 4×104 [W], which 

yields a very low initial accuracy. The lowest RMSE of 2.64×104 [W] was detected in the 

network with 52 hidden units. In conclusion, the region of lowest the RMSE was 

determined to be between 50 and 65 neurons. This range of 15 neurons might be rather 

large for determining the optimal number of neurons, but further evaluation of the 

network in a larger parameter setting provided this experiment with more data for 

analysis.   

 

7.1.2 Number of hidden layers 

Following the method in the previous section, feed-forward networks with two and three 

hidden layers were assessed. The number of neurons in each hidden layer stayed 

constant per iteration. Thus, for two hidden layer tests, 65 networks were considered in 

the region between 10 and 70 neurons with a step size of one. The reason why such a 

large range was chosen again is to test if the number of hidden layers in FNN influences 

the optimal depth of the network. As a result, the average RMSE was increased. The 

minimum error from this test was determined at 51 neuron network depth with an 

RMSE value of 4.2×104 [W]. It is noteworthy that the number of hidden layers did not 

influence the optimal network depth, which is still between 50 and 60 neurons. 

 

The same experiment was conducted on FNN with three hidden layers. However, the 

range of hidden units was reduced to match the optimal range. In other words, errors of 

networks with three layers were compared with depths ranging between 50 and 60 

neurons, with a step size of one. Consequently, the accuracy of the network did not 

improve. The lowest RMSE recorded from the graph was 3.34×104 [W] from the 

network of 54 neurons in each of the three hidden layers.  

 

7.1.3 Training function 

The training function was tested out of three previously selected functions. For this 

experiment, a single-layer network was used. The depth of the feed-forward network to 
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which the training functions were applied is consistent with the findings from the first 

test, which is 52 neurons. Thus, the results are depicted in table 1.  

 

Table 1. RMSE values of FNN algorithms with different training functions. 

 

 

In the figure above, three results for the three aforementioned training functions are 

presented. The evidence has shown that the LM training function was the most efficient 

for this problem. Thus, the optimal error range at this point stays the same according to 

the first test of this section where the initial settings of FNN were used.  

 

7.1.4 Activation function 

The comparison of activation functions was conducted in the FNN with a single hidden 

later because the evidence suggests that it was the best performing network size for this 

dataset. Therefore, two types of sigmoidal functions were tested in the hidden layer. 

Similarly, the transfer functions were applied to a network with 52 neurons in the 

hidden layer. The obtained results are presented in table 2.  

 

Table 2. RMSE values of FNN with different transfer functions. 

 

 

For both cases, the output layer was kept as an unbound linear function for all real 

numbers. As a result, the performance of two transfer functions was almost identical for 

RMSE. However, from this particular test, the lowest value of RMSE of 1.82×104 [W]was 

generated by hyperbolic tangent activation function with 56 neurons in the hidden layer.   

 

7.2 Radial Basis network  

Establishing a radial-basis network in MATLAB has a slightly different structure 

comparing to FNN. The main difference is that to determine the optimal number of 

neurons, separate test runs of networks with different depths were not required. When 
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defining the specifications of RBN, a certain variable called ‘K’ has to be set to a 

maximum number of neurons that the network can use for training. For the test, the 

maximum number of neurons of RBN was set to 3000. This number greatly exceeds the 

optimal number of neurons that were used for a single layer FFN. This is due to the 

reason that RBN is using a different activation function that requires several neurons in 

the hidden layer that is close to the number of input points. As soon as the radial-basis 

network is initiated, it starts from one neuron in the hidden layer and gradually 

increases the depth of the network with the step of one, until it reaches the maximum 

number of neurons (K). Comparing to the best result of the feed-forward network test 

runs, the error of the predictor has been significantly reduced with RBN. For instance, 

the best RMSE of a single hidden layer FNN that was determined in the previous 

sections was 2.64×104 [W]. However, the lowest RMSE obtained from running RBN 

with 3000 hidden units was 310.6 [W]. RBN took approximately two hours to train the 

network to reach the final error. Finally, the highest efficiency resulted in a spread value 

of 0.1. 
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8. Analysis  

In the previous part, the experimental data were gathered where two types of neural 

networks were used to approximate the power matrix. Feed-forward and radial-basis 

networks were examined in four different categories: the optimal number of neurons 

and hidden layers, choice of training function and best-fitted activation function. 

Consequently, the following summary of the performance of each type of NN follows in 

the next subsections. 

 

8.1 Feed Forward network analysis 

The best setting of feed-forward network parameters that were obtained through the 

experiments closely resemble the initial settings of FNN provided by MATLAB. The first 

test was aiming at determining the optimal number of neurons; the best setting was 

determined to be 52 neurons. While testing the optimal number of hidden layers, it was 

confirmed that a single hidden layer network gives the lowers RMSE. From the test of 

the training function, it is evident that the Levenberg-Marquardt is the best performing 

function. At last, changing the activation function from hyperbolic tangent to logistic 

function did not give any strong evidence in favor of the particular function. Both 

transfer functions had a similar performance. As a result, an optimal design of a feed-

forward neural network can be derived.  

 

The most accurate FFN that was measured trough the test runs in MATLAB yields 

RMSE of 1.82×104 [W]. A single hidden layer network with 56 neurons was trained with 

Levenberg-Marquardt training function, and the hyperbolic tangent activation function 

used in the hidden layer. The RMSE that was observed was very high, which means that 

the accuracy of the algorithm is not sufficient. Finally, it is possible to conclude that a 

feed-forward neural network cannot satisfy the goal of this project.    

 

The performance of the analyzed FNN deviates significantly from the results that were 

obtained from the literature review in section 4.4.1. This could be explained by the fact 

that the training dataset has a higher degree of dimensionality. Furthermore, the 

number of sea states used in this project is much greater, and the linearity of the 

datasets might not be similar.  

 

8.2 Radial Basis network 

The optimal RBN results in RMSE of 310.6 [W]. This network consists of 3000 neurons 

in the hidden layer. The activation function used in the hidden layer is a radial-basis 
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function. The obtained error of RBN was lower than the minimum RMSE threshold of 

2×103 that was set earlier. Therefore, the validation was conducted by using a radial-

basis network. 

 

9. Validation  

First, the optimal radial basis network is validated. In section 9, a network of 3000 

neurons delivered a satisfactory RMSE of 310.6 [W]. For the validation, a larger and 

more accurate network was used. The new network was comprised of 4000 neurons in 

the hidden layer. The time it took to train the network was 3 [h] and 30 [min]. The 

resulting RMSE for the power matrix was 9.95 [W]. 

 

To validate the network in a more realistic setting, the input was generated out of new 

inputs that the network has not seen. To generate new inputs, the input of wave 

parameters was reduced in step size. For the same range of wave heights, between one 

and 6 meters, the step size was reduced from 1 [m] to 0.75 [m]. Furthermore, the peak 

period step size was reduced from 1 [s] to 0.85 [s]. However, the transmission ratio 

settings stayed the same. In figure 7 (a) the plot of predicted transmission ratios is 

presented. The plot of the initial optimal transmission ratios can be viewed in figure 7 

(b). 

 
(a) 
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(b) 

Figure 7. The plot of optimal transmission ratios predicted by the ML algorithm (a) and plot of optimal 
transmission ratios derived from the initial dataset (b). 

 

9.1 Increasing computational speed 

To improve the computational speed of the radial basis network, the dataset used for 

training has to be reduced. The size of the network that is required for high accuracy 

approximation is determined by the size of the input data. Intuitively, an algorithm 

would take more computing time to train a larger network, given the same complexity of 

the input data.  

 

For this validation step, the power matrix was split into two parts and used for training 

of a radial basis network. The data split was done for peak periods of waves. In the input 

matrix, peak periods have values ranging between 4 [s] and 20 [s]. This approach was 

focused on splitting the input data into two overlapping datasets. In other words, if the 

dataset is split between 12 and 13 seconds, then there would be a gap between the split 

values.  Thus, the first half includes all the peak periods from 4 [s] till 13 [s]; and the 

second half includes peak periods from 13 [s] till 20 [s]. Hence, the number of inputs, 

the number of neurons and the time it took to train each network are described in table 

3.  
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Table 3. results of training the network in two splits. 

 

 

As a result, it is possible to conclude that the total time it took for RBN to train itself 

with both parts of the dataset was 39.5 [min], which is approximately 5 times faster than 

the time it took to reach the same accuracy by using the complete dataset. The resulting 

optimal transmission ratios plots of both splits are illustrated in the Appendix B. In the 

split data plots, similarly, as at the beginning of section 9, the calculation step for wave 

heights stayed 0.75 [m], but the peak period step was reduced to 0.66 [s] in the first 

split, and 0.615 [s] in the second split.  

 

To further validate the final design of the radial basis network, two cases were 

investigated. The cases were determined for possible applications of the neural network 

for the optimization of Ocean Grazer 3.0. First of all, in the first case, the power matrix 

was split into two datasets; namely, training and validation. The training dataset 

consists of 90% of the initial matrix. The remaining 10% was used as an input of the 

trained network to observe the power output that the network predicts for those unseen 

parameters. 10% of the validation dataset was randomly picked. As a result, a predicted 

power as compared to the power calculated in the power matrix, and the resulting 

MAPE from transmission ratios plots was calculated.  The second case determined how 

the network responds to the new data outside the input range. In this case, the network 

was trained with a shortened range of inputs. Then, the network was used to predict the 

optimal transmission ratios for the full range of inputs. Similarly, the error was 

computed with respect to the input dataset.  

 

9.1 Case 1 

In this validation step, the network was trained with 3672 (90%) data points out of 

4080. The time it took to train the network was 3 [h], 22 [min] and 47 [s]. After using 

the network to predict the power output for the validation dataset, the MAPE was 

determined to be 1.2%. Furthermore, the resulting MAPE for the optimal transmission 

ratios is presented in table 4.  

 

A follow-up validation step was performed it order to investigate the limit of data that 

can be extracted to get a satisfactory prediction of the transmission ratios. Thus, the 
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next training dataset was composed of 85% of data, and the remaining 15% were used 

for validation. As a result, an input dataset of 3468 points resulted in 2 [h] and 58 [min] 

of training time. The remaining 612 of new data points were used to predict the power 

output of those points. The resulting MAPE comparing to the correct values was 4.29%. 

However, MAPE of the predicted optimal transmission ratios comparing to the 

predetermined was higher than the allowable limit of 5% MAPE (table 4). 

 

Table 4. MAPE of predicted optimal transmission ratios compared to the input data. 

 

 

9.2 Case 2 

In the second case, the bigger part of the network described in section 9.1, was used to 

predict the optimal transmission ratios for the entire dataset. The data was split into two 

parts along the peak period axis, so the predictions were done for wave parameter values 

that are higher than 13[s]. The obtained plot of optimal transmission ratios for the peak 

periods between 13 [s] and 20 [s] was uniform with the transmission ratio value of 0.1. 

In other words, the predictions of the algorithm were very different compared to the 

given dataset. Therefore, the follow-up test was conducted where the power matrix was 

split along the wave height axis. Thus, by training the network with input and output 

data for waves with heights of one, two and three meters, the following results were 

obtained. The resulting optimal transmission ratios predicted by the algorithm were 

satisfactory for waves of 1-4 [m]. MAPE calculated with respect to the power matrix was 

4.57%. However, it is noteworthy that RMSE for power extraction was 8.16×105. This 

implies, that despite failing to predict the exact power, the algorithm has succeeded with 

approximating the general pattern of peak power outputs. Furthermore, power outputs 

for wave heights between 1-5 [m] and 1-6 [m] were also computed, but they yield very 

poor accuracy, so these results are not included in the report. 
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10. Conclusion 

This project was aimed at exploring several machine learning algorithms and 

determining which algorithm can reconstruct the power matrix with the highest 

accuracy. The two types of ML that were selected for this project are a feed-forward 

neural network and a radial-basis neural network. After numerous tests, it was 

concluded that FNN is poorly fitted for approximating the power matrix. However, RBN 

has proven to be very efficient in exact function approximation. The advantage of RBN is 

that it can generate as many radial functions as there are data points, and fit every 

function to the exact point of the input data. Therefore, the lowest RMSE obtained from 

the optimal RBN was 9.95 [W].  

Regarding the research sub-questions, the following information addressed each one of 

them separately. The number of neurons that are required for obtaining an accurate 

RBN should be approximately the same as the number of input data points. As a result, 

in the final design of RBN, 4000 neurons were used in the hidden layer. Next, the 

second research question is answered. To reduce the computational time of the 

algorithm, the initial dataset was split into two parts. However, the parts were 

overlapping, resulting in a greater number of inputs. The total time to train the network 

with two parts was 39.5 [min], comparing to 3 [h] and 30 [min] of computing time of a 

complete dataset. Furthermore, the average RMSE of the algorithm trained by parts was 

10 [W]. Finally, by investigating the last research question, it was concluded that RBN 

has a very limited application in overall system behavior prediction. Because it estimates 

the input points with such high precision, it learns only the exact pattern that it was 

given. Therefore, any major deviations from the input dataset resulted in a poor 

prediction.     
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11. Discussion 

During the project, it has been observed that the input dataset consists of highly 

nonlinear parts, as well as more trivial close to linear relations. Therefore, the 

conclusion follows that certain parameters of the dataset are more significant for the 

overall system description. As a result of studying highly nonlinear relations and 

ignoring the trivial linear relations, the dataset could be reduced significantly. The 

evidence to support this point is presented in section 9.2, where RBN resulted in a 

higher accuracy of predictions outside the training dataset by splitting the data with 

respect to wave heights, rather than transmission ratios. 

The main limitation of this project is not having enough time to test the performance of 

other machine learning techniques, such as support vector machines. In the final design 

of Ocean Grazer 3.0, OG is looking for possibilities of computing the power production 

of WEC by setting different transmission ratios to every buoy within an array. 

Consequently, the power matrix is expected to grow significantly. Therefore, further 

research is needed to determine a machine learning algorithm that can process very 

large data, or be able to reduce the dataset significantly without compromising the 

accuracy.  
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Appendix  

A: Power matrix plots with a fixed wave height per plot 
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B: Plot of the entire dataset in two splits, Tp=4-13[s] (a), and Tp=13-

20[s] (b) 

 

 

 

 

  (a) 

 

 
  (b) 


