
Simulating Prescribed Error Sensitivity

learning using memristors.

Bachelor’s Project Thesis

Arseniy Nikonov, a.nikonov@student.rug.nl,

Supervisors: Dr. Jelmer Borst & Prof. Dr. Niels Taatgen

Abstract: Memristors are devices that are part of an electrical circuit and that act as resistors
and can control the flow of current through the system. By controlling the polarity and magni-
tude of a voltage we can set the device into multiple resistance states. It was theorized that these
devices can be used for neuromorphic computations. Artificial neural networks are collection of
connected nodes. This connections represent synapses of biological brains. Memristor properties
can be used to emulate synapses. In this research, the simulation of prescribed error sensitiv-
ity(PES) learning was built using memristive devices as connectors between the neurons. Using
memristors two different networks were built and compared to the PES network without the use
of memristors. In the first network, memristors were initialized in the highest resistance state
while in the second the initial resistances were randomized between certain values. Both networks
were able to learn the identity function but were slower than the non-memristive simulation. For
the second experiment, we investigated which values of the initial resistance the simulation can
work successfully and reached the conclusion that the minimal starting resistance should be
above 106 Ohm. From this experiment we conclude that memristors can be used effectively to
emulate synapses.

1 Introduction

Most of the modern computers are based on the
von Neumann’s (Von Neumann, 1981) architecture
and even though it is extremely reliable for some
task it consumes orders of magnitude more space
and energy than some biological systems like hu-
man brain. Growth in the computational power
was largely fueled by continued shrinking of tran-
sistors controlling the flow of information in the
hardware. Nonetheless this trend is challenged by
technological limits. On top of the technological
limitation contemporary Von Neumann’s paradigm
faces difficulties in scalability and power consump-
tion for many intelligent task such as processing
non-structured data like images. New computing
paradigm such as neuromorphic computing, the
concept of designing a system inspired by biological
systems(Mead, 1990). One of the feature of this ap-
proach is storing and processing information at the
same location(Gamrat, 2010). The key challenges
of neuromorphic systems are matching the abilities

and energy consumption of the human brain.
The focus of the paper is the process of learning
in the human brain. This process relies on chang-
ing the strength of the connections between neu-
rons, known as synaptic weights. This behavior
can be emulated by memristors. Memristors are
devices that were first theorized in 1973 by Leon
Chua(Chua, 1971). It was built for the first time
in 2008 by HP labs (Strukov et al., 2008). Memris-
tor devices were defined by Leon Chua(Chua, 2019)
as:”Any 2-terminal electronic device devoid of in-
ternal power source and which is capable of switch-
ing between two resistances upon application of an
appropriate voltage or current signal, and whose re-
sistance state at any instant of time can be sensed
by applying a relatively much smaller sensing sig-
nal, is a memristor, defined either by the ideal mem-
ristor equation, or by one of its unfolded siblings”.
According to Cai and Chua memristors are almost
ideal electronic analogue of the synapses (Cai and
Tetzlaff, 2014; Chua, 2013). There are at least two
way to use memristors for neuromorphic comput-

1



ing: use them as a weights storage which allows
us to use conventional techniques such as back-
propagation rule or use them to directly imple-
ment learning rules for example Hebbian learning
that would only depend on firing time and pre and
post synaptic activity (Sheridan and Lu, 2014). In
the current research the former approach was used
since learning based on the error feedback was im-
plemented.
Memristors are part of the circuit elements and
they are similar to resistors in a manner that
when they are added to the circuit the control
the flow of the current thorough the system. In
this research we used devices that changed their
resistance based on the voltage passed through
them.(Goossens et al., 2018) By applying negative
voltage pulses device can be set to a higher resis-
tance state while applying positive voltage pulses
would set it into a lower resistance state. One of the
main features of these devices are their energy effi-
ciency, non-volatile memory and the ability to set
them into multiple resistance state. All of this prop-
erties fit the paradigm of neuromorphic computing
and theoretically should allow for be beneficial for
building efficient biologically similar networks.
One of the conventional methods of emulat-
ing biological system is artificial neural net-
works(ANN). Normally ANN is a collection of
connected units(nodes). Nodes represent the neu-
rons in biological brain while connections are used
to transmit information and represent synapses.
Commonly connection represent their strength and
weight and nodes transform input into output us-
ing one of the functions.
In 2003 the Neural Engineering Framework
(NEF) was proposed by Eliasmith and Ander-
son(Eliasmith and Anderson, 2003). This approach
allows us to build neural networks based on the sin-
gle neuron models. The neural engineering frame-
work proposes three principles that enables the con-
struction of a model: representation, transforma-
tion and dynamics. We will discuss them in more
details later.
The NEF typically learns its decoders offline but
there are a number of biologically plausible rules to
learn connection weights online. One of these rules
is the Prescribed Error Sensitivity (Bekolay et al.,
2013) which learns function by minimizing external
error.

∆d = kea (1.1)

where k> 0 is the learning rate, d is the decoding
vector, e is an error between network output and
intended output and a is the rate of activity of
each neuron.
The goal of this research project was to simulate
a learning network that incorporates memristive
devices, to estimate if it is plausible to construct
such a network with real devices and to develop
efficient methods of training the network. On top
of that we can compare how well the network based
on memristive devices can work compared to the
use of PES rule on the conventional architecture.

As mentioned earlier for this research we used
properties of memristive device described by
(Goossens et al., 2018). This memristive device can
be set to multiple resistance levels by applying pos-
itive or negative voltages. Positive voltage pulse re-
sults in lower resistance states while negative pulse
result in higher resistance states. We can use this
properties to simulate PES learning based on the
properties of this memristive device.

1.1 NEF

NEF depends on three principles that i have men-
tioned before. In this section i would like to go into
details of these principles.

1.2 Representation

Population of neurons used to encode the informa-
tion using vectors of real numbers. By injecting
specific amounts of current into single neuron we
can cause it to spike. How likely is this spiking de-
pends on the neurons tuning curve: function that
describes how likely the neuron going to spike in re-
spond to a given input. Examples of tuning curves
can be seen in the Figure 1.1 Important property
of tuning curves is the fact that it can be deter-
mined for any type of neuron and therefore encod-
ing is not dependent on any particular neuronal
model(Bekolay et al., 2014). In the decoding pro-
cess spikes are filtered, then summed together with
weights and result in the output. Decoders them-
selves are precomputed and most of the time do not
depends on the input. In this research we would like
to replace this precomputed decoders first with the
variant of PES learning and later with the variant

2



Figure 1.1: A graph of a neural response as a
function of stimuli

of PES learning that would use properties of mem-
ristors.

1.3 Transformation

In biological systems neurons communicate us-
ing synapses. When neuron fires it causes some
amount of current to be transported to the post-
synaptic neuron using release of neurotransmitters.
This connection is simulated as connection weights
between neurons that represents the strength of
the connection.In order to compute transformation
function between two population of neuron we use
the weight matrix. This connection weights are de-
fined by the product of the decoding weights in the
first population and the encoding weights in the
second population. This decoding weights are the
weights that we would like to learn using PES learn-
ing.

1.4 Dynamics

Dynamics part of NEF are not that relevant for this
research but nonetheless this part of NEF is used
when simple feed-forward activity is not enough
and recurrent connections are needed. According
to the Bekolay equations for such a model can be
analysed and designed using the methods of control
theory.

Figure 2.1: Graph of the resistance based on the
time of positive pulses applied to the device

2 Methods

2.1 Simulating a memristor

We used the same data for the device B from In-
vestigation of Interface Memristive Devices on Nb
doped SrTiO3 for Hardware Based Neural Net-
works For the first experiment all memirstors were
set into the highest possible resistance state - 2.5 ∗
108Ω. For this research we only used positive bias
voltage pulses that could only lower resistance of
the device. Following equation was used to model
the positive bias voltage pulses.

R(n, V ) = R0 + R1n
(a+bV ) (2.1)

where a = −0.128, b = −0.522, R1 = 2.5∗108, R0 =
100, n-the pulse number and V - the input voltage.
This equation can be solved with respect to n,

n(R, V ) = (
R−R0

R1
)

1
a+bV

(2.2)

Using equations 2.1 and 2.2 we can compute pulse
number n based on the current resistance and up-
date resistance to (n+1) state. Graph of the resis-
tance depending on the number of 1 second pulses
can be seen in Figure 2.1
The negative bias voltage pulses were ignored in
this research partially due to the lack of data about
memristor behavior and due to the simulation net-
work design for which they were not required.

3



2.2 Description of the network

Network that was used for this project consisted
of two ensembles of neurons with 50 neurons in
the first ensemble and 40 neuron in the second
ensemble. As an input sin(x) was used. Each neu-
ron from ensemble A is connected to an ensemble
B and there connection can be characterized be
weight matrix of 50 by 40. The goal of the network
is to learn some connection function between
ensembles A and B. For the first experiment we
used the simplest possible function - identity
function x=x so in a sense we were trying to
learn simple communication channel that would
pass value x from one ensemble to another. This
network was used first for the implementation of
PES learning and later for the implementation of
PES learning using memristors properties. For the
latter memristors acted as a connections and nodes
receive incoming current and computed connection
weights based on the current. As an input sin(x)
function was used for all the experiments. Later
we tried to apply various other functions to see if
memristive network would still produce adequate
results.
The models are available for download at
https://github.com/ArseniyNikonov/

Memristor_PES

2.3 PES learning

For the first part we wanted to learn decoders value
using PES learning rule instead of the predefined
formula that was originally used in NEF. To do
that we used the equation 1.1. After each epoch
we computed the error and updated decoders using
formula 1.1. This is shown in detail in algorithm
2.1.
Simulation was run for 30 sec with an update step
of 0.001s. Data from this simulation was used as a
control group to estimate the quality of memristor
simulation.

2.4 Memristor PES learning

Each decoder was simulated as two memristive de-
vice, one of each was responsible for positive value
while the other was used for the negative values.
Decoders value was inversely proportional to the
resistance of the device and was computed by the

Algorithm 2.1 Training algorithm of PES learn-
ing network

Initialize encoders A at 0.0
weights⇐ encoders A · decoders B
while t < t0 do
input A ⇐ getInput()
spikes A ⇐ run neurons(input A)
for i in spikes A do

input B[i] ⇐ calculateInput(weights)
end for
spikes B ⇐ run neurons(input B)
output ⇐ calculateOutput(spikes B)
error ⇐ input -output
weights ⇐ updateWeights(weights, error)

end while

following formula:

d = (
R0

R1+
− R0

R1−
) ∗m (2.3)

Where R0 = 100 is minimal resistance, R1+ is the
resistance of ”positive” memristor and R1− is the
resistance of ”negative” memristor, m = 100000 is
the value that decoder takes if memristor is in its
minimal resistance state.
The weight matrix of the connection was calcu-
lated as a product of the decoders of ensemble
A(simulated by memristors) and encoders of en-
semble B.
During this simulation we used slightly different ap-
proach compared to PES learning. Just as in PES
learning every epoch we computed the overall er-
ror but know instead of directly updating decoders
value we change the value of memristor correspond-
ing to the decoder. This value was updated in the
following way: first the error was calculated, if the
error was positive we applied 1s positive pulse to
the ”positive” memristor of the neurons that fired
during that epoch and by doing that we lowered the
resistance of the device and subsequently raised the
decoder weight. If the value was negative we applied
the same procedure but for the ”negative” memris-
tor. This is shown in detail in Algorithm 2.2

2.5 Memristor PES learning with
random initialization

During this experiment we kept the previous design
with one difference: instead of initializing the resis-

4

https://github.com/ArseniyNikonov/Memristor_PES
https://github.com/ArseniyNikonov/Memristor_PES


Algorithm 2.2 Training algorithm for memristor
PES learning network

Initialize mem plus and mem minus
Initialize encoders A at 0.0
weights⇐ encoders A · decoders B
while t < t0 do
input A ⇐ getInput()
spikes A ⇐ run neurons(input A)
for i in spikes A do
input B[i] ⇐ calculateInput(weights)

end for
spikes B ⇐ run neurons(input B)
output ⇐ calculateOutput(spikes B)
error ⇐ input -output
if Error > 0 then
mem plus ⇐ onePulse(mem plus)
weights ⇐ memToWeights(mem plus −
mem minus)

else
mem minus ⇐ onePulse(mem minus)
weights ⇐ memToWeights(mem plus −
mem minus)

end if
end while

tance to its highest state we initialized it randomly
between certain values and investigated if this ap-
proach is possible and if there are certain constrains
on possible values of starting resistance.

2.6 Learning f(x) = x2 using mem-
ristor PES learning with random
initialization

During this experiment one small adjustment was
made on top of the previous model: instead of learn-
ing the identity function we tried to learn simple
math function - square function. It was done to
test if the network would still work if we tried to
compute something more complex.

3 Results

3.1 PES learning

As expected with PES learning we were able to
teach current network to pass the input value from
ensemble A to ensemble B quite easily. Output of

Figure 3.1: Simulation results of PES learning
with learning rate of 0.02

Figure 3.2: Mean squared error as a function of
time for our network.

the simulation and the graph of the mean squared
error can be seen in Figure 3.1 and Figure 3.2

Depending on the learning rate we can get differ-
ent simulation results: lower learning rate will end
up in slower learning and larger MSE in the begin-
ning of the simulation while higher learning rate
will results in oscillatory behavior around the ideal
output and higher mean squared error. Learning
rate of 0.02 seemed suitable for this task because
with this learning rate the learning process would
not be too slow or too fast and hence was used to
have a ”control” group of the experiment.

5



Figure 3.3: Simulation results of PES learning
using memristors as connections of the network.

Figure 3.4: Mean squared error as a function of
time of the memristors simulation.

3.2 Memristor PES learning

After running the simulating with memristors act-
ing as connections we got the following graphs of
the output and MSE that can be seen in Figure 3.3
and figure 3.4 As we can see from the figures mem-
ristor simulation of PES learning showed adequate
results. Compared to the original PES learning it
takes longer to reduce the initial error due to mem-
ristors properties. Since in memristor experiment
we always apply the same voltage pulse regardless
of the size of the error it takes longer to reduce the
mean squared error. On top of that for the same
reason it is more difficult to reduce the minimal er-
ror. As we can see from the Graph 3.2 even during
the original PES learning mean squared error oscil-

lated between 0 and 0.04. This oscillation became
bigger in memristor case due to the properties of
memristors. Once again since we always use one sec-
ond pulses we can’t control that precisely the value
of the decoders. As a results mean squared error
in memristors case oscillates between 0 and 0.1.
The average value of positive memristors equaled
to 1.02*107 Ω and the average value of negative
memristors equaled to 8.45∗107 Ω. The minimum
value of a positive memristor equaled to 3.5106 Ω
while the minimum value of the positive one was
3.53∗106 Ω. At the same time the maximum val-
ues were 8.78*107 Ω and 3.35∗107 Ω for positive
and negative memristor. As we can see from those
values every memristor was quite active during the
learning process since the resistances reduced quite
substantially from theirs initial values of 2.5∗108 Ω.
There is a good explanation for that: since we never
stop learning during those 30 seconds and eventu-
ally most of the ”neurons” will most likely fire at
some point we would lower the resistance of one of
the memristors and because we only use positive
voltage pulses we can’t rise up the resistance back
if we lowered it too much during the previous steps.
To compensate for that we would need to lower the
resistance of an opposite sign memristors and as a
result eventually we will lower both of the respec-
tive resistances resulting in this outcome.

3.3 Memristor PES learning with
random initialization

In this network we decided to investigate if the net-
work would still work if we initialize memristors
randomly in some range and for which ranges that
would work. Several ranges of initial values were in-
vestigated and the results can be seen in Table 3.1.
As we can see from that table and Figure 3.5 simu-
lations works successfully if resistance is randomly
initialized in the range between 106 and 2.5∗108 Ω
but the time it takes to reach low error is now de-

Table 3.1: Possible ranges of initial resistances

Range of resistances (Ω) Results
107 − 2.5 ∗ 108 Successful
106 − 107 Successful
105 − 106 Unsuccessful
Ranges below 105 Unsuccessful

6



Figure 3.5: Simulation of PES learning while
memristors randomly initialized between 106 −
107Ω range

pendent on random initialization. From Figure 3.5
we can see that for that run it took almost 25 sec
to get close to the ideal while in the condition with
all memristors initialized to their highest resistance
it took 10 sec. There are at least two factors that
can explain this difference: first, of course, since
the initialization is random we can get some un-
favorable starting resistance;second, since they are
initialized within 106 − 107 range it is more diffi-
cult to change the resistance using 1 second pulses.
As we can see from the Figure 3.6 - the lower the
resistance, the lower the change after of resistance
after 1 sec pulse. Because of that when the resis-
tance is initialized in that range it takes longer to
change it to the values we need. That is also one
of the reason for why the lower initial range val-
ues no longer lead to a working simulations. If the
resistances initialized bellow 106 Ω value it simply
takes too long to try and change them. The other
reason is the value of the parameter m that was
mentioned in 2.4 section. Since i chose the value of
m=105 for the resistance of 106 − 107 translation
from resistance to weight would result in a decoder
weight between 1-10 and even higher for lower re-
sistance which on top of the difficulties of changing
resistance results in a not working network.
The average resistance of ”plus” memristors were
7.8 ∗ 106 Ω and the negative once 7.1 ∗ 106 Ω.
The minimal value of the positive memristors was
3.36 ∗ 106 Ω and the value of the negative was
3.35 ∗ 106 Ω. At the same time the maximal value

Figure 3.6: Graph of the resistance based on the
time of positive pulses applied to the device

for the positive one was 2.06 ∗ 107 Ω and the max-
imal value of the negative once was 2.54 ∗ 107 Ω
Even though the starting values for the initial resis-
tance for this run were significantly lower(106−107)
than for the previous experiment the end values
of the memristors were quite close to the original
experiment, especially the mean value of the resis-
tances. This correspond well with the power law
that we used for simulating memristors(Formula
2.1). Since during the first steps resistance falls
much quicker than during consecutive steps it
makes sense that starting at a lower power didn’t
result in a huge difference between end resistance of
two different runs, since with lower resistance the
lower would be the next resistance changed after
applying 1s voltage pulse.

3.4 Learning f(x) = x2 using mem-
ristor PES learning with random
initialization

In this section we used the same network as we used
in previous example with resistances randomly ini-
tialized between 107 and 2.5 ∗ 108 Ω. As an ad-
ditional test of our network we tried to calculate
square function. After running the simulation we
got the following graphs for the output and mean
squared error that can be seen in Figure 3.7 and 3.8.
As we can see from the graphs the network suc-
cessfully works towards learning the function but
compared to the identity function it takes longer
to learn it and

7



Figure 3.7: Simulation of PES learning of x2

while memristors are randomly initialized be-
tween 107and2.5 ∗ 108 Ω

Figure 3.8: Mean squared error as a function of
time of the memristor simulation for learning x2

4 Discussion

In this research project we managed to build a
learning network using memristors as a connectors
between neurons. The model had some limitations
but it was sufficient to simulate PES learning of the
identity function. We tested two network: first with
initializing memristors at their high resistance state
and second with random initialization between cer-
tain intervals. Both networks were able to learn the
identity function but the one with random initial-
ization took longer to reach lower error due to the
reasons descried in the results.
There were a few crude assumptions in this re-
search. First is the power law that was used to
simulate memristive devices. We have no data to
confirm that the resistance would indeed act close
to his law after similar number of voltage pulses
due to the lack of an experimental data. Second
is the way memristors were translated into simula-
tion. In out simulation we used memristors instead
of decoders values and based on this decoders the
weight matrix was computed. That allowed us to
have 50 memristors in the simulation. But if we
were to build that network in real life we would
need to use memristors for each connection and it
would result in the use of 5000(2500 for positive
and 2500 for negative connections) memristors. It
didn’t create any difference during the simulation
since weight matrix is computed by matrix multi-
plication of 2 vectors and the end result would have
been the same in both cases, because during the
simulation every memristor acts exactly the same.
But that would not be the case in real life. In real
world we expect them to have similar but not the
same properties and would involve some degree of
randomness. PES learning is robust and it is plau-
sible that the simulation would still work in the real
world since we act based on the error and it would
just results in different end values for the memris-
tors.
On top of that there were some limitations to our
research. In this research we only tried learning the
identity function and the x squared function. PES
learning rule is widely used in many models us-
ing Neural Engineering Framework. If we could im-
plement memristors PES learning into one of the
larger models it could give us some valuable infor-
mation on plausibility of using memristors for this
kind of learning. Another possible improvement is

8



using pulses with several different timings based on
the size of the error instead of just 1 second pulses.
Potentially this could lead to a smaller error but it
also comes with some problems. Since the change
of the pulse differs based on the current resistance
it is not the trivial to figure out the preferable time
of the pulse and since in the real world version of
this network we would not know the current resis-
tance without applying reading pulse(which creates
some overhead cost) it would be quite difficult to
figure out the new time of the pulse. Also using
negative pulses for the updating step should po-
tentially improve the work of the network but to
verify that more information on memristors behav-
ior is needed.
In the current research to calculate the weights of
the decoders we used formulae 2.3 and in that for-
mula we’ve used somewhat arbitrary value of m. It
is possible that there are better value of the param-
eter m that would lead to a more efficient network,
but on top of that it is possible that there is a better
method of transforming resistance into the weight
altogether. Possibly some other method would be
more fitting for memristive devices.
For the possible physical implementation we might
try to use system based on memristor crossbar ar-
rays (Hassan et al., 2019). According to Hassan it
was already used to implement similar systems in
which voltage and current were used to represent an
actual output and input data. To implement that
and additional hardware was needed to allow for
constant weight updating. In Figure 4.1 we can see
a schematic implementation for 4x2 neural network.
In our case we would need to scale this up to the
size of our network. The biggest downside of this
kind of system is the need of an additional hard-
ware that is needed for weight updating based on
the error.
To sum up we think that this research project is
the first towards understanding the possible range
of possible application of said devices. The main
problem is that our research if fairly abstract and
simplistic. If we were able to apply PES learning
to one of the existing larger networks it would have
given us better understanding of possible problems
and limitations.

Figure 4.1: Neural network implementation us-
ing memristor crossbar arrays. a Shows a con-
ventional diagram for 4x2 neural network while
b shows the crossbar implementation of that
network. Reprinted from (Hassan et al., 2019)

5 Acknowledgements

We would like to thank A. Goosens, N. Taatgen and
T. Banerjee for providing experimental data on the
behavior of their memristive device.

References

Bekolay, T., Bergstra, J., Hunsberger, E., De-
Wolf, T., Stewart, T., Rasmussen, D., Choo, X.,
Voelker, A., and Eliasmith, C. (2014). Nengo:
a python tool for building large-scale functional
brain models. Frontiers in Neuroinformatics,
7:48.

Bekolay, T., Kolbeck, C., and Eliasmith, C. (2013).
Simultaneous unsupervised and supervised learn-
ing of cognitive functions in biologically plausible
spiking neural networks. pages 169–174.

Cai, W. and Tetzlaff, R. (2014). Synapse as a Mem-
ristor, pages 113–128. Springer International
Publishing, Cham.

Chua, L. (1971). Memristor – the missing circuit el-
ement. IEEE TRANS. ON CIRCUIT THEORY,
18(5):507–519.

Chua, L. (2013). Memristor, hodgkin–huxley, and
edge of chaos. Nanotechnology, 24(38):383001.

Chua, L. (2019). Resistance Switching Memories
are Memristors, pages 197–230. Springer Inter-
national Publishing, Cham.

9



Eliasmith, C. and Anderson, C. (2003). Neural En-
gineering: Computation, Representation and Dy-
namics in Neurobiological Systems.

Gamrat, C. (2010). Challenges and perspectives of
computer architecture at the nano scale. pages
8–10.

Goossens, A., Das, A., and Banerjee, T. (2018).
Electric field driven memristive behavior at the
schottky interface of nb doped srtio3.

Hassan, A. M., Liu, C., Yang, C., (Helen) Li,
H., and Chen, Y. (2019). Designing Neuro-
morphic Computing Systems with Memristor De-
vices, pages 469–494. Springer International
Publishing, Cham.

Mead, C. (1990). Neuromorphic electronic systems.
Proceedings of the IEEE, 78(10):1629–1636.

Sheridan, P. and Lu, W. (2014). Memristors and
Memristive Devices for Neuromorphic Comput-
ing, pages 129–149. Springer International Pub-
lishing, Cham.

Strukov, D. B., Snider, G. S., Stewart, D. R., and
Williams, R. S. (2008). The missing memristor
found. Nature, 453(7191):80–83.

Von Neumann, J. (1981). The principles of large-
scale computing machines. IEEE Ann. Hist.
Comput., 3(3):263–273.

10


	Introduction
	NEF
	Representation
	Transformation
	Dynamics

	Methods
	Simulating a memristor
	Description of the network
	PES learning
	Memristor PES learning
	Memristor PES learning with random initialization
	Learning f(x)=x2 using memristor PES learning with random initialization

	Results
	PES learning
	Memristor PES learning
	Memristor PES learning with random initialization
	Learning f(x)=x2 using memristor PES learning with random initialization

	Discussion
	Acknowledgements

