
Stochastic token-generator models for

simulating industrial message logs

Bachelor’s Project Thesis

Stevan Wilts, s2771535, j.w.wilts@student.rug.nl,

Supervisor: Dr. L.R.B. Schomaker

Abstract: Many machine learning implementations rely on synthetic data, but there are few,
if any, general solutions for generating data. This study explores a new method for stochastic
token-generation in the context of industrial message logs, using finite-state machines. For each
of three different data distributions 50.000 finite-state machines are created. These machines
can generate token sequences of arbitrary lengths and are randomly generated within a bounded
parameter space. The distributions of the generated token sequences are compared to the target
distributions and the machine that generates the sequence with the smallest mean squared error
to the target distribution is selected. To test the predictability of the selected datasets, four
different neural networks are trained on each set. Each of these models performed equally with
80 – 92% accuracy, depending on the dataset, and only three percent better than they would
perform by only repeating the last message code. This shows that there is not enough internal
dependency in the data to make reliable predictions about the future. This technique can however
be used to generate sequences that can be used in the field of machine-learning to learn to solve
these specific sequential problems.

1 Introduction

Within the field of Artificial Intelligence, data gen-
eration is an increasingly popular subject. With the
development of many machine learning algorithms
a lack of adequate training data has become appar-
ent. To solve this, engineers have developed meth-
ods to generate synthetic data. Synthetic data is
information that is artificially manufactured rather
than generated by real-world events. Synthetic
data is created algorithmically, and it is used as
a stand-in for test datasets of production or op-
erational data, to validate mathematical models
and, increasingly, to train machine learning models.
(Laskowski, 2019 as cited in Popić et al., 2019).

There already are many methods of data gener-
ation, most of which use some machine learning al-
gorithm. For instance, one study used a Long Short
Term Memory network (or LSTM), together with
a Mixture Density Network (Alzantot et al., 2017).
Another study used nested Hidden Markov Model’s
(or HMM’s) (Dahmen and Cook, 2019). Unfor-
tunately, it appears that every problem needs the

building of its own data generator, which is time-
consuming and error-prone (Popić et al., 2019).

This study does not aim to solve this issue. In-
stead it explores another method of generating syn-
thetic data by simulating the underlying process
that generated the original data. This is done
by generating a finite-state machine that generates
data of which the distribution is close to the origi-
nal distribution.

1.1 The context

This is done in the context of industrial machine
message logs. Many, if not all, industrial machines
produce message codes when certain events occur.
The total range of these codes can be seen as a lan-
guage with a relatively small lexicon. This study
assumes a lexicon size of 1000-2000 words. Fur-
thermore, in industrial machines, events can trig-
ger other events. For instance, a shortage in oil
can cause a motor overheat, or a faulty sensor can
cause an arm to go out of position. This also means
that there will be a causality between certain mes-

1



sage codes. This whole system can be modelled in
a finite-state machine, where events trigger other
events, and certain events trigger the creation of a
message code. This is why this study uses a finite-
state machine to generate message codes. For each
industrial machine there exists a finite-state ma-
chine that completely describes the processes of the
real machine. The properties of this finite-state ma-
chine are unknown, but a finite-state machine that
produces message codes with a similar distribution
might come close to the original model. Because
this finite-state machine comes close to describing
the underlying processes of the original machine,
it might be a better data generator than more ab-
stract machine learning algorithms.

1.2 The chosen distribution

In real industrial applications, the proper distribu-
tion of the data can be derived from the history
of message codes. However, such data is not avail-
able for this study, so some distribution has to be
chosen. Because the data describes a lexicon, the
choice falls on a Zipf distribution. George Kingsley
Zipf stated that, for the datasets he studied, the
frequency of word usage approximated the follow-
ing equation

r ∗ f = C (1.1)

in which r refers to the words rank and f to its
frequency of occurence. (Zipf, 1949) Zipf called the
formula rewritten as

f = C/r (1.2)

a rank/frequency plot. It is effectively a power-law
distribution, given by the equation

P (x) = C ∗ x−α (1.3)

(Newman, 2005). In Zipf’s original paper, α was
set to 1, giving the equation above. In this study
three different values for α are used, which are 2,
3 and 4. The constant C is given by the following
equation:

C =
1∑N

n=1(n−α)
(1.4)

Where N is the number of elements in the dataset.
This results in the total of all frequencies adding
up to 1. Combining these parts gives the formula:

f(x, α,N) =
x−α∑N

n=1(n−α)
(1.5)

The Zipf distribution has shown to be a good fit
for larger lexicons, such as the English language
(Moreno-Sánchez et al., 2016). Therefore it might
also be a proper distribution for the lexicon of mes-
sage codes.

There is one aspect of the Zipf distribution that
gives some problems with prediction. Because of
the Zipf distribution of the data, the most com-
mon message code takes up a large proportion of
the data, ranging from 60%, for the data with ex-
ponent α = 2, to 92%, for the data with exponent
α = 4. This makes sense in real world applications:
the most common message codes indicate that the
machine is working correctly, or are minor warn-
ings, which happens most of the time. However,
in predicting, the more severe errors are the most
interesting and useful to predict. Because the most
severe errors generally occur the least often, the
least common message codes are the most impor-
tant. The problem with these distributions is that
a model can get up to 92% accuracy by always re-
turning the most common code, and possibly even
higher by repeating the previous code. This last
accuracy score is called the repetition rate of the
dataset. This is not desirable, because this accu-
racy does not say anything about the quality of the
model or the predictability of errors in industrial
machines. To solve this problem, some models in
this study are forced to change the representation
of the data, so that the previous code cannot be
repeated directly. This is done using an encoder-
decoder model. The details of this approach will
be explained in section 2.2.2. Section 3.3 will also
focus on the recall score of the predictions. This is
because the recall score shows how good the model
is in prediction the less frequent message codes.

1.3 This research

This all leads to the research question:

Using finite-state machines generated through
a stochastic process, is it possible to generate
message logs that have a distribution that comes
close to a Zipf distribution and that have enough
internal dependency to make accurate predictions
about the future?

Both the closeness and the accuracy of pre-
dictions are hard to quantify, because the closeness

2



must be compared to the target distribution and
the accuracy must be compared to the repetition
rate of the dataset. Therefore the assumption
is made that by creating enough finite-state
machines, the sequence created by the finite-state
machine that is closest to the target machine can
get close enough to the target distribution. The
focus is therefore on the accuracy of the models
on these sequences. To decide which finite-state
machine comes closest to the actual machine, the
mean squared error of the generated sequence to
the target distribution is calculated. The Mean
Squared Errors are presented in section 3.1. To
assess the accuracy of predictions, four models
are compared on each dataset. The hypothesis is
that there is enough internal dependency in the
data so that at least one of the models will have
a significantly higher accuracy than the repetition
rate of the dataset.

This study consists of two parts. The first part is
about generating synthetic data using a finite-state
machine. The method of generating this finite-state
machine will be explained in detail and the char-
acteristics of the resulting finite-state machine will
also be shown. The second part is about training
neural networks on data sequences generated by the
finite-state machine. The details of the used neural
networks will be shown, as well as the results. It
should be noted that the model is trained on self-
generated data. This data is not directly based on
real events and the characteristics of the synthetic
data are therefore very important. This study aims
to show that it is possible to train a model for pre-
dicting machine message codes while only needing
the underlying distribution of the codes.

2 Methods

This section will explain how the experiments are
conducted. As the study consists of two parts,
this section is also split up into two parts. Section
2.1 will explain how the finite-state machines and
the message code sequences are generated. Section
2.2 will explain how these finite-state machines are
evaluated through prediction of the message code
sequences.

2.1 Generating Synthetic data

The first part of this study is about generating syn-
thetic data using a finite-state machine. To nar-
row down the hypothesis space of possible finite-
state machines, there are a number of limitations.
Firstly, all finite-state machines have to be un-
ordered trees. Secondly, all finite-state machines
need to have between 1000 and 2000 leaves, be-
cause this study assume a lexicon size of 1000 to
2000 codes. Thirdly, there are limitations on the
following parameters:

• Maximum fanout: The maximum number
of children each node can have.

• Maximum depth: The maximum distance
to the root node.

• Lambda(λ): The exponent of the exponential
distribution.

The values of these parameters are chosen ran-
domly for each tree, as will be explained later.
However, the maximum fanout is always between
1 and 9, the maximum depth is always between
1 and 11 and λ is always between 0 and 50. Be-
sides these limitations, there are two system char-
acteristics that are modelled. The first one is the
auto-recurrence of codes. The message codes can
be seen as updates about the system state at a reg-
ular interval. Because of this, the same code would
be given for as long as the system remains in that
state. This should be modelled in the finite-state
machine. The second characteristic is the possibil-
ity of complete system break-down. In real ma-
chines, very grave system errors can lead to a com-
plete system break-down. This should also be mod-
elled in the finite-state machine.

2.1.1 The trees

As stated in section 2.1, each tree has parame-
ters for the maximum fanout and maximum depth.
These parameters are used to bound the scale of the
trees, because one of the limitations is the num-
ber of leaves. The third parameter λ is used for
the probability distribution over the children of the
nodes. When creating the tree, a random fanout
between 1 and the maximum fanout is chosen for
the root node, using the Java Random class, which
uses the system time to seed a random generator.

3



(Hahn et al., 2003) This process is repeated recur-
sively for all child nodes until there are no more
child nodes left. The expansion of a branch also
stops when the distance to the root node is equal to
the maximum depth. The leaves of the tree are then
numbered in a random order. Each leaf also gets a
random auto-recurrence probability between 0 and
1. This is randomly chosen using the Java Random
class. To model the possibility of complete system
breakdown, an inverse relationship between occur-
rence of the message codes and gravity of the error
is used. In other words, the least common message
codes have the most serious consequences. Because
there is no direct measure of the occurrence of mes-
sage codes in the model itself, the auto-recurrence
probability of the leaves is used. Each leaf with an
auto-recurrence probability of less than 0.1 has a
system-failure probability of 1 in 100.000 codes.

2.1.2 Generating codes

To generate a message code from a tree, the tree is
traversed from the root node until one of the leaves
is reached. Each node has a probability distribu-
tion over its child nodes. This distribution only
uses λ as a hyperparameter, which is a parame-
ter of the whole tree, and therefore the probability
distribution is the same for each node. The prob-
ability distribution is an exponential distribution,
given by the probability density function:

f(x, λ) = λe−λx (2.1)

over the interval [0, 1). At each node a random
draw using this distribution is done and the result
is multiplied by the number of children of the node.
The result is rounded down to the nearest integer
and used as the index of the child to go to. This
process is repeated until a leaf is reached. The num-
ber of the leaf is returned as the message code. At
the leaf, the message code is repeated, using a ran-
dom draw with the auto-recurrence probability of
the leaf.

2.1.3 Experimental setup

To generate trees, a Monte Carlo simulation is used.
For each tree, a random maximum fanout f, max-
imum depth d and exponential parameter λ are
drawn such that

f, d ∈ N, f ∈ [1, 9], d ∈ [1, 11]

λ ∈ R, λ ∈ (0, 50)

With these parameters the tree is generated. If the
tree doesn’t have between 1000 and 2000 leaves,
it is discarded and a new tree is generated. With
each tree, a dataset of 100.000 message codes is
created. A histogram of this dataset is compared
to the target distribution and the Mean Squared
Error between the two distributions is calculated.
The tree that creates the data with the lowest Mean
Squared Error is considered closest to the actual
machine and is therefore selected for the second
part of the study.

2.2 Predicting message codes

The second part of this study is about predicting
message codes using neural networks. Four differ-
ent models are trained on three sets of synthetic
data, generated through the process explained in
section 2.1. As explained in section 1.3, one prob-
lem with the datasets is that a model can get an
accuracy of approximately 90% by repeating the
previous code. The proposed solution for this is
using an encoder-decoder model. The encoder part
of the model squashes the information from the in-
put into a multidimensional vector. The decoder
part predicts the output from this vector. To force
the model to change the representation of the in-
put, the encoded vector has fewer dimensions than
the input. This is called a bottleneck. Because of
this, the model cannot repeat the previous code di-
rectly. To test whether models with a bottleneck
layer perform better than models without a bottle-
neck layer, two of the four models use a bottleneck,
while the other two don’t. The different models will
be described in section 2.2.2. The preprocessing of
the data will be described in section 2.2.1.

2.2.1 Preprocessing the data

From the first part of the study three datasets
are selected. These three datasets have the lowest
Mean Squared Error to the three target distribu-
tions. Because they are all modelled to a different
target distribution, they have different characteris-
tics. Dataset 1 is modelled to the least steep power
function and therefore contains the most different
message codes. In the set of 100.000 codes that is
used, it has a total of 76 unique codes. Dataset 2

4



has a total of 18 unique codes. Dataset 3 is mod-
elled to the steepest power function and has a total
of 13 unique codes.

Although our data consists of integer values
within a specific range, there is no mathematical
relation between the numbers. Therefore, the data
is categorical. To feed the categorical data to the
models, the integer values are converted to a one-
hot encoding, an array of zeros where only the index
corresponding to the integer value contains a one.
We use two different forms of input-output pairs.
For the one-to-one mdels, all possible pairs of two
subsequent codes are used as pairs of input and out-
put. The model must predict the following code
based on the current code. For the sequence-to-
sequence models, we use sequences of five codes as
input and output. The starting index of the output
sequence is the starting of the input sequence plus
one and therefore the output is the input shifted
one place. The dataset is split in a train and test
set by using the even pairs as train set and the odd
pairs as test set. This is done because there might
be higher order relations within the data, just as a
real machine can have different life stages. In this
way these relations are present in both sets.

2.2.2 The models

This study compares four different models for pre-
dicting message codes. All models use multiple
layers of LSTM cells. The LSTM is a variation
on the Recurrent Neural Network (or RNN). RNN
cells feed their output both to the next layer and to
themselves. Because of this, they can incorporate
information from previous timesteps. RNN cells do
however suffer from a vanishing gradient problem
because of the recurrent link and it is therefore hard
for RNN’s to incorporate information from many
timesteps ago. LSTM cells solve this problem by
keeping an internal cell-state. This cell-state is up-
dated with new input and can keep information
from many timesteps before. This is very useful
when dealing with sequential data, especially when
information from far before the current input is still
relevant, which is the case with our data.

The last layer of each model is a fully connected
layer with a softmax activation function. This
layer maps the prediction onto a one-hot encoded
output.

Figure 2.1: Visualization of model 1

Model 1 is a stacked LSTM model. It is a one-
to-one model, containing three LSTM layers. Each
layer has the same amount of cells as the dimen-
sions of the input, and therefore there is no dimen-
sionality reduction or expansion. A visualization of
the higher model architecture can be seen in figure
2.1

Model 2 is a one-to-one encoder-decoder model.
It is also a one-to-one model, but it contains five
layers of LSTM cells. The encoder consists of three
layers with a decreasing number of cells. A dif-
ferent number of cells is chosen for each dataset,
because the input dimensionality of the dataset dif-
fers. The model for the first dataset has an input
dimensionality and first layer of 76 cells and con-
tains 30 and 10 cells in the second and third layer.
The model for the second dataset has 18, 15 and 10
cells in the first three layers and the model for the
third dataset has 13, 12 and 8 cells. The decoder
consists of two cells with increasing dimensionality.
The fourth layer has the same number of cells as the
second layer and the fifth layer has as many cells
as the output dimensionality (which is the same as
the input dimensionality). Altogether, the model
forms a diabolo structure, as can be seen in figure
2.2

Model 3 is a sequence-to-sequence encoder-
decoder model with dimensionality reduction. The
encoder consists of one LSTM layer with as many
cells as the input dimensionality. The decoder con-

5



Figure 2.2: Visualization of model 2

sists of three LSTM layers with each 10 cells. The
encoder and decoder are connected by a repeat-
vector layer. This layer presents the encoded input
five times to the decoder. The last fully connected
layer for this model is time distributed, meaning
that the softmax activation function is applied to
each of the five vectors individually. A visualiza-
tion of the higher model architecture can be seen
in figure 2.3
Model 4 has the same structure as model 3, but

it uses dimensionality expansion instead of reduc-
tion. The decoder of this model consists of three
LSTM layers with each 80 cells.

2.2.3 Experimental setup

Each model is trained on all three datasets for 100
epochs. As the dataset is split into a train set
and test set of equal size, both sets contain 50.000
codes. This makes it possible to generate 49.999
input output pairs. Of these pairs the last pair is
dropped and the remaining 49.998 pairs are divided
in batches of 26 pairs. The train set is then split
into a train set of 45058 samples and a validation
set of 4940 samples. Because models 3 and 4 use
an input and output of 5 codes, only 49.995 pairs
can be created. These pairs were all divided into
batches of 33 pairs. The train set is split into a
train set of 45045 samples and a validation set of

Figure 2.3: Visualization of model 3

4950 samples.
All models use the Adam optimizer to update the

weights. The Adam optimizer is aimed towards ma-
chine learning problems with large data sets and/or
high-dimensional parameter spaces. It combines
the advantages of the AdaGrad and RMSProp op-
timizers. (Kingma and Ba, 2014) The Adam opti-
mizer is used in combination with the categorical
cross-entropy loss, which is given by the formula

H(p, q) = −
C∑
c=1

pi, c ∗ log(qi, c) (2.2)

where H(p,q) is the cross-entropy between p and q,
C is the set of all categories c, and pi,c and qi,c are
the binary values of p and q for class c.

After training, each model is tested on the full
test set, which results in the test accuracy and loss.
The full training pipeline can be seen in figure 2.4

3 Results

This section will present the results of the experi-
ments. Like the previous section, this section is also
split into two parts. Section 3.1 will present the
generated finite-state machines and message code
sequences. Section 3.2 will present the results of
the evaluation of the finite-state machines.

6



Figure 2.4: Training pipeline

3.1 The datasets

For each target distribution 50.000 finite-state ma-
chines are produced. This section will show the
characteristics of the finite-state machines that
come closest to each target distribution. For the
first target distribution, the Zipf distribution with
α = 2, the closest dataset has a mean squared er-
ror to the target distribution of 16.0, and 76 unique
codes in the set of 100.000 codes that is used. The
finite-state machine that produced this dataset has
a maximum depth of 6, a maximum fanout of 9
and a λ of 13.7. For the Zipf distribution with
α = 3, the closest dataset has a mean squared er-
ror to the target distribution of 1.27, and 18 unique
codes in the set of 100.000 codes that is used. The
finite-state machine that produced this dataset has
a maximum depth of 6, a maximum fanout of 8 and
a λ of 19.8. For the last target distribution, the
Zipf distribution with α = 4, the closest dataset
has a mean squared error to the target distribution
of 0.08, and 13 unique codes in the set of 100.000
codes that is used. The finite-state machine that
produced this dataset has a maximum depth of 7,
a maximum fanout of 8 and a λ of 23.2.

3.2 Performance of the models

The accuracy of each model on the test set of each
dataset can be seen in table 3.1. As can be seen

from the table, there are no significant differences
in performance between the models. There are sig-
nificant differences between the three datasets.

Table 3.1: Accuracy for each model on the test
set of each dataset (in percentage).

Model Dataset 1 Dataset 2 Dataset 3
1 82.3 87.4 91.9
2 82.6 87.4 91.9
3 81.1 87.0 91.9
4 80.5 86.3 91.7

However, when adjusted for the repetition rate,
which is the baseline performance a model would
get by just repeating the last code, the differences
in score between the datasets are insignificant. The
adjusted scores can be seen in table 3.2. The
models score approximately 2.5% better than they
would by just repeating the last code.

Table 3.2: The model accuracy adjusted for the
repetition rate for each model on each dataset
(in percentage)

.
Model Dataset 1 Dataset 2 Dataset 3

1 102.8 102.7 103.0
2 103.6 102.7 102.9
3 101.7 102.1 102.9
4 101.0 101.5 102.7

3.3 Performance on dataset 2

This section will show more detailed results on the
performance on dataset 2. This dataset is represen-
tative of the results on the other datasets. For each
model both the unweighted and weighted precision,
recall and F1 score are calculated. The F1 score is
the harmonic mean of the precision and recall and
is calculated by the formula:

F1(x) = 2 ∗ precision(x) ∗ recall(x)

precision(x) + recall(x)
(3.1)

Table 3.3 shows the unweighted metrics.
For the unweighted metrics, the metrics are cal-

culated for each class (i.e. each possible message
code.) separately and then averaged to get the re-
sults in table 3.3. This is called macro averaging.
As can be seen from the table, all models score

7



very similarly on all metrics. It can also be seen
that the models have a high precision and low re-
call. This means that most of the false negatives
can be found in the classes with few instances in
the test set, while most of the false positives can be
found in the classes with many instances. This is
because the number of false positives is equal to the
number of false negatives (each false positive in one
class must be a false negative in another), and the
impact of one error is bigger in classes with fewer
instances. In other words, the classes with many
instances in the test set get predicted too often,
while the classes with few instances get predicted
not often enough.

Table 3.3: Average unweighted precision, recall
and F1 score over all classes, for each model with
dataset 2 as training set.

Model Precision Recall F1 Score
1 0.75 0.25 0.26
2 0.90 0.22 0.23
3 0.65 0.21 0.22
4 0.51 0.29 0.31

The weighted metrics are shown in table 3.4. The
calculations for the weighted metrics are very sim-
ilar to the calculations of the unweighted metrics,
the difference being that with the weighted met-
rics the weight of each class is determined by the
number of occurrences in the dataset, whereas with
the unweighted metrics all weights are equal. It
should be noted that the weighted recall is actu-
ally the same as the accuracy. This is because to
calculate the recall the number of true positives is
divided by the number of occurrences of the class in
the dataset. To calculate the weighted recall this
is then multiplied again by the number of occur-
rences, leaving only the number of true positives.
All true positives (i.e. the recall scores) are then

Table 3.4: Average weighted precision, recall
and F1 score over all categories, for each model
with dataset 2 as training set.

Model Precision Recall F1 Score
1 0.85 0.87 0.86
2 0.87 0.87 0.86
3 0.84 0.87 0.85
4 0.83 0.86 0.85

added up and divided by the total number of sam-
ples, which is exactly the same as the accuracy. As
can be seen, the weighted precision and recall are
approximately the same.

4 Discussion

The results in the previous section show no signif-
icant difference between the four models and only
a slight improvement over a model that always re-
peats the last message code. Furthermore, section
3.3 shows that the recall of the models is very low,
which means that the classes with many instances
get predicted too often. Taking into account the
fact that one class takes up more than 80% of the
data, it is very likely that the model either predicts
the previous code or the most common code.

Given the context, this is absolutely not desir-
able. The prediction of the error codes, especially
more severe errors, is more important than pre-
diction of message codes that indicate a normal
state. Therefore it is desirable that the least com-
mon classes, which indicate the least common and
therefore probably the most severe errors, have as
few false negatives as possible. It is better to have
a model that predicts the severe errors too often
than a model that predicts them not often enough.
As stated in section 1.2 the most important met-
ric in this context is the recall and therefore the
conclusion is that none of the models are good at
predicting the message logs based on the synthetic
data.

4.1 Evaluating the data

The main goal of this study is to create data that
can be used to train a model so it can predict mes-
sage codes accurately, using only the underlying
distribution. In this prediction task, the model is
completely dependent on the internal dependencies
in the data. A model can only predict a message
code consistently when there is some dependency
involved that it can observe. Therefore, the eval-
uation of the model is also partially, if not almost
entirely, an evaluation of the data. Looking at the
model evaluation, no model is able to distinguish it-
self from the rest, even though the models are very
different. This leads to the conclusion that there
is not enough ground for the models to distinguish

8



themselves on, because there is no dependency in
the data to learn.

Looking back at the process of creating the data,
this is a very logical result. By using the tree struc-
ture, no dependency between the codes is put into
the data, except for the chance of repetition. After
the generation of each code the process is started
all over again and no information from the past is
used. The only dependency the model can get from
this is the chance of repetition and the number of
samples of each class in the data.

Therefore the answer to the research question is
that the datasets created by the finite-state ma-
chines come close enough to the target distribu-
tion, but none of them contain enough internal de-
pendency to make accurate predictions about the
future. Each model is only slightly better than the
repetition rate and none of them are able to distin-
guish themselves from the rest.

4.2 Future research

There are some things that can be done differently
in future research. The main problem with this
method of creating finite-state machines is that the
tree structure does not bring any internal depen-
dency in the data. After each code, the process is
started over again and no information from the past
is used. This can be solved by using a different ar-
chitecture. The architecture that comes closest to
the actual finite-state machine is that of a cyclic
directed graph. This is however a much more com-
plex architecture and therefore many more finite-
state machines need to be generated to find one
that fits the target distribution well enough. This
would take up more resources, but it can also give
better results.

There should also be more appropriate quantita-
tive descriptors for the graphs. In this study only
the parameters of the graph and the resulting dis-
tribution are used as quantitative descriptors. To
make a better a priori assessment of the quality of
the graph and of the complexity of the resulting
dataset, these quantitative descriptors are needed.
One specific part of the process in which this is use-
ful is the comparison to the actual machine. In this
study, only the data distributions are compared,
but this might not be enough. An easy improve-
ment would be to compare the transition matrix of
the sequences in addition to the distribution. There

are however many other quantitative measures pos-
sible.

Lastly, it might be more appropriate to test the
sequence-to-sequence model using a convolutional
neural network. Because the input consists of mul-
tiple time steps of one-hot encoded message codes,
the input can also be represented by a matrix with
the time steps as the columns and the classes as
the rows. A convolutional neural network is more
appropriate for this type of input and might lead
to better results.

4.3 Impact in the field

The results of this study are not good enough to
say that this technique for synthetic data genera-
tion can be used for prediction of real data from in-
dustrial machines. However, more finite-state ma-
chines and corresponding message code sequences
can be generated with this technique. These se-
quences could be categorised in different levels of
difficulty and used in the field of machine learning
to try to solve these specific sequential problems.
It might very well be possible to find better models
to predict these sequences.

Furthermore, this technique still offers unique
features, that can become really valuable when the
method is improved enough to be useful in real pre-
dictions. Although most finite-state machines that
are generated this way are not as good as one that
would be directly modelled by a human, they are
very easy and cheap to make and many different
finite-state machines can be created and assessed
in a small time span. This technique is also easy
to adapt to different sequence prediction problems
and requires very little knowledge about the actual
machine that needs to be approximated and espe-
cially does not require any real data. This is a big
deal, because generative, easy to implement data
generation models are hard to find. Whether this
technique offers enough value to be used in practice
is for further research to decide.

References

M. Alzantot, S. Chakraborty, and M. Srivastava.
Sensegen: A deep learning architecture for syn-
thetic sensor data generation. In 2017 IEEE
International Conference on Pervasive Comput-

9



ing and Communications Workshops (PerCom
Workshops), pages 188–193, March 2017. doi:
10.1109/PERCOMW.2017.7917555.

Jessamyn Dahmen and Diane Cook. Synsys: A
synthetic data generation system for healthcare
applications. Sensors (Basel), 5, 2019.

Brian D Hahn, A Hahn, and Katherine M Malan.
Essential Java for Scientists and Engineers. El-
sevier, Burlington, MA, 2003. URL https://cds.
cern.ch/record/1320455.

Diederik P. Kingma and Jimmy Ba. Adam: A
method for stochastic optimization, 2014. URL
http://arxiv.org/abs/1412.6980.

Nicole Laskowski. Synthetic data. 2019. URL
https://searchcio.techtarget.com/definition/
synthetic-data.

Isabel Moreno-Sánchez, Francesc Font-Clos, and
Álvaro Corral. Large-scale analysis of zipf’s law
in english texts. PLOS ONE, 11(1):1–19, 01
2016. doi: 10.1371/journal.pone.0147073. URL
https://doi.org/10.1371/journal.pone.0147073.

MEJ Newman. Power laws, pareto dis-
tributions and zipf’s law. Contem-
porary Physics, 46(5):323–351, 2005.
doi: 10.1080/00107510500052444. URL
http://www.tandfonline.com/doi/abs/10.1080/
00107510500052444.

Srdan Popić, Ivan Velikic, Nikola Teslic, and Bog-
dan Pavkovic. Data generators: a short survey
of techniques and use cases with focus on testing.
08 2019.

George Kingsley Zipf. Human Behavior And The
Principle Of Least Effort. 1949.

10

https://cds.cern.ch/record/1320455
https://cds.cern.ch/record/1320455
http://arxiv.org/abs/1412.6980
https://searchcio.techtarget.com/definition/synthetic-data
https://searchcio.techtarget.com/definition/synthetic-data
https://doi.org/10.1371/journal.pone.0147073
http://www.tandfonline.com/doi/abs/10.1080/00107510500052444
http://www.tandfonline.com/doi/abs/10.1080/00107510500052444

	Introduction
	The context
	The chosen distribution
	This research

	Methods
	Generating Synthetic data
	The trees
	Generating codes
	Experimental setup

	Predicting message codes
	Preprocessing the data
	The models
	Experimental setup


	Results
	The datasets
	Performance of the models
	Performance on dataset 2

	Discussion
	Evaluating the data
	Future research
	Impact in the field


