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Abstract: Many real world problems cannot be easily formalized into compact states that fully
describe the real state of the world. It is thus important to look at how different ways of repre-
senting a state would influence the performance of AI agents. In this research we compare the
performance of reinforcement learning agents which learn using different game state representa-
tions when playing ”Hearthstone”, an online collectible card game which has a state space size
much larger than complex games such as Chess. Moreover, its states are only partially observ-
able by the player and randomness governs over certain events. It is found that, when playing
with very simple decks that do not require complex strategies, agents which have a simpler state
description have a win rate of about 81% against a random player, whereas agents which have
a larger state description only win 78% of the time regardless of the learning algorithm used.
However, when playing with more complex decks that require synergistic actions in order to max-
imize their performance, agents with a simpler state description performed worse than before
while the agents with larger state descriptions performed better with win rates of 88% against a
random agent.

1 Introduction

Being able to make good decisions in complex, real-
world situations is important for Advanced AI sys-
tems. Many of those situations are not easily for-
malized into compact states and many of these
states cannot convey every single piece of relevant
information for the decision making process. Thus
it is important to look at and try to improve on
the performance of AI agents when presented with
large, partially observable state-space problems.

In this research we will look at how Reinforce-
ment Learning (Sutton and Barto, 2018) agents
perform when playing the online video game
”Hearthstone”, a discrete, imperfect-information
card game with a very large state space. A con-
servative approximation of the state space size is
2.85× 1051 (da Silva and Goes, 2017), which is ap-
proximately 1020 times more than common estima-
tions of the number of reachable positions in chess.

In the recent years Hearthstone has been used
more and more as a testbed for Artificial Intelli-
gence research. Its great combinatorical complexity
with partial randomness and the availability of on-
line tools and resources such as the ones provided
by the passionate developer community Hearth-
Sim (https://hearthsim.info) that help speed up
the development make Hearthstone an attractive
challenge for AI studies. Previous research looked
into creating Hearthstone-playing agents using dif-
ferent kinds of approaches such as Monte Carlo
Tree Search (MCTS) (Santos et al., 2017), com-
bining MCTS with Supervised Learning algorithms
(Swiechowski et al., 2018), attempting to improve
MCTS policies with deep neural networks (Zhang
and Buro, 2017) and Adaptive Neural Networks
(da Silva and Goes, 2017). AI research that used
Hearthstone as a testbed is not only related to
the creation of game playing agents. Other stud-
ies looked also at deck creation using evolutionary
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algorithms (Garćıa-Sánchez et al., 2016) and at pre-
dicting win chances in given game states (Grad,
2017).

Many of the previously developed AI agents for
Hearthstone use tree search methods in order to
look ahead at possible future states or outcomes.
This approach was proven to work very well in
deterministic games such as Chess (Silver et al.,
2017; Baier and Winands, 2013) or Go (Silver et al.,
2016), however in Hearthstone the particularly high
branching factor caused by the partial random-
ness of the game makes constructing and evaluating
trees inefficient in terms of time.

In this thesis two Reinforcement Learning algo-
rithms will be explored in the context of agents
playing Hearthstone: Q-learning (Watkins, 1989;
Watkins and Dayan, 1992) and Monte Carlo learn-
ing (Sutton and Barto, 2018). These agents will
only look at the current state of the game and, be-
cause the full state description size is very large, will
only look at a subset of the information arranged
and preprocessed in certain ways. This subset of
information will be referred to further as the state
representation.

We will then finally try to answer the following
research questions:

• How would a trained agent that is only given
a small subset of the information from a state
perform compared to an agent that is given the
full information?

• How would a Q-learning agent and a Monte
Carlo learning agent perform against a random
agent, heuristic-based agents and against game
experts?

2 Methods

In this section a short introduction on Reinforce-
ment Learning will be presented in subsection 2.1.
Then, in subsection 2.2 there will be more details
given about the game of Hearthstone. In subsection
2.3 we will look at the different state representa-
tions used and at the structure of the whole system
that was used for training and testing.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is an area of Ma-
chine Learning in which the learner is a decision-
making agent that acts within an environment and
receives feedback (rewards or penalties) for its ac-
tions when judged in terms of solving a certain
problem or performing a certain task (van der Ree
and Wiering, 2013; Sutton and Barto, 2018). By
performing several training, trial-and-error runs in
a given environment the agent will generate experi-
ences from which it can learn to optimize its policy
and thus maximize the total overall reward received
per run. In the context of RL, a policy π is the pair
(state, action-to-be-taken), or formally π : S −→ A,
π(s) = a.

2.1.1 Markov Decision Processes

In RL it is assumed that we have an underlying
Markov decision process (MDP) at hand which
does not necessarily have to be previously known
by the agent (Wiering, 2010). A finite MDP con-
sists of the following components (Wiering, 2010;
Watkins, 1989; van der Ree and Wiering, 2013):

• The state space S = {s0, s1, s2, ..., sn}, which
represents the finite set of possible states;

• A set of actions available that could be taken
at each state A(si);

• A transition function P (s, a, s′) that denotes
the probability of an agent that is at state s
and performs action a to end up in state s′;

• A reward function R(s, a, s′) that gives the re-
ward received by the agent when performing
action a in state s and reaching state s′ as a
consequence;

• A discount factor γ ∈ [0, 1] with the purpose
of discounting the value of later rewards as op-
posed to earlier rewards.

2.1.2 Learning Algorithms

The main goal in RL is to have the agent learn an
optimal policy that will allow it to choose the best
action at any given state. One way to achieve that
is to make the agent learn how good certain actions
are at certain states. The value of any (state, ac-
tion) pair is given by the Q(s, a) function and it is
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referred to as the Q-value. The Q(s, a) function can
be formally expressed as:

Q(s, a) = E[

∞∑
i=0

γiri|s, a] (2.1)

where ri is the reward received at time i and E[.]
is the expectancy operator (Ross, 2007). The above
formula can be read as ”The Q-value of action a
at state s is the expected discounted cumulative
reward given that state and that action”.

Some aspects change when discussing the case of
playing a game against an opponent. The state re-
sulted after making a move is not fully determined
by the agent’s action choice, but also by the op-
ponent’s action choice. In such a case it is possible
that choosing the same action in the same state
would yield a different reward and lead to differ-
ent states based on the opponent’s action. This is
problematic because it means that the Q-value of a
certain (state, action) pair will vary based on what
the opponent plays. A solution to this is to keep
a running average of all the previous Q-values of
that pair. This is known as the Q-learning algo-
rithm (Watkins and Dayan, 1992; Watkins, 1989;
van der Ree and Wiering, 2013):

Q(s, a)←− Q(s, a) + α(r+ γmax
a

Q(s′, a)−Q(s, a))

(2.2)
where s′ is the state the agent reaches after the
opponent moves and α ∈ [0, 1] is the learning rate
that regulates how much the old Q-value will be
modified towards the new Q-value at each step. At
each step some sort of lookup table should then be
updated with the new Q-value of the given pair.

Another possible approach is to use the observed
return G to compute an approximation for the ex-
pected reward of a (state, action) pair. Generally,
G is given by:

G =

T∑
k=0

γkrk (2.3)

where T is the time of the final state. However, in
our specific case, non-final actions yield a reward of
0 and we do not have discounting (γ = 1), which
simplifies the above equation to G = rT . Unlike in
Q-learning, the updating of the Q-values is done
not after every action, but after a complete episode

(after a game, in our case). The estimation of the
new Q(s, a) after an episode is computed by:

Q(s, a)←− Q(s, a) + α(G−Q(s, a)) (2.4)

This is known as Monte Carlo learning (Sutton and
Barto, 2018).

In both approaches, after a sufficient number of
steps the lookup table will ideally hold (accurately
estimated) Q-values for all the (state, action) pairs
and thus the best policy that emerges will be given
by:

π(s) = arg max
a

Q(s, a) (2.5)

2.1.3 Function Approximators

The solution above works well for problems with
small, limited-dimensions state spaces. However,
many problems, including the game of Hearthstone,
have large, high-dimensional state spaces. For the
latter situation the usage of lookup tables for stor-
ing Q-values becomes problematic because it would
require a very large number of iterations before it
can reach reliable estimations for every (state, ac-
tion) pair. On top of that, if a trained agent will
encounter the possibility of a (state, action) pair
that it has never seen before it would be unable
to generalize its previous information in order to
estimate a realistic value.

One solution to this problem is to train a Neural
Network to approximate the Q-value of (state, ac-
tion) pairs instead of relying on a lookup table. Two
types of Neural Network approximators will be used
in this paper: a fully-connected Multi-Layer Percep-
tron (MLP) and a Convolutional Neural Network
(CNN).

2.2 Hearthstone

”Hearthstone” is a popular online Collectible Card
Game (CCG) published by Blizzard Entertain-
ment. In this game players collect cards from card
packs they buy, build decks and play against other
people with the decks they have created.

2.2.1 Types of Cards

There are four main types of collectible cards in the
game:
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• Minions: Minions are cards that a player can
play from their hand into the battle zone. Once
in the battle zone, they can attack opponent
minions in the battle zone or the opponent
hero once per turn normally, but not on the
turn they were played.

In Figure B.1 (a) you can see a minion called
Magma Rager. It costs 3 mana to play this
minion, it has an attack value of 5 and its
maximum health is 1 (or we can use the short-
hand ”3 mana 5/1” to refer to it). You can
also see that this minion is part of the ”El-
emental” tribe, which is useful in case one
has other cards that interact with Elementals.
Some minions may have text on them that trig-
gers certain events in certain conditions. One
such example you can see in Figure B.1 (b).
This is a ”4 mana 2/4” minion that says ”Bat-
tlecry: Draw an Elemental from your deck”.
Battlecry is a keyword that stands for ”when-
ever this card is played from hand”. There are
other keywords and effect types in the game
which are described more thoroughly in the
appendix.

• Spells: Spells are cards that a player can play
from their hand in order to trigger their ef-
fect. In Figure B.2 (a) you can see Arcane Ex-
plosion. A Mage class spell that costs 2 mana
and deals 1 damage to all enemy minions when
played. After a spell is played it is sent to the
Graveyard zone.

• Heroes: At the beginning of a game, each
player starts with a default hero, which has 30
health and 0 attack, based on their class that
they chose in the deck creation phase. A hero
always comes with a hero power attached to
it. That is an effect that has a certain cost and
that can usually be used once per turn. Unlike
minions, there can only be a single hero card
in the battle zone per player.

Besides the default hero that a player starts
with, a player can also have playable hero cards
in their deck. In Figure B.3 (a) there is an ex-
ample of a playable hero. When played, this
card replaces the existing hero with this one
and triggers its ”Battlecry” effect. The old
hero power is also replaced with the default
hero power of the new hero (Figure B.3 (b)).

The maximum health and current health re-
main the same as on the replaced hero, how-
ever, when played, the new hero gains armor
(you can think about it as additional health
points) equal to the value specified on its card
(in the case of Figure B.3 (a) that is 5).

• Weapons: Heroes usually come with an at-
tack value of 0, which means that they cannot
attack. Weapons are cards that can be played
into the battle zone and that give the hero an
attack value. In Figure B.4 (a) we can see Fiery
War Axe, a ”3 mana 3/2” weapon. That is, it
costs 3 mana to play this card and it gives
the friendly hero 3 attack on your turn. The
2 represents the durability. Whenever the hero
attacks while the weapon is in play, the dura-
bility of the weapon decreases by 1. When the
durability reaches 0 the weapon is destroyed.
There can only be one weapon in play per
player. Playing a weapon while you have an-
other one in play will result in destroying the
old weapon regardless of its durability and re-
placing it with the new one.

2.2.2 Rules of the Game

A game of Hearthstone has a singular win condi-
tion: getting your opponent’s hero to 0 health. A
game can result in a draw if the same action will
reduce the health of both heroes to 0. A draw is
considered a loss for both players.

The game starts with the ”mulligan” phase. Both
players’ decks, which have exactly 30 cards each,
are shuffled. The player that goes first is decided by
a coin flip. In this phase the player is presented with
three cards if they are going first, or four, if they
are going second. The players can now choose which
cards to keep in their starting hand and which to
reshuffle into their deck. For each card reshuffled
a player gets to draw another one from the deck.
Finally, the second player is given ”The Coin”, a
0-cost spell that grants 1 extra mana (more on
”mana” in the following paragraph) for a turn aim-
ing to compensate for the so-called ”first player ad-
vantage”. This concludes the ”mulligan” phase.

The players now take turns. At the beginning of
each turn a player is granted a ”mana crystal” (up
to a maximum of 10) and all their used mana crys-
tals from the last turn are refreshed. Mana crystals
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are used as a resource for playing cards. A player
thus will have one available mana on their first turn,
two on their second and so on. A player can decide
to use all their mana on one card in a turn, play
multiple smaller-cost cards or not play anything at
all.

A player’s turn-start then follows with drawing
a card from their deck. After this, the player can
choose to play cards and/or attack with some or all
of their cards in the battle zone.
Playing a card means paying the cost of the

card in order to place it into the battle zone if it is
a minion, hero or weapon or in order to activate its
effect if it is a spell (see subsection 2.2.1)
Attacking means choosing a friendly minion or

the friendly hero and an enemy minion or the en-
emy hero to ”fight”. A ”fight” between A and B
means that we will subtract A’s attack value from
B’s health and we will subtract B’s attack value
from A’s health. If after performing both subtrac-
tions any of the two combatants’ health is smaller
or equal to zero, that card is destroyed (sent to the
graveyard zone). Note that minions or heroes that
have an attack value of 0 cannot attack. Addition-
ally, minions cannot attack on the same turn that
they were placed into the battle zone unless speci-
fied otherwise on the card.

Lastly, in order to prevent infinite games, when-
ever a player needs to draw a card and their deck is
empty their hero will take X damage, with X start-
ing at 1, after which X will increase by 1. This is
referred to as ”fatigue” damage.

2.3 Experimental Setup

In order to be able to answer the research questions
a system was built to accommodate the training
and testing environments and the different agents.
The system contains the following components: 1)
A simulation of the game playable by agents; 2)
Agents that can accept a game-state and return
a valid move; 3) A script that can feed the live
state of the real game client into an agent. All
the code used for this research can be found at
https://github.com/alextutea/ReLAI-HS.

2.3.1 Playing the Game and the Simulation

Between graphics rendering and server commu-
nication time, training the agents on the real

game client would have been too slow. Thus, a
graphics-free local simulation had to be built.
The Fireplace Hearthstone simulator (Leclanche,
https://github.com/jleclanche/fireplace/) was
used as a base. This is an old simulator built
in python for a previous version of Hearthstone
that was now updated in order to include all the
cards and the latest mechanics of the game. The
simulator uses the same event queuing system
present in the real game in order to ensure fidelity
to the source. Both in the real game and in the
simulation a game-state is a list of entities where
each of those entities has a dictionary of tags. The
sum of all the tags fully describe an entity and the
sum of all entities fully describe a game-state, no
other information is needed.

For testing against real players online it was also
necessary to design a way for the agents to in-
teract with the real game. For that purpose the
open source python-hearthstone and hslog python
libraries were used to monitor and parse the log
files of the game client into a list of entities that
can be then interpreted by the agents.

2.3.2 Agents

An agent has to be able to accept a game-state
object (i.e. a list of entities), calculate all the pos-
sible legal actions at the given state, and return
one of said legal actions based on different criteria.
The returned action is either fed into the simula-
tion or prompted to the player of the real game.
The only difference between the agents is the way
they choose what action to return. In this paper we
will compare agents based on Reinforcement Learn-
ing systems among themselves and against scripted
agents.

There are four scripted agents:

• Random: Chooses a legal action at random;

• No-Waste: Chooses a legal action at random,
but it never chooses the end-turn action if it
has other actions available;

• Facer: First attacks the opponent’s hero with
all the available cards, then plays randomly
until it ends its turn;

• Trader: Attempts to ”trade” advantageously
with the opponent’s side of the board be-
fore attacking the opponent’s hero. A ”trade”
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means attacking opponent minions instead of
the hero. A good trade is one where a higher
value opposing minion is destroyed by a lower
value friendly minion. Consider the following
example: My ”1 mana 1/1” minion attacks an
opposing ”3 mana 5/1” minion; I subtract my
minion’s attack (1) from the opposing minion’s
health (1) and my opponent subtracts its min-
ion’s attack (5) from my minion’s health (1).
Both minions are destroyed as an outcome, but
this is advantageous for me because my oppo-
nent spent more resources on its minion and
the potential damage that minion could have
dealt was higher than the potential damage of
my minion; if on the friendly side of the board
there would be a ”1 mana 1/1” and a ”5 mana
5/5” and on the opposing side only a ”3 mana
5/1”, even though I can attack the opposing
minion with either of the friendly minions and
the outcome would be destroying both combat-
ants in both cases, it is always advantageous to
”trade” the smaller minion into the opposing
minion because then we are left with a bigger,
more valuable, minion.

In the case of the Reinforcement Learning (RL)
agents the choice is made by feeding the given state
into an RL system and outputting the move re-
turned by the system.

2.3.3 Representing Actions

In order to understand the structure of the sys-
tem that outputs an action, we must first under-
stand what an action is in the context of Hearth-
stone. Generally, an action can be either playing a
card, attacking a target with a friendly minion or
ending the turn. A player can make zero, one or
more actions in one turn. A turn concludes if and
only if the end-turn action was chosen by the cur-
rent player. Every action in the game besides the
end-turn action has a source, which is the entity
that will initiate the action. That could be either a
friendly minion that attacks a target or a card in
hand that will be played. When playing a minion
specifically, the player also needs to place it in an
available spot in the battle zone. We refer to that
spot as the position at which the minion will be
played. Moreover, certain cards give the player the
opportunity to choose one out of two possible ef-
fects when played, which we refer to as suboptions.

Finally, when minions attack or when cards have
certain on-play effects they require the player to
choose a target.

In the original game code the source and tar-
get components of a move are card IDs, whereas
the position and the suboption are represented by
the index of the battle zone spot and the index
of the suboption respectively. This is not ideal be-
cause there are a large number of combinations of
source and target cards and having an output node
in our RL system for each possible card combina-
tion would be problematic. What was done to sim-
plify this was taking advantage of the fact that a
player cannot have more than seven cards at one
time in the battle zone and cannot have more than
ten cards in hand. Knowing that we can fully de-
scribe any move with only four numbers: The index
in zone of the source, the position in the battle zone
where we want to place the source, the index of the
suboption chosen and the index in zone of the tar-
get of our action. Any part which is not used (e.g.
playing a minion that does not have any subop-
tion effects or targeted on-play actions) will just be
passed as a 0. For example, playing the leftmost
minion in the current player’s hand which has no
effects attached to it onto the second slot in the bat-
tle zone will be encoded as [1, 2, 0, 0]. An end-turn
action is encoded as an array of zeros.

There is a second type of action a player can
make in Hearthstone and that is a ”choice”. Unlike
a regular move, a choice is required only in certain
situations. The most common such situation is at
the beginning of the game in the ”mulligan” phase
(see subsection 2.2.2, second paragraph), but there
are other cards that offer player cards to choose
from. These are handled separately from regular
moves both in the real game client and in this sys-
tem and thus whenever the player is in a state in
which they have to make a choice the RL system
will recognize this and send a ”choice” rather than a
”move”. A choice is treated as a single number that
is the decimal conversion of a binary array of yes/no
choices (e.g. the player chose the first and the third
card in a four-card mulligan, thus its choice is bi-
nary represented as [1, 0, 1, 0] and 5 is our final
number)

Thus, any action a can be formally represented
as:

a = {as, ap, ab, at, ac} (2.6)

6



where as, ap, ab, at and ac are integers correspond-
ing to each part of action a.

2.3.4 RL System Architecture

Reiterating, the RL system needs to be able to ac-
cept a game state and output an action described
as above. The way this system was designed was
as a manager of five RL subsystems, one for each
of the parts of an action (source, position, subop-
tion, target and choice). Each part of an action has
a finite amount of possible values (e.g. there are
only 7 possible position values to choose from) and
its corresponding subsystem will output an array
of Q-values (one Q-value for each possible value).
The manager system will then compute and iterate
through all the possible valid actions at the cur-
rent state and score each move based on the mean
of the Q-values of the subsystems relevant for the
move. The move with the highest score will be the
chosen move of the whole system. Thus, Q(s, a) is
computed by the RL system as follows:

Q(s, a) = mean(Sas
, Pap

, Bab
, Tat

, Cac
) (2.7)

where S, P,B, T and C are the aforementioned ar-
rays of Q-values yielded by the corresponding sub-
systems.

The difference between RL agents is given by
three aspects: the learning algorithm used (Q-
learning or Monte Carlo learning), the architecture
of the neural network and the way each subsystem
serializes the game state before feeding it to its neu-
ral network (i.e. the state representation).

There are two neural network architectures that
were used in this paper which were arrived upon
after several preliminary experiments:

• A fully connected Multi-Layer Perceptron with
three hidden layers of 16, 32 and 16 units, the
input layer is equal to the size of the serialized
game state given and the output layer equals
the size of the set of possible values of its cor-
responding part of action.

• A Convolutional Neural Network with two
Convolution layers of sizes 64 and 32 with a
kernel size of 2 and a stride of 1, followed by a
fully connected layer of 64 units.

There are three state descriptions that are ex-
plored in this paper:

• A small-sized representation that serializes the
full game-state into a 1-dimensional array that
contains 5 numbers: the current health of the
friendly hero, the current health of the oppos-
ing hero, the position in hand of the lowest
cost minion, the position in hand of the high-
est cost minion and the position in the battle
zone of the highest attack minion. This state
description will be referred to as the minimal
state description

• A medium-sized representation that serializes
the full game state into a 1-dimensional array
that contains 77 numbers: 3 numbers (attack,
current health and mana cost) for each visible
minion in the battle zone (both friendly and
opposing) and for each card in hand, friendly
hero current health, armor and attack and
the opposing hero current health and armor.
This state description will be referred to as
the stats-only state description (”stats” is the
term commonly used to refer to the cost, at-
tack and health values of a card).

• A large-sized representation that serializes the
full game state into a 2-dimensional array that
contains the full description of every visible
card arranged in such a way that it mimics
the way the cards are actually arranged in the
real game. The visible cards are the ones in the
friendly hand zone, friendly battle zone and
opposing battle zone plus the two heroes. As
mentioned above, a card is fully described by
the set of tags attached to it. In total there are
86 such tags. In this state representation we
create a 11× 8 sub-matrix (artificially adding
two zeros) for each card filled with unique
number correspondents of its tags. Each of
these sub-matrices will be placed next to each
other horizontally based on zones (i.e. all sub-
matrices corresponding to cards in hand will
be next to each other, etc.) and those zone-
based arrays of sub-matrices will be placed on
top of each other vertically in the final state
representation. This process will yield a state
representation topologically similar to the real
game graphical representation where on the
lower part of the screen one sees the cards in
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their hand, then on top of that the friendly
cards in play and then the opponent’s cards in
play, but instead of being comprised of pixels,
the cards are represented by a matrix of their
tags. Including the 0-filled lines that separate
the different cards, this state representation is
a 36× 90 matrix (see Figure 2.1). This will be
referred to as the fully-visible state represen-
tation. Because this is a large, spatial repre-
sentation the CNN will be used as a function
approximator for agents that use this state rep-
resentation.

Figure 2.1: The Fully-visible state representa-
tion. Each light area is a 11× 8 submatrix which
contains the numerical representation of the
tags which fully describe a card. Each dark area
are pads of 0s. On the first row there are the
cards in the opposing play zone (7) followed by
the opposing hero and hero power, on the sec-
ond row there are the friendly cards in play (7),
hero and hero power, and on the third row there
are the cards the friendly player has in hand. In
total this is a 36× 90 matrix.

2.3.5 Training Process

The training process is done by letting the agent
play 104 games against itself. The Q-learning based
agents learn after every action, whereas the Monte
Carlo learning based agents learn after every game.
Every parameter value below was chosen after con-
ducting preliminary experiments. In the case of Q-
learning the reward R(s, a, s′) is 1 if s′ is a win
state, -1 if s′ is a loss state, and 0 otherwise and a
discount factor γ = 0.85 was used. In the case of
Monte Carlo learning all moves are trained on the
final reward (1 for a win, -1 for a loss) and no dis-
counting of the reward was used. The learning rate
was set to 0.005 for all approaches and the Adam

Table 3.1: Win rates of trained agents vs.
scripted agents using the simple deck

vs. Random No-Waste Facer Trader
Minimal - MC 81.2% 81.0% 49.8% 59.7%
Stats-only - MC 80.3% 79.0% 53.0% 62.0%
Fully-visible - MC 77.9% 77.4% 50.8% 57.1%
Minimal - Q 81.4% 76.1% 53.7% 59.3%
Stats-only - Q 82.7% 79.3% 50.2% 62.1%
Fully-visible - Q 78.0% 75.7% 52.0% 60.6%

Table 3.2: Win rates of trained agents vs.
scripted agents using the complex deck

vs. Random No-Waste Facer Trader
Minimal - MC 76.8% 76.8% 59.5% 61.7%
Stats-only - MC 79.8% 77.0% 60.0% 67.1%
Fully-visible - MC 88.3% 86.0% 67.5% 71.8%
Minimal - Q 77.5% 76.1% 53.1% 65.2%
Stats-only - Q 79.9% 79.2% 59.0% 62.6%
Fully-visible - Q 86.8% 85.2% 62.7% 65.0%

optimizer was used (Kingma and Ba, 2014). In or-
der to achieve a more stable solution, experience
replay (Lin, 1993), with batch size = 32, and tar-
get training (Mnih et al., 2015), with a soft Polyak
averaging (τ = 0.125) update, were incorporated.

In terms of the exploration strategy, ε-greedy was
the method of choice for this research, with ε start-
ing at 0.2 and slowly annealing towards εmin =
0.01.

3 Results

In order to better understand the performance of
the agents two different decks were created to be
used for the following tests. One deck is very basic,
having only cards that have no special effects or
synergies between cards, while the other has cards
that have special effects and that requires a com-
plex use of card synergies in order to maximize its
performance. We will refer to these two decks as
the simple deck and the complex deck respectively.
Both deck lists can be found in Appendix C. In
each test presented further the same deck will be
used for both players.

In order to answer the research questions, agents
that use each state representation with each of the
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Table 3.3: Win rates of trained agents vs. real
players using the complex deck

vs. Rank 15 Legend
Fully-visible - MC 3W / 7L 1W / 9L

learning algorithms presented above and each of the
two decks were created and trained. In total there
were 3 × 2 × 2 = 12 agents that were trained and
tested.

During a training process each agent was trained
for 500 games at a time against itself, followed by
a test round of 100 games against random without
exploration and without learning. There were 20
such rounds, adding up to a total of 104 training
games. Each training process was repeated three
times from scratch and the aggregated learning
progress can be examined by looking at the plots in
Appendix A. The line represents the mean win rate
at each test round between the three training pro-
cesses of an agent while the shade shows the range
of the results at that specific test round.

After the training was completed, each RL agent
was tested for 104 games against each of the four
scripted agents presented in subsection 2.3.2. Each
test was repeated three times and the average re-
sult was reported. The results of these tests are
presented in tables 3.1 and 3.2 as win rates.

Lastly, we have tested the Fully-visible MC agent
against two real players using the complex deck.
One of them is rated ”rank 15” (considered average
within the set of players of the game) whereas the
other one is rated ”Legend” (considered within the
top 1% of all players). 10 games were played against
each opponent and the results can be seen in table
3.3.

4 Discussion

In the light of these results we can make the follow-
ing observations:

• When using a simple deck, agents that use
the Fully-visible state representation perform
worse than the other agents. Conversely, when
using a complex deck, agents that use the
Fully-visible perform better than other agents.

• Generally, the performance of RL agents ver-
sus scripted agents seems to be better when

using a complex deck than when using a simple
deck. A possible explanation for this is given
by the fact that the impact of a good move
is lower with simple, no-effect cards than with
synergistic cards.

• When playing with complex decks and using
the Fully-visible state representation, Monte
Carlo learning seems to perform better than
Q learning.

Given the fact that competitive decks in Hearth-
stone are highly synergistic, we can conclude that a
Monte Carlo learning agent using the Fully-visible
state representation is the best choice for a general
Hearthstone playing agent out of the options that
were tested in this research.

Returning to the initially stated research ques-
tions we propose the following answers:

• Q: How would a trained agent that is only
given a small subset of the information from
a state perform compared to an agent that is
given the full information? A: When playing
with simple decks that do not require much
synergistic play the former performs better,
but as complexity increases the latter achieves
better results.

• Q: How would a Q-learning agent and a Monte
Carlo learning agent perform against a ran-
dom agent, heuristic-based agents and against
game experts? A: Most of the approaches pre-
sented in this paper can consistently do better
than 50% against random and heuristic-based
agents regardless of the deck used with the
best approach peaking at 88.3% against ran-
dom and more than 65% against all heuristics.
Against real players, as seen in table 3.3, the
agent does not perform better than 50%, how-
ever it is able to win, even against a ”Legend”
rank player.

It is important to mention that during the games
played against real players the agent always per-
formed sensible moves and most of the time was
able to get an edge over the opponent at certain
parts of the game. However, in most games the
agent would make a bad move at some point in the
game which a human player can exploit and eas-
ily dominate from there. A possible cause of this is
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that the agent is not yet able to generalize equally
well the Q values for all (state, action) pairs.

5 Conclusion

In this paper we have compared three ways of rep-
resenting the state of a Hearthstone game and two
Reinforcement Learning algorithms in trying to cre-
ate a Hearthstone-playing agent. We found that
when playing with simple decks, the smaller state
representations perform better, whereas when play-
ing with more complex decks a larger state repre-
sentation will yield better results. The overall best
agent was using the large state representation with
Monte Carlo learning and scored a 88.3% win rate
against a random agent.

Future work could consider letting the agent
train for more than 104 games and see whether that
would improve the generalization ability of the sys-
tem. In previous research it was found that Q learn-
ing learns best when training against the opponent
it will be tested against rather than self (van der
Ree and Wiering, 2013). Thus, future work could
also look at different ways of training: possibly ei-
ther against the heuristic agents or against a com-
bination of other agents and self.
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A Appendix

Figure A.1: Simple deck, Minimal representa-
tion, Monte Carlo learning

Figure A.2: Simple deck, Minimal representa-
tion, Q learning

Figure A.3: Simple deck, Only-stats representa-
tion, Monte Carlo learning

Figure A.4: Simple deck, Only-stats representa-
tion, Q learning
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Figure A.5: Simple deck, Fully-visible represen-
tation, Monte Carlo learning

Figure A.6: Simple deck, Fully-visible represen-
tation, Q learning

Figure A.7: Complex deck, Minimal representa-
tion, Monte Carlo learning

Figure A.8: Complex deck, Minimal representa-
tion, Q learning
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Figure A.9: Complex deck, Only-stats represen-
tation, Monte Carlo learning

Figure A.10: Complex deck, Only-stats repre-
sentation, Q learning

Figure A.11: Complex deck, Fully-visible repre-
sentation, Monte Carlo learning

Figure A.12: Complex deck, Fully-visible repre-
sentation, Q learning
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B Appendix

(a) Magma Rager (b) Sandbinder

Figure B.1: Example minions

(a) Arcane Explosionr (b) Crystalpower

Figure B.2: Example spells

(a) Frost Lich Jaina (b) Icy Touch

Figure B.3: Example hero and hero power

(a) Fiery War Axe (b) Silver Sword

Figure B.4: Example weapons

15



C Appendix

Simple deck - card list:

• Hero: Rexxar (Hunter)

• 2x Acidic Swamp Ooze

• 2x Bloodfen Raptor

• 2x Boulderfist Ogre

• 2x Chillwind Yeti

• 2x Core Hound

• 2x Magma Rager

• 2x Murloc Raider

• 2x Oasis Snapjaw

• 2x River Crocolisk

• 2x War Golem

• 2x Wisp

• 2x Archmage

• 2x Ogre Magi

• 2x Dalaran Mage

• 2x Kobold Geomancer

Complex deck - card list:

• Hero: Rexxar (Hunter)

• 2x Bluegill Warrior

• 2x Coldlight Seer

• 2x Grimscale Oracle

• 2x Murloc Raider

• 2x Murloc Tidecaller

• 2x Murloc Tidehunter

• 2x Murloc Warleader

• 2x Toxfin

• 2x Ironbeak Owl

• 2x Mountain Giant

• 2x Acolyte of Pain

• 2x Defender of Argus

• 2x Abomination

• 2x Amani War Bear

• 2x Sen’jin Shieldmasta
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