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Abstract

This paper proposes a method of substitut-
ing the Scale-Invariant Feature Transform de-
scriptors with descriptors based on morpho-
logical filters.  Multiple configurations are
tested for the descriptors, after which the op-
timal configuration is used to evaluate the
new method on the COIL-100, UC Merced
Land Use, and Zurich Building Image Database
datasets. Not only are the descriptors gen-
erated by MorphSIFT less diverse, they also
perform worse than the default SIFT descrip-
tors. When using the descriptors in an image
retrieval system that creates histograms of size
k the MorphSIFT descriptors got the best per-
formance for low values of k, while SIFT de-
scriptors performed better with higher k. This
indicates that MorphSIFT descriptors do not
have the same encoding power as SIFT descrip-
tors and ultimately have limited application.

1 Introduction

The Scale-Invariant Feature Transform is a
popular method for extracting key points from
images. These key points can be used for
many purposes, including content-based image
retrieval, image registration, and image stitch-
ing. Many attempts to derive better/faster
algorithms for key-point extraction have been
proposed, including ones based on mathemati-
cal morphology. The proposed method replaces
the default SIF'T descriptors with local descrip-
tors based on pattern spectra. These pattern
spectra are commonly used in image classifica-
tion and previous work has been done to use
these spectra as global [10] and local [2] de-

scriptors.

Section 2 gives an overview of the SIFT
method and Section 3 of the pattern spectra,
after which Section 4 presents the newly pro-
posed method. Section 5 describes the used
datasets and Section 6 the experiments that are
performed on those datasets, after which the re-
sults are described and discussed in Section 7.

2 Scale-Invariant Feature

Transform

The Scale-Invariant Feature Transform (SIFT)
method was first introduced by Lowe et al. in
1999 [6]. There are four stages in the SIFT
method: scale space extrema detection; key-
point filtering; orientation assignment and key-
point description. All four stages are further
described in their own dedicated subsection.

2.1 Scale space extrema detection

The keypoint locations are detected by finding
minima and maxima in the scale space. In or-
der to compute these locations a scale space
pyramid is built with resampling between each
level. To get stable locations the key points are
located at regions and scales of high variation.
Each level in the pyramid is smoothed using a
2D Gaussian with o = 2. The difference of the
Gaussian (DoG) is then obtained by subtract-
ing the newly smoothed image from the previ-
ous layer. The next pyramid level is generated
by resampling the previously generated layer
with bi-linear interpolation with a pixel spac-
ing of 1.5 in each direction. Using this spacing
of 1.5 means that the new sample is a linear
combination of the four adjacent pixels.
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Figure 1: Scale space pyramid [5]

The minima and maxima are computed by
comparing each pixel D(x,y, o) in the pyramid
to its neighbors. The first step is comparing
the pixel to the neighbors on the same level.
If this pixel is indeed a minimum or maximum
on the level, the check is again computed for
the layer above and below while taking into ac-
count the pixel spacing of 1.5. When the pixel
passes all tests it is added to the candidate list
of keypoints.

2.2 Keypoint filtering

Another phase is needed to filter keypoints that
result from noise or are located close to an edge.
The following attributes are computed for each
keypoint: location, scale, and ratio of principal
curvatures.

The first step is to fit a 3D quadratic function
to the local sample points which can be used to
more accurately identify the local extremum.
This quadratic function is approximated by the
Taylor expansion of the scale space function to
the quadratic term. This function is shifted in
such a way that the sample point is at the origin
of this approximation:
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where x = (z,y,0) is the offset from the key-
point. The location of the extremum X is then
calculated by deriving D(x) with respect to x

and setting it to zero:
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This is then approximated by using the differ-
ences of the neighboring sample points. One
problem that can arise is that the local ex-
tremum is found to have an offset of more than
0.5 in any dimension. This offset implies that
the true extremum is not on the sample point,
but one of its neighbors. In such a case the rou-
tine is repeated for the newly found extremum
and the current sample point discarded.
Finally, the value D(X) can be used to filter
against extrema with a low contrast. This value
can be computed using the following equation:
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The value | D(%X)| can then be used to filter out
low contrast keypoints. The threshold value
recommended by Lowe et al. is 0.03.

2.3 Eliminating edge responses

The next step in filtering the keypoints is elim-
inating edge responses. The DoG inherently
includes edges, but noise can influence the loca-
tion of the keypoint along the edge. The fluctu-
ations in the location along the edge make these
keypoints unstable, so they need to be filtered
out. An edge has a large principal curvature in
one direction while having a small one in the
orthogonal direction. As such, we can use this
property to filter out keypoints located along
an edge. The principal curvature can be com-
puted by the following Hessian matrix:
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This Hessian matrix can be approximated
by taking the differences of neighboring sample
points. The principal curvature corresponds to
the ratio of the eigenvalues of H, which means
we can avoid having to calculate the eigenvalues
of H. As such, let a be the eigenvalue with the
largest magnitude and S the eigenvalue with
the smallest magnitude. These can be used to



express the trace and determinant of the matrix
in terms of the eigenvalues o and 3:

Tr(H) = D,y + Dy = a + 8
Det(H) = Dy Dyy — (Dyy)* = a3

Let r be the ratio between the largest and
smallest eigenvalue, such that a = r8. Sub-
stituting this definition into the formula yields
us the following;:
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In order to check whether the ratio of two eigen-
values of less than r we only need to evaluate
the following equation:
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This is a cheap computation and avoids having
to calculate the eigenvalues o and 3, while still
yielding the desired result. The threshold used
by Lowe et al. is 7 = 10.

2.4 Orientation assignment

The final step in the keypoint localization is the
orientation assignment. Incorporating this ori-
entation means that the subsequent steps can
perform on a consistently oriented keypoint,
resulting in rotation invariance. The scale s
of the keypoint is used to select the properly
scaled image L from the Gaussian pyramid,
such that the calculations are performed invari-
ant to scale. The magnitude m(x,y) and orien-
tation 6(z,y) of each pixel in the neighborhood
are defined as follows:
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my(z,y) = L(z,y + 1) — L(z,y — 1)

Next, a histogram with 36 bins of the ori-
entations is created, weighted by the magni-
tudes and multiplied by a Gaussian window
with ¢ = 1.5s. The keypoint is assigned the
dominant orientation of the histogram. An-
other keypoint with the same scale and position
is added if there is another orientation with a
weight that is at least 80% of the weight of the
dominant orientation.

2.5 Descriptors

The last step in SIFT is creating keypoint de-
scriptors, which can then be used to describe
the image. First of all, the gradient orientation
and magnitude are calculated for all the pixels
in the neighborhood of the keypoint. The ori-
entation of these gradients are relative to the
orientation of the keypoint, maintaining rota-
tion invariance.
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Figure 2: Descriptor computation for SIFT.
The blue circle denotes the Gaussian win-
dow [5].

These gradients are then aggregated into 4 x4
regions by the means of an orientation his-
togram with 8 bins. The magnitudes of the
gradients are multiplied by a Gaussian window
centered on the keypoint, such that gradients
close to the center contribute more to this his-
togram. Figure 2 shows the keypoint descriptor
for an 8 x 8 patch, which results in a 2 x 2 de-
scriptor array. Note that SIFT uses a 16 x 16
patch with a 4 x 4 descriptor array, resulting in
128-dimensional feature descriptor.



3 Pattern Spectra

3.1 Max-tree

The first step to extracting pattern spectra is
to encode the image as a tree. One example
of such a tree is the max-tree. The nodes in
the max-tree correspond to connected compo-
nents with the same or higher gray level k, such
that £¥ = {p € I|f(p) > k}, where f(p) is
the gray value for pixel p in the image I. An-
other indexing component 7 is required because
there could be multiple peak components, such
that the i-th peak with value k is denoted by
L¥%. These are nested for decreasing values of
k. Constructing the full tree results in a max-
tree such that it contains nodes that correspond
to each peak component.
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Figure 3: An image (a) with the computed
max-tree (b). Taken from [2].

Figure 3 shows an example of an image with
the associated max-tree. Note that the tree
splits after node £>! into two peaks £! and
L3, If, for example, the region £*! had a
value of 3 it would be indexed as node £32.
Additionally, another tree is required to per-
form operations on the dark areas of the im-
age. A min-tree is used instead of a max-tree,
such that £* = {p € I|f(p) < k}. This min-
tree can also be built by building a max-tree
of the inverted image instead, thus simplifying
the entire process.

3.2 Attributes

Attributes can be computed on the nodes of the
max-tree to describe the node. Two of these
attributes are discussed and used: area and the
corrected noncompactness (CNC).

Area The area of a node is the simplest at-
tribute to compute, as it is simply defined as
the number of pixels that belong to that node.
The area is shape and rotation invariant, mak-
ing it useful for a descriptor.

Corrected noncompactness (CNC) The
CNC is an attribute which describes the shape
of a node. The shape is described by an elon-
gation measure, defined as follows:
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where I(£%%) is the moment of inertia of node
L% which in turn corresponds to the corrected
first moment invariant of Hu [4]. The CNC at-
tribute is 1 when the node is a perfect circle
and grows as the shape of the node approaches
a line. This attribute is translation, rotation
and scale invariant, making it a very useful at-
tribute for describing a node in the tree.

3.3 Granulometry

The final step in computing pattern spectra is
aggregating the attributes for each node in the
max-tree into a single pattern spectrum.

The size spectrum of an image can be com-
puted by measuring the amount of detail re-
moved in a size granulometry, resulting in a 1D
histogram containing the sum of gray levels for
each size class. Using the max-tree provides
an advantage, since this histogram can be com-
puted in a single pass on the max-tree instead
of filtering the image repeatedly. The shape
spectrum can be computed in a similar man-
ner, but using the shape attribute instead. By
computing both the size and shape spectrum we
can combine these into a single 2D size-shape
spectrum.



4 MorphSIFT

MorphSIFT aims to combine the robustness of
keypoint location and scale space keypoint de-
scription of SIFT and the fast and accurate
feature description of pattern spectra. Instead
of computing the pattern spectra of keypoints
from the raw image it first extracts a patch from
the DoG pyramid, after which the pattern spec-
trum is computed from that patch. It allows for
a lot of flexibility, such as using various kinds of
attributes on nodes and combinations thereof.

Keypoints in the image are found in the ex-
act same manner to SIFT. A scale space is built
from the image, after which the method delin-
eated in Section 2 finds the locations of the key-
points in the scale space. No additional filtering
on the keypoints is performed.

4.1 Patch extraction

Patches are extracted from the difference of
Gausssian (DoG) pyramid around the keypoint
located by SIFT. All keypoints are found on a
specific location (z,y,0) in the pyramid, such
that a square patch can be extracted on that
location.

There are two pyramids that one can choose
from: the Gaussian or DoG pyramid. Note
that while the found keypoints are located on
the DoG pyramid they could still be mapped
to the Gaussian pyramid. Patches extracted
from the Gaussian pyramid, however, do not
contain the same information as the DoG pyra-
mid. In fact, the DoG pyramid contains more
information as it is a linear combination of two
layers on the Gaussian pyramid. Some experi-
ments were performed extracting patches from
the Gaussian pyramid, but these consistently
scored worse than extracting patches from the
DoG pyramid.

Additionally, the orientation computed by
SIFT could be used to rotate the patch before
computing the pattern spectrum. Again, em-
pirical experimentation showed little improve-
ment, since the pattern spectra used are inher-
ently rotation-invariant. The orientation could
still be useful, though, since they could enable
the use of non-rotation invariant attributes.

4.1.1 Masking

An additional mask can be used to restrict the
computation of the pattern spectrum to a par-
ticular area. One example of such a mask is a
circular mask, which would match better with
the way the Gaussian pyramid is computed —
the Gaussian function on a plane also has a cir-
cular shape. This implicates that the value on
the keypoint was influenced by a circular area
around the point, such that one would expect
that the circular area would be the most de-
scriptive of that point.

4.2 Feature description

Two max-trees are built with the extracted
patch E and the inverted variant E~! respec-
tively. These max-trees are then used to com-
pute attributes of the max-tree and build a pat-
tern spectrum. Combining the pattern spectra
PS(E) of E and PS(E~1) results in a com-
bined feature vector (PS(E), PS(E~1)).

5 Datasets

Experiments were performed on three different
datasets: COIL-100 [8], the UC Merced Land
Use dataset [11] and the Zurich Building Im-
age Database [9]. These datasets contain very
different types of images and different retrieval
goals.

COIL-100 The COIL-100 dataset contains
7200 images of 100 objects. The object is put
on a rotating platform and photos are taken
at every 5 degree interval, such that there are
72 photos of every object. All images have
a 128 x 128 resolution. Only ten images at
fixed angles were used for the training and test-
ing. These ten images are taken from angles
0,5,15,30,45,50,65,100,145,180, in a similar
fashion to Bakar et al. [1]. Figure 4 shows two
different objects of the dataset, each from an-
gle 0°,45° and 180°. These images on average
contain 44.81 features.

UC Merced Land Use The UC Merced
Land Use dataset contains 2100 256 x 256 aerial
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Figure 4: Two objects from the COIL-100 database with angles 0°, 45° and 180°.

images of 21 different classes of land use from
the U.S. Geological Survey (USGS) National
Map, such that there are 100 images of every
class. Figure 5 shows images from the harbor
and airplane categories. The average number
of features per image is 677.8, although there is
a huge variety per image class as described by
Yang et al. [12].

Zurich Building Image Database The
Zurich Building Image Database [9] (ZuBuD)
contains 1000 images of 200 buildings in Zurich,
such that there are 5 photos from different per-
spectives of any building. Figure 6 shows pho-
tos of two buildings, each taken from a different
viewpoint. On average the images contain 1705
features.

6 Experiments

This section will first describe the experiments
performed to obtain the final pattern spectra
configurations used by the rest of the experi-
ments. Next, this configuration is further elab-
orated upon in Section 6.2, after which the re-
trieval process is described for the second ex-
periment.

6.1 Pattern spectra configuration
on the COIL-100 dataset

In order to explore the effect of various pattern
spectra configurations a simple test was created
to evaluate these. The choice for the computa-
tionally cheap test results from the fact that
many iterations were required to test the many
different types of pattern spectra. These tests
were performed on the COIL-100 dataset, since
their small size allowed for quick prototyping.

First of all, a random 80,20 split is made on
the images such that there are 800 training im-
ages and 200 testing images. In order to classify
a test image we first consider all features of that
image and match these features to their closest
feature in the training data by means of a 1-nn
classifier. This feature belongs to a particular
class of images, such that all features in the test
image can cast a vote for this class. The final
classification for this test image is obtained by
taking the most occurring feature classification
of that image. The final classification for this
image is obtained by taking the most occur-
ing feature classification of that image. Finally,
the percentage of correctly classified images is
taken as the result. This process is repeated 10
times with different training and testing splits,
after which all results are averaged to obtain
the final performance of the descriptors.

Three different sizes for the patch extraction
were tested: 12 x 12, 16 x 16 and 24 x 24. In
addition the circular mask was enabled or dis-
abled. Finally, the binning range for the CNC
attribute was varied with [1.0,2.0], [1.0,3.0]
and [1.0, 4.0].

6.2 Pattern spectra configuration

Similar settings to Bosilj et al. [3] were used
for the pattern spectra to maintain a proper
comparison [10] among the different meth-
ods. Some settings, however, were adjusted ac-
cording to experimentation on the COIL-100
dataset as described in Section 6.1.

The size of the patch was chosen to be
16 x 16, similar to the size of the feature de-
scriptors used in SIFT. Both the area (A) and
the corrected non-compactness (CNC) are used
as attributes of the pattern spectrum. This



Figure 6: Two buildings with three images each from the ZuBuD dataset.

2-dimensional spectrum of dimensions 10 x 6
with range (1,162 for area and [1.0,2.0] for the
CNC. This results in a 60-dimensional feature
vector for a single tree, summing up to a 120-
dimensional feature vector for the entire patch.

These settings are used for all further ex-
periments on the COIL-100, UC Merced and
ZuBuD dataset.

6.3 Retrieval process

An image retrieval process similar to the one
used by Yang et al. [12] was used to compare
the performance of the SIFT descriptor with
the pattern spectra descriptors.

The first step in image retrieval is to gen-
erate the training features for all the training
images. Next, k codebooks are generated by
computing k clusters from all generated fea-
tures using k-means. Note that all features are
pooled together regardless of the corresponding
class. All training features are matched against
their closest cluster centroids and a histogram
is created for all training images, such that ev-
ery training image is described by a histogram
with k£ bins. Three different kinds of normal-
ization can be applied to the histograms: none,
L1 and L2 normalization. Finally, multiple sim-
ilarity measures are used to compute the simi-
larity of a query image ¢ with feature vector f4
to a training image m with feature vector f™.

The following similarity measures are used and
compared: 1) Manhattan distance (L1); 2) Eu-
clidean distance (L2); 3) cosine similarity; 4)
inner product and 5) intersection i.e. the sum
of pointwise minimum of the feature vector.

These different measures are then combined
with the various normalization schemes to
study whether the optimal configuration for the
SIFT descriptors is also the optimal configura-
tion for the pattern spectra descriptors.

Choice of k for codebooks Finally, mul-
tiple values of k£ were chosen for the different
datasets. The UC Merced and ZuBuD datasets
contain many more keypoints per image, while
the COIL-100 dataset has a limited number of
keypoints. For the COIL-100 dataset the fol-
lowing values of k are used: 50, 100, 500, 1000,
2000, 4000, 8000. The same values are used
for the ZuBuD and UC Merced dataset, except
that the following higher values are incorpo-
rated as well: 10000, 15000, 20000.

6.4 Evaluation metric

All datasets were evaluated with the same met-
ric, the average normalized modified retrieval
rank (ANMRR) [7]. This metric has been
widely used as a retrieval performance measure
in the MPEG-7 standard and not only measures
whether a retrieval system predicts a class cor-



rectly, it also incorporates the ranking of the
correct results. This metric has already been
used extensively to evaluate SIFT on the UC
Merced dataset [11, 12], as well as evaluating
global and local pattern spectra [3].

Rank First of all, consider a query image ¢,
the rank of the k-th ground truth image in the
retrieval process, determined by the distance
metric, as Rank(k) and the number of ground
truth images of ¢ as NG(g). The modified rank
Rank* (k) for this image is then defined as fol-
lows:

Rank(k)
1.25K(q)

Rank* (k) = { if Rank(k) < K(q)

if Rank(k) > K(q)
where K(q) > NG(q) is the number of ranks
that are considered relevant for retrieval. This
number K(q) is typically chosen as 2NG(q).
The modified rank essentially bounds Rank (k)
to a maximum of 1.25K (¢g) while implementing
a penalty for incorrectly classified items. Us-
ing this modified rank we can define an average
rank (AV' R) for this query image g¢:

1 NG(q)
AVR(q) = NG@) Z Rank™(q)
k=1

Finally, the ANMRR is defined as:

1 28 AVR(q) — 0.5(1 + NG(q))

ANMRR = ——
NQ Z 125K — 0.5(1 + NG(9))

where N @ is the number of query images. The
value of ANMRR ranges from 0 to 1, where
lower values indicate better retrieval perfor-
mance.

6.5 Training and validation

The model is trained by taking a random 80,20
split of the data as training/validation set. 10
different splits are created for every run config-
uration and the results are averaged to produce
the final performance metric of a test.

6.6 Implementation

MorphSIFT was implemented in C/C++ by us-
ing the provided SIFT implementation of the
library OpenCV 3.4.1, which extracts the key-
points, their locations in the scale space and
SIFT descriptors. This scale space is then used
to extract the patches as described in Section

4.1. The pattern spectra are computed using a
C library.

Finally, a Python program performs the im-
age retrieval process and computes the final
ANMRR values.

7 Results and discussion

The results obtained by the experiments in the
previous section are described in this section.
First of all, the results on the various pat-
tern spectra configurations are described, af-
ter which the averaged descriptors are shown
and discussed. Finally the results on the effect
of codebook size and similarity measures are
shown on the different datasets.

7.1 Pattern
tions

spectra configura-

Table 1 shows the results of various combina-
tions of pattern spectra configurations. First of
all, it is clear that extracting a larger patch re-
sults in a higher accuracy. Additionally, choos-
ing a narrower range for the CNC attribute re-
sults in a better accuracy as well. The choice
for using a mask or not is not as straightfor-
ward though, as using a mask for patch sizes
of 12 and 16 results in a lower accuracy, while
using such a mask for a patch size of 24 results
in slightly higher accuracy.

It is important to note that SIFT uses a
16x16 area around the keypoint to compute the
descriptor, so extracting larger patches would
not yield a fair comparison. As such, a patch
size of 16 x 16 is used for the remaining exper-
iments.



Npaten Mask CNC range Accuracy

[1.0,2.0] 0.8465
None [1.0,3.0] 0.8235

1.0,4. .
19 [1.0,4.0] 0.7830
[1.0,2.0] 0.8000
Circle [1.0,3.0] 0.7695
[1.0,4.0] 0.7470
[1.0,2.0] 0.8925
None [1.0,3.0] 0.8640

1.0,4. .
16 [1.0,4.0] 0.8665
[1.0,2.0] 0.8890
Circle [1.0,3.0] 0.8635
[1.0,4.0] 0.8510
[1.0,2.0] 0.9110
None [1.0,3.0] 0.9070

1.0,4. .
94 [1.0,4.0] 0.8850
[1.0,2.0] 0.9250
Circle [1.0,3.0] 0.9140
[1.0,4.0] 0.8925

Table 1: Results of various pattern spectra con-
figurations on the COIL-100 dataset.

7.2 Descriptors

The descriptors of both methods are tested and
evaluated to gain more understanding of the
difference in performance of both methods.

Figure 7 shows the averaged descriptors for
SIFT and MorphSIFT, split on the three differ-
ent datasets used. Both methods display a very
different distribution of peaks and valleys, with
the SIFT method being more spread out, while
the MorphSIFT descriptors appear to contain
periodic repetitions. This periodicity is a direct
consequence of the way in which the descriptors
are formed. The descriptors can be separated
into two segments: the descriptors for dark ar-
eas and for bright areas. Both segments can
each be further separated into 6 different seg-
ments. These smaller segments represent the 6
different bins to which the CNC is mapped and

also show a similar pattern for the different bins
of CNC. This disparity in spread among the his-
tograms could indicate that the descriptors for
MorphSIFT are much less diverse and might
be unable to encode more information than the
default SIFT descriptors.

7.3 Overall results

Table 2 shows the overall best performance of
each method on the various datasets. It is clear
that SIFT does much better than MorphSIFT
overall, with wide ranges of ANMRR on the
various datasets. Note that MorphSIFT got the
best ANMRR for a very low number of code-
books, whereas SIFT performed better when
using a higher number of codebooks. This is
especially apparent when comparing the results
for the ZuBuD dataset, which contains many
descriptors, where the difference in best AN-
MRR is very large.

7.4 Codebook size and similarity
measure

Figures 8, 9 and 10 show the effect of vari-
ous combinations of distance measure, code-
book size and normalization. The first thing
to note on all these results is that all results for
the intersection, inner and cosine distance mea-
sures stay constant for all normalization mea-
sures. Secondly, the results for the inner and
intersection distance measures usually overlap.

All three datasets have a slightly different
response of the ANMRR curve with the var-
ious parameters. There are, however, many
similarities in the responses for common pa-
rameters. Similar to what Yang et al. [12]
described, most of the results fall into two
categories: one where the ANMRR decreases
with the number of codebooks and one where
the ANMRR increases with the number of
codebooks. When comparing the ANMRR of
SIFT and MorphSIFT for similar settings on
a dataset we see that SIFT performs much
better overall. More interestingly there are
many cases where the curve for SIFT decreases
with number of codebooks, while the curve for
MorphSIFT shows the opposite behavior. This



Dataset Method Norm Dist Codebooks ANMRR
COIL SIFT L1 Inner 8000 0.3254843
MorphSIFT L1 Inner 8000 0.5678468
IFT L1 L1 1 .60021
UC Merced S 5000 0.6002196
MorphSIFT L2 L1 100 0.6565865
SIFT L1 L1 20000 0.1224121
ZuBuD
MorphSIFT  None L2 500 0.4093080

Table 2: Overall results of SIFT and MorphSIFT.
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Figure 7: Averaged feature vector for SIFT (a,b,c) and MorphSIFT (d,e,f). Results for the
COIL-100 (a,d), ZuBuD (b,e) and UC Merced (c,t) datasets are shown separately.

indicates that the descriptors for MorphSIFT
do not scale as well for higher number of k, nor
do they possess the same descriptive power as
the SIFT descriptors.

COIL-100 dataset: Figure 8 shows the re-
sults in ANMRR for the different configurations
for both SIFT and MorphSIFT. The overall re-
sults show that MorphSIFT performs signifi-
cantly worse than SIFT across the board. This
disparity in performance is already apparent at
low number of codebooks, where MorphSIFT
scores roughly 0.1 ANMRR higher than SIFT.
At higher number of codebooks this disparity
only continues to grow for the majority of the

10

measures, with the sole exception of the inter-
section distance measure. While one might as-
sume that the intersection distance metric to-
gether with a high number of codebooks is the
correct way to approach this dataset it most
likely is a result of overfitting. With just 44813
features in total and 8000 codebooks only 5.6
features are used for one codebook on average.

UC Merced dataset: The results for UC
Merced show much worse overall retrieval per-
formance compared to the COIL-100 dataset,
regardless of method used. The general trend
for both SIFT and MorphSIFT is very similar,
except that, just like the COIL-100 dataset, the



retrieval performance for MorphSIFT worsens
with higher number of codebooks while SIFT
performs better with more codebooks. For low
number of codebooks, however, this disparity
is still very small but it increases quickly as k
Srows.

Interestingly, the results for this dataset do
not fully correspond to the results found by
Yang et al. [12] on the same dataset. While
most of the image retrieval process is the same,
there is a major difference in the way the de-
scriptors are trained. Yang et al. used ran-
domly sampled keypoints from the U.S. Geo-
logical Survey (USGS) National Map to gen-
erate the k& codebooks, whereas we generated
the codebooks by randomly sampling keypoints
from the training data. This results in an over-
lap of the training and validation images and
could account for the difference in ANMRR.

There is, however, another big difference, as
the curves for the various similarity measures
do not have the same shape, with the curves
for the inner and intersection measures being
very different in particular. The ANMRR stays
close to 1 in our results, whereas the ANMRR
is much closer to 0.7 in the results from Yang
et al. Multiple attempts were made to make
these results match up, but the results differed
consistently. It is currently unknown as to why
these results differ this much.

Finally, note that while both the results for
COIL-100 and ZuBuD show a difference of
more than 0.2 for the best ANMRR this ef-
fect is not as big for this dataset. One possible
cause could be that this dataset is inherently
harder to classify.

ZuBuD dataset: There is a huge overall
difference between the two methods on this
dataset across all normalization options, as
can be seen in Figure 10. The results for
MorphSIFT show an interesting pattern where
the ANMRR for some parameters peak around
4000 after which it decreases again. This pat-
tern repeats itself for multiple combinations of
normalization and distance metrics.

Effect of descriptor variety on ANMRR
One explanation for the results of ANMRR of
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MorphSIFT can be found in the averaged de-
scriptors as described in Section 7.2. The aver-
aged descriptors as shown in Figure 7 are vastly
dissimilar, with the descriptors for MorphSIFT
being much less varied than its counterpart.
Using a descriptor that is less expressive due
to the lack of variety can often result in over-
fitting, a pattern many of the ANMRR curves
show. The accuracy is best when using a very
low number of k, after which the optimal value
has been reached and increasing k leads to too
many wildly different descriptors that do not
generalize well to the validation set.

8 Conclusion

This paper has explored the idea of substituting
keypoint descriptors based on morphological fil-
ters for SIF'T descriptors, while maintaining the
SIFT keypoint location method. Various con-
figurations for these pattern spectra were tested
and compared to each other on three differ-
ent datasets, after which the effect of varying
parameters in the image retrieval process was
studied.

Overall, this new method performed signif-
icantly worse than the existing SIFT descrip-
tors. While other studies showed promising re-
sults of the pattern spectra they did not live up
to this expectation in this application. The de-
scriptors are less diverse, indicated by the low
number of codebooks that yielded the best AN-
MRR on the UC Merced and ZuBuD datasets.

Many configurations for MorphSIFT were
left out due to scope limitations. First of all,
only two pattern spectra attributes were used
whereas many other attributes can be used.
The used attributes are scale and rotation-
invariant, while the method should be able to
incorporate attributes which are not rotation-
invariant due to the extracted orientations by
SIFT. Additionally, the averaged pattern spec-
tra show a lower diversity than SIFT descrip-
tors, such that PCA could potentially be used
to reduce the descriptor size. The next point
of interest is the difference in computation
time. MorphSIFT appeared to be faster overall,
but more rigorous research should be done to



make conclusions. Finally, the image retrieval
method could be improved by using the VLAD
indexing scheme as described by Bosilj et al.

[3]-
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A Results of SIFT
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Figure 8: ANMRR on the COIL-100 dataset for SIFT (a, b, ¢) and MorphSIFT (d, e, f) under
various distance and codebook sizes using (a, d) no normalization, (b, e) L1 normalization and

(¢, f) L2 normalization.
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Figure 9: ANMRR on the UC Merced dataset for SIFT (a, b, ¢) and MorphSIFT (d, e, f) under
various distance and codebook sizes using (a, d) no normalization, (b, e¢) L1 normalization and
(¢, f) L2 normalization.
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Figure 10: ANMRR on the ZuBuD dataset for SIFT (a, b, ¢) and MorphSIFT (d, e, f) under
various distance and codebook sizes using (a, d) no normalization, (b, ) L1 normalization and
(¢, f) L2 normalization.
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