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Second assessor:
Steffen Müller



Contents

1 Introduction 2

1.1 Relevant cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Discrete Logarithm Problem for some specific groups . . . . . . . . . . . . 4

1.3 Elliptic Curve Cryptography (ECC) . . . . . . . . . . . . . . . . . . . . . 4

1.4 Point counting on elliptic curve . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Elliptic curves 6

2.1 The projective plane and the affine plane . . . . . . . . . . . . . . . . . . 6

2.2 Weierstrass equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Isomorphisms between Weierstrass equations . . . . . . . . . . . . . . . . 11

2.3.1 Isomorphisms of E with char(K) 6= 2, 3. . . . . . . . . . . . . . . . 13

2.4 Addition law on elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 The geometric construction . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Explicit formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Properties of endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Torsion points and the Weil pairing 26

3.1 Torsion points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Division Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 The Weil Paring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Elliptic curves over finite fields 36

4.1 The Frobenius map on F̄q . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



4.2 The Frobenius map on E(F̄q) . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Other endomorphisms on E(Fq) . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Structure and order of E(Fq) . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Point-counting algorithms 47

5.1 Baby Step, Giant Step algorithm . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Schoof’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion 54

Abstract

The goal of this paper is to prove Schoof’s algorithm; a clever application of the
Chinese Remainder Theorem, which counts the number of points on an elliptic curve
defined over a finite field Fq. These points form a finite group. It is in fact a union
of torsion subgroups, each of which is the exact set zeros of a division polynomial.
The thesis concludes with the proof of the algorithm, which concerns finite fields
with characteristic larger than 3.

1 Introduction

More than ever, the internet plays a significant role in almost all aspects of our society.
Its intentional, and also its most important purpose is to exchange knowledge with other
people from all over the world. This information is usually shared between two parties
over a public channel. To prevent misuse of the knowledge that is exchanged, any
interference from other parties should be nearly impossible. It is therefore desirable that
this exchange can be done in a secure way. In other to ensure this, a reliable method
would be to use Elliptic Curve Cryptography (ECC). We will devote this first section to
get a general understanding of its origins and importance.

1.1 Relevant cryptography

The security of public key cryptosystems is based on a special property of one-way
trapdoor functions f : A → B. Such functions are injective and easily computable.
Most importantly, their inverse f−1 is very hard to compute in general. However, this
difficulty is drastically reduced if someone has an extra piece of information k, called a
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cryptographic key. This means that if Alice knows the value of k, then Bob can send her
a message a ∈ A by sending her the quantity b = f(a). Alice easily recovers a = f−1(b),
since she knows k. A person who does not know k is unable to compute f−1(b), in a
reasonable amount of time.

The search for one-way trapdoor functions is still an open problem in mathematics.
However, it has been proposed that the Discrete Logarithm Problem (DLP) could be a
solid basis for such functions.

Discrete Logarithm Problem. Given a group (G, ·) and elements g, h ∈ G, find an
integer n such that gn = h, assuming it exists.

It should be emphasized that the difficulty of the DLP depends on the chosen group.
For practical reasons, it is desirable that the DLP is hard to solve. Moreover, for imple-
mentation purposes, we require that the group operation should be easily computable.
We will shortly discuss the DLP for a number of groups.

Besides the DLP, some other hard problems are used as a secure basis for cryptosystems.
As an example, the first practical public key cryptosystem bases its security on the
difficulty of factoring large numbers. It is known as the RSA cryptosystem and was
introduced in 1977. The abbreviation stands for Rivest, Shamir, and Adleman [1], who
designed the algorithm.

The first paper on public key cryptography was published by Diffie and Hellman [2] in
1976, although they were not able to find a practical method to implement their idea.
However, they did describe a key exchange algorithm that bears their name. Its security
relies on the DLP in F∗q . Based on this key exchange, ElGamal [3] created a public key
cryptosystem in 1985.

The Diffie-Hellman key exchange makes it possible for two persons, which we will call
Alice and Bob, to securely exchange a piece of information whose value neither one of
them knows in advance. Below, a step-by-step description of how the key exchange is
given for an arbitrary group.

Diffie-Hellman key exchange

1. Alice randomly generates an integer a ∈ {0, 1, · · · ,#G− 1} and publicly sends ga

to Bob.

2. Bob randomly generates an integer b ∈ {0, 1, · · · ,#G − 1} and publicly sends gb

to Alice.

3. Alice computes (ga)b = gab. Bob computes (gb)a = gba = gab.

4. The element gab =: h is the encryption key.

3



Eve only knows the elements g, ga and gb. If Eve is able to determine gab from these
elements, then Eve solved the Diffie-Hellman problem (DHP).

Diffie-Hellman problem Given three elements g, ga and gb of G, compute the element
gab.

It is important to note that the DLP is stronger then the Diffie-Hellman problem. If
Eve can solve the DLP, then Eve is able to solve the DHP as well. When this occurs,
we say that the Diffie-Hellman scheme is broken.

1.2 Discrete Logarithm Problem for some specific groups

We recall that the hardness of both the DLP and the DHP depends on the group used.
To illustrate this we will discuss the DLP for some particular groups.

For (Zn,+) the DLP is relatively easy. The congruence gn ≡ h (mod N) can be solved
using the Euclidean algorithm, which takes O(log(n)) steps.

We denote by F∗q the unit group of the finite field Fq, where q = pr for some prime p
and r ∈ Z≥1. There are no known algorithms which solve the DLP for this group in
polynomial time. The fastest algorithms solve the problem in subexponential time. The
number of steps required for the best known algorithm equals

exp
(
c 3
√

(log q)(log log q)2
)
.

Here c is a small absolute constant. This is already an improvement compared to the
DLP for Zn, but we are about to encounter a group for which the DLP is even harder.

1.3 Elliptic Curve Cryptography (ECC)

In an attempt to find a group for which the DLP is harder than it is in the group F∗q ,
Koblitz [4] and Miller [5] suggested to replace F∗q by the group (E(Fq),+). This group
consists of all rational points of an elliptic curve E (a notion that we will thorougly
explore later) over a finite field Fq. This idea led to the creation of Elliptic Curve Cryp-
tography (ECC). The security of an elliptic curve cryptosystem relies on the hardness of
the Elliptic Curve Discrete Logarithm Problem (ECDLP).

Elliptic Curve Discrete Logarithm Problem. For two given points P,Q ∈ E(Fq),
find the integer m such that [m]P = P + · · ·+ P = Q.

The best known algorithm to solve the DLP in E(Fq) take exponential time. It requires
O
(
2n/2

)
steps, where n = log2 q.
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The use of elliptic curves in favor of other groups has one main advantage. With our
current knowledge, it is much harder to solve the DLP in E(Fq) than it is to solve the
DLP in F∗q . In practice, this means that elliptic curve cryptography has key and message
sizes that are 5 to 10 times smaller than those for other systems, including F∗q-based DLP
systems. This is why ECC is widely used.

1.4 Point counting on elliptic curve

We have established that the DLP is notoriously hard for the group E(Fq). To take
maximum advantage of this fact, we need to have curves on our disposal which contain a
large number of points. Essential tools for checking this requirement are point-counting
algorithms.

At first, the Baby Step, Giant Step algorithm (BSGS) by Shanks [6] was the most
conventional. It requires O(q1/4) steps. Until 1985, there were no sub-exponential point-
counting algorithms. Schoof made a breakthrough in this matter by introducing the
first such algorithm in his paper [7]. It requires O(log8(q)) steps, and it utilizes the
Chinese Remainder Theorem in a clever way. We will write its main steps below. In this
description, a := q + 1−#E(Fq).

Schoof’s algorithm
Input: An elliptic curve E defined over a finite field Fq.
Output: #E(Fq).

1. Find primes ` such that
∏
` > 4

√
q.

2. Determine amod `.

3. Compute a mod (
∏
`).

4. Choose a such that |a| ≤ 2
√
q.

5. #E(Fq) = q + 1− a.

In the 1990s, Atkin [8] and Elkies [9, 10] made some improvements to Schoof’s algorithm,
which are incorporated in the SEA-algorithm (Schoof-Elkies-Atkin). The maximum
number of steps required is reduced to O(log6 q).

The bulk of this thesis will be used to introduce all essential theory required to properly
dissect Schoof’s algorithm. To this regard, we will first introduce the concept to which
all theory will be applied.
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2 Elliptic curves

Elliptic curves will form the foundation of this thesis. It is easy to see that a proper
understanding of them will be absolutely essential. Prior to stating the exact definition
of an elliptic curve, we will introduce the notions of the projective plane, the affine
plane, and the Weierstrass equations. Their definitions will be provided in the next few
subsections.

2.1 The projective plane and the affine plane

Unless specified differently, K is understood to be field, and K̄ will denote an algebraic
closure of K.

Definition 2.1. The projective plane over K, denoted by P2
K̄

, consists of equivalence
classes of ordered triples (x, y, z). (When K is fixed, it is sometimes denoted by P2

instead of P2
K̄

). Here, x, y, z ∈ K̄, and at least one of x, y and z is nonzero. The
equivalence relation is given by the multiplication by a nonzero scalar λ ∈ K∗. If
(x0, y0, z0) is such an ordered triple, its equivalence class is denoted (x : y : z) and we
have

(x : y : z) := {(λx0, λy0, λz0) | λ ∈ K̄∗}.
An equivalence class (x : y : z) is then referred to as a point in P2

K̄
. Note that (0 : 0 : 0)

is not a point in P2
K̄

, since K̄ does not contain zero divisors. When z 6= 0, the point
(x : y : z) equals (x/z : y/z : 1). Points of this form make up the affine points in
P2
K̄

. If z = 0, such a normalization of coordinates cannot be made without dividing
by zero. This operation can be thought of as assigning the value ∞ to either the x-
or y-coordinate. For this reason, the points (x : y : 0) are said to be points at infinity
in P2

K̄
. Choosing z = 0 is simply a convention, as there is nothing special about the

variable z.

We will now introduce a specific subset of P2. We will later see that its defining property
allows us to find subgroups of the points on elliptic curves.

Definition 2.2. The K-rational points in P2 is the set

P2
K = {(x : y : z) ∈ P2

K̄ | x, y, z ∈ K}.

We will now introduce a different kind of plane, referred to as the affine plane. This
plane can be embedded in the projective plane.

Definition 2.3. The affine plane A2
K̄

is defined to be the following set.

A2
K̄ = {(x, y) ∈ K̄ × K̄}.

When K is fixed, we will sometimes denote A2
K̄

by A2.
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Just as with the projective plane, A2 has K-rational points.

Definition 2.4. The K-rational points of A2(K̄) form the set

A2
K = {(x, y) ∈ A2

K̄ | (x, y) ∈ K ×K}.

We can define an inclusion map A2
K̄
↪→ P2

K̄
as follows:

(x, y) 7→ (x : y : 1). (1)

This map shows us that the affine plane can be identified with the affine points of P2
K̄

.

Remark 2.5. We remark that the inclusion map restricted to A2
K maps into P2

K .

We will soon provide a different method to obtain points in the projective plane. Prior
to this, we will require the following definition. It will allow us to define zeros of a
polynomials in the projective plane.

Definition 2.6. Let F be a polynomial in variables X,Y and Z with coefficients in
K. Recall that each term of F is of the form cxiyjzk, with c ∈ K and positive integers
i, j, k ≥ 0. Then F is said to be homogeneous of degree n if i+ j + k = n for each term
of F .

Every non-homogeneous polynomial in X and Y can be made homogeneous by adding
suitable powers of Z. For example, the polynomial g(x, y) = x3 +y2 is not homogeneous.
Inserting appropriate powers of z results in the polynomial

G(x, y, z) = x3 + y2z,

which is homogeneous of degree 3.

If F (x, y, z) is a polynomial over K which is homogeneous of degree n, then it can easily
be seen that F (λx, λy, λz) = λnF (x, y, z) for any λ ∈ K∗. Note that this does not hold
if F is not homogeneous. In particular this shows that the roots of F in P2

K do not
depend on the choice of representative for the equivalence class (x : y : z). Therefore,
the set of zeros of F in P2

K is well-defined.

The inclusion map (1) serves as helpful tool to transform polynomials in the affine plane
into homogeneous polynomials in the projective plane. Let f(x, y) be a polynomial
and let F be the corresponding homogeneous polynomial of degree n. Then it holds
that F (x : y : z) = znf(x/z, y/z). By setting z = 1, this equality establishes that
f(x, y) = F (x : y : 1).

We will now see that two parallel lines in the affine plane actually intersect in a unique
point in the projective plane. Assume we have two distinct parallel lines by = ax+r, and
dy = cx+ s. Their homogeneous equations are given by by = ax+ rz and dy = cx+ sz.
We now have two cases to consider.
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• Case 1: b 6= 0. Since we assumed the lines to be parallel, we can immediately
deduce that d 6= 0. Therefore, we can write y = (ax+ rz)/b and y = (cx+ sz)/d.
Equating both expressions forces either r/b = s/d or z = 0. If the first equation
holds, then the lines are equal. We assumed that they are not, so we must have
that z = 0. This implies y = (a/b)x = (c/d)x. Definition 2.1 of the projective
space does not allow x, y and z to vanish simultaneously, so x 6= 0. It follows that
the lines only intersect at the point (1 : (a/b) : 0) = (b : a : 0).

• Case 2: b = 0. Lines in the xy-plane with b = 0 are vertical lines. Using the same
argument as above, we directly see that d = 0. Recall that we are dealing with
lines in the xy-plane, so both a and c have to be nonzero. Thus, we can write
x = −(r/a)z and x = −(s/c)z. Equating both lines forces either (r/a) = (s/c) or
z = 0. The first equation implies that the lines are equal, so we must have that
z = 0. Therefore we also have that x = 0. It follows that the y-coordinate of the
intersection point in P2 is nonzero. This implies that distinct vertical lines have a
single intersection, namely (0 : y : 0) = (0 : 1 : 0).

Remark 2.7. In the second case, we also showed that the projective point (0 : 1 : 0) lies
on every vertical line in the xy-plane, as all lines in the proof were arbitrarily chosen.
This is a result we will use later.

2.2 Weierstrass equations

There is one concept left to be introduced before we can start our treatment of elliptic
curves, namely the Weierstrass equations. This will be done in the first part of this
subsection. After this matter is handled, we will finally provide a formal definition of
elliptic curves. Most of the concepts in this subsection will be presented in the same
way as they appear in Washington [11] and Silverman [12].

Definition 2.8. A Weierstrass equation is a homogeneous equation of the following
form:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (2)

where the coefficients ai are elements of the field K. In the remainder of the thesis, we
will refer to this equation as the homogeneous Weierstrass equation. Notice that the
point (0 : 1 : 0) satisfies equation (2) for all possible choices of the ai’s.

By applying the substitutions x = X/Z and y = Y/Z, we write the equation in an affine
form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (3)

In the rest of the thesis, the notion Weierstrass equation will refer to this affine version.
The notation (x, y) will be used for any ordered pair in A2 satisfying (3).
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Note that this substitution can be regarded as the inverse of the inclusion map (1), as it
maps the point (x : y : 1) on (2) to the point (x, y) satisfying (3). Just like the inclusion
map hits all the affine points and none of the points at infinity, the substitutions can
only be applied to the affine points.

We will now look for the points at infinity associated with equation (3). Its homogeneous
form is given by (2). To find the points at infinity, we set Z = 0 to obtain X3 = 0.
Hence, Y is an arbitrary nonzero scalar. Therefore the only point at infinity is (0 : y :
0) = (0 : 1 : 0).

Remark 2.9. We already established that the point (0 : 1 : 0) lies on each vertical line.
Since (3) also contains this point, every vertical line intersects the curve at this point.

In order to represent the points at infinity in the environment of the affine plane, we will
give a distinct notation to the point (0 : 1 : 0). We will denote it by O and refer to it as
the point at infinity. For all intents and purposes, we think of O as satisfying the affine
Weierstrass equation.

We will now introduce a concept intrinsic to the Weierstrass equation. It will turn out
to be a defining property of an elliptic curve.

Definition 2.10. Rewrite the Weierstrass equation to obtain the form f(x, y) = 0.
Then, the equation is said to be nonsingular if ∂f

∂x and ∂f
∂y do not vanish simultaneously

at any point on {(x, y) : f(x, y) = 0}.

All notions mentioned in the beginning of this subsection are now properly introduced.
This means that we are fully prepared to state two of the most important definitions in
this thesis.

Definition 2.11. An elliptic curve defined over a field K is a pair (E,O) such that

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 with ai ∈ K (4)

is a nonsingular equation and O is the point at infinity. For an elliptic curve E, the set
of K-rational points E(K) is defined to be

E(K) = {(x, y) ∈ A2
K | (x, y) is a solution to E} ∪ {O}. (5)

Remark 2.12. We sometimes use the notation E/K to emphasize that the coefficients
of the elliptic curve E are elements of K. If we write P ∈ E, we mean P ∈ E(K̄).

Example 2.13. As an example, consider the following elliptic curve E defined over Q:

E : y2 = x3 + 3x.

As Definition 2.11 requires, this curve is indeed nonsingular. We will later show how this
can be deduced. Note that the points (1,±2) are in E(Q) (whereas the points (−1,±2i)
are not).

9



For later use, we will define the following values associated to an elliptic curve in Weier-
strass form. All the coefficients ai are understood to be elements of K.

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6.

(6)

As we mentioned earlier, there exist useful tools which help to determine whether a curve
is nonsingular or not. It will be introduced in the definition below.

Definition 2.14. The discriminant of an elliptic curve E/K is defined as

∆(E) = −b22b8 − 8b34 − 27b26 + 9b2b4b6. (7)

If it is clear from the context which elliptic curve we mean, ∆(E) will be denoted as ∆.

The discriminant provides an easy way to check whether a Weierstrass equation is also
an elliptic curve. This will be the content of the next theorem. Its proof is omitted.

Theorem 2.15. A curve defined by the Weierstrass equation (3) is elliptic if and only
if ∆ 6= 0.

The next concept will later prove to be a nice tool to classify maps between elliptic
curves. More on this matter will follow in the next subsection.

Definition 2.16. Let E be an elliptic curve defined over K. If ∆ is nonzero, the
j-invariant of the elliptic curve E is defined as

j(E) =
c3

4

∆
. (8)

If it is clear which elliptic curve we are referring to, we will write j instead of j(E).

We now introduced some of the intrinsic properties of elliptic curves. However, we have
not yet verified whether the representation of an elliptic curve is unique. This question
will concern us in the start of the next subsection.
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2.3 Isomorphisms between Weierstrass equations

The Weierstrass equation for an elliptic curve is not precisely unique. However it can be
shown that the only possible change of variables preserving the Weierstrass form of the
equation and fixing O has to be of a certain form.

In order to find those transformations, we will first require the definitions of some spe-
cific kinds of maps. We will start by introducing the most general type, which is the
morphism. Its definition is stated as by Smith [13].

Definition 2.17. A morphism of elliptic curves φ : E → E′ is a polynomial mapping

φ : (X : Y : Z) 7→ (φ1(X,Y, Z) : φ2(X,Y, Z) : φ3(X,Y, Z)) ,

where the φi are homogeneous polynomials of equal degree, satisfying the defining equa-
tion of E′ up to a scaling. A morphism has the property that if for P ∈ E(K̄) we have
that φ1(P ), φ2(P ) and φ3(P ) are not all zero, it follows that (φ1(P ) : φ2(P ) : φ3(P )) lies
on E′.

In affine coordinates, φ will be a rational map (with denominators).

φ : (x, y) 7→
(
φ1(x, y, 1)

φ3(x, y, 1)
,
φ2(x, y, 1)

φ3(x, y, 1)

)
.

This rational map extends automatically to a polynomial map when we ‘complete’ the
curves in projective space. By cleaning up the denominators, an equivalent definition
by Orzech [14] in affine coordinates can be obtained. It is provided below.

Definition 2.18. Let E and E′ be two elliptic curves defined over K. A morphism of
elliptic curves is a map φ : E → E′ for which there exists polynomials φ1, φ2 ∈ K[X,Y ]
satisfying

φ(x, y) = (φ1(x, y), φ2(x, y))

for all P = (x, y) ∈ E1.

The next theorem establishes that morphisms of elliptic curves are divided into two
categories. We will later see that this distinction is useful, as some definitions and
theorems only discuss one of the two types. The theorem, as found in Silverman [12]
will be presented without proof.

Theorem 2.19. A morphism of elliptic curves is either a constant function or a surjec-
tive function.

We will now list definitions for three different types of morphisms. Without exception,
the definitions are stated in the same way as is Silverman [12].
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Definition 2.20. Let E and E′ be two elliptic curves defined over K and let the map
φ : E → E′ be a morphism. We say that φ is an isomorphism of elliptic curves if there
exists a morphism φ−1 : E′ → E such that φ ◦φ−1 is the identity map on E, and φ−1 ◦φ
is the identity map on E′. If an isomorphism exists, we refer to E and E′ as being
isomorphic. This is denoted by E ' E′.

Remark 2.21. If φ in Definition 2.20 is an isomorphism, it immediately follows that
φ−1 is an isomorphism as well.

Definition 2.22. Let E be an elliptic curve defined over K. A morphism from E to itself
is called an endomorphism if it fixes O. An endomorphism that is also an isomorphism
is said to be an automorphism.

In affine coordinates, isomorphisms can shown to be of a particular form. This fact is
formalized in the next theorem, as found in Silverman [12]. We will present it without
proof.

Theorem 2.23. Let E and E′ be elliptic curves defined over K. Then, every isomor-
phism φ : E → E′ over K̄ is of the form

φ(x, y) = (u2x+ r, u3y + u2sx+ t), (9)

where r, s, t and u ∈ K̄, and u is nonzero. For an φ to be an isomorphism over K, it is
required that r, s, t ∈ K and u ∈ K∗.

In Theorem 2.23, the restrictions on the constants r, s, t, and u ensure that the transfor-
mation is invertible. Therefore, its inverse also defines an admissible change of variables
mapping E′ to E. It is given by

φ−1(x′, y′) =

(
x′ − r
u2

,
y′ − u2sx′ − t

u3

)
.

The change of coordinates given by (9) is called an admissible change of variables. It is
important to note that this transformation preserves the j-invariant, although proving
this result requires a rather tedious calculation, which can be found in [12].

Theorem 2.24. Two elliptic curves E and E′ (over K) are isomorphic over K̄ if and
only if j(E) = j(E′). In other words, the j-invariant classifies elliptic curves up to
isomorphisms.

Remark 2.25. In the next subsection, we will prove Theorem 2.24 in the case that
char(K) 6= 2, 3. For the proof of the remaining cases we refer to Silverman [12].

We will now focus on isomorphisms between elliptic curves defined over K such that
char(K) 6= 2, 3.
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2.3.1 Isomorphisms of E with char(K) 6= 2, 3.

Suppose that the characteristic of K is different from 2 and 3. In this case the Weierstrass
equation can be simplified. In particular, the following change of variables is properly
defined since we can divide the coefficients by multiples of 2 or 3.

(x, y)→
(
x− b2

12
, y − a1

2

(
x− b2

12

)
− a3

2

)
.

This results in a different Weierstrass equation of the given curve, which is called a short
Weierstrass form, namely

E : y2 = x3 − 27c4x− 54c6 := x3 +Ax+B. (10)

Because of its simpler form, we will often assume that char(K) 6= 2, 3 as it allows us to
work with this shorter expression.

For convenience, we state the equations for j and ∆ corresponding to the short Weier-
strass form.

∆ = −16(4A3 + 27B2) and j = −1728
(4A)3

∆
.

Lemma 2.26. Let E and E′ be elliptic curves over a field K, given by short Weierstrass
equations. Let u ∈ K̄∗. Then every isomorphism φ over K̄ between those curves assumes
the form

φ(x, y) =
(
u2x, u3y

)
.

Proof. The coordinate transformation (9) acts on the short Weierstrass equation (10) as
follows:

y2 → (u3y + u2sx+ t)2

= u6y2 + 2u5sxy + 2u3ty + u4s2x2 + 2u2stx+ t2,

and
x3 +Ax+B → (u2x+ r)3 +A(u2x+ r) +B

= u6x3 + u4rx2 + 3u2r2x+ r3 + u2Ax+Ar +B.

In the short Weierstrass form, the terms xy, y and x2 do not appear. Therefore

2u5sxy = 0

2u3ty = 0

u4s2x2 = 0

u4rx2 = 0.

As u (and its powers) are nonzero, the above equations force r = s = t = 0. Substituting
these values in (9) then yields the lemma. �
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In Theorem 2.24, we stated that two elliptic curves E and E′, both defined over K, are
isomorphic over K̄ if and only if j(E) = j(E′). However, this is not necessarily true
over K. This subtlety is illustrated in the next example.

Example 2.27 (Twist of elliptic curves). Suppose char(K) 6= 2, 3 and consider the
curves E and E(d) over K, defined below.

E : y2 = x3 +Ax+B,

E(d) : y′2 = x′3 +Ad2x′ +Bd3,

d−3y′2 = d−3x′3 +Ad−1x′ +B.

The coefficient d is an element of K∗. The j-invariants of E and E′ are equal, as can be
seen in the following calculation.

j(E) =
(4A)3

4A3 + 27B2
=

d3(4A)3

d3(4A3 + 27B2)
= j(E(d)).

By comparing both curve equations, we deduce that y = d−3/2y′ and x = d−1x′. If d is
a square in K, then both coordinate transformations are defined over K. If d is not a
square in K, then the transformation of the y-coordinate requires a transformation over
the field K(

√
d). Therefore, when two curves defined over K have equal j-invariants,

this does not ensure that they are isomorphic over K.

As promised in the previous subsection, will now prove Theorem 2.24 with some restric-
tion on the characteristic of the field K.

Proof of Theorem 2.24. Let E and E′ be elliptic curves over K, with char(K) 6= 2, 3.
Then, both curves allow a short Weierstrass form. Their equations are given as follows.

E : y2 = x3 +Ax+B,

E′ : y′2 = x′3 +A′x′ +B′.

Suppose that the curves are isomorphic, so that x = u2x′ and y = u3y′ as stated by
Lemma 2.26. We then obtain the following equations.

y2 = x3 +Ax+B,

u6y′2 = u6x′3 +Au2x′ +B,

y′2 = x′3 +Au′−4x′ + u−6B.

(11)

Comparing this last expression with the curve equation of E′, we deduce that A′u4 = A
and B′u6 = B. We further calculate

∆(E) = −16(4A3 + 27B2) = −16(4u12A3 + 27u12B′) = u12∆(E′)

j(E) = −1728
(4A)3

∆(E)
= −1728

u12(4A′)3

u12∆(E′)
= j(E′).
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This shows that the j-invariant is indeed preserved under isomorphisms.

Now suppose we have j(E) = j(E′), and let the curve equations be given as in the
beginning of the proof. The condition on the j-invariant implies that

(4A)3

4A3 + 27B2
=

(4A′)3

4A′3 + 27B′2

From this we can deduce that A3B′2 = A′3B2. We now have several cases to consider.

1. Case 1: A = 0. Note that B 6= 0, since otherwise ∆(E) = 0. This forces A′ = 0. In
turn, the system of equations (11) implies that B = u6B. Therefore u = (B/B′)1/6.

2. Case 2: B = 0. Following the same reasoning as in Case 1, we quickly deduce that
A 6= 0 and B′ = 0. Implementing these constraints on the system of equations (11)
forces Au2 = A′u6. Taking u = (A/A′)1/4 will do the job.

3. Case 3: AB 6= 0. This condition immediately forces that A′B′ 6= 0. The value
u = (A/A′)1/4 = (B/B′)1/6 provides the required change of variables.

In each case it follows that a suitable change of coordinates can be defined. This con-
cludes our proof. �

2.4 Addition law on elliptic curves

Up to now, we have seen how elliptic curves can be represented, and how these repre-
sentations are related. The inner structure of the points on an arbitrary elliptic curve is
yet to be discussed. This will soon change, as we are about to define a group structure
on them. We will first do this geometrically, but explicit formulas will be provided in
the latter part of this subsection.

2.4.1 The geometric construction

Let E be an elliptic curve over given by a Weierstrass equation and let L be a line in
the projective plane. The curve E and L have exactly three intersection points, as the
defining equation of E has degree three. This fact is a special case of Bézout’s Theorem
which is discussed in Hartshorne [15]. We will label these intersection points by P,Q
and R. In the case that L is tangent to E, these points are not distinct.

We will now define a composition law on E, that we will denote by +. We emphasize
that the law will be constructed geometrically, without regard for the field in which
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Figure 1: The addition of the points P = (1, 1) and Q = (3, 3) on the elliptic curve
y2 = x3 − 9x+ 9

the coordinates of the points lie. The composition law will therefore not mention any
particular field.

Composition law. Let P,Q ∈ E and let L be the line through P and Q. If P and
Q coincide, let L be the tangent line of E at P . Let R denote the additional point of
intersection of L with E. Let L′ be the vertical line through R (and O). The third
intersection point of L′ and E is defined to be P +Q.

The procedure we just described to determine P + Q is often referred to as the chord-
tangent law. An example of this process can be seen in Figure 1. It can be shown that
this method defines an additive abelian group law on E, with O as the zero element.

Theorem 2.28. (E(K̄),+,O) is an abelian group.

Proof. Let P,Q and R be arbitrary points of the elliptic curve (E,O). We will show
that all abelian group axioms are satisfied.

1. P + Q = Q + P : The line through P and Q is of course the same as the line
through Q and P , so the chord-tangent process yields P +Q = Q+ P .
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2. P +O = P : Let L be the line through O and P . Note that this line is vertical.
Denote by R the third point of intersection of L and E. Then it is easy to see that
the line through O and R also intersects P .

3. There is a point −P such that P + (−P ) = O: Denote by R the intersection
point of E with the vertical line through P . Then the line L through P and R
additionally intersects E at O. Therefore, P + R = O, so (−P ) = R. Note that
O+P = P for all points on E. Since the tangent of E at O has a triple intersection
with E, it follows that −O = O.

4. (P +Q) +R = P + (Q+R): The proof of this property is nontrivial, but it can
be found in Silverman [12]. A more geometric proof is given in Fulton [16].

This shows that (E(K̄),+) is an abelian group with O as the identity element. �

2.4.2 Explicit formulas

With the geometric construction of the group in mind, we will now provide explicit
algebraic formulas for the group law we just defined. We will first do this for the
complete Weierstrass equation. Later, we will list the addition formulas which solely
apply to elliptic curves in short Weierstrass form.

Let E be an elliptic curve over K, given by a Weierstrass equation.

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Furthermore, let P = (x, y) be an arbitrary point on E. Also, let P1, P2 and P3 be points
on E. Let their respective coordinates be given by Pi = (xi, yi). Suppose P1 + P2 = P3.
The formulas which make up the addition law on E will be listed below. While doing
this, we will closely follow the notation as used by Silverman [12].

(a) −P = (x,−y − a1x− a3).

(b) If P1 = −P2, then P1 + P2 = O.

(c) If P1 6= −P2, then define λ and ν by the following formulas:

λ ν

x1 6= x2
y2 − y1

x2 − x1

y1x2 − y2x1

x2 − x1

x1 = x2
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3
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When P1 6= P2, then the line M : y = λx + ν passes through both P1 and P2. If
P1 = P2, then M is the tangent line at P1. The coordinates of P3 are as follows:

x3 = λ2 + a1λ− a2 − x1 − x2,

y3 = −(λ+ a1)x3 − ν − a3.

As announced at the start of this subsection, we will now list the addition formulas
specifically for elliptic curves which admit a short Weierstrass form. This requires the
additional assumption that the defining field K satisfies char(K) 6= 2, 3. If E is such a
curve, then it can be written as follows.

E : y2 = x3 +Ax+B.

Just as it is with the Weierstrass equation, the addition laws become simpler, which
makes them easier to deal with.

Let P = (x, y) ∈ E. Moreover, consider the points P1, P2 and P3 ∈ E, with Pi = (xi, yi).
Suppose P1 + P2 = P3.

(a) −P = (x,−y).

(b) If P1 = −P2, then P1 + P2 = O.

(c) If P1 6= −P2, then define λ and ν by the following formulas.

λ ν

x1 6= x2
y2−y1
x2−x1

y1x2−y2x1
x2−x1

x1 = x2
3x21+A

2y1

−x31+Ax1+2B
2y1

Table 1: Formulas for λ and ν.

The line M : y = λx+ ν passes through P1 and P2. In the case that P1 = P2, the
line M is the tangent line at P1. The coordinates of the point P3 are as follows:

x3 = λ2 − x1 − x2,

y3 = −λx3 − ν.
(12)

To get more familiar with the formulas, we will demonstrate the addition law on a
particular curve defined over Q.

Example 2.29 (Adding two points on a curve). Let the short Weierstrass equation of
the elliptic curve E/Q be given as

E : y2 = x3 − 34x+ 37.
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Let P = (x1, y1) = (1, 2) and Q = (x2, y2) = (6, 7). Using the formulas in Table 1, we
calculate

λ =
7− 2

6− 1
= 1.

By equations (12), it follows that

x3 = λ2 − x1 − x2 = 1− 1− 6 = −6,

y3 = λ(x1 − x3)− y1 = 1−−6− 2 = 5.

Hence, P +Q = (−6, 5).

Note that for all cases in any characteristic, the addition law on a curve E is entirely
expressed by rational functions consisting solely of elements of K. This fact implies that
the K-rational points of E form a subgroup.

Theorem 2.30. Let E be an elliptic curve defined over K. Then E(K) is a subgroup
of E(K̄).

Proof. We need to show that all subgroup axioms are satisfied.

1. O ∈ E(K) : This holds trivially because of Definition 2.11.

2. If P,Q ∈ E(K) then P + Q ∈ E(K): The action of the addition law on both
coordinates can be expressed by rational functions of elements in K, as noted
earlier. This implies that if P,Q ∈ E(K), then indeed P +Q ∈ E(K).

3. If P ∈ E(K) then −P ∈ E(K): From the formulas of the addition law, it can
easily be deduced that if P has coordinates in K, then the same holds for −P .

Indeed, not a single axiom is violated. This concludes the proof. �

Remark 2.31. The isomorphisms described by (9) become group isomorphisms be-
tween E(K) and E′(K), as they preserve the group structure. This in particular holds
when char(K) 6= 2, 3. We recall that the form of these isomorphisms can be found in
Lemma 2.26.

2.5 Endomorphisms

As we established the group structure of elliptic curves, we are now in the position to
study the maps on these groups. Especially, we are interested in maps that preserve the
group structure.
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Definition 2.32. Let E and E′ be two elliptic curves defined over K. A homomorphism
of elliptic curves is a morphism α : E → E′ such that for all P,Q ∈ E(K), we have that
α(P +Q) = α(P ) + α(Q).

Remark 2.33. Note that a homomorphism α necessarily fixes O. We see this by noting
that α(O) = α(O +O) = α(O) + α(O). This equality only holds when α(O) = O.

It turns the we have already encountered homomorphisms earlier in this thesis. This
notion is formalized below. The proof can be found in Silverman [12], but is omitted
here.

Theorem 2.34. Any morphism of elliptic curves that fixes O is a homomorphism.

Remark 2.35. Recall that any nonconstant morphism is surjective. Therefore, any
nonconstant morphism is automatically a surjective homomorphism.

We now have all the tools required to define a very specific kind of homomorphism. This
map will be the main topic of this section.

Definition 2.36. An endomorphism of an elliptic curve E is a surjective homomorphism
α : E(K̄)→ E(K̄). Equivalently, this entails that

α(x, y) =
(
R1(x, y), R2(x, y)

)
,

where R1 and R2 are both rational functions in x and y.

Remark 2.37. In the previous section, another definition of endomorphism was pro-
vided (see Definition 2.22). It should come as no surprise that it is in fact equivalent to
Definition 2.36. We will not prove this here.

In what follows, we list a number of different examples of endomorphisms.

Example 2.38 (Trivial endomorphism). Suppose E is an elliptic curve over K. Then,
the constant function α(x, y) = O is an endomorphism. Indeed, for any two points P
and Q on E, we have that α(P + Q) = O, and α(P ) + α(Q) = O + O = O. We will
refer to this map as the trivial endomorphism.

Example 2.39 (Involution). Let E be an elliptic curve over K given by a short Weier-
strass equation. (Note that this means that we assume char(K) 6= 2, 3). Let P = (x, y)
and Q = (x′, y′) be points on E. We define

ι : E(K)→ E(K),

(x, y) 7→ (x,−y).
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We first assume that P 6= Q. To show that ι is an endomorphism, we calculate ι(P +Q)
and ι(P ) + ι(Q).

ι(P +Q) = ι(λ2 − x− x′, λ(x− λ2 + x+ x′)− y),

= (λ2 − x− x′, λ(λ2 − 2x− x′) + y).

ι(P ) + ι(Q) = ι(x, y) + ι(x′, y′),

= (x,−y) + (x′,−y′),
= ((−λ)2 − x− x′,−λ(−λ2 + 2x+ x′) + y),

= ((−λ)2 − x− x′, λ(λ2 − 2x− x′) + y).

Both calculations yield the same result. In the case that P = Q, this result can be shown
by this same method. The proof in the case P = −Q is trivial. For this reason, both
calculations are omitted.

So indeed ι defines an endomorphism. Note that ι composed with itself yields the identity
map. Any map with this property is referred to as an involution. Since in our case ι is
specifically applied to points on elliptic curves, ι is called an elliptic curve involution.

Example 2.40 (Multiplication by an integer). For a positive integer m we denote by [m]
the multiplication-by-m map from an elliptic curve E to itself. This map is indeed an
endomorphism. It is a fact which we will not prove, but still often refer to. It is defined
as follows. Let P ∈ E.

[m] : E → E

P 7→ P + P + · · ·+ P︸ ︷︷ ︸
m summands

This definition can be extended to all integers, by defining [0]P = O and setting [−m]P =
−[m]P . This map plays an essential role in elliptic curve cryptography. Its properties
and computation will keep recurring throughout the remainder of the thesis.

Example 2.41 (Complex multiplication by ζ3). Let E : y2 = x3 +B be an elliptic curve
over a field K, which contains an nontrivial root of unity ζ3. The map

[ζ3] : E(K)→ E(K)

(x, y) 7→ (ζ3x, y)

is well-defined, as the image is always a point in E(K). This can easily be seen by
noting that (ζ3x)3 = x3. We will show that [ζ3] is an automorphism of E. To this end,
let P1 = (x1, y2) and P2 = (x2, y2) be points in E(K).

In case x1 6= x2, the formulas in Table 1 and the equations (12) say that

[ζ3](P1 + P2) = (ζ3λ
2 − ζ3x1 − ζ3x2,−λζ3(2x1 − x2) + y1).

21



We will now compute [ζ3](P1) + [ζ3](P2). To make this easier, we will first determine λ′

(the equivalent of λ) for the points [ζ3](P1) and [ζ3](P2).

λ′ : =
y2 − y1

ζ3x2 − ζx1

=
1

ζ3
λ.

It follows that

[ζ3](P1) + [ζ3](P2) = (
1

ζ3
2λ

2 − ζ3x1 − ζ3x2,
−ζ3λ

ζ3
(2ζ3x1 + ζ3x2) + y1)

= (ζ3λ
2 − ζ3x1 − ζ3x2,−λ(2x1 + x2) + y1)

= [ζ3](P1 + P2).

The proof for the case x1 = x2 follows the same steps, and yields the same result. This
proves that [ζ3] is indeed an endomorphism. Since ζ3 6∈ R, we say that E has complex
multiplication by ζ3.

A very similar proof will show that the map [ζ2
3 ] : (x, y) → (xζ2

3 , y) also defines an
endomorphism on E. It is easy to see that both [ζ3] ◦ [ζ2

3 ] and [ζ2
3 ] ◦ [ζ3] are the identity

map on E. This establishes that [ζ3] defines an automorphism on E.

2.6 Properties of endomorphisms

In the previous subsection, we defined an endomorphism as an ordered pair of coordinate
functions in two variables. It turns out that, in a sense, we can reduce this number to
one. Proving this matter will be our concern in the first part of this subsection. However,
we should note that this reduction can only be made when the elliptic curves involved
admit a short Weierstrass form. Therefore, any elliptic curve E (defined over a field K
with char(K) 6= 2, 3) mentioned in this subsection is given in the form

E : y2 = x3 +Ax+B.

The reduction in the number of variables subsequently means that proving theorems
about endomorphisms will be easier. We will repeatedly exploit this simplification in
the latter part of this subsection.

Let α be an arbitrary endomorphism of the curve E. We know that α can be written
as α(x, y) = (R1(x, y), R2(x, y)), where the Ri denote rational functions. We will now
illustrate how and why it is possible to write both Ri as functions in one variable.

We first take R(x, y) to be any rational function. If an even power of y occurs in either its
numerator or its denominator, we can replace it by a suitable power of x3 +Ax+B. This
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fact simply follows from the definition of the short Weierstrass form (10). Therefore, we
may assume that R(x, y) takes the following form:

R(x, y) =
p1(x) + p2(x)y

p3(x) + p4(x)y
.

We can cancel out the y in the denominator by multiplying both its denominator and
numerator by p3(x)−p4(x)y, and performing substitutions of the powers of y. We obtain
the following expression.

R(x, y) =
q1(x) + q2(x)y

q3(x)
. (13)

We recall that if P is a point on E, then the addition law forces −P = −(x, y) = (x,−y).
Thus, α(x,−y) = α(−(x, y)) = −α(x, y). In terms of the coordinate functions, this has
the following implications.

R1(x,−y) = R1(x, y) and R2(x,−y) = −R2(x, y).

The condition imposed onR1 requires that q2(x) in Equation (13) vanishes. Furthermore,
the constraint on R2 implies that q1 vanishes as well. This reduces R1 to a rational
function in the single variable x, and it reduces R2 to a rational function in x multiplied
by y. We will formalize the result below.

Theorem 2.42. Let E be an elliptic curve which admits a short Weierstrass form. Let α
be any endomorphism on E. Then α can be assumed to have the following form:

α(x, y) = (r1(x), r2(x)y). (14)

In the above equations, both ri denote rational functions.

What happens when one of the denominators of either ri vanishes? Let r1(x) = p(x)/q(x)
and assume p and q have no common factors. If q(x) vanishes at a certain a ∈ K̄, we
set α(a, b) = O. As the following theorem shows, r2 is defined whenever q(x) 6= 0, so α
is completely defined.

Theorem 2.43. Let E be an elliptic curve admitting a short Weierstrass form. Let
α(x, y) = (p(x)/q(x), ys(x)/t(x)) be any endomorphism of E. Assume that p and q have
no common roots and that s and t have no common roots. Then t(x) is defined whenever
q(x) is defined.

Proof. We first note that r2(x) = s(x)/t(x) is only defined when t(x) does not vanish.
We then note that both (x, y) and α(x, y) are points on E, which means that they both
satisfy the same Weierstrass equation. We obtain the following equalities, where the
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variable x is left out to improve readability.

y2s2

t2
=
p3

q3
+
pAx

q
+B

=
p3 + pq2Ax+Bq3

q3

=:
u(x)

q3
.

(15)

In the last equality, u(x) = p3+pq2Ax+Bq3 = p3+q(pqAx+Bq2). We now substitute y2

with the cubic from the short Weierstrass equation and we obtain the following:

(x3 +Ax+B)s2

t2
=

u

q3

We now show that u and q have no common roots. Assume for contradiction that b ∈ K̄
is a common root. Then q3 = m(x)(x − b)3 and u = f(x)(x − b). In order to factor u
like this, all summands of u have to contribute the factor q = (x− b). This requires that
p3 = g(x)(x − b). Since p3 has only triple roots, we must have that p3 = h(x)(x − b)3.
In particular, it follows that p3 and q3 share a root, implying that p and q share a root.
This contradicts the assumption in the statement of Theorem 2.43, which states that
they do not share a root. It follows that u and q have no common roots.

We moreover note that t2 and y2 have no common roots. Every root of t2 has to be
a double one, but Definition 2.11 prohibits y2 to have a double root. Using the last
equality of (15), we have that

y2s2q3 = ut2.

If t(x0) = 0 then t2(x0) = 0. This automatically implies that both y2(x0) and s2(x0)
do not vanish. In order to preserve the equality, we must have q3(x0) = 0 and therefore
q(x0) = 0. Hence t(x0) = 0 implies q(x0) = 0. Conversely, q(x0) 6= 0 forces t(x0) 6= 0,
which is what we wanted to prove. �

We will now introduce some useful properties of endomorphisms. As a reminder, we still
assume that the elliptic curve E admits a short Weierstrass form. For this exact reason,
the concepts that we will introduce only apply to such curves.

Definition 2.44. Let E be an elliptic curve, and let α = (r1(x), r2(x)y) be any endo-
morphism on E. If α is nontrivial, then the degree of α is defined as follows.

deg(α) = max{deg p(x), deg q(x)}.

In the case that α is the trivial endomorphism, we set deg(α) = 0.

Definition 2.45. Let α be as in Definition 2.44. If α is nontrivial, then α is said to be
separable if the derivative of r1(x) is not identically zero.
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The following lemma is provides a useful criterion to check whether Definition 2.45 is
satisfied.

Lemma 2.46. Let E and α be as in Definition 2.44, and write r1(x) = p(x)/q(x). If α
is a nontrivial endomorphism, then it is separable if either p′(x) or q′(x) is nonzero.

Proof. By Definition 2.45, α is separable if r′1(x) 6= 0. This condition can be written as
follows.

d

dx

(
p

q

)
=
p′q − pq′

q2
6= 0.

Note that we can prove the lemma by showing that the equivalence holds for the negation
of both statements. This means that it is sufficient to prove that r′1(x) = 0 if and only
if both p and q are constant functions. If that is the case, then p′ = q′ = 0. This implies
that pq′ − p′q vanishes, so r′1(x) = 0.

Now we will prove the other direction of the equivalence. To this end, assume that
p′q − pq′ = 0. Note the we can assume that p and q do not have any roots in K̄, as we
can always cancel out any common factors. It follows from our assumption that every
root of p in K̄ must also be root of p′, and it must have at least the same multiplicity.
Because deg(p′) < deg(p), this can only occur when p′ = 0. Similarly, we can deduce
that q′ = 0. This shows that both p and q are constant functions. �

The following theorem describes the relation between the degree of an endomorphism
and the order of its corresponding kernel. A good proof of this can be found in Wash-
ington [11].

Theorem 2.47. Let E denote an elliptic curve, and let α any nontrivial endomorphism
on E. If α is separable, then the following equality holds.

deg(α) = #Ker(α).

In the case that α is not separable, this previous expression will be an inequality, namely

deg(α) > #Ker(α).

Remark 2.48. Actually, Theorem 2.47 also holds for elliptic curves not in the short
Weierstrass form, as can be seen in Silverman [12]. Since we have not defined the notion
of degree for those curves, we will not provide it here.
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3 Torsion points and the Weil pairing

3.1 Torsion points

When discussing any group, elements of finite order are always of special interest. They
are usually referred to as torsion elements. The term torsion group is commonly used
when talking about the subgroups of elements of finite order.

We will devote the first part of this subsection to define the torsion subgroups of E(K̄).
We will subsequently characterize their structure, and we will study how homomorphisms
on those groups can be represented. We want to emphasize that we again only consider
elliptic curves E admitting a short Weierstrass form.

Definition 3.1. Let E be an elliptic curve over a field K. Take n to be any positive
integer. Then, the n-torsion group consists of the following points.

E[n] = {P ∈ E | [n]P = O}

Note that E[n] consists of all points whose order divides n. Moreover, we underline the
fact that the coordinates of the points in E[n] do not necessarily belong to K.

As we announced, we will now focus on the structure of E[n]. It can be characterized
by the following theorem, whose proof can be found in Washington [11].

Theorem 3.2. Let E be an elliptic curve defined over K, and take n to be any positive
integer. If char(K) - n, or if char(K) = 0, then

E[n] ' Zn × Zn.

If char(K) = p | n, then write n = prn′, with p - n′. In that case,

E[n] ' Zn′ × Zn′ or E[n] ' Zn × Zn′ .

Using the terminology introduced in Theorem 3.2, we will now define some specific kinds
of elliptic curves, which will be classified by the structure of particular torsion groups.

Definition 3.3. Let E be an elliptic curve defined over K. Suppose that char(K) = p.
Then, E is a supersingular curve if E[p] ' {O}. In the case that E[p] ' Zp, we refer
to E as an ordinary curve.

Definition 3.3 will not appear anywhere in the remainder of this thesis, but it is still
useful to be aware of these particular notions.
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As mentioned in the start of this paragraph, we will now study how torsion groups
can be used to represent homomorphisms. Prior to this, we want to ensure that any
homomorphism on E maps torsion points to torsion points.

Theorem 3.4. Let E be an elliptic curve and let α be any homomorphism on E. Let n
be any positive integer such that char(K) - n. Then, α maps E[n] to E[n].

Proof. We want to emphasize that both α and the multiplication-by-n map are homo-
morphisms. In particular, this implies that for an arbitrary P ∈ E[n] we have that
nα(P ) = α(nP ) = α(O) = O. This means that α(P ) ∈ E[n]. �

Just as in Theorem 3.4, we take n to be any positive integer such that char(K) - n. By
Theorem 3.2 it follows that E[n] is of the form Zn×Zn. This allows us to fix a 2-element
basis, which we will denote by {T1, T2}, so that every element of E[n] is of the form
s1T1 + s2T2, where both si are uniquely determined modulo n.

The action of α on the basis can be written as follows:

α(T1) = α11T1 + α21T2, α(T2) = α12T1 + α22T2. (16)

As both α(Ti) are elements of E[n], all the αij belong to Zn. Another representation
will be provided in the next theorem, which can also be found in Washington [11].

Theorem 3.5. Let E be an elliptic curve over K. Let α : E → E be a homomorphism.
Its action on a basis of E[n] can be expressed by a matrix with elements in Zn.

αn :=

α11 α12

α21 α22

 .

As we will now encounter, we can compose homomorphisms by simply multiplying their
representative matrices.

Corollary 3.6. Let α and β be homomorphisms on E. Denote by αn and βn their
respective matrices, when restricted to E[n]. Then the matrix of α ◦ β equals αn · βn.

Proof. Let

αn =

α11 α12

α21 α22

 and βn =

β11 β12

β21 β22

 .
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A straightforward calculation shows

αnβn =

α11β11 + α12β21 α11β12 + α12β22

α21β11 + α22β21 α21β12 + α22β22

 .

Applying the map α ◦ β on {T1, T2} yields

α(β(T1)) = α(β11(T1)) + α(β21(T2))

= β11(α(T1)) + β21(α(T2))

= α11β11T1 + α21β11T2 + α12β21T1 + α22β21T2

= (α11β11 + α12β21)T1 + (α21β11 + α22β21)T2

=: c11T1 + c21T2.

α(β(T2)) = α(β12(T1)) + α(β22(T2))

= β12α(T1) + β22(α(T2))

= α11β12T1 + α21β12T2 + α12β22T1 + α22β22

= (α11β12 + α12β22)T1 + (α21β21 + α22β22)T2

=: c12T1 + c22T2.

Comparing the expressions cij with the coefficients of αnβn leads us to conclude that
the action matrix of α ◦ β is indeed represented by αnβn. Therefore, this shows that
the composition of homomorphisms is indeed equivalent to the multiplication of their
corresponding matrices. �

If we wish to get an even better understanding of torsion groups, it is necessary to take
a closer look at the multiplication maps on elliptic curves by an integer m. We will make
these maps explicit in the next section.

3.2 Division Polynomials

As we have already seen in Example 2.40, the multiplication-by-n map on an elliptic
curve E is an endomorphism. An explicit form of such a map is yet to be provided, but
we will soon state a theorem which will do exactly that.

The building blocks of these maps, the division polynomials, deserve some more atten-
tion. In particular, their relation to torsion points is quite remarkable. The study of
these polynomials will be done in the latter part of this subsection.

Unlike the previous subsection, E will denote an elliptic curve defined over a field K
which does not necessarily admit a short Weierstrass form, i.e.

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.
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The corresponding constants b2, b4, b6 and b8 are defined as in (6). We are now ready to
give state the explicit form of an arbitrary multiplication-by-n map. The proof of this
is far from trivial and it is demonstrated in Silverman [12].

Theorem 3.7. Let E be an elliptic curve defined over a field K, and let m be any
positive integer. There exist polynomials ψm, θm, ωm ∈ K[X,Y ] such that, for all
points P = (x, y) ∈ E(K̄) such that P 6∈ E[m], we have that

[m]P =

(
θm(x, y)

ψm(x, y)2
,
ωm(x, y)

ψm(x, y)3

)
(17)

When expressing the map [m] like this, it becomes easier to imagine what the degree of
this map might be. The exact degree is provided by the following theorem, the proof of
which can be found in Silverman [12] and is omitted here.

Corollary 3.8. Let E be an elliptic curve and let m any positive integer. Then the
multiplication-by-m endomorphism has degree m2.

The polynomial ψm as in Theorem 3.7 is the m-th division polynomial of the curve E.
We will later demonstrate how the polynomials θm and ωm are recursively defined in
terms of ψm.

We will now list the exact expressions of ψm. We emphasize that these apply to any ellip-
tic curve, even those which do not admit a short Weierstrass equation. The coefficients
bi are as defined in (6).

ψ0 = 0,

ψ1 = 1,

ψ2 = 2Y + a1X + a3,

ψ3 = 3X4 + b2X
3 + 3b4X

2 + 3b6X + b8,

ψ4 = ψ2 ·
(
2X6 + b2X

5 + 5b4X
4 + 10b6X

3 + 10b8X
2 + (b2b8 − b4b6)X + (b4b8 − b26)

)
,

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2,

ψ2m = (ψ2)−1(ψm)(ψ2
m−1ψm+2 − ψm−2ψ

2
m+1) for m ≥ 3.

(18)
As we mentioned earlier, the torsion groups and division polynomials are related in a
very special way. In particular, a relation exists between m-torsion points and the roots
of the m-th division polynomial, where m ∈ Z≥1. It is formalized in the next corollary,
whose proof can also be found in Blake [17].

Theorem 3.9. Let E be an elliptic curve defined over a field K and let m ∈ Z≥1. Let
P = (x, y) ∈ E(K̄)− {O}. We have that P ∈ E[m] if and only if ψm(x, y) = 0.
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One of the key properties of a polynomial is its degree. For our purposes, we are
especially interested in the degree of the m-th division polynomial, where m is odd. The
next theorem will be useful in that regard. We will present it without proof, which can
be found in Blake [17].

Theorem 3.10. Suppose E is an elliptic curve over K, with char(K) = p. Let m be
odd, and suppose that p - m. Then,

degψm =
m2 − 1

2

Remark 3.11. If m is even, then we have that deg(ψm/ψ2) = (m2 − 4)/2. We do not
need this fact in the remainder of thesis, but we provide it here for completeness.

Theorem 3.9 and Theorem 3.10 form the main ingredients for our next corollary. It
concerns the multiplicity of the roots of ψm.

Corollary 3.12. Let E be an elliptic curve over K with char(K) = p. Suppose m is
odd, and suppose that p - m. Then, the roots of ψm are simple.

Proof. By Theorem 3.9, we have that the roots of ψm are exactly the x-coordinates of
the points in E[m]∗. As p - m, Theorem 3.2 says that #E[m] = m2. This implies
that #E[m]∗ = m2 − 1, which corresponds to (m2 − 1)/2 distinct x-coordinates. By
Theorem 3.9, these are all roots of ψm. By Theorem 3.10, we have that degψm =
(m2 − 1)/2. This implies that all the roots of ψm are distinct, so they are simple. �

Looking at the list of equations (18), we see that Y only appears in the division polyno-
mials via ψ2. The following lemma about ψ2 soon turn out to be quite useful.

Lemma 3.13. The polynomial (ψ2)2 is independent of Y .

Proof.
ψ2

2(x, y) = (2Y + a1X + a3)2,

= 4Y 2 + 4Y (a1X + a3) + a1X + a3,

= 4(Y 2 + a1XY + a3Y ) + a1X + a3,

= 4(X3 + a2X
2 + a4X + a6) + a1X + a3.

In the 4th equation, we used the fact that the left hand side of the Weierstrass equation
(3) can be expressed as a polynomial in X. �

As we stated earlier, Lemma 3.13 will prove to be quite useful. Its result allows us
to show that the division polynomials ψm can be represented in terms of univariate
polynomials.
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Theorem 3.14. If m is odd, then ψm ∈ Z[a1, · · · , a6, X]. If m is even, then we have
1

(2ψ2)(ψm) ∈ Z[a1, · · · , a6, X].

Proof. We will prove it by using induction on m. We can see that the statement holds
for all 0 ≤ m ≤ 4. Suppose the statement holds for all m < 2n. Note that we can
assume that 2n > 4, so n > 2, and consequently 2n > n + 2. Note that all subscripts
in the recurrence relation for both ψ2m ψ2m+1 do not exceed m + 2. The induction
hypothesis then states that the theorem holds for all polynomials appearing in their
respective expressions. We now have two cases to consider:

1. m is odd: By the induction hypothesis, it follows that the expressions for both
ψm+2 and ψm−2 do not contain Y . Moreover, the hypothesis states that both
(ψm−1)2 and (ψm+1)2 contain the factor 4ψ2

2. The induction hypothesis also entails
that the variable Y does not occur in the product (ψ2)−1(ψm). Therefore, ψ2m is a
multiple of ψ2

2. The lemma directly forces that in this case ψ2m ∈ Z[a1, · · · , a6, X].

2. m is even: By the hypothesis we have that both ψ2
m−1 and ψ2

m+1 are polynomials
solely in the variable X. The induction hypothesis tells us that ψm ψm−2 and
ψm+2 are elements of (2ψ2)Z[a1, · · · a6, X]. All these factors considered, it follows
that ψ2m ∈ (2ψ2)Z[a1, · · · , a6, X]. Therefore, (2ψ2)−1ψ2m ∈ Z[a1, · · · , a6, X].

It follows that the statement holds for m = 2n. In a similar matter, it can be shown
that the theorem holds for 2m+ 1. �

So far in this subsection, we provided a quite lengthy list of properties division poly-
nomials. Recall that the expression for multiplication endomorphism by equation (17)
also contains two other polynomials, denoted as θm and ωm. We will now briefly focus
on those. In particular, we will show how both polynomials are recursively defined in
terms of ψm. This relation can also be found in Silverman [12] and Blake [17].

Definition 3.15. Let m ∈ Z≥1. The recursive formulae for θm and ωm are stated below.

θm = Xψ2
m − ψm−1ψm+1, (19)

2ψ2ωm = ψ2
m−1ψm+2 + ψm−2ψ

2
m+1. (20)

After having dealt with curves in the long Weierstrass form, we will conclude this sub-
section by providing a list division polynomials especially for curves admitting a short
Weierstrass form. The coefficients ai and bi as provided by the equations (6) can all be
reduced. From this process, we obtain the following system of equations.

31



a1 = 0

a2 = 0

a3 = 0

a4 = A

a6 = B

b2 = 4a2 = 0

b4 = 2a4 = 2A

b6 = 4a6 = 4B

b8 = −a2
4 = −A2.

Using these expressions, the division polynomials assume the following form.

ψ0 = 0,

ψ1 = 1,

ψ2 = 2Y,

ψ3 = 3X4 + 6AX2 + 12BX −A2,

ψ4 = 4Y (X6 + 5AX4 + 20BX3 − 5A2X2 − 4ABX −A3 − 8B2),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2,

ψ2m = (2Y )−1(ψm)(ψ2
m−1ψm+2 − ψm−2ψ

2
m+1) for m ≥ 3.

(21)

3.3 The Weil Paring

As the title of this subsection suggests, we will study the Weil pairing, a map with
a lot of useful properties. In particular, it will allow us to relate the degree of an
endomorphism to the determinant of its matrix representative. More about the origins
of the Weil pairing can be found in Washington [11], which also includes the proof of
the next theorem.

Any elliptic curve E we encounter will admit a short Weierstrass form

E : y2 = x3 +Ax+B.

Theorem 3.16. Let n be a positive integer such that char(K) - n. Then there is a map

en : E[n]× E[n]→ µn

called the Weil pairing, which satisfies all of the following properties.

(a) en is linear in both variables. This means that for arbitrary elements S, S1, S2, T ,
T1, T2 of E[n], it satisfies the following equations:

en(a1S1 + a2S2, T ) =en(S1, T )a1en(S2, T )a2 ,

en(S, b1T1 + b2T2) =en(S, T1)b1en(S, T2)b2

With ai and bi ∈ Z.
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(b) en is non-degenerate in each variable. This means that if en(S, T ) = 1 for all
T ∈ E[n], then S = O. Moreover, if en(S, T ) = 1 for all S ∈ E[n], then T = O.

(c) en(T, T ) = 1 for all T ∈ E[n].

(d) en(σS, σT ) = σ(en(S, T )) for all automorphisms σ over K̄ which fix the elements
in K.

(e) en(α(S), α(T )) = en(S, T )deg(α) for all separable endomorphisms α of E.

Note that part (c) implies that en(S, T ) = en(T, S)−1. This can be seen by noting that

1 =en(S + T, S + T )

=en(S + T, T + S)

=en(S, T + S) · en(T, T + S)

=en(S, T ) · en(S, S) · en(T, T ) · en(T, S)

=en(S, T ) · en(T, S)

We now immediately get the first helpful consequence of the properties of the Weil
pairing, stated below.

Theorem 3.17. Let E be an elliptic curve over K, and let n be an integer such that
char(K) - n. Let {T1, T2} denote a basis for E[n]. In that case, en(T1, T2) is a primitive
n-th root of unity.

Proof. Recall that x is a primitive n-th root of unity when xd = 1 if and only if n | d.
Assume that en(T1, T2) = µ, with µd = 1. Property (1) of the Weil pairing implies that
en(T1, dT2) = en(T1, T2)d = 1. We also note that property (3) allows us to deduce that
en(T2, dT2) = en(T2, T2)d = 1. For any T ∈ E[n], the the following equality holds:

en(T, dT2) = en(aT1 + bT1, dT2) = en(T1, dT2)aen(T2, dT2)b = 1.

Because the Weil pairing is non-degenerate, this equality states that dT2 = O. It follows
that d must be a multiple of n by recalling that T2 ∈ E[n]. This proves the theorem. �

As we already announced at the start of this subsection, the properties of the Weil
pairing allow us to relate the degree of an endomorphism α on E to the determinant of
the corresponding matrix αn. This result will be formalized in the next proposition. We
will repeat here that αn represents the action of α on a basis {T1, T2} of E[n].

Proposition 3.18. Let E be an elliptic curve defined over K. Let α be an endo-
morphism on E, and let n ∈ Z be such that n - char(K). In that case, we have
det(αn) ≡ deg(α) mod n.
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Proof. Let {T1, T2} be a basis for E[n]. Then Theorem 3.17 tells us that en(T1, T2) = µn,
where µn is a primitive n-th root of unity. Let αn =

(
a b
c d

)
. Then, we have

µdegα
n = en(α(T1), α(T2)),

= en(aT1 + cT2, bT1 + dT2),

= en(T1, T1)aben(T1, T2)aden(T2, T1)cben(T2, T2)cd,

= en(T1, T2)aden(T1, T2)−bc,

= en(T1, T2)ad−bc,

= µdet(αn)
n .

The first equality follows from (e) of the Weil pairing, the second one is from (16). The
third and fourth equality follow from part (a) and (c) of Theorem 3.16, respectively. So
we get degα ≡ det(αn) mod n. Since we have just shown that µ is a primitive nth root
of unity, the proposition follows. �

This result can be generalized a bit. If a, b are both positive integers and α, β denote
two endomorphisms on a curve E, then we can define a new endomorphism pointwise.
If we consider an arbitrary P ∈ E, this endomorphism is constructed as follows:

(aα+ bβ)(P ) = aα(P ) + bβ(P ).

In the above expression, both a and b denote multiplication endomorphisms on E. The
next proposition can be found in Washington [11]. Its result will help us to calculate
easily the degree of the composite endomorphism we just introduced.

Proposition 3.19. Let a, b, α and β be as stated above. Then the following equality
holds:

deg(aα+ bβ) = a2 deg(α) + b2 deg(β) + ab(deg(α+ β)− deg(α)− deg(β).

Remark 3.20. The proof only suffices for certain types of endomorphisms, namely
separable endomorphisms and the Frobenius endomorphism φq. (We are still unfamiliar
with this latter map, but we will make up for this in the next section). However, the
proposition holds for all endomorphisms.

Proof. Let n ∈ Z be positive and such that char(K) - n. We emphasize here that
infinitely many such n exist. Furthermore, let the matrices αn and βn denote the action
of α and β, respectively, on a basis {T1, T2} of E[n]. Hence (aαn + bβn) represents the
action of (aα+ bβ). Let

αn =

α11 α12

α21 α22

 , βn =

β11 β12

β21 β22

 . (22)
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With this representation, one easily calculates

det(αn) = α11α22 − α12α21, det(βn) = β11β22 − β12β21. (23)

For later convenience, we will explicitly calculate the determinant of (αn + βn). This
computation is skipped in the proof by Washington [11]. We have

det(αn + βn) = (α11 + β11)(α22 + β22)− (α12 + β12)(α21 + β21)

= α11α22 + α11β22 + α22β11 + β11β22 − α12α21 − α12β21 − α21β12 − β12β21.
(24)

To ease notation, we denote

M := aαn + bβn

=

aα11 + bβ11 aα12 + bβ12

aα21 + bβ21 aα22 + β22

 .

Then, we have that

det(M) = a2(α11α22) + b2(β11 + β22) + ab(α11β22 + α22β11)

− a2(α12α21)− b2(β12β21)− ab(α12β21 + α21β12).

Some rewriting yields

det(M) = a2(α11α22 − α12α21) + b2(β11β22 − β12β21)

+ ab(α11β22 + α22β11 − α12β21 − α21β12).

Substituting the identities given by (23) gives the following:

det(M) = a2 det(αn) + b2(αn) + ab(α11α22 − α11α22 + α11β22 + α22β11 + β11β22−
β11β22 − α12α21 + α12α21 − α12β21 − α21β12 − β12β21 + β12β21)

We now rearrange the terms once more, which yields

det(M) = a2 det(αn) + b2(αn) + ab
[
α11α22 + α11β22 + α22β11 + β11β22

− α12α21 − α12β21 − α21β12 − β12β21)− {(α11α22 − α12α21) + (β11β22 − β12β21)}
]
.

Finally, inserting the identity given by (24) allows us to write the desired result:

det(aαn + bβn) = det(M),

= a2 det(αn) + b2 det(βn) + ab(det(αn + βn)− det(αn)− det(βn)).

Using Proposition (3.18) then yields

deg(aαn + bβn) ≡ a2 deg(α) + b2 deg(β) + ab(deg(α+ β)− deg(α)− deg(β)) mod n.

As we mentioned earlier, this congruence is satisfied for infinitely many integers. This is
only possible if the above expression is an equality and the subscript n can be dropped.
This concludes the proof. �
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4 Elliptic curves over finite fields

In what follows, we will focus on elliptic curves over a particular set of fields, namely
the finite fields. Before we can study elliptic curves over finite fields, we will first need
to get familiar with finite fields themselves.

In particular, we will devote this section to study some noteworthy properties of the
Frobenius endomorphism. This map will play a major role in the remainder of the
thesis. Its importance stems from the fact that it possesses some special properties.
Among other things, it can be used to construct other endomorphisms.

Here is an example of an elliptic curve over a finite field:

Figure 2: The elliptic curve E : Y 2 = X3 + 2X+ 3 over the finite field F263 (Bauer, [18])

Remark 4.1 (Notation). Unless specified differently, we will use Fq to denote a finite
field consisting of q elements, where q = pn for a prime p and positive integer n. We
will denote by F̄q an algebraic closure of Fq. Furthermore, Fp represents a field with p
elements, where p is a prime. Its algebraic closure will be denoted by F̄p.
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4.1 The Frobenius map on F̄q

Definition 4.2. The Frobenius map φq on F̄q is defined as follows:

φq : F̄q → F̄q,
x 7→ xq.

(25)

In what follows, the next well-known result will be used. We will omit the proof.

Theorem 4.3.
F̄p =

⋃
n≥1

Fpn . (26)

Remark 4.4. This in particular implies that Fq ⊂ F̄p. In fact, it holds that F̄q = F̄p.
A proof of this fact can be found in Washington [11].

The following theorem will explicitly state what this embedding looks like.

Theorem 4.5.
Fq = {x ∈ F̄p | φq(x) = x}. (27)

Proof. Denote by S the set of roots of f(X) = Xq −X. It is trivial to note that 0q = 0.
Recall that the multiplicative group F∗q = Fq−{0} has order q− 1, so by Fermat’s Little
Theorem we have that xq = xq−1x = x for all x ∈ F∗q . Therefore, we get Fq ⊂ S.

We recall the fact that a polynomial has a multiple root if and only if it shares a root
with its derivative. We calculate

d

dX
(Xq −X) = qXq−1 − 1 = −1 mod p.

This shows that f ′(X) has no roots, so particular it has no roots in common with f(X).
From this we may conclude that f(X) has q distinct roots. We thus have that S has
the same order as Fq. Considering the fact that Fq ⊂ S, it follows that the sets must be
equal. �

Furthermore, we will prove the following useful result.

Theorem 4.6. The map φq is an automorphism of F̄q. In particular,

φq(x+ y) = φq(x) + φq(y) and φq(xy) = φq(x)φq(y). (28)

Proof. Indeed, for all x, y ∈ F̄q we have that φ(xy) = (xy)q = xqyq = φq(xy).

37



Note that the binomial coefficient
(
p
j

)
has a factor p in its numerator, which is not

cancelled in the denominator when 1 ≤ j ≤ p− 1. Equivalently, all binomial coefficients
vanish in Fp when j 6= 0 or p. Therefore,

(x+ y)p =

(
p

0

)
xp +

(
p

1

)
xp−1y + · · ·+

(
p

p− 1

)
xp−1y +

(
p

p

)
yp

= xp + yp.

Now we use induction on the power n of p to derive this same result for Fq. Obviously,

it holds that (x + y)p
1

= xp
1

+ xp
1
. Now assume that (x + y)p

n
= xp

n
+ xp

n
. We then

calculate
(x+ y)p

n+1
=
(
(x+ y)p

n)p
= (xp

n
+ yp

n
)p

= (xp
n
)p + (yp

n
)p

= xp
n+1

+ yp
n+1

.

It follows by induction that (x + y)p
n

= xp
n

+ xp
n

for all n ∈ Zn≥1. In particular, this
shows that (x + y)q = xq + yq. We conclude that φq is a homomorphism of fields. To
show that φq is moreover an automorphism, we still need to prove that it is bijective.

We will first see that φq is injective. We know that 0q = 0. Now, let x be a nonzero ele-
ment of F̄q. As φq is a homomorphism, we have that 1 = φq(x)φq(x

−1) = φq(x)φq(x)−1.
From this we deduce that φq(x) has a multiplicative inverse which implies that φq(x) 6= 0.
It follows that φq(x) = 0 if and only x = 0, which establishes the injectivity of the Frobe-
nius map.

It now only remains to show that φq is surjective. If x ∈ F̄q, then by Remark 4.4 we
have that x ∈ F̄p, which means that there exists n such that x ∈ Fqn . This implies
that φnq (x) = x. We therefore have that x lies in the image of φq. As x was arbitrary,
we conclude that φq is surjective. �

4.2 The Frobenius map on E(F̄q)

In this section, we will study the Frobenius map on the points of E(F̄q). On coordinates,
the map is defined as follows:

φq : E(F̄q)→ E(F̄q)
(x, y) 7→ (xq, yq)

(29)

By convention, we set φq(O) = O. We call this map Frobenius map on an elliptic curve.

Remark 4.7. Note that the notation for the Frobenius map is identical for F̄q and E(Fq).
However, the field over which the map acts will always be clear form the context.
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Lemma 4.8. Let E/Fq be an elliptic curve, and let (x, y) ∈ E(F̄q). The following two
results hold.

1. φq(x, y) ∈ E(F̄q).

2. (x, y) ∈ E(Fq) if and only if φq(x, y) = (x, y).

Proof of (1): We recall the homogeneous Weierstrass equation (2):

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

If we raise both sides to the power q, we use the results of Theorems 4.5 and 4.6 to
obtain

(yq)2 + a1x
qyq + a3y

q = (xq)3 + a2(xq)2 + a4x
q + a6.

. This shows that (xq, yq) ∈ E(F̄q).

Proof of (2). The result of Theorem 4.5 allows us to write the following equivalences:

φq(x, y) = (x, y)⇔ φq(x) = x and φq(y) = y

⇔ x, y ∈ Fq
⇔ (x, y) ∈ E(Fq).

. �

Remark 4.9. Note that part (2) of Lemma 4.8 implies that φnq (x, y) = (x, y) if and only
if (x, y) ∈ E(Fqn). This shows us that φnq is the Frobenius map on Fqn .

As the Frobenius map is an endomorphism on Fq, it would be a logical step to see
whether it is an endomorphism on E(Fq). The next Lemma will answer this question,
and will also provide some additional properties of φq.

Lemma 4.10. Let E be a curve defined over the finite field Fq. In that case, φq is a
surjective endomorphism on E(F̄q) of degree q which is not separable.

Remark 4.11. We give the proof of this lemma only for elliptic curves admitting a
short Weierstrass form because we have provided no notion of degree for elliptic curves
which do not admit a short Weierstrass form. Nevertheless, Lemma 4.10 also holds for
these curves. A proof of this result can be found in Silverman [12].

Proof. As we explained in the remark above, we will assume that E is given by a short
Weierstrass form. We will first prove that F̄q is a homomorphism given by rational
functions. To this end, we will show that φq(P1 +P2) = φq(P1) + φq(P2) for all P1, P2 ∈
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E(F̄q). Denote the coordinates of Pi ∈ E(F̄q) by (xi, yi). We first assume that P1 6= P2,
and P3 := P1 + P2. Using the formulas in Table 1, we have that

λ =
y2 − y1

x2 − x1

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1.

We now apply φq to all 3 equations. This results in the following three expressions. We
will use the notation λ′ to refer to λq.

λ′ =
yq2 − y

q
1

xq2 − x
q
1

xq3 = λ′2 − xq1 − x
q
2

yq3 = λ′(xq1 − x
q
3)− yq1.

Since φq(xi, yi) = (xqi , y
q
i ), This shows that φq(P1 + P2) = φq(P1) + φq(P2). In case

x1 = x2, or at least one of P1 and P2 equals O, the result can be verified in a similar
way.

We will now check whether the lemma holds in case P1 = P2. Using the equations in
Table 1, we then obtain the following equations.

λ =
3x2

1 +A

2y1

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1

We emphasize that 2, 3, A ∈ Fq, so they are fixed by φq. Having said that, raising the
equations above to the q-th power yields the following result. As before, we denote λq

by λ′.

λ′ =
3(xq1)2 +A

2yq1
xq3 = λ′2 − 2xq1
yq3 = λ′(xq1 − x

q
3)− yq.

Indeed, this shows that φq(2P1) = φq(P1) + φq(P1). Therefore, we conclude that φq is a
homomorphism on E.

We note that φq is rational, as both xq and yq are rational functions. This establishes
that the Frobenius map is an endomorphism on E(F̄q). Since r1(x) = xq, it is trivial to
note that deg φq = q. We also have that r′1(x) = qxq−1 = 0, since q = 0 in Fq. It follows
that φq is not separable. Theorem 2.19 allows us to conclude that φq is surjective, by
noting that it is a nontrivial morphism. �
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Remark 4.12. We would like to repeat the last property of the Weil pairing here:

en(α(S), α(T )) = en(S, T )deg(α) for all separable endomorphisms α of E.

If the elliptic curve E is defined over Fq, this property also applies when α = φq, even
though we have just shown that φq is not separable. Actually, the statement holds for
all endomorphisms α, separable of not. (See Washington [11]).

We will now illustrate some other characteristics of φq. They will involve the notions of
division polynomials and torsion group, which we encountered in the previous section.

Theorem 4.13. Let E be an elliptic curve defined over Fq given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

and let ψm be the m-th division polynomial. For all points P ∈ E(F̄q), we have that
ψm(xq, yq) = ψm(x, y)q.

Proof. We will prove this by induction on m. We have that 0q = 0 and 1q = 1, so the
proof trivially holds for ψ0 and ψ1.

Let (x, y) ∈ E(F̄q). By utilizing the results of Theorems 4.5 and 4.6, we have that

ψ2(x, y)q = (2y + a1x+ a3)q

= (2y + a1x)q + aq3
= (2y)q + (a1x)q + aq3
= 2qyq + aq1x

q + aq3
= 2yq + aqx

q + a3

= ψ2(xq, yq).

The proofs for ψ3 and ψ4 are similar, so we will omit them here. The result for all integers
n ≥ 4 can be proven by induction. It is analogous to the proof of Theorem 3.14. �

We will now see that the torsion group E[m] of an elliptic curve E over Fq is invariant
under the Frobenius map.

Corollary 4.14. Let E be an elliptic curve over Fq. If P = (x, y) ∈ E[m], then
(xq, yq) ∈ E[m].

Proof. Let P = (x, y) ∈ E[m]. By Theorem 3.9, it follows that ψm(x, y) = 0. By
Theorem 4.13, it follows that ψm(xq, yq) = ψm(x, y)q = 0q = 0. Again by Theorem 3.9,
this implies that (xq, yq) ∈ E[m]. �
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4.3 Other endomorphisms on E(Fq)

As mentioned earlier, the Frobenius map can be used to construct new endomorphisms
on E(Fq). These endomorphisms are polynomials in φq of degree 1 or 2, with coefficients
in Z. These coefficients are the multiplication endomorphisms, as introduced in Exam-
ple 2.40. We will use this section to illustrate useful properties about those maps, and
also study particular examples of these constructed endomorphisms. We will first focus
on endomorphisms of the form rφq + s.

Theorem 4.15. Let E be an elliptic curve over Fq given by y2 = x3 +Ax+B. Take any
two integers r, s, with at least one of them being nonzero. The endomorphism rφq + s
is separable if and only if p - s.

To prove this theorem, we first require the result of the following two lemmas.

Lemma 4.16. Let E be an elliptic curve over Fq given by y2 = x3 +Ax+B. Let α1, α2

and α3 be three nontrivial endomorphisms of E and suppose α1 + α2 = α3. We denote
αj(x, y) = (Rαj (x), ySαj (x)). Assume that there are constants cα1 and cα2 such that

R′α1
(x)

Sα1(x)
= cα1 and

R′α2
(x)

Sα2(x)
= cα2 .

Then
R′α3

(x)

Sα3(x)
= cα1 + cα2 .

Lemma 4.17. Let E be an elliptic curve over K and let n be any positive integer.
Denote p = char(K). Assume that for all (x, y) ∈ E(K̄), multiplication by n on E can
be expressed as

n(x, y) = (Rn(x), ySn(x)),

where Rn and Sn are rational functions. Then

R′n(x)

Sn(x)
= n.

Equivalently, we have that multipliciation-by-n map is separable if and only if p - n.

Now we have gathered all the tools needed to prove the theorem.

Proof of Theorem 4.15. Write the multiplication-by-r endomorphism as

r(x, y) = (Rr(x), ySr(x)).

Then
(Rrφq(x), ySrφq(x)) = (φqr)(x, y) = (Rqr(x), yqSqr (x))

=
(
Rqr(x), y(x3 +Ax+B)(q−1)/2Sqr (x)

)
.
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It follows that
crφq := R′rφq/Srφq = qRq−1

r R′r/Srφq = 0.

By Lemma 4.17, cs := R′s/Ss = s. Using the result of Lemma 4.16 we have that

R′rφq+s/Srφq+s = crφq + cs = 0 + s = s.

This implies that R′rφq+s 6= 0 if and only if p - s. �

Remark 4.18. We will now apply Theorem 4.15 in the case where r = 1 and s = −1.
As p - 1, we have that φq − 1 is separable. Since char(Fqn) = p for all integers n ≥ 1, we
also have that φnq − 1 is separable.

Remark 4.19. By Remark 4.9, we know that Ker(φnq − 1) = E(Fqn). Since φnq is
separable by Remark 4.18, we can use the result of Theorem 2.47 to deduce that
#E(Fqn) = deg(φnq − 1).

We will now introduce an important constant. In this section, it will mainly serve as a
coefficient of polynomials of φq with degree 2. This will not be its only useful property,
as we will see in the following sections.

Definition 4.20. Let E a curve over Fq. Then, the trace of Frobenius at q, denoted
by a, is defined to be the constant

a := q + 1−#E(Fq). (30)

This freshly defined constant will immediately play its part in the following lemma.

Lemma 4.21. Let r, s be integers with gcd(s, q) = 1. Then deg(rφq−s) = r2q+s2−rsa.

Remark 4.22. The condition gcd(s, q) = 1 is not necessary. The requirement is in-
cluded here as we proved Proposition 3.19 only for the Frobenius map and separable
endomorphisms.

Proof. We know the degree of φq by Lemma 4.10. Moreover, we note that the endomor-
phism [−1] has degree 1. Using Theorem 3.18, we now have the following equality:

deg(rφq − s) = r2 deg(φq) + s2 deg(−1) + rs (deg(φq − 1)− deg(φq)− deg(−1)) ,

= r2q + s2 − rs (q + 1− deg(φq − 1) ,

= r2q + s2 − rsa.

By Remark 4.19, we know that deg(φq − 1) = #E(Fq). The third equality then follows
from Definition 4.20. �
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We will now study polynomials in φq of degree 2. In particular, we will focus on one
specific occurrence of this type of endomorphism. A key aspect of this map will be
highlighted in the theorem below.

Theorem 4.23. Let E be an elliptic curve defined over Fq. Let a be the trace of
Frobenius. Then

φ2
q − aφq + q = 0 (31)

as endomorphisms of E, and a is the unique integer k such that

φ2
q − kφq + q = 0.

In other words, if (x, y) ∈ E(F̄q), then

(xq
2
, yq

2
)− a(xq, yq) + q(x, y) = O,

and a is the unique integer such that this relation holds for all (x, y) ∈ E(F̄q). Moreover, a
is the unique integer satisfying

a ≡ Trace((φq)m) mod m (32)

for all m with gcd(m, q) = 1.

Proof. Theorem 2.47 states that every nonzero, separable endomorphism has a finite
kernel. To show that our endomorphism is trivial, we will prove that its kernel is infinite.
Let m ∈ Zn≥1 such that gcd(m, q) = 1. Since φq is a homomorphism, Theorem 3.5
implies that the action of φq on E[m] can be represented by the matrix (φq)m. We
denote

(φq)m =

s t

u v

 .

We easily calculate that det((φq)m) = sv − tu and Trace((φq)m) = s + v. We know
that φq − 1 is separable by Proposition 4.15. Moreover, the results of Theorem 2.47 and
Proposition 3.18 allow us to write the following equalities:

#Ker(φq − 1) = deg(φq − 1),

≡ det((φq)m − I),

= sv − tu− (s+ v) + 1 mod m.

Note that sv−tu = det((φq)m) = deg(φq) by Proposition 3.18. By Lemma 4.21 it follows
that #Ker(φq − 1) = q + 1− a. Therefore we can write

q + 1− a ≡ q + 1− Trace(φq)m mod m.
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We immediately see that Trace((φq)m) ≡ a mod m. Note that the characteristic poly-
nomial of (φq)m− I is given by X2− aX + q. Now the Cayley-Hamilton Theorem states
that

(φq)
2
m − a(φq)m + qI ≡ 0 mod m.

This shows that the endomorphism φ2
q−aφq + q is the zero map on E[m]. Since we have

infinitely many choices for m, it follows that the kernel consists of the union of all sets
E[m], which is infinite. As we remarked at the start of the proof, this implies that the
endomorphism φ2

q − aq + q is indeed trivial.

We now show that a is unique. Suppose b 6= 0 also satisfies φ2 − bq + q = 0. It follows
that

(a− b)φq = (φ2 − q − bq + q) + (φ2 − q − bq + q) = 0.

We recall Lemma 4.10 which states that φq is a surjective endomorphism on E(F̄q).
This means that the multiplication-by-(a − b) map sends every element of E(F̄q) to 0.
In particular we have that E[m] gets mapped to 0. Since there are points in E[m] of
order m such that gcd(m, q) = 1, we have that (a− b) ≡ 0 mod m for such m. Again,
we note that m can be any positive integer, which forces a− b = 0. This proves that a
is unique. �

In the following proposition, we want to emphasize two notable results from the previous
proof. It also nicely illustrates where the trace of Frobenius a got its name from.

Proposition 4.24. Let E be an elliptic curve over Fq and let (φq)m denote the matrix
giving the action of the Frobenius φq on E[m]. Let a be the trace of Frobenius. Then

Trace((φq)m) ≡ a mod m, det((φq)m) ≡ q mod m. (33)

The polynomial X2−aX+ q is referred to as the characteristic polynomial of Frobenius.

4.4 Structure and order of E(Fq)

After having studied their endomorphisms, it is now time to look at the group E(Fq)
itself. This section will be used to study their structure and cardinality. We will start
with the former.

The following theorem reduces the possible structures of E(Fq) to only two options. We
use the formulation given by Washington [11], which we will also refer to for the proof.

Theorem 4.25. Let E be an elliptic curve over a finite field Fq. Then E(Fq) ' Zn for
some integer n ≥ 1, or E(Fq) ' Zn1 + Zn2 for some integers n1, n2 ≥ 1 with n1 | n2.
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We will now study the cardinality of E(Fq). The simple fact that the field Fq has finitely
many elements ensures that the number of points on E(Fq), denoted by #E(Fq), is finite
as well. Of course, we are interested in the exact order of E(Fq). Hasse’s Theorem proves
to be very useful in this regard. Its remarkable result reduces the number of possible
orders to a small interval.

Theorem 4.26 (Hasse, [19]). Let E be an elliptic curve defined over Fq. The trace of
Frobenius a satisfies

|a| < 2
√
q. (34)

Proof. We note that deg(rφq − s) ≥ 0. Using Lemma 4.21, this implies that(r
s

)2
− a

(r
s

)
+ 1 ≥ 0.

We will now use the fact that the set of fractions (r/s) with gcd(s, q) = 1 is dense in R.
The number s can be taken to be either a power of 2 or a power of 3, one of which must
be coprime with q. The sets of rationals of the form r/2m or r/3m are both dense in R.
From this notion, we can deduce that the following inquality holds for all x ∈ R.

qx2 − ax+ 1 ≥ 0.

In order for this inequality to be satisfied, the discriminant of the polynomial is either
negative or 0. Therefore we require that a2 − 4q ≤ 0. The result of Hasse’s Theorem
follows directly from this inequality. �

The result of Hasse’s Theorem can also be stated in terms of Legendre symbols, a some-
what general notion which is widely used in group theory.

Definition 4.27. For an odd prime p, the Legendre symbol is defined as follows:

(
x

p

)
=


+1 if t2 ≡ x mod p has no solution t 6≡ 0 mod p,

−1 if t2 ≡ x mod p has no solution t,

0 if x ≡ 0 mod p.

This notion can be generalized to any finite field Fq with q odd by defining, for x ∈ Fq,

(
x

Fq

)
=


+1 if t2 = x has a solution t ∈ F×q ,
−1 if t2 = x has no solution t ∈ F×q ,
0 if x = 0.
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Theorem 4.28. Let E be an elliptic curve defined by y2 = x3 +Ax+B over Fq. Then

#E(Fq) = q + 1 +
∑
x∈Fq

(
x3 +Ax+B

Fq

)
.

Corollary 4.29. Let x3 + Ax + B be a polynomial with A,B ∈ Fq, where q is odd.
Then ∣∣∣∣ ∑

x∈Fq

(
x3 +Ax+B

Fq

)∣∣∣∣ ≤ 2
√
q.

Proof. Recall that the trace of Frobenius a := #E(Fq)− (q+ 1). By Theorem 4.28, this
implies that

a =
∑
x∈Fq

(
x3 +Ax+B

Fq

)
.

By Hasse’s Theorem, the result of Corollary 4.29 immediately follows. �

A well-known fact from group theory is that ord(g)|#G for all elements g of a group G.
In particular this also holds for an arbitrary point P ∈ E(Fq).

5 Point-counting algorithms

This section will be the accumulation of all the previous sections and the previously
introduced theory will be applied here.

A naive way to find multiples of ord(P ) would be to check whether kP = O for every
integer k in the interval [q+1−2

√
q, q+ q+2

√
q]. This procedure is sometimes referred

to as the brute force method, and requires up to 4
√
q steps. We can do much better

then that.

5.1 Baby Step, Giant Step algorithm

Of course, it is desirable that the number of steps be as low as possible. The following
algorithm is therefore more suitable than brute force, as it reduces the maximum number
of steps by a factor of q1/4.

Baby Step, Giant Step
Input: An elliptic curve E over Fq and a point P ∈ E(Fq)
Output: ord(P )
Maximal number of steps: 4q1/4
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1. Compute Q = (q + 1)P .

2. Choose an integer m such that m > q1/4. Compute and store the points jP for
j = 0, 1, . . . ,m.

3. Compute the points

Q+ k(2mP ) for k = −m,−(m− 1), . . . ,m

until there is a match Q + k(2mP ) = ±jP with a point (or its inverse) in the
stored list.

4. Conclude that (q + 1 + 2mk ∓ j)P = O. Let M = q + 1 + 2mk ∓ j.

5. Factor M and let p1, . . . , pr be the distinct prime factors of M .

6. Compute (M/pi)P for i = 1, . . . , r. If (M/pi)P = O for some i, replace M with
M/pi and go back to step (5). If (M/pi)P 6= O for all i, then M is the order of
the point P .

Before the algorithm is proved, we first require the result two useful lemmas. The proofs
as displayed below can both be found in Washington [11].

Lemma 5.1. Let m be as in the algorithm. Let a be an integer with |a| ≤ 2m2. There
exist integers a0 and a1 with −m < a0 ≤ m and −m ≤ a1 ≤ m such that

a = a0 + 2ma1.

Proof. Let a0 ≡ a (mod 2m), with −m < a0 ≤ m and a1 = (a− a0)/2m. Then

|a1| ≤ (2m2 +m)/2m < m+ 1.

�

Lemma 5.2. Let G be an additive group and let g ∈ G. Suppose Mg = 0 for some
positive integer M . Let p1, . . . , pr be the distinct primes dividing M . If (M/pi)g 6= 0 for
all i, then M is the order of g.

Proof. Let k be the order of g. Then k |M . Suppose k 6= M . Let pi be a prime dividing
M/k. Then pik | M so k | (M/pi). Therefore (M/pi)g = 0, contrary to assumption. It
follows that k = M . �

Proof of the algorithm. Steps 1, 2, 4 and 5 are straightforward. We therefore start with
the proof of Step 3, which requires us to show that there is indeed a match. Since
q1/4 < m, we have that 2

√
q < 2m2. Let a the trace of Frobenius. Hasse’s Theorem
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implies that |a| ≤ 2m2. We can write a = a0 + 2ma1, as in Lemma 5.1. Note that
|a1| ≤ m. This means the algorithm could require us to calculate Q + k(2m)P for
k = −a1. This is done as follows:

Q+ k(2m)P = (q + 1− 2ma1)P

= (q + 1− a− a0)P

= #E(Fq)− a0P

= a0P

= ±jP

where j = |a0| ≤ m. This establishes that Step 3 will always yield a match.

Step 6 is proved by noting that #E(Fq) is an additive group and applying the the result
of Lemma 5.2. �

Remark 5.3. The Baby Step, Giant Step algorithm is a useful tool for determining the
order of the group E(Fq). For this, we apply the algorithm to randomly chosen points
on E(Fq). This should be done until the least common multiple (lcm) of the orders of
these points divides a unique integer in the interval [q + 1− 2

√
q, q + 1 + 2

√
q].

The reason that this approach works is a combination of basic group theory and Hasse’s
Theorem. If we have found several orders of points in E(Fq), then we know from group
theory that lcm of these orders divides #E(Fq). If the lcm exceeds 4

√
q, then Hasse’s

Theorem says there is a unique multiple of the lcm which is the group order.

5.2 Schoof’s algorithm

Even the Baby Step Giant Step algorithm can be improved upon. The genius of the algo-
rithm we are about to present lies in the clever use of the Chinese Remainder Theorem.
We will provide the namesake of this thesis directly below.

Algorithm.
Input: An elliptic curve E : y2 = x3 +Ax+B over Fq where q = pr

Output: #E(Fq)

1. Choose a small set of primes S = {2, 3, 5, · · · , L} with p 6∈ S and
∏
`∈S ` > 4

√
q.

2. Let a := q + 1−#E(Fq) ∈ Z. Using a sub-algorithm, compute a mod ` for every
` ∈ S.

3. Using the Chinese Remainder Theorem, compute a mod
∏
`. Determine the

integer a ∈ Z with |a| ≤ 2
√
q that satisfies this congruence.

4. Output #E(Fq) = q + 1− a.
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Proof. Suppose that we know a mod ` for each ` ∈ S. Then by the Chinese Remainder
Theorem, we can lift a mod ` to a mod

∏
`∈S `. Then Hasse’s Theorem 4.26 implies

that a mod
∏
`∈S ` lifts uniquely to a ∈ Z. Then we compute #E(Fq) = q + 1− a. �

The sub-algorithm.
Input: An elliptic curve E : y2 = x3 +Ax+B over Fq where q = pr and a prime ` 6= p
Output: (a mod `)

1. a ≡ 0 mod 2 if gcd(x3 +Ax+B, xq−x) 6= 1 and (a ≡ 1 mod 2) if gcd(x3 +Ax+
B, xq − x) = 1.

2. If ` is odd, do the following: Let q` ≡ q mod ` with |q`| < `/2

(a) Compute the x-coordinate of

(x′, y′) = (xq
2
, yq

2
) + q`(x, y) mod φ`.

(b) For j = 1, 2, . . . , (`− 1)/2, do the following.

(1) Compute the x-coordinate xj of (xj , yj) = j(x, y).

(2) If x′ − xq − j ≡ 0 mod ψl, go to step (3). If not, try the next value of j
(in step (c)). If all values 1 ≤ j ≤ (` − 1)/2 have been tried, go to step
(d).

(3) Compute y′ and yj . If (y′ − yjq)/y ≡ 0 mod φ`, then a ≡ j mod `. If
not then a ≡ −j mod `.

(c) If all values 1 ≤ j ≤ (` − 1)/2 have been tried without success, let w2 ≡ q
mod `. If w does not exist, then a ≡ 0 mod `.

(d) If gcd(numerator(xq − xw), φ`) = 1, then a ≡ 0 mod `. Otherwise, compute

gcd (numerator((yq − yw)/y), φ`) .

If this gcd is not 1, then a ≡ 2w mod `. Otherwise, a ≡ −2w mod `.

Proof. Let ` = 2. Recall that a point P = (x, y) has order 2 only when y = 0. Therefore,
we need to find a root e of X3 + AX + B. For P = (e, 0) to be an element of E(Fq),
we require that e ∈ Fq, so e also needs to be a root of Xq −X. To check whether both
conditions hold, it suffices to check whether

gcd(X3 +AX +B,Xq −X) 6= 1.

If this is indeed the case, it follows that #E(Fq) = q+1−a ≡ 0 mod 2. Since we assumed
q to be odd, it follows that a ≡ 0 mod 2. This proves Step 1 of the sub-algorithm.
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Suppose now that ` is an odd prime such that ` 6= p. We assume that P = (x, y) ∈ E[`]
and P 6= O, unless explicitly stated otherwise. Let E be the given elliptic curve over Fq.
Then Theorem 4.23 says that the Frobenius automorphism satisfies the equality

φ2
q − aφq + q = 0, (35)

where a = q + 1−#E(Fq).

Let (φq)` denote the matrix of the action of φq on E[`]. Then by Proposition 4.24, we
know that Trace(φq)` = a mod `. So to determine (a mod `) we compute Trace(φq)`
for every odd prime ` ∈ S.

Note that we have that aP = bP when a ≡ b mod `. This allows us to replace q by
q` in (35), where q` ≡ q mod ` and |q`| < `/2. Working with smaller numbers is much
more convenient for implementation purposes, so replacing q by q` is desirable.

Applying the identity (35) to P yields the following equality.

aφq(P ) = φ2
q(P ) + q`P. (36)

By Corollary 4.14, we have φq(P ), φ2
q(P ) ∈ E[`]. Since q` and ` are coprime, it also

holds that q`P ∈ E[`]. Hence from equation (36) we can derive (a mod `). In order to
do this, our aim is now to determine all terms in (36). Before we do this, we will set
some notational conventions. For integers j, we will use the following notation:

jP = j(x, y) = (xj , yj).

We can determine both coordinates of jP using the division polynomials by Theorem 3.7
and Definition 3.15. As the multiplication-by-j map is an endomorphism, (14) says we
can write xj = r1,j(x) and yj = r2,j(x)y, where r1,j and r2,j are rational functions. In
particular, we can do this when j = q`.

We now will determine all terms of (36). First assume that φ2
q(P ) 6= ±q`(P ). We define

(x′, y′) := φ2
q(P ) + q`(P ) = (xq

2
, yq

2
) + q`(x, y) 6= O.

In this case, we have aφq(P ) 6= O, so a 6= 0 mod `. By assumption, we also have that
the x-coordinates of φ2

q(P ) and q`(P ) differ, so we can calculate x′ by excluding the
possibility that the line through φ2

q(P ) and q`(P ) is tangent.

x′ =

(
xq

2 − xq`
yq2 − yq`

)2

− xq2 − xq` .

We moreover calculate(
yq

2 − yq`
)2

= y2
(
yq

2−1 − r2,q`(x)
)2

=
(
x3 +Ax+B

) ((
x3 +Ax+B

)(q2−1)/2 − r2,q`(x)
)2

.
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Since we already know that xq` is a rational function in x, this last calculation shows
that x′ can be written as a rational function in x.

We will now also explicitly calculate y′. Note that (14) allows us to write yq` = yr2,q`(x).
Moreover, we recall that q2 is odd. We use these two results to calculate

y′ =

(
yq

2 − yq`
xq2 − xq`

)
(x′ − xq2)− yq2

=

(
y(x3 +Ax+B)(q2−1)/2 − yr2,q`(x)

xq2 − xq`

)
(x′ − xq2)− (x3 +Ax+B)(q2−1)/2y

= y

[(
(x3 +Ax+B)(q2−1)/2 − r2,q`(x)

xq2 − xq`

)
(x′ − xq2)− (x3 +Ax+B)(q2−1)/2

]

Since we have already shown that x′ is a function of x, it follows that y′/y is a function
of x.

As our goal is to find (a mod `) in equation (36), we now want to find the integer j
such that

(xqj , y
q
j ) = (x′, y′). (37)

For such j, we have that jφq(P ) = aφq(P ). Recalling that φq(P ) ∈ E[`]∗, this allows us
to conclude that a ≡ j mod `.

We first start by comparing the x-coordinates of (37). We have (x′, y′) = ±(xqj , y
q
j ) if

and only if xqj = x′. This last equality comes from the fact that (xqj , y
q
j ) and −(xqj , y

q
j )

have the same x-coordinate. This fact is very useful, since we then only need to check
the x-coordinates of the terms in (37) for j ∈ {1, 2, . . . , (`− 1)/2}. If the equation holds
for P = (x, y), it follows that it holds for all points in E[`]∗ as P was chosen arbitrarily.
As ` 6= 2, Corollary 3.9 says that the roots of ψ` are the x-coordinates of all points in
E[`]∗. We note that the roots of ψ` are simple, which follows from Corollary 3.9 and our
assumption that ` 6= p. Both statements together imply that x′ − xqj ≡ 0 mod ψ`. If
the roots of ψ` are not simple, we would in fact only obtain that ψ` divides some power
of x′ − xqj .

Suppose now that we have found an integer j such that (37) is satisfied. Then, only the
sign of the y-coordinate is left to be determined. Before we do this, we will show that
yqj/y is a rational function of x. Recall that we can write yj = r2,j(x)y. Using the fact
that q is odd, we can calculate

(yj)
q = rq2,j(x)yq

= rq2,j(x)(x3 +Ax+B)(q−1)/2y

Therefore, yqj/y is a function of x (the x-coordinate of P ∈ E[`]∗).
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We have therefore established that yqj/y and y′/y are both rational functions of x, There-
fore we are now able to explicitly calculate both terms, which allows us to determine
whether y′/y = yqj/y or y′/y = −yqj/y for all points of E[`]∗. Using the same reasoning
we applied when comparing x′ and xqj , it is only required to verify one of the equations
modulo ψ`. If (y′− yqj )/y ≡ 0 mod ψ`, then we conclude that y′/y = yqj/y. This implies
that a ≡ j mod `. If (y′ − yqj ) 6≡ 0 mod ψ`, then we have that a ≡ −j mod `. This
finishes the proof of part (b) of the sub-algorithm.

If (37) does not hold for any j ∈ {1, 2, . . . , (` − 1)/2}, it has to be the case that j ≡ 0
mod `. This forces φ2

q(P ) = ±q`P for all P ∈ E[`]. We will now determine (a mod `)
for both scenarios. After that, we will provide a criterion which determines which of the
two cases we are dealing with.

Case 1: φ2
qP = q`P . If a = 0 mod `, then by (36), we get 2q`P = O for all P ∈ E[`].

This only holds if ` = 2 or ` = p, however we assumed that ` is an odd prime and not p.
So in this case a 6= 0 mod `.

By the equality (36), it follows that aφqP = φ2
qP + q`P = 2q`P , so a2q`(P ) = (aφq)

2(P )
for all P ∈ E[`]. Therefore, we get a2q ≡ 4q2 mod `. Here if q is not a square modulo `,
we get a = 0 mod ` and ` = 2 or ` = p. So we cannot be in this case.

So let us suppose that q is a square modulo ` and set w2 = q. Therefore, we can write
for all P ∈ E[`] that O = (φ2

q − q)P = (φq + w)(φq − w)P . It must be the case that
either (φq − w)P = O or (φq + w)P ′ = O, where P ′ = (φq − w)P . This establishes the
existence of a point P ∈ E[`] satisfying φqP = ±wP . The sign of ±wP can then be
determined in the exact same way as we did in the proof of step (b), where w replaces
the role of j.

Again, we have two possibilities to consider. We first explore the case that φqP = wP .
Then O = (φ2

q−aφq+q)P = (q−aw+q)P = (2q−aw)P . It follows that aw ≡ 2q ≡ 2w2

mod `. This shows that a ≡ 2w mod `. In the case that φqP = −wP , an almost
identical calculation yields a ≡ −2w mod `.

Case 2: φ2
qP = −q`P . The equality (36) gives us aφqP = O for all P ∈ E[`]. So this

implies a ≡ 0 mod `.

We now need a criterion which determines whether we are dealing with Case 1 or 2. If
we are in Case 1, then we proved that q is a square mod p. (This implies we can write
w2 = q for some integer w). Therefore we are dealing with Case 1 if q is a square. If
not, then we are in Case 2. This proves step (c) of the sub-algorithm.

If we are in Case 1, then we have already showed that there is a point P ∈ E[`] which
satisfies φqP = ±wP . As the x-coordinates of these points are equal, it holds that
xq − xw = 0. This expression is a rational function of x by (14). Therefore we are in
Case 1 if we are able to find a point P ∈ E[`] satisfying φqP = ±wP . To see if such a
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point exists, we need to check whether

gcd(numerator(xq − xw), ψ`) 6= 1.

If this gcd is different from 1, then we are in Case 1. If the gcd is 1, then we are
dealing with Case 2. In both cases, the value of (a mod `) is then calculated in the
way we illustrated earlier in the proof. This concludes the proof of step (d), which also
concludes the proof of Step 2 of the sub-algorithm. �

6 Conclusion

The last line of the proof of Schoof’s algorithm also concludes our thesis; an accumulation
of different branches of mathematics, all providing essential building blocks to prove an
incredibly useful application of the Chinese Remainder Theorem. It is fascinating to
observe how an ancient result in mathematics continues to be very relevant today.
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