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Abstract

A growth of human population and an increase in the trading commerce has caused a crowded
road network. On the other hand, online information and communication technology has seen
rapid growth and has become more affordable. This allowed ridesharing to become an active
research topic for both academia and industry. In ridesharing, passengers share the same
vehicle to traveling the same direction or reach a common destination and split travel costs
such as gas, toll, and parking fees. Much research is done on this topic. However, knowledge
on the influence of Value-Of-Time has been lacking. A passenger’s Value-Of-Time is its desire
to reach its destination as quickly as possible, which is distinct value for an individual.

The goal of this research is to design an optimization model that creates a ridesharing transport
schedule and studies the effect of Value-Of-Time on the total travel cost. We consider two
scenarios; where riders can and cannot deviate from the schedule. For the former scenario, a
greedy transit algorithm is created to calculate the costs for riders not following the schedule.
It was concluded that the implementation of Value-Of-Time prevents greedy transits to a
certain extent, which has a positive effect on the total travel costs. To test the network where
riders cannot deviate from the schedule, the model is tested for a load-sharing schedule for
trucks. Sharing cargo has a beneficial effect on the total travel costs. In this situation, it is
concluded that the implementation has a substantial beneficial effect on the service quality in
terms of arrival time, while the increase in travel costs is limited.
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1 | Introduction

This chapter is divided in three sections. In section 1.1, the problem and its context are
investigated and the motivation for this research is explained. This section will describe the
system and the stakeholders are identified. Hereafter, the goal is stated and the method
suitable for achieving the goal is explained. This section ends with the research questions.
Section 1.2 provides more information on the research that is already done on ridesharing.
Section 1.3 will clarify what this research will contribute to the general knowledge base.

1.1 Problem and research motivation

1.1.1 Problem background

A growth of human population and an increase in the trading commerce has caused a crowded
road network. On the other hand, online information and communication technology has seen
rapid growth and has become more affordable. This allowed ridesharing to become an active
research topic for both academia and industry (Asirin and Azhari, 2018). Traditionally, there
were two main systems to reach a destination (Furuhata et al., 2013); the first system contains
a fixed schedule and a fixed geographic route. These fixed-line systems charge the traveller a
small amount, but have little convenience. Contrary to the first system, there is the flexible
system; private cars or taxis. These come at a higher cost, but are more convenient and
are often the faster option. Conceptually, ridesharing falls in the middle these two systems;
combining the flexibility and comparable speed of private cars with the reduced cost of fixed-
line systems, at the expense of convenience. In ridesharing, passengers share the same vehicle
to travel in the same direction or reach a common destination and split travel costs such as
gas, toll, and parking fees. A rise of ridesharing platforms can decrease traffic congestion and
overall travel costs (Mitchell et al., 2010).

Ridesharing is a branch of research of the traditional vehicle routing problems. These vehicle
routing problems have been introduced in 1959 (Dantzig and Ramser, 1959) by finding a
method to minimize the mileage of trucks. Concurrent with the rise of the World Wide Web,
real-time ridesharing models were first introduced in 1997 (Ferguson, 1997). However, much
of the research since then was focused on one switch to a different vehicle (a single hop).
Limited research has been done on a multi-hop and multi-rider system (Chen et al., 2019). In
2018, stochastic travel time has been introduced to a ride sharing network (Long et al., 2018)
and it showed that the stochasticity of travel time has a significant impact on the transport
schedule. The authors also stated that the passenger’s Value of Time (VOT) has a significant
impact on the service quality of riders, but they did not study to what extent. A passenger’s
VOT is its desire to reach its destination as quickly as possible. This is an important value in
ridesharing, because the travel time of an individual can increase compared to flexible systems
(Wei et al., 2019; Furuhata et al., 2013).
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Alternative use cases

Ridesharing models have more use cases than just riders sharing a car. Instead of passengers,
these models have been used for a network for retrieving messages (Fanelli and Greco, 2015).
It this network, the car is regarded to have infinite capacity since messages do not deplete the
space of the car. As a second example, a network has been studied where both normal drivers
and autonomous vehicles (Wei et al., 2019) pick up passengers. Their study included real-time
scheduling between autonomous vehicles and human drivers. Moreover, in a network where
goods are transported by trucks, the goods can be seen as the passengers (Unnikrishnan et al.,
2009). Instead of passengers switching vehicles, goods can be loaded to a different truck for
transportation.

1.1.2 Ridesharing for truck transport

Filling rate of trucks

There is a rising demand in the global trading commerce. Due to its polluting nature, the
increase of the use of transportation means has gained interest. Increasing travel costs due to
raise in fuel cost, longer distance, faster and on-time deliveries have forced companies to use
their transport resources in a more efficient and effective way in order to stay in competitive
business environment. According to the European Environment Agency (EEA) report (EEA,
2017), 24% of all CO2-emissions are linked to road transport in the EU; 23% of those emissions
come from medium- and heavy-duty trucks. There is an incentive to increase the efficiency
of truck transport and therefore, much research has been done to prevent occurrence from
empty trucks (Lin et al., 2016) and creating optimization models to minimize total travel cost
(Li et al., 2018). However, not much research is done on partially empty trucks. By sharing
shipments of multiple trucks, energy and CO2-emissions can be decreased. Therefore, loading
goods from many trucks to fewer trucks at nodes can be seen as ridesharing problem.

According to Pahlen and Börjesson (Pahlén and Börjesson, 2012), actions increasing the filling
rate and efficient use of transport resources are primarily not in the interest of neither the
shippers, nor the customers due to increased handling. Related disadvantages of ridesharing
models is the inconvenience for passengers, since other passengers have to be taken into con-
sideration, passengers have to switch cars, and ridesharing can lead to increased transport
time (Furuhata et al., 2013). The human perspective tends to introduce further requirements
leading to balance user inconvenience against minimizing routing costs. This is an existing
problem for many vehicle routing problems; a widely-used measure of customer satisfaction
in the school bus routing problem is the time comparison of the chosen route with respect to
the shortest path to a destination (Park and Kim, 2010).

Business context

In truck transport, the transport schedule is created by the Logistics Service Provider (LSP).
The schedule determines what truck delivers which goods to its destination and at what time.
It is in their interest to create a cost efficient schedule while fulfilling the wishes of customers.
This research aims to provide the next step in incorporating ridesharing in the transport
schedule of trucks. It is already proven that this can yield cost savings for the LSP (Lin et al.,
2012). Therefore, the LSP is interested in the outcome of this research.
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As mentioned in 1.1.1, customers have an VOT, which depends on the desired arrival time. For
a truck transport model, the VOT can be seen as cost penalty for not reaching the destination
at the desired time. Due to the fact that ridesharing can increase an individual’s travel time
(Wei et al., 2019; Furuhata et al., 2013) and the arrival time depends will depend on the
desires of multiple riders, the effect of a customer’s VOT should be known if a ridesharing
model is implemented in truck transport scheduling.

1.1.3 Problem statement

The problem statement for this research is formulated as follows:

The LSP has high costs for providing truck transportation of goods due to low filling rate,
which can be reduced by implementing a ridesharing model. However, there is a knowledge
gap on how a customer’s Value-Of-Time influences the performance of such model in terms

of total travel costs, filling rate and service quality.

The initial problem is lack of efficiency in the filling rate of the LSP, which is solved by
implementing a ridesharing model for scheduling. However, a knowledge gap on the influence
of VOT prevents providing excellent service quality, since ridesharing models are indifferent
to the exact arrival time.

Scope of research

In this research, a routing schedule will be made for truck transport where goods can be loaded
to a different truck at nodes. In this model, trucks and goods are already available at the
nodes to start transportation. For a given time frame, information is available for the delivery.
For each good, there is information on its availability time, due date, final destination and
VOT. This information will be randomized. In this research, a complete directed graph will
be used. Only the nodes and links in this graph can be used. Empty trucks that will not be
used will leave the system.

1.1.4 System description

In this section, the system is described. The higher system is the delivery of goods by truck
and it consists of multiple subsystems as described in Figure 1.1. The inputs to this system
are the goods that need to be delivered, the delivery requests with information on the due
date, VOT and destination of goods, and the empty trucks. The outputs for this system are
the delivered goods and empty trucks. Information on the delivery requests and the empty
trucks will enter the first subsystem, where the truck schedule will be created. Its output are
the scheduled empty trucks, which will enter the next subsystem ’transfer goods’ alongside
with the goods. Subsequently, based on the truck schedule, part of the trucks will drive to
their final destination and the other trucks will drive to a meeting point. At this meeting
point, goods are loaded transferred, which will create empty trucks that will leave the system.
Other trucks can either drive to their next meeting point or drive to their final destination.
Once the goods are at their final destination, delivered goods and empty trucks will leave the
system.
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Figure 1.1: Model of the system of the delivery of goods by trucks

1.1.5 Stakeholder analysis

A stakeholder is considered someone who has interest, or is in another way affected by this
research. Therefore, the stakeholders might have different requirements regarding knowledge
generation (Wieringa, 2014). In this section, the problem owner and other stakeholders are
identified. In addition, the different stakeholders are placed in a matrix to show their relative
importance based on influence and interest as visualized in Figure 1.2.

Problem owner

The problem owner is scheduler of truck transport, which is the LSP. The LSP has a stake
in improving the service quality of the shipping of goods. They are affected by this research,
because in order to implement a ridesharing model in practice, it is important to understand
the effect of a customer’s VOT.

1.1.6 Other stakeholders

Other stakeholders are the truck drivers, since they are affected by the outcome as well. When
implementing ridesharing, it is expected that they have to load or deload the goods more often,
which takes time and effort. In addition, customers have stake in this research, since LSP can
offer lower shipping prices after implementation and customers might have to sacrifice shipping
speed.
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Figure 1.2: Quadrant that describes the relative power and interest of stakeholders

1.1.7 Goal statement

The main goal of this research is to fill a knowledge gap on the influence of VOT on total
transportation costs, filling rate and service quality. By studying this effect on a general
ridesharing network, the conclusion should also hold for different ridesharing appliactions.

The goal statement for this research is formulated as follows:

The goal is to design an optimization model that creates a ridesharing schedule in order to
determine the influence of Value-of-Time on total travel costs, filling rate and service quality

within 5 months.

After this goal has been achieved, a different application of ridesharing will be tested. The
goal for the LSP is to implement a ridesharing model that creates a transport schedule for
their truck delivery system. They are interested in implementing such a model, because it
can have a beneficial effect on the total travel costs. However, it is important that the model
provides a high service quality for its customers. Therefore, this research will focus on one
aspect of perceived quality, the arrival time. By implementing VOT in a load sharing network
for trucks, its service quality towards the customers should improve. It is expected that this
closes the presented knowledge gap. A time bound of five months has been selected as the
project is due within five months.

1.1.8 Method

From the goal statement it can be concluded that this research is knowledge-oriented, since it
is focused on filling a knowledge gap on the influence of VOT. The appropriate cycle for this
research is the empirical cycle (see Figure 1.3), since this cycle is used to obtain new knowledge
(Heitink, 1999). The first step in this cycle is the observation step. It is already observed from
literature that the influence of VOT is important, but not yet studied (Long et al., 2018).
For the induction step, an hypothesis is formulated for the main research question, which is
done in 1.1.9. The expectation is that the knowledge gap is filled by validating or refuting the
formulated hypothesis.

The third step is the deduction step, where an optimization model is created that generates a
schedule to transport a fixed number of goods. Subsequently, the experiments will be formu-
lated. The model is created as a tool to generate data in the experiments. The experiments
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will be performed as follows. The VOT-parameter will be given a range of values, while the
other parameters remain constant. The total travel costs and filling rate of trucks and the
service quality will be documented. The next step is testing, where the experiments will be
executed and the data is obtained. The evaluation step concludes the empirical cycle. To
conclude the cycle the data has to be analyzed and the hypothesis is evaluated.

Figure 1.3: Graphical description of the empirical cycle

1.1.9 Research question

The main research question is formulated as follows.

What is the influence of VOT on the total travel costs, filling rate and service quality in a
ridesharing network?

Hypothesis

It is expected that a high VOT will result in higher travel costs and a lower filling rate, since the
model wants to avoid costs for late arrival and will choose more often for direct transportation
to the final destination. The service quality in terms of arrival time will improve significantly.

Sub-questions

1. What is a suitable commercial solver that aids in fulfilling the goal?

2. What is a suitable network for testing the influence of VOT?

3. What is the difference in travel costs between single-hopping and multi-hopping?

In order to validate or refute the hypothesis and achieve the research goal, three sub-questions
are formulated. The first two sub-questions regard the setup of the experiments. A network
and commercial solver has to be found that provides meaningful results, while keeping com-
putation times within the time frame of this research. The last sub-questions is added due to
the limited research on multi-hopping.
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1.2 Literature review

In this section, the different directions of research of ridesharing are segregated in section
1.2.1. Subsequently, the literature review will focus on the direction that this research will
adopt in section 1.2.2. This chapter will conclude with section 1.2.3, which will dive deeper
on optimization of transport services.

1.2.1 Directions of research

Originally, ridesharing became a topic of interest in the 1970s due to the oil crisis, which
caused a spike in the petroleum price (Furuhata et al., 2013). Ridesharing is possible due to
the low filling rate of cars; this is on average 1.8 riders per vehicle for leisure trips and 1.1
for commuter trips (Peeters et al., 2005). Multiple classes of ridesharing can be identified
(Furuhata et al., 2013), each of them outlayed in the upper half of Figure 1.4. The lower
half also contains riders sharing a vehicle but do not make use of private vehicles. These are
commercial transport services. A property of ridesharing is that the travel cost is determined
by the number of riders travelling together. Therefore, public transport and personal trans-
portation are not part of this category. Dial-A-Ride takes requests from riders to go from a
to b within a specific area and then provides cars and a transport schedule. These services
typically operate from a single or more depot locations. This practice has received significant
attention from many researchers (Agatz et al., 2012) due to the increased cost efficiency. It
involves a complex vehicle assignment problem, which is a root of the ride-matching optimiza-
tion problem. However, this pick-up and delivery service provides vehicles themselves instead
of the users and therefore, it shares characteristics with both dynamic ridesharing systems
and commercial transportation (Berbeglia et al., 2010).

A common characteristic of ridesharing is the fact that the vehicles are delivered by the riders
taking part of ridesharing. Five classes ridesharing research are identified. Flexible carpooling
is a semi-organized ridesharing practice. The lack of schedule provides flexibility for its users.
There exist ridesharing locations where the schedule is formed spontaneously (Levofsky and
Greenberg, 2001) at a first-come-first-serve basis in order to gain access to reduced tolls or
faster High-Occupancy Vehicle lanes. For this research, creating a schedule to find a optimum
is of interest. Therefore, this class of research is not examined further.
General carpooling is a service type for commuters in which participant share a private vehicle.
Important participant considerations of this service are work location and the start and end
times of work (Teal, 1987; Morency, 2007). Typically, participants have a similar origin and
destination and prefer ongoing carpooling. Employer carpool programs, in which employees
take turns driving each other to work has peaked in the 1980s (Ferguson, 1997; Morency,
2007). However, this service type does not accommodate unexpected changes of schedule.
One-shot ride-match lets participants input origin, destination and time, and possibly route,
well in advance. Then, a match is created by the service or participants can select the match
themselves. This service type allows some itinerary flexibility from the user but, on short
notice, no changes can be made to the schedule. Although the number of services for this
service type has grown considerably (Dailey et al., 1999), the number of participants continues
to decline (Ferguson, 1997).
Long-distance ride-match is a matching service for long distance trips with more advanced
scheduling. Due to the longer travel distance, more can be gained by ridesharing. Therefore,
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this service type requires more flexibility from its participants in terms of origin, destination
and travel time (Dailey et al., 1999). Participants specify the departure region, and then they
search for the candidates in the list. Therefore, departure time is based on ride availability
instead of specifying preferred departure time.

Contrary to the previous service types, dynamic real-time ridesharing can construct a transport
schedule on a short notice, which is a key benefit. This is the most recent class of ridesharing
and emerged at the same time as the rise of wireless communications (Asirin and Azhari, 2018).
A passenger’s pick-up and drop-off locations need not be the same as the Origin-Destination-
pair of the driver. A passenger can travel with the driver for part of driver’s route, which
allows multi-hopping for the passengers. In addition, the route of the driver can be adjusted
in order to achieve a global optimum in terms of travel costs. Based on these characteristics,
this is the main research class for this research. Much research has been done on this service,
which will be elaborated on in Section 1.2.2.

Figure 1.4: Graphical description of matching agencies and other shared vehicle transportation
services

1.2.2 Research on dynamic ridesharing

Multiple types of ridesharing systems are researched; an overview can be seen in Table 1.1.
Most research is done on passengers travelling with one driver (Furuhata et al., 2013). Re-
searchers focus on either one or multiple passengers travelling with a single driver. However,
less research has been done on multi-hopping (passengers travelling with multiple drivers).
Multi-hopping allows for a greater global optimum (Lin et al., 2012).
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Single passenger Multiple passengers

Single driver Matching of pairs of
drivers and passengers

Routing of drivers to pickup
and drop-off passengers

Multiple drivers Routing of passengers
to transfer between riders

Routing of drivers
and passengers

Table 1.1: Types of ridesharing systems in research

Moreover, dynamic ridesharing contains a minimum cost flow problem, which is a decision
problem to find the cheapest possible way of sending a certain amount of flow through a
flow network. The foundation for this type of research has been set by Busacher and Gowen
(Busacker and Gowen, 1960). In literature, these cost flow problems are solved by means
of a construction algorithm or a search algorithm. The construction algorithm start with
an empty or incomplete solution and and incrementally make it more complete. A search
algorithm starts with one or more complete candidate solutions, and incrementally combine
and modify them with the goal of generating improved or more complete solutions. The search
algorithm is used by commercial optimization solvers in order to improve the performance of
these models. Both types of algorithms are used to study certain aspects of ridesharing.
Therefore, the knowledge of the research of both means complement each other. This research
will make use of a commercial optimization solver with a search algorithm.

Construction algorithms

Watel and Faye designed an algorithm to transport as many passengers as possible with
one taxi (Watel and Faye, 2018). Fanelli and Greco designed a ride sharing model with
a vehicle of unlimited capacity (Fanelli and Greco, 2015). Unlimited capacity is possible
when the load is considered to be a message and the drive will ride through the network to
pick up messages. An algorithm is proposed which creates a routing schedule to pick up all
the messages. Subsequently, it is proved mathematically that is in fact the optimal routing
schedule. Quadrifoglio et al. and Zhao and Dessouky studied the allowance of one or more
detours for each rider to allow for ridesharing (Quadrifoglio et al., 2008; Zhao and Dessouky,
2008). A construction algorithm was used to find the optimum deviation from the base route.

Search algorithms

In search algorithms, an objective function is created, which is minimized or maximized.
Generally, there are four types of functions that are maximized or minimized (Agatz et al.,
2012);

◦ Minimizing the total number of travel miles of vehicles.

◦ Minimizing the total number of travel time of vehicles.

◦ Maximizing the total number of participant riders in the network

◦ Maximizing service quality of riders
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Often, one objective is chosen based on the criteria of the study. However, multiple studies
use multicriteria optimization, such as (Wei et al., 2019) who minimized transport costs and
maximized driver’s profits. Herbawi and Weber (Herbawi and Weber, 2012) studied all four
types of functions that are listed above.

An important aspect of ridesharing is how travel costs are divided among participants. In
some studies, travel costs are divided equally among rideshare partners (Geisberger et al.,
2009). Agatz et al. (Agatz et al., 2011) propose a way to allocate the costs of a joint trip
proportional to the distances of the separate trips. However, intuitively, more ridesharing
occurs if the rider gets a relatively higher compensation, since he will be more willingly to
make detours. This effect was studied by Kleiner et al. (Kleiner et al., 2011).

In addition, multiple studies have investigated the effect of adding noise to the system. Long
et al. studied the effect of stochastic transport times (Long et al., 2018). In this research, they
also studied the effect of uncertain travel costs where the travel cost per hour varies. Chen
et al. (Chen et al., 2019) created a ridesharing model that creates a schedule for employees
going to work at a fixed time and leaving work at an uncertain time. Correa et al. studied the
effect of failing links in a ridesharing network (Correa et al., 2019). Due to extreme congestion
or road construction these links are no longer used. A probability density function is used
to simulate this occurrence. Similarly, Fu simulated stochastic congestion with the option to
find detours in the network (Fu, 2002).
Alternatively, there is research on studying the effects of different types of networks. Wei et
al. (Wei et al., 2019) studied a network with mixed autonomy. In this network, there are
autonomous vehicles that travel a fixed route and there are human drivers that get a financial
compensation for travelling a tailored route. Fahnenschreiber et al. studied the effect of multi-
modal transport (Fahnenschreiber et al., 2016a) in which a network is created with drivers
and public transport. This research implemented one modality to have an existing schedule
and the other modality’s schedule to be created. Naseri Gorgoon et al. studied the effect
of network size and passenger’s maximum waiting time (Naseri Gorgoon et al., 2019). As
expected, larger networks and greater maximum waiting times result in more ridesharing.
Much research includes a feature to improve the service quality of passengers, for example by
including a maximum waiting time (Agatz et al., 2012). However, Gruebele main focus was
the influence of different service quality factors (Gruebele, 2008). His model maximizes the
Perceived Quality of Service on a user and a system level, which includes factors such as trip
cost, social networking, trip time and wait time.

In all ridesharing models, a schedule is created that creates a global optimum. However,
this does not mean that it is the optimum situation for every individual. Therefore, it can
be concluded that not every individual will follow the created schedule, which will cause a
disturbance in the created schedule. This is an example of the price of anarchy, the degradation
of system-wide performance if participants act selfishly. In ridesharing, riders can decide to
drive themselves instead of travelling as a passenger. This effect was studied by Koutsipas et
al. (Koutsoupias and Papadimitriou, 1999). Its importance was stressed by Long et al. (Long
et al., 2018).

In conclusion, studying the effect of more realistic scenarios by introducing stochasticity or
different networks has been an active topic. Likewise, the effect of cost penalties to ensure
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better service for the passengers, compensations for drivers to allow for additional ridesharing
and the effect on the global optimum of acting selfishly has been studied. However, the exact
effect of riders choosing to drive themselves due to an unsatisfactory arrival time has not been
researched. This can be introduced as a rider’s VOT. The importance of this effect has been
recognized in literature (Long et al., 2018), but to what extent this affects the optimality of
the schedule has been lacking. Therefore, this research will focus on the VOT in a dynamic
real-time ridesharing system.

1.2.3 Optimization of transport services

Much research has been done on general vehicle routing optimization. Theoretically, rideshar-
ing can contribute to many benefits to traditional vehicle routing, such as less traffic con-
gestion, fewer CO2-emissions and lower travel costs. However, the share of work trips that
use ridesharing has decreased by almost 10% in the past 30 years (Furuhata et al., 2013).
It appears riders prefer the flexibility of driving themselves, which can also be concluded for
transport services for goods (Pahlén and Börjesson, 2012). Intuitively, transportation of goods
could receive a greater gain from rideshare optimization, since shippers are expected to follow
their schedule. For the shipper, there is no incentive to abandon ridesharing and drive di-
rectly to the destination. However, in transport services, customers can often set preferences
for transportation. For example, customers set modality constraints on their shipment, while
multi-modal transport has proven to allow substantial financial benefits (Fahnenschreiber
et al., 2016b). Fahnenschreiber et al. studied a ridesharing network with truck and train
transport. Train transportation is static and contains a static schedule. Truck transport uses
a flexible schedule that is created by their model.

Hammadi and Ksouri studied many aspects of multi-modal transport, which included an load-
sharing optimization model to minimize inventory cost (Hammadi and Ksouri, 2013). In this
research, vehicles were travelling from multiple depots to special load-sharing hubs. It was
mentioned that sharing cargo is often not in the interest of both shippers and customer due to
the increase in handling (Pahlén and Börjesson, 2012). Therefore, it is of significance to present
the financial benefits of sharing cargo to create incentive for participants. If we assume cargo
to be a rider that needs to be transported from origin to destination, then it demonstrates
many similarities to ridesharing. More specifically, it shares most properties of Dial-A-Ride,
since cargo does not have the option to drive itself. By incorporating a ridesharing schedule,
cargo can travel with the driver for part of driver’s route, which allows for multi-hopping.

1.3 Contribution of research

Before we can answer the main research question, a foundation has to be set. In order to study
aspects of ridesharing, a ridesharing model has to be created. This will be done by creating
an optimization model that minimizes the total costs. In this model every rider has to travel
from origin to destination by either driving themselves or by travelling with a different rider.
Subsequently, a study is done that will select a suitable network and a suitable commercial
solver for this research. The commercial solver is the software that solves the minimization
problem. The commercial solvers CPLEX and Xpress-IVE are studied on computation time
for different networks. In addition, pre-processing will be added in order to further decrease
the computation time. This is done by removing part of the possible solutions that are in
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the feasible set. In these removed solutions, a small selection of drivers transport all riders.
Intuitively, these solutions do not make sense, because riders in the network are not taxi
drivers.

1.3.1 Improving service quality

After the research foundation has been set, elements on ridesharing can be included in the
model in order to study its effects. A constraint will be added to limit the solution to single-
hopping. Therefore, the benefit of multi-hopping can be explored. Subsequently, a cost
penalty for VOT is included in the objective function. Therefore, the model will regard the
exact arrival time of riders. By including VOT in the objective function, the total travel
costs will increase. The reason for this is that more riders will arrive closer to their preferred
arrival time, which makes it more difficult for ridesharing to occur. After introducing this cost
penalty, the improvement in service quality and the increase in travel costs can be measured.
This is studied by implementing ridesharing in a transport network for goods. The model is
adjusted to fit this type of network. By comparing switching of vehicles with no switching of
vehicles, the cost benefit of including ridesharing in goods transport is presented. The VOT is
also included for this experiment in order to demonstrate the improvements in service quality.

1.3.2 Preventing greedy riders

Furthermore, a game theory approach will be introduced in order to examine possible cost
benefits of including VOT in the objective function. If a rider is not satisfied with the rideshar-
ing schedule in terms of arrival time, then this rider takes a greedy transit. This is phenomena
is called price of anarchy and can have considerable travel cost consequences. This research
is the first to study the price of anarchy using a game theory approach and also the first to
study the exact effect of VOT.
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2 | Mathematical model

In this chapter the exact problem is described and the mathematical model will be formulated.
Section 2.1 describes the problem that will be modelled. Subsequently, section 2.2 will specify
the formulation that will be used. Section 2.3 will define the mathematical model, which
includes an objective function and the constraints. Concluding the chapter is section 2.4,
which explains the assumptions that are made in the model in order to simplify the model.

2.1 Problem description

A ridesharing network is modeled by an outside scheduler that has perfect information on
riders’ origin, destination, availability time and due date. It is assumed that every rider
follows the schedule that will be created for a given time frame. In reality, this resembles
orders from riders that go to the scheduler. After a certain number of orders, a transport
schedule is made. Every rider has a car available, but also has the option drive with another
rider. However, this is only possible if there is still a seat available in the car. In addition, a
rider can also first drive to a node and then leave his car and become a passenger. Once a rider
is passenger, he cannot become a driver again. Travel costs will be split equally amongst the
riders in a vehicle for the duration they are travelling together. The goal is to find a schedule
that minimizes the global cost. Since we optimize a linear function with linear constraints
where all variables are continuous, binary or integer, this ridesharing problem can be modeled
using a generalized minimum cost flow problem (Busacker and Gowen, 1960).

2.2 Formulation

The mathematical model is formulated as follows. Consider a connected graph G = (N ,A),
where N ∈ {1, ..., N} is the set of nodes (denoted by i,j,k). The nodes represent possible
locations for departure, arrival or transfer. A is the set of links that directly connect two
nodes. With each link ij, an average travel time tij is associated based on the travel distance.
In this graph, a set of riders P ∈ {1, ..., P} are dispatched through the network from their
origin op to their final destination dp. Each rider p is available for transport starting at an
availability time ep and must reach his destination dp before his due date lp. A rider can
choose to drive towards his destination himself or travel as a passenger with another driver in
the network. vp denotes the capacity of passengers the vehicle capacity of rider p has.

At first, only one cost is considered in the objective function. α1 is the cost per unit of travel
time. The model aims to minimize the global travel cost for all riders. Only a cost is associated
with the drivers, thus the passengers are transported free of charge. The following variables
are involved in this model. The binary variable xpij is equal to 1 if rider p is travelling on link
ij as a driver and 0 otherwise. The binary variable ypqij is equal to 1 if rider p is travelling
as a passenger with driver q on link ij, 0 otherwise. The integer variable Dp

ij represents the
departure time of driver p on link ij. In addition, Ep

ij is the product of Dp
ij and xpij , which
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is created in order to maintain linearity of the model. Similarly, the variable Gpq
ij is created,

which is the product of Dp
ij and ypqij .

2.3 Mathematical model

In this section, a general ridesharing model will be created. By using a minimum cost flow
problem, the costs will be minimized in the objective function, while not violating the con-
straints. This is done by first creating a shortest route model. Subsequently, constraints will
added or adjusted to create a ridesharing model. Adjusted constraints receive the symbol ’[’
to their name. If we want to study aspects of ridesharing, then the objective function has to
be adjusted or constraints have to be added. Adjustments to the model will be clarified in the
section of the respective experiment. The sets of ridesharing model are listed in Table 2.1, the
parameters are listed in Table 2.2 and the variables are listed in Table 2.3.

Summary of sets, parameters and variables

P Set of riders
N Set of nodes
A Set of links that directly connect two

nodes

Table 2.1: Sets of the model

Time parameters
tij Travel time from node i to node j, ∀i, j ∈ N
ep Earliest departure time for rider p, ∀p ∈ P
lp Latest arrival time for rider p, ∀p ∈ P

Spatial parameters
op Origin of rider p, ∀p ∈ P
dp Destination of rider p, ∀p ∈ P
vp Vehicle capacity for passengers for rider p, ∀p ∈ P
M Big M

Cost parameters
α1 Travel cost per time unit

Table 2.2: Parameters

16



xpij 1 if rider p travels as driver from node i to node j, 0 otherwise, ∀p ∈
P; ∀i, j ∈ N

ypqij 1 if rider q rides with driver p on link i, j, 0 otherwise, ∀p, q ∈ P; ∀i, j ∈ N
Dp

ij This is the departure time of driver p travelling on link i,j, ∀p ∈ P;∀i, j ∈
N

Ep
ij Is the product of Dp

ij and xpij . This is created in order to maintain
linearity in the model, ∀p ∈ P;∀i, j ∈ N

Gpq
ij Is the product of Dp

ij and ypqij . This is created in order to maintain
linearity in the model, ∀p, q ∈ P;∀i, j ∈ N

zqij The number of passengers travelling with driver q, ∀q ∈ P;∀i, j ∈ N

Table 2.3: Decision variables

Objective function

The objective function is given by equation:

min

{
α1

∑
p∈P

∑
i,j∈N

tij · xpij

}
. (1)

The objective function (1) has one cost. α1 is the cost per time travelled for each rider p
and link ij. It calculates the cost for each link that is used by drivers by the model. The
passengers variable ypqij has no cost associated to it.

2.3.1 Constraints for transport network

This part creates a schedule for every rider travelling from their origin to their destination. It
does not include ridesharing and thus, it calculates the shortest route for every rider.

Constraints for network flow

The sum of all travelled nodes from the origin is equal to 1 for all drivers p, which is ensured
by equation: ∑

j∈N
xpopj = 1,∀p ∈ P;∀op ∈ N . (2)

This constraints the driver to travel from its origin node to only one other node. Subsequently,
driver cannot travel back towards their origin node, which is ensured by constraint:

xpiop = 0,∀i, op ∈ N ;∀p ∈ P. (3)

xpiop must be 0 for every node travelling towards the origin. Together with constraint (2),
this assures that all drivers will travel from the origin to one other node without travelling
back. Similarly, a driver can only travel once towards his final destination, which is ensured
by constraint: ∑

i∈N
xpidp = 1, ∀p ∈ P; ∀dp ∈ N . (4)
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Constraint (4) is similar to the previous constraint. The sum of all nodes i that travel to the
destination is equal to 1 for all drivers p. Drivers cannot leave their destination node, which
is ensured by:

xpdpi = 0,∀i, dp ∈ N ; ∀p ∈ P. (5)

xpiop must be 0 for travelling from the destination to any other node. When drivers enter
intermediate nodes, they must also leave these nodes, which is ensured by:∑

i∈N
xpij −

∑
k∈N

xpjk = 0, ∀p ∈ P;∀j ∈ N ; j 6= op, dp. (6)

For driver p, the sum of nodes that travel towards j must be equal to the sum of nodes that
driver travels from j. It also assures that driver p can only travel to one other node from node
j.

Constraints (2-6) construct the flow from the origin to destination for all drivers p. The model
must only make use of links that are part of set S, which is constrained by:

tij −
xpij
M
≥ −M(1− xpij), ∀p ∈ P;∀i, j ∈ N . (7)

The links part of set S are the travel time values tij that are non-zero. This means that xpij
cannot be 1 if the travel time for that link is 0. This is done by introducing big M . On the
left hand side, the xpij/M is subtracted from the travel time for link ij. On the right hand
side, −M is multiplied with (1−xpij). If x

p
ij is 0, then t can have any positive value or 0, since

−M will always be smaller. If xpij is 1, then t minus xpij/M must be bigger than 0. Thus, t
must have a value bigger or equal to xpij/M . Drivers are also not allowed to travel towards
the node they are already in, which is ensured by equation:

xpii = 0,∀i ∈ N ;∀p ∈ P. (8)

Travelling towards nodes drivers are in does not have extra cost, thus without this constraint
the value can become either a 1 or 0. In addition, loops in the travel schedule is not allowed
in this network, which is ensured by:∑

i∈N
xpij ≤ 1, ∀p ∈ P; ∀j ∈ N . (9)

It ensures that drivers do not revisit nodes. The sum of all the nodes that travel towards j
has a maximum of 1, which ensures that drivers can only use 1 link to go to j.

Creating variable Ep
ij

The departure time of nodes Ep
ij is the product of xpij and Dp

ij . This is a multiplication of
two variables, which makes the model non-linear. The following constraints are created to
counteract this problem:

Ep
ij ≤M · x

p
ij , ∀i, j ∈ N ;∀p ∈ P, (10)

Ep
ij ≤ D

p
ij , ∀i, j ∈ N ; ∀p ∈ P, (11)
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Ep
ij ≥ D

p
ij −M(1− xpij),∀i, j ∈ N ;∀p ∈ P, (12)

Ep
ij ≥ 0,∀i, j ∈ N ; ∀p ∈ P. (13)

These constraints create Ep
ij while keeping linearity of the model. This variable is needed for

the time constraints. Constraint (10) ensures that Ep
ij = 0, when xpij = 0. Constraint (11)

ensures that Ep
ij cannot become larger than Dp

ij . Constraint (12) ensures that Ep
ij = Dp

ij ,
when xpij = 1. Constraint (13) is the capacity constraint that states that Ep

ij is a continuous
variable greater or equal to 0. Together, these constraints produce the the product of xpij and
Dp

ij .

Time constraints

To ensure that rider p does not depart from his origin before he is available, the model is
constrained by: ∑

j∈N
Ep

opj
≥ ep,∀op ∈ N ; ∀p ∈ P. (14)

The time at which a driver leaves his origin is the product of Dp
opj

and xpopj , which is denoted
by the new variable. To ensure that every rider p arrives at his destination before his due
date, the model is constrained by:∑

i∈N
(Ep

idp
+ xpidp · tidp) ≤ lp,∀dp ∈ N ; ∀p ∈ P. (15)

Ep
idp

calculates at which time driver p is starting to transfer to his destination and xpidp · tidp
calculates the travel time to his destination. Riders cannot depart from a node before they
have arrived there, which is ensured by constraint:∑

k∈N
Ep

jk ≥
∑
i∈N

(Ep
ij + xpij · tij),∀j ∈ N ; j 6= dp;∀p ∈ P. (16)

(Ep
ij +x

p
ij · tij) is the departure time of driver p to node i plus travelling time to node i, which

is the arrival time at node i. Ep
jk is the departure time of node j, which should be greater or

equal to the arrival time at node j. The destination node is excluded from this constraint,
since the left-hand side will be zero in this situation. The following equation is the capacity
constraint for the departure time:

Dp
ij ≥ 0, ∀i, j ∈ N ;∀p ∈ P. (17)

Constraint (17) states that the departure time is a continuous variable greater or equal to 0.

2.3.2 Creating a ridesharing network

In this part, the constraints for ridesharing are created. Variable ypqij is introduced to initiate
ridesharing for rider p with driver q on link ij. In order to create a ridesharing model, some
constraints are adjusted and some new constraints are introduced.
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Creating variable Gpq
ij

Similarly to Ep
ij , G

pq
ij is the product of ypqij and Dq

ij , which is created by the constraints:

Gpq
ij ≤M · y

pq
ij , ∀i, j ∈ N ;∀p, q ∈ P, (18)

Gpq
ij ≤ D

q
ij , ∀i, j ∈ N ;∀p, q ∈ P, (19)

Gpq
ij ≥ D

q
ij −M(1− ypqij ), ∀i, j ∈ N ;∀p, q ∈ P, (20)

Gpq
ij ≥ 0,∀i, j ∈ N ; ∀p, q ∈ P. (21)

Gpq
ij has to be created with constraints to ensure linearity of the model. This variable is needed

for the time constraints of passengers. Constraint (18) ensures that Gpq
ij = 0, when ypqij = 0.

Constraint (19) ensures that Gpq
ij cannot become larger than Dq

ij . Constraint (20) ensures that
Gpq

ij = Dq
ij , when y

pq
ij = 1. Constraint (21) is the capacity constraint that states that Gpq

ij is a
continuous variable greater or equal to 0. Together, these constraints produce the the product
of ypqij and Dq

ij .

Constraints for network flow

To ensure that riders cannot carpool with themselves, the following constraint is introduced:

yppij = 0, ∀i, j ∈ N ;∀p ∈ P. (22)

Therefore, when p is equal to p on link ij, the y value should always be zero. Subsequently,
the network flow needs to be adjusted for ridesharing. All riders can only travel from the
origin to one other node, which is ensured by constraint:∑

j∈N

(
xpopj +

∑
q∈P

ypqopj

)
= 1, ∀p ∈ P; ∀op ∈ N . (2[)

In constraint (2[), the sum of all travelled nodes from the origin must be equal to 1 for all
riders. The constraint remains identical for the drivers, but all passengers p driving with all
drivers q are added. This assures that all riders in the network travel from the origin node to
only one other node. In addition, riders cannot travel back towards their origin node which is
ensured by:

xpiop + ypqiop = 0,∀i, op ∈ N ; ∀p, q ∈ P. (3[)

xpiop and ypqiop and must be 0 for every node travelling towards the origin. Together with
constraint (2[), this assures that all drivers and passengers will travel from the origin to one
other node without travelling back. Similar to constraint (2[), riders must travel at most once
to their destination, which is ensured by:∑

i∈N

(
xpidp +

∑
q∈P

ypqidp
)
= 1,∀p ∈ P;∀dp ∈ N . (4[)

The sum of all nodes i that travel to the destination (as driver or passenger) is equal to 1 for
all riders p. All drivers and passengers cannot travel after they have reached their destination,
which is ensured by:
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xpdpi + ypqdpi = 0, ∀i, dp ∈ N ;∀p, q ∈ P. (5[)

xpiop and ypqdpi must be 0 travelling from the destination to any other node. When riders arrive
at an intermediate node, then they must also leave these nodes, which is ensured by:∑

i∈N

(
xpij +

∑
q∈P

ypqij

)
−
∑
k∈N

(
xpjk +

∑
q∈P

ypqjk

)
= 0, ∀p ∈ P; ∀j ∈ N ; j 6= op, dp. (6[)

Riders can also enter a node as driver and leave the node as a passenger, thus in a similar
manner as the previous two constraints, the y-values are added. For rider p, the sum of nodes
that travel to j must be equal to the sum of nodes that rider p travels from j. Rider p can
only rideshare with driver q on link ij if that driver will travel there, which is ensured by:

ypqij ≤ x
q
ij , ∀p, q ∈ P;∀i, j ∈ N . (23)

Therefore, the variable ypqij can only be 1 for passenger p if the variable xqij is 1 for driver q.
It is allowed for variable xqij to be 1 if ypqij is 0 if no ride sharing occurs on link ij. Rider p can
only travel with driver q on link ij if it does not exceed driver q’s vehicle capacity, which is
ensured by: ∑

p∈P
ypqij ≤ vq,∀i, j ∈ N ; ∀q ∈ P. (24)

The sum of all passengers driving with q on link ij must be smaller or equal to the vehicle
capacity vp for each driver q and each link ij. Rider p can no longer travel as a driver once
he has left his car, which ensured by:∑

q∈P

∑
i∈N

ypqij +
∑
k∈N

xpjk ≤ 1,∀p ∈ P;∀j ∈ N . (25)

If a rider is travelling to node j as a passenger (ypqij = 1) then he cannot leave node j as a
driver (xpjk must be 0). If ypqij = 0, then rider p can leave node j as a driver.

Time constraints

All riders can only leave their origin once they are available, which is ensured by:∑
j∈N

(
Ep

opj
+
∑
q∈P

Gpq
opj

)
≥ ep,∀op ∈ N ; ∀p ∈ P. (14[)

The time at which a driver leaves his origin is the product of Dp
opj

and xpopj and the time
at which a passenger leaves his origin is the product of Dp

opj
and ypqopj . These variables are

summed because each rider will leave their origin either as a driver or a passenger. All riders
must also arrive at their destination before the due date, which is ensured by:∑

i∈N

∑
q∈P

(
Gpq

idp
+ ypqidp · tidp

)
≤ lp,∀dp ∈ N ; ∀p ∈ P. (26)

Gpq
idp

calculates at which time driver q will transfer passenger p to his destination and ypqidp · tidp
calculates the travel time to his destination. If rider p is a driver to his destination, then this
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summation is 0 and the constraint will not be violated. In addition, riders can only leave
nodes once they have arrived there, which is ensured by:

∑
k∈N

(
Ep

jk︸︷︷︸
a

+(
∑
q∈P

Gpq
jk)︸ ︷︷ ︸

b

)
≥
∑
i∈N

(
(Ep

ij + xpij · tij)︸ ︷︷ ︸
c

+
∑
q∈P

(Gpq
ij + ypqij · tij)︸ ︷︷ ︸

d

)
, ∀j ∈ N ; j 6= dp;∀p ∈ P.

(16[)
Riders can arrive a node as driver and leave as driver, arrive as driver and leave as passenger
and arrive as passenger and leave as passenger. Constraint (16) only holds for entering and
leaving drivers. The constraint (16[) assures that drivers and passengers can only leave a node
once they are actually there. In the equation, either part a has a value or part b has a value
and either part c has a value or part d has a value. In addition, a cannot have a value if d
has a value, since a rider cannot leave node j as a driver if he has arrived as a passenger.
Therefore, a≥c if rider p enters a driver and leaves as driver; b ≥ c if rider p enters as a driver
and leaves as passenger; b ≥ d if rider p enters as a passenger and leaves as passenger. The
destination node is excluded, since passengers and drivers will not leave after this node, thus
a and b will both be 0, while either c or d is not zero. In addition, the departure of passenger
p must be the same as his driver q, which is ensured by:

Eq
ij −G

pq
ij ≤M(1− ypqij ), ∀i, j ∈ N ; ∀p, q ∈ P, (27)

Eq
ij −G

pq
ij ≥ −M(1− ypqij ),∀i, j ∈ N ;∀p, q ∈ P. (28)

If ypqij = 1, and thus passenger p is riding with driver q, then the right-hand side becomes 0
for constraint (27) and (28). This means Eq

ij −G
pq
ij ≤ 0 for constraint (27) and Eq

ij −G
pq
ij ≥ 0

for constraint (28). This means Eq
ij = Gpq

ij when ridesharing occurs. If ypqij = 0, and thus
no ridesharing occurs, Ep

ij and Gpq
ij can have any value. Tracking the number of riders in a

vehicles is useful information for experiments and is calculated by:∑
p∈P

ypqij + xqij = zqij , ∀q ∈ P;∀i, j ∈ N . (29)

∑
p∈P

ypqij sums the number of riders that are travelling driver q and xqij adds the driver himself.

Variables xpij and ypqij are binary variables, which is enforced by:

xpij , y
pq
ij ∈ {0, 1},∀p, q ∈ P;∀i, j ∈ N . (30)

2.4 Assumptions

In order to model a real-life ridesharing scenario, assumptions have to be made. This ensures
a simplified problem, which narrows the scope of this research and reduces the computation
time of the commercial solver. The following assumptions are made.

◦ The travel time from i to j has a fixed value. Traffic congestion or other travel speed
adjustments are not included in this model. Thus, failure of links is also not included.

◦ Riders can wait at a hub without any additional cost. This is regarded to be outside of
the scope of this research.
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◦ All riders must reach their final destination before the due date by driving themselves
or travelling with another rider in the model, otherwise the solution is infeasible.

◦ In this ridesharing network, it is not allowed for drivers to return to a pre-visited node.
Although it could be argued that there exists a global optimum solution where drivers
return to a certain node, it is unsatisfactory for individual passengers and therefore,
these solutions are not considered.

◦ There is no time penalty included for switching to a different vehicle. This is considered
to be outside of the scope of this research.
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3 | Enhancing computational load

The goal of this chapter is to find a suitable optimization solver, a suitable network and to
adjust the model for experiments. The main focus of this chapter is on computational speed.
Solving complex MILP are computationally very heavy. There is currently no solution for
this problem (Agatz et al., 2012). Making assumptions on real-life improve computation time,
but are less correct. Currently, a balance between both has to used. For this research, it
is important to have a sufficient number of riders in the network, while the computational
speed fits the time frame. Section 3.1 tests the network from Lin (Lin et al., 2012) with two
different solvers. Section 3.2 tries a more realistic domestic-work network with two highways
in between. This network is also tested with both solvers. Section 3.3 adds pre-processing to
the model with aims to reduce the computational effort, while creating a more realistic model.

3.1 Experiment network 1

3.1.1 Experimental setup network 1

For this experiment, the experimental road network from Lin (Lin et al., 2012) is used. This
connected network consists of 9 nodes and 16 links and is visualized in Figure 3.1. Distances
between links are included in the figure.

Figure 3.1: Experimental road network with distances between nodes

The parameters are set as follows. Because there is only one cost parameter in the model, α1
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can be arbitrarily chosen and is set to 1. The origin and destination of rider p can be any
node in the network and thus, op and dp are randomized with equal probability between 1
and 9. The availability time ep is randomized with equal probability between 0 and 15 and
due date is randomized with equal probability between 45 and 60. The longest travel time
between two nodes in the network is 29, thus every rider is able to reach his destination in
time. A overview of the parameters is given in Table 3.1.
Subsequently, a travel schedule is created for every rider with ridesharing turned on and
turned off. The set of riders are increased incrementally, which is indicated with the powerset
℘. Total travel costs and computation time are recorded. This experiment is performed using
the commercial solver Xpress-IVE and CPLEX. Ridesharing is turned off by including the
following constraint:

ypqij = 0,∀p, q ∈ P; ∀i, j ∈ N . (31)

Parameter p ∈ P ℘ α1 op dp ep lp

Value {1, ..., |P|}
{
P(n) : n ∈ {5, 6, ..., n}

}
1 op ∼ U(1, 9) dp ∼ U(1, 9) ep ∼ U(0, 15) lp ∼ U(45, 60)

Table 3.1: Parameter settings for experiment 1

3.1.2 Results experiment network 1

Table 3.2 contains the travel costs of the travel schedule with and without ridesharing. It is
clearly evident that ridesharing has a significant cost benefit. Intuitively, the cost saving ratio
would increase if the number of riders in the network increases. However, in this experiment,
it is not evident yet. Due to the low number of riders in the network, the cost benefit of
ridesharing depends mostly on the random origin and destination of riders.

Number
of riders

Vehicle
capacity

Travel
cost

Travel cost
without

ridesharing

Cost saving
due to ride-

sharing (in %)

Comp. time
Xpress-IVE

Comp. time
CPLEX

5 4 46 74 37.84% 03 sec 20 sec
6 4 49 89 44.94% 18 sec 23 sec
7 4 50 98 48.98% 11 sec 43 sec
8 4 58 77 24.68% 01 min 57 sec 01 min 59 sec
9 4 74 102 27.45% 01h 22 min 01 hour 54 min

Table 3.2: Cost savings and computation time for an x number of riders for network 1

In addition, Table 3.2 contains the computation times for the commercial solvers Xpress-IVE
and CPLEX. Both solvers were unable to create a schedule for 10 riders within a time frame
of three hours. Therefore, adjustments have to be made. Comparing the computation times
cannot exclude one solver yet, since both solvers yield similar results.
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3.2 Experiment network 2

3.2.1 Experimental setup network 2

A second network is created manually in order to cope with the large computation times.
In addition, this network will represent a more realistic setting as ridesharing is most often
used for commuting purposes (Ferguson, 1997). In this setting, there is a domestic area (node
1, ..., 4) and an industry area (node 5, ..., 8) where riders work. These nodes and distances
between nodes are illustrated in Figure 3.2. Riders have to travel from their domestic hub to
their work hub through a highway with greater travel time.

Figure 3.2: Second experimental road network with two highways with distances between
nodes

The new parameters are listed in Table 3.3. The due date lp is changed to a random value
between 55 and 70 to ensure that every rider can reach his destination before the due date.

Parameter p ∈ P ℘ α1 op dp ep lp

Value {1, ..., |P|}
{
P(n) : n ∈ {5, 6, ..., n}

}
1 op ∼ U(1, 4) dp ∼ U(5, 8) ep ∼ U(0, 15) lp ∼ U(55, 70)

Table 3.3: Parameter settings for experiment 2

3.2.2 Results experiment network 2

Table 3.4 contains the travel costs of the travel schedule with and without ridesharing. The
cost saving of this network is considerably larger compared to the previous network. There
is a clear explanation for this result. Riders are moving less randomly through this network.
There are fewer possible origins and destinations and there is a clear incentive to rideshare
on the highways. It is also evident that cost saving ratio is increasing if the number of riders
increase. This is up to a certain number of riders, since there is a vehicle capacity that prevents
more cost saving. Ideally, more riders are used in the model in order to make an accurate
prediction of how ridesharing will perform in a large scale implementation.
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Number
of riders

Vehicle
capacity

Travel
cost

Travel cost
without

ridesharing

Cost saving
due to ride-

sharing (in %)

Comp. time
Xpress-IVE

Comp. time
CPLEX

5 4 83 167 50.30% 03 sec 11 sec
6 4 75 183 59.02% 05 sec 16 sec
7 4 91 239 61.92% 12 sec 39 sec
8 4 80 272 70.59% 26 sec 01 min 46 sec
9 4 80 288 72.22% 25 sec 02 min 09 sec
10 4 99 338 70.71% 01 min 48 sec 28 min 49 sec
11 4 75 338 77.81% 01 min 02 sec –
12 4 98 378 74.07% 02 min 33 sec –
13 4 118 431 72.62% 01 hour 04 min –

Table 3.4: Cost savings and computation time for an x number of riders for network 2

In addition, Table 3.4 contains the computation times of the two solvers. For both solvers,
there is a clear improvement in computation time. CPLEX was unable to create a schedule
for 11 riders within three hours and Xpress-IVE was unable to do this for 14 riders. Due the
clear computational benefit of Xpress-IVE, this solver is chosen for further experiments.

3.3 Experiment shortest path

3.3.1 Experimental setup shortest path

In order to further improve the computational efficiency of the model pre-processing is added.
Pre-processing aims to remove possible answers that either will not lead to an optimal outcome
or create an answer that does not cohere well with flexibility of drivers. Therefore, drivers
can only travel from their origin to their destination using their shortest route or their second
shortest route. This sets a restriction on the allowable detour of drivers. When riders are
travelling as a passenger, there is no restriction for their route. Two sets are introduced to
include the pre-processing; SP1

p contains the set of links that consists of the shortest route for
rider p and SP2

p contains the set of links that consists of the second shortest route for rider
p. These are listed in Table 3.5. Riders are only allowed to make use of these links, which is
ensured by the new objective function:

min

{
α1

∑
p∈P

∑
i,j∈SP12

p

tij · xpij

}
. (1[)

It must be stated that global optimal results could be removed by implementing pre-processing.
It is argued that drivers will not be satisfied with making large detours. Therefore, global
optima with large detours will not hold in a realistic setting. In addition, all parameters will
remain identical for this experiment.
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SP1
p Shortest set of links for rider p from his op to his dp, ∀p ∈ P

SP2
p Second shortest set of links for rider p from his op to his dp, ∀p ∈ P

Table 3.5: New shortest path sets

3.3.2 Results experiment shortest path

The results of this experiment are displayed in Table 3.6. It is clearly evident that the pre-
processing did not have a large impact on the cost saving due to ridesharing. In terms
of computation time, there is an evident improvement. Within a realistic time frame (sub
three hours), the solver has advanced from 13 riders to 17 riders. Therefore, for forthcoming
experiments, the network with two highways and pre-processing will be used.

Number
of riders

Vehicle
capacity

Travel
cost

Travel cost
without

ridesharing

Cost saving
due to ride-

sharing (in %)

Computation
time

5 4 127 180 29.44% 01 sec
7 4 102 244 58.20% 08 sec
9 4 136 313 56.55% 23 sec
11 4 113 368 69.22% 1 min 32 sec
13 4 119 452 73.67% 19 min 57 sec
15 4 117 449 73.94% 17 min 03 sec
17 4 146 472 76.38% 02 hour 11 min

Table 3.6: Cost savings and computation time for an x number of riders for network 2 with
shortest path
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4 | Experiments

In this chapter, the experiments are formulated and executed that will answer the main re-
search question. Section 4.1 will explain the setup of the VOT experiments. In addition, it
will explain how the mathematical model will be adjusted in order to perform these experi-
ments. In section 4.2, an experiment is executed on VOT-values. Following these experiments,
section 4.3 will make an interpretation on the meaning of these results. Section 4.4 gives an
explanation on the introduced game theory element that will be used for the next experiment.
Section 4.5 contains new experiments with greedy riders. The last experiment is explained in
Section 4.6, which makes a transition from transportation of riders to transportation of goods.

4.1 Experimental setup

4.1.1 New set and parameters

An experiment will be done on the VOT of riders in the network. VOT is introduced as a
rider’s cost penalty for not reaching the destination at the desired time. When riders have
a relatively high positive VOT, they aspire to reach their destination as quickly as possible.
In case of a relatively high negative VOT, riders want to arrive as close as possible to their
due date (but not exceeding it). For a goods transport service, this makes sense due to the
inventory costs of goods. In case of a low positive or negative VOT, riders are indifferent to
their arrival time, as long as they arrive before their due date. It is important to include the
VOT in the mathematical model, because this will better satisfy the individual needs of riders
in the network.

The VOT for rider p is specified by αp
2. It must be stated that the exact value of αp

2 has
no meaning. The significance is in the proportional value of α1 and αp

2. In the experiments,
α1 has a constant value of 1. Human behavior models are often distributed by a Gaussian
distribution (Shen et al., 2016) and we will use this for this research. However, there is no
function for Gaussian distribution in Xpress-IVE. Nonetheless, there is a function for binomial
distribution. Therefore, we make use of the Central Limit Theorem, which states that the
sampling distribution of the sample means approaches a Gaussian distribution as the sample
size gets larger, no matter the shape of the population distribution. The Gaussian distribution
is created in the following manner. Consider the set S ∈ {1, ..., S}. For each s ∈ S, we
randomize a value between 0 and 1. Subsequently, we round this value to the nearest integer.
In the next step, we count the number of 1’s we have in the set S. This summation gives the
VOT for rider p. These steps are repeated for all p ∈ P. By making the set of S sufficiently
large, we approximate a Gaussian distribution with a normal standard deviation. The mean µ
is equal to the size of S/2 and can be adjusted by adding or subtracting a value. However, the
standard deviation cannot be adjusted since we cannot change the distribution of the initial
value between 0 and 1.

In addition, the theoretical minimum transport time for rider p from his origin to destination
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is necessary information for the VOT experiment. This is indicated by the parameter STp.
The mentioned parameters and set are summarized in Table 4.1. The parameters for the
experiments are listed in Table 4.2.

αp
2 An individual’s VOT-penalty per time unit, ∀p ∈ P
STp Shortest travel time from origin to destination for rider p, ∀p ∈ P
S Set of random values between 0 and 1 to create a normal distribution

Table 4.1: New set and parameters

Parameter Value

p ∈ P {1, ..., |P|}
℘

{
P(n) : n ∈ {5, 6, ..., 15}

}
α1 1
αp
2 αp

2 ∼ N (µ, σ2), 0
µ µ = {−13, ..., 13}, µ 6= 0
σ2 σ2 = 1
op op ∼ U(1, 4)
dp dp ∼ U(5, 8)
ep ep ∼ U(0, 15)
lp lp ∼ U(55, 70)
vp 4

Table 4.2: Parameter settings for experiment VOT

4.1.2 New objective function

In order to study the effects of positive VOT, it is included in the new objective function:

min

{
α1

∑
p∈P

∑
i,j∈SP12

p

tij · xpij︸ ︷︷ ︸
a

+
∑
p∈P

∑
i,dp∈N

αp
2

(
(Ep

idp
+ xpidp · tidp) +

∑
q∈P

(Gpq
idp

+ ypqidp · tidp)− (ep + STp)
)

︸ ︷︷ ︸
b

}
.

(1[[)
This objective function will include riders’ VOT in order to create a schedule that will better
satisfy the customers. The objective function (1[[) can be divided in two parts. Part a and
part b are multiplied with α1 and αp

2, respectively; each of which is a cost penalty. α1 is the
cost per time travelled on link ij for each p. It calculates the cost for each link that is used by
the model. αp

2 is the VOT-penalty for each individual. This part is calculated by taking the
departure time towards the destination and adding the travel time towards the destination.
Riders can arrive at their destination as driver or as passenger. Ep

idp
+xpidp · tidp calculates the

arrival time as a driver and Gpq
idp

+ypqidp · tidp calculates the arrival time as passenger. Thus, one
of these values is non-zero. Subsequently, the theoretical minimum arrival time is subtracted
from this value. This theoretical minimum arrival time is given by (ep + STp), which is the
availability time of rider p and the minimum travel time from origin to destination for rider p.
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In a similar manner, objective function (1[[[) is used to study the effect of negative VOT:

min

{
α1

∑
p∈P

∑
i,j∈SP12

p

tij · xpij︸ ︷︷ ︸
a

+
∑
p∈P

∑
i,dp∈N

−αp
2

(
lp − (Ep

idp
+ xpidp · tidp) +

∑
q∈P

(Gpq
idp

+ ypqidp · tidp)
)

︸ ︷︷ ︸
b

}
.

(1[[[)
There is a cost penalty if a rider arrives earlier than his due date. Therefore, the arrival time
is subtracted from the due date lp. It is assumed during the experiments that a population has
either completely positive VOT-values or completely negative VOT-values. This assumption
is necessary as positive and negative VOT-values use different objective functions.

In this experiment, we want to compare a network where riders can rideshare with multiple
vehicles to a network where riders can travel with one vehicle. In order to ensure that riders
can travel with one vehicle, the following constraint is introduced:∑

i∈N
ypqij −

∑
k∈N

ypqjk ≤ 0, ∀p, q ∈ P;∀j ∈ N ; j 6= op, dp. (32)

It ensures that passenger p enters node j with driver q, then he must also leave this node with
driver q. This constraint can be smaller than 0 if rider p arrives at j as a driver and leaves j
as a passenger.

4.2 Experiment different mean VOT’s

Table 4.3 contains a selection of the results of the experiments. It lists the total travel costs
for a schedule without ridesharing, a ridesharing schedule without VOT and a schedule with
a selection of positive VOT’s included. This experiment is performed for single-hopping and
multi-hopping. The complete set of solutions are provided in Appendix C. Seven different
positive mean VOT-values are selected and seven different negative mean VOT-values. This
mean value was not extended after a mean of 13 and -13 as no change in schedule was observed
with higher values. The results of negative mean VOT-values are not provided in this section,
because the results of negative VOT are very similar to their positive counterpart. Figure
4.1, 4.2 and 4.3 contain a graphical description of the results. Only a selection of the mean
values are included to improve readability. The model creates a different schedule when VOT
is included. A higher mean VOT results in higher total travel costs. When we compare multi-
hopping to single-hopping, we observe some situations where single-hopping has higher total
travel costs and some situations where multi-hopping has higher total travel costs. This is
due to the random aspect of data generation. On average, higher travel costs occur for single-
hopping. For µ = 1, average travel costs per rider increased from 12.7 to 13.8 by constraining
the model to single-hopping. For µ = 5, average travel costs per rider increased from 18.5
to 21.2 and for µ = 9, average travel costs per rider increased from 21.7 to 23.2. The exact
impact of VOT depends on the properties of the network. Intuitively, if the availability time
and due dates of riders are very similar, then VOT will have a smaller impact on total travel
cost.
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Multi-hopping Single-hopping

Number
of riders

Travel cost
without

ridesharing
No VOT µ = 1 µ = 5 µ = 9 No VOT µ = 1 µ = 5 µ = 9

5 172 53 81 138 138 88 109 143 143
6 213 78 83 83 118 91 153 181 181
7 252 87 94 155 188 86 86 177 177
8 264 89 117 157 183 125 149 209 209
9 331 94 128 187 226 87 87 179 268
10 346 79 107 209 209 125 138 253 253
11 371 113 132 191 216 129 151 217 217
12 416 124 165 206 266 116 116 255 255
13 447 120 132 287 320 134 150 210 271
14 487 129 188 211 259 148 187 271 304
15 502 134 172 214 262 137 189 239 272

Table 4.3: Travel cost for different VOT-values for multi-hopping and single-hopping

Figure 4.1: Travel costs for a mean VOT-value of 1 and comparison to no ridesharing
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Figure 4.2: Travel costs for a mean VOT-value of 5 and comparison to no ridesharing

Figure 4.3: Travel costs for a mean VOT-value of 9 and comparison to no ridesharing

The average filling rate of the vehicles is documented in Table 4.4 and a graphical description
is given in Figure 4.4, 4.5 and 4.6. In contrast to the travel costs, the schedule without
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ridesharing creates a lower bound and the schedule without VOT creates an upper bound for
the filling rate. Including VOT in the model lowers the filling rate, since more riders will
decide to drive themselves. A higher VOT will result in a lower filling rate, although this is
up to certain point. A mean value greater than 13 did not have any additional effect. This
created a schedule where ridesharing only occurs if it did not cause a time delay for rider p. In
terms of single-hopping and multi-hopping, the average filling rate for single-hopping is lower.
For µ = 1 the average filling rate decreased from 2.81 to 2.28 by constraining the model to
single-hopping. For µ = 5, this value decreased from 1.66 to 1.51 and for µ = 9, it decreased
from 1.40 to 1.39.

Multi-hopping Single-hopping

Number
of riders

Filling rate
without

ridesharing
No VOT µ = 1 µ = 5 µ = 9 No VOT µ = 1 µ = 5 µ = 9

5 1.00 2.60 2.00 1.22 1.22 2.25 1.75 1.18 1.18
6 1.00 2.67 2.33 2.33 1.63 2.50 1.33 1.15 1.15
7 1.00 2.50 2.25 1.50 1.29 3.00 3.00 1.55 1.55
8 1.00 2.88 2.10 1.43 1.33 2.45 1.67 1.29 1.29
9 1.00 3.13 2.00 1.50 1.24 2.75 2.75 1.54 1.06
10 1.00 3.57 2.89 1.44 1.44 2.90 2.42 1.39 1.39
11 1.00 3.22 2.33 1.81 1.73 3.00 2.45 1.67 1.67
12 1.00 3.20 2.23 1.63 1.30 2.50 2.50 1.35 1.35
13 1.00 3.10 2.73 1.33 1.22 3.40 2.73 2.14 1.67
14 1.00 3.43 2.59 1.92 1.50 2.81 2.29 1.56 1.40
15 1.00 3.41 2.78 2.17 1.53 3.00 2.14 1.76 1.58

Table 4.4: Filling rate for different VOT-values for multi-hopping and single-hopping
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Figure 4.4: Average filling rate of vehicles for a mean VOT-value of 1 and comparison to no
ridesharing

Figure 4.5: Average filling rate of vehicles for a mean VOT-value of 5 and comparison to no
ridesharing
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Figure 4.6: Average filling rate of vehicles for a mean VOT-value of 9 and comparison to no
ridesharing

4.3 Interpretation of results

From these results, we can conclude that implementing ridesharing in a commuting network
yields a very significant reduction in total travel costs. Much existing research focuses on
improving the service quality of ridesharing. Therefore, VOT was included in the model to
increase riders’ satisfaction of their arrival time. In this model, the gain in travel cost due to
ridesharing depends on how much freedom riders allow in their arrival time. From the results
it was shown that a higher VOT leads to higher travel costs, while the filling rate of vehicles
decreases. Currently, it is assumed that the improved service quality outweighs the increase
in travel cost. However, it is also possible to show that the implementation of VOT can yield
travel cost benefits. As a result, we now consider the goal of implementing VOT to be the
evasion of greedy riders. Therefore, the next section will focus on the travel decisions that
riders take. Hereby, we will assume that riders will ignore the travel schedule if they believe
they can receive a greater payoff. This is done by implementing a game theory approach.
Implementing a game theory approach has been done by Li et al. for a taxi sharing service
(Li et al., 2016). They assumed taking detours to be a non-cooperative game. Riders in a taxi
share travel costs and a detour occurs when it results in lower travel costs for participants.
Koutsipas et al. studied the effect on travel cost of greedy riders in the network (Koutsoupias
and Papadimitriou, 1999) and named the additional cost the price of anarchy. Taking greedy
transits based on arrival time has not been studied in research.
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4.4 Game theory

4.4.1 Riders’ decisions

Once a ridesharing schedule is created, it is possible that a rider is not satisfied with the
schedule, even though he reaches his due date in time. Therefore, the gain in travel costs due
to ridesharing is not enough for this rider to stick to the schedule and he will deviate from
the schedule to achieve a better payoff. This phenomena, the price of anarchy, has a negative
impact on the social optimum of the schedule. In upcoming experiments, it is assumed that
riders will behave as players in game theory. Therefore, individuals will play to receive the
best payoff possible. It is beneficial to create a situation where each player’s Nash equilibrium
is also Pareto optimum. In this situation, we achieve the highest possible social optimum.

Table 4.5 contains the payoff matrix of rider p and his driver q for one link in the network.
All riders in the network have an identical payoff matrix and can decide to either follow the
schedule or take a greedy transit. A greedy transit is defined as the decision to deviate from
the schedule and drive alone from origin to destination at the most convenient time. If p’s
driver q takes a greedy transit, then the decision of rider p has no significance since he has no
other option than to drive himself. The travel costs for rider p is the cost of driving himself
from origin to destination. This is also true if rider p decides to take a greedy transit himself.
If riders p and q both decide to follow the schedule, then their payoff is equal to their transit
costs and their VOT costs. Table 4.6 contains the payoff matrix of rider p and his passenger
q. The matrix is identical to 4.5, except for when rider p follows the schedule and passenger q
takes a greedy transit. In this situation, rider p will lose a passenger for that link. Thus, there
is an additional costs, which is indicated by ’+zpij−1’. It could be argued that rider p’s payoff
now changes and it could be in his best interest to take a greedy transit. If we include this
fact, then the decisions of riders become a dynamic game. This is considered to be outside of
the scope of this research and we assume that rider p will travel with one fewer passenger.

p’s driver q

Follow schedule Take greedy transit

Rider p
Follow schedule Transit costs + VOT STp · α1

Take greedy transit STp · α1 STp · α1

Table 4.5: Payoff matrix of rider p and his driver q

p’s passenger q

Follow schedule Take greedy transit

Rider p
Follow schedule Transit costs + VOT +zpij − 1

Take greedy transit STp · α1 STp · α1

Table 4.6: Payoff matrix of rider p and his passenger q
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4.4.2 Greedy transit algorithm

In order to calculate the additional travel cost of greedy transits and the new filling rate,
the greedy transit algorithm is created. The pseudo code is depicted in Algorithm 1. This
algorithm makes use of the new parameters that are created for the experiment in Table 4.1.
For each rider p, Algorithm 1 first determines whether rider p decides to take a greedy transit.
Rider p will do this when his current transit costs added to his VOT-costs are larger than
the driving costs himself to his final destination. If this is not true for all riders p, then the
schedule will remain unchanged. If rider p takes a greedy transit, there is additional travel
cost, because he will not share travel cost with others. If rider p does not take a greedy transit,
then algorithm decides whether p’s driver q wants to take a greedy transit. If this is true, then
rider p is forced to travel himself.

In the algorithm, it is important to determine the transit costs for rider p. These are the
travel costs for each link ij travelled by rider p divided by the number of people travelling
with rider p on link ij. This is calculated with equation:∑

i,j∈N

(xpij · tij
zpij

+
∑
q∈P

ypqij · tij
zqij

)
. (33)

This is only calculated when zpij > 0 and zqij > 0. The VOT-costs for positive VOT-values are
calculated by part b of the objective function (1[[) and is calculated by:∑

i,dp∈N
αp
2

(
(Ep

idp
+ xpidp · tidp) +

∑
q∈P

(Gpq
idp

+ ypqidp · tidp)− (ep + STp)
)
. (34)

The VOT-costs for negative VOT-values are calculated by part b of the objective function
(1[[[) and is calculated by equation:∑

i,dp∈N
αp
2

(
lp − (Ep

idp
+ xpidp · tidp) +

∑
q∈P

(Gpq
idp

+ ypqidp · tidp)
)
. (35)

Equation (33) and either (34) or (35) calculate the cost of rider p for the created schedule.
The cost for deviating from the schedule is STp ·α1. There will be no VOT-costs since rider p
will arrive at his most convenient time. Every rider p will decide to take a greedy transit if his
transit costs and VOT-costs combined will be greater than the cost of driving alone. In order
to store the additional cost of greedy transits, three new parameters are created: EC1p, EC2p
and EC3q. The added greedy transit cost of rider p consists of the cost of driving yourself
minus the transit costs and is calculated by:

EC1p = STp · α1 −
∑
i,j∈N

(xpij · tij
zpij

+
∑
q∈P

ypqij · tij
zqij

)
, ∀p ∈ P. (36)

To calculate the new filling rate, the parameters V C1p,V C2p and V C3p are created. In
addition, the new parameter Lp contains the number of links that is in the shortest path from
op to dp, for each rider p. If rider p takes a greedy transit, then he will travel on fewer links
or the same amount of links as in the original schedule (as ridesharing can lead to detours).
The number of fewer links in the greedy transit for rider p is calculated by:

V C1p =
∑
i,j∈N

(
xpij +

∑
q∈P

ypqij
)
− Lp, ∀p ∈ P. (37)
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If rider p takes no greedy transit, then this value will be zero. When riders are taking greedy
transits, then there will be more drivers in the network. The number of extra links driven is
calculated by:

V C2p = Lp −
∑
i,j∈N

xpij , ∀p ∈ P. (38)

This concludes the first part of Algorithm 1. However, rider p can also be affected by greedy
transits of others. The second part of the algorithm regards the riders that lose their driver.
The extra costs rider p has by being forced to drive himself is calculated by an identical
equation as a greedy transit and is calculated by:

EC2p = STp · α1 −
∑
i,j∈N

(xpij · tij
zpij

+
∑
q∈P

ypqij · tij
zqij

)
, ∀p ∈ P. (39)

Regarding the filling rate, if p’s driver q takes a greedy transit and rider p does not (V C1p = 0),
then equation (37) and (38) are calculated again.

The last part of the algorithm regards drivers losing passengers due to a greedy transits
of passengers. It is assumed that driver p will follow the schedule with one or more fewer
passengers. In this situation, when passenger q takes a greedy transit, then driver p will have
extra transit costs due to the lower filling rate. This is calculated by:

EC3q =
∑
p∈P

ypqij · tij
zpij

,∀q ∈ P. (40)

If p’s passenger q takes a greedy transit on each link ij and rider p is not (V C1p = 0), then
the number of passengers he loses on all his links as a driver is calculated by:

V C3p = V C3p + 1, ∀p ∈ P. (41)

To calculate the entire greedy travel cost, the additional transit costs of EC1p, EC2p and
EC3q are summed and added to the travel cost of the original schedule, which is calculated
by part a of objective function (1[[) and (1[[[). This is calculated by:

Greedy travel cost =
∑
p∈P

∑
i,j∈N

(
xpij · tij + EC1p + EC2p +

∑
q∈P

EC3q
)
. (42)

The new greedy filling rate of vehicles is calculated by the total total of links travelled by all
riders divided the total number links driven by all riders. This is calculated by:

Greedy Filling rate =

∑
p∈P

∑
i,j∈N

(
xpij +

∑
q∈P

ypqij − V C1p − V C3p
)

∑
p∈P

∑
i,j∈N

(
xpij + V C2p

) . (43)
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Algorithm 1: Greedy transit algorithm
Input: VOT and schedule
Output: Transit costs for rider p
initialization;
if transit costs + VOT cost > Cost of driving yourself then

rider p drives himself;
else

if driver q takes a greedy transit then
rider p becomes a driver;

else
if passenger q takes a greedy transit then

driver p loses a passenger;
end

end
No change in transit costs;

end

4.5 Experiment with greedy riders

4.5.1 Experiment setup

In this experiment, the influence of VOT will be tested with a network, where riders behave
as players in game theory. Once the travel schedule is presented to all riders, each players
will decide to either follow the schedule or to take a greedy transit. Four outcomes are of
interest; the travel cost, the number of greedy transit, the filling rate and the VOT cost will
be determined. The VOT cost is the sum of the VOT cost of all players. For example, if a
rider has an α2-value of 2 and he arrives ten time steps from his desired arrival time, then the
VOT cost of this rider is 20. In the experiments, the VOT cost will be corrected based on the
greedy transits. If a rider takes a greedy transit, then his VOT cost will become 0.

The parameters of the greedy rider experiments are listed in Table 4.7. It is chosen not
to include mean αp

2-values higher than 5 or lower than -5, since little change in schedule
was observed with more extreme values in the situation where VOT was not included in the
objective function. In the upcoming experiment, we will compare schedules with multiple
settings for a set of riders using objective function (1[[) for positive VOT-values and objective
function (1[[[) for negative VOT-values. A range of mean VOT-values will be tested. The
settings are as follows.

1. The first setting is a schedule without ridesharing. This will be the upper bound for
travel costs and a lower bound for filling rate.

2. The second setting is a ridesharing network where VOT is not included and it is assumed
that every riders will follow the schedule, which is called the sheep network. This will
create a lower bound for travel costs and an upper bound for filling rate.

3. In the upcoming settings, a mean VOT is introduced. A ridesharing schedule is created.
However, riders that can receive a greater payoff will deviate from this schedule. The
total travel costs, including the greedy transit costs, will be calculated.
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4. In this condition, VOT-costs are included in the objective function, as was done in the
experiments of Section 4.2. The total travel costs, including the greedy transit costs,
will be calculated.

Parameter Value

p ∈ P {1, ..., |P|}
℘

{
P(n) : n ∈ {5, 6, ..., 15}

}
α1 1
αp
2 αp

2 ∼ N (µ, σ2), 0
µ µ = {−5, ..., 5}, µ 6= 0
σ2 σ2 = 1
op op ∼ U(1, 3)
dp dp ∼ U(4, 7)
ep ep ∼ U(0, 15)
lp lp ∼ U(55, 70)
vp 4

Table 4.7: Parameter settings for experiment greedy riders

4.5.2 Results experiment greedy riders

The results of all the experiments are presented in Appendix D. A selection of the results
are displayed in this section. The experiments with negative VOT-values are not displayed
in this section, but yielded very similar results to their positive counterpart. Table 4.8 and
Figure 4.7 contain the results for µ = 1. It is evident that the implementation of VOT in the
objective function yields significant travel cost benefits. The greedy transits of riders cause
great additional cost. It must be noted that the implementation of VOT in the objective
function did not have a positive effect in every situation. In some cases, the VOT caused a
change of schedule, while no rider had the incentive to take a greedy transit. On average, the
travel cost per rider decreased from 16.93 to 11.89. In terms of VOT costs, the implementation
of VOT had a large benefit for all situations. This greatly improves the service quality of riders
in terms of arrival time. On average, the VOT costs per rider decreased from 14.64 to 4.86.
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No VOT µ = 1, VOT not in obj. function µ = 1, VOT in obj. function

Number
of riders

Travel cost
without

ridesharing

Sheep
network

Travel
cost

Number of
greedy transits

Corrected
VOT costs

Travel
cost

Number of
greedy transits

Corrected
VOT costs

5 177 54 54 0 132 54 0 29
6 202 80 80 0 175 80 0 56
7 258 90 228 2 17 118 0 42
8 258 84 202 1 35 84 0 25
9 291 98 236 3 14 112 0 45
10 326 92 120 1 104 113 0 74
11 393 123 123 0 117 126 0 15
12 408 119 119 0 230 134 0 52
13 458 120 270 2 80 156 0 59
14 507 113 113 0 127 150 0 38
15 524 133 241 1 182 154 0 58

Table 4.8: Travel cost and service quality in terms of VOT costs using µ = 1

Figure 4.7: Travel cost for µ = 1, comparing to sheep network and no ridesharing

Table 4.9 and Figure 4.8 contain the results for µ = 3. For these settings, including VOT in the
objective function yields travel cost benefits for every number of riders. Implementing VOT in
the objective function did not prevent greedy transits from occurring, but they did occur less
often. On average, the travel cost per rider decreased from 30.70 to 19.27 by implementing
VOT. In terms of VOT costs, the large number of greedy transits caused many riders to drive
alone. Therefore, the VOT costs are 0 for those drivers. On average, the VOT costs per rider
increased from 3.91 to 5.58.
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No VOT µ = 3, VOT not in obj. function µ = 3, VOT in obj. function

Number
of riders

Travel cost
without

ridesharing

Sheep
network

Travel
cost

Number of
greedy transits

Corrected
VOT costs

Travel
cost

Number of
greedy transits

Corrected
VOT costs

5 177 54 177 2 0 107 0 16
6 202 80 173 3 46 147 0 17
7 258 90 217 4 27 146 0 80
8 258 84 258 3 0 225 2 28
9 291 98 291 7 0 239 2 39
10 326 92 326 4 0 145 0 76
11 393 123 308 4 64 126 0 73
12 408 119 215 4 224 188 1 59
13 458 120 396 3 73 240 1 79
14 507 113 504 9 2 206 0 71
15 524 133 493 5 21 236 0 88

Table 4.9: Travel cost and service quality in terms of VOT costs using µ = 3

Figure 4.8: Travel cost for µ = 3, comparing to sheep network and no ridesharing

Table 4.10 and Figure 4.9 contain the results for µ = 5. It is evident that the setting, where
VOT is not included in the objective function, is very similar to a situation without ridesharing.
Most riders choose to take a greedy transit. On average, the travel cost per rider decreased
from 34.04 to 21.38 by implementing VOT, which is a decrease of 37.2%. In terms of VOT
costs, the same conclusion holds compared to µ = 3. Due to the many greedy transits, the
VOT costs are 0 for many riders. On average, the VOT costs per rider increased from 1.00 to
5.89.
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No VOT µ = 5, VOT not in obj. function µ = 5, VOT in obj. function

Number
of riders

Travel cost
without

ridesharing

Sheep
network

Travel
cost

Number of
greedy transits

Corrected
VOT costs

Travel
cost

Number of
greedy transits

Corrected
VOT costs

5 177 54 177 4 0 107 0 19
6 202 80 173 3 66 147 0 27
7 258 90 258 6 0 215 1 77
8 258 84 258 5 0 229 0 65
9 291 98 291 9 0 207 0 53
10 326 92 326 8 0 172 0 55
11 393 123 396 9 0 180 1 76
12 408 119 408 9 0 228 0 46
13 458 120 458 11 0 275 0 36
14 507 113 504 10 4 258 0 63
15 524 133 524 9 0 222 0 122

Table 4.10: Travel cost and service quality in terms of VOT costs using µ = 5

Figure 4.9: Travel cost for µ = 5, comparing to sheep network and no ridesharing

Table 4.11 contains the filling rate of µ = 1, µ = 3 and µ = 5. Figure 4.10 and 4.11 give
a graphical representation of the filling rate for µ = 1 and µ = 5, respectively. There is a
negative correlation between travel cost and filling rate and this is clearly evident from the
results. For µ = 1, the average filling rate increased from 2.33 to 2.52. For µ = 3, the average
filling rate increased from 1.19 to 1.77 and for µ = 5, it is increased from 1.02 to 1.51.
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No VOT VOT not in obj. function VOT in obj. function

Number
of riders

Filling rate
without

ridesharing

Sheep
network µ = 1 µ = 3 µ = 5 µ = 1 µ = 3 µ = 5

5 1.00 3.20 3.20 1.00 1.00 3.20 1.86 1.86
6 1.00 2.17 2.17 1.18 1.18 2.17 1.30 1.30
7 1.00 2.88 1.24 1.24 1.00 2.10 1.75 1.19
8 1.00 2.86 1.29 1.00 1.00 2.86 1.13 1.13
9 1.00 3.00 1.41 1.00 1.00 2.67 1.18 1.33
10 1.00 3.50 2.80 1.00 1.00 2.56 2.18 1.77
11 1.00 3.00 3.00 1.21 1.00 2.20 2.20 1.16
12 1.00 3.50 3.50 2.19 1.00 2.67 1.93 1.67
13 1.00 2.89 1.39 1.15 1.00 2.09 1.53 1.33
14 1.00 3.63 3.63 1.00 1.00 2.69 2.25 1.71
15 1.00 3.54 1.96 1.11 1.00 2.51 2.20 2.11

Table 4.11: Average filling rate of vehicles for different mean VOT-values

Figure 4.10: Filling rate for µ = 1, comparing to sheep network and no ridesharing
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Figure 4.11: Filling rate for µ = 5, comparing to sheep network and no ridesharing

4.6 Truck transport experiments

In this section, the ridesharing model is transformed to a truck transport model. This model
shows many similarities to the Dial-A-Ride class, where passengers are matched with vehicles.
In this situation, trucks are matched to goods. An assumption is made where all goods have
an identical fixed size. In addition, goods can be transferred to different vehicles without
additional cost or time.

4.6.1 Model adjustments

A subset T ∈ {1, ..., T} is created, where T ⊆ P. This subset T contains the number of
trucks that are used to transport the goods. The subset G = P − T contains the number of
goods that have to be transported. Subsequently, the mathematical model has to be adjusted
in order to create a Dial-A-Ride model. It is assumed that every truck driver will follow the
schedule without protest and therefore, pre-processing is removed. The truck drivers have an
origin, but no restriction on a destination.

The ridesharing model is adjusted to a truck transport model by constraining the solution
in the following manner. In this network trucks are free to travel, but the travel restric-
tions still apply for the goods. Therefore, goods cannot travel towards their origin, can only
travel towards their destination once and do not leave their destination, which is ensured by
constraints:

xpiop + ypqiop = 0,∀i, op ∈ N ; ∀p ∈ G; ∀q ∈ P, (3[[)
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∑
i∈N

(
xpidp +

∑
q∈P

ypqidp
)
= 1,∀p ∈ G;∀dp ∈ N , (4[[)

xpdpi + ypqdpi = 0, ∀i, dp ∈ N ;∀q ∈ P; ∀p ∈ G. (5[[)

Trucks do not have a due date and that they do not have to arrive at a destination. Only
goods have these constraints, which is ensured by:∑

i∈N
(Ep

idp
+ xpidp · tidp) ≤ lp,∀dp ∈ N ;∀p ∈ G. (15[)

Trucks are not able to rideshare, which is enforced by:

ypqij = 0,∀i, j ∈ N ;∀q ∈ P; ∀p ∈ T . (44)

Moreover, goods do not have the ability to drive, which is enforced by:

xpij = 0, ∀i, j ∈ N ; ∀p ∈ G. (45)

4.6.2 Experimental setup

For the truck experiments, a new network is created with three depots (i = 1, 2, 3) where four
trucks T ∈ {1, ..., 4} are located and a variable amount of goods. The new network is visible
in Figure 4.12.

Figure 4.12: Experimental road network for trucks with a ride-sharing hub

The parameters of the greedy rider experiments are listed in Table 4.12. The number of riders
has been increased to 23 due to the lower computational difficulty of the new model. This is
a result of trucks not being to rideshare and goods not being able to drive. It is chosen not
to include mean αp

2-values higher than 5 or lower than -5, since little change in schedule was
observed with more extreme values. In the forthcoming experiment, we will compare schedules
with multiple settings for a set of riders using objective function (1[[) for positive VOT-values
and objective function (1[[[) for negative VOT-values. A range of mean VOT-values will be
tested. The settings are as follows.
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1. The first setting is a ridesharing network where VOT is not included in the objective
function. This will create a lower bound for travel costs and an upper bound for filling
rate.

2. In the upcoming settings, a mean VOT is introduced. A ridesharing schedule is created
and the travel costs, filling rate and VOT costs are calculated.

3. In this condition, VOT-costs are included in the objective function, as was done in the
experiments of Section 4.2. The total travel costs, filling rate and VOT costs will be
calculated.

4. All settings above are used for a network which allows multi-hopping and one that does
not allow multi-hopping by using constraint (32). It must be stated that single-hopping
has a different meaning in this context. Since goods cannot drive themselves, single-
hopping means that no ridesharing occurs, while multi-hopping allows for switching of
vehicles.

Parameter Value

p ∈ P {1, ..., |P|}
℘

{
P(n) : n ∈ {9, 10, ..., 23}

}
α1 1
αp
2 αp

2 ∼ N (µ, σ2), 0
µ µ = {−5, ..., 5}, µ 6= 0
σ2 σ2 = 1
op op ∼ U(1, 3)
dp dp ∼ U(4, 7)
ep ep ∼ U(0, 15)
lp lp ∼ U(55, 70)
vp 8

Table 4.12: Parameter settings for experiment truck transport

4.6.3 Results truck experiment

Appendix E contains all the results with multi-hopping allowed and Appendix F contains all
the results where switching of vehicles is not allowed. Hereafter, a selection of the results will
be explained and graphed. It is chosen not to include negative VOT-values in this selection,
since the results are very similar to their positive counterpart.
Multi-hopping allowed, µ = 1

Table 4.13 and Figure 4.13 contain the results for µ = 1 and a reference state where no VOT
is involved. Compared to the reference state, the average travel costs increased from 7.08 per
good to 8.59 per good. The filling rate of vehicles decreased as the travel costs increased. The
inclusion of VOT in the objective function did have a significant effect on the VOT costs of
goods. On average, this decreased from 13.66 per good to 4.71 per good. Therefore, it can
concluded that there is significantly better service quality for a relatively small increase of
travel costs.
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Single-hopping, µ = 1

Average travel costs increased from 8.30 to 9.35 per good by including VOT. Similarly to the
previous experiments, the average filling rate slightly decreased. For this setting, the inclusion
of VOT in the objective function had a smaller benefit on the VOT costs of goods. On
average, this decreased from 11.05 per good to 9.35 per good. Therefore, it can be concluded
that the VOT cost benefit exceeds the additional travel costs. Nevertheless, the cost benefit
has declined significantly by not allowing switching of vehicles.
The constraint that ensures single-hopping, has a significant effect on the travel costs. In the
setting where no VOT is introduced, the average travel cost per good is 7.08. This increased
to 9.35 when switching between vehicles was not allowed, which is an increase of 32%. When
a VOT-value was introduced with µ = 1, the average travel cost per good increased from 8.59
to 9.35 when switching of vehicles was not allowed. This is an increase of 9%. Thus, there is
a significant cost benefit by allowing multi-hopping.

Multi-hopping Single-hopping
VOT not in obj. function VOT in obj. function VOT not in obj. function VOT in obj. function

Number
of riders

Travel
cost

Filling
rate

VOT cost
µ = 1

Travel
cost

Filling
rate

VOT cost
µ = 1

Travel
cost

Filling
rate

VOT cost
µ = 1

Travel
cost

Filling
rate

VOT cost
µ = 1

9 46 4.40 40 57 3.00 27 80 2.67 127 72 3.00 23
11 83 3.13 180 84 3.00 41 89 3.25 163 96 3.11 63
13 70 5.00 143 130 2.62 31 79 5.14 100 85 4.00 43
15 71 7.17 203 73 5.83 45 88 4.28 199 92 4.00 88
17 85 5.43 160 83 4.38 62 120 3.80 145 126 4.25 67
19 89 5.78 187 131 4.25 52 98 5.00 186 123 4.09 63
21 115 5.60 191 128 4.33 111 121 4.30 292 174 3.59 90
23 121 5.43 207 139 4.22 83 122 5.09 258 130 4.54 70

Table 4.13: Comparing travel costs, filling rate and VOT costs for multi-hopping and single-
hopping using µ = 1
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Figure 4.13: Comparing travel costs of a network for multi-hopping and single-hopping using
µ = 1

Multi-hopping allowed, µ = 3

Table 4.14 and Figure 4.14 contain the results for µ = 3 and a reference state where no VOT
is involved. Compared to the reference state, the average travel costs increased from 7.08 per
good to 12.44 per good. The filling rate of vehicles decreased as the travel costs increased.
The inclusion of VOT in the objective function did have a significant effect on the VOT costs
of goods. On average, this decreased from 33.19 per good to 7.72 per good. Therefore, it
can concluded that there is significantly better service quality for a relatively small increase
of travel costs.
Single-hopping, µ = 3

Average travel costs increased from 8.30 to 12.80 per good by including VOT. Similarly to the
previous experiments, the average filling rate slightly decreased. For this setting, the inclusion
of VOT in the objective function had a smaller benefit on the VOT costs of goods. On
average, this decreased from 27.91 per good to 9.10 per good. Therefore, it can be concluded
that the VOT cost benefit exceeds the additional travel costs. Nevertheless, the cost benefit
has declined significantly by not allowing switching of vehicles.
The constraint that ensures switching of vehicles is not allowed, has a smaller impact on
the travel costs when VOT is included in the objective function. When a VOT-value was
introduced with µ = 3, the average travel cost per good increased from 12.44 to 12.80 when
switching of vehicles was not allowed. This is an increase of 2.9%.
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Multi-hopping Single-hopping
VOT not in obj. function VOT in obj. function VOT not in obj. function VOT in obj. function

Number
of riders

Travel
cost

Filling
rate

VOT cost
µ = 3

Travel
cost

Filling
rate

VOT cost
µ = 3

Travel
cost

Filling
rate

VOT cost
µ = 3

Travel
cost

Filling
rate

VOT cost
µ = 3

9 46 4.40 164 119 2.00 20 80 2.67 80 110 2.25 34
11 83 3.13 356 117 2.56 33 89 3.25 73 131 2.50 66
13 70 5.00 251 165 2.40 74 79 5.14 365 127 2.84 43
15 71 7.17 495 121 3.27 79 88 4.28 277 181 2.44 115
17 85 5.43 503 172 2.59 71 120 3.80 391 165 3.20 130
19 89 5.78 437 157 3.25 160 98 5.00 536 170 3.06 118
21 115 5.60 469 179 3.63 168 121 4.30 434 174 3.59 191
23 121 5.43 511 164 4.03 136 122 5.09 523 171 3.75 177

Table 4.14: Comparing travel costs, filling rate and VOT costs for multi-hopping and single-
hopping using µ = 3

Figure 4.14: Comparing travel costs of a network for multi-hopping and single-hopping using
µ = 3

Multi-hopping allowed, µ = 5

Table 4.15 and Figure 4.15 contain the results for µ = 5 and a reference state where no VOT
is involved. Compared to the reference state, the average travel costs increased from 7.08 per
good to 13.09 per good. The filling rate of vehicles decreased as the travel costs increased.
The inclusion of VOT in the objective function did have a significant effect on the VOT costs
of goods. On average, this decreased from 55.00 per good to 14.58 per good. Therefore, it
can concluded that there is significantly better service quality for a relatively small increase
of travel costs.
Single-hopping, µ = 5

Average travel costs increased from 8.30 to 13.57 per good by including VOT. Similarly to the
previous experiments, the average filling rate slightly decreased. For this setting, the inclusion
of VOT in the objective function had a smaller benefit on the VOT costs of goods. On average,
this decreased from 47.07 per good to 14.13 per good. Therefore, it can be concluded that
the VOT cost benefit exceeds the additional travel costs. Nevertheless, the cost benefit has
declined significantly by not allowing switching of vehicles.
The constraint that ensures switching of vehicles is not allowed, has a smaller impact on
the travel costs when VOT is included in the objective function. When a VOT-value was
introduced with µ = 5, the average travel cost per good increased from 13.09 to 13.57 when
switching of vehicles was not allowed. This is an increase of 3.7%.
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Multi-hopping Single-hopping
VOT not in obj. function VOT in obj. function VOT not in obj. function VOT in obj. function

Number
of riders

Travel
cost

Filling
rate

VOT cost
µ = 5

Travel
cost

Filling
rate

VOT cost
µ = 5

Travel
cost

Filling
rate

VOT cost
µ = 5

Travel
cost

Filling
rate

VOT cost
µ = 5

9 46 4.40 404 119 2.00 29 80 2.67 112 110 2.25 44
11 83 3.13 303 124 2.27 51 89 3.25 154 170 2.06 53
13 70 5.00 618 172 2.35 100 79 5.14 645 168 2.5 52
15 71 7.17 461 159 2.71 81 88 4.28 451 181 2.44 150
17 85 5.43 703 172 2.59 127 120 3.80 648 166 3.38 209
19 89 5.78 869 157 3.25 290 98 5.00 974 163 3.20 235
21 115 5.60 907 179 3.63 406 121 4.30 633 174 3.59 321
23 121 5.43 863 175 3.56 316 122 5.09 902 171 3.75 292

Table 4.15: Comparing travel costs, filling rate and VOT costs for multi-hopping and single-
hopping using µ = 5

Figure 4.15: Comparing travel costs of a network for multi-hopping and single-hopping using
µ = 5
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5 | Concluding remarks

In this chapter, a conclusion to the research will be given. In section 5.1, future directions of
research will be explored. Future research consists of exploring assumptions of this research
and and elements of ridesharing that were not investigated in this research. Section 5.2
contains the conclusions of this research, answering the research questions and discussing
whether the goal is reached.

5.1 Areas for further research

In this research, a mathematical model is created that functions as a tool for future research.
Due to the ease of adding features or constraints, new elements of ridesharing can be studied.
This research focused on adding game theory elements to ridesharing, which can be further
explored. A topic for future research is to include Subgame Perfect Equilibria, since the
decisions of riders could be viewed as a dynamic game. This would create a more precise
approximation of the costs for greedy transits. In this research, it is assumed that drivers
will travel with one fewer passenger if that passenger has decided to take a greedy transit.
However, driving alone could yield a better payoff for this driver in order to avoid high VOT
costs. A strategy profile could be created for each rider in the network. Another topic of game
theory could be included. The Stackelberg leadership model is a strategic game in economics in
which the leader moves first and then the followers move sequentially. This creates a different
strategy profile. After the leader announces his strategy, the optimization model could create
a new schedule given this information. Subsequently, the next leader announces his strategy.
However, in this research it is assumed that players make their decision at the same time.

As mentioned, much research focuses on either increasing the service quality of riders or
creating a model that strives to model real-life. Waiting time of passengers, cost of switching
to different vehicles and the possibility of failing links have not been incorporated. This
research has shown the service quality benefit of switching vehicles in goods transportation.
Cost of switching to different vehicles is an important addition to verify whether switching
vehicles is worth the effort. In goods transport, switching of vehicles typically does not occur
due to the increase in handling. Implementing cost of switching vehicle could verify this. The
maximum allowable detours have been included in the form of pre-processing. Riders choose
their shortest or second shortest path. This assumption on the behavior of riders could be
further explored. In addition, it is assumed that the travel time for links is static. They could
be stochastic by nature or it could be a function of the number of people travelling on that
link. When travel time depends on the number of people travelling on that link, then a switch
towards nonlinear optimization has to be made. Typically, nonlinear optimization problems
are much harder to solve. Adding a nonlinear constraint in this research does allow for a
better solution. By adding a constraint that every rider’s travel cost plus its VOT-cost are
lower than the cost for travelling alone, no rider has incentive to take a greedy transit. By
ensuring no greedy transits, a better global optimum is found. In this research, it is assumed
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that riders’ VOT was either positive for all riders or negative for all riders. The distribution
of riders’ VOT-values could be further explored by having both positive and negative values
and adjusting both the mean and variance of the distribution.

Due to the difficulty of solving ridesharing problems, this research has focused on linear
optimization. Numerous assumptions has been made to decrease computation time, since
solving complex MILP are computationally very heavy. There is currently no solution for
this problem and thus, computational efficiency is an important topic for future research.
Making assumptions on real-life improves computation time, but are less correct. Currently,
is is necessary to use a balance between both. Switching to a (partly) static model decreases
computation time. Existing research already constrains the solution to an existing schedule.

5.2 Discussion

Much research on ridesharing focuses on of two goals; either a ridesharing model’s accuracy
is improved with regards to real-life or the service quality to participants is improved. This
research aims to improve both goals. A game theory methodology was introduced in order to
measure the effect of VOT in practice. This is done by means of the greedy transit algorithm.
Once the ridesharing schedule is created, each rider will have information on its transit costs
and its arrival time. This rider will have a cost in mind for not arriving at his convenient
time. Subsequently, he will decide whether deviating from the schedule gives him a greater
payoff. An optimization model is created to create a transport schedule and generate the
data. A commuters network has been tested on computation time for different solvers. An
acceptable solving time was found for the commercial solver Xpress-IVE. After the schedule is
created, greedy transit algorithm adjusts the schedule based on greedy transits and calculates
the new travel costs and filling rate. The generated data shows that the greedy transits of
riders can have harmful consequences on the global travel costs of the system. To counter the
excessive travel costs of greedy transits, a VOT cost penalty is introduced in the objective
function. As a result, the number of greedy transits has decreased significantly. On average,
this yielded substantial travel cost improvements and increased the average filling rate of vehi-
cles. Nonetheless, not for all situations did VOT decrease travel cost. For a distinct minority
of situations, no greedy transits occurred, while VOT in the objective function changed the
schedule to create a sub-optimal schedule. In addition, the satisfactory level regarding rider’s
arrival time has grown considerably. This conclusion holds when we assume riders to behave
as players in game theory.

The influence of VOT was also tested in a sheep network, where riders do not have the option
to take greedy transits. This was performed using a truck transport network, where truck
drivers do not have incentive to deviate from the schedule and the customers of the goods
do not have this option. In this experiment, we first show that implementing a ridesharing
network for trucks yields significant cost benefits. This is done by comparing single-hopping to
multi-hopping. Subsequently, the VOT of goods is introduced to increase service quality. It is
concluded that multi-hopping leads to lower travel costs and higher filing rate. The addition
of VOT in the objective function could increase the travel costs by up to 63%. However,
the cost benefits in terms of VOT-costs exceeded the increase of travel costs for all settings
considerably. It can be concluded that this data fulfills the goal and answers the main research
question.
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On a concluding note, when looking at the implementation of ridesharing, it is advised to
study the features of the network. Subsequently, it is necessary to decide which features
are important to implement in the model. This research has shown that is beneficial to
incorporate a ridesharing model for multiple scenarios. Looking at a commuters network,
the implementation of VOT decreased travel cost significantly due to the avoidance of greedy
transits. Incorporating ridesharing in a truck transport network, multi-hopping has shown to
reduce travel costs and the implementation of VOT has a considerable benefit in the service
quality.
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Appendix A: Optimization data

1 %@encoding CP1252
2 model "Optimizat ion r ide−shar ing "
3 uses "mmxprs" ,"mmjobs" ,"mmive" ,"mmodbc" ,"advmod" ; %gain ac c e s s to the Xpress−

Optimizer s o l v e r
4
5 d e c l a r a t i o n s
6
7 modSub : Model
8
9

10 P=1. .5 %se t o f persons
11 %SP= 1 . . 8 0 %se t o f a r c s be long ing to the s ho r t e s t path from o r i g i n to

d e s t i n a t i on
12 N= 1 . . 8 %se t o f nodes
13 S= 1 . . 1 0 %se t o f numbers f o r binomial d i s t r i b u t i o n
14
15
16 x : array (P,N,N) o f mpvar %de c i s i o n va r i ab l e dr ive r ’ s a l l o c a t i o n
17 y : array (P,P,N,N) o f mpvar %dec i son va r i ab l e f o r passenger ’ s a l l o c a t i o n
18 alpha1 : i n t e g e r %t r a v e l co s t per time un i t
19 alpha2 : array (P) o f real %VOT−penal ty per time un i t per person
20 t : array (N,N) o f real %t r av e l time from i to j
21 D: array (P,N,N) o f mpvar %departure time from node i f o r person p
22 E: array (P,N,N) o f mpvar %I s x∗D, created in order to make the model l i n e a r
23 G: array (P,P,N,N) o f mpvar %I s y∗D, created in order to make the model l i n e a r
24 e : array (P) o f i n t e g e r %e a r l i e s t departure time f o r person p
25 l : array (P) o f i n t e g e r %l a t e s t a r r i v a l time o f person p
26 o : array (P) o f i n t e g e r %o r i g i n o f person p
27 d : array (P) o f i n t e g e r %de s t i n a t i on o f person p
28 m: array (P) o f i n t e g e r %maximum wait time f o r person p
29 v : array (P) o f i n t e g e r %veh i c l e capac i ty f o r f o r person p
30 M: i n t e g e r %big M
31 n : i n t e g e r %maximum number o f d r i v e r s
32 d e s t i n a t i on : array (N) o f s t r i n g %array that conta in s a l l p o s s i b l e d e s t i n a t i o n s
33 z : array (P,N,N) o f mpvar %denotes the number o f persons t r a v e l l i n g with d r i v e r

p on i , j
34 O: array (S ,P) o f i n t e g e r
35 SP : array (P) o f i n t e g e r %th i s i s s h o r t e s t t r a v e l time f o r r i d e r p
36 L : array (P) o f i n t e g e r %th i s counts the number o f l i n k s in the sho r e s t path

f o r r i d e r p
37 end−d e c l a r a t i o n s
38
39 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

40 alpha1 :=1
41 % Travel time

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

42 f o r a l l ( i , j in N) do
43 i f ( i=1 and j =2) then
44 t ( i , j ) :=12
45 t ( j , i ) :=12
46 e l i f ( i=1 and j =3)then
47 t ( i , j ) :=8

60



48 t ( j , i ) :=8
49
50 e l i f ( i=1 and j =4)then
51 t ( i , j ) :=10
52 t ( j , i ) :=10
53
54 e l i f ( i=2 and j =3)then
55 t ( i , j ) :=7
56 t ( j , i ) :=7
57
58 e l i f ( i=2 and j =5)then
59 t ( i , j ) :=24
60 t ( j , i ) :=24
61
62 e l i f ( i=3 and j =4)then
63 t ( i , j ) :=6
64 t ( j , i ) :=6
65
66
67 e l i f ( i=4 and j =6)then
68 t ( i , j ) :=26
69 t ( j , i ) :=26
70
71 e l i f ( i=5 and j =6)then
72 t ( i , j ) :=9
73 t ( j , i ) :=9
74
75 e l i f ( i=5 and j =7)then
76 t ( i , j ) :=4
77 t ( j , i ) :=4
78
79 e l i f ( i=6 and j =8)then
80 t ( i , j ) :=7
81 t ( j , i ) :=7
82
83 e l i f ( i=7 and j =8)then
84 t ( i , j ) :=5
85 t ( j , i ) :=5
86
87 end−i f
88 end−do
89
90 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

91 %th i s c r e a t e s random o r i g i n and de s t i n a t i on f o r each person ( between node 1 and
9)

92 %i t a l s o c r e a t e s an e a r l i e s t departure time and due time f o r person p , v e h i c l e
capac i ty and maximum wait time f o r person p

93 f o r a l l (p in P) do
94 o (p) :=round( random∗4+0.5)
95 d(p) :=round( random∗4+4.5)
96 l (p) :=round( random∗15+55.5)
97 e (p) :=round( random∗15)
98 %i f o (p)=d(p) then %o r i g i n cannot be the same as d e s t i n a t i on
99 %o (p) :=round ( random∗3+1)

100 %d(p) :=round ( random∗3+5)
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101 %end− i f
102 v (p) :=4
103 m(p) :=100
104
105 end−do
106
107 n:=20
108
109 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

110 setparam ("mmxprs . xprs_loadnames " , t rue )
111
112
113 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

114 %th i s c r e a t e s the s h o r t e s t path matrix
115 f o r a l l (p in P) do
116 i f ( o (p)=1 and d(p)=5) then
117 SP(p) :=36
118 L(p) :=2
119 e l i f ( o (p)=1 and d(p)=6) then
120 SP(p) :=36
121 L(p) :=2
122 e l i f ( o (p)=1 and d(p)=7) then
123 SP(p) :=40
124 L(p) :=3
125 e l i f ( o (p)=1 and d(p)=8) then
126 SP(p) :=43
127 L(p) :=3
128 e l i f ( o (p)=2 and d(p)=5) then
129 SP(p) :=24
130 L(p) :=1
131 e l i f ( o (p)=2 and d(p)=6) then
132 SP(p) :=33
133 L(p) :=2
134 e l i f ( o (p)=2 and d(p)=7) then
135 SP(p) :=28
136 L(p) :=2
137 e l i f ( o (p)=2 and d(p)=8) then
138 SP(p) :=33
139 L(p) :=3
140 e l i f ( o (p)=3 and d(p)=5) then
141 SP(p) :=31
142 L(p) :=2
143 e l i f ( o (p)=3 and d(p)=6) then
144 SP(p) :=32
145 L(p) :=2
146 e l i f ( o (p)=3 and d(p)=7) then
147 SP(p) :=35
148 L(p) :=3
149 e l i f ( o (p)=3 and d(p)=8) then
150 SP(p) :=39
151 L(p) :=3
152 e l i f ( o (p)=4 and d(p)=5) then
153 SP(p) :=35
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154 L(p) :=2
155 e l i f ( o (p)=4 and d(p)=6) then
156 SP(p) :=26
157 L(p) :=1
158 e l i f ( o (p)=4 and d(p)=7) then
159 SP(p) :=38
160 L(p) :=3
161 e l i f ( o (p)=4 and d(p)=8) then
162 SP(p) :=33
163 L(p) :=2
164 end−i f
165 end−do
166
167 i n i t i a l i z a t i o n s to ’Data_Model . dat ’
168 alpha1 t e l o d m v SP L
169 end− i n i t i a l i z a t i o n s
170
171
172 % Compile the model f i l e
173 i f compi le (" Optimizat ion4 . mos")<>0 then e x i t (1 ) ; end−i f
174 load (modSub , "Optimizat ion4 . bim") % Load the bim f i l e
175 run (modSub) % Star t model execut ion
176 wait % Wait f o r model te rminat ion
177 dropnextevent % Ignore te rminat ion event message
178 end−model
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Appendix B: Optimization model

1 %@encoding CP1252
2 model "Optimizat ion r ide−shar ing "
3 uses "mmxprs" ,"mmive" ,"mmodbc" ,"advmod" ; %gain ac c e s s to the Xpress−Optimizer

s o l v e r
4
5 d e c l a r a t i o n s
6
7 P=1. .5 %se t o f persons
8 N= 1 . . 8 %se t o f nodes
9 S= 1 . . 4 0 %se t o f b inomial i n s t an c e s ( s i z e (S)=2∗mean)

10
11 x : array (P,N,N) o f mpvar %de c i s i o n va r i ab l e d r i v e r s a l l o c a t i o n
12 y : array (P,P,N,N) o f mpvar %dec i son va r i ab l e f o r pas s enge r s a l l o c a t i o n
13 alpha1 : i n t e g e r %t r a v e l co s t per time un i t
14 alpha2 : array (P) o f real %VOT−penal ty per time un i t per person
15 t : array (N,N) o f i n t e g e r %t r a v e l time from i to j
16 D: array (P,N,N) o f mpvar %departure time from node i f o r person p
17 E: array (P,N,N) o f mpvar %I s x∗D, created in order to make the model l i n e a r
18 G: array (P,P,N,N) o f mpvar %I s y∗D, created in order to make the model l i n e a r
19 e : array (P) o f i n t e g e r %e a r l i e s t departure time f o r person p
20 l : array (P) o f i n t e g e r %l a t e s t a r r i v a l time o f person p
21 o : array (P) o f i n t e g e r %o r i g i n o f person p
22 d : array (P) o f i n t e g e r %de s t i n a t i on o f person p
23 m: array (P) o f real %maximum wait time f o r person p
24 v : array (P) o f i n t e g e r %veh i c l e capac i ty f o r f o r person p
25 M: i n t e g e r %big M
26 n : i n t e g e r %maximum number o f d r i v e r s
27 d e s t i n a t i on : array (N) o f s t r i n g %array that conta in s a l l p o s s i b l e d e s t i n a t i o n s
28 z : array (P,N,N) o f mpvar %denotes the number o f persons t r a v e l l i n g with d r i v e r

p on i , j
29 O: array (S ,P) o f i n t e g e r %c r e a t e s random va lues f o r normal d i s t r i b u t i o n
30 SP : array (P) o f i n t e g e r %conta in s the minimal t r a v e l time f o r r i d e r p
31 EC: array (P) o f real %these array track the add i t i ona l c o s t s o f greedy

t r a n s i t s
32 EC1 : array (P) o f real
33 EC2 : array (P,P) o f real
34 EC4 : array (P) o f real
35 EC3 : array (P,P,N,N) o f real
36 VC1: array (P) o f real %track s l o s s in f i l l i n g ra t e due to your greedy t r a n s i t
37 VC2: array (P) o f real %track s l o s s in f i l l i n g ra t e due to l o s i n g your d r i v e r
38 VC3: array (P) o f real %track s l o s s in f i l l i n g ra t e due to l o s i n g a passenger
39 L : array (P) o f i n t e g e r %th i s counts the number o f l i n k s in the sho r e s t path

f o r r i d e r p
40 end−d e c l a r a t i o n s
41
42 %var d e c l a r i a t i o n

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

43 f o r a l l (p in P, i in N, j in N) x (p , i , j ) i s_binary
44 f o r a l l (p in P, q in P, i in N, j in N) y (p , q , i , j ) i s_binary
45 f o r a l l (p in P, i in N, j in N) z (p , i , j ) i s_ in t eg e r
46 f o r a l l (p in P, i , j in N) D(p , i , j ) i s_ in t eg e r
47 f o r a l l (p in P, i , j in N) E(p , i , j ) i s_ in t eg e r
48 f o r a l l (p , q in P, i , j in N) G(p , q , i , j ) i s_ in t eg e r
49
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50 %f o r a l l (p in P, i in N) A(p , i ) i s_ in t eg e r
51 i n i t i a l i z a t i o n s from ’Data_Model . dat ’
52 alpha1 alpha2 t e l o d m v SP L
53 end− i n i t i a l i z a t i o n s
54 %−−−−−−−−−−−−−−−−−−−−−−−−−−
55 %Creat ing normal d i s t r i b u t i o n
56 f o r a l l ( s in S , p in P) do
57 O( s , p ) :=round( random∗1)
58 end−do
59 f o r a l l (p in P) do
60 alpha2 (p) :=0 .5∗ (sum( s in S)O( s , p )−(20−3) )
61 end−do
62 %−−−−−−−−−−−−−−−−−−−−−−−−−−
63 M:=500
64
65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
66 %f o r a l l (p in P) alpha2 (p) :=0
67 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
68 de s t i n a t i on (1 ) :="Node 1"
69 d e s t i n a t i on (2 ) :="Node 2"
70 d e s t i n a t i on (3 ) :="Node 3"
71 d e s t i n a t i on (4 ) :="Node 4"
72 d e s t i n a t i on (5 ) :="Node 5"
73 d e s t i n a t i on (6 ) :="Node 6"
74 d e s t i n a t i on (7 ) :="Node 7"
75 d e s t i n a t i on (8 ) :="Node 8"
76 %de s t i n a t i on (9 ) :="Node 9"
77 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

78
79 %Object ive func t i on

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

80 OBJ:= alpha1 ∗ (sum(p in P, i , j in N) ( t ( i , j ) ∗x (p , i , j ) ) ) % + %fo r p o s i t i v e VOT
81 % sum(p in P) alpha2 (p) ∗ ( ( sum( i , j in N| j=d(p) ) ( ( (E(p , i , j )+x (p , i , j ) ∗ t ( i , j )+sum(q

in P) (G(p , q , i , j )+y (p , q , i , j ) ∗ t ( i , j ) ) ) ) ) )−(e (p)+SP(p) ) )
82
83 %OBJ:= alpha1 ∗ (sum(p in P, i , j in N) ( t ( i , j ) ∗x (p , i , j ) ) ) + %fo r negat ive VOT
84 %sum(p in P) ( alpha2 (p) ∗( l (p )−sum( i , j in N| j=d(p) ) ( ( (E(p , i , j )+x (p , i , j ) ∗ t ( i , j )+

sum(q in P) (G(p , q , i , j )+y (p , q , i , j ) ∗ t ( i , j ) ) ) ) ) ) )
85
86 %Spa t i a l c on s t r a i n t s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

87 %f o r a l l (p , q in P, i , j in N) do %turn o f f r i d e sha r i n g
88 %y(p , q , i , j )=0
89 %end−do
90
91 f o r a l l ( i , j in N, p in P)do
92 y (p , p , i , j )=0
93 end−do
94
95 f o r a l l (p in P, i in N| i=o (p) ) do %cannot ente r the o r i g i n node as d r i v e r (

you can only depart once from there )
96 sum( j in N) (x (p , i , j )+sum( q in P)y (p , q , i , j ) )=1
97 end−do
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98
99 f o r a l l (p , q in P, i , j in N| j=o (p) ) do

100 x (p , i , j )+y (p , q , i , j )=0
101 end−do
102
103 f o r a l l (p in P, j in N| j=d(p) ) do %you can only reach your d e s t i n a t i on once
104 sum( i in N) (x (p , i , j )+sum( q in P)y (p , q , i , j ) )=1
105 end−do
106
107 f o r a l l (p , q in P, i , j in N| i=d(p) ) do %dont l eave the d e s t i n a t i on
108 x (p , i , j )+y (p , q , i , j )=0
109 end−do
110
111 f o r a l l (p in P, j in N| j<>o (p) and j<>d(p) ) do %number o f d r i v e r s en t e r i ng

in te rmed ia t e nodes equa l s l e av ing d r i v e r s
112 sum( i in N) (x (p , i , j )+sum( q in P)y (p , q , i , j ) )−sum( k in N) (x (p , j , k )+sum( q in P)y (p

, q , j , k ) )=0
113 end−do
114
115 %Star t p o s s i b l e routes−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
116 f o r a l l (p in P) do
117 %Orig in i s node 1
118 i f ( o (p)=1 and d(p)=5 ) then
119 x (p , 1 , 2 )=1 and x (p , 2 , 5 )=1 or x (p , 1 , 3 )=1 and x (p , 3 , 2 )=1 and x (p , 2 , 5 )=1 or sum( i ,

j in N)x (p , i , j )=0 or x (p , 1 , 3 )=1 or x (p , 3 , 2 )=1 and x (p , 1 , 3 )=1 or x (p , 1 , 2 )=1
120 e l i f ( o (p)=1 and d(p)=6 ) then
121 x (p , 1 , 4 )=1 and x (p , 4 , 6 )=1 or x (p , 1 , 3 )=1 and x (p , 3 , 4 )=1 and x (p , 4 , 6 )=1 or sum( i ,

j in N)x (p , i , j )=0 or x (p , 1 , 4 )=1 or x (p , 1 , 3 )=1 or x (p , 1 , 3 )=1 and x (p , 3 , 4 )=1
122 e l i f ( o (p)=1 and d(p)=7 ) then
123 x (p , 1 , 2 )=1 and x (p , 2 , 5 )=1 and x (p , 5 , 7 )=1 or x (p , 1 , 3 )=1 and x (p , 3 , 2 )=1 and x (p

, 2 , 5 )=1 and x (p , 5 , 7 )=1 or sum( i , j in N)x (p , i , j )=0 or x (p , 1 , 3 )=1 or x (p , 3 , 2 )
=1 and x (p , 1 , 3 )=1 or x (p , 1 , 2 )=1

124 e l i f ( o (p)=1 and d(p)=8 ) then
125 x (p , 1 , 4 )=1 and x (p , 4 , 6 )=1 and x (p , 6 , 8 )=1 or x (p , 1 , 2 )=1 and x (p , 2 , 5 )=1 and x (p

, 5 , 7 )=1 and x (p , 7 , 8 )=1 or sum( i , j in N)x (p , i , j )=0 or x (p , 1 , 4 )=1 or x (p , 1 , 2 )
=1

126 %Orig in i s node 2
127 e l i f ( o (p)=2 and d(p)=5 ) then
128 x (p , 2 , 5 )=1 or x (p , 2 , 3 )=1 and x (p , 3 , 4 )=1 and x (p , 4 , 6 )=1 and x (p , 6 , 5 )=1 or sum( i ,

j in N)x (p , i , j )=0 or x (p , 2 , 3 )=1 or x (p , 2 , 3 )=1 and x (p , 3 , 4 )=1
129 e l i f ( o (p)=2 and d(p)=6 ) then
130 x (p , 2 , 5 )=1 and x (p , 5 , 6 )=1 or x (p , 2 , 3 )=1 and x (p , 3 , 4 )=1 and x (p , 4 , 6 )=1 or sum( i ,

j in N)x (p , i , j )=0 or x (p , 2 , 3 )=1 or x (p , 2 , 3 )=1 and x (p , 3 , 4 )=1
131 e l i f ( o (p)=2 and d(p)=7 ) then
132 x (p , 2 , 5 )=1 and x (p , 5 , 7 )=1 or x (p , 2 , 5 )=1 and x (p , 5 , 6 )=1 and x (p , 6 , 8 )=1 and x (p

, 8 , 7 )=1 or sum( i , j in N)x (p , i , j )=0
133 e l i f ( o (p)=2 and d(p)=8 ) then
134 x (p , 2 , 5 )=1 and x (p , 5 , 7 )=1 and x (p , 7 , 8 )=1 or x (p , 2 , 5 )=1 and x (p , 5 , 6 )=1 and x (p

, 6 , 8 )=1 or sum( i , j in N)x (p , i , j )=0
135 %Orig in i s node 3
136 e l i f ( o (p)=3 and d(p)=5 ) then
137 x (p , 3 , 2 )=1 and x (p , 2 , 5 )=1 or x (p , 3 , 4 )=1 and x (p , 4 , 6 )=1 and x (p , 6 , 5 )=1 or sum( i ,

j in N)x (p , i , j )=0 or x (p , 3 , 2 )=1 or x (p , 3 , 4 )=1
138 e l i f ( o (p)=3 and d(p)=6 ) then
139 x (p , 3 , 4 )=1 and x (p , 4 , 6 )=1 or x (p , 3 , 2 )=1 and x (p , 2 , 5 )=1 and x (p , 5 , 6 )=1 or sum( i ,

j in N)x (p , i , j )=0 or x (p , 3 , 2 )=1 or x (p , 3 , 4 )=1
140 e l i f ( o (p)=3 and d(p)=7 ) then
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141 x (p , 3 , 2 )=1 and x (p , 2 , 5 )=1 and x (p , 5 , 7 )=1 or x (p , 3 , 4 )=1 and x (p , 4 , 6 )=1 and x (p
, 6 , 8 )=1 and x (p , 8 , 7 )=1 or sum( i , j in N)x (p , i , j )=0 or x (p , 3 , 2 )=1 or x (p , 3 , 4 )
=1

142 e l i f ( o (p)=3 and d(p)=8 ) then
143 x (p , 3 , 4 )=1 and x (p , 4 , 6 )=1 and x (p , 6 , 8 )=1 or x (p , 3 , 2 )=1 and x (p , 2 , 5 )=1 and x (p

, 5 , 7 )=1 and x (p , 7 , 8 )=1 or sum( i , j in N)x (p , i , j )=0 or x (p , 3 , 2 )=1 or x (p , 3 , 4 )
=1

144 %Orig in i s node 4
145 e l i f ( o (p)=4 and d(p)=5 ) then
146 x (p , 4 , 6 )=1 and x (p , 6 , 5 )=1 or x (p , 4 , 3 )=1 and x (p , 3 , 2 )=1 and x (p , 2 , 5 )=1 or sum( i ,

j in N)x (p , i , j )=0 or x (p , 4 , 3 )=1 or x (p , 3 , 2 )=1 and x (p , 4 , 3 )=1
147 e l i f ( o (p)=4 and d(p)=6 ) then
148 x (p , 4 , 5 )=1 or x (p , 4 , 3 )=1 and x (p , 3 , 2 )=1 and x (p , 2 , 5 )=1 and x (p , 5 , 6 )=1 or sum( i ,

j in N)x (p , i , j )=0 or x (p , 4 , 3 )=1 or x (p , 3 , 2 )=1 and x (p , 4 , 3 )=1
149 e l i f ( o (p)=4 and d(p)=7 ) then
150 x (p , 4 , 6 )=1 and x (p , 6 , 8 )=1 and x (p , 8 , 7 )=1 or x (p , 4 , 6 )=1 and x (p , 6 , 5 )=1 and x (p

, 5 , 7 )=1 or sum( i , j in N)x (p , i , j )=0
151 e l i f ( o (p)=4 and d(p)=8 ) then
152 x (p , 4 , 6 )=1 and x (p , 6 , 8 )=1 or x (p , 4 , 6 )=1 and x (p , 6 , 5 )=1 and x (p , 5 , 7 )=1 and x (p

, 7 , 8 )=1 or sum( i , j in N)x (p , i , j )=0
153 end−i f
154 end−do
155 %End po s s i b l e routes

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

156
157 f o r a l l (p in P, i , j in N) do %th i s ensure s that only non−empty l i n k s are used
158 t ( i , j )−x (p , i , j )>=−M∗(1−x (p , i , j ) )
159 end−do
160
161 f o r a l l (p in P, j in N) do %do not t r a v e l to nodes mu l t ip l e t imes
162 sum( i in N)x (p , i , j )<=1
163 end−do
164
165 f o r a l l ( i in N, p , q in P) do %no t r a v e l l i n g to cur rent l o c a t i o n
166 x (p , i , i ) + y (p , q , i , i )=0
167 end−do
168 %Creat ing va r i ab l e E

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

169 f o r a l l (p in P, i , j in N) E(p , i , j ) <= M∗x (p , i , j )
170 f o r a l l (p in P, i , j in N) E(p , i , j ) <= D(p , i , j )
171 f o r a l l (p in P, i , j in N) E(p , i , j )>= D(p , i , j )−(1−x (p , i , j ) ) ∗M
172 f o r a l l (p in P, i , j in N) E(p , i , j )>=0
173 %Time con s t r a i n t s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

174 f o r a l l (p in P, i in N| i=o (p) ) do %departure cannot be be f o r e a v a i l a b i l i t y
175 sum( j in N) (E(p , i , j )+sum( q in P)G(p , q , i , j ) )>=e (p)
176 end−do
177
178 f o r a l l (p in P, j in N| j=d(p) ) do %a r r i v a l at d e s t i n a t i on must be be f o r e due

date
179 sum( i in N) (E(p , i , j )+x (p , i , j ) ∗ t ( i , j ) )<=l (p)
180 end−do
181
182 f o r a l l (p in P, i , j in N) do %non−nega t i v i t y c on s t r a i n t s
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183 D(p , i , j )>=0
184 end−do
185 %Creat ing va r i ab l e G

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

186 f o r a l l (p , q in P, i , j in N) G(p , q , i , j ) <= M∗y (p , q , i , j )
187 f o r a l l (p , q in P, i , j in N) G(p , q , i , j ) <= D(p , i , j )
188 f o r a l l (p , q in P, i , j in N) G(p , q , i , j )>= D(p , i , j )−(1−y (p , q , i , j ) ) ∗M
189 f o r a l l (p , q in P, i , j in N) G(p , q , i , j )>=0
190 %Ride−shar ing con s t r a i n t s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

191
192
193 f o r a l l ( q in P, i in N, j in N) do %Z conta in s the number o f people d r i v i ng

with p from i to j
194 (sum (p in P)y (p , q , i , j ) )+x (q , i , j )=z (q , i , j )
195 end−do
196
197 f o r a l l (p in P, j in N) do %A person cannot dr iv e anymore i f he l e av e s h i s

car
198 sum( q in P, i in N)y (p , q , i , j ) + sum( k in N)x (p , j , k )<=1
199 end−do
200
201 f o r a l l (p in P, q in P, i in N, j in N) do %Carpool ing can only occur from i to j

i f the d r i v e r goes the re
202 y (p , q , i , j )<=x(q , i , j )
203 end−do
204
205 f o r a l l ( q in P, i in N, j in N) do %Capacity c on s t r a i n t s f o r the d r i v e r
206 sum(p in P) y (p , q , i , j ) <= v(q )
207 end−do
208
209 f o r a l l (p in P, j in N| j=d(p) ) do %passenger s due date c on s t r a i n t
210 sum( i in N, q in P) (G(p , q , i , j )+y (p , q , i , j ) ∗ t ( i , j ) )<=l (p)
211 end−do
212
213 f o r a l l (p in P, j in N| j<>d(p) ) do %dr i v e r / passenger cannot l eave be f o r e i t

has a r r i v ed there
214 sum( k in N) (E(p , j , k )+sum( q in P)G(p , q , j , k ) )>=sum( i in N) ( (E(p , i , j )+x (p , i , j ) ∗ t ( i

, j ) )+ sum( q in P) (G(p , q , i , j )+y (p , q , i , j ) ∗ t ( i , j ) ) )
215 end−do
216
217 f o r a l l (p , q in P, i , j in N) do %departure d r i v e r i s departure passenger
218 E(q , i , j )−G(p , q , i , j )<=M∗(1−y (p , q , i , j ) )
219 E(q , i , j )−G(p , q , i , j )>=−M∗(1−y (p , q , i , j ) )
220 end−do
221
222 f o r a l l (p in P, i , j in N) do
223 D(p , i , j )>=0
224 end−do
225
226 minimize (OBJ)
227
228 %pr in t optimum so l u t i o n

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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229
230 wr i t e l n (" Simulat ion with " , g e t s i z e (P) ," r i d e r s ")
231
232 f o r a l l (p in P) do
233 wr i t e l n (" Rider " ,p , " : o r i g i n " , o (p) , " d e s t i n a t i on " ,d(p) , " alpha2 " ,

alpha2 (p) ," e (p) " , e (p) )
234
235 end−do
236 wr i t e l n (" −−−−−−−−−−−−−−− ")
237 procedure pr int_status
238 d e c l a r a t i o n s
239 s t a tu s : s t r i n g
240 end−d e c l a r a t i o n s
241
242 case ge tp robs ta t o f
243 XPRS_OPT: s t a tu s :="Optimum found"
244 XPRS_UNF: s t a tu s :=" Unf in i shed "
245 XPRS_INF: s t a tu s :=" I n f e a s i b l e "
246 XPRS_UNB: s t a tu s :="Unbounded"
247 XPRS_OTH: s t a tu s :=" Fa i l ed "
248 else s t a tu s :="???"
249 end−case
250
251 wr i t e l n (" Problem s ta tu s : " , s t a tu s )
252 end−procedure
253
254 pr int_status
255
256 wr i t e l n (" Dr ive r s : ")
257 f o r a l l (p in P, i in N, j in N) do
258 i f ( x (p , i , j ) . s o l = 1) then
259 wr i t e l n (" Driver " , p , " : path " , d e s t i n a t i on ( i ) ," −−−> " , d e s t i n a t i on ( j ) , "

by d r i v e r " , p , " l e av e s at " , x (p , i , j ) . s o l ∗D(p , i , j ) . so l , " , t r a v e l time " ,
x (p , i , j ) . s o l ∗ t ( i , j ) , " , due date " , l (p ) )

260 end−i f
261
262 end−do
263 wr i t e l n (" Passengers : ")
264 f o r a l l (p , q in P, i in N, j in N) do
265 i f ( y (p , q , i , j ) . s o l = 1) then
266 wr i t e l n (" Passenger " , p , " : path " , d e s t i n a t i on ( i ) ," −−−> " , d e s t i n a t i on ( j ) ,

" by d r i v e r " , q , " l e av e s at " , y (p , q , i , j ) . s o l ∗D(p , i , j ) . so l , " , t r a v e l
time " , y (p , q , i , j ) . s o l ∗ t ( i , j ) , " , due date " , l (p ) )

267 end−i f
268 end−do
269 wr i t e l n (" −−−−−−−−−−−−−−− ")
270 wr i t e l n (" value obj . function " ,OBJ. s o l )
271 wr i t e l n (" Total sheep t r a v e l co s t " ,sum(p in P, i , j in N)x (p , i , j ) . s o l ∗ t ( i , j ) )
272 wr i t e l n (" −−−−−−−−−−−−−−− ")
273 wr i t e l n (" Average #of r i d e r s in v e h i c l e : " , (sum(p in P, i , j in N)x (p , i , j ) . s o l+

sum(p , q in P, i , j in N)y (p , q , i , j ) . s o l ) /sum(p in P, i , j in N)x (p , i , j ) . s o l )
274
275
276 %Greedy t r a n s i t a lgor i thm

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

277 f o r a l l (p in P) do
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278 %I f r i d e r p takes a greedy t r a n s i t
279 i f (sum( i , j in N| z (p , i , j ) . so l >0) ( x (p , i , j ) . s o l ∗ t ( i , j ) /z (p , i , j ) . s o l+sum( q in P

| z (q , i , j ) . so l >0) (y (p , q , i , j ) . s o l ∗ t ( i , j ) /z (q , i , j ) . s o l ) ) + alpha2 (p) ∗(sum( i , j
in N| j=d(p) ) ( E(p , i , j ) . s o l+x (p , i , j ) . s o l ∗ t ( i , j ) +sum( q in P) (G(p , q , i , j ) . s o l

+y (p , q , i , j ) . s o l ∗ t ( i , j ) ) ) −(e (p)+SP(p) ) )>SP(p) ∗ alpha1 ) then
280 wr i t e l n (" Rider " ,p , " takes a greedy t r an s i t , ext ra co s t : " , (SP(p) ∗ alpha1 )− (

sum( i , j in N| z (p , i , j ) . so l >0) ( x (p , i , j ) . s o l ∗ t ( i , j ) /z (p , i , j ) . s o l )+sum( i , j
in N, q in P| z (q , i , j ) . so l >0) (y (p , q , i , j ) . s o l ∗ t ( i , j ) /z (q , i , j ) . s o l ) ) )

281 EC1(p) :=(SP(p) ∗ alpha1 )− ( sum( i , j in N| z (p , i , j ) . so l >0) ( x (p , i , j ) . s o l ∗ t ( i , j ) /
z (p , i , j ) . s o l )+sum( i , j in N, q in P| z (q , i , j ) . so l >0) (y (p , q , i , j ) . s o l ∗ t ( i , j ) /z (
q , i , j ) . s o l ) )

282 end−i f
283 EC(p) :=EC1(p)
284 end−do
285
286 %I f p ’ s d r i v e r q takes a greedy t r a n s i t
287 f o r a l l (p in P) do
288 f o r a l l ( q in P) do
289 i f (sum( i , j in N)y (p , q , i , j ) . so l >=1 and EC(q ) >0.01 and EC(p) <0.01) then
290 EC2(p , q ) := ( ( sum( i , j in N| z (p , i , j ) . so l >0) ( x (p , i , j ) . s o l ∗ t ( i , j ) /z (p , i , j ) .

s o l )+sum( i , j in N| z (q , i , j ) . so l >0) (y (p , q , i , j ) . s o l ∗ t ( i , j ) /z (q , i , j ) . s o l )
) )

291 end−i f
292 end−do
293 i f (EC(p) <0.1 and sum( q in P)EC2(p , q )>0 ) then
294 EC4(p) :=(SP(p) ∗ alpha1 )−sum( q in P)EC2(p , q )
295 wr i t e l n (" Extra co s t o f r i d e r s having to dr i ve themse lves for d r i v e r " ,p , " : " ,

EC4(p) )
296 EC(p) :=EC(p)+EC4(p)
297 end−i f
298 end−do
299 %i f p ’ s passenger takes a greedy t r a n s i t
300 f o r a l l (p in P) do
301 f o r a l l ( q in P, i , j in N| z (p , i , j ) . so l >0) do
302 i f ( y (q , p , i , j ) . s o l=1 and EC(q ) >0.01 and EC(p) <0.01) then
303 EC3(p , q , i , j ) :=(y (q , p , i , j ) . s o l ∗ t ( i , j ) ) /z (p , i , j ) . s o l
304 end−i f
305 end−do
306 wr i t e l n (" Extra co s t due to lower f i l l i n g ra t e for r i d e r " ,p , " : " , sum( q in P, i

, j in N)EC3(p , q , i , j ) )
307 EC(p) :=EC(p)+sum( q in P, i , j in N)EC3(p , q , i , j )
308 end−do
309 wr i t e l n("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
310
311 wr i t e l n (" Total greedy t r a v e l co s t : " ,sum(p in P)EC(p)+sum(p in P, i , j in N)x (p ,

i , j ) . s o l ∗ t ( i , j ) )
312
313 %greedy v eh i c l e capac i ty

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

314 f o r a l l (p in P) do
315 i f (EC1(p) >0.01 or sum( q in P)EC2(p , q ) >0.01) then
316 VC1(p) := (sum( i , j in N)x (p , i , j ) . s o l+sum( q in P, i , j in N)y (p , q , i , j ) . s o l )−L(p)
317 VC2(p) :=L(p)−sum( i , j in N)x (p , i , j ) . s o l
318 end−i f
319 i f (sum( q in P, i , j in N)EC3(p , q , i , j ) >0.01) then
320 VC3(p) :=VC3(p)+1
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321 end−i f
322 end−do
323
324 wr i t e l n (" Greedy v eh i c l e capac i ty : " , (sum(p in P, i , j in N)x (p , i , j ) . s o l+sum(p , q

in P, i , j in N)y (p , q , i , j ) . so l−sum(p in P)VC1(p)−sum(p in P)VC3(p) ) /(sum(p in
P, i , j in N)x (p , i , j ) . s o l+sum(p in P)VC2(p) ) )

325
326 end−model
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Appendix C: VOT experiments

Positive VOT experiments

Number
of riders

Travel cost
without

ridesharing
No VOT µ = 1 µ = 3 µ = 5 µ = 7 µ = 9 µ = 11 µ = 13

5 172 53 81 81 138 138 138 138 138
6 213 78 83 83 83 83 118 118 164
7 252 87 94 127 155 178 188 188 188
8 264 89 117 129 157 157 183 212 236
9 331 94 128 154 187 226 226 226 226
10 346 79 107 174 209 209 209 237 237
11 371 113 132 158 191 249 216 280 280
12 416 124 165 206 206 266 266 302 302
13 447 120 132 212 287 287 320 320 344
14 487 129 188 188 211 211 259 298 298
15 502 134 172 214 214 256 262 323 323

Table C.1: Travel cost using different positive mean VOT-values and comparison to a network
without ridesharing, multi-hopping

Number
of riders

Travel cost
without

ridesharing
No VOT µ = 1 µ = 3 µ = 5 µ = 7 µ = 9 µ = 11 µ = 13

5 176 88 109 143 143 143 143 176 176
6 221 91 153 181 181 181 181 181 181
7 265 86 86 143 177 177 177 177 265
8 264 125 149 173 209 209 209 209 209
9 331 87 87 179 179 235 268 268 268
10 346 125 138 193 253 253 253 296 332
11 371 129 151 179 217 217 217 253 291
12 416 116 116 172 255 255 255 255 255
13 447 134 150 186 210 238 271 271 348
14 487 148 187 214 271 304 304 332 332
15 502 137 189 215 239 272 272 272 272

Table C.2: Travel cost using different positive mean VOT-values and comparison to a network
without ridesharing, single-hopping
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Number
of riders

Filling rate
without

ridesharing
No VOT µ = −1 µ = −3 µ = −5 µ = −7 µ = −9 µ = −11 µ = −13

5 1.00 2.60 2.83 1.63 1.63 1.63 1.63 1.63 1.63
6 1.00 2.67 2.20 1.80 1.80 1.80 1.50 1.50 1.5
7 1.00 2.50 2.67 2.67 1.92 1.92 1.92 1.92 1.92
8 1.00 2.88 3.00 2.64 2.64 2.64 2.08 2.08 2.08
9 1.00 3.13 3.11 3.11 1.83 1.83 1.83 1.67 1.67
10 1.00 3.57 2.89 2.45 2.00 1.80 1.80 1.80 1.88
11 1.00 3.22 2.90 2.42 2.42 2.42 2.42 2.42 2.42
12 1.00 3.20 3.56 3.08 2.43 2.43 2.79 2.28 1.85
13 1.00 3.10 3.45 3.00 3.00 3.00 2.25 2.05 2.00
14 1.00 3.43 3.45 2.38 1.81 2.05 1.86 1.93 1.93
15 1.00 3.41 3.15 2.51 1.82 2.04 1.87 1.81 1.39

Table C.3: Filling rate using different negative mean VOT-values and comparison to a network
without ridesharing, multi-hopping

Number
of riders

Filling rate
without

ridesharing
No VOT µ = −1 µ = −3 µ = −5 µ = −7 µ = −9 µ = −11 µ = −13

5 1.00 2.25 2.00 1.71 1.80 1.80 1.80 1.80 1.80
6 1.00 2.50 1.67 1.67 1.67 1.60 1.60 1.60 1.60
7 1.00 3.00 2.00 1.38 1.38 1.21 1.21 1.21 1.21
8 1.00 2.45 2.45 2.15 2.15 2.00 1.76 1.76 1.76
9 1.00 2.75 2.75 2.00 1.69 1.57 1.57 1.57 1.25
10 1.00 2.90 2.42 2.31 1.75 1.75 1.72 1.58 1.58
11 1.00 3.00 2.92 2.29 2.13 2.13 1.76 1.76 1.50
12 1.00 2.50 2.80 2.14 2.14 1.79 1.72 1.35 1.35
13 1.00 3.40 3.40 2.43 1.68 1.52 1.52 1.52 1.41
14 1.00 2.81 2.27 2.24 1.94 1.94 1.94 1.65 1.65
15 1.00 3.00 2.54 2.13 1.83 1.74 1.74 1.58 1.61

Table C.4: Filling rate using different negative mean VOT-values and comparison to a network
without ridesharing, single-hopping

73



Negative VOT experiments

Number
of riders

Travel cost
without

ridesharing
No VOT µ = −1 µ = −3 µ = −5 µ = −7 µ = −9 µ = −11 µ = −13

5 168 53 56 113 113 113 113 113 113
6 206 78 100 125 125 125 158 158 158
7 235 87 99 99 135 135 135 135 135
8 283 89 101 129 129 129 157 157 157
9 320 94 95 95 154 154 154 194 194
10 330 79 107 118 152 163 163 163 186
11 390 113 118 146 146 146 146 146 146
12 456 124 113 127 160 160 166 210 245
13 469 120 122 150 150 150 190 222 222
14 487 129 141 186 234 252 270 298 298
15 502 134 152 182 240 267 284 284 323

Table C.5: Travel cost using different negative mean VOT-values and comparison to a network
without ridesharing, multi-hopping

Number
of riders

Travel cost
without

ridesharing
No VOT µ = −1 µ = −3 µ = −5 µ = −7 µ = −9 µ = −11 µ = −13

5 176 88 95 104 117 117 117 117 117
6 221 91 117 117 117 123 123 123 123
7 265 86 121 182 182 210 210 210 210
8 264 125 125 142 142 155 194 194 194
9 331 87 87 122 155 179 179 179 216
10 346 125 153 160 203 203 219 247 247
11 371 129 142 175 190 190 215 215 253
12 416 116 118 160 160 216 224 273 273
13 447 134 132 199 264 302 302 302 335
14 487 148 188 203 225 225 225 258 258
15 502 137 164 195 228 252 252 283 295

Table C.6: Travel cost using different negative mean VOT-values and comparison to a network
without ridesharing, single-hopping
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Number
of riders

Filling rate
without

ridesharing
No VOT µ = 1 µ = 3 µ = 5 µ = 7 µ = 9 µ = 11 µ = 13

5 1.00 2.60 2.00 2.00 1.22 1.22 1.22 1.22 1.22
6 1.00 2.67 2.33 2.33 2.33 2.33 1.63 1.63 1.17
7 1.00 2.50 2.25 1.80 1.50 1.43 1.29 1.29 1.29
8 1.00 2.88 2.10 1.67 1.43 1.43 1.33 1.19 1.12
9 1.00 3.13 2.00 1.75 1.50 1.24 1.24 1.24 1.24
10 1.00 3.57 2.89 1.77 1.44 1.44 1.44 1.28 1.28
11 1.00 3.22 2.33 2.23 1.81 1.56 1.73 1.35 1.35
12 1.00 3.20 2.23 1.63 1.63 1.30 1.30 1.18 1.18
13 1.00 3.10 2.73 1.88 1.33 1.33 1.22 1.22 1.17
14 1.00 3.43 2.59 2.59 1.92 1.92 1.50 1.36 1.36
15 1.00 3.41 2.78 2.35 2.17 1.57 1.53 1.30 1.30

Table C.7: Filling rate using different positive mean VOT-values and comparison to a network
without ridesharing, multi-hopping

Number
of riders

Filling rate
without

ridesharing
No VOT µ = 1 µ = 3 µ = 5 µ = 7 µ = 9 µ = 11 µ = 13

5 1.00 2.25 1.75 1.18 1.18 1.18 1.18 1.00 1.00
6 1.00 2.50 1.33 1.15 1.15 1.15 1.15 1.15 1.15
7 1.00 3.00 3.00 2.00 1.55 1.55 1.55 1.55 1.00
8 1.00 2.45 1.67 1.50 1.29 1.29 1.29 1.29 1.29
9 1.00 2.75 2.75 1.54 1.54 1.19 1.06 1.06 1.06
10 1.00 2.90 2.42 1.79 1.39 1.39 1.39 1.19 1.09
11 1.00 3.00 2.45 2.08 1.67 1.67 1.67 1.47 1.25
12 1.00 2.50 2.50 1.85 1.35 1.35 1.35 1.35 1.35
13 1.00 3.40 2.73 2.31 2.14 1.88 1.67 1.67 1.30
14 1.00 2.81 2.29 1.88 1.56 1.40 1.40 1.27 1.27
15 1.00 3.00 2.14 1.88 1.76 1.58 1.58 1.58 1.58

Table C.8: Filling rate using different positive mean VOT-values and comparison to a network
without ridesharing, single-hopping
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Appendix D: Results greedy transit experiments

No VOT experiments

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 177 0 0 0 1.00
6 202 0 0 0 1.00
7 258 0 0 0 1.00
8 258 0 0 0 1.00
9 291 0 0 0 1.00
10 326 0 0 0 1.00
11 393 0 0 0 1.00
12 408 0 0 0 1.00
13 458 0 0 0 1.00
14 507 0 0 0 1.00
15 524 0 0 0 1.00

Table D.1: No ridesharing

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 54 0 0 0 3.20
6 80 0 0 0 2.17
7 90 0 0 0 2.88
8 84 0 0 0 2.86
9 98 0 0 0 3.00
10 92 0 0 0 3.50
11 123 0 0 0 3.00
12 119 0 0 0 3.50
13 120 0 0 0 2.89
14 113 0 0 0 3.63
15 133 0 0 0 3.54

Table D.2: Ridesharing, no VOT

Positive VOT experiments

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 54 0 132 132 3.20
6 80 0 175 175 2.17
7 228 2 130 17 1.24
8 202 1 124 35 1.29
9 236 3 76 14 1.41
10 120 1 131 104 2.80
11 123 0 117 117 3.00
12 119 0 230 230 3.50
13 270 2 170 170 1.39
14 113 0 127 127 3.63
15 241 1 182 182 1.96

Table D.3: µ = 1, VOT not in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 54 0 29 29 3.20
6 80 0 56 56 2.17
7 118 0 42 42 2.10
8 84 0 25 25 2.86
9 112 0 45 45 2.67
10 113 0 74 74 2.56
11 126 0 15 15 2.20
12 134 0 52 52 2.67
13 156 0 59 59 2.09
14 150 0 38 38 2.69
15 154 0 58 58 2.51

Table D.4: µ = 1, VOT in obj. function
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Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 177 1 195 0 1.00
6 154 1 264 86 1.30
7 227 2 232 31 1.24
8 235 3 273 23 1.13
9 271 6 143 5 1.15
10 326 5 226 0 1.00
11 293 4 223 52 1.41
12 358 4 393 45 1.23
13 287 4 333 117 1.58
14 473 4 310 19 1.04
15 493 5 362 19 1.11

Table D.5: µ = 2, VOT not in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 71 0 4 4 2.60
6 123 0 24 24 1.44
7 180 1 74 64 1.50
8 112 0 35 35 2.11
9 235 1 47 41 1.17
10 148 0 61 61 1.92
11 126 0 18 18 2.20
12 144 0 49 49 2.38
13 164 0 60 60 2.08
14 164 0 64 64 2.83
15 178 0 64 64 2.89

Table D.6: µ = 2, VOT in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 177 2 289 0 1.00
6 173 3 383 46 1.18
7 217 4 259 27 1.24
8 258 3 359 0 1.00
9 291 7 160 0 1.00
10 326 4 389 0 1.00
11 308 4 319 64 1.21
12 215 4 504 224 2.19
13 396 3 514 73 1.15
14 504 9 592 2 1.00
15 493 5 402 21 1.11

Table D.7: µ = 3, VOT not in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 107 0 16 16 1.86
6 147 0 17 17 1.30
7 146 0 80 80 1.75
8 225 2 51 28 1.13
9 239 2 89 39 1.18
10 145 0 76 76 2.18
11 126 0 73 73 2.20
12 188 1 65 59 1.93
13 240 1 85 79 1.53
14 206 0 71 71 2.25
15 236 0 88 88 2.20

Table D.8: µ = 3, VOT in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 177 4 320 0 1.00
6 173 3 458 54 1.18
7 217 4 324 34 1.24
8 258 4 468 0 1.00
9 291 9 232 0 1.00
10 326 7 536 0 1.00
11 393 7 488 0 1.00
12 408 8 653 0 1.00
13 458 5 643 0 1.00
14 504 10 592 0 1.00
15 524 9 582 0 1.00

Table D.9: µ = 4, VOT not in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 107 0 12 12 1.86
6 176 0 20 20 1.09
7 146 0 70 70 1.75
8 229 0 67 67 1.13
9 259 2 54 32 1.11
10 160 0 65 65 1.77
11 238 1 65 59 1.29
12 238 0 59 59 2.07
13 221 1 82 75 1.53
14 206 0 97 97 2.19
15 222 0 101 101 2.11

Table D.10: µ = 4, VOT in obj. function
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Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 177 4 419 0 1.00
6 173 3 558 66 1.18
7 258 6 410 0 1.00
8 258 5 547 0 1.00
9 291 9 281 0 1.00
10 326 8 729 0 1.00
11 396 9 673 0 1.00
12 408 9 810 0 1.00
13 458 11 837 0 1.00
14 504 10 800 0 1.00
15 524 9 832 0 1.00

Table D.11: µ = 5, VOT not in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 107 0 19 19 1.86
6 147 0 27 27 1.30
7 215 1 90 77 1.19
8 229 0 65 65 1.13
9 207 0 53 53 1.33
10 172 0 55 55 1.77
11 180 1 84 76 1.16
12 228 0 46 46 1.67
13 275 0 36 36 1.33
14 258 0 63 63 1.71
15 222 0 122 122 2.11

Table D.12: µ = 5, VOT in obj. function

Negative VOT experiments

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 54 0 99 99 3.20
6 111 1 196 122 1.63
7 90 0 190 190 2.88
8 84 0 177 177 2.86
9 122 1 91 71 2.70
10 92 0 114 114 3.50
11 137 0 50 47 2.60
12 180 2 116 76 2.27
13 311 2 169 62 1.20
14 124 0 168 163 3.80
15 204 1 193 147 2.87

Table D.13: µ = −1, VOT not in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 71 0 6 6 2.60
6 97 0 20 20 1.88
7 119 0 22 22 1.90
8 91 0 17 17 2.67
9 122 0 19 19 2.40
10 92 0 29 29 3.50
11 133 1 15 14 2.42
12 123 0 20 20 2.80
13 138 0 15 15 3.08
14 146 0 27 27 3.00
15 158 0 27 27 3.06

Table D.14: µ = −1, VOT in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 54 0 141 141 3.20
6 169 3 94 13 1.20
7 136 1 302 188 1.92
8 231 3 246 24 1.19
9 150 2 107 61 2.25
10 92 0 253 253 3.50
11 293 3 118 32 1.41
12 330 3 326 66 1.19
13 458 6 344 0 1.00
14 279 3 272 124 1.85
15 346 4 389 130 1.98

Table D.15: µ = −2, VOT not in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 71 0 12 12 2.60
6 80 0 28 28 2.17
7 113 0 40 40 2.08
8 118 0 33 33 2.10
9 122 0 41 41 2.40
10 110 0 46 46 2.78
11 118 0 34 34 3.10
12 123 0 31 31 2.80
13 157 0 22 22 2.92
14 146 0 45 45 3.00
15 161 0 41 41 2.96

Table D.16: µ = −2, VOT in obj. function
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Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 177 2 150 0 1.00
6 133 2 230 87 1.50
7 161 2 380 157 1.69
8 231 4 371 29 1.19
9 271 2 178 14 1.15
10 312 2 340 16 1.13
11 214 3 221 106 1.92
12 335 5 490 72 1.20
13 458 8 475 0 1.00
14 254 4 368 169 2.24
15 432 5 522 82 1.16

Table D.17: µ = −3, VOT not in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 71 0 21 21 2.60
6 113 0 42 42 1.63
7 114 0 36 36 2.10
8 118 0 55 55 2.10
9 203 1 34 30 1.40
10 113 0 59 59 2.78
11 140 0 40 40 2.46
12 123 0 5 5 2.80
13 157 0 36 36 2.92
14 207 1 55 51 2.56
15 176 0 48 48 2.88

Table D.18: µ = −3, VOT in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 177 2 237 0 1.00
6 202 5 274 0 1.00
7 161 2 505 208 1.69
8 231 4 620 48 1.19
9 181 3 198 75 1.86
10 326 4 466 0 1.00
11 393 6 326 0 1.00
12 408 7 619 0 1.00
13 458 10 780 0 1.00
14 411 9 506 44 1.32
15 524 9 720 0 1.00

Table D.19: µ = −4, VOT not in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 71 0 37 37 2.60
6 151 0 24 24 1.27
7 114 0 28 28 2.10
8 211 1 15 13 1.31
9 185 0 38 38 1.67
10 113 0 28 28 2.78
11 164 1 29 26 2.29
12 182 0 8 8 2.12
13 157 0 44 44 2.92
14 179 0 49 49 2.53
15 181 0 51 51 2.61

Table D.20: µ = −4, VOT in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 177 2 317 0 1.00
6 202 5 341 0 1.00
7 258 6 699 0 1.00
8 231 5 629 37 1.19
9 303 5 321 0 1.00
10 326 7 521 0 1.00
11 393 6 427 0 1.00
12 408 9 844 0 1.00
13 458 11 934 0 1.00
14 419 10 670 43 1.24
15 524 11 842 0 1.00

Table D.21: µ = −5, VOT not in obj. function

Number
of riders Costs

Number of
greedy
transits

VOT
costs

Corrected
VOT

Filling
rate

5 71 0 41 41 2.60
6 151 0 6 6 1.27
7 114 0 36 36 2.10
8 142 0 38 38 1.91
9 185 0 31 31 1.67
10 113 0 39 39 2.78
11 238 1 43 39 1.69
12 182 0 10 10 2.12
13 157 0 71 71 2.92
14 205 0 48 48 2.39
15 213 0 53 53 2.44

Table D.22: µ = −5, VOT in obj. function
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Appendix E: Truck transport experiments: switching between
trucks allowed

VOT not in objective function

No VOT VOT not in obj. function
Number
of riders Travel cost Filling

rate
VOT
cost µ = 1 µ = 2 µ = 3 µ = 4 µ = 5 µ = −1 µ = −2 µ = −3 µ = −4 µ = −5

9 46 4.40 0 40 82 164 196 230 122 122 196 325 404
11 83 3.13 0 180 256 356 522 682 61 104 147 217 303
13 70 5.00 0 143 142 251 314 403 170 368 386 497 618
15 71 7.17 0 203 292 495 648 820 103 174 296 369 461
17 85 5.43 0 160 279 503 714 852 66 259 379 530 703
19 89 5.78 0 187 298 437 495 687 176 336 449 708 869
21 115 5.60 0 191 310 469 678 808 185 464 574 788 907
23 121 5.43 0 207 321 511 701 798 181 346 502 693 863

Table E.1: VOT not in obj. function

VOT included in objective function

µ = 1 µ = −1
Number
of riders

Travel
costs

Filling rate
costs

VOT
costs

Travel
costs

Filling rate
costs

VOT
costs

9 57 3.00 27 53 4.80 12
11 84 3.00 41 91 2.78 34
13 130 2.62 31 88 4.33 9
15 73 5.83 45 91 4.63 45
17 83 4.38 62 113 4.17 39
19 131 4.25 52 103 5.64 30
21 128 4.33 111 129 4.92 27
23 139 4.22 83 114 5.04 23

Table E.2: µ = 1,µ = −1

µ = 2 µ = −2
Number
of riders

Travel
costs

Filling rate
costs

VOT
costs

Travel
costs

Filling rate
costs

VOT
costs

9 79 2.50 31 53 4.80 29
11 98 2.40 44 106 2.73 22
13 165 2.40 48 88 4.33 18
15 114 3.80 51 98 4.10 49
17 154 2.93 72 115 3.46 33
19 160 3.93 89 128 4.40 17
21 158 4.15 127 139 4.71 45
23 164 4.03 103 114 5.04 31

Table E.3: µ = 2,µ = −2

µ = 3 µ = −3
Number
of riders

Travel
costs

Filling rate
costs

VOT
costs

Travel
costs

Filling rate
costs

VOT
costs

9 119 2.00 20 76 3.33 15
11 117 2.56 33 134 2.31 15
13 165 2.40 74 88 4.33 25
15 121 3.27 79 116 3.58 46
17 172 2.59 71 131 3.67 79
19 157 3.25 160 128 4.4 52
21 179 3.63 168 139 4.71 71
23 164 4.03 136 144 4.12 36

Table E.4: µ = 3,µ = −3

µ = 4 µ = −4
Number
of riders

Travel
costs

Filling rate
costs

VOT
costs

Travel
costs

Filling rate
costs

VOT
costs

9 119 2.00 28 62 4.17 31
11 124 2.27 36 134 2.31 16
13 172 2.35 87 88 4.33 31
15 159 2.71 69 123 3.21 63
17 160 2.87 119 163 3.71 43
19 146 3.64 220 128 4.53 69
21 162 3.86 312 139 4.71 90
23 175 3.56 201 144 4.12 48

Table E.5: µ = 4,µ = −4
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µ = 5 µ = −5
Number
of riders

Travel
costs

Filling rate
costs

VOT
costs

Travel
costs

Filling rate
costs

VOT
costs

9 119 2.00 29 88 3.38 97
11 124 2.27 51 137 2.50 17
13 172 2.35 100 88 4.33 36
15 159 2.71 81 122 3.82 78
17 172 2.59 127 163 3.71 65
19 157 3.25 290 128 4.40 74
21 179 3.63 406 139 4.71 117
23 175 3.56 316 148 4.01 79

Table E.6: µ = 5,µ = −5
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Appendix F: Truck transport experiments: no switching between
trucks

VOT not in objective function

No VOT VOT not in obj. function
Number
of riders Travel cost Filling

rate
VOT
cost µ = 1 µ = 2 µ = 3 µ = 4 µ = 5 µ = −1 µ = −2 µ = −3 µ = −4 µ = −5

9 80 2.67 0 29 52 80 64 112 127 153 262 349 400
11 89 3.25 0 28 63 73 114 154 163 329 446 618 756
13 79 5.14 0 103 279 365 557 645 100 167 275 370 541
15 88 4.28 0 132 173 277 390 451 199 353 424 677 878
17 120 3.80 0 166 243 391 484 648 145 349 494 730 1005
19 98 5.00 0 225 320 536 741 974 186 209 428 585 745
21 121 4.30 0 154 211 434 577 633 292 557 834 1216 1362
23 122 5.09 0 224 367 523 724 902 258 444 543 838 1150

Table F.1: VOT not in obj. function

µ = 1 µ = −1
Number
of riders

Travel
costs

Filling rate
costs

VOT
costs

Travel
costs

Filling rate
costs

VOT
costs

9 72 3.00 23 72 3 11
11 96 3.11 63 95 3.11 13
13 85 4.00 43 81 4.71 41
15 92 4.00 88 94 4.56 36
17 126 4.25 67 126 4.25 24
19 123 4.09 63 145 4.27 36
21 174 3.59 90 126 5.42 50
23 130 4.54 70 164 4.27 44

Table F.2: µ = 1,µ = −1

µ = 2 µ = −2
Number
of riders

Travel
costs

Filling rate
costs

VOT
costs

Travel
costs

Filling rate
costs

VOT
costs

9 80 2.86 48 72 3 13
11 131 2.50 19 95 3.11 43
13 85 4.00 78 85 3.88 47
15 139 2.93 73 120 4.2 26
17 119 4.45 116 125 4.08 44
19 165 3.25 79 166 3.56 55
21 174 3.59 129 167 4.47 44
23 165 4.00 108 185 3.84 58

Table F.3: µ = 2,µ = −2

µ = 3 µ = −3
Number
of riders

Travel
costs

Filling rate
costs

VOT
costs

Travel
costs

Filling rate
costs

VOT
costs

9 110 2.25 34 100 2.43 11
11 131 2.50 66 95 3.11 60
13 127 2.84 43 102 4.30 75
15 181 2.44 115 120 4.20 43
17 165 3.20 130 132 3.92 55
19 170 3.06 118 176 3.69 59
21 174 3.59 191 126 5.33 101
23 171 3.75 177 191 3.60 103

Table F.4: µ = 3,µ = −3

µ = 4 µ = −4
Number
of riders

Travel
costs

Filling rate
costs

VOT
costs

Travel
costs

Filling rate
costs

VOT
costs

9 110 2.25 32 108 2.44 15
11 170 2.06 53 95 3.11 81
13 127 2.84 77 128 3.55 74
15 174 2.56 123 120 4.20 75
17 166 3.38 165 165 3.27 53
19 163 3.20 202 176 3.69 79
21 175 3.50 253 190 4.18 86
23 171 3.65 229 185 3.84 150

Table F.5: µ = 4,µ = −4
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µ = 5 µ = −5
Number
of riders

Travel
costs

Filling rate
costs

VOT
costs

Travel
costs

Filling rate
costs

VOT
costs

9 110 2.25 44 108 2.44 17
11 170 2.06 53 137 2.46 59
13 168 2.50 52 161 2.64 48
15 181 2.44 150 120 4.20 85
17 166 3.38 209 165 3.27 62
19 163 3.20 235 197 3.50 62
21 174 3.59 321 190 4.18 105
23 171 3.75 292 185 3.84 175

Table F.6: µ = 5,µ = −5

83


	Introduction
	Problem and research motivation
	Problem background
	Ridesharing for truck transport
	Problem statement
	System description
	Stakeholder analysis
	Other stakeholders
	Goal statement
	Method
	Research question

	Literature review
	Directions of research
	Research on dynamic ridesharing
	Optimization of transport services

	Contribution of research
	Improving service quality
	Preventing greedy riders


	Mathematical model
	Problem description
	Formulation
	Mathematical model
	Constraints for transport network
	Creating a ridesharing network

	Assumptions

	Enhancing computational load
	Experiment network 1
	Experimental setup network 1
	Results experiment network 1

	Experiment network 2
	Experimental setup network 2
	Results experiment network 2

	Experiment shortest path
	Experimental setup shortest path
	Results experiment shortest path


	Experiments
	Experimental setup
	New set and parameters
	New objective function

	Experiment different mean VOT's
	Interpretation of results
	Game theory
	Riders' decisions
	Greedy transit algorithm

	Experiment with greedy riders
	Experiment setup
	Results experiment greedy riders

	Truck transport experiments
	Model adjustments
	Experimental setup
	Results truck experiment


	Concluding remarks
	Areas for further research
	Discussion

	References
	Appendices
	Appendix A: Optimization data
	Appendix B: Optimization model
	Appendix C: Results VOT experiments
	Appendix D: Results greedy transit experiments
	Appendix E: Results truck transport experiments: switching allowed
	Appendix F: Results truck transport experiments: no switching


