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Chapter 1

Jacobians of hyperelliptic
curves

1.1 Hyperelliptic curves

Fix a field k with algebraic closure k.

Definition 1.1.1. A curve over k is a scheme C of finite type over k with
irreducible components all of dimension 1. Additionally:

1. The curve C is complete if it is proper over k.

2. The curve C is regular if all stalks OC,x are regular local rings, and smooth
if the base extension Ck is regular.

3. The curve C is normal if it is irreducible and all its stalks are normal
integral domains.

Note that a scheme of finite type over a Noetherian ring is Noetherian, so a
scheme of finite type over k has finitely many irreducible components. A pro-
jective scheme over k is proper, and the converse holds for curves, so properness
over k is the same as projective over k.

A smooth curve is regular, but the converse may not hold when k is not
perfect. A regular local ring of dimension 1 is the same as a discrete valua-
tion ring. As these are reduced, we see that a regular curve is reduced, hence
each irreducible component is integral. Thus a curve is regular if and only if
its irreducible components can be covered by finitely many spectra of Dedekind
domains R. Similarly, such a curve is smooth if the various rings R ⊗k k are
also Dedekind domains. We also see that a normal curve is the same thing as
an irreducible regular curve.

From [Liu 7.3.13] and the equivalence of properness and projectiveness for
curves over k we obtain
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Proposition 1.1.2. We have an anti-equivalence between the category of com-
plete normal curves over k with finite k-morphisms and the category of field
extensions K/k of transcendence degree 1 with k-algebra homomorphisms.
Concretely: a finite k-morphism C → C ′ of complete normal curves over k
corresponds with the induced map on function fields k(C ′)→ k(C).

Note that for a finite k-morphism φ : C → C ′ of integral curves the generic
point of C maps to the generic point of C ′ (for otherwise φ maps all points
of C to a closed point x0 of C ′, but then the induced map on residue fields
k(x0) → k(C) would be finite, which contradicts that k(C) has transcendence
degree 1 over k), so we indeed have an induced map on function fields.

Definition 1.1.3. A hyperelliptic curve over k is a geometrically irreducible,
smooth complete curve C over k, that admits a finite separable morphism φ :
C → P1

k of degree 2. Thus on the level of function fields we have that k(C) is a
separable, quadratic extension of the rational function field k(x).

Remark 1.1.4. Our definition of a hyperelliptic curve is a bit more restrictive
than usual. In general one allows a finite separale morphism of degree 2 of C to
a geometrically integral 0 curve of genus 0, i.e. we could have a conic without
k-rational points replacing P1

k, see [7, Prop. 7.4.1].

To make our definition of the hyperelliptic curve C explicit, assume char(k) 6=
2 and write k(C) = k(x, y) with y2 = f(x), for some square-free f(x) =
adx

d + · · ·+ a1x+ a0 ∈ k[x] of degree d.
If P1

k = U ∪ V for U ∼= Spec(k[x]) and V ∼= Spec(k[u]), with u = x−1, then
X = φ−1(U) ∪ φ−1(V ) with φ−1(U) ∼= Spec(A) and φ−1(V ) ∼= Spec(B) for A
and B the integral closures of k[x] and k[u] in k(C), respectively.

Note that k[x, y] ⊂ A, and one can check that f being square-free implies
that k[x, y] is normal so that A = k[x, y].
To compute B, note that only normality at the points of B lying over the ideal
(u) of k[u] need to be considered. Let

f∗(u) = ad + · · ·+ a1u
d−1 + a0u

d = udf(u−1)

be the reciprocal polynomial of f . We consider two cases based on the parity
of d. If d = 2k + 1, then

( y

xk+1

)2
=

d∑
i=0

aix
i−2k−2

= u

d∑
i=0

aiu
2k+1−i = uf∗(u),

shows that k[u, v] ⊂ B for v = y/xk+1. We see that Spec(k[u, v]) has (u, v) as
unique point lying over (u) ⊂ k[u]. As f∗(0) = ad 6= 0, the relation v2 = uf∗(u)
shows that (u, v) is locally generated by v, proving that k[u, v] is normal, hence
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B = k[u, v].
If d = 2k + 2, then similarly we see that k[u, v] ⊂ B for v = y/xk+1 satisfying
v2 = f∗(u). Since k[u, v]/(u) ∼= k(

√
ad), we see that (u) is a maximal ideal of

k[u, v], which is already globally principal, so that B = k[u, v].

Letting ε = 1 if d is odd and 0 if d is even, and letting k with 2k + 1 ≤ d ≤
2k + 2, we have that C is the curve obtained by gluing the two affine schemes

U = Spec(k[x, y]/(y2 − f(x)))

V = Spec(k[u, v]/(v2 − uεf∗(v))),

Along D(x) ∼= D(u) with the relation u = x−1 and v = y/xk+1.

Replacing k with k we obtain the description for Ck, and we see that regu-

larity of Ck means precisely that f ∈ k[x] is square-free, i.e. that f is separable.
Note that separability of f follows from f being square-free if k is perfect. For k
not perfect it can happen that the equation y2 = f(x) determines a regular nor-
mal curve that is not smooth, and hence is not a hyperelliptic curve according
to our definition.

For f ∈ k[x] separable and square-free, we will use the phrase ‘let C be the
hyperelliptic curve determined by the equation y2 = f(x)’ to mean the hyper-
elliptic curve with function field k(x, y).

Collecting the relevant information we obtain

Proposition 1.1.5. Suppose that char(k) 6= 2 and that f ∈ k[x] is non-
constant, square-free and separable. Then there is (up to isomorphism) a unique
hyperelliptic curve C with affine patch defined by the equation

y2 = f(x).

If K/k is a field extension then C(K) can be identified with pairs (a, b) ∈ K2

such that b2 = f(a), together with one point at infinity if deg(f) is odd, and two
points at infinity if deg(f) is even precisely when the leading coefficient of f is
a square in K.

As a final point for this section we compute the genus of a hyperelliptic
curve.

Proposition 1.1.6. Suppose that char(k) 6= 2 and let C/k be the hyperelliptic
curve of genus g defined by the equation

y2 = f(x).

Then 2g + 1 ≤ deg(f) ≤ 2g + 2.

Proof. As C is smooth and geometrically connected its genus equals the arith-
metic genus pa(C) = dimkH

1(C,OC), which we can calculate using Riemann-
Hurwitz [7, p. 7.4.3] on the tamely ramified, finite separable map φ : C → P1

k.

2pa(C)− 2 = 2(2pa(P1
k)− 2) +

∑
x

(ex − 1)[k(x) : k],
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the sum running over the closed points of C. As pa(P1
k) = 0 we obtain

2pa(C) + 2 =
∑
x

(ex − 1)[k(x) : k].

The only ramified primes of the Dedekind domain k[x, y]/(y2− f(x)) (as exten-
sion of k[x]) are (y, g(x)) for g an irreducible factor of f . As [k(x) : k] = deg(g)
for x corresponding to (y, g(x)), we obtain

∑
x∈U (ex − 1)[k(x) : k] = deg(f)

with U = Spec(k[x, y]).
It remains to check ramification at infinity. From the calculation of the nor-
malisation we quickly see that only when deg(f) odd the point at infinity is
ramified, which proves the result.

As a corollary we have that whatever the degree of f is, the corresponding
morphism C → P1

k is ramified at exactly 2g+ 2 points. Moreover, if f is of even
degree (so that all ramification comes from the roots of f), and has a k-rational
root, then after a suitable change of coordinates we can find a model for the
curve with defining polynomial of odd degree. For g = 1 this is just ‘finding a
Weierstrass equation for your elliptic curve’.

Remark 1.1.7. Contrary to what is common in the literature, an elliptic curve
is also hyperlliptic in our case. This will be convenient since the theory we will
set up for 2-descent applies equally well to the case of genus 1.

1.2 Jacobians

Our main reference for this section is [Liu 7.4.4].

Definition 1.2.1. An Abelian variety over k is a k-group scheme A that is of
finite type, proper and geometrically integral.

The meaning of A being a k-group scheme is that A is a group object in the
category of k-schemes. Without going in too much detail this means that there
are k-morphisms m : A×kA→ A and i : A→ A and e : Spec(k)→ A satisfying
the axioms that guarantee that for any k-scheme T , the set of T -valued points
A(T ) is a group and the association T 7→ A(T ) gives a functor from the category
of k-schemes to the category of groups.

It is known that an Abelian variety is necessarily smooth, abelian and pro-
jective.

Definition 1.2.2. Let C be a complete, geometrically connected, smooth curve
over k of genus g, together with a base point P0 ∈ C(k). The Jacobian variety of
C, is an Abelian variety J over k together with a map f : C → J sending P0 to
0, such that whenever A is another abelian variety, and f ′ : C → A also sends
P0 to 0, then there is a unique homomorphism of k-group schemes φ : J → A
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such that

C A

J

f ′

f φ

Thus loosely speaking, the Jacobian is the minimal abelian variety associated
to the curve that sends the base point to 0.

A very non-trivial result is

Proposition 1.2.3. The Jacobian variety J of C with P0 ∈ C(k) exists, has
dimension g, and for any field extension K/k we have a natural isomorphism
J(K) ∼= Pic0(CK).

Proof. From [7, Theorem 7.4.39] we see the existence of an Abelian variety A
of dimension g with natural isomorphism A(K) ∼= Pic0(CK) for field extensions
K/k. In [8, Ch. III Proposition 6.1] we see that such an Abelian variety satisfies
the same universal property we used as definition for the Jacobian, hence they
are equal.

Naturality means that for a tower of fields L/K/k we have a commutative
diagram

J(K) Pic0(CK)

J(L) Pic0(CL)

∼

∼

We remark that L/K gives a map CL → CK , and then we obtain Pic0(CK)→
Pic0(CL) by pullback of invertible sheaves.
Assuming in addition that C is geometrically integral, we can apply corollary
7.1.19 and proposition 7.2.16 of [7] to see that Pic(CK) ∼= Cl(CK) whenever K/k
is algebraic. Moreover, with pullback maps along CL → CK for L/K/k, we see
that the isomorphisms Pic(CK) ∼= Cl(CK) are natural in K and respect degrees.

If x ∈ C is a closed point with residue field k(x) separable over k, then we
have [k(x) : k] embeddings of k-algebra’s k(x) → ksep, i.e. we have [k(x) : k]
points in C(k) corresponding to x. Moreover Gk = Gal(ksep/k) acts transitively
on Homk-alg(k(x), ksep), hence the sum of these points in the free abelian group
on C(k) is Gk-invariant.
If we assume that k is a perfect field, then k(x)/k is always separable, hence we
can identify a closed point x ∈ C of degree [k(x) : k] with a Gk-invariant sum of
[k(x) : k] points in the free abelian group on C(k), which allows us to identify
a Weil divisor on C with a Gk-invariant element of the free abelian group on
C(k), which we will call a k-rational divisor on C.
Giving a point of C(k) degree 1, this identification respects degrees. On the
level of principal divisors, the identification becomes

(f) =
∑
x

ordx(f)[x] =
∑

P∈C(k)

ordP (f)[P ]
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taking ordP (f) = ordx(f) for x the closed point corresponding to P . With this
identification we have that the degree 0 part of Cl(C) is the divisor class group
of C as in [2, Def. 4.129], where it is also called the Picard group of C.

Lastly, considering L/K/k for k perfect, we see that applying this identi-
fication to both CK and CL (and using that k is an algebraic closure for the
perfect fields L and K), that pullback of Weil divisors along CL → CK simply
amounts to noting that a GK-invariant element of the free group on C(k) is also
GL-invariant. This justifies the naturality of the identification, and we obtain

Proposition 1.2.4. Let k be a perfect field with char(k) 6= 2, consider the
hyperelliptic curve C of genus g ≥ 1 defined by the equation

y2 = f(x),

for f ∈ k[x] separable of degree 2g + 1, and let J denote its Jacobian with base
point ∞ ∈ C(k). Then for K/k algebraic, we may canonically identify

J(K) = Div0
K(C)/PrinK(C),

where Div0
K(C) consists of GK-invariant elements of the degree 0 subgroup of

the free abelian group on G(k), and PrinK(C) consists of the principal divisors

(f) =
∑

P∈C(k)

ordP (f)[P ]

defined over K, i.e. f ∈ K(x, y), the function field of C base extended to K.

If C/k is a hyperelliptic curve defined by y2 = f(x) for f of odd degree,
we will implicitly take the k-rational point at infinity ∞ ∈ C(k) as base point
for the Jacobian when talking about ‘the Jacobian of C’. Additionally: we will
identify the points of C(K) \ {∞} for K/k algebraic with pairs (a, b) ∈ K2

satisfying b2 = f(a) as in proposition 1.1.5.

Proposition 1.2.5. With the same notation as proposition 1.2.4, then elements
of J(K) can be written uniquely as [D − d · ∞] for some 0 ≤ d ≤ g and D an
effective K-rational divisor of degree d in general position.

Proof. This is part of the Mumford representation of points in J(K). See [2,
Thm. 4.135]. The divisor being in general position means that D 6≥ P + i(P )
for all P ∈ C and P 6≥ ∞, here i is the hyperelliptic involution defined by
(x, y) 7→ (x,−y). Note that this condition is necessary: if (a, b) ∈ C(K) then
div(x− a) = [(a, b) + (a,−b)− 2∞].

Note that for g = 1, the divisor D has as only option consisting of a single
point, which constitutes the fact that an elliptic curve equals its own Jacobian.
For g = 2 we see that we have two options: a point of J(K) corresponds with
an effective K-rational divisor of degree 1 or 2. In the first case D is just a
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K-rational point, whilst in the second case D is either the sum of two distinct
K-rational points, or a sum D = P + Q for P,Q two distinct L/K-conjugate
points of C(L) for L/K a quadratic extension. Note that in this last case, we
cannot have P = i(Q), which is the same thing as x(P ) /∈ K.

Corollary 1.2.6. For K/k algebraic we have an injection C(K) → J(K) de-
fined by P 7→ [P −∞].
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Chapter 2

Theory of 2-descent

In this chapter we will consider some general theory about 2-descent on Abelian
varieties A over K, quickly specializing to the case where A is the Jacobian
of a hyperelliptic curve. We then make the situation more explicit to allow
computations.

2.1 Introduction

Let J be the Jacobian of the hyperelliptic curve C defined over a number field
K by the equation y2 = f(x), where f ∈ K[x] is has odd degree. Thus deg(f) =
2g + 1, where g is the genus of C.

Theorem 2.1.1 (Mordell-Weil). The group J(K) is finitely generated.

Proof. See Manin’s appendix in [9].

We are interested in the structure of the group J(K). In particular, we are
interested in computing the rank: the integer r ≥ 0 such that

J(K)/J(K)tor ∼= Zr.

We will often use the notation rank(J/K) for the rank of J(K). As an illus-
tration of the utility of having information about the rank, suppose that J(K)
has rank 0, then J(K) = J(K)tor, and one can quickly determine the torsion
elements via reduction techniques as is done for elliptic curves. With corollary
1.2.6 we can then detect points of J(K) that arise from C(K), which solves a
Diophantine equation.

The theory of 2-descent revolves around studying J(K)/2J(K). This quo-
tient contains information about the rank, for if J(K) ∼= Zr × J(K)tors, then

J(K)/2J(K) ∼= (Z/2Z)r × J(K)tor/2J(Ktor)
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As J(K)tor is finite, we have dimF2(J(K)tor)/2J(Ktor) = dimF2 J(K)[2], hence
we obtain the formula

rank(J/K) = dimF2
(J(K)/2J(K))− dimF2

J(K)[2]. (2.1)

The computation of dimF2
J(K)[2] is not hard:

Proposition 2.1.2. Allowing K to be any perfect field, we have

dimF2
(J(K)[2]) = #{irreducible factors of f in K[x]} − 1

More specifically, if g1, . . . , gr are the monic irreducible factors of f of degrees
ri, then J(K)[2] is generated by Di =

∑
gi(α)=0[(α, 0) −∞], with the relation

D1 + · · ·+Dr = 0.

Proof. With the Mumford representation (see [2, Thm. 14.5]) we have a quick
proof for this: if P ∈ J(K) is represented by the pair of polynomials (a, b),
then −P is represented by (a,−b). Thus J(K)[2] consists precisely of those
points represented by (a, 0) where a is a product of irreducible factors of f .
As deg(a) ≤ g, we see that the order of J(K)[2]) equals the number of sets
S ⊂ {1, . . . , r} such that

∑
i∈S deg(gi) ≤ g, which is 2r−1 as for any subset S′ ⊂

{1, . . . , r} we have
∑
i∈S deg(gi) ≤ g for S exactly one of {S′, {1, . . . , r} \ S′}.

Thus we now know that the Di generate J(K)[2], which is of dimension r − 1.
To see the relation D1 + · · ·+Dr = 0 in J(K) one simply observes that div(y) =∑r
i=1Di.

To work with the group J(K)/2J(K), we first find an embedding of this
group in another group by means of Galois cohomology, which we will treat for
an arbitrary Abelian variety over K.

2.2 Some Galois cohomology

Let A be an Abelian variety over K. Multiplication by 2 is an isogeny on A,
and hence surjective. As surjectivity is preserved under base change to K (see
for example [13, Lemma 29.9.4]), and A(K) = AK(K) can be identified with
the closed points of AK via the weak nullstellensatz, we see that multiplication
by 2 on A(K) is surjective, i.e. we have the exact sequence

0 −→ A(K)[2] −→ A(K) −→ A(K) −→ 0 (2.2)

of GK := Gal(K/K)-modules. Taking invariants yields the following long exact
sequence due to cohomology

0 −→ A(K)[2] −→ A(K) −→ A(K) −→ H1(GK , A(K)[2]) −→ H1(GK , A(K)) −→ H1(GK , A(K))
(2.3)

The induced map H1(GK , A(K)) −→ H1(GK , A(K)) is also just multiplication
by 2, so exactness of this long exact sequence at H1(GK , A(K)[2]) results in the
short exact sequence

0 −→ A(K)/2A(K) −→ H1(GK , A(K)[2]) −→ H1(GK , A(K))[2] −→ 0.
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For a (finite or infinite) prime p of K we similarly obtain a long exact sequence
by considering multiplication by 2 on the GKp

-module A(Kp). We can iden-
tify GKp

with a decomposition group Dp ⊂ GK , so we can also consider (2.2)
as a short exact sequence of GKp

-modules. The resulting long exact sequence
obtained by taking GKp

-invariants is compatible with (2.3) through restriction
maps H1(GK ,−) → H1(GKp

,−) on cohomology, meaning that from the dia-
gram

0 A(K)[2] A(K) A(K) 0

0 A(Kp)[2] A(Kp) A(Kp) 0,

we obtain the following commutative diagram.

0 A(K)/2A(K) H1(GK , A(K)[2]) H1(GK , A(K))[2] 0

0 A(Kp)/2A(Kp) H1(GKp
, A(Kp)[2]) H1(GKp

, A(Kp))[2] 0

(2.4)
Studying (the size of) the group A(K)/2A(K) is equivalent to studying its
image in the cohomology group H1(GK , A(K)[2]). One remark is that an
element of this image maps vertically into the image of A(Kp)/2A(Kp) in
H1(GKp

, A(Kp)[2]), or equivalently into the kernel of

H1(GKp
, A(Kp)[2])→ H1(GKp

, A(Kp)),

for every completion Kp of K.
We can combine the diagrams (2.4) for all completions into a single diagram:

0 A(K)/2A(K) H1(GK , A(K)[2]) H1(GK , A(K))[2] 0

0
∏

pA(Kp)/2A(Kp)
∏

pH
1(GKp

, A(Kp)[2])
∏

pH
1(GKp

, A(Kp))[2] 0.

We now define respectively the 2-Selmer group, and the Tate-Shafarevich group
of J/K as follows:

S2(A/K) := ker
(
H1(GK , A(K)[2])→

∏
p
H1(GKp

, A(Kp))
)
,

X(A/K) := ker
(
H1(GK , A(K))→

∏
p
H1(GKp

, A(Kp))
)
.

Proposition 2.2.1. The 2-Selmer group S2(A/K) fits in the following short
exact sequence.

0→ A(K)/2A(K)→ S2(A/K)→X(A/K)[2]→ 0, (2.5)

and moreover, this sequence is natural in A.
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Proof. Let A → A′ be a morphism of Abelian varieties over K, and consider
the following commutative diagram of GK-modules with exact rows:

0 A(K)[2] A(K) A(K) 0

0 A′(K)[2] A′(K) A′(K) 0.

By naturality of the long exact sequence of cohomology, this yields the following
commutative diagram with exact rows

0 A(K)/2A(K) H1(GK , A(K)[2]) H1(GK , A(K))[2] 0

0 A′(K)/2A′(K) H1(GK , A
′(K)[2]) H1(GK , A

′(K))[2] 0

Extending this diagram ‘in 3D’ with

0 A(K)/2A(K) H1(GK , A(K)[2]) H1(GK , A(K))[2] 0

0
∏

pH
1(GKp

, A(Kp))
∏

pH
1(GKp

, A(Kp)) 0.id

(2.6)
and the same diagram with A replaced by A′, we see that the snake lemma and
its naturality yields the diagram

0 A(K)/2A(K) S2(A/K) X(A/K)[2] 0

0 A′(K)/2A′(K) S2(A′/K) X(A′/K)[2] 0

(2.7)

noting that exactness at the Tate-Shafarevich groups is due to the two connect-
ing homomorphisms being 0.

The group S2(A/K) gathers all local information on a global level. Note
that A(K)/2A(K)

∼−→ S2(A/K) means that elements of H1(GK , A(K)[2]) that
map to all local images of A(Kp)/2A(Kp) are in fact globally in the image. Thus
the group X(A/K)[2] measures the obstruction to a local-global principle for
the maps A(K)/2A(K)→ A(Kp)/2A(Kp).

Let us conclude this abstract setting with the following.

Proposition 2.2.2. Let L/K be an extensions of number fields and A an
Abelian varierty over K. Then we have a natural commutative diagram

0 A(K)/2A(K) S2(A/K) X(A/K)[2] 0

0 A(L)/2A(L) S2(A/L) X(A/L)[2] 0

(2.8)
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Proof. We have the commutative diagram

0 A(K)/2A(K) H1(GK , A(K)[2]) H1(GK , A(K))[2] 0

0 A(L)/2A(L) H1(GL, A(L)[2]) H1(GL, A(L))[2] 0,

which results in the desired diagram by comparing the relevant diagrams like
(2.6) with the natural map∏

p
H1(GKp

, A(Kp))→
∏

q
H1(GLq

, A(Lq)),

which is constructed through the maps

H1(GKp
, A(Kp))→

∏
q|p

H1(GLq
, A(Lq)).

Let us now specialize to the case where A is the Jacobian of a hyperelliptic
curve C defined by the equation y2 = f(x), for f of odd degree. We will see
that the 2-Selmer group S2(J/K) is finite, hence from the equations (2.1) and
(2.5) we obtain

rank(J/K) + dimF2
X(J/K)[2] = dimF2

S2(J/K)− dimF2
J(K)[2]. (2.9)

Proposition 2.2.3. If X(J/K) is finite, then X(J/K) ∼= T × T for a finite
group T .

Proof. Because of the K-rational point at infinity, there is a Kp-rational divisor
of degree g − 1 for every prime p of K, which means that C has no deficient
primes in the language of [11]. The result then follows from corollary 9 and 12
of [11].

It is conjectured that X(J/K) is indeed finite, so that conditionally we have
dimF2

X(J/K)[2] ≡ 0 mod 2.

The first step in computing S2(J/K) consists of a computation of J(Kp)/2J(Kp)
for various completions.

Proposition 2.2.4. Let F be a finite extension of Qp for some finite or infinite
prime p of Q, let C/F be a hyperelliptic curve of genus g of odd degree, and let
J be its Jacobian. Then

dimF2
(J(F )/2J(F )) =


dimF2 J(F )[2] + g[F : Q2] if p = 2,

dimF2 J(F )[2] if 2 < p <∞
dimF2

J(F )[2]− g if F = R
0 if F = C

12



Proof. The proof is based on lemma 4.4 and 4.8 of [16]. Suppose that p < ∞
and let R = OF . Then J(F ) has a subgroup H of finite index isomorphic to g
copies of the additive group R+. Letting T be the quotient we have the following
commutative diagram with exact rows.

0 H J(F ) T 0

0 H J(F ) T 0

·2 ·2 ·2

We have |T [2]| = |T/2T | as T is finite, and H[2] = 0 as H is torsion-free.
Thus when counting F2-dimensions in the long exact sequence obtained from
the snake lemma applied to the above diagram, we obtain

dimF2(J(F )/2J(F )) = dimF2 J(F )[2] + dimF2(H/2H).

Now if p 6= 2, then multiplication by 2 is an isomorphism on H as 2 ∈ O∗F , so
that dimF2

(H/2H)=0.
If p = 2 then R+ is free of rank [F : Q2] as Z2-module, hence R+/2R+ ∼=
(Z/2Z)[F :Q2] as groups, hence dimF2(H/2H) = g[F : Q2].
When F = C the result follows as C is algebraically closed (compare (2.2)).
When F = R, the result follows similarly from the fact that J(R) has a subgroup
of finite index isomorphic to (R/Z)g, on which multiplication by 2 is surjective
and has kernel (Z/2Z)g.

2.3 An explicit embedding

In this section we make the situation more explicit following [12]. For simplicity
of exposition we additionally assume f to be monic.
Consider the K-algebra A = K[x]/(f(x)) and the K-algebra A = K[x]/(f(x)).

Then A∗ → A
∗

is an injection, and A
∗

becomes a GK-module by letting x mod
(f) act trivially, with GK-invariants precisely A∗. We also have norm maps
A→ K and A→ K. Write f = g1 · · · gr for gi the monic irreducible factors of
f and set Ai = K[x]/(gi). Then with the Chinese remainder theorem we have
the commutative diagram

A∗
r∏
i=1

A∗i

K∗

∼

N
∏

iNi

for Ni : A∗i → K∗ the norm maps.

Let αi denote the roots of f in K, and write Di = [(αi, 0)] − [∞], so that

the Di span J(K)[2] with the single relation
∑2g+1
i=1 Di = 0. Then µ2(A) ∼=

13



µ2(K)2g+1, and we have a map w : J(K)[2]→ µ2(A) defined by

D 7→ (e2(D,D1), . . . , e2(D,D2g+1)),

where e2 is the Weil pairing. This map also induces a map w∗ : H1(GK , µ2(A))→
H1(GK , µ2(K). Denote by k the isomorphism H1(GK , µ2(A))→ A∗/A∗2 from
Kummer theory. We then have

Proposition 2.3.1. The composition k ◦ w∗ induces an isomorphism

H1(GK , J(K)[2])
∼−→ ker(A∗/A∗2 → K∗/K∗2),

and in terms of this isomorphism, our embedding J(K)/2J(K)→ H1(GK , J(K)[2])
takes the form

D =
∑
P

nP [P ] 7→
∏
P

(x(P )− x)nP ∈ A∗/A∗2 (2.10)

whenever D is a K-rational degree 0 divisor without Weierstrass points in its
support, where x(P ) denotes the x-coordinate of P .

Proof. This is theorem 1.1 and 1.2 from [12].

We remark that x(P )− x ∈ A∗ for P in the support of D in (2.10), but the
product over such P is GK-invariant, so that

∏
P (x(P )− x)nP ∈ A∗, which we

can then take modulo squares.

Proposition 2.3.2. Suppose that D ∈ J(K) is represented by [P1 + · · ·+ Pd −
d∞]. Then the map (2.10) sends

D 7→

{∏d
i=1(x(Pi)− x) if P is not a Weierstrass point∏d
i=1(αi − x) +

∏2g+1
i=d+1(αi − x) if P1 = (α1, 0)

Proof. This is lemma 2.2 of [12].

The morale of proposition 2.3.2 is that for P not Weierstrass the image of D
can still be deduced from (2.10) by just ‘ignoring’ the d∞ part. If P = (α1, 0),
then to determine the image of D in A∗/A∗2 =

∏r
i=1A

∗
i /A

∗2
i as r-tuple, note

that
∏d
i=1(αi − x) in A1, while

∏2g+1
i=d+1(αi − x) = 0 in Ai for i > 1. We see the

image of D in A∗i /A
∗2
i for i > 1 is again simply obtained by omitting the d∞

part and then applying (2.10). Only for A1 we have a special case. Considering
the roots of a different gi we have exactly the same: the images at Aj for j 6= i
are ‘as usual’, but at Ai we have a special case.

Now suppose that f splits completely over k so that gi = x− αi for 1 ≤ i ≤
r = 2g + 1. Then we obtain

A∗/A∗ ∼=
r∏
i=1

A∗i /A
∗2
i
∼=

2g+1∏
i=1

K∗/K∗2, (2.11)
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and under this isomorphism, the norm maps Ni : A∗i → K∗ become trivial, so
that we obtain an embedding

J(K)/2J(K) ↪→ ker

( 2g+1∏
i=1

K∗/K∗2 → K∗/K∗2
)

(2.12)

with the kernel just being the ‘hyperplane’ consisting of those (2g + 1)-tuples
for which the product of all coordinates are trivial. Tracing the isomorphisms
from (2.11) we see that for D =

∑
P nP [P ] having no Weierstrass points in its

support, that the embedding (2.12) sends

D 7→

(∏
P

(x(P )− α1)nP , . . . ,
∏
P

(x(P )− α2g+1)nP

)
In this case the image of the divisor D1 = [(α1, 0) − ∞] is especially simple:
recall from the discussion about the morale of proposition 2.3.2 that in any case
we have

D1 7→ (?, α1 − α2, . . . , α1 − α2g+1).

But the first coordinate of this image is determined1 by the rest as the product
is trivial in K∗/K∗2. For Di a similar argument holds.

We can repeat this section replacing K with a completion Kp, which results
in

J(Kp)/2J(Kp) ↪−→ H1(GK , J(Kp)[2])
∼−→ ker

(
A∗p/A

∗2
p → K∗p/K

∗2
p

)
where Ap = A⊗K Kp = Kp[x]/(f). We then have a commutative diagram

J(K)/2J(K) ker
(
A∗/A∗2 → K∗/K∗2

)
J(Kp)/2J(Kp) ker

(
A∗p/A

∗2
p → K∗p/K

∗2
p

)
,

δ

δp

with the right vertical map induced from the canonical map K → Kp. From
now on we will view the 2-Selmer group S2(J/K) as a subgroup of A∗/A∗2.
In many cases we will write the above diagram with just A∗/A∗2 and A∗p/A

∗2
p ,

remembering that the images actually land inside the kernel of the relevant
norm maps.

2.4 Finiteness of the 2-Selmer group

We specialise further by assuming f ∈ OK [x], and that f splits completely over
K, i.e.

f(x) =

2g+1∏
i=1

(x− αi),

1Note that in the general case, only the norm of a coordinate is determined by the other
coordinates. If the algebra corresponding to the coordinate is non-trivial we need proposition
2.3.2 for the value itself.
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for αi ∈ K. As f is monic the αi are integral over OK , hence αi ∈ OK .
Thus we now have S2(J/K) ⊂

⊕2g+1
i=1 K∗/K∗2.

Let S be the set of all real primes of K and the finite primes of K that lie
over 2 or divide ∆(f).

Lemma 2.4.1. Let p be a finite prime of K not in S, and let F = Kunr
p be the

maximal unramified extension of the completion Kp. Then J(F )/2J(F ) = 0.

Proof. We sketch the idea: the fact that p /∈ S guarantees that J has good
reduction at p, which gives us an exact sequence

0→ H → J(F )→ J̃(Fp)→ 0,

where p is the rational prime lying under p. One then argues that multiplication
by 2 is surjective on J̃(Fp) because Fp is algebraically closed, and also on H
because of a formal group argument. Applying the snake lemma on the diagram
obtained by applying multiplication by 2 on the above exact sequence, we see
that this implies J(F )/2J(F ) = 0.
For a formal proof one uses corollary and lemma 2.1 of Manin’s Appendix in
[9].

Proposition 2.4.2. Let p be a finite prime of K not in S. Then (x1, . . . , x2g+1) ∈
ker
(⊕2g+1

i=1 K∗/K∗2 → K∗/K∗2
)

maps into im(δp) if and only if ordp(xi) ≡
0 mod 2 for all i.

Proof. Let F = Kunr
p be the maximal unramified extension of Kp. Then we

have a commutative diagram

J(K)/2J(K)

2g+1⊕
i=1

K∗/K∗2

J(Kp)/2J(Kp)

2g+1⊕
i=1

K∗p/K
∗2
p

J(F )/2J(F )

2g+1⊕
i=1

F ∗/F ∗2.

δ

δp

We have K∗p/K
∗2
p = 〈π, r〉, where π is uniformizer and r ∈ O∗Kp

is a non-square.

As J(F )/2J(F ) = 0 we see that

im(δp) ⊂ ker

(
2g+1⊕
i=1

K∗p/K
∗2
p →

2g+1⊕
i=1

F ∗/F ∗2

)
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But F ∗/F ∗2 = 〈π〉, so this implies that im(δp) ⊂ ker
(⊕2g+1

i=1 〈r〉 → 〈r〉
)

. As

J(Kp)/2J(Kp) has dimension 2g by proposition 2.2.4, this inclusion in fact an
equality, which implies the desired result.

Combining this with the fact that the complex primes need not be considered
by proposition 2.2.4 we obtain

Corollary 2.4.3. If we define

K(S) := {x ∈ K∗/K∗2 : ordp(x) ≡ 0 mod 2 for all finite p /∈ S},

then S2(J/K) ⊂
⊕2g+1

i=1 K(S), and

S2(J/K) =

{
x ∈

2g+1⊕
i=1

K(S) : x maps into im(δp) for all p ∈ S

}
.

The description of K(S) depends on the ring RS of S-integers, some basic
properties of which are collected in Appendix section A.1. In the appendix the
ring RS is only considered for a finite set S of finite primes, but we have included
the real primes as well, let us define RS := RS0

where S0 = {p ∈ S : p finite}.

Proposition 2.4.4. There is an exact sequence

0 R∗S/R
∗2
S K(S) Cl(RS)[2] 0,α β

where β sends an xK∗2 to the ideal class [IRS ], where (x) = aI2 for a and I
co-prime fractional OK-ideals such that ordp(a) = 0 for all p /∈ S.

Proof. Exactness at R∗S/R
∗2
S holds as the natural map R∗S → K(S) has kernel

{y2 ∈ R∗S : y ∈ K∗} = R∗2S .
For the rest, let us first see that the map β is well-defined. Consider the
auxiliary set KS := {x ∈ K∗ : ordp(x) ≡ 0 mod 2 for all p /∈ S}, so that
K(S) = KS/K

∗2. If x ∈ KS , then we can write uniquely (x) = aI2 for a and
I co-prime fractional ideals and ordp(a) = 0 for all p /∈ S. We have aRS = RS
as pRS = RS for p ∈ S, hence the identity (x) = aI2 gives [IRS ] ∈ Cl(RS)[2].
We thus have a well-defined map KS → Cl(RS)[2], which is clearly a homo-
morphism. If x ∈ K∗ we can write (x) = bI for b and I co-prime fractional
OK-ideals such that ordp(b) = 0 for all p /∈ S. From (x2) = b2I2 we see that
x2 7→ [IRS ], which is trivial as (x) = bI and bRS = RS . It follows that K∗2

is in the kernel of KS → Cl(RS)[2], hence we have the desired induced map
β : K(S)→ Cl(RS)[2].

To prove exactness at K(S), let x ∈ K(S) be represented by x ∈ R∗S and let
a = (x). Then ordp(a) = 0 for all p ∈ S, so it is immediate that x ∈ ker(β), i.e.
im(α) ⊂ ker(β). Conversely, suppose that x ∈ ker(β). Writing (x) = aI2 as in
the definition we see that IRS is principal. As β factors via the isomorphism
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Cl(OK)/〈S〉 ∼−→ Cl(RS) from lemma A.1.3 and Cl(OK)/〈S〉 ∼= I(OK)/P(OK) ·
〈S〉, this implies that I = (y)b for certain y ∈ K∗ and b ∈ 〈S〉. Thus

(x) = aI2 = (y2)ab2, ⇒ (xy−2) = ab2 ∈ 〈S〉.

This means that xy−2 ∈ R∗S , so that x = xy−2 = α(xy−2) and ker(β) ⊂ im(α).

It remains to show surjecitivity of β. If [J ] ∈ Cl(RS)[2] then using lemma
A.1.3 we see that J is the extension of some ideal I of OK , and as primes p ∈ S
extend trivially, we may asssume without loss of generality that I contains no
primes of S in its factorisation. Using the isomorphism from lemma A.1.3 again,
we see that triviality of [I2RS ] in Cl(RS) implies that I2 = (x)a for certain
x ∈ K∗ and a ∈ 〈S〉. From (x) = a−1I2 we see that [J ] = [IRS ] = β(x), i.e. β
is surjective.

Corollary 2.4.5. The 2-Selmer group S2(J/K) is finite.

Proof. As R∗S is finitely generated and Cl(RS) is finite, this proves the finiteness
of K(S) and hence also the finiteness of S2(J/K).

Remark 2.4.6. If f does not split completely then S2(J/K) is still finite, as
corollary 2.4.3 holds similarly, see [12, p. 226].

Actually, this is the way in which the weak Mordell-Weil theorem (finiteness
of J(K)/mJ(K) for some m ≥ 2) is proven. To extract the full Mordell-Weil
theorem from this one needs the theory of heights.

We will in fact only need to compute K(S) when K has odd class number.
In this case a basis for K(S) can be found as follows.

Corollary 2.4.7. If K has odd class number then the map R∗S/R
∗2
S → K(S) is

an isomorphism. Moreover, if for each p ∈ S0 we have pkp = (xp) with kp the
order of p in ClK , then the xp together with an F2-basis for O∗K/O∗2K form an
F2-basis for K(S).

Proof. As Cl(OK) has odd order and surjects onto Cl(RS), also Cl(RS) has odd
order, hence R∗S/R

∗2
S
∼−→ K(S).

For each p ∈ S0 we have ordp(xp) ≡ 1 mod 2, while ordq(xp) = 0 for all finite
primes q 6= p. As units of OK have trivial valuations, we see that the xp together
with a basis forO∗K/O∗2K yield linear independent elements. From corollary A.1.4
we see that dimF2

K(S) = dimF2
(O∗K/O∗2K ) + |S0|, hence these elements form a

basis.

2.5 An algorithm

Let us recall the result so far. Let K be a number field and C the hyperelliptic
curve defined by y2 = f(x), for f ∈ K[x] square-free and of odd degree 2g + 1.
Furthermore assume f ∈ OK [x], monic and completely split over K, i.e. f =
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∏2g+1
i=1 (x− αi).

Let S consist of the real primes of K, together with the finite primes dividing
2∆(f). Then K(S) = {x ∈ K∗/K∗2 : ordp(x) ≡ 0 mod 2 for all finite p /∈ S}
fits in the exact sequence

0→ R∗S/R
∗2
S → K(S)→ Cl(RS)[2]→ 0, (2.13)

and we have

S2(J/K) ⊂ ker

( 2g+1⊕
i=1

K(S)→ K(S)

)
, (2.14)

where S2(J/K) consists of those elements in the kernel of (2.14) that map into
im(δp) for each p ∈ S in the following diagram.

J(K)/2J(K)

2g+1⊕
i=1

K∗/K∗2

J(Kp)/2J(Kp)

2g+1⊕
i=1

K∗p/K
∗2
p

δ

δp

To compute S2(J/K) we need to do the following.

(a) Compute for each p ∈ S the local image im(δp).
This is done as follows: with either Hensel’s lemma or the intermediate
value theorem, we can search for points in C(F ) for F a suitable finite ex-
tension of Kp, yielding points in J(Kp)/2J(Kp) according to Prop. 1.2.5.
One can check for linear independence using the embedding δp. As one
knows beforehand the F2-dimension of J(Kp)/2J(Kp) from proposition
2.2.4, this allows for a computation of im(δp).

(b) Compute generators for K(S) using the exact sequence (2.13).

(c) For each generator forK(S), compute its image under the mapsK∗/K∗2 →
K∗p/K

∗2
p for p ∈ S.

With this information the computation is ‘just linear algebra’: S2(J/K) is the
intersection of the inverse images of im(δp) under the right vertical map of the
above diagram for p ∈ S.
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Chapter 3

A family of examples

We consider for a prime p 6= 2, 3 the hyperelliptic curve Cp defined over Q by
the equation

y2 = f(x) = x(x2 − p2)(x2 − 4p2).

Let Jp denote its Jacobian. Our goal in this chapter is to find as much infor-
mation as possible about the rank of Jp/Q and the group X(Jp/Q)[2].

3.1 A basic 2-descent

We follow the algorithm from section 2.5: one computes ∆(f) = 210 · 34 · p20,
hence we take S = {2, 3, p,∞}, where ∞ : Q → R is the real embedding. As
Q has class number one, either by the exact sequence (2.13) or directly from
unique factorisation, we see that K(S) = 〈−1, 2, 3, p〉.

Let α1 = −2p, α2 = −p, . . . , α5 = 2p be the roots of f , so that the embedding

J(Q)/2J(Q)→
5⊕
i=1

Q∗/Q∗2

of (2.12) takes the form

D =
∏
P

nP [P ] 7→

(∏
P

(x(P ) + 2p)nP , . . . ,
∏
P

(x(P )− 2p)nP

)

for D with no Weierstrass points in its support.

The local images Jp(Qq)/2Jp(Qq) depends on p mod 8 for q = 2, on p mod 3
for q = 3, and on p mod 24 for q = p. For q = ∞ the image is independent
of p. These images for the various cases of p mod 24 can be found in [5, Ch. 4.1].
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The last ingredient is the images of the generators of K(S) in Q∗q/Q∗2q for
q ∈ {2, 3, p,∞}. If r ∈ Z is a non-square modp, we have

Q∗2/Q∗22 = 〈2,−1, 3〉,
Q∗3/Q∗23 = 〈3,−1〉,
Q∗p/Q∗2p = 〈p, r〉,
R∗/R∗2 = 〈−1〉.

And we want to fill in the following table

2 3 p ∞
−1 −1 −1 −1
2 2 −1 1
3 3 3 1
p p 1

where the entries consist of the images of the various generator of K(S) in
Q∗2q /Q∗2q for q ∈ {2, 3, p,∞}. We note that the image of p at 2 and 3 depend
on p mod 8 and p mod 3, and thanks to quadratic reciprocity, the images of
−1, 2 and 3 at p depend on p mod 4, p mod 8 and p mod 12 respectively. We
see that the relevant ingredients for the calculation all depend on p mod 24.
The remaining linear algebra is where van der Heiden in [5] makes mistakes, a
correction can be found in Appendix section B. The results are then as follows:

Proposition 3.1.1. From Jp(Q)[2] we obtain the linearly independent elements
(2,−6p,−p, 2, 6), (3,−3p,−1, 3p, 3), (p,−6,−p,−2p,−3p) and (1,−2p,−2,−2,−2p).
The 2-Selmer group S2(Jp/Q) depends on p mod 24 as follows.

p mod 24 dimS2(Jp/Q) other generators
1 8 (1, 1, 1, p, p), (1, p, p, 1, 1), (1, p, 1, p, 1), (1,−6,−1,−2,−3)
5 5 (1, 6p, 2p, 2p, 6p)
7 4 none
11 5 (1, 3p, 1, 1, 3p)
13 5 (1, p, 1, p, 1)
17 6 (1, p, 1, 1, p), (1,−6,−p,−2,−3p)
19 5 (1, 2p, p,−2p,−p)
23 6 (1,−p,−p, 1, 1), ), (1, 1, 1,−p,−p)

From proposition 2.1.2 and equation (2.9) we obtain

rank(Jp/Q) + dimF2
(X(Jp/Q)[2]) = dimF2

(S2(Jp/Q))− 4, (3.1)

hence in any case we have that dimF2
(S2(Jp/Q))− 4 is an upper bound for the

rank. In particular, we see that rank(Jp/Q) = 0 whenever p ≡ 7 mod 24.

Assuming that X(Jp/Q) is finite implies that rank(Jp/Q) and dimS2(Jp/Q)
have the same parity (see proposition 2.2.3), so we have the following conjectural
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result about the ranks.

p mod 24 dimS2(Jp/Q) rank(Jp/Q)
1 8 0, 2 or 4
5 5 1
7 4 0
11 5 1
13 5 1
17 6 0 or 2
19 5 1
23 6 0 or 2

Note that the primes p with dimS2(J/Q) = 5 are the primes p ≡ 3, 5 mod 8,
which are the primes that are inert in Q(

√
2).

3.2 The group Aut(C)

We will compute the geometric automorphism group Aut(CQ) of C = Cp, and
then see what the minimal field is over which all automorphisms are defined, i.e.
the field K for which the natural map Aut(CK)→ Aut(CQ) is an isomorphism.

Proposition 3.2.1. All automorphisms of C = Cp are defined over Q(ζ8), with
Aut(CQ(ζ8))

∼= D4 generated by ρ and σ of order 4 and 2 respectively, given on
the function field by

ρ(x, y) = (−x, ζ4y)

σ(x, y) =

(
2p2

x
,

2
√

2p3y

x3

)
Proof. It is straightforward to check that ρ and σ are indeed automorphisms of
order 4 and 2 respectively, and they satisfy the relation ρσ = σρ−1. It remains
to see why there are no more automorphisms, which is more delicate.
Setting

y2 = x(x2 − p2)(x2 − 4p2).

Setting η = x/p and ξ = y/p3 we obtain pξ2 = η(η2 − 1)(η2 − 4), so over Q the
curve is simply isomorphic to

ξ̃2 = η(η2 − 1)(η2 − 4).

Now setting x′ = η+1
η−1 and y′ = 4ξ̃√

−3(η−1)3 , we obtain

(y′)2 = x′(x′ − 1)(x′ + 1)(x′ − 3)(x′ − 1/3). (3.2)

According to [6, p. 644] this implies that AutQ(CQ)/〈ι〉 ∼= Z/2Z× Z/2Z, where
ι is the hyperelliptic involution defined by (x, y) 7→ (x,−y). It follows that
Aut(CQ) has order 8.
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We will work with the automorphism σ, which is defined over K = Q(
√

2).
Consider the function field K(x, y) of CK . Then 〈σ, ι〉 is a non-cyclic sub-
group of AutK(K(x, y)) of order 4, so that from Galois theory we have that
K(x, y)/K(x, y)〈σ,ι〉 is a Galois extension with group (Z/2Z)2, with the follow-
ing subfields

K(x, y)

K(x, y)〈σ〉 K(x, y)〈σι〉 K(x, y)〈ι〉

K(x, y)〈σ,ι〉

To compute these invariant fields, first observe that clearly K(x, y)〈ι〉 = K(x).

For the rest, consider t = x+ 2p2

x . Then t ∈ K(x, y)〈σ,ι〉, which gives

K(t) ⊂ K(x, y)〈σ,ι〉 ⊂ K(x).

As the degree of the latter extension is 2, and we have x2 − tx + 2p2 = 0, we
see that K(t) = K(x, y)〈σ,ι〉.
With a similar argument it follows that K(x, y)〈σ〉 = K(t, s) where s = y +
2
√
2p3y
x3 , and K(x, y)〈σι〉 = K(t, s′) for s′ = y − 2

√
2p3y
x3 . We now have

K(x, y)

K(t, s) K(t, s′) K(x)

K(t)

We can consider K(t) as the function field of a P1
K , so that K(t, s) and K(t, s′)

correspond with hyperelliptic curves (note that K perfect yields that the curves
associated to the function fields are in fact smooth). With Riemann-Hurwitz
one can calculate that the curves have genus 1, but one can also just direct
produce a Weierstrass equation as follows.
Note that s2 ∈ K(t) as s2 is invariant under ι, so we already know beforehand
that s2 is a rational function in t. We compute:

s2 = y2

(
1 +

2
√

2p3

x3

)2

= x(x2 − p2)(x2 − 4p2)

(
1 +

4
√

2p3

x3
+

8p6

x6

)

We see that the expression expands into a sum of terms containing xi for |i| ≤ 5.
Note that the coefficient of x5 is 1 and that of x−5 is 32p10. Note that t5 has
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the same coefficients for x5 and x−5 respectively, so s2 − t5 is a sum of terms
containing xi for |i| ≤ 4. Continuing in this way we obtain the relation

s2 = t5 − 15p2t3 + 4
√

2p3t2 + 54p4t− 36
√

2p5

= (t− 3p)(t+ 3p)(t+ 2
√

2p)(t−
√

2p)2

Letting Gal(K/Q) act on K(x, y) by the natural action on K and fixing x and
y, we note that s′ is the conjugate of s, and that t is invariant under this action.
This implies

(s′)2 = t5 − 15p2t3 − 4
√

2p3t2 + 54p4t+ 36
√

2p5

= (t− 3p)(t+ 3p)(t− 2
√

2p)(t+
√

2p)2

This yields two elliptic curves E and E defined by

E : y2 = (x2 − 9p2)(x+ 2
√

2p)

E : y2 = (x2 − 9p2)(x− 2
√

2p)

together with maps CK → E and CK → E.

Proposition 3.2.2. We have an isogeny JK → E ×K E.

Proof. This is a generality because E and E have as function fields the invariant
of the function field of CK under 〈σ〉 and 〈σι〉, see [6, p. 644].

Proposition 3.2.3. We have rank(J/Q) = rank(E/K).

Proof. Suppose that Q/L/K is an intermediate field. Then from 3.2.2 (and the
fact that J(L) = JK(L) canonically) we have a commutative diagram

C(L) E(L)× E(L)

J(L)

π×π

(3.3)

with J(L)→ E(L)× E(L) a group homomorphism with finite kernel.
Setting K = L and precomposing J(Q)→ J(K), we obtain a group homomor-
phism φ : J(Q)→ E(K)× E(K).
I claim that

im(φ) ⊂ {(P,Q) ∈ E(K)× E(K) : P = Q}.

To see this note that if P ∈ C(K) then from (3.3) with L = K then we see
immediately that [P −∞] ∈ J(K) maps to a pair of conjugate points. This that
φ(D) ⊂ {(P,Q) ∈ E(K) × E(K) : P = Q} whenever D ∈ J(Q) is the sum of
at most two distinct divisors class of the form [P −∞] for P ∈ C(Q), or when
D = [P +Q− 2∞] for P,Q ∈ C(K) conjugate.
It remains to consider the case where D = [P + Q − 2∞] for P 6= Q in C(L)
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conjugate for L/Q quadratic and L 6= K. Consider σ ∈ Gal(LK/Q) with
σ|K 6= idK and σ|L 6= idL, so that x = σ(x) for x ∈ K, but also σ(P ) = Q.
Using (3.3) for this L we see that

D 7→ (π(P ) + π(Q), π(P ) + π(Q)),

and

π(P ) + π(Q) = σ(π(P ) + π(Q)) = π(σ(P )) + π(σ(Q)) = π(P ) + π(Q),

which proves the claim.

Thus we in fact have a map J(Q) → E(K) which has finite kernel, which
implies rank(J/Q) ≤ rank(E/K). To prove the reverse inequality, let us con-
sider r = rank(E/K) independent points P1, . . . , Pr ∈ E(K) of infinite order.
Then over at most a quadratic extension L of K, we can find points Qi ∈ C(L)
that map to Pi.
Letting Gal(L/K) be generated by σ of order at most 2, we see that [Qi+σ(Qi)−
2∞] ∈ J(K) maps to 2Pi. Again we can take the sum of the Gal(K/Q)-orbit of
these points to obtain points Di ∈ J(Q) that map to 4Pi ∈ E(K).
But as 4P1, . . . , 4Pr are r independent points of infinite order, we see that also
D1, . . . , Dr ∈ J(Q) are r independent points of infinite order, which proves
rank(J/Q) = rank(E/K).

Remark 3.2.4. The way we obtained a map J(Q) → E(K) in the proof of
proposition 3.2.3 may seem rather ad hoc. What is going on ‘under the hood’ is
Weil restriction. Specifically, we have a functor from the category of K-schemes
to the category of Q-schemes, denoted on objects by ResKQ (T ) for a K-scheme
T , which is adjoint to the base extensions functor that sends a Q-scheme T to
T ×K Spec(K). In our case this means that we have

MorK-Sch(JK , E)↔ MorQ-Sch(J,ResKQ ),

Our map JK → E thus yields a map J → ResKQ (E) that is a morphisms of

schemes over Q. Now an explicit construction of ResKQ (E) is to take the product
of E with its conjugate, and then quotient out by the action of Gal(K/Q) that
interchanges the factors, see [3, § 1.2]. The Q-valued points ResKQ (E) are then
precisely

{(P,Q) ∈ E(K)× E(K) : P = Q},

and the induced map on J(Q) to the above coincides with the map which we
considered in the proof of proposition 3.2.3.

Now that we know that rank(J/Q) = rank(E/K), we can also perform a
2-descent on E/K and achieve rank bounds for J(Q) with (2.9). If the rank
bound is smaller than the one obtained by a compution of S2(J/Q), then this
forces a non-trivial X(J/Q)[2].
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3.3 2-descent on E/Q(
√
2)

First a lemmas to smooth calculations later on.

Lemma 3.3.1. Let K/Q be a quadratic, and let α ∈ K a non-square. Then
the Galois closure L of K(

√
α)/Q is K(

√
α,
√
N(α)), which is a D4 extension

provided that N(α) = αα′ is not a square in K. The subfield lattice takes the
following form

L

K(
√
α) K(

√
α′) K(

√
N(α)) (..) (..)

K E Q(
√
N(α))

Q

Moreover, suppose that a rational prime p is unramified in L, and that p is
not completely split in K(

√
N(α)). Then the inertia degree fp depends on the

splitting behaviour of p in E as follows:

i) If p splits in E then fp = 4.

ii) If p is inert in E then fp = 2.

Proof. The first part is basic Galois theory, where one observes that L/Q(
√
N(α))

is not cyclic by checking that no automorphism of Gal(L/Q) of order 4 fixes√
N(α).

As L/Q is not cyclic we cannot have fp = 8, so fp ∈ {2, 4}, hence it suffices
to prove that p splits in E if and only if fp = 4.

If p splits in E then since p is not completely split in K(
√
N(α)), this forces E to

be the decomposition field Zp/p of a prime p over p, whence fp = [L : Zp/p] = 4.
Conversely, if fp = 4 then the decomposition group Dp/p is cyclic of order 4, so
its invariant field must be E, hence p splits in E.

We now continue with the descent. To repeat: let p 6= 2, 3 be a prime and
consider the elliptic curve E defined over K = Q(

√
2) defined by the Weierstrass

equation
y2 = f(x) = (x2 − 9p2)(x+ 2

√
2p)

One computes that ∆(f) = 22 · 32 · p6, hence the set S we need to consider
consists of the infinite primes, together with the primes lying over 2, 3 and p.
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We may identify E with its Jacobian according to proposition 1.2.5. With
this identification, and using (α1, α2, α3) = (−3p, 3p,−2

√
2p) for the roots of f ,

the embedding of (2.12) becomes

E(K)/2E(K)→ K∗/K∗ ×K∗/K∗ ×K∗/K∗

P 7→
(
x(P ) + 3p, x(P )− 3p, x(P ) + 2

√
2p
)
,

for P ∈ E(K) with 2P 6= 0, and

(−3p, 0) 7→ (3,−3p,−p)
(3p, 0) 7→ (3p, 3, p)

(−2
√

2p, 0) 7→ (p,−p,−1)

note that we have used that 2 and 3± 2
√

2 are squares in K. Our first step in
the computation is the determination of the local images.

3.3.1 Local images

We need the local images of the map

Ep(F )/2Ep(F ) ↪→ F ∗/F ∗ × F ∗/F ∗ × F ∗/F ∗

for the completions F of K at the infinite primes and the finite primes lying
over 2, 3 and p. These are R, Q2(

√
2), Q3(i), and either Qp when p is split in K

or Qp(
√

2) for p inert in K. As dimF2(E(F )[2]) = 2 for all these F , we obtain
from proposition 2.2.4 that dimF2

(E(F )/2E(F )) equals 4 when F = Q2(
√

2), 1
for F = R and 2 otherwise.

We first consider F = Q2(α) for α =
√

2, which is a wildly ramified quadratic
extension of Q2. Also write O = OF = Z2[α] for the ring of integers for F . Then
a basic application of a general version of Hensel’s lemma (see [14, Ex. 2.9])
implies that

Lemma 3.3.2. Let x ∈ O∗. Then x is a square in O if and only if x ∈
(O/α5O)∗ is a square.

Also, a basic calculation shows that elements of (O/α5O)∗ can be written
uniquely as a + bα mod α5 for a ∈ {1, 3, 5, 7} and b ∈ {0, 1, 2, 3}. Moreover,
we have (O/α5O)∗ ∼= Z/4Z × Z/2Z × Z/2Z, with generators 1 + α, 3 + α, 5
of order 4, 2, 2 respectively. Consequently, the squares in (O/α5O)∗ are 1 and
(1 + α)2 = 3 + 2α, and one can check that any coset in (O/α5O)∗/〈3 + 2α〉
has a unique representative of the form a + bα mod α5 for a ∈ {1, 3, 5, 7} and
b ∈ {0, 1}. Then

F ∗/F ∗2 ∼= 〈α〉/〈α2〉 × (O/α5O)∗/〈3 + 2α〉,

and we will write elements of F ∗/F ∗2 uniquely in the form αi(a + bα) for
a ∈ {−3,−1, 1, 3} and b, i ∈ {0, 1}.
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Note that the image of a k ∈ Z odd in F ∗/F ∗2 depends on k mod 8 since 8 = α6.

In any case, we see that from E(F )[2] that (3,−3p,−p) and (3p, 3, p) are
linearly independent elements in the image, no matter what p is. To search for
more, note that working in F ∗/F ∗2 we have

f(1/4) = f(1/α4) =

(
1− 9α8p2

α8

)(
1− α7p

α4

)
= (1− 9α8p2)(1− α7p) = 1,

hence P = (1/4,
√
f(1/4)) ∈ E(F ). Its image consists of

(1/4 + 3p, 1/4− 3p, 1/4 + 2αp) = (1 + 12p, 1− 12p, 1 + 8αp)

= (1 + 4p, 1 + 4p, 1)

= (−3,−3, 1),

Similarly we find the point P = (20 + p2/10, ?) ∈ E(F ) which has image

(3(2p− 1),−3(1 + 2p),−3) =

{
(3,−1, 3) if p ≡ 1 mod 4

(−1, 3,−3) if p ≡ 3 mod 4

One checks that only when p ≡ 1, 7 mod 8, this element is not in the span of the
previous three elements. Luckily, precisely when p ≡ 3, 5 mod 8 we have that
(3 + a, ?) gives a point of E(F ): for x = 3 + α in F ∗/F ∗2 we have

(x2 − 9p2) = 9 + 6α+ 2− 9p2 = 1 + 3α+ 9 · 1− p2

2
= 5 + 3α,

in F ∗/F ∗2, where we have used that p2 ≡ 9 mod 16, whence 1−p2
2 ≡ 4 mod 8.

One directly computes that (5 + 3α)(3 + α + 2αp) = 1 in F ∗/F ∗2, so that we
indeed obtain a point, which has image

(3 + 3p+α, 3− 3p−α, 3 + (1 + 2p)α) =

{
(4 + α, 2 + α, 3− α) if p ≡ 3 mod 8

(2 + α, 4 + α, 3− α) if p ≡ 5 mod 8

In summary, the local images of Ep(F )/2Ep(F ) have the following generators,
depending on p mod 8 as follows.

p ≡ 1 mod 8 p ≡ 3 mod 8 p ≡ 5 mod 8 p ≡ 7 mod 8
3 −3 −1 3 −1 −3 3 1 3 3 3 1
3 3 1 1 3 3 −1 3 −3 −3 3 −1
−3 −3 1 −3 −3 1 −3 −3 1 −3 −3 1
3 −1 −3 4 + α 2 + α 3− α 2 + α 4 + α 3− α −1 3 −3

For F = Q3(i) we have F ∗/F ∗2 = 〈3, r〉 with r = 1 + i. The corresponding
image is spanned by

3 3 1
r r 1
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where (3, 3, 1) comes from E(F )[2], and (r, r, 1) comes from a point (1 + pr, ?).

The local images for the primes of K over p all come from the 2-torsion. For
F = Qp the image is spanned by

3 −3p −p
p −p −1

For F = Qp(
√

2) quadratic over Qp we have F ∗/F ∗2 = 〈p, s〉 for s a lift of a
non-square of Fp2 . The image in this case is spanned by

1 p p
p p 1

And lastly, over the reals the image is spanned by (1,−1,−1) which comes from
for example (−3p, 0).

3.3.2 The calculations

Let ε = 1 + α, which is a fundamental unit of K. Let p2 = (α), p3 = (3) and
let σ1, σ2 be the two real embeddings of K, chosen such that σ1(

√
2) > 0.

Let us first consider the cases with p ≡ 3, 5 mod 8. In that case p is inert in
K, and we have S = {p2, p3, p, σ1, σ2}, where p = (p), and

K(S) = 〈−1, ε, α, 3, p〉.

For the calculations we need the entries of the following table.

p2 p3 p σ1 σ2
−1 −1 1 1 −1 −1
ε 1+α 1 −1
α α 1 −1
3 3 3 1 1 1
p 1 p 1 1

The entry of p at p2 depends simply on p mod 8. The remaining four entries
also depend on p mod 8 thanks to lemma 3.3.1: the image of ε at p depends
on the splitting behaviour of p in the (normal closure) of K(

√
ε). We see that

imp(ε) = 1 precisely when p is inert in Q(
√
−2), i.e. when p ≡ 5, 7 mod 8.

Similarly imp(α) = 1 precisely when p is inert in Q(ζ4), i.e. for p ≡ 3 mod 4.
Consider

A = {x ∈ S2(E/K) : imp(x) = (1, 1, 1)}.

As the 2-torsion of E(K) yields a subspace of S2(E/K) that surjects onto the
p-adic image, we have

S2(E/K) = A⊕ im(E(K)[2]).
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(i) p ≡ 3 mod 8. In this case the table becomes

p2 p3 p σ1 σ2
−1 −1 1 1 −1 −1
ε 1+α r s 1 −1
α α 1 1 1 −1
3 3 3 1 1 1
p 3 1 p 1 1

Let x = (e1, e2, e3) ∈ A. As x has trivial p-adic image we obtain ei ∈ 〈−1, α, 3〉
for all i. As e1 is totally positive we have e1 ∈ 〈3〉. Looking p2-adically this
forces e3 ∈ 〈−1, 3〉, but as imp3

(e3) is trivial this then forces e3 ∈ 〈−1〉, hence x
maps p2-adically in the span of (3,−3,−1), hence e1 = 1 if and only if e3 = 1.
It follows that only x = (3,−3,−1) is a non-trivial option, and one checks that
indeed (3,−3,−1) ∈ A. This proves that S2(E/K) is 3-dimensional.

(ii) p ≡ 5 mod 8. The table now becomes

p2 p3 p σ1 σ2
−1 −1 1 1 −1 −1
ε 1+α r 1 1 −1
α α 1 s 1 −1
3 3 3 1 1 1
p −3 1 p 1 1

let x = (e1, e2, e3) ∈ A. Then ei ∈ 〈−1, ε, 3〉 for all i. Then again as e1 is
totally positive we have e1 ∈ 〈3〉. As e3 has trivial p3-adic image we have
e3 ∈ 〈−1〉, which forces the p2-adic image of x to lie in the span of (−3, 3,−1)
and (−3,−3, 1). This forces e1 = 1, and e2 = e3 ∈ 〈−1〉. One checks that
indeed (1,−1,−1) ∈ A, whence dimF2

S2(E/K) = 3 in this case as well.

Now let us consider the cases p ≡ 1, 7 mod 8, so that p splits in K. Say p
and q are the primes over p. Suppose that p = (π1), and multiply π1 with ε
if necessary such that N(π) > 0, and multiply with −1 if necessary so that π
becomes totally positive. Also write π1 = a + bα. Letting π2 = π1 we have
π2 = a− bα, q = (π2), S = {p2, p3, p, q, σ1, σ2} and K(S) = 〈−1, ε, α, 3, π1, π2〉.
We must now consider the following table

p2 p3 p q σ1 σ2
−1 −1 −1 −1 −1
ε 1+α r 1 −1
α α 1 1 −1
3 3 3 1 1
π1 π1 1 1
π2 π2 1 1

(3.4)

Some remarks: the images of −1 and 3 under p and q depend with quadratic
reciprocity on p mod 4 and p mod 12 respectively. The images of πi under p3
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depend on p mod 3 by lemma 3.3.1: if p ≡ 1 mod 3 then p is inert in Q(
√

2p),
hence imp3(πi) = 1, while for p ≡ 2 mod 3 we get imp3(πi) = −1.

For the calculations, note that S2(E/K) = A⊕ im(E(K)[2]) with

A = {x ∈ S2(E/K) : imp3
(x) ⊂ 〈(r, r, 1)〉 and imσ1

(x) = (1, 1, 1)}.

Let x = (e1, e2, e3) ∈ A. Then in any case, the p2-adic image implies that
ordα(ei) ≡ 0 mod 2. Combining this with information at σ1 and p3 we see that
ei ∈ 〈ε, π1, π2〉 for all i. We also see that in fact e1 ∈ 〈π1, π2〉 because e1 is
totally positive. For the rest of the calculations we now specialize according to
p ≡ 1, 7, 17, 23 mod 24, and will omit in table (3.4) the rows corresponding to
−1, α and 3 as we don’t need those anymore.

(iii) p ≡ 1 mod 24. In this case the table becomes

p2 p3 p q σ1 σ2
ε 1+α r 1 −1
π1 1 π1 1 1
π2 1 π2 1 1

As imp3
(e1) = 1, we see that x has trivial p3-adic image, so ei ∈ 〈πi, π2〉 for all i.

Reducing the norm equation

a2 − 2b2 = p

modulo 8 we see that b is even. As π2 = a− bα, we see from our description of
elements of Q2(α)∗/Q2(α)∗2 that all 16 possibilities for x map into the 2-adic
image. The images of x under p3, σ1 and σ2 are all trivial, so it remains to
consider the images under p and q, for which we distinguish two cases.

Suppose that πi is a square mod πj for i 6= j, i.e. im(πi)(πj) = 1 for i 6= j.
Then for a fixed i, the (πi)-adic image is spanned by

1 πi πi
πi πi 1

and we see that all 16 possibilities for x map into the (πi)-adic image, hence
yield elements of A. Thus S2(E/K) has dimension 6. As generators for A one
can take (π1, π1, 1), (π1, 1, π1), (π2, π2, 1) and (π2, 1, π2).

Suppose that im(πi)(πj) 6= 1 for i 6= j, then for a fixed i, the (πi)-adic image
is spanned by

1 πiπj πiπj
πiπj πiπj 1

where K∗(πi)
/K∗2(πi)

= 〈πi, πj〉, which forces ek ∈ 〈π1π2〉 = 〈p〉 for all k. It follows

that A = 〈(p, p, 1), (p, 1, p)〉, and that S2(E/K) has dimension 4.
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(iv) p ≡ 7 mod 24. In this case we have the same (truncated) table as for the
previous case.

p2 p3 p q σ1 σ2
ε 1+α r 1 −1
π1 1 π1 1 1
π2 1 π2 1 1

Then ei ∈ 〈πi, π2〉 for all i exactly as in the previous case. We again consider
the norm equation

a2 − 2b2 = p

modulo 8, but p ≡ 7 mod 8 now implies that b is odd. Now if we would have
ek = πi for certain k and i, then b odd is incompatible with the p2-adic image,
so we conclude ek ∈ 〈p〉 for all k. Now using p as uniformizer at Kp = Qp, we
see that the p-adic image is spanned by

−1 p −p
p −p −1

This implies that x is trivial, and we conclude that A = 0 and that S2(E/K)
has dimension 2.

(v) p ≡ 17 mod 24. In this case we see

p2 p3 p q σ1 σ2
ε 1+α r 1 −1
π1 r π1 1 1
π2 r π2 1 1

Just as with p ≡ 1 mod 24, we see from reducing p = a2 − 2b2 = p modulo 8
that b is even. This implies that x maps into the p2-adic image precisely when
ei ∈ 〈π1, π2〉 for all i, so we indeed have ei ∈ 〈π1, π2〉, and need only worry
about the (πi)-adic images.

Suppose that im(πi)(πj) = 1 for i 6= j. Then for fixed i the (πi)-adic image
is spanned by

3 3πi πi
πi πi 1

It follows that im(πi)(x) is contained in the span of (πi, πi, 1), which results A
being generated by (π1, π1, 1) and (π2, π2, 1). Thus S2(E/K) has dimension 4.

If however im(πi)(πj) = 3 for i 6= j then for fixed i the (πi)-adic image is
spanned by

3 πi 3πi
3πi 3πi 1

This forces e3 ∈ 〈p〉, yielding four options in total. One checks in that (π1, π2, p)
and (π2, π1, p) give elements of A, so also in this case we see that S2(E/K) has
dimension 4.
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(v) p ≡ 23 mod 24. In this case εε = −1, which is not a square mod p, so
im(πi)(ε) = 1 for exactly one i. Interchanging π1 and π2 if necessary (we have
not made any distinction between π1 and π2 yet so we can do this), we may
assume that imp(ε) = 1. The table then becomes

p2 p3 p q σ1 σ2
ε 1+α r 1 −1 1 −1
π1 r π1 1 1
π2 r π2 1 1

Just as for the case p ≡ 7 mod 24, we see from a2−2b2 ≡ 7 mod 8 that b is odd,
hence the p2-adic image forces e1 ∈ 〈p〉. Then e1 has trivial p3-adic image, which
forces ei ∈ 〈επ1, επ2〉 for all i. As both ε and the πi have ‘odd α-coordinate’ in
Q2(α)∗/Q2(α)∗2, we see that all these options are compatible with the p2-adic
image. It thus remains to consider the images of p, q and σ2.

Suppose that im(πi)(πj) = 1 for i 6= j. Then for fixed i the (πi)-adic image
is spanned by

1 −πi −πi
πi −πi −1

For i = 1 this implies e2 ∈ 〈επ2〉 and also that im(π1)(x) is in the span of
(π1, 1, π1). This give at most four options, and they all yield elements of A, one
can take the generators (p, 1, p) and (p, επ2, επ1) for A.

Suppose that im(πi)(πj) = −1 for i 6= j. Then for fixed i the (πi)-adic image
is spanned by

1 πi πi
−πi πi −1

For i = 2 this implies e2 ∈ 〈επ1〉, so we again have four options, and we see that
all of them give elements of A, this time one can take (p, 1, p) and (p, επ1, επ2
as generators for A. We see that S2(E/K) has dimension 4 in both cases.

Collecting the results of all these calculations, we have

Proposition 3.3.3. For a prime p 6= 2, 3, let E be the elliptic curve over
K = Q(

√
2) defined by the equation

y2 = (x2 − 9p2)(x+ 2
√

2p).

33



Then S2(E/K) depends partially on p mod 24 as follows.

p mod 24 dimS2(E/K)
1 4 or 6
5 3
7 2
11 3
13 3
17 4
19 3
23 4

And for p ≡ 1 mod 24, we have dimS2(E/K) = 6 precisely when π1 is a square
mod π2, where π1, π2 ∈ Z[

√
2] are totally positive, conjugate elements of norm

p.

If we compare this with the calculation of S2(J/K) and the resulting rank
bounds for J(Q) and E(K), we see that for p 6≡ 1 mod 24 we get the exact same
rank bound. When p ≡ 1 mod 24 and π1 is not a square mod π2 however, we
see with proposition 3.2.3 that

rank(J/Q) ≤ 2.

Then as rank(J/Q) + dimF2 X(J/Q)[2] = 4 by equation ((3.1)), this forces

(Z/2Z)2 ⊂X(J/Q)[2].

We would like to know how often this happens. We can see that π1 is not a
square mod π2 precisely when fp = 2 in the normal closure of K(

√
π1)/Q, but

one cannot apply Chebotarëv’s density theorem directly because the field in
question depends on the prime p. We can circumvent this issue however with
the following lemma.

Lemma 3.3.4. Let p ≡ 1 mod 8 be a prime and let π, π′ be totally positive,
conjugate elements in Z[

√
2] such that ππ′ = p. Then equivalent are

a) π is a square mod π′, and π′ is a square mod π.

b) p splits completely in Q( 4
√

2).

Proof. The normal closure L of K(
√
π)/Q is obtained by adjoining

√
p. As π′

has valuation zero with respect to the prime (π) and doesn’t lie over 2, the prime
(π′) of K is unramified in K(

√
π). This implies that in the D4-extension L/Q

we have ep = 2, and one readily sees that for (ep, fp, gp) we have two options:
(2, 1, 4) or (2, 2, 2). The first occurs precisely when (a) holds.
Writing π = x+y

√
2 we have x2−2y2 = p, which we can rewrite as x2−p = 2y2,

hence the element β = x+
√
p in Q(

√
p) has norm 2 ∈ Q∗/Q∗2. Let Kp = Q(

√
p).

Then L is also the normal closure of Kp(β) as β is not a square in Q(
√
p), while

it is a square in L:

(
√
π +
√
π′)2 = π + π′ + 2

√
p = (

√
2)2β
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Letting β′ be the Kp/Q-conjugate of β we obtain the following subfield lattice.

L

K(
√
π) K(

√
π′) Q(

√
2,
√
p) Kp(

√
β) Kp(

√
β′)

K Q(
√

2p) Kp

Q

Let p be the unique prime of norm p in Kp. We see that (a) holds precisely
when p splits in Kp(

√
β). As p ≡ 1 mod 8 we have that 2 splits in Kp. Consider

a prime p2|2 in Kp. The core of the argument shows that p splits in Kp(
√
β)

if and only if p2 splits in another quadratic extension of Kp, by invoking the
product formula for quadratic Hilbert symbols in Kp.
For this, consider the unique quartic subfield E of Q(ζp), which is quadratic over
Kp and ramified only over p. Note that it is unramified at the infinite primes
of Kp as p ≡ 1 mod 8 guarantees that E ⊂ Q(ζp + ζ−1p ). We have E = Kp(

√
γ)

for γ ∈ Kp a non-square of norm p (up to multiplication by squares). For β and
γ we now use the product formula for quadratic Hilbert symbols in Kp:

1 =
∏
q

(β, γ)q

As γ and β have positive norm, the factors in this product corresponding to the
two infinite primes are equal, hence the product reduces to

(β, γ)p2(β, γ)q2(β, γ)p = 1,

where p2 and q2 are the primes of Kp lying over 2. Without loss of generality
we may assume that ordp2

(β) ≡ 1 mod 2. When q 6= p, we have that F (
√
γ)/F

is unramified for F = (Kp)q as E/Kp only ramifies over p, so (β, γ)q2
= 1 as

ordq2(β) ≡ 0 mod 2, hence we have

(β, γ)p2
= (γ, β)p.

Which implies that p2 splits in Kp(
√
γ) if and only if p splits in Kp(

√
β).

Thus we see that (a) holds if and only if p2 splits in F . We finish the
proof by using another reciprocity argument. Note that p2 splits in F precisely
when 2 splits completely in F . By Galois theory, F is the invariant field of the
subgroup H of fourth powers in Gal(Q(ζp)/Q) = (Z/pZ)∗. Letting D2 and Z2

be the decomposition group and decomposition field of 2 in this extension, we
see that F ⊂ Z2 if and only if D2 ⊂ H. As D2 = 〈Frob2〉 = 〈2 mod p〉 we see
that 2 splits completely in F if and only if 2 is a fourth power in Fp, i.e. when
p splits completely in Q( 4

√
2).
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Combining the result of the computation of S2(E/K) for p ≡ 1 mod 24 with
lemma 3.3.4 we obtain

Corollary 3.3.5. Let p ≡ 1 mod 24 be a prime that does not split completely
in Q( 4

√
2). Then if J is the Jacobian of the hyperelliptic curve defined by

y2 = x(x2 − p2)(x2 − 4p2),

we have
rank(J/Q) ≤ 2, and (Z/2Z)2 ⊂X(J/Q)[2].

To see how often this occurs, we apply

Proposition 3.3.6 (Chebotarëv’s density theorem). Let L/Q be a finite Ga-
lois extension with group G, and let C ⊂ G be a subset that is stable under
conjugation (that is σCσ−1 = C for all σ ∈ G). Then

lim
X→∞

#{primes p ≤ X : p is unramified in L and Frobp ∈ C}
#{primes p ≤ X}

=
#C

[L : Q]

Proof. See [10, Ch.VII, Thm. 13.4].

Note that in general, the Frobenius element Frobp ∈ G depends on the prime
p of L lying over p, but the varying Frobenius elements as p ranges over the
primes over p are all conjugate, so the condition Frobp ∈ C is well-defined by the
assumption that C is stable under conjugation. A special case of Chebotarëv’s
density theorem is obtained when taking C = {1}:

lim
X→∞

#{primes p ≤ X : p splits completely in L}
#{primes p ≤ X}

=
1

[L : Q]

Proposition 3.3.7. We have

lim
X→∞

#{primes p ≤ X : p ≡ 1 mod 24 and p doesn’t split completely in Q( 4
√

2)}
#{primes p ≤ X : p ≡ 1 mod 24}

=
1

2

Proof. Let L = Q( 4
√

2). Then to prove the proposition it is equivalent to show
that

lim
X→∞

#{primes p ≤ X : p ≡ 1 mod 24 and p splits completely in L}
#{primes p ≤ X : p ≡ 1 mod 24}

=
1

2
.

If p is a prime that splits completely in L, then p ≡ 1 mod 8 as Q(ζ8) ⊂ L. As
p splits completely in Q(ζ3) if and only if p ≡ 1 mod 3 we obtain

p ≡ 1 mod 24 and p splits completely in L ⇔ p splits completely in L(ζ3).
(3.5)
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Applying Chebotarëv to both L(ζ3) and Q(ζ24) we obtain

lim
X→∞

#{primes p ≤ X : p splits completely in L(ζ3)}
#{primes p ≤ X}

=
1

16
,

lim
X→∞

#{primes p ≤ X : p splits completely in Q(ζ24)}
#{primes p ≤ X}

=
1

8
.

A prime p splits completely in Q(ζ24) if and only if p ≡ 1 mod 24, hence taking
the quotient of the two limits above and applying (3.5), we obtain the result.

Corollary 3.3.8. There are infinitely many primes p ≡ 1 mod 24 for which
the Jacobian J of the hyperelliptic curve defined by y2 = x(x2 − p2)(x2 − 4p2)
satisfies

(Z/2Z)2 ⊂X(J/Q)[2].

Proof. If p ≡ 1 mod 24 does not split completely in Q( 4
√

2) then (Z/2Z)2 ⊂
X(J/Q)[2] from corollary 3.3.5. As there are infinitely many primes p ≡ 1 mod
24 (which one can see by invoking Chebotarev to Q(ζ24)), we see that a finite
number of primes p ≡ 1 mod 24 that do not split completely in Q( 4

√
2) would

imply that the limit of proposition 3.3.7 is 0, which is not the case.

3.3.3 S2(J/Q)→ S2(E/K)

Let us recall: we have a prime p 6= 2, 3 and the hyperelliptic curve C over Q
defined by the equation y2 = f(x) = x(x2−p)2(x2−4p2), and the elliptic curve
E over K = Q(

√
2) defined by y2 = g(x) = (x2 − 9p2)(x + 2

√
2p). By now we

have explicitely computed the 2-Selmer groups S2(J/Q) and S2(E/K). In this
section we will compare the two. This will not give us definitive extra results,
but will be the basis for formulating a conjecture.

Using proposition 2.2.2 for J and K/Q, and proposition 2.2.1 for JK → E
we have the following commutative diagram with exact rows

0 J(Q)/2J(Q) S2(J/Q) X(J/Q)[2] 0

0 J(K)/2J(K) S2(J/K) X(J/K)[2] 0

0 E(K)/2E(K) S2(E/K) X(E/K)[2] 0

How do the maps to and between the Selmer groups look explicitly as in section
2.3? One quickly sees with the naturality of restriction of cohomology and the
Kummer isomorphisms that considering S2(J/Q) ⊂

⊕5
i=1 Q∗/Q∗2 similarly for

S2(J/K), that the map S2(J/Q) → S2(J/K) is simply induced by the canon-

ical map
⊕5

i=1 Q∗/Q∗2 →
⊕5

i=1K
∗/K∗2. The ‘explicit version’ of the map

S2(J/K) → S2(E/K) is more involved however, as it depends on the map
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J(K)[2]→ E(K)[2] and on how the Weil pairings relate.

Set AJ = K[x]/(f) and AJ = K[x]/(f), and similarly AE = K[x]/(g) and
AE = K/(g). Also identify µ2(AJ) = µ5

2 and µ2(AE) = µ3
2 as (trivial!) GK-

modules.

Lemma 3.3.9. If we define a group homomorphism α : µ5
2 → µ3

2 by

(−1, 1, 1, 1, 1) 7→ (−1, 1, 1)

(1,−1, 1, 1, 1) 7→ (−1, 1, 1)

(1, 1,−1, 1, 1) 7→ (−1,−1,−1)

(1, 1, 1,−1, 1) 7→ (1,−1, 1)

(1, 1, 1, 1,−1) 7→ (1,−1, 1)

then we have a commutative diagram

0 J(K)[2] µ5
2 µ2 0

0 E(K)[2] µ3
2 µ2 0.

wJ

α

wE

(3.6)

where wJ and wE are the maps obtained from the respective Weil pairings as in
section

Proof. Writing Dξ = [(ξ,
√
f(ξ))−∞], for ξ ∈ Q, the relevant images of gener-

ators of J(K)[2] can be summarized in the following table.

Divisor image in µ5
2 image in E(K)[2] image in µ3

2

D−2p (1,−1,−1,−1,−1) (−3p, 0) (1,−1,−1)
D−p (−1, 1,−1,−1,−1) (−3p, 0) (1,−1,−1)
D0 (−1,−1, 1,−1,−1) ∞ (1, 1, 1)
Dp (−1,−1,−1, 1,−1) (3p, 0) (−1, 1,−1)
D2p (−1,−1,−1,−1, 1) (3p, 0) (−1, 1,−1)

Noting that α(−1,−1,−1,−1,−1) = (−1,−1,−1), it is easy to check that dia-
gram (3.6) indeed commutes.

Applying the functor H1(GK ,−) to diagram (3.6) results in the diagram

H1(GK , J(K)[2]) H1(GK , µ2(AJ)) H1(GK , µ2(K∗))

H1(GK , E(K)[2]) H1(GK , µ2(AE)) H1(GK , µ2(K∗)),

w∗J

α∗ id

w∗E

How does α∗ behave when applying the Kummer isomorphisms? We have

A∗J/A
∗2
J
∼−→ H1(GK , µ2(AJ))

α−→ H1(GK , µ2(EK))
∼−→ A∗K/A

∗2
K
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The first map sends a 7→
(
σ 7→ σ(a)

a

)
. Considering A∗J/A

∗2
J as five copies of

Q∗/Q∗2 and similarly for A∗K/A
∗2
K , we see that for example the map sends

(a, 1, 1, 1, 1) 7→
(
σ 7→

(σ√a√
a
, 1, 1, 1, 1

))
7→
(
σ 7→

(σ√a√
a
, 1, 1

))
7→ (a, 1, 1)

Doing the same ‘for the other coordinates’ we see that (a, b, c, d, e) 7→ (abc, cde, c),
hence we have a commutative diagram

J(Q)/2J(Q)
⊕5

i=1 Q∗/Q∗2

E(K)/2E(K)
⊕3

i=1K
∗/K∗2

where the right vertical map is given by (a, b, c, d, e) 7→ (abc, cde, e). This gives
us a way to explicitly compare the 2-Selmer groups in the diagram

0 J(Q)/2J(Q) S2(J/Q) X(J/Q)[2] 0

0 E(K)/2E(K) S2(E/K) X(E/K)[2] 0

α β γ

Before looking at specific cases according to the 2-Selmer group computations,
note that applying the snake lemma to this diagram yields the long exact se-
quence

0→ ker(α)→ ker(β)→ ker(γ)→ coker(α)→ coker(β)→ coker(γ)→ 0

Note that if r = rank(J/Q) = rank(E/K), then dim(J(Q)/2J(Q)) = r+4, while
dim(E(K)/2E(K)) = r + 2, which implies that dim ker(α) = 2 + dim coker(α).
Counting dimensions in the long exact sequence we thus obtain the relation

2 + dim ker(γ) + dim coker(β) = dim(ker(β)) + dim(coker(γ)). (3.7)

The computation of ker(β) only depends on p mod 24, and is a matter of simple
linear algebra. Note that from J(Q)[2] we always obtain a two-dimensional
subspace in ker(β): generators are (2p, p, 1,−p,−2p) and (6p, 6p, 2, 6, 3).

p mod 24 dimF2
S2(J/Q) dimF2

ker(β) additional generators
1 8 4 (p, p, 1, 1, 1), (1, 1, 1, p, p)
5 5 2 none
7 4 2 none
11 5 2 none
13 5 2 none
17 6 3 (p, p, 1, p, p)
19 5 2 none
23 6 3 (1, 1, 1,−p,−p)
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Now let us consider the case p ≡ 1 mod 24 where p does not split completely
in Q( 4

√
2), so that dimS2(E/K) = 4. We see that β is surjective in this case,

hence also γ is surjective, and with (3.7) we obtain dim(ker(γ)) = 2, which coin-
cides with our knowledge that in any case (Z/2Z)2 ⊂X(J/Q)[2]. Surjectivity
of ker(β)→ ker(γ) means precisely that (p, p, 1, 1, 1), (1, 1, 1, p, p) give indepen-
dent, non-trivial elements in X(J/Q)[2], and from the long exact sequence we
see that ker(β)→ ker(γ) is surjective precisely when α is surjective.

Conjecture 3.3.10. If p ≡ 1 mod 24 does not split completely in Q( 4
√

2), then
〈(p, p, 1, 1, 1), (1, 1, 1, p, p)〉 ⊂ S2(J/Q) injects into X(J/Q)[2].

We will return to the issue of numerical evidence for this conjecture later.

3.4 More 2-descents

In this section we use another approach to determine the rank of Jp(Q) for Jp
the Jacobian of the hyperelliptic curve Cp defined by

y2 = x(x2 − p2)(x2 − 4p2)

Namely we use the fact that the curves are all quadratic twists of each other.
Let C/Q be the hyperelliptic curve defined by the equation y2 = x(x2−1)(x2−
4). Then Cp is a quadratic twist of C over both Q(

√
p) and Q(

√
−p). This

follows from the fact that an equivalent model for Cp is determined by the
equation

py2 = x(x2 − 1)(x2 − 4)

and the fact that (x, y) 7→ (−x, ζ4y) is an automorphism. It follows that we
have the formula

rank(J/Q) + rank(Jp/Q) = rank(J/Q(
√
p)) = rank(J/Q(

√
−p)). (3.8)

We will see that rank(J/Q) = 0, so that an alternative way of obtaining infor-
mation about rank(Jp/Q) is by computing S2(J/Q(

√
±p)).

Computations with Magma for primes p ≤ 3000 suggest that the following
results hold.

p mod 24 dim(S2(Jp/Q)) dim(S2(J/Q(
√
p))) dim(S2(J/Q(

√
−p)))

1 8 4, 6 or 8 8
5 5 5 7
7 4 4 4
11 5 7 5
13 5 5 9
17 6 4 or 6 6
19 5 5 7
23 6 6 4 or 6
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We will calculate S2(J/Q(
√
p)) for p ≡ 1, 17 mod 24 and S2(J/Q(

√
−p)) for

p ≡ 23 mod 24, and obtain for each case a governing field. That is (the size of)
the 2-Selmer group will depend on the splitting behaviour of p in some number
field that is independent of p. This will allow us to use Chebotarëv´s density
theorem, which for example will allow us to prove that rank(J/Q) = 0 occurs
infinitely often in each of the cases for p ≡ 1, 17, 23 mod 24.

Note that in each of the three cases we are dealing with Q(
√
p∗), where

p∗ = (−1)(p−1)/2p for an odd prime p. Proposition A.2.4 implies that these
number fields have odd class number, and a fundamental unit of norm −1 in
case the field is real.

3.4.1 Local images and image of 2-torsion

The 2-torsion yields elements in the 2-Selmer group regardless over which num-
ber field we work. The image of J(Q)[2] is

X + 2 X + 1 X X − 1 X − 2
D−2 6 −1 −2 −3 −1
D−1 1 −6 −1 −2 −3
D0 2 1 1 −1 −2
D1 3 2 1 −6 −1

Over the number fields Q(
√
p∗) we will consider this image is still 4-dimensional.

Those local fields F that occur as completions of the fields Q(
√
p∗) for which

we need the local images are Q2,Q3,Q3(i) and R. For each such F we have an

embedding J(F )/2J(F ) ↪→
⊕5

i=1 F
∗/F ∗2. Note that for F = Q3(i) we have

F ∗/F ∗2 = 〈3, r〉, where r = 1 + i.

Q2 X + 2 X + 1 X X − 1 X − 2
D−2 6 −1 −2 −3 −1
D−1 1 −6 −1 −2 −3
D0 2 1 1 −1 −2
D1 3 2 1 −6 −1
D6 2 −1 6 −3 1
D7 1 2 −1 6 −3

Q3 X + 2 X + 1 X X − 1 X − 2
D−2 −3 −1 1 −3 −1
D−1 1 3 −1 1 −3
D0 −1 1 1 −1 1
D4 1 −3 −1 1 3
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Q3(i) X + 2 X + 1 X X − 1 X − 2
D−2 3 1 1 3 1
D−1 1 3 1 1 3
Di r r 1 r r

D4+3i 3r 1 1 3r 1

R X + 2 X + 1 X X − 1 X − 2
D−1 1 −1 −1 −1 −1
D0 1 1 1 −1 −1

The first thing we do with these local images is to prove

Proposition 3.4.1. We have rank(J/Q) = 0, so that

rank(Jp/Q) = rank(J/Q(
√
p)) = rank(J/Q(

√
−p)) (3.9)

Proof. It suffices to show that S2(J/Q) has F2-dimension 4, for then rank(J/Q) =
0, so that (3.9) follows from (3.8). The primes we need to consider are 2, 3 and
∞, and we can take K(S) = 〈−1, 2, 3〉. It follows that S2(J/Q) injects into the
2-adic image. It follows that

S2(J/Q) = A⊕ im(J(Q)[2])

where A consists of those x ∈ S2(J/Q) for which im2(x) is contained in the
span of

2 −1 6 −3 1
1 2 −1 6 −3

Now if x = (e1, . . . , e5) ∈ A, then the 3-adic image forces im3(e3) ⊂ 〈−1〉,
hence the im2(x) is in the span of (1, 2,−1, 6,−3), hence x is in the span of
(1, 2,−1, 6,−3), which forces x to be trivial as (1, 2,−1, 6,−3) maps 3-adically
to (1,−1,−1, 3,−3), which is not in the 3-adic image. Thus A = 0 and S2(J/Q)
has F2-dimension 4.

3.4.2 J/Q(
√
−p) for p ≡ 23 mod 24

Let K = Q(
√
−p) for p ≡ 23 mod 24. Then as K is complex and both 2 and 3

split in K, we need to consider four primes, and only need the local images for
Q2 and Q3.
Suppose that (3) = p3q3 and let k3 be the order of [p] (or [q]) in ClK . Then
pk33 = (x3) for some x3. Then x3 maps to ±1 under K∗q3

/K∗2q3
, so that by mul-

tiplying x3 by −1 if necessary, we may assume that x3 has trivial image under
q3. Let y3 be the conjugate of x3, so that qk33 = (y3) and x3y3 = 3k3 .
If p is a prime over 2, then x3 and y3 map under the p-adic completion into
{1, 3, 5, 7} ⊂ Q∗2/Q∗22 , while their product maps to 3, thus either x3 or y3 is
mapped into {1, 5} while the other is not. As imp(y3) = imq(x3), with q the
other prime over 2, this implies that x3 maps into {1, 5} ⊂ Q∗2/Q∗22 for precisely
one prime of K over 2, say p2. This means that p2 is unramified in K(

√
x3).

Let q2 be the conjugate of p2. Let x2 ∈ p2 be a generator for pk22 , with k2 the
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order of [p2]. Similarly as for x3, multiplying x2 with −1 if necessary we may
assume that x2 maps q2-adically into {1, 5} ⊂ Q∗2/Q∗22 . Finally we also let y2
be the conjugate of x2, so that also x2y2 = 2k2 .

Now from proposition A.2.4 we know that k2, k3 ≡ 1 mod 2, and hence from
corollary 2.4.7 we see that K(S) = 〈−1, x2, y2, x3, y3〉. We can compute the
2-Selmer group if we know the images of these generators in K∗p/K

∗
p for the

primes p over 2 and 3. Evaluating the product formula for quadratic Hilbert
symbols over K at x2 and x3 we obtain

(x2, x3)p2(x2, x3)q2(x2, x3)p3 = 1

Now (x2, x3)q2
= (x3, x2)q2

= 1 as q2 is unramfied inK(
√
x2) and ordq2

(x3) = 0,
so that

(x3, x2)p3
= (x2, x3)p2

,

As p3 is unramified in K(
√
x2) and p2 is unramified in K(

√
x3), this means that

x3
p27−→ 1 if and only if x2

p37−→ 1.
Define

A = {(e1, . . . , e5) ∈ S2(J/K) : e3
p37−→ 1 and e4

p27−→ 1}.

Then S2(J/K) = A⊕ im(J(K)[2]). Elements of A land in smaller local images.
For p2 we see that the fourth coordinate of the local image hits everything in
Q∗2/Q∗22 , hence the subspace of the local image with fourth coordinate 1 is three
dimensional. Independent elements are the images of D0 +D1 +D7, D−2 +D6

and D−1 +D6 +D7, which gives us the following local image for p2.

6 1 −1 1 −6
3 1 −3 1 −1
2 3 6 1 1

The corresponding local image for p3 is spanned by

−3 −1 1 −3 −1
−1 1 1 −1 1
1 −1 1 1 −1

(3.10)

There are now four cases, depending on imq2
(x2) and imp2

(x3).

Case (i)

For the first case of calculations we consider imq2
(x2) = 1 and imp2

(x3) = 1,
which gives us the following table.

p2 q2 p3 q3
−1 −1 −1 −1 −1
x2 2 1 1 −1
y2 1 2 −1 1
x3 1 3 3 1
y3 3 1 1 3

43



Let x = (e1, . . . , e5) ∈ A. Since e4
p27−→ 1 we have e4 ∈ 〈y2, x3〉. As e1, e2 and

e5 are mapped p2-adically into 〈2, 3〉, 〈3〉 and 〈−1, 6〉, respectively, we obtain
e1 ∈ 〈x2, y2, x3, y3〉, e2 ∈ 〈y2, x3, y3〉 and e5 ∈ 〈−1, x2y3, y2, x3〉. As e3 maps
into 〈−1〉 both p3-adically and q3-adically, we have vx3

(e3) = vy3(e3) = 0. As

e3
p37−→ 1, we have e3 ∈ 〈x2,−y2〉. From the smaller p3-adic table we also see

that vx3(e2) = vx3(e5) = 0, resulting in the following options for the ei:

e1 ∈ 〈x2, y2, x3, y3〉
e2 ∈ 〈y2, y3〉
e3 ∈ 〈x2,−y2〉
e4 ∈ 〈y2, x3〉
e5 ∈ 〈−1, x2y3, y2〉

Because imq2
(e2) ⊂ 〈2〉 we see that x maps q2-adically in the span of

2 1 1 −1 −2
3 1 −3 1 −1
3 1 −1 −1 3
3 2 1 −6 −1

which further implies e3 ∈ 〈x2〉 as −y2
q27−→ −2. But now e3 maps q2-adically

to 1, and e4 is mapped into 〈2, 3〉, which implies that the q2-image of x lies
in the span of (6, 2, 1, 6, 2). It follows that e1 ∈ 〈x2, y2x3, y3〉, e4 ∈ 〈y2x3〉 and
e5 ∈ 〈x2y3, y2〉.

As e4
q37−→ 1 and imq3

(e5) ⊂ 〈−3〉, we see that x maps q3-adically into the
span of (1, 3,−1, 1,−3). This implies that e1 ∈ 〈y2x3〉, resulting in the options

e1 ∈ 〈y2x3〉
e2 ∈ 〈y2, y3〉
e3 ∈ 〈x2〉
e4 ∈ 〈y2x3〉
e5 ∈ 〈x2y3, y2〉

One can easily check that (1, y3, x2, 1, x2y3) ∈ A, so that a complement in-
side A of the span of (1, y3, x2, 1, x2y3) consists of those elements with trivial
third coordinate. Thus working inside this complement amounts to setting
e3 = 1 in the above options for the ei. This forces our x to have trivial p2-
adic image, which implies e2, e5 ∈ 〈y2〉. The q2-adic image now immediately
forces x to be either (y2x3, y2, 1, y2x3, y2) or trivial, that is this complement
is one-dimensional. This proves that A is two-dimensional, with generators
(1, y3, x2, 1, x2y3), (y2x3, y2, 1, y2x3, y2).
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Case (ii)

For the second case we consider imq2
(x2) = 1 and imp2

(x3) = −3, so the table
becomes

p2 q2 p3 q3
−1 −1 −1 −1 −1
x2 2 1 −1 1
y2 1 2 1 −1
x3 −3 −1 3 1
y3 −1 −3 1 3

Let x = (e1, . . . , e5) ∈ A, then e4
p27−→ 1 and e3

p37−→ 1, which gives e3 ∈
〈−x2, y2, y3〉 and e4 ∈ 〈y2,−y3〉. From q3-adic we see e3 ∈ 〈−x2, y2〉. Then
imp2(e3) ⊂ 〈−2〉, which forces the p2-adic image of x2 to be in the span of
(6, 3,−2, 1,−1), which implies e2 ∈ 〈y2,−x3, x3y3〉. With p3-adic information
we see e2 ∈ 〈y2,−y3〉, hence imp2

(x) is trivial, so that ei ∈ 〈y2,−y3〉 for all i.
From p3-adic image we see additionally e3 ∈ 〈y2〉. As imq2

(ei) ⊂ 〈2, 3〉 and
imq2(ei) ⊂ 〈2〉 we see that imq2(x) is in the span of

6 2 1 6 2
6 6 2 6 3

This implies that e4 ∈ 〈−y2y3〉, hence the q3-adic image of x is contained in the
span of

3 −1 1 3 −1
1 3 −1 1 −3
1 −3 −1 1 3

Hence also e1 ∈ 〈−y2y3. From the q-adic image we see that e1 = e4. One checks
that n1 = (−y2y3, y2, 1,−y2y3, y2) ∈ A, hence we obtain a complement inside A
for 〈n1〉 by setting e1 = e4 = 1, which forces the q2-adic image to be in the span
of (1, 3, 2, 1, 6). This implies e2〈−y3〉, e3 ∈ 〈y2 and e5 ∈ 〈−y2y3〉, hence we see
that the only non-trivial option remaining is n2 = (1,−y3, y2, 1,−y2y3), which
is indeed in A, hence we see in this case that A two-dimensional.

Case (iii)

For this case we consider imq2(x2) = −3 and imp2(x3) = 1.

p2 q2 p3 q3
−1 −1 −1 −1 −1
x2 −6 −3 1 −1
y2 −3 −6 −1 1
x3 1 3 3 1
y3 3 1 1 3

Let x = (e1, . . . , e5) ∈ A. Then e4 ∈ 〈x3,−y2y3〉 and e3 ∈ 〈x2,−y2〉. From the
smaller p2-adic image, we obtain just as with the previous case e1 ∈ 〈x3,−y2y3, x2y2, y3〉,
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e2 ∈ 〈−y2, x3, y3〉 and e5 ∈ 〈−1, x2, y2y3, x3〉.
As imp3(e2), imp3(e4) ⊂ 〈3〉, we see that x has trivial p3-adic image, which
implies ei ∈ 〈x2,−y2, y3〉 for all i, resulting in the following options

e1 ∈ 〈x2,−y2y3〉
e2 ∈ 〈−y2, y3〉
e3 ∈ 〈x2,−y2〉
e4 ∈ 〈−y2y3〉
e5 ∈ 〈x2,−y2y3〉

With this we see imq2(e2) ⊂ 〈6〉, so that x maps q2-adically in the span of

2 1 1 −1 −2
3 1 −3 1 −1
3 1 −1 −1 3
6 6 2 6 3

Since also imq2
(e4) ⊂ 〈6〉, we see that x maps q2-adically in the span of

6 1 −1 1 −6
3 1 −3 1 −1
6 6 2 6 3

This forces imq2
(e1) ⊂ 〈2, 3〉, hence e1 ∈ 〈−y2y3〉, so that we may remove the sec-

ond row as well. But then imq2
(e3) ⊂ 〈−1, 2〉, which implies e3 ∈ 〈−x2y2〉, which

in turn implies that the x maps q2-adically into the span of (1, 6,−2, 6,−2). We

see that e1 = 1, and also e3 ∈ 〈−x2y2〉 and e5 ∈ 〈−x2y2y3〉. But then e3
q37−→ 1,

so that with e1 = 1 we see that x has trivial q3-adic image.
In particular, this implies that e5 = 1, so that the q2-adic image of x is trivial,
which implies x = (1, 1, 1, 1, 1), i.e. A = 0.

Case (iv)

For the last case we have imq2(x2) = −3 and imp2(x3) = −3, so the table
becomes

p2 q2 p3 q3
−1 −1 −1 −1 −1
x2 −6 −3 −1 1
y2 −3 −6 1 −1
x3 −3 −1 3 1
y3 −1 −3 1 3

Let x = (e1, . . . , e5) ∈ A. Then e3
p37−→ 1 and e4

q27−→ 1, hence e3 ∈ 〈−x2, y2, y3〉
and e4 ∈ 〈y2x3,−y3〉. From q3-adic info we see e3 ∈ 〈−x2, y2〉, and from p2-adic
and p3-adic information we obtain e2 ∈ 〈−y2,−y3〉 and e5 ∈ 〈−1, y3〉.
Then e2 and e4 map q2-adically into 〈2, 3〉, while imq2

(e3) ⊂ 〈−2, 3〉 and
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imq2(e5) ⊂ 〈−1, 3〉, which results in the fact that imq2(x) is contained in the
span of

6 3 −2 1 −1
3 2 3 6 3

This forces e4 ∈ 〈−y2x3y3〉, which forces imp3
(x) in the span of

3 −1 1 3 −1
1 −1 1 1 −1

and imq3
(x) in the span of

−3 −1 1 −3 −1
1 3 −1 1 −3
1 −3 −1 1 3

Combining the local images at p2, p3 and q3 we obtain e1 ∈ 〈−x2y2x3, y2y3〉.
This maps q2-adically into 〈2〉, hence imq2(x) is in the span of (2, 6,−6, 6,−3),
which forces e2 ∈ 〈−y2〉, e3 ∈ 〈y2 and e5 ∈ 〈y3〉. From e3 we see that imp2

(x)
is in the span of (3, 1,−3, 1,−1), which forces e2 = 1, hence imq2

(x) is trivial,
which then also forces e3 = e5 = 1, and also e4 = 1. We conclude that A = 0.

Collecting the results from the four cases we obtain the following.

imq2
(x2) imp2

(x3) dimF2
S2(J/K) additional generators

1 1 6 (1, y3, x2, 1, x2y3), (y2x3, y2, 1, y2x3, y2)
1 −3 6 (−y2y3, y2, 1,−y2y3, y2), (1,−y3, y2, 1,−y2y3)
−3 1 4 none
−3 −3 4 none

Proposition 3.4.2. For the F2-dimension of S2(J/Q(
√
−p)) for p ≡ 23 mod 24

we have

dimF2 S
2(J/Q(

√
−p)) =

{
6 if p ≡ 15 mod 16

4 if p ≡ 7 mod 16

Proof. From the calculation we see that dimF2
(S2(J/K)) = 6 if and only if

imq2
(x2) = 1, which happens precisely when q2 splits in K(

√
x2), or when

(e2, f2, g2) = (2, 1, 4) in the normal closure L ofK(
√
x2)/Q, which isK(

√
x2,
√

2).

Letting K ′ = Q(
√

2), we see that L is also the normal closure of K ′(
√
γ)/Q,

where γ is an element of norm −p ∈ Q∗/Q∗2. Let p be the prime of K ′ with
ordp(γ) odd, and let p′2 = (

√
2) the prime over 2 of K ′. Then we see that

(e2, f2, g2) = (2, 1, 4) in L/Q precisely when p2 splits in K ′(
√
γ). Let ε = 1+

√
2,

which is a fundamental unit of K ′. Then ε
√

2 is a totally positive generator for
p′2, hence in the product formula for Hilbert symbols

1 =
∏
q

(ε
√

2, γ)q
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we see that the factors corresponding to the infinite primes vanish, and we end
up with

(ε
√

2, γ)p′2 = (γ, ε
√

2)p.

It follows that p′2 splits in K ′(
√
γ) precisely when p splits in E = K ′(

√
ε
√

2).

As E/Q is Galois (note that ε
√

2 has norm 2, which is already a square in K ′),
it is abelian, of degree 4, and only ramified over 2. As it is also totally real
one quickly sees with Kronecker-Weber that E = Q(ζ16 + ζ−116 ). We see that p
splits in E if and only if p splits completely in E, which happens precisely when
p ≡ ±1 mod 16. As p 6≡ 1 mod 16 we see that p splits in E if and only if p ≡ 15
mod 16, which proves the result.

Corollary 3.4.3. Let p ≡ 23 mod 48 be a prime. Then for the Jacobian Jp of
the hyperelliptic curve defined by y2 = x(x2 − p2)(x2 − 4p2) we have

rank(Jp/Q) = 0, X(Jp/Q)[2] = (Z/2Z)2.

Proof. We have rank(Jp/Q)+dimF2
X(Jp/Q)[2] = 2 from equation (3.1). With

equation 3.9 and proposition 3.4.2 we see rank(Jp/Q) = rank(J/Q(
√
−p)) = 0,

hence the result.

3.4.3 J/Q(
√
p) for p ≡ 17 mod 24

Let K = Q(
√
p) for p ≡ 17 mod 24. Let σ1, σ2 : K ↪→ R be the real embeddings,

chosen in some order. Take a fundamental unit ε with σ1(ε) > 0. Then as
εε = −1, there is exactly one prime p2 over 2 in K that is unramified in K(

√
ε).

Let q2 be the other prime over 2. If k is the order of p2 (or q2) in ClK , we have
pk2 = (x2) for some x2 ∈ OK . After multiplication by ε if necessary, we may
assume that x2 has positive norm, whence x2y2 = 2k, with y2 the conjugate of
x2. We may also multiply x2 with −1 if necessary so that q2 is unramified in
K(
√
x2).

If p3 = (3) we have S = {p2, q2, p3, σ1, σ} and K(S) = 〈−1, ε, x2, y2, 3〉. With
lemma 3.3.1 for the entries at p3 we have the following table.

p2 q2 p3 σ1 σ2
−1 −1 −1 1 −1 −1
ε r 1 −1
x2 r
y2 r
3 3 3 3 1 1

We apply the product formula again to find a relation:

1 =
∏
q

(ε, x2)q = (x2, ε)p2(ε, x2)q2(ε, x2)σ1(ε, x2)σ2

= (x2, ε)p2
(ε, x2)σ2

.
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It follows that σ2(x2) > 0 if and only if ε
p27−→ 1. There are now four cases, based

on imp2
(ε), imp2

(y2) ∈ {1,−3}.

To compute the 2-Selmer group, one checks that S2(J/K) = A⊕im(J(K)[2])
with

A := {(e1, . . . , e5) ∈ S2(J/K) : e2
p27−→ 1, e4

σ17−→ 1}.

The p2-adic image of A is contained in the subspace spanned by

3 1 −3 1 −1
2 1 1 −1 −2
3 1 −1 −1 3

and the image under σ1 lands inside the span of (1,−1,−1, 1, 1).

Case (i)

The first case we consider is that ε, y2
p27−→ 1.

p2 q2 p3 σ1 σ2
−1 −1 −1 1 −1 −1
ε 1 −1 r 1 −1
x2 2 1 r 1 1
y2 1 2 r 1 1
3 3 3 3 1 1

Let x = (e1, . . . , e5) ∈ A. As e2
p27−→ 1 we have e2 ∈ 〈ε, y2〉, which immedi-

ately implies that imσ1
(x) is trivial, which implies v−1(ei) = 0 for all i. The

p2-adic image also implies that vx2
(e3) = 0, which combined with v−1(e1) = 0

and e3
p37−→ 1 yields e3 ∈ 〈εy2〉.

As v−1(ei) = 0 for all i we have imp2
(ei) ⊂ 〈2, 3〉 for all i, which together with

e3
p27−→ 1 implies that x has trivial p2-adic image, which in turn implies that

ei ∈ 〈ε, y2〉 for all i. But then imq2
(e2) ⊂ 〈−1, 2〉 for all i, which implies that

imq2
(x) lies in the span of

2 −2 −2 2 1
2 1 1 −1 −2

which yields the restrictions

e1 ∈ 〈y2〉
e2, e3, e5 ∈ 〈εy2〉

e4 ∈ 〈ε, y2〉

As e2, e3, e5
p37−→ 1, and imp3

(e1) ⊂ 〈r〉, we see that imp3
(x) lies in the span

of (r, 1, 1, r, 1). One can now quickly see that (y2, 1, 1, ε, εy2) ∈ A, so that
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a complement for the span of (y2, 1, 1, ε, εy2) are those elements with e1 =
1. Setting e1 = 1 in the restrictions above implies that x has trivial p3-adic
image, whence ei ∈ 〈εy2〉 for all i. Looking at imq2

(e4) we see that if e4 = 1,
then imq2

(x) is trivial, while if e4 = εy2, then imq2
(x) = (1,−2,−2,−2,−2),

which implies that x = (1, εy2, εy2, εy2, εy2), which indeed lies in the 2-Selmer
group. This proves that A is two-dimensional, with generators (y2, 1, 1, ε, εy2)
and (1, εy2, εy2, εy2, εy2).

Case (ii)

For this case we have ε
p27−→ 1 and y2

p27−→ −3, which yields

p2 q2 p3 σ1 σ2
−1 −1 −1 1 −1 −1
ε 1 −1 r 1 −1
x2 −6 −3 r 1 1
y2 −3 −6 r 1 1
3 3 3 3 1 1

Let x = (e1, . . . , e5) ∈ A. From σ1-adic information we have v−1(ei) =
0 for i ∈ {1, 4, 5}. Combining this with p2-adic information we obtain e1 ∈
〈ε, x2y2, 3〉, e2 ∈ 〈ε,−y23〉, e3 ∈ 〈−1, ε, x2, 3〉 and e4 ∈ 〈ε, y23〉. From imq2(e3) ⊂
〈−1, 3〉 and imq2(e4) ⊂ 〈−1, 2〉 it follows that imq2(x) lies in the span of

3 1 −3 1 −1
1 −6 −1 −2 −3
2 1 1 −1 −2
3 1 −1 −1 3

But e2 ∈ 〈ε,−y23〉 implies that imq2(e2) ⊂ 〈−1, 2〉, which forces e2 = 1.
This implies that imσ1(x) is trivial, and that imσ2(x) is spanned by (1, 1, 1,−1,−1).
In particular, this implies that v−1(ei) = vε(ei) = 0 for i ≤ 3, so that e1 ∈
〈x2y2, 3〉, e3 ∈ 〈x2, 3〉. As e3

p37−→ 1 we obtain e3 = 1. From e2 = e3 = 1 we
see that both imp2(x) and imq2(x) are contained in the span of (2, 1, 1,−1,−2),
which implies e1 ∈ 〈x2y2〉. We now also see that imp3

(x) is trivial, which in
turn implies that e4 = 1, and hence that imp2

(x) is trivial, so that also e1 = 1.
It follows that A = 0.

Case (iii)

For this case we have ε
p27−→ −3 and y2

p27−→ 1, which yields

p2 q2 p3 σ1 σ2
−1 −1 −1 1 −1 −1
ε −3 3 r 1 −1
x2 2 1 r −1 −1
y2 1 2 r −1 −1
3 3 3 3 1 1
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Let x = (e1, . . . , e5) ∈ A. As imp2(x) and imq2(x) are contained in 〈2, 3〉, we have
e1 ∈ 〈x2, y2, 3〉. From the p2-adic information we further obtain e2 ∈ 〈−ε3, y2〉,
and also vx2

(e3) = 0, which combined with e3
p37−→ 1 implies that e3 ∈ 〈−1, εy2〉.

From imp2(e4) ⊂ 〈−1〉 we obtain e4 ∈ 〈−1, ε3, y2〉.
From imq2(e2) ⊂ 〈−1, 2〉, imq2(e3) ⊂ 〈−1, 6〉 and imq2(e4) ⊂ 〈−1, 2〉 it follows
that imq2

(x) is in the span of

2 1 1 −1 −2
3 1 −1 −1 3
6 −2 6 2 −1

It follow that e2 ∈ 〈−εy23〉, and hence that imσ1
(x) is trivial, which implies

that e1 ∈ 〈x2y2, 3〉, e3 ∈ 〈−εy2〉 and e4 ∈ 〈−y2, ε3〉. But then imq2
(e3) ⊂

〈−6〉 and imq2
(e4) ⊂ 〈−2〉 implies that imq2

(x) is contained in the span of
(2,−2,−6,−2,−3). This then implies that e1 ∈ 〈x2y2〉 and e5 ∈ 〈−ε, x2,−3〉.
We now have that e1

p37−→ 1 and imp3
(e2) ⊂ 〈3〉, which implies that imp3

(x) is
contained in the span of (1, 3, 1, 1, 3), which implies e4 = 1, which implies that
imq2(x) is trivial. This quickly implies that e1 = e2 = e3 = 1 as well, which
shows that A = 0.

Case (iv)

For the last we have ε
p27−→ −3 and y2

p2−→ −3, which yields

p2 q2 p3 σ1 σ2
−1 −1 −1 1 −1 −1
ε −3 3 r 1 −1
x2 −6 −3 r −1 −1
y2 −3 −6 r −1 −1
3 3 3 3 1 1

Let x = (e1, . . . , e5) ∈ A. As e2
p27−→ 1 we have e2 ∈ 〈−ε·3, εy2〉. Then e2

σ27−→ 1,
which implies that imσ2(x) is in the span of (1, 1, 1,−1,−1). Combining this

with e3
p37−→ 1 and vx2

(e3) = 0 from the p2-adic information, we obtain e3 ∈ 〈εy2〉.
It follows that imp2(x) is contained in the span of (2, 1, 1,−1,−2). Combining

this with the e1, e4
σ17−→ 1, we obtain e1 ∈ 〈x2y2,−x2 ·3〉 and e4 ∈ 〈−εy2, ε·3〉.

As imq2
(e3) ⊂ 〈−2〉, we see that imq2

(x) lies in the span of

1 −3 1 −3 1
2 1 1 −1 −2
3 2 1 −6 −1
6 −1 −2 −3 −1

From imq2
(e1) ⊂ 〈2〉, imq2

(e2) ⊂ 〈−1, 2〉 and imq2
(e4) ⊂ 〈2〉, we in fact see

that imq2(x) lies in the span of (2,−2,−2, 2, 1). In particular this implies that

e2 ∈ 〈εy2〉. Because now imp3
(e1) ⊂ 〈ε·3〉 and e2

p37−→ 1, we see that imp3
(x) lies
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in the span of (3r, 1, 1, 3r, 1). As e5 has trivial image under q2, p3 and σ1 we
deduce e5 ∈ 〈−εx2〉. In summary we have the following restrictions:

e1 ∈ 〈x2y2,−x2 ·3〉
e2, e3 ∈ 〈εy2〉

e4 ∈ 〈−εy2, ε·3〉
e5 ∈ 〈−εx2〉

We can see that n1 := (x2y2, εy2, εy2,−εy2,−εx2) ∈ A, so that a complement
for 〈n1〉 inside A is obtained by setting e2 = 1. This forces imq2(x) to be trivial,
which implies e1 ∈ 〈−x2 ·3〉, e3 = 1, e4 ∈ 〈ε ·3〉. As

∏
i ei = 1 it follows that

n2 = (−x2 ·3, 1, 1, ε·3,−εx2) is the only non-trivial possibility, and one checks
that indeed n2 ∈ A. This proves that A is two-dimensional, with generators n1
and n2.

Collecting cases, we have the following result of the calculation.

imp2
(ε) imp2

(y2) dimF2
S2(J/K) additional generators

1 1 6 (y2, 1, 1, ε, εy2), (1, εy2, εy2, εy2, εy2)
1 −3 4 none
−3 1 4 none
−3 −3 6 (x2y2, εy2, εy2,−εy2,−εx2), (−x2 ·3, 1, 1, ε·3,−εx2)

Proposition 3.4.4. For the F2-dimension of S2(J/Q(
√
p)), where p ≡ 17 mod

24 is a prime we have

dimF2
S2(J/Q(

√
p)) =

{
6 if p splits completely in Q( 4

√
2)

4 if p does not split completely in Q( 4
√

2)

Proof. From the calculation we see that dimF2
(S2(J/K)) = 6 if and only if

imp2(εy2) = 1, which happens precisely when p2 splits in K(
√
εy2). I claim that

this happens precisely when p is completely split in Q( 4
√

2), which requires a
reciprocity argument over Q(

√
−2).

Noting that εy2 has norm −2k for k an odd number, we see that the normal
closure of K(

√
εy2)/Q is obtained by adjoining

√
−2. The element

√
εy2 yields

an element of norm p ∈ Q∗/Q∗2 in K ′ := Q(
√
−2), say α, and we see that p2

splits in K(
√
εy2) if and only the prime p′2 = (

√
−2) of K ′ splits in K ′(

√
α).

Now p splits in K ′ as say pZ[
√
−2] = pq, and without loss of generality we may

assume that ordp(α) is odd, so that ordq(α) is even. The product formula now
simply reduces to

(
√
−2, α)p′2(

√
−2, α)p = 1,

And as (
√
−2, α)p = (α,

√
−2)p, we see that p2 splits in K ′(

√
α) if and only if p

splits in Q( 4
√
−2). The normal closures of Q( 4

√
2) and Q( 4

√
−2) over Q are the

same (both contain ζ8), which then proves the result.
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Corollary 3.4.5. Let p ≡ 17 mod 24 be a prime that does not split completely
in Q( 4

√
2). Then for the Jacobian J of the hyperelliptic curve defined by y2 =

x(x2 − p2)(x2 − 4p2) we have

rank(J/Q) = 0, X(J/Q)[2] = (Z/2Z)2.

Now just as for the case p ≡ 1 mod 24 and the descent on E/Q(
√

2), we
have the following

Proposition 3.4.6. We have

lim
X→∞

#{primes p ≤ X : p ≡ 17 mod 24 and p doesn’t split completely in Q( 4
√

2)}
#{primes p ≤ X : p ≡ 17 mod 24}

=
1

2

Proof. Let K = Q( 4
√

2, ζ4). Then it is equivalent to prove that

lim
X→∞

#{primes p ≤ X : p ≡ 17 mod 24 and p splits completely in Q( 4
√

2)}
#{primes p ≤ X : p ≡ 17 mod 24}

=
1

2

As Q(ζ8) ⊂ K, we have p ≡ 1 mod 8 whenever p splits completely in K. Let
C consist of the generator of the subgroup of order 2 corresponding to K in
the Galois extension K(ζ3)/Q. Then Frobp ∈ C means exactly that p splits
completely in K, but not in K(ζ3), i.e. p ≡ 2 mod 3, i.e. p ≡ 17 mod 24. It
follows that

lim
X→∞

#{primes p ≤ X : p ≡ 17 mod 24 and p splits completely in Q( 4
√

2)}
#{primes p ≤ X}

=
1

16
.

With a similar argument for Q(ζ24) we obtain

lim
X→∞

#{primes p ≤ X : p ≡ 17 mod 24}
#{primes p ≤ X}

=
1

8
,

hence taking the quotient of the limits gives the result.

Corollary 3.4.7. There are infinitely many primes p ≡ 17 mod 24 for which
the Jacobian J of the hyperelliptic curve defined by y2 = x(x2 − p2)(x2 − 4p2)
satisfies

rank(J/Q) = 0, X(J/Q)[2] ∼= (Z/2Z)2.

3.4.4 J/Q(
√
p) for p ≡ 1 mod 24

Let K = Q(
√
p) for p ≡ 1 mod 24. As 2 and 3 split in K, we now consider

6 primes. Let σ1, σ2 : K ↪→ R be the real embeddings, chosen in some order.
Take a fundamental unit ε with σ1(ε) > 0. Then as εε = −1, there is exactly
one prime p2 over 2 in K that is unramified in K(

√
ε). Let q2 be the other

prime over 2. If k2 is the order of p2 (or q2) in ClK , we have pk22 = (x2) for
some x2 ∈ OK . After multiplication by ε if necessary, we may assume that x2
has positive norm, whence x2y2 = 2k2 , with y2 the conjugate of x2. We may
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also multiply x2 with −1 if necessary so that q2 is unramified in K(
√
x2).

Let p3 be the prime that splits in K(
√
x2), and let q3 be its conjugate. Let

pk33 = (x3) for k3 = ord([p3]) and x3 of positive norm, and multiply x3 with
−1 if necessary so that p2 is unramified in K(

√
x3). If y3 is the conjugate

of x3, we see that x3y3 = 3k3 . Then S = {p2, q2, p3, q3, σ1, σ2} and K(S) =
〈−1, ε, x2, y2, x3, y3〉.

We apply the product formula for quadratic Hilbert symbols a few times to
find some relevant relations.

a) Just as in the case for p ≡ 17 mod 24, evaluating
∏

q(ε, x2)q = 1 implies
that imp2(ε) = 1 if and only if σ2(x2) > 0.

b) As q2 is unramified in K(
√
x2) and x2 and x3 both have positive norm we

have

1 =
∏
q

(x2, x3)q = (x2, x3)p2
(x3, x2)q2

(x3, x2)p3
(x2, x3)σ1

(x2, x3)σ2

= (x2, x3)p2(x3, x2)p3 ,

As p2 and p3 are, respectively, unramified in K(
√
x3) and K(

√
x2), it

follows that imp2(x3) = 1 if and only if imp3(x2) = 1. But we have chosen
p3 such that it splits in K(

√
x2), i.e. we have imp3(x2) = 1 and hence also

imp2
(x3) = 1.

c) Note that as p2 is unramified in K(
√
x3) we have that q2 is unramified

K(
√
−x3). Using in addition that p2 is unramified in K(

√
ε) we have

1 =
∏
q

(ε,−x3)q = (−x3, ε)p2(ε,−x3)q2(−x3, ε)p3(−x3, ε)σ1(−x3, ε)σ2

= (−x3, ε)p3
(−x3, ε)σ2

.

This implies that imp3
(ε) = 1 if and only if σ2(x3) < 0.

This results in the following table.

p2 q2 p3 q3 σ1 σ2
−1 −1 −1 −1 −1 −1 −1
ε 1 −1
x2 1 −1
y2 −1 1
x3 1 3
y3 3 1

As εε = −1, x2y2 = 2k2 and x3y3 = 3k3 , the table can be filled in based on
imp2

(ε), imp3
(ε), imp2

(y2) and imp3
(y3), resulting in sixteen cases. We will

however skip the laborious linear algebra of all these cases, and state the result
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of the linear algebra in the cases. The results are as follows.

imp2(ε) imp2(y2) imp3(ε) imp3(y3) dimS2(J/K)
1 1 1 1 8
1 1 1 −1 8
1 1 −1 1 4
1 1 −1 −1 4
1 −3 1 1 6
1 −3 1 −1 6
1 −3 −1 1 4
1 −3 −1 −1 4
−3 1 1 1 4
−3 1 1 −1 4
−3 1 −1 1 6
−3 1 −1 −1 6
−3 −3 1 1 6
−3 −3 1 −1 6
−3 −3 −1 1 4
−3 −3 −1 −1 4

We observe that the dimension of S2(J/K) depends on imp2(ε), imp2(y2) and
imp3

(ε). To be able to apply Chebotarëv we apply a couple of reciprocity
arguments.

Proposition 3.4.8. The following equivalences hold.

a) We have imp2
(εy2) = 1 if and only if p splits completely in Q( 4

√
2).

b) We have imp2
(y2) = 1 if and only if p ≡ 1 mod 16.

c) We have imp3(εx2) = 1 if and only if p splits completely in Q(
√

1 +
√

3).

Proof. The proof of the first is completely contained in the proof of proposition
3.4.4. Although the proof assumes p ≡ 17 mod 24, only p ≡ 1 mod 8 is used in
the reciprocity argument.
To prove b), note that the normal closure L of K(

√
y2)/Q is also the normal

closure of K ′(
√
γ)/Q, where K ′ = Q(

√
2) and γ has norm p modulo squares.

Thus imp2
(y2) = 1 if and only if p′2 = (

√
2) in K ′(

√
γ). From the product

formula
1 =

∏
q

(ε
√

2, γ),

where ε = 1 +
√

2), we then see that p′2 splits in K ′(
√
γ) precisely when p splits

completely in K ′(
√
ε
√

2) = Q(ζ16 + ζ−116 ) (recall the proof of proposition 3.4.2).
Lastly, and resetting the notations introduced for the proof of b), we note that
imp3

(εx2) = 1 precisely when 3 splits completely in K(
√
εx2). As with the

other argument, symmetry in the normal closure yields that this is equivalent
to 3 splitting completely in K ′(

√
γ), with γ of norm p in K ′ = Q(

√
−2), and

with the product formula applied to γ and β = 1 +
√
−2 (note that β generates

55



a prime over 3), we see that this is equivalent to p splitting completely in

Q(
√

1 +
√
−2). This field has the same normal closure over Q as Q(

√
1 +
√

3),
hence the result.

Noting that imp3
(εx2) = imp3

(ε)) = 1, we obtain.

Corollary 3.4.9. Let p ≡ 1 mod 24. Then the size of S2(J/K) depends on the
splitting behaviour of p as in the following table. A yes or no indicates whether
the prime p splits completely in the corresponding field or not.

Q(ζ16) Q( 4
√

2) Q(
√

1 +
√

3) dimS2(J/K)
yes yes yes 8
yes yes no 4
yes no yes 4
yes no no 6
no yes yes 6
no yes no 4
no no yes 6
no no no 4

Applying Chebotarëv to the compositum Q(ζ16), 4
√

2,
√

1 +
√

3) we obtain

Corollary 3.4.10. We have

lim
X→∞

#{primes p ≤ X : p ≡ 1 mod 24 and dimS2(J/K) = 4}
#{primes p ≤ X : p ≡ 1 mod 24}

=
1

2

lim
X→∞

#{primes p ≤ X : p ≡ 1 mod 24 and dimS2(J/K) = 6}
#{primes p ≤ X : p ≡ 1 mod 24}

=
3

8

lim
X→∞

#{primes p ≤ X : p ≡ 1 mod 24 and dimS2(J/K) = 8}
#{primes p ≤ X : p ≡ 1 mod 24}

=
1

8

Corollary 3.4.11. There are infinitely many primes p ≡ 1 mod 24 for which
the Jacobian J of the hyperelliptic curve defined by y2 = x(x2 − p2)(x2 − 4p2)
satisfies

rank(J/Q) = 0, X(J/Q)[2] ∼= (Z/2Z)4.

3.5 Positive rank

Let p 6= 2, 3 be a prime and let J be the Jacobian of the hyperelliptic curve C
defined by the equation

y2 = x(x2 − p2)(x2 − 4p2).

In this section we mention some results about positive rank on the curve for
specific primes.
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When p ≡ 3, 5 mod 8 we have seen that conjecturally (that is assuming
finiteness of X(J/Q)), we have rank(J/Q) = 1. For specific primes, Magma
can find K = Q(

√
2)-rational points on the elliptic curve E defined by

y2 = (x2 − 9p2)(x− 2
√

2p)

more efficiently then on J(Q), but points of infinite order quickly become large.
For example, already for p = 19 we have the following point of infinite order on
E(K)

(
−113850191446377−12254855228512

√
2

3050052
,−699994156180439620208+461340348605684106100

√
2

3050053

)
.

In the cases p ≡ 1, 17, 23 mod 24, we can in principle have rank 2, and even rank
4 for p ≡ 1 mod 24.

Let us focus on the case p ≡ 1 mod 24, which is the only prime p ≡ 1 mod 24
for which the author could prove unconditionally a positive rank. rank(E/K).
After many hours of searching, MAGMA was able to find two independent
points of infinite order on E(K) for p = 241. The x-coordinates of the points
are

−3430098882
√

2− 478517032600

670758201

295126964042354
√

2 + 1104228958035051

913222065800

One can use these points to construct points of infinite order on J(Q) following
the proof of rank(J/Q) = rank(E/K). It is interesting to note that in this case,
the map α preceeding 3.3.10 is indeed surjective.
Even more curious, is the for many of the primes p ≡ 1 mod 24 at most 10000
for which rank(J/Q) can be 4 according to the descents, MAGMA can relatively
quickly find 1 or 2 points of infinite order, but all of points these points map
into ker(β).
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Chapter 4

Comments

4.1 Redei symbols

In the thesis there are various reciprocity arguments involved over quadratic
number fields. Recently, P. Stevenhagen proved a very flexible reciprocity law
concerning Redei symbols, see [15]. We briefly explain the connection with the
thesis here.
Given a, b, c ∈ Q∗/Q∗2 all with relatively co-prime quadratic Hilbert symbols

(a, b)p = (a, c)p = (b, c)p = 1, for all primes p

there is a tri-linear symbol [a, b, c] taking values in {±1}. The first two argu-
ments are used to construct a quadratic extension of Q(

√
ab), by adjoining to

Q(
√
a) the square root of an element β of norm b modulo-squares (whose ex-

istence is guarenteed by the condition (a, b)p = 1 by Hasse-Minkowski). This

gives a cyclic extension of Q(
√
ab) of degree 4, which is dihedral over Q when

a 6= b. The argument c then defines an Artin symbol in the extension based on
its prime divisors and its sign, thus encoding splitting behaviour of D4 exten-
sions (and sometimes ’simply’ quartic abelian extensions) of Q.

The Redei symbols satisfy a wonderful reciprocity law, namely that the
symbol [a, b, c] is symmetric in all permutations of its arguments. The symmetry
of a and b reflects the symmetry of D4-extensions that we have seen at numerous
occasions in this thesis, but the symmetry [a, b, c] = [a, c, b] is a true reciprocity,
and is proven by invoking the product formula for quadratic Hilbert symbols in
Q(
√
a).

A lot of the reciprocity arguments proven in this thesis are special cases of this
Redei reciprocity. For example, proposition 3.4.8 can be interpreted by the
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equalities

[p,−2, 2] = [2,−2, p],

[p, 2, 2] = [2, 2, p],

[p,−3, 2] = [3,−2, p].

Similarly, the content of lemma 3.3.4 can be restated as the equality [2, p, p] =
[2,−2, p] of Redei symbols. In fact the proof of the lemma is done in two steps,
first the equality

[2, p, p] = [p, 2, p] = [p, p, 2]

is shown, and then with a ‘quartic reciprocity’ over Q we see [p, p, 2] = [2,−2, p].
We note however that some reciprocity arguments of this thesis can not (di-
rectly) be equated to a Redei reciprocity. For example in the preparation of the
2-descent on J/Q(

√
−p) for p ≡ 23 mod 24, we use the product formula over

Q(
√
−p) on elements of norm 2 and 3, respectively, modulo squares. One might

think of this as ‘[−p, 2, 3] = [−p, 3, 2]’, but this symbol is not well-defined. The
reason is that Q(

√
2,
√

3) cannot be extended to a D4-extension as required for
the Redei symbols: note for example that Q(

√
2) has no element of norm 3.

4.2 Connection between 4-descent and 2-descent
of twists?

With MAGMA one can obtain 4-descent information on Elliptic curves over
number fields. It appears to be the case that performing a 4-descent on Ep/Q(

√
2)

yields exactly the same rank bounds as those we have obtained by 2-descents on
both J/Q(

√
p) and J/Q(

√
−p). It is unclear to the author whether there is some

theoretical relationship between these two, or if it can be reasonably thought of
as a coincidence because the relevant governing fields happen to yield the same
information.
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Appendix A

Some number theory

A.1 S-integers

Throughout this section, will will call a finite prime of a number field K simply
a prime. Let S be a possible empty, finite set of primes of K. The subring of
K defined by

RS := {x ∈ K : ordp(x) ≥ 0 for all p /∈ S} =
⋂
p/∈S

OK,p

is called the ring of S-integers. Note that the unit group R∗S consists of those
x ∈ K∗ with ordp(x) = 0 for all p /∈ S. In particular, taking S = ∅ we obtain
the ordinary unit group O∗K .

Lemma A.1.1. The ring of S-integers RS equals Σ−1OK for Σ = OK \
⋃

p/∈S p.

Proof. Since Σ =
⋂

p/∈S(OK \ p) it is clear that Σ is a multiplicative set. More-
over, s ∈ OK \ p for a prime p means that ordp(s) = 0. This implies that also
ordp(s−1) = 0 for all those p, whence the inclusion Σ−1OK ⊂ RS .
The reverse inclusion is non-trivial and uses the finiteness of the class group.
Let x ∈ RS and fix some p ∈ S. As some power of p is principal, there exists
sp ∈ K∗ with ordq(sp) = 0 if q 6= p and ordp(sp) > 0. Replacing sp with a
suitable power if necessary, we may assume that ordp(sp) ≥ −ordp(x), so that
ordp(spx) ≥ 0. It is then clear that sx ∈ OK for s =

∏
p∈S sp ∈ Σ, proving the

inclusion RS ⊂ Σ−1OK .

Corollary A.1.2. The ring of S-units RS is a Dedekind domain, and the as-
sociation p 7→ pRS gives a bijective correspondence between the primes of K not
in S and the primes of RS.

Proof. The statement about the primes of RS follows as a prime p ∈ S meets Σ,
and prime p /∈ S does not meet Σ: if p ∈ S and pk = (x) then x ∈ p ∩ Σ, while
if p /∈ S then we have OK ⊂ RS ⊂ OK,p, so that pRS 6= RS as pOK,p 6= OK,p,
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hence p cannot meet Σ.

We also see from this that OK,p is the localisation of RS at the prime pRS ,
hence RS is everywhere locally a DVR. As RS is a localisation of OK we see
that RS is also Noetherian and of dimension at most 1. As K has infinitely
many primes we cannot have dimension 0, so RS is a Dedekind domain.

Knowing that RS is a Dedekind domain, we can study its class group.

Lemma A.1.3. Extension of ideals along the natural map OK → RS induces a
surjection Cl(OK)→ Cl(RS) with kernel generated by the classes of the primes
in S.

Proof. Consider the following commutative diagram of abelian groups.

0 K∗ K∗ 0

0 〈S〉 I(OK) I(RS) 0

id

Here 〈S〉 is the subgroup of I(OK) generated by S, and the two rightmost
vertical maps send an x ∈ K∗ respectively to the fractional OK-ideal or the
fractional RS-ideal generated by x.
The bottom row is exact because the primes of K form a Z-basis for I(OK)
and {pRS : p /∈ S} is a Z-basis for I(RS). Applying the snake lemma yields the
following long exact sequence

0→ O∗K → R∗S →
⊕
p∈S

Z ψ−→ Cl(OK)→ Cl(RS)→ 0, (A.1)

where ψ maps the generator corresponding to p ∈ S to the class [p]. Exactness
of this sequence at the two class groups yield the desired result.

By counting free ranks in the long exact sequence (A.1) we also obtain

Corollary A.1.4. If r is the free rank of the unit group O∗K , then R∗S has free
rank r + |S|.

A.2 Some number theory

Throughout, K = Q(
√
d) is a quadratic number field, with class group ClK of

order hK and narrow class group Cl+K of order h+K , i.e. the ray class group Clf
for f consisting of the real primes of K. It is the ideal group of K with the
quotient by all principal ideals that admit a generator of positive norm. There
is an exact sequence

0→ [(
√
d)]→ Cl+K → ClK → 0 (A.2)
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as
√
d has sign 1 or −1 depending on the real embeddings for K real. The class

[(
√
d)] is trivial when K is complex or K is real with fundamental unit of norm

−1. If K is real with fundamental unit of norm 1 then [(
√
d)] has order 2 and

Cl+K has order 2hK .

Lemma A.2.1. Let H+ be the narrow Hilbert class field of K. Then H+/Q is
Galois with group fitting in the exact sequence

0→ Cl+K → Gal(H+/Q)→ Gal(K/Q)→ 0. (A.3)

Moreover, this sequence is split, with the non-trivial element of Gal(K/Q) acting
on Cl+K by inversion.

Proof. If σ ∈ Gal(Q/Q) then σ(H+) is an Abelian extension of K that is unram-
ified at all finite primes of K. As H+ is the maximal Abelian extension with this
property we must have σ(H+) ⊂ H+, hence we see that H+/Q is Galois. The
exact sequence then follows from the Artin isomorphism Cl+K

∼−→ Gal(H+/K).

For the splitting of the sequence, choose primes B|p|p in H+/K/Q with
e(p|p) = 2. The inertia group IB/p has order 2 as p is unramified in H+, and
since K is not contained in the corresponding inertia field Tp/p we have that
IB/p does not fix K, so mapping Gal(K/Q) onto IB/p yields a section of the
surjection in (A.3).
Letting IB/p = 〈σ〉 and noting that σFrobqσ = Frobσq for primes q of K,
and that σ restricts to the non-trivial automorphism in Gal(K/Q), we see that
that the action of Gal(K/Q) on Cl+K induced by the section coincides with
the natural action. Furthermore, the non-trivial automorphism of K acts by
inversion because the ideal pOK for any rational prime p is trivial in Cl+K .

Remark A.2.2. Similarly one can show that a ray class field Hf for a cycle f
in K is Galois over Q provided that f is Gal(K/Q)-invariant, and the argument
that the resulting exact sequence splits still works provided that there exist
primes B|p|p in Hf/K/Q with (eB/p, ep/p) = (1, 2). When such primes do not
exist the sequence need not split, a simple counterexample is obtained taking
K = Q(

√
2) and f = p42: in that case 0 → Clf → Gal(Hf/Q) → Gal(K/Q) → 0

does not split as Hf = Q(ζ16 + ζ−116 ) is cyclic over Q.

Corollary A.2.3. If E/K is an Abelian extension unramified at all finite
primes of K, then E/Q is Galois.

Proof. We have K ⊂ E ⊂ H+ with Gal(H+/Q) ∼= Cl+K oφ Z/2Z, where 1 acts
by inversion on Cl+K . Then E corresponds with a subgroup contained in Cl+K ,
which is necessarily normal because it is stable under inversion.

For an odd prime p we write p∗ = (−1)(p−1)/2p.

Proposition A.2.4. Let p be an odd prime and let K = Q(
√
p∗). Then K has

odd class number, when K is real, has a fundamental unit of norm of −1.
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Proof. Let H+ be the narrow Hilbert class field of K. As h+K = 2hK when K
is real with a fundamental unit of norm 1, the result follows by proving that
h+K is odd. If it is even, then H+/K contains an intermediate field E that is
quadratic over K, which is Galois over Q by corollary A.2.3. As [E : Q] = 4 it is
Abelian, and with Kronecker-Weber we see that E ⊂ Q(ζp), which contradicts
that Q(ζp)/Q is totally ramified over p.
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Appendix B

Corrections to van der
Heiden

This goal of this Appendix is to give a corrected version of [5, § 4.2]. To verify
the computations of this appendix the reader is assumed to have a copy of the
thesis as almost all the tables used for the calculation are correct, and those
will not be copied here. All the tabels up to par 4.2 are correct, but inside the
paragraph some are not.

For the computation one notices that there is a surjection S2(J/Q) →
〈2, 3, q〉 by projection onto the first coordinate. Surjectivity follows as the 2-
torsion yields elements in the Selmer group and the first coordinate is positive
by local considerations for the archimedian place. This reduces the study of the
Selmer group to the study of the kernel S2

1 of this map, which must contain a
one-dimensional subspace as the 2-torsions yields a four-dimensional subspace
of the Selmergroup. This done in the first paragraph of section 4.2: from the
2-torsion we also obtain m1 = (1,−2q,−2,−2,−2q) ∈ S2

1 .

The mistake v.d. Heiden makes is that he removes all local images of m1

from consideration, which is of course not valid: one can have elements in S2
1

not equal to m1 but having the same local image as m1 for some prime.
One notices that for each case q 6= 2, 3, the projection onto the last coordinate
of the 2-adic image is 1 or 2-dimensional, while the 2-adic image of m1 has non-
trivial last coordinate, which allows a direct sum decomposition S2

1 = G1⊕〈m1〉.

(i) q ≡ 1 mod 24. In this case m1 maps 2-adically to y2,2, which has last coor-
dinate −2. The image of projection onto the last coordinate of this local image
is spanned by −2 and −3, so we have S2

1 = G1 ⊕ 〈m1〉 where G1 consists of
(1, e2, . . . , e5) ∈ S2

1 for which e5 maps 2-adically into 〈−3〉.
Now if x = (1, e2, . . . , e5) ∈ G1, then e4 maps 3-adically to 1 and hence
e4 ∈ 〈−2, q〉. Suppose that e4 ∈ 〈q〉. Then 2-adically we have e4 7→ 1, hence x
maps 2-adically into the span of y2,1 + y2,2. As this element has last coordinate
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not inside 〈−3〉, we see that x has trivial 2-adic image. This implies that ei ∈ 〈q〉
for i = 2, 3, 4, 5. As the product of the ei must equal 1 this gives 8 options, all
of which give elements of G1. Three linearly independent elements are:

n1 = (1, 1, 1, q, q)

n2 = (1, q, 1, q, 1)

n3 = (1, q, q, 1, 1)

We have shown that the subgroup of G1 for which e4 ∈ 〈q〉 has dimension 3.
This subgroup maps isomorphically onto 〈yq,1, yq,2, yq,3〉, hence a complement
for this subgroup consists of those elements in G1 that map q-adically to the
identity. For x = (1, e2, . . . , e5) in this complement this forces ei ∈ 〈−1, 2, 3〉
for i = 2, . . . 5. Looking 3-adically we see e4 ∈ 〈−2〉, and looking 2-adically we
see that e5 ∈ 〈−3〉. By real considerations, e4 and e5 have the same sign so
if e5 = −3 also e4 = −2, which implies x maps 2-adically to y2,1, and hence
forces (1, e2, . . . , e5) = (1,−6,−1,−2,−3), which indeed gives an element in the
Selmer group.
If e5 = 1 then also e4 = 1 and we see that 2-adically (1, e2, e3, 1, 1, ) maps
to the identity, hence it is the identity. This proves the complement is one-
dimensional and generated by n4 = (1,−6,−1,−2,−3). In conclusion, we see
that S2

1 has dimension 5, so the Selmer group has dimension 8 with generators
{m1,m2,m3,mq, n1, n2, n3, n4}.

(ii) q ≡ 5 mod 24. As q ≡ −3 mod 8 we see that in this case the last co-
ordinate of m1 maps 2-adically to 6, and hence S2

1 = G1 ⊕ 〈m1〉 where G1

consists of those (1, e2, . . . , e5) ∈ S2
1 for which e5 maps 2-adically into 〈−2〉. Let

x = (1, e2, . . . , e5) ∈ G1. Then e5 ∈ 〈−2,−3q〉. As e3 and e4 map 3-adically to 1
we have e3, e4 ∈ 〈−2,−q〉. As e3 maps 2-adically into 〈−6〉 we obtain e3 ∈ 〈2q〉.
Suppose that e3 = 2q. Then x maps q-adically to (1, q, 2q, 2q, q). This to-
gether with e4 ∈ 〈−2,−q〉 and e5 ∈ 〈−2,−3q〉 forces e4 = 2q and e5 = 6q.
As the coordinates multiply to 1 we obtain e2 = 6q also, and one sees that
n1 = (1, 6q, 2q, 2q, 6q) ∈ G1. A complement inside G1 for the subgroup gener-
ated by n1 is the subgroup of those elements with e3 = 1. Such elements map
q-adically to the identity, so we have ei ∈ 〈−1, 6〉 for i = 2, 4, 5. As e4 maps
3-adically to 1 we obtain e4 = 1 as well, and as e5 ∈ 〈−2,−3q〉 we also obtain
e5 = 1, and hence e2 = 1.
We conclude that this complement is trivial and that dim(S2(J/Q)) = 5, with
generators being {m1,m2,m3,mq, n1}.

(iii) q ≡ 7 mod 24. In this case the subspace of the 2-adic image with first
coordinate 1 is different from what van der Heiden claims, the correct one is as
follows.

y2,1 = 1 −3 −1 −3 −1
y2,2 = 1 2 −2 −2 2
y2,3 = 1 2 −3 −6 1

The last coordinate of m1 maps 2-adically to 2, and hence S2
1 = G1⊕〈m1〉 where
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G1 consists of those (1, e2, . . . , e5) ∈ S2
1 for which e5 has trivial 2-adic image.

Suppose that x = (1, e2, . . . , e5) ∈ G1. Then e5 ∈ 〈−q〉, which forces the 3-adic
image of x to lie in the span of (1,−1, 1, 1,−1), which implies e3, e4 ∈ 〈−2, q〉.
Looking 2-adically we see that e3 = e4 = 1. This forces the q-adic image of x
to be trivial, hence from e2 = e5 ∈ 〈−q〉 we see that also e2 = e5 = 1. Thus
G1 = 〈m1〉 and the 2-Selmer group has dimension 4.

(iv) q ≡ 11 mod 24. The last coordinate of m1 maps 2-adically to −6, hence
S2
1 = G1⊕〈m1〉 for G1 consisting of those (1, e2, . . . , e5) ∈ S2

1 for which e5 maps
2-adically into 〈−3〉. Let (1, e2, . . . , e5) ∈ G1. Then e5 ∈ 〈−3,−q〉. From 3-adic
image we see e3, e4 ∈ 〈−2,−q〉. As e3 maps 2-adically into 〈−3〉, we see that
e3 ∈ 〈−q, but then the q-adic image forces e3 = 1. From the q-adic image we
also see e4 ∈ 〈−2〉, but then the 2-adic image forces e4 = 1 as well. But then
the 2-adic image is trivial, so that e2 = e5 ∈ 〈3q〉, and one checks that indeed
n1 = (1, 3q, 1, 1, 3q) ∈ G1, so that the 2-Selmer group has dimension 5.

(v) q ≡ 13 mod 24. The last coordinate of m1 maps 2-adically to 6, hence
S2
1 = G1⊕〈m1〉 for G1 consisting of those (1, e2, . . . , e5) ∈ S2

1 for which e5 maps
2-adically into 〈−2〉. Let (1, e2, . . . , e5) ∈ G1. Then e5 ∈ 〈−2, 6q〉, and looking
q-adically reduces this to e5 ∈ 〈6q〉. From 3-adic and q-adic information we see
that e3 ∈ 〈−1, 2〉, and then 2-adically we see that e3 = 1. But e5 maps 3-adically
into 〈−1〉, which forces e5 = 1. The 3-adic image forces e2 = e4 ∈ 〈−2, q〉, and
then 2-adically we get e4 ∈ 〈q〉. We see indeed that n1 = (1, q, 1, q, 1) ∈ G1,
hence we see that the 2-Selmer group has dimension 5.

(vi) q ≡ 17 mod 24. The last coordinate of m1 maps 2-adically to −2, hence
S2
1 = G1⊕〈m1〉 for G1 consisting of those (1, e2, . . . , e5) ∈ S2

1 for which e5 maps
2-adically into 〈−3〉. Let x = (1, e2, . . . , e5) ∈ G1. Then e5 ∈ 〈−3, q〉. Now e4
has trivial 3-adic and q-adic image, which forces e4 ∈ 〈−2〉, and also that the
2-adic image of x is spanned by y2,1 = (1,−6,−1,−2,−3). As e3 has trivial
3-adic image we see e3 ∈ 〈−2,−q〉, which reduces to e3 ∈ 〈−q〉 from the 2-adic
image. We also see that e2 ∈ 〈−6, q〉 by the 2-adic image.
We see that n1 = (1,−6,−q,−2,−3q) maps 2-adically to (1,−6,−1,−2,−3) and
is an element of G1, so we obtain a complement of 〈n1〉 inside G1 by demanding
that the 2-adic image is trivial. This forces e3 = e4 = 1, and e2 = e5 ∈ 〈q〉. One
also sees that n2 = (1, q, 1, 1, q) ∈ G1, so G1 = 〈n1, n2〉, and the 2-Selmer group
has dimension 6.

(vii) q ≡ 19 mod 24. The last coordinate of m1 maps 2-adically to −6, hence
S2
1 = G1 ⊕ 〈m1〉 for G1 consisting of those x = (1, e2, . . . , e5) ∈ S2

1 for which e5
maps 2-adically into 〈−3〉. Let (1, e2, . . . , e5) ∈ G1. Then e5 ∈ 〈−3,−q〉. From
2-adic and 3-adic information we see e3 ∈ 〈q〉, from 3-adic information we have
e4 ∈ 〈−2, q〉, and then from 2-adic information we see that e4 ∈ 〈−2q〉 and that
the 2-adic image of x is contained in the span of (1, 6, 3,−6,−3). This gives
e2 ∈ 〈6, 2q〉. One sees that n1 = (1, 2q, q,−2q,−q) ∈ G1, which maps 2-adically
to (1, 6, 3,−6,−3), so we obtain a complement of 〈n1〉 inside G1 by demanding
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that the 2-adic image is trivial. This forces e3 = e4 = 1, and e2 ∈ 〈3q〉, and
looking q-adically we see that also e2 = e5 = 1, hence G1 = 〈n1〉 and the 2-
Selmer group is 5-dimensional.

(viii) q ≡ 23 mod 24. Similarly as for q ≡ 7 mod 24, the suspace of the 2-adic
image with first coordinate 1 is spanned by

y2,1 = 1 −3 −1 −3 −1
y2,2 = 1 2 −2 −2 2
y2,3 = 1 2 −3 −6 1

The q-adic image from van der Heiden is also incorrect. The correct one is

yq,1 = 1 −q −q −q −q
yq,2 = 1 −q −q 1 1
yq,3 = 1 −q −1 q 1

The last coordinate of m1 maps 2-adically to 2, and hence S2
1 = G1 ⊕ 〈m1〉

where G1 consists of those (1, e2, . . . , e5) ∈ S2
1 for which e5 has trivial 2-adic

image. Suppose that x = (1, e2, . . . , e5) ∈ G1. Then e5 ∈ 〈−q〉, and from 3-adic
information we see e3, e4 ∈ 〈−2,−q〉. As e3 and e4 cannot map 2-adically to −2
we see that e3, e4 ∈ 〈−q〉, and that x has trivial 2-adic image, i.e. ei ∈ 〈−q〉 also
for e2 and e5. One checks that n1 = (1,−q,−q, 1, 1) and n2 = (1, 1, 1,−q,−q) ∈
G1, and since the ∞-adic images of n1 and n2 span the ∞-image, we obtain a
complement inside G1 of 〈n1, n2〉 by demanding the ∞-adic image to be trivial.
As ei ∈ 〈−q〉 for all i this immediately forces the complement to be trivial, so
G1 = 〈n1, n2〉 and S2(J/Q) has dimension 6.
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