
Using reinforcement learning to fight forest

fires: Comparing CMC with CoSyNE

Henric Marijn Roothaert, s2929244, h.m.roothaert@student.rug.nl,

Supervisor: dr. M.A. Wiering

Abstract: Minimising both the economical and physiological damages caused by forest fires
is a complex problem. This paper builds upon an existing Reinforcement Learning (RL) based
Decision Support System (DSS), which could optimise fire management techniques once fully
developed. The aim is to find out which RL-technique is best suited for forest fire control, Con-
nectionist Monte Carlo (CMC) or Cooperative Synapse NeuroEvolution (CoSyNE). Both RL
techniques were trained to place sub-goals optimally in all wind directions around the center of
a simulated fire. These sub-goals are in turn completed by firefighting agents. By varying the
number of agents and the path-finding algorithm used by these agents, different levels of complex-
ity were induced to the fire management problem. Overall, CoSyNE significantly outperformed
CMC. There are however considerable improvements to be made to both the implementation of
the RL techniques and to the simulation before it can be used to train a reliable DSS.

1 Introduction

Forest fires are a hot topic as of late. As higher tem-
peratures are “linked to increasing probabilities of
severe fire weather and fire spread” (van Mantgem
et al., 2013), the number and severity of forest fires
is likely to increase due to global warming. Next
to the well-known health and safety hazards asso-
ciated with these fires, a forest fire can have an
immense economical impact as well. The United
States of America alone has an annual budget of
2.4 billion USD dedicated to forest fire control as
of 2020 (Department of Agriculture, 2019). Consid-
ering that this budget is solely for preventing for-
est fires, the physiological costs of forest fires (i.e.
burnt property, increase in healthcare costs, CO2
emissions) should be added to the total costs of
these fires. Therefore it is desirable to optimise the
forest fire control policies.

There are several ways of combating forest fires.
The one most prominently used by firefighters is
using a “fire line”. This is a natural or man-made
barrier which is hard to cross for a fire. The diffi-
culty of placing these fire lines is finding the balance
between saving as much resources as possible, and
the risk of the fire crossing this fire line. If the fire
line is placed at a large distance of the fire, there is

plenty of time to construct a barrier which cannot
be crossed. However, everything between the bar-
rier and the fire will most likely burn down. Place
the fire line too close to the fire and there might
not be enough time to finish it or the fire is able to
cross it somewhere along the way. In this case the
fire will most often grow to an uncontrollable size,
resulting in massive losses.

To aid this decision, a few fire management de-
cision support systems have been developed. How-
ever, most simplify the assumptions made about
the fire to such an extent, that the capabilities of as-
sisting in fire management efforts are limited. The
others require years of estimation and calibration
procedures (Mavsar et al., 2013). Furthermore, all
of these decision support systems (DSS) use a pol-
icy made by experts as to where to place the fire
lines. The DSS will not place these fire lines by it-
self. This is where a new Machine Learning (ML)
based approach could provide an improvement in
current forest fire control procedures. By using ML
to estimate an optimal policy for placing fire lines,
the new DSS could provide out-of-the-box solutions
for the fire lines problem.

ML is divided into three different categories, Su-
pervised Learning, Unsupervised Learning and Re-
inforcement Learning (RL). Supervised learning re-

1

quires a database with labeled data. While some
fire management DSS, such as the Canadian LEOP-
ARDS, the Spanish SINAMI and the American
FPA, use historical databases to optimise the pre-
dictions given by the DSS, these databases mostly
contain information about the behaviour of fire in
past events. The effect and placement of fire lines is
not included. Therefore a database containing the
data required for supervised learning does not exist.
Unsupervised learning is mostly used for finding a
structure in unlabeled data-sets (Sutton and Barto,
2018, Chapter 1). While it could be useful to clas-
sify or group certain forest-fire types, this category
of ML is not well suited for approximating the best
location for fire lines. RL provides the solution here,
as it is able to produce a policy for placing fire lines
without requiring a labelled database. It does so by
optimising its policy based on experiences obtained
in a simulation. Provided that the simulation upon
which the policy is optimised is sufficiently true to
nature, the policy should be generalizable to real
world scenarios.

Some methods for constructing such an RL-based
fire management DSS have already been proposed
(Wiering and Dorigo, 1998; Wiering et al., 2005).
They provide an initial approach on how to set
up the reinforcement learning environment and are
used as inspiration for the model that will be dis-
cussed in detail in section 2.2. They however do
not provide any comparison on which RL technique
would be best suited for controlling forest fires. This
paper therefore proposes a simulation in which mul-
tiple techniques are put next to each other, allowing
for a direct comparison between those techniques.

The first technique used is a Monte Carlo
method, Connectionist Monte Carlo∗ (CMC).
Monte Carlo methods require episodic tasks, mean-
ing that an episode has a clear ending after which
the total return can be determined. This is appli-
cable to the forest fire simulation as an episode can
be defined as a single simulated forest fire. This
episode ends after containing the fire, or once the
fire has escaped the premises of the simulation. An-
other reason to implement the Monte Carlo method
is because these methods are generally used in en-
vironments with “a significant random component”
(Sutton and Barto, 2018, Chapter 5). Generally
speaking, a forest fire does not start at the same

∗The details of this technique are discussed in section 2.3

location twice and if so, the propagation of forest
fires is affected by a great deal of environmental
conditions (Xavier Viegas, 1998). Therefore the en-
vironment can be considered a significant random
component.

The second technique used is Cooperative
Synapse NeuroEvolution∗ (CoSyNE). This is an
Evolutionary Neural Network that outperformed
the Enforced Sub-Populations (ESP) used in the
previous implementation of a fire management DSS
(Wiering et al., 2005) in difficult versions of the
pole-balancing task (Gomez et al., 2006, 2008).
While good performance on the pole-balancing task
is no guarantee for a good performance on the forest
fire control task, the pole-balancing task is regarded
as a benchmark for trainable controllers (Geva and
Sitte, 1993). Therefore CoSyNE is used instead of
ESP.

To test the different approaches, two testing con-
ditions were manipulated. As fighting forest fires
is often a joint effort of multiple fire-fighters/-
brigades, it is interesting to know how well the ap-
proach handles a multi-agent environment. There-
fore the number of agents varies across different
runs. The additional level of complexity shows how
well the RL technique is able to handle a chang-
ing environment, as other agents are modifying the
environment to accomplish their own goals.

The path-planning algorithm used by the agents
is varied as well. One approach simply goes from
its current location to its goal in a straight line.
The other takes the fastest route from its current
location to its goal. This allows better utilisation
of the environment, but could cause the agent to
walk a path too close to the fire and is therefore
riskier. This level of complexity is meant to give
insights on how well the RL techniques deal with
the uncertainty of the result of actions made by the
agents.

2 System Description

The system which is built to test the different
RL techniques is categorised in four main parts:
the forest-fire simulation, the sub-goal management
system, the used RL techniques and how the data
is structured to enable proper analysis of the per-
formance of the two RL techniques.

2

Table 2.1: Relation between local parameters
and square categories

Category Tree Grass Dirt Road

Amount of
fuel

High Medium - -

Ignition
temperature

High Low - -

Clear costs High Low - -
Move costs High Low Low Very low

2.1 The simulation

The main functionality of the simulation is to en-
able the agents to move around in an environment
in which they can ultimately control a fire. To add
realism to the simulation, there are a few global
and local variables. Different combinations of these
variables create different terrain types and weather
conditions.

The environment. The simulation consists of
a 20 × 20 grid in which each square is classified
into one of four groups: Tree , Grass , Dirt or

Road . The difference between these categories is
how much fuel is stored in the square, at what tem-
perature the square will catch fire, how much en-
ergy it takes to clear the square (i.e. turn it into
dirt) and how much it costs for an agent to travel
across them. An overview of the relation between
these parameters and categories is shown in table
2.1.

When generating the grid, squares of a certain
category are clustered. The size and amount of
these clusters depend on global parameters related
to humidity and urbanisation, giving the possibility
to simulate a specific climate (higher humidity re-
sults in less dirt and more trees) and human activity
(the number of roads) in the area. An example of a
moderately humid and moderately urbanised envi-
ronment is shown in figure 2.1. The effect of climate
and human activity are beyond the scope of this ex-
periment and thus the parameter settings were not
manipulated over the course of the experiment.

Fire Dynamics. The fire propagates through
the production of heat. If a square is on fire, it
will slowly turn its fuel into heat which is radi-

Figure 2.1: Example of testing environment. The
fire has started in the middle and an agent

can be seen in the upper left corner.

ated to adjacent tiles. The direction and intensity
of this radiation is determined by the fire inten-
sity, wind-speed and wind-direction. Once a square
has reached its individual ignition threshold, it will
ignite and start producing heat as well. Although
this implementation is not entirely true to nature
(Xavier Viegas, 1998), it requires little computa-
tional power.

2.2 Sub-goal management

After initialising the environment, the agents can
start controlling the fire. The Incident Commander
(IC) controls the sub-goals that need to be reached
in order to contain the fire. Once these have been
set, these sub-goals are assigned to ground agents.
These agents will in turn use a path finding algo-
rithm to determine which path to take to reach
their goals.

Incident Commander. In real life situations,
the IC conjures a strategy on how to optimally di-
vide the available resources (Molina et al.). The
same principle is used in the simulation. The IC de-
termines where to place the sub-goals which are in
turn executed by the ground agents. There are a to-
tal of eight sub-goals, placed in all wind-directions

3

Figure 2.2: Placement of the sub-goals. The dis-
tance between sub-goals 1 to 8 and the center
of the fire C is determined through RL. After
initialisation, agent a will first move to the clos-
est sub-goal, in this case number 3. From there
it will cut a fire line from 3 to 4, 4 to 5, etc.

around the center of the fire. The offset to the cen-
ter of the fire is ultimately determined through RL,
which is discussed in section 2.3.

In single agent environments, the agent is as-
signed the closest sub-goal once the initial offset of
all sub-goals is determined with respect to the posi-
tion of this agent. This agent will then cut a fire line
in a counter-clockwise fashion to the next sub-goal
as shown in figure 2.2. When the agent reaches a
sub-goal, the next sub-goal is re-evaluated. By do-
ing so, the IC is able to account for the growth of
the fire and possibly changing weather conditions.

In multi-agent environments, the assignment of
sub-goals becomes more complicated. In these sit-
uations, sub-goal assignment is done by iterat-
ing over all agents in the environment. First, the
sub-goals are initialised with respect to the posi-
tion of the first agent. Afterwards, the closest sub-
goal is assigned to that agent. This sub-goal is in
turn labelled as “occupied”. Next, all non-occupied
sub-goals are re-evaluated with respect to the sec-
ond agent. This agent is assigned the closest non-
occupied sub-goal. This continues until all agents

are assigned a sub-goal. Once an agent reaches a
sub-goal, there are three options: the next sub-goal
is not occupied, the next sub-goal is occupied, or
another agent has already cut a fire-line towards
the next sub-goal meaning that it has been com-
pleted. If the next sub-goal is not occupied, this
sub-goal is re-evaluated and the agent starts cut-
ting towards it. If the next sub-goal is occupied but
not completed, the agent will cut towards it without
re-evaluating this sub-goal. If the next sub-goal has
already been completed, the agent will re-evaluate
all remaining non-occupied sub-goals and navigate
to the closest one.

Path-finding Algorithms. As mentioned in the
introduction, two path-planning algorithms are im-
plemented to reach the set sub-goals. The imple-
mented algorithms are the A* algorithm (Hart
et al., 1968) and a modified version of Bresenham’s
algorithm (Bresenham, 1965). A* uses a heuristic
h(n) to estimate the lowest cost from the current
node n to the goal node and adds to this the cur-
rent path costs g(n). In this implementation, each
node represents a square in the 20 × 20 grid. By
selecting the node with the lowest expected costs
each time, min(f(n)) where f(n) = g(n) + h(n),
the algorithm will explore node by node and even-
tually find the shortest path. The only condition is
that h(n) is an admissible heuristic, meaning that
it will never over-estimate the total costs.

In order to avoid burning squares, an additional
heuristic function is used. This function applies to
g(n) and is given function 2.1. When moving from
node n to n′, g(n′) increases by 9999 compared
to g(n) if the square at node n′ is burning. If the
square at n′ is not burning, the regular move costs
cm(n′) is added to g(n).

g(n′) =

{
g(n) + 9999, if burning(n′)

g(n) + cm(n′), otherwise
(2.1)

Note that this heuristic only helps when determin-
ing the path. Once a path has been set, the agents
will continue on this path regardless of how the fire
spreads.

A modified version of Bresenham’s algorithm is
used to determine straight paths as it requires min-
imal computational resources (Bresenham, 1965).
The reason for this is that the algorithm only
uses subtraction, addition and multiplication, all

4

of which are relatively easily computed by a CPU.
The only modification made to the original algo-
rithm resulted in one additional square being added
to each line segment. This results in each subse-
quent square to square: (x, y) is placed at either (x,
y+1) or (x+1, y) instead of (x+1, y+1) or (x+1,
y), generating a closed path between the starting-
and end-point. Note that this path-finding algor-
tihm does not take burning squares into account.

2.3 RL techniques

As mentioned in section 2.2, the IC uses RL to
determine the off-set of the sub-goals. For both
RL techniques, the same feature vector was used.
This feature vector consists of sub-goal dependent
variables and agent-dependent variables. To cap-
ture the size, distance and direction of the fire with
respect to the agent, the corners of an imaginary
square capturing the fire are used. These corners
are expressed in an x direction, a y direction and
the absolute distance, resulting in 12 variables. To
capture the wind direction and speed, the speed of
the wind relative to the sub-goal axis is expressed
in a single value and added to the input vector. The
final parameter used is the number of sub-goals al-
ready reached. This provides a measurement on the
progress of containing the fire.

Both RL techniques had a training phase of
2500 episodes, where an episode is defined as a
single simulated forest fire. CMC utilised these
episodes by having 2500 episodes in combination
with back-propagation after each episode, while
CoSyNE utilised these episodes by having 50 gener-
ations with a population size of 50 as well (50×50 =
2500). After this phase, the 10 best performing
CoSyNE MLPs and the MLPs used in the final 10
episodes of the CMC training phase continue to the
testing phase. In the testing phase, all MLPs that
reached this phase are tested in the same 10 maps.
This results in 10 ∗ 10 = 100 additional episodes
for each run. As the difficulty of controlling the fire
is highly influenced by the map that is generated,
using the same set of maps for all MLPs should
result in high costs for both RL techniques in en-
vironments that are “difficult” to control and low
costs in “easy” environments. This entire procedure
is repeated 20 times for each testing condition (i.e.
varying number of agents and path-finding algo-
rithm).

2.3.1 CMC

The Connectionist Monte Carlo (CMC) approach is
a combination of every-visit Monte Carlo (MC) es-
timation of action values as defined in (Sutton and
Barto, 2018, Chapter 5) and a Multi Layer Percep-
tron (MLP).

The psuedocode of every-visit MC estimation of
action values is shown in algorithm 2.1. It starts of
by initialising an expected return value Q for all
state-action pairs (s, a) within state space S and
the set of possible actions A. For all these state-
action pairs (s, a), an empty list Returns is ini-
tialised, meant for storing the returns received by
taking action a at state s. Next, a policy π is ini-
tialised for all states s in the state space S. Af-
ter the initialisation process, policy π is optimised
for E episodes. The first step of this optimisation
process, is selecting an initial state S0 and action
A0. If this is done in such a way that all state-
action pairs have a probability > 0, it is easy to see
that all pairs are visited if E approaches infinity.
Afterwards, an episode is generated from the ini-
tial state-action pair (S0, A0) by following policy
π. The action At taken at state St yields a reward
of Rt+1 and advances the episode to the next state
St+1. In this state, the policy π(St+1) returns ac-
tion At+1, yielding a reward of Rt+2. This continues
until the action is taken that results in reaching the
terminal state at t = T , meaning that the episode
is completed. Now the assignment of return values
to state-action pairs starts by first setting the dis-
counted return G to 0. By going over all steps t
in reverse order from T to 0, the discounted re-
turn value G for each step t is determined by mul-
tiplying the old discounted return from the actions
taken after action At with the discount factor γ
and adding the reward from the immediate follow-
ing step. This value is appended to the Returns
list of state-action pair (St, At). The second to last
step is updating the expected return value Q of
state-action pair (St, At) by taking the average of
all experienced returns at state St while taking ac-
tion At stored in Returns. Finally, the policy π for
state St is updated by selecting the action with the
maximum expected return at state St.

There are however two major shortcomings that
need to be solved in order to be able to use MC
estimation of action values as a controller in the
simulation. The first shortcoming is the necessity

5

Algorithm 2.1 Pseudocode of every-visit MC es-
timation of action values

Initialise Q(s, a) ∈ R,∀s ∈ S, a ∈ A
Initialise Returns(s, a)⇐ {∅},∀s ∈ S, a ∈ A
Initialise π(s) ∈ A,∀s ∈ S
for e = 1 to E do

Choose S0 ∈ S, A0 ∈ A randomly such that
each pair has probability> 0
Generate an episode from S0, A0, following π :
S0, A0, R1, ..., ST−1, AT−1, RT
G⇐ 0
for t=T-1, T-2, ..., 0 do
G⇐ γG+Rt+1

Append G to Returns(St, At)
Q(St, At) = average(Returns(St, At))
π(St) = argmaxaQ(St, a)

end for
end for

to store the expected returns for all state-action
pairs. The memory required to store all of these
expected returns increases exponentially with each
variable added to the state representation. Another
undesirable consequence of using such a look-up ta-
ble is that all variables in the state representation
need to be discrete, otherwise there would be an in-
finite amount of states. The second shortcoming is
that running an infinite amount of episodes is im-
possible. Therefore a different type of exploration
method is needed to assure that sufficiently many
state-action pairs are tested.

To bypass the issue of storing the expected return
values for all state-action pairs, the CMC algorithm
replaces this look-up table with an MLP. By using
the state representation as a feature vector for the
MLP, similar states will have similar output values
of the MLP. By back-propagating the error in the
prediction made by the MLP, this prediction will
improve as the number of episodes increases. There-
fore the effect will be similar compared to having a
massive look-up table, while requiring only a frac-
tion of the storage.

Diminishing ε-greedy is used to solve the ex-
ploration problem. The algorithm of diminishing
ε-greedy is explained in Appendix A. Diminish-
ing ε-greedy yielded good results as exploration
method for an agent playing Bomberman which
was controlled though Connectionist Q-Learning

Algorithm 2.2 Pseudocode of CMC

Initialise M(s, a)
π(s) = argmaxaM(s, a)
for e = 1 to E do

Choose S0 ∈ S
Generate an episode from S0, fol-
lowing π with diminishing ε-greedy:
S0, A0, R1, ..., ST−1, AT−1, RT
G⇐ 0
for t=T-1, T-2, ..., 0 do
G⇐ γG+Rt+1

M ⇐ BackProb(M,St, At, G)
end for

end for

(Kormelink et al., 2018). While CMC and Connec-
tionist Q-Learning are in essence different RL tech-
niques, they show strong similarities as they both
use a MLP to estimate expected return values of
state-action pairs.

Combining the two modifications with every-visit
MC estimation of action values, results in the CMC
algorithm used in this thesis and the psuedocode
is shown in algorithm 2.2. The main difference to
regular MC and CMC is that instead of initializing
expected return values for each state-action pair,
an MLP M is initialised. This MLP processes the
state information in the form of a feature vector
s and produces the expected return of action a.
The policy of CMC is then defined as the action a
for which the expected return produced by M for
state s is maximum. After the initialisation process,
policy π is optimised for E episodes. This time it is
not possible to choose a state action pair such that
each pair has a probability > 0 of being chosen, as
there are an infinite number of state-action pairs,
while E is finite. Therefore an arbitrary state S0 is
chosen from the state space S. Once the initial state
is determined, an episode is generated by following
π with diminishing ε-greedy as exploration method.
Afterwards the discounted reward value G is set
to 0. At this point the updating process starts by
looping over all time-steps. For each step t, G is
updated and M is updated by back-propagation
of the error between the original prediction of the
return value made by M in state St for action At
and the discounted reward G.

6

Adaptation to Sub-goal Management. The
CMC algorithm described above is implemented in
the following way to facilitate sub-goal manage-
ment. An action is defined as placing a sub-goal
with an offset of x, where x ∈ N and x ≤ X with X
being the maximum distance at which the sub-goal
can be placed. The state representation used by the
MLP to base this decision on, is the feature vector
discussed at the start of section 2.3. If a sub-goal
is re-evaluated before this sub-goal is reached by
a fire-line cutting agent, the old feature vector is
replaced by the new feature vector and the action
which has not been completed is replaced by the
new action. Once the episode has terminated, the
total costs of the fire are used as the return value
for the entire episode. As the placement of all sub-
goals contributed equally to containing the fire, the
discount-factor γ is set to 1.

General Parameter Settings. An MLP with
a hidden layer of 30 neurons and a sigmoid activa-
tion function gave sufficient results in a single agent
environment with a 20 × 20 grid of grass squares.
As the tests were conducted on a 20× 20 grid, the
maximum offset to the center of the fire was 10 and
therefore the number of output neurons was set to
10 as well, one for each grid-cell between the center
of the fire and the maximum offset. These output
neurons had a ReLU activation function, allowing
them to predict the expected costs of placing the
sub-goal at the offset associated with that output
neuron. The other parameters required by the al-
gorithm are summarized in table 2.2.

Table 2.2: Parameters of CMC

Parameter Value

Learning-discount (γ) 1
Learning-rate MLP (α) 0.05
Starting exploration-rate (ε) 0.3

2.3.2 CoSyNE

Cooperative Synapse NeuroEvolution, or CoSyNE
for short, is an ENN which evolves at the level of
weights (Gomez et al., 2006). The psuedocode is
described in algorithm 2.3. It starts of by initialis-
ing a population P consisting of n sub-populations,
where n stands for the number of synaptic weights

Algorithm 2.3 Pseudocode of CoSyNE(n,m,Ψ)

Initialise P = {P1,, Pn}
for g = 1 to G do

for j=1 to m do
xj ⇐ (x1,j ,, xn,j)
Evaluate(xj ,Ψ)

end for
O ⇐ Recombine(P)
for k=1 to l do
xi,m−k ⇐ oi,k

end for
for i=1 to n do

Permute(Pi)
end for

end for

that need to be evolved in the user-specified net-
work architecture Ψ. Each sub-population contains
m uniformly distributed real numbers in the inter-
val [−α, α]. Thus, P is represented by an n × m
matrix.

The implementation of CoSyNE used in this ex-
periment uses a set number of generations G in-
stead of the more common approach of stopping
when a sufficiently good network has been found, as
this allows for a better comparison with the CMC
algorithm. At the start of each of these generations,
the network chromosomes xj ⇐ (x1,j ,, xn,j) are
initialised from the rows in P. Each of the m re-
sulting chromosomes are transformed into networks
by inserting their weights into the corresponding
synapses defined in Ψ and are in turn assigned a
fitness once evaluated.

The offspring pool O is created by randomly se-
lecting two parents from the top 25% performing
chromosomes for each synaptic weight i, p1,i and
p2,i. These parent pairs form a new chromosome o
by randomly selecting a weight from either p1,i or
p2,i for each synaptic weight oi. Furthermore, there
is a 5% chance that synaptic weight oi is changed
to a random value between [−α, α]. This process
is repeated l times. Afterwards, for each child k in
offspring pool O, each weight of the chromosome
oi,k is added to P by replacing the worst perform-
ing weight in their corresponding sub-population
xi,m−k.

To coevolve the weights, each sub-population
is permuted. This results in new combinations

7

of weights that would not have been generated
through recombination alone. The resulting chro-
mosomes will therefore not only have the weights
passed down by the parents, but also some weights
from other chromosomes in the population. This
will make the network less greedy, as weights that
were not part of the parent chromosomes have a
chance to reproduce.

Adaptation to Sub-goal Management. It is
no longer necessary to predict the costs associated
with a specific offset. This makes it possible to re-
duce the output-layer of the MLP to a single neu-
ron. The activation of the neuron is normalised
through a sigmoid function to get a final output
outi for sub-goal i between [0, 1]. This output is in
turn mapped to an offset ri by multiplying it with
the maximum offset R. This results in the formula
shown in 2.2.

ri = outi ×Ri (2.2)

General Parameter Settings. The hidden
layer uses a sigmoid activation function as well.
Because the MLP for the CoSyNE implementation
needs to produce just a single value, the complex-
ity of the MLP can be minimised. Initial tests on
a 20 × 20 grid of grass squares, single agent envi-
ronment, yielded sufficient results with only 3 hid-
den neurons. During these initial tests, the param-
eter settings shown in table 2.3 were established
as well. The number of synaptic weights is derived
by adding the number of connections between the
input- and hidden-layer to the number of connec-
tions between the hidden- and output-layer. This
results in 14 ∗ 3 + 3 ∗ 1 = 45 synaptic weights.

Table 2.3: Parameters of CoSyNE

Parameter Value

of synaptic weights (n) 45
Weight-spread (α) 3
Size offspring pool (l) 5
Size sub-populations (m) 50
of generations (G) 50

Table 2.4: Exact values of burn costs, clear costs
and move costs for each square category

Category Tree Grass Dirt Road

Burn costs 50 20 - -
Clear costs 5 2 - -
Move costs 5 2 2 1

2.4 Performance Analysis

The performance of the different RL approaches un-
der these different testing conditions was measured
by adding the total move costs of all agents to the
total damage (or burn costs) of the fire. The exact
costs are shown in table 2.4 and are based on the
relation between local parameters and square cat-
egories shown in table 2.1. Additionally, there is a
large penalty of 5000 for each agent that was lost
in the fire.

To see whether or not the RL techniques are
improving over the course of the training phase,
the costs of the training episodes of both CMC
and CoSyNE in a single agents environment with
Bresenham as path-finding algorithm are compared
with a random walk under the same conditions on
the same map. This random walk is a controller
with a policy of placing the sub-goals with a ran-
dom offset. It does not use any form of RL and will
therefore not improve upon this policy. Therefore
the difference between the costs produced under
random walk and the RL technique should increase
as the number of training episodes increases. As the
costs made in the environment is effected heavily by
the environment itself, the costs curve is highly ir-
regular. To produce a smooth curve, the costs over
250 episodes are averaged. This means that each
data point under CoSyNE is the average of 5 gen-
erations of each 50 episodes.

To analyse the testing phase, the performance of
the MLPs of a single run on a single map is aver-
aged, creating 10 data points for each run. As the
set of maps on which the testing phase is conducted
is the same for all runs, the results of CoSyNE and
CMC in episodes under the same testing conditions
can be paired.

8

Figure 3.1: Learning curve of CoSyNE controller
in a single agent environment with Bresenham
path-finding

3 Results

The learning curves of both CoSyNE and CMC in a
single agent environment with Bresenham as path-
finding algorithm are shown in figure 3.1 and 3.2
respectively. While the difference between Random-
Walk and the RL techniques is substantial, it does
not seem to increase over the course of the training
phase. This puts serious doubts on the effectiveness
of the implementation of both RL techniques. How-
ever, it does not mean that a comparison between
the two RL techniques has no value.

This final comparison is done by analysing the
performance in the testing-phase of both techniques
over all testing conditions. The results of 20 runs
with 10 test-maps are shown in figure 3.3 and show
that the median total costs of CoSyNE is lower
compared to CMC under all testing conditions. To
test whether or not the difference in distributions
over all testing conditions is statistically significant,
the non-parametric Friedman test is used. This test
was chosen for two reasons:

• Dependency of the data. As the environ-
ment at each episode was the same for all
testing conditions, the results from CMC and
CoSyNE are paired. In other words, there is a

Figure 3.2: Learning curve of CMC controller
in a single agent environment with Bresenham
path-finding

positive dependency within the gathered data.

• Distribution of data. The Kolmogorov-
Smirnov test on normality showed that 8 out
of 8 testing conditions under CMC produced
a cost distribution that did not differ signifi-
cantly from a normal distribution (D(200) <
0.09, p = N.S. for all distributions). The
same Kolmogorov-Smirnov test on normality
showed that 4 out of 8 testing conditions un-
der CoSyNE did produce a costs distribution
that significantly differs from a normal distri-
bution:

– CoSyNe in a 4 agent environment with
A* (D(200) = 0.16, p < 0.01)

– CoSyNe in a 2 agent environment with
Bresenham (D(200) = 0.23, p < 0.01)

– CoSyNe in a 1 agent environment with
Bresenham (D(200) = 0.31, p < 0.01)

– CoSyNe in a 1 agent environment with
A* (D(200) = 0.16, p < 0.01)

Under to other 4 testing conditions, the costs
distribution did not differ significantly from a
normal distribution (D(200) < 0.09, p = N.S.

9

Figure 3.3: Box-plot of the total costs under
varying testing conditions

for all remaining distributions). An overview
of the exact D-values, along with the median
and CI of the median, is given in Appendix
B. Because some but not all distributions ap-
proximate a normal distribution, the assump-
tion of equal distributions does not hold and a
non-parametric test is preferred.

The non-parametric Friedman test yielded a Chi-
square value of 220.52 which was statistically sig-
nificant (p < 0.01).

For post-hoc analysis within each group of the
testing-conditions, the Wilcoxon Signed-Rank test
is used. The results are shown in table 3.1. This
test is used for the same reasons as for why the
non-parametric Friedman test is used for the entire
data set. The results of each Wilcoxon rank-sum
test is adjusted for multiple comparisons through
the Bonferonni correction. Therefore, the result of
a comparison is deemed significant if the p-value is
below 0.05/8 = 0.0063.

Table 3.1 shows that the difference in costs dis-
tributions was significant under most conditions,
the only exception being the 8-agent environment.
While the median cost under CoSyNE was lower
compared to the median cost under CMC both
when using A* and Bresenham as path-finding al-

Table 3.1: Results of Wilcoxon Signed-Rank
test on the distribution of total costs made by
CoSyNE and CMC under varying testing con-
ditions.

Number
of Agents

Path-finding
Algorithm

Z-Value p-Value

8
Bresenham 2.21 0.027
A* 2.00 0.045

4
Bresenham 8.41 <0.001∗

A* 5.28 <0.001∗

2
Bresenham 9.80 <0.001∗

A* 8.80 <0.001∗

1
Bresenham 7.09 <0.001∗

A* 8.67 <0.001∗

∗Costs distribution of CoSyNE significantly lower than

CMC

gorithm, this difference was not significant.
A few observations are worth noting. The first

one being that using A* as opposed to Bresenham
as path-finding algorithm seems to improve perfor-
mance of CMC and CoSyNE in a similar fashion.
The second observation worth noting is that us-
ing more agents does not necessarily result in lower
costs. The contrary seems to be the case, as the
highest cost distributions are found in the 8-agent
environments. This could be explained by an in-
crease in movement costs and agent deaths. Eight
agents are likely to produce more movement costs
compared to a single agent and having more agents
in an environment means that more agents are able
die. Figure 3.4 shows that the burn costs without
the movement costs and death penalty decreases as
the number of agents increases. This time, CoSyNE
only produces less costs in the single and 2-agent
environment. The difference in the 4- and 8-agent
environment seems to be insignificant. Finally, it
is interesting to note that using Bresenham as op-
posed to A* produces less burn-costs.

4 Conclusion

This experiment aimed to find out which RL tech-
nique performs better at the task of forest-fire con-
trol, CMC or CoSyNE. The comparison was made
by looking at the performance of both techniques
controlling a simulated fire in a randomly gener-

10

Figure 3.4: Box-plot of the burn costs under
varying testing conditions

ated environment. By varying the number of fire-
line cutting agents and the path-finding algorithm
used by these agents, different testing conditions
were induced upon the simulation.

Unfortunately, neither RL technique showed a
notable decrease in total costs over the course of
the training phase. This suggest that the imple-
mentation of these techniques needs improvement.
One of these improvements could be:

• Incremental learning: It has already been
shown that implementation of incremental
learning helps in finding solutions for more
complex forest fire simulations (Wiering et al.,
2005). It is very well possible that the current
control problem is too complex and therefore
the RL techniques are not able too improve
themselves.

• Extended feature vector: Another reason
for the RL techniques not being able to im-

prove themselves, is that the data they re-
ceive does not include all necessary informa-
tion. Like driving without rear-view mirrors,
valuable information could be missing. With-
out this information, ”driving a car” or con-
trolling the fire could be close to impossible.

• Different parameter settings: While the
parameter settings in the current environment
yielded sufficient results in simple, controlled
single-agent environment (a 20× 20 grid filled
with grass squares), it is possible that these
settings do not work for more complex envi-
ronments.

Nonetheless, it is shown that CoSyNE signifi-
cantly outperformed CQL under most testing con-
ditions, the only exception being the 8-agent en-
vironment. Using A* as path-finding algorithm as
apposed to Bresenham seems to improve the per-
formance of both CoSyNE and CQL in a similar
fashion. Increasing the number of agents however
results in unexpected behaviour as this does not
necessarily decrease the costs made. This could be
explained by the increase of move costs combined
with the increase of agents lost in the fire. Look-
ing at only the burn costs of the fire, CoSyNE
still outperforms CMC in single- to few-agent envi-
ronments. Therefore, it is concluded that CoSyNE
is the preferred RL technique when dealing with
single- to few-agent environments.

This provides an important start when building
an RL-based fire management DSS. With CoSyNE
at the basis of the fire management DSS, the simu-
lation can be improved to increase the resemblance
with nature. The main deviations with a real-life
forest-fire control scenario, and possible solutions
for including them, are discussed below.

Fire Dynamics. For the sake of simplicity and
the saving of computational power, concessions
were made in the fire propagation model. Only
wind and different fuel types are included in the
current fire propagation model. Additional factors
that should be included in a true-to-nature fire-
propagation model are: the regime of propagation
(i.e. is the fire limited to the surface level such as
grass and bushes, or has it reached the crown level,
burning the tree canopies as well?) and meteorolog-
ical conditions such as air temperature, air humid-
ity, solar radiation and atmospheric stability. For a

11

more in depth analysis of the effect of each of these
factors, see (Xavier Viegas, 1998).

Priority Areas. While destroyed forests and
massive greenhouse gas emissions as a result of for-
est fires form a major problem, the real problem
occurs when the fire spreads towards highly ur-
banised areas or areas with cultural or natural sig-
nificance. A prerequisite to be able to respond to
prioritised areas is that additional information on
the surrounding environment is added to the fea-
ture vector used by the RL techniques.

Natural and Preexisting Fire Lines. The
simulation included man-made fire lines in the form
of roads. In real life situations, fire fighters often
utilise natural fire-lines such as rivers or mountain
ridges as well to minimize the resources needed to
control the fire. The current implementation of the
DSS is however not able to utilise the preexisting
fire lines to the fullest. The DSS is programmed
to set the eight sub-goals in all wind directions of
the center of the fire, while a much simpler solution
could be found by cutting a short fire line between
for instance a river-bank and a road. If the imple-
mentation of the DSS can be improved such that it
can utilise these fire lines, it is also possible to look
at the effect preventive measures such as pre-cut
fire lines.

Height Information. The final adjustment rec-
ommended to make the simulation as true to nature
as possible, is the addition of height differences in
the environment. This is valuable information as
these height differences can be translated to slopes
and these slopes highly influence the propagation
speed and direction of forest fires (Xavier Viegas,
2004). The fire dynamics should therefore be up-
dated as well to act accordingly to this additional
information. The height information influences the
movement costs of the fire-line cutting agents as
well. One can imagine that moving uphill requires
more energy compared to moving downhill.

Geographic Information System. The im-
provements stated above would contribute a great
deal to the resemblance of real life forest fires. The
only downside is the amount of details required
when applying the new DSS to the real world. Some

DSS import this information from a Geographic In-
formation System (GIS). A GIS stores information
on vegetation, urbanisation, climate, water bodies
and height differences of environments across the
globe. By importing the relevant information from
a GIS in case of a newly discovered fire, the new
DSS could quickly generate an optimal manage-
ment strategy for that specific fire.

Acknowledgements

I thank the following individuals for their contribu-
tions in designing and constructing the simulation:

• Ivo de Jong, for creating the framework of the
simulation and implementing the CoSyNE al-
gorithm.

• Roel Rotteveel, for designing and creating the
randomly generated maps.

• Dirk Jelle Schaap and Travis Hammond, for
designing and implementing the fire propaga-
tion model. Their efforts in parameter tuning
are not forgotten either.

References

Jack E Bresenham. Algorithm for computer control
of a digital plotter. IBM Systems journal, 4(1):
25–30, 1965.

United States Department of Agriculture. FY 2020,
budget justification. U.S. Gov. Printing Office,
2019.

Shlomo Geva and Joaquin Sitte. A cartpole exper-
iment benchmark for trainable controllers. IEEE
Control Systems Magazine, 13(5):40–51, 1993.

Faustino Gomez, Jürgen Schmidhuber, and Risto
Miikkulainen. Efficient non-linear control
through neuroevolution. In European Conference
on Machine Learning, pages 654–662. Springer,
2006.

Faustino Gomez, Jürgen Schmidhuber, and Risto
Miikkulainen. Accelerated neural evolution
through cooperatively coevolved synapses. Jour-
nal of Machine Learning Research, 9(May):937–
965, 2008.

12

Peter E Hart, Nils J Nilsson, and Bertram Raphael.
A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on
Systems Science and Cybernetics, 4(2):100–107,
1968.

Joseph Groot Kormelink, Madalina M Drugan,
and Marco A Wiering. Exploration methods
for Connectionist Q-learning in Bomberman. In
ICAART (2), pages 355–362, 2018.

Robert Mavsar, Armando González Cabán, and
Elsa Varela. The state of development of fire
management decision support systems in Amer-
ica and Europe. Forest Policy and Economics,
29:45–55, 2013.

Domingo Molina, Marc Castellnou, Daniel Garćıa-
Marco, and António Salgueiro. Improving fire
management success through fire behaviour spe-
cialists. Towards Integrated Fire Management
Outcomes of the European Project Fire Paradox,
pages 105–119.

Richard S Sutton and Andrew G Barto. Reinforce-
ment learning: An introduction. MIT press, 2018.

Phillip J van Mantgem, Jonathan CB Nesmith,
MaryBeth Keifer, Eric E Knapp, Alan Flint, and
Lorriane Flint. Climatic stress increases forest
fire severity across the western United States.
Ecology letters, 16(9):1151–1156, 2013.

Marco A Wiering and Marco Dorigo. Learning to
control forest fires. In Proceedings of the 12th In-
ternational Symposium on Computer Science for
Environmental Protection (UI’98), pages 378–
388. Metropolis Verlag, 1998.

Marco A Wiering, Fillipo Mignogna, and Bernard
Maassen. Evolving neural networks for forest fire
control. In Proceedings of the 14th Belgian-Dutch
Conference on Machine Learning, pages 113–120,
2005.

Domingos Xavier Viegas. Forest fire propagation.
Philosophical Transactions of the Royal Soci-
ety of London. Series A: Mathematical, Physical
and Engineering Sciences, 356(1748):2907–2928,
1998.

Domingos Xavier Viegas. Slope and wind effects on
fire propagation. International Journal of Wild-
land Fire, 13(2):143–156, 2004.

13

A Diminishing ε-greedy

Exploration methods are required to guide the
learning process of a Q-Learning based controller.
These methods provide a means to control the ra-
tio of exploration vs. exploitation. If a controller
always chooses the best option according to its cur-
rent believes, it might get stuck in a local opti-
mum. It could very well be possible that a differ-
ent option would in reality provide better results,
but as the controller never experienced these bet-
ter results, does not know of this better option and
will therefore never choose it (low exploration vs.
high exploitation). On the other hand, if the con-
troller is always looking for better options, it will
at some point no longer find any improvements. At
this point it makes no sense to continue its explo-
ration efforts and is better of exploiting the knowl-
edge already obtained (high exploration vs. low ex-
ploitation).

ε-greedy is one of the simplest exploration meth-
ods. Instead of always taking the action under the
policy at state x (π(x)), there is a chance of ε that a
random action is chosen. This exploration method
is however not GLIE (Greedy in the Limit with In-
finite Exploration) as it will always have a chance
of not selecting an action according to π. This is
undesirable considering that towards the end of a
training phase, π will approach the optimal policy
π∗ and therefore any deviation from π will most
likely result in a worse performance.

Diminishing ε-greedy solves this problem by
gradually decreasing ε as the number of iterations
progresses. There are several ways to implement
this gradual decrease. It can be implemented by
defining different phases in the learning process in
which the ratio between exploration and exploita-
tion is varied, by multiplying the current ε with a
value between (0, 1) or by subtracting a fixed num-
ber x from ε at each iteration until it reaches 0.
The latter option is chosen and the formal defini-
tion is given is formula A.1. In this formula, εi is
the exploration rate at iteration i. εstart represents
the starting exploration rate.

εi = εstart − x ∗ i (A.1)

The reason for implementing this version is that
it adds only one additional parameter that needs
tuning, namely εstart. By defining x = εstart

Imax
, where

Imax is the maximum number of iterations in the
training phase, ε reaches 0 at the end of the training
phase.

14

B Overview of the results

Table B.1 shows the median, the 95% CI of the median and the results of the Kolmogorov Smirnov test
on normality of the costs distribution under each testing condition with varying RL techniques. The
median is preferred over the mean of the distributions as the Kolmogorov Smirnov test showed that not
all distributions are approximately normal. The CI of the median is determined through the use of a
normal bootstrap with replacement over 10.000 resamples.

Table B.1: The propability of being equal to a normal distribution according to the Kolmogorov
Smirnov test, the median distribution and the 95% CI of the median

Number
of Agents

Path-finding
Algorithm

RL tech-
nique

D(200) p-Value Median 95% CI

8
Bresenham

CoSyNE 0.09 0.09 18 832.4 [17637 , 20314]
CMC 0.06 0.39 20 282.4 [19402 , 21290]

A*
CoSyNE 0.09 0.10 6278.45 [5677 , 6798]
CMC 0.08 0.13 6817.3 [6401 , 7193]

4
Bresenham

CoSyNE 0.08 0.15 9883.35 [8991 , 10650]
CMC 0.04 0.96 15 921.55 [15219 , 16449]

A*
CoSyNE 0.17 <0.01 6014.4 [5598 , 6538]
CMC 0.05 0.71 7889.6 [7339 , 8466]

2
Bresenham

CoSyNE 0.23 <0.01 5471.95 [2815 , 7505]
CMC 0.05 0.66 12 391.15 [11586 , 13126]

A*
CoSyNE 0.09 0.09 4861 [4185 , 5908]
CMC 0.05 0.59 8742.7 [8125 , 9433]

1
Bresenham

CoSyNE 0.31 <0.01 3103.85 [2713 , 3560]
CMC 0.07 0.25 10 968.95 [10002 , 11908]

A*
CoSyNE 0.16 <0.01 5613 [5350 , 6113]
CMC 0.06 0.55 9572.9 [8970 , 10251]

15

