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Abstract

With the world moving towards the adoption of renewable energy sources in the electricity
grid, the inclusion of storage becomes unavoidable to ensure energy availability on demand.
From this perspective, off-shore wind farms can be expanded by Ocean Batteries. Ocean
Batteries are on-site lossless storage units of the hydropower type of system. To maximize
their potential in a wind farm, multiple Ocean Batteries should be in operation. How these
Ocean Batteries communicate with one another to behave optimally in the system has
been investigated in this research.

A control model is developed that has a supervisory control that determines the optimal
system control actions before sending the control variables to the distributed control
units. After a comparison is made between a Rule-Based Control strategy and a Model
Predictive Control strategy from a simplified representation of the system, a case study is
performed to provide insight into the behavior of the individual Ocean Batteries and wind
turbines in the real system. The focus of the control model is to obtain higher revenues
from a wind farm with connected Ocean Batteries compared to a wind farm without.

From the analysis it is concluded that the design of the Model Predictive Control strategy
is a suitable choice that increases revenues significantly compared to a wind farm without
storage. Sensitivity analyses have been executed on the level of the turbine capacity and
the depth of the Ocean Batteries, but could not result in better system performance with
the current Ocean Battery design. In addition, the control model has been extended
with the possibility to buy energy from the market, which significantly increases the
performance of the Ocean Batteries in terms of revenues. The developed control model
serves as a basis for other extensions, such as reduction of cable capacity to shore, and
increased potential is therefore expected.
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1 Introduction

This first chapter is dedicated to understanding the context of the problem and defining the
system that is subject to this research. First, the need for innovative solutions to expand
renewable energy systems by storage in order to deliver a constant energy output is explored.
Thereafter, the recent developments of the Ocean Battery systems proposed at the University
of Groningen are discussed and the relevant stakeholders are analyzed. Furthermore, the
problem the research deals with is analyzed and relevant research questions are presented that
serve as the main focus of this thesis. Finally, the research design leading up to answering
the research questions is presented.

1.1 Towards a sustainable future

Sustainability, or the lack thereof, is one of the most discussed and researched topics nowa-
days, driven by climate change and the rising CO2 level (Drew et al., 2009). It is widely
acknowledged that a change in energy generation and consumption is inevitable to keep the
world as livable as it is today. The energy generation is mainly concerned with limiting
the CO2 emissions, whereas energy efficiency and responsible utilization of energy are most
important for energy consumption. The focus of this research is on the side of energy gener-
ation. Nearly all governments have reached consensus that more renewable energies have to
be deployed in the future to overcome environmental pollution and climate change, and to
ensure energy security(Alagappan et al., 2011; Dincer, 2000). Over the past years, renewable
energy has become widely accepted and has reached a mainstream position in society (Smith,
2017). Target goals on the global renewable energy share have been defined as a result of
this development, focusing on a share of at least 30% in 2030, both nationally and globally
(Rijksoverheid, 2016; IRENA, 2014). However, it can be observed that the world is not on
track to meet these goals. Figure 1 depicts the share of renewable energy in 2017. It can
be observed that only 18.1% of all energy is renewable, of which 10.6% consists of modern
renewables (REN21, 2019). From the target goals set by the government it can be derived
that a large increase in the utilization of modern renewables is expected in the upcoming
years.

Figure 1: The share of renewable energy in 2017 (REN21, 2019).
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Although it is necessary to expand the amount of renewable energy sources deployed, it is
difficult to extend the amount of renewable energy sites on-land. One of the major reasons
is that local acceptance of various types of renewable energies, such as wind power, has
been proven difficult and is definitely a factor to consider when designing renewable energy
policies. Negative public perception towards renewable energy development driven by for
example landscape pollution have led to the delay or even cancellation of renewable energy
projects (Guo et al., 2015). An option to overcome part of the negative public perception is to
shift the focus of on-land renewable energies towards off-shore (Ladenburg, 2008). An example
of a widely used type of off-shore renewable energy source is wind energy. Advantages include
abundance, stronger power extraction and consistency in terms of the availability compared
to on-land wind energy (Perveen et al., 2014).

Currently, off-shore wind farms cover a large surface area, of which the area between neighbor-
ing wind turbines can only be used for a limited amount of operations such as limited shipping
purposes (Rijksoverheid, 2015). To utilize this area in a more efficient way, one may look into
using this area to capture solar energy or wave energy. Nowadays there are many initiatives
to develop technologies that may harvest wave energy, but they are relatively underdeveloped
compared to other renewable energy technologies (Drew et al., 2009). An example of a novel
wave energy converter system which is currently in development is the Ocean Grazer WEC
(van Rooij et al., 2015). A large amount research is executed at the moment on the opti-
mization and feasibility of this WEC and it may be considered a promising application for
the future.

One of the challenges regarding renewable energy sources is its intermittent character
(Gowrisankaran et al., 2016). Storage systems may be incorporated to balance the elec-
tricity output from renewable energy sources (Suberu et al., 2014; Garcia-Rosa et al., 2013).
Another argument in favour of incorporating storage systems is that a shift can be observed
towards a decentralized renewable energy generation (Karger and Hennings, 2009). This re-
quires the adoption of energy storage systems and its demand is therefore increasing for a
wide range of applications. Large renewable power generators, such as the wind farm, are said
to be amongst them (Rehman et al., 2015). The aforementioned Ocean Grazer also has its
own incorporated lossless storage system, the ‘Ocean Battery’ (Dijkstra et al., 2016), which
is currently the main focus of Ocean Grazer BV in its road towards launching a product to
the market. This research is focused on the Ocean Battery.

1.2 The Ocean Battery: a product with potential

The Ocean Battery is a bottom-fixed device that receives its take-off power from renewable
energy sources, such as wind energy or wave energy. The Ocean Battery is an on-site hydro-
power type of storage system, which offers energy buffering capabilities that enable satisfied
energy market demand and maximized system revenue. The storage system consists of a
concrete structure that is gravity-based and enables the system to store potential energy
(Wei et al., 2019). Its working principle is as follows: an internal fluid is pumped from a
reservoir with atmospheric pressure to a flexible bladder in a closed system. The bladder has
the same hydrostatic pressure as the ocean water surrounding the Ocean Battery, thereby
creating a pressure difference between the bladder and the concrete reservoir. A turbine
subsequently converts the potential energy into electricity by means of the pressure difference
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Figure 2: Artist’s impression of the Ocean Grazer 3.0 (Origins, 2019).

when the electricity is demanded by the market. The greater the depth at which the Ocean
Battery is situated, the greater the pressure difference, and the higher the capacity of the
Ocean Battery in MWh. It is therefore desirable to incorporate the Ocean Battery at a high
depth, possibly connected to wind turbines that are already existent.

The version of the Ocean Battery described above is an improvement to the latest Ocean
Grazer concept that has been visualized, the Ocean Grazer 3.0. The Ocean Grazer 3.0 is
depicted in Figure 2. Changes with respect to this design include the shape of the storage
bladder: the new storage system has a square shape instead of a round shape such that the
rubber bladder behaves in a beneficial manner. Furthermore, wave energy is disregarded for
this project, as the Ocean Battery may also receive electricity from other renewable energy
sources such as wind turbines or solar panels. Finally, the Ocean Batteries can be placed next
to wind turbines instead of only beneath them, which opens up the possibility of incorporating
Ocean Batteries in existing wind farms. These arguments have led to the development of a
new Ocean Battery concept for Ocean Grazer BV.

One of the newest ideas concerning the project is to use the Ocean Batteries as an anchor
for floating wind turbines. Fixed tower type wind turbines are placed on near shore locations
due to the necessity to place the turbines on the seabed. Floating wind turbines, however, are
not bound by this requirement and can therefore be placed in deeper waters, opening up the
possibility to harvest energy from stronger and steadier wind fields (Koo et al., 2014). With
the advantage of placing the Ocean Batteries at greater depth, the idea of using the Ocean
Batteries as an anchor for floating wind turbines was generated. It must be noted that the
Ocean Batteries are still in the development phase and it has to be investigated whether the
storage system may result in economic benefits compared to having no storage system at all: it
must be considered that the choice to implement ready-to-sell electricity as the power take-off
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for the Ocean Battery instead of harvesting wave energy has the following consequence. The
electricity from another power source can also directly be sold to the market, which means
that the benefits of storing the electricity must be large enough to overcome the negative effect
of the Ocean Battery’s efficiency. These benefits include for example sufficient fluctuations
in electricity price, reduced cable costs and stable supply. Multiple Ocean Batteries may be
adopted in one wind farm, that consists of a number of wind turbines, to store a large amount
of energy. The number of Ocean Batteries connected to one wind turbine is also a variable to
study. The topic of this thesis is to transform the aforementioned system of Ocean Batteries
into a revenue maximization study. To achieve this, a control model has to be developed that
decides on the individual Ocean Battery’s actions.

1.3 Problem analysis

In this section the problem is analyzed from its background and a problem statement is
defined. From the problem statement, the project is scoped in order to define the boundaries
of the research.

Problem background

Ocean Grazer BV is interested in launching a product. As mentioned above, their main focus
at the moment is the Ocean Battery, or the storage system. If Ocean Grazer BV succeeds to
launch this product to the market and to fully integrate this product, it can be considered a
novel technology that efficiently reuses the area between neighboring wind turbines and that
can be a valuable addition to wind farms. Moreover, the Ocean Battery is a lossless storage
system, which means that no energy is dissipated from keeping the energy in the storage for
a large amount of time. This leads to advantages compared to other storage systems when
for example seasonal fluctuations with respect to the electricity production are significant. It
can be concluded that the new design may contribute to the needs of the market significantly,
especially since the Ocean Batteries are powered by renewable energy sources.

To efficiently manage the aforementioned system consisting of a number of Ocean Batteries
and wind turbines, an appropriate distributed control system is necessary. This control should
be able to process information about the price market and the electricity production, and
to deliver electricity from the individual storage systems to the electricity grid when it is
demanded. Currently, such a control does not exist, which means the product cannot be
launched to the market as long as this control has not been developed. For this research,
a distributed control system has been developed that attempts to maximize the revenues
obtained by the system of connected Ocean Batteries as opposed to for example securing
a stable energy supply, as this approach suits the business aspect of the master Industrial
Engineering and Management better. Costs are not included in this research, which means
that the focus of the revenue maximization study is on the fluctuations in electricity price
rather than on a restricted cable capacity.
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Problem statement

From the problem background the problem statement is defined as follows

The problem is that a control for multiple connected Ocean Batteries does not exist yet,
whereby insight in the individual Ocean Battery’s behavior in a distributed system is lacking.

When there is no control over the Ocean Batteries, there is nothing that decides on the
actions of the individual storage systems. There may be three states of the Ocean Battery:
it may be storing energy, generating electricity or not doing anything at all. Having a control
gives insight in the desired behavior of individual Ocean Batteries at each time step and can
therefore be considered a valuable tool. There may also be other reasons why Ocean Grazer
BV is not able to launch the Ocean Batteries to the market yet, such as a knowledge gap
on its economic feasibility or design choices that are still open to discussion. The distributed
control model developed in this research should therefore be adaptable to different designs of
the system and different designs of the Ocean Batteries. In this way, the control model may
also be able to provide some insights in the optimal design choices. Ultimately, the revenue
is calculated by the model and maximized by a selected control strategy.

Scope of research

The scope of the research is limited to the following. The control model developed in this
research requires several inputs. These inputs can be categorized as follows.

• System design: the design of the system is concerned with the amount of wind turbines
in the considered wind farm, the amount of Ocean Batteries connected to a single wind
turbine and the location of the system.

• Ocean Battery design: the design of the Ocean Batteries are concerned with the
dimensions and efficiency of the system, the capacity of the pump and turbine, and the
water depth at which the Ocean Batteries are situated, which determines the storage
capacity.

• Information on power production: information on the power production is neces-
sary for the control to determine the storage possibilities. For this research only power
production from wind turbines is considered. The model simulations are run with his-
torical data sets. Data sets with the individual wind turbine’s power production in
a wind farm are not publicly available, so the generation of wind power data set is
included in the scope of the research.

• Market prices: to eventually maximize revenues generated by the system it is neces-
sary to have knowledge on the prices for which the electricity can be sold. A historic
data set from a local price market may be retrieved as an input for the control model
to run simulations with.

The scope of the research is limited to developing the distributed control model and retrieving
the aforementioned inputs. Costs are not considered in this research. This means that
the actual costs of the Ocean Batteries, the wind turbines and the cable infrastructure are
considered out of the scope of this research.
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Figure 3: Higher-level system: stages of renewable energy utilization.

1.4 System description

From the aforementioned research boundaries the system boundaries have been defined. In
this section the system that is subject to this research is explained and graphically presented.
A distinction is made between the higher-level system that the system of this research fits
into and the actual representation of the system that is studied in this research.

Higher-level system

The higher-level system is concerned with all the stages of renewable energy utilization: from
converting renewable energy to transporting and to using renewable energy. The higher-level
system is a physical system, of which all elements may be optimized in terms of for example its
efficiency or costs. A graphical representation of the higher-level system is depicted in Figure
3. Control actions are applied at the point where it is decided whether the electricity should
be stored or should directly be transported to the end-user, and at the point at which it is
decided at which time step the storage is drained. The input of the system is the renewable
energy and the output is the end-user that is powered by the electricity.

The focus of this research has been indicated by the dashed lines in Figure 3. The research
is focused on the renewable energy type ’wind’ as much potential is expected in this area,
such as the aforementioned distribution of Ocean Batteries applied as anchors for floating
wind turbines. The focus has been chosen such that both the generation of wind data and
the storage are included. The distributed control model that is developed eventually controls
the decisions on the storage of the electricity.

Focus of research

The focus of the research is depicted in Figure 4. Within the system the conversion of
wind energy to electricity takes place. In the end, the focus is on the control that ensures the
electricity output from wind energy is optimized in terms of the revenues that can be generated
by the system. In the represented system there may be a number of Ocean Batteries connected
to one wind turbine and there are also several wind turbines present in the studied system.

The focus of research can be further decomposed. The decomposition is depicted in Figure
5. In this figure, all consecutive operations from the generation of electricity to the optional
storage of electricity to draining the storage again are included. The upper blocks represent
the decomposition of the ’convert wind energy’ block from Figure 4 and the lower blocks
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Figure 4: Optimize electricity output from wind energy from a revenue perspective.

Figure 5: Optimize electricity output from wind energy from a revenue perspective (decom-
position).

represent the decomposition of the ’store electricity’ block from Figure 4. The system gives
more insight in the operations to study during the project.

1.5 Stakeholder analysis

From the problem analysis and system description there may be several parties identified that
have a stake in the project. There are several types of stakeholders that can be identified
for this research. The most important stakeholder is the problem owner, who is the initiator
of the project and usually has an idea about a possible solution. He is also the one most
interested in the solution to the problem. Then there are stakeholders who have an interest
in the research or are in another way affected by the research. Different stakeholders may have
different requirements of the research and an analysis of the stakeholders is therefore relevant
to ensure all requirements are incorporated (Wieringa, 2014). All of the aforementioned
types of stakeholders are taken into account for this research and the relevant stakeholders
are mentioned in this section.

Problem owner

The problem owner is the CTO of Ocean Grazer BV: Marijn van Rooij. Along with the
company itself, Marijn will benefit from a distributed control model that is able to optimize
revenue of the system. He will therefore not only have an interest in the outcome of the
research, but also a high influence in the development of the model. Once this model is
developed, Marijn may have more knowlegde on the best design of the Ocean Grazer and he
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may be one step closer to launching the Ocean Grazer to the market. It may also be considered
valuable information once it appears the revenues may not be sufficient to outperform a system
without storage.

Other stakeholders

The other stakeholders are divided into stakeholders that have an influence or interest in the
research and stakeholders that are affected by the research.

Stakeholders that have an influence or interest in the research

The Ocean Grazer research group, with in particular the supervisors of this research, prof.
dr. ir. B.Jayawardhana and prof. dr. A.Vakis, have an influence in this project. Their
influence mainly focuses on ensuring the research has sufficient academic level and makes
a contribution to science, rather than only developing the model for one or a few specific
situations. The research group also has an interest in the outcome of the research as the
outcome contributes to the knowledge base of the Ocean Grazer project and may lead to
insights about the direction to choose for the project.

The government becomes a stakeholder once the product is launched as regulations concerning
the placement and operation of the Ocean Batteries will then play a role. However, since the
project is still in the early stage of innovation, the government does not have an influence for
this research and is therefore not taken into account.

Stakeholders that are influenced by the research

The company behind the Ocean Batteries, Ocean Grazer BV, is influenced by the outcome of
the research, as the tool that is developed may provide insights in the optimal design for the
Ocean Battery and the tool itself may be used for the distributed system of Ocean Batteries
in the future.

Wind farm owners may also be influenced by the research as they are a possible target
customer of Ocean Grazer BV. This influence will exist once the Ocean Battery is further
developed. When this happens, other project partners should be attracted and become a
stakeholder as a result. However, for this research this is not the case, which means that wind
farm owners and other project partners are not incorporated in this research.

1.6 Research goal

In this section the goal of this research is derived from the problem analysis. It is also explained
how the research contributes to both the business aspects and the technological aspects of
an IEM master thesis. Thereafter, the proposed distributed control model is introduced and
a conceptual model representing all variables to be taken into account for this research has
been derived.
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Goal statement

The problem that my research is concerned with is that there is no control model yet to be
implemented for a distributed system of Ocean Batteries. The distributed Ocean Batteries
can only be in operation after an appropriate control model has been developed and adopted.
For the purpose of this research, the control model should outperform the situation in which
there is no storage at all in terms of revenues. The goal statement is therefore as follows:

The goal is to develop a control model that ensures higher revenues of the distributed system
of Ocean Batteries compared to a system without storage.

By feeding the required inputs to the model, the revenue can be calculated. The control
model is the final deliverable of this research project as it can be considered a useful tool to
calculate the revenue of the system when different inputs are fed to the model. The control
model has been developed within the time-span of the IEM research project, which is five
months. A suitable control strategy is selected and adopted to optimally control the system
of Ocean Batteries.

Business aspect & technological aspects

The business aspect that this research is concerned with is to develop a control model that
may be adopted to launch a particular product to the market, namely the Ocean Battery.
The aim is, however, to make this model adaptable to different designs of a system, different
designs of the storage, different power take-off sources and different locations of the wind
farm. The final control model may therefore become an interesting tool in the business of
launching deep-sea storage systems. The technological aspects are mainly concerned with the
description of the physics of the Ocean Batteries and how formulas can be derived to make
the required calculations to maximize the revenue of the system. The control model, that is
be developed in Python code, is the tool to realize this and makes a contribution to science by
providing insight in the behavior of individual storage units in a distributed control system.

The control model

In this section the initial scoping of the control model to be developed is described. There
exists a requirement for the model to be adaptable to the aforementioned inputs. In order
to achieve this, first the Ocean Batteries are modelled in Python to describe their dynamics.
Thereafter, the cost function for the optimization is determined and the optimization algo-
rithm is developed. As there are many parameters to be determined or even varied during
this research, the largest requirement for the control model is that is should be adaptable to
various inputs and parameters.

As all Ocean Batteries within the distributed system are equal with respect to the dimensions
and location variables. It should therefore be reasoned why the system cannot simply be
approached as a lumped model. A lumped model in this case means that all storage and
turbine capacities of the Ocean Batteries in the system are summed. If it would be possible
to approach the grid as a lumped system, the control model would be simplified significantly
compared to when each of the Ocean Batteries is modelled individually. There are several
arguments providing reasoning why a lumped model is not suitable for the comparison to
reality:
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• The storage level of the various storage units may differ. In the lumped model case,
an external stimulus would require the system to deliver a particular amount of energy
over a given time period based on the available total electricity and the summed turbine
capacities. Problems may arise regarding the fact that one storage unit may empty
sooner than another especially in a situation where a storage is filled to its maximum
before being drained and vice versa. The system cannot deliver the expected amount of
electricity over the given time period anymore, as the turbine capacity of the remaining
storage units may not suffice the demanded amount of electricity.

• Some storage systems may have downtime at some point due to maintenance or failure.
This storage unit can then be taken out of operation without affecting the other storage
units. It is difficult to model the downtime of storage units into a lumped model. For
example, if a certain percentage would be selected to represent the average downtime of
the whole system, the model cannot work in reality as it is important to know when the
individual storage units are out of operation. Maintenance operations and downtime
are, however, out of scope for this research.

• The energy input may differ among various places in the wind farm. Storage units
are in this case able to store electricity independent of the other storage units and the
storage levels will differ as a result. This factor is dependent on the cable infrastructure
describing the connections between the storage units and wind turbines in the system.

Summarizing the above arguments it is concluded that it is necessary to develop a control
model on the level of individual Ocean Batteries.

Conceptual model

Before a control model can be developed, it is investigated which factors have to be accounted
for in the distributed control model. From the analyses above, a conceptual model has been
constructed to visualize all these factors. The conceptual model is depicted in Figure 6. In
this figure, the boxes that are blue represent the parameters and inputs that have to appear
in the distributed control model.

Explanation of variables

All variables mentioned in the conceptual model and its requirements are explained in this
section. A distinction is made between variables that are dependent on the location of the
grid, variables that are kept constant in this research and variables that should be researched
in-depth.

Variables that depend on the location of the grid

• Predicted wind power production: the control model is able to read and incorporate
power production as an input. For this research, a data set is used of the power generated
by a wind farm based on historical wind data. The model is designed such that also
other power production information may serve as an input.

• Forecasted market prices: the control model is able to read and incorporate fore-
casted market prices. The market prices differ for each electricity market. For this
research, historical data sets with market prices are used.
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• Number of wind turbines in the system: the control model is able to incorpo-
rate different system designs, which means that the model is generic and applicable to
multiple locations for the Ocean Batteries.

Variables that are constant in this research

• Volumetric capacity: the storage capacity can be varied by changing the depth of the
Ocean Batteries or by changing the dimensions of the Ocean Batteries. The dimensions
of the Ocean Batteries are considered constant in this research, which means that the
volumetric capacity of the Ocean Batteries does not change.

Figure 6: The conceptual model.
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Variables that are researched in-depth

• Pump/Turbine capacity: for the major part of this research, the turbine capacity
is assigned a constant value. To observe the effects of changing the turbine capacity, a
sensitivity analysis is executed.

• Pump/Turbine efficiency: a literature study is conducted to find realistic values for
the pump and turbine efficiencies. The effect of changing the efficiency of the pump
and turbine is studied intensively as changing the efficiency may have a major effect on
the decision to store energy based on the electricity prices. A pump and turbine have
a start-up time, which means that it takes some time to reach its maximum efficiency.
However, it is assumed that the effects of the start-up time are minor effects and the
start-up time is therefore disregarded for this research.

• Ocean pressure: the storage capacity may also be varied by changing the depth of
the Ocean Batteries. Similar to the pump and turbine capacity, the storage capacity is
assigned a constant value for the major part of this research. The effects of changing
the depth of the Ocean Batteries are studied in a sensitivity analysis.

• Number of storage units in a cluster: in this research, each Ocean Battery repre-
sents a cluster of a number of Ocean Batteries, all kept at the same storage level. This
can be seen as a lumped model of N Ocean Batteries with N times the capacity of one
Ocean Battery. The number of storage units in a cluster determines the total amount
of energy that can be stored. The size of the cluster is researched to determine the
suitable number of Ocean Batteries per wind turbine.

1.7 Research design

Now that all considerations with respect to the distributed control model have been explained,
the design of the research is thoroughly described. First the research questions are formulated,
then the process steps and the resources required to execute these steps are listed. Finally, a
risk analysis is executed and the structure of the report from this chapter on is explained.

As the research is mainly concerned with designing a generic control model, the engineering
cycle as defined by Wieringa is a useful tool to adopt, since the engineering cycle may be
used for situations where a solution is needed for a particular problem and its solution is
non-trivial (Wieringa, 2014). The engineering cycle therefore serves as a basis throughout
this research. The engineering cycle is depicted in Figure 7. The problem investigation phase
is treated in the first chapter of this research. In addition, the requirements for the control
model have also been investigated and specified in the first chapter for the treatment design
phase. The second stage of the treatment design phase is to propose and develop a control
model. For the treatment validation phase it is evaluated whether the developed control
model is generating the desired output and the sensitivity of the model is tested. Simulations
are performed to validate the control model. The second stage of the treatment design phase
and the treatment validation phase are executed in the remaining chapters of this research.
The treatment implementation phase is disregarded from the research as it is impossible to
implement the distributed control model in a real-life situation.
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Figure 7: The engineering cyle by Wieringa (Wieringa, 2014). The implementation phase is
not incorporated for this research.

1.7.1 Research questions

The main research question that serves as a basis throughout this research to achieve the goal
is formulated as follows.

How should the distributed system of Ocean Batteries be controlled?

The research question is answered at the end of the report after the research is executed by
answering a number of sub-questions that eventually lead to the answer to the main research
question. The sub-questions are formulated as follows:

1. What are the relevant considerations for the design of the distributed system of Ocean
Batteries and how may they be incorporated in this research?

2. Which external input is required for the control model?

3. How can the dynamical model of the Ocean Battery be developed?

4. What would be an suitable control strategy and how can this control strategy be applied
to the dynamical model?

5. How can the proposed control model be validated?

6. What are the revenues obtained by the control model in comparison with a no storage
system for a predefined case study?

7. How are the storage capacity and turbine capacity related to the generated revenue?

8. What are the effects of introducing the possibility to store energy that is bought from
the market?
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1.7.2 Operationalization

Based on the aforementioned sub-questions, the steps to answer these sub-questions are listed
in this section. These steps will ultimately lead to answering the main research question.

1. The first sub-question is answered by studying the system of connected Ocean Batteries
in the wind farm on a conceptual level, whereby relevant considerations are identified.

2. The second sub-question is answered by defining the external input required for the
model along with a strategy on how to retrieve data to run the simulations with. A
logical follow-up action to this sub-question is to retrieve the input data.

3. The third sub-question is answered by describing the dynamics of the Ocean Battery on
a conceptual level, followed by the appropriate equations describing the dynamics and a
short simulation to validate the dynamical model. In this step, the model is developed
in Python

4. The fourth sub-question is answered as follows. First, possible control strategies are
investigated and the most suitable option for this research is selected. Second, the
selected control strategy is used to formulate an optimization problem and corresponding
control algorithm. Third, the control strategy is added to the Python model to construct
the final control model.

5. The fifth sub-question is answered by studying validation techniques and applying these
techniques on the proposed distributed control model. Once the control model is vali-
dated, simulations can be executed with a satisfactory level of confidence.

6. The sixth sub-question is answered by executing simulations and calculating the rev-
enues that can be obtained for different situations. These results are analyzed after-
wards.

7. The seventh sub-question is answered by executing sensitivity analyses on the storage
capacity, influenced by the depth of the Ocean Batteries, and the pump and turbine
capacity. The results of the sensitivity analyses are analyzed to advice Ocean Grazer
BV on the optimum design choices for the pump and turbine capacity.

8. The eighth and last sub-question is answered by adding a connection to the electricity
market that can be used to buy electricity for storing purposes and studying its effects.

Resources

Several resources are required to be able to answer the sub-questions and ultimately the main
research question. These resources include previous work on the Ocean Grazer, available
literature and data that should serve as an input for the model. The following data is required
to run the model:

• Data about the electricity generation of the single turbines in a particular wind farm.
To achieve this, a data set needs to be generated.

• Data about the price market. Important considerations include the location of the wind
farm to determine which country the price market should be taken from, and the time
slots at which the data was recorded.
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It is likely that the data is stored in an Excel file, which means that the control model should
be developed in a program that is able to process Excel files. Python is a suitable choice.

Risk analysis

There may be several factors that need to be accounted for in order to analyze the risks that
are associated to this research.

• Assumptions have to be made in order to scope the research. For example, the efficiency
of the pump and turbine may largely depend on the selected pump or turbine and its
capacity. Equivalently, the start-up time may also play a role in the behavior of Ocean
Battery. It needs to be noted that this may change the results significantly.

• The data on the performance of individual wind turbines is not readily available. As a
data set has to be generated to overcome this issue, the data may deviate from a real-life
situation and may not be as reliable as a real data set. The outcomes may change once
the data set does not represent reality to a sufficient extent.

Structure of the report

The remainder of this thesis is organized as follows. Chapter 2 gives a description of the
distributed system of Ocean Batteries and the application in a wind farm. In addition,
the required inputs are studied and the method to retrieve input data is explained, thereby
treating sub-questions 1 and 2 in this chapter. Chapter 3 is concerned with the description of
the dynamics of the Ocean Battery and the development of the dynamical model in Python,
ultimately answering sub-question 3. In Chapter 4, different control strategies are analyzed
and the selected control strategy is applied on the dynamical model to develop the final
distributed control model, answering sub-question 4. Chapter 5 is dedicated to the validation
of the proposed control model, thereby answering sub-question 5. Consequently, sub-questions
6-8 are answered in Chapter 6 that is composed of the simulation set-up, its results, the
sensitivity analyses and the extension to the model. Finally, the research is concluded with a
discussion and conclusion in Chapters 7 and 8.
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2 The system of connected Ocean Batteries

In this section, the system that is studied, including all of its relevant elements, is further
explained by a research through literature. This includes the system design considerations,
the wind turbines and the wind turbine power production that is required as an input for the
model. This chapter is finalized with an explanation on the electricity markets and how the
corresponding historical data that serves as an input to the model, may be retrieved.

2.1 Ocean Battery: the concept

Zooming in to the concept of the Ocean Battery, it is observed that its working principle
largely resembles the working principle of a Pumped Hydro Energy Storage (PHES). For
both concepts, potential energy is stored by elevating water. During the charging process,
electricity is converted into mechanical energy to drive the pump that pumps water from a
lower reservoir to a higher reservoir, thereby converting the mechanical energy into gravita-
tional potential energy. When discharging, the process is reversed and the potential energy is
converted into electricity again by driving a turbine. Globally there are many PHES systems
installed (Barbour et al., 2016). Therefore, PHES is nowadays considered a technology that
is well-established and commercially acceptable. It is not only a sustainable energy system,
but it has also proven a suitable application to improve the grid stability when this grid
contains other renewable energy sources such as wind power (Rehman et al., 2015). Like the
Ocean Battery, PHES are also lossless storage units, implying that there is no self-discharge
over time (Barbour et al., 2016). An interesting development in the area of PHES systems is
the introduction of variable speed pump/turbines. The advantage of this technology is that
the rotation speed of the pump/turbine can be adjusted, which allows turbines to operate
closer to their optimum efficiency (Deane et al., 2010). This may also become an interesting
technology for future application in the Ocean Battery.

An important difference between the previous design of the Ocean Battery and the possibilities
for the new design is that in previous work about the Ocean Grazer, the pump and the turbine
were two separate devices as the pump was driven mechanically by waves (Dijkstra et al.,
2016). Now that the pump is driven by the electricity from wind turbines, the possibility arises
to implement one device that is both able to pump and operate as a turbine, also known as
the Pump as Turbine (PaT), that has proven its applicability already in the aforementioned
PHES systems (Rehman et al., 2015). PaT’s are able to operate over a large range normally
covered by several types of turbines. One of the major advantages of a PaT is the reduction
of initial equipment cost, and thereby resulting in a shorter return on investment compared
to a separate pump and turbine (Nautiyal et al., 2010). Although the equipment costs of the
PaTs are lower, it must also be mentioned that the overall efficiency of PaTs is also lower
than the efficiencies of the separate devices (Morabito and Hendrick, 2019). These efficiencies
are still in the range of 70-80% and therefore acceptable for this research (Rehman et al.,
2015).

2.2 Design of the system

In the previous chapter, the system that is studied in this research is briefly described. It
consists of the wind turbines, the Ocean Batteries, the cable infrastructure between them
and the control that receives information about the generated power and the price market.
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This control should eventually be able to maximize the revenues of the system. In the future,
this system may become part of a smart grid, which is an innovation that is said to be the
next generation electricity grid. The smart grid has emerged from the accelerated need to
modernize the existing distribution network. The modernization of the distribution network
should be achieved by the introduction of technologies that assist with demand-side manage-
ment and revenue protection (Farhangi, 2009). The smart grid is part of the road towards
sustainability and the system in this study can therefore contribute to a sustainable future.
The research is centered around the energy flows in the system, which is explained in the next
section.

Energy flows in the system

Conceptually, it has been studied which energy flows occur within the system. As a result,
four different flows or energy are identified:

• From the generator to the storage (Egs)

• From the generator to the market (Egm)

• From the storage to the market (Esm)

• From the market to the storage (Ems)

The market can be seen as the customer in this system. The energy flow from the market to
the storage is initially not included in the control model. Rather it is used as an extension
to the model to observe the effect of including this connection. The flows of energy are
represented by Figure 8. It should be noted that the studied grid consists of multiple storage
systems and wind turbines, but that the market is treated as a single entity.

Figure 8: Depiction of the possible energy flows in the system.

The model that is developed focuses on optimizing the energy flows from a revenue perspec-
tive. When the energy is stored before it is sold to the customer, the energy is subject to
efficiency losses. For the level of detail that this thesis is focused on, it would be desirable to
express the efficiency of the Ocean Battery as a single number. The impact of the efficiency
losses is investigated in the next chapter.

There are several design considerations associated with the studied system. These design
considerations are listed below.

• Location: first, the location of the grid is of importance, as it influences the available
wind and the electricity prices corresponding to the chosen location.
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• Number of wind turbines: the number of wind turbines determines the maximum
output of the system in terms of power. The more wind turbines in the grid, the higher
the system output, but also the more Ocean Batteries may be incorporated.

• The type of wind turbines: by this the capacity of the wind turbine would suffice.
This factor would make a difference for the amount of Ocean Batteries connected to the
wind turbine.

• Number of storage systems in a cluster: based on the type of turbine and the
desired storage capacity, the number of storage systems in a cluster that is connected
to a single wind turbine, can be selected.

• Definition of interconnections: it should be defined which storage systems are con-
nected to one another and which storage systems are connected to a wind turbine. The
control model is developed such that the adjacency matrix of the system, displaying
the interconnections between storage units, wind turbines and the market, serves as an
input to the model.

• The cable capacities: the cable capacities play an important role in the amount of
electricity that can be sold to the electricity grid. For this research, cable capacities
have been excluded.

These considerations answer sub-question 2: What are the relevant considerations for the
design of the distributed system of Ocean Batteries and how may they be incorporated in this
research?

2.3 Wind energy

The considered power source in this research is wind energy. The power from wind turbines
serves as an input to the model. Wind energy is converted to electricity by a wind turbine
of which the rotor is connected to an electric generator (Hansen, 2015). When looking for a
suitable location of a wind farm, it appears from Figure 9 that the Northern European seas
have great potential for harvesting wind energy. In addition, these seas also have a seabed
with relatively low water depths, which makes them suitable for wind turbines. Due to these
characteristics, the Northern European countries are the frontrunners of the offshore wind
industry nowadays (Rodrigues et al., 2015). A location in the Northern European seas should
therefore be selected as the location for this research.

Input wind power production

From the conceptual model in Chapter 1 it was determined that predicted wind power pro-
duction is an input to the model, and from the resources it was mentioned that a historical
data set with power production is not readily available to run the model with and should be
generated. In order to generate the wind power data set, calculations should be made using
available wind data from the selected location.

Wind turbines convert wind energy into electrical energy as follows: wind energy contains
kinetic energy, which is first converted into rotational kinetic energy by the movement of
the blades that make up the turbine, and then into electrical energy by the generator. The
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amount of energy that can be converted is dependent on the wind speed and the swept area of
the turbine. A wind turbine consists of several components that enable the conversion from
wind energy into supplied electrical energy to the grid (Sarkar and Behera, 2012).

Figure 9: Annual European onshore and offshore mean wind speeds at an 80 meter height
(Rodrigues et al., 2015).

On average, a wind turbine situated at a beneficial wind energy site operates at about 35% of
its total possible capacity. The amount of electricity that can be produced by a wind turbine
is dependent on the following factors (Sarkar and Behera, 2012; Lakshmi and Vasantharathna,
2014; Siahkali and Vakilian, 2010).

1. Wind speed: wind speed and the power that may be generated by a wind turbine
are related through a power curve that depends on the type of turbine and its location.
Wind turbines start producing power at a cut-in speed, which is usually at a wind
speed of approximately 4 m/s. In addition, wind turbines stop producing power at
the cut-out speed due to safety measures, usually around 25 m/s. The maximum power
output is reached from the rated wind speed to the cut-out speed. When the wind speed
is between the cut-in speed and the rated speed, there exists a nonlinear relationship
between the generated power and the wind speed. The amount of power generated can
be described by the wind-power curve, which is a function of the wind speed to the
third power. This means that for example if the wind blows twice as hard, the power
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will increase with a factor eight. The variability in the available wind energy results in
the effect that the turbine operates at power levels that continually change.

2. Availability wind turbines: the availability of the wind turbines is dependent on its
down-time. When the machine is undergoing maintenance for example, the wind turbine
is not available. The availability of wind turbines is disregarded for this research.

3. Arrangement of wind turbines: the way the wind turbines are situated in the grid
matters for the amount of power produced by a wind farm. When a wind turbine is
placed inefficiently, the wind is taken by other wind turbines and its production will be
significantly lower. This effect is identified as the wake-effect (Adaramola and Krogstad,
2011) and is elaborated on below.

A wind farm location and configuration should be selected in order to produce a wind data
set. An imaginary wind farm, which is based on the Horns Rev wind farm located near
Denmark (Rudion et al., 2008), is selected to generate a wind data set. The configuration
of the Horns Rev wind farm including its cable infrastructure is depicted in Figure 10. The
imaginary wind farm will be referred to as OG-WindFarm from now on.

Figure 10: Configuration of the Hons Rev wind farm, which is located near Denmark (Rudion
et al., 2008)

The aim of this section is that a wind power production data set can be generated that serves
as an input to the control model. Eventually, the power output of the individual wind turbines
should be calculated from this study. The formula describing the calculation of the power
output of a single wind turbine is given by

P = 0.5 ·A · ρ · η · v3, (1)
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where
P is the power output in [W],
A is the swept area in [m2],
ρ is the density of air in [kg/m3],
η is the efficiency of the wind turbine [-],
v is the wind speed in [m/s] (Chen, 2008).

The efficiency of the wind turbine is composed of the power coefficient (the rotor efficiency),
the gearbox efficiency and the generator efficiency. First, the power coefficient, in equations
usually denoted by Cp, can achieve values of around 45% nowadays (Hansen, 2015). The
maximum theoretically achievable power coefficient is described by the Betz limit, which
states that no wind turbine can ever achieve an efficiency of more than 59.26% from an ideal
wind stream due to braking of the wind. The achievable values of the power coefficient in
practice are lower because of inefficiencies and losses related to configurations, frictions and
turbine designs (Ragheb and Ragheb, 2011). Second, the gearbox efficiency and the generator
efficiency have values close to 0.7 and 0.9 (Sarkar and Behera, 2012; Grauers, 1996). The
total efficiency of the wind turbine can therefore be calculated as

η = Cp · ηg · ηg. (2)

A wind turbine is rated at a certain power, implying that the wind turbine cannot produce
more than that power even if the power from the wind is high enough to generate more power.
The rated power is dependent on the capacity of the turbine. Equation 1 therefore only holds
for situations in which the wind speed is lower than the rated wind speed. In fact, a constraint
for the power output may be formulated taking into account the aforementioned cut-in and
cut-out speed as

P (t) =


0, v(t) < vi or v(t) > vo

φ(v(t)), vi ≤ v(t) < vr

Pmax, vr ≤ v(t) ≤ vo,
(3)

where
P (t) is the power output at time t in [W ],
v(t) is the wind speed at time t in [m/s],
vi is the cut-in wind speed in [m/s],
vr is the rated wind speed in [m/s],
vo is the cut-out wind speed in [m/s].

An example of a power curve for a specific wind turbine is depicted in Figure 11. From this
figure, the cut-in speed and the rated speed may be derived. To obtain the total power of the
wind farm, all the output powers of the individual wind turbines may be summed as

P (t) =

N∑
i=1

P (i, t), (4)

bounded by

0 ≤ P (i, t) ≤ Pr(i), (5)

21



Figure 11: A power curve for a 2 MW wind turbine as a function of the wind speed
(Moskalenko et al., 2010).

where
P (t) is the power output of the wind farm at time t in [MW ],
P (i, t) is the power output of wind turbine i at time t in [MW ],
Pr(i) is the rated power of turbine i in [MW ].

As Equation 4 already suggests, the power output of a wind farm with a number of wind
turbines with equal rated power is not simply the power output of a single wind turbine
multiplied by the number of turbines. The power output of a single turbine is dependent on
its location in the grid due to the aforementioned wake-effect.

The wake-effect

The wake-effect entails that the performance of a wind turbine is affected by the wakes of
other wind turbines in a wind farm. As a result of this interaction, the total energy output
and efficiency of the wind farm are reduced (Gebraad et al., 2017; Castellani et al., 2015).
Power losses due to wake effects may be between 20% and 45% compared to a wind farm
containing solely unobstructed turbines. The power loss is dependent on the distance between
the wind turbines and the operating conditions (Adaramola and Krogstad, 2011). Much
research has been executed on how these negative effects can be reduced or mitigated. Possible
solutions include placing the wind turbines at a larger distance from each other, placing the
wind turbines in a different configuration (Kusiak and Song, 2010), using coordinated control
techniques to mitigate the wake effects such that the energy production can be maximized.
An example of a coordinated control technique is that upstream wind turbines may reduce
power production to minimize the wake effects on downstream turbines (Gebraad et al., 2017).
In addition, yaw control may be implemented to change the direction and the velocity of the
wake forming that occurs behind a turbine in a wind farm (Gebraad et al., 2016). The wake
effect differs with wind direction and the efficiency of the wind farm always differs dependent
on the wind velocity and wind direction.
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Several papers focused on studying the wake effects on the power output for the aforemen-
tioned the Horns Rev wind farm (Moskalenko et al., 2010; Porté-Agel et al., 2013; Rudion
et al., 2008; Barthelmie et al., 2010; Wu and Porté-Agel, 2015). For their research, it was
attempted to study the wake effects on the various rows or distances of the wind farm and
translate this to a normalized power for several wind directions and wind velocities. Re-
sulting normalized power outputs are depicted in Figure 12 and Figure 13. An interesting
phenomenon is that power losses due to the wake-effect are significantly higher for the wind
turbine in the second row compared to the other rows (Adaramola and Krogstad, 2011).

Figure 12: Normalized power output as a function of turbine row for a wind direction with
minimal deviation (Porté-Agel et al., 2013).

Figure 13: Normalized power output as a function of turbine row for two wind directions with
minimal deviations (Wu and Porté-Agel, 2015).

From the results of these papers, the imaginary OG-WindFarm is created with average effi-
ciencies, or wake losses, for the individual wind turbines in the wake farm. The OG-WindFarm
consists of 64 wind turbines, in a grid of 8 by 8, with the same configuration angle as the
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Horns Rev wind farm (7 ◦). Figure 14 depicts the configuration of the OG-WindFarm with
different wind directions and the effects on the various rows of the wind farm. The left grid
(a) in Figure 14 corresponds to the upper normalized power graph in Figure 13 and the right
grid (b) in Figure 14 corresponds to the bottom normalized power graph in Figure 14. From
the normalized power output in the figures an estimation has been made for the different rows
in the OG-WindFarm. The results are listed in Table1 and Table 2. Table 1 represents the
case when the wind blows from a straight direction as in Figure 14(a) and Table 2 represents
the case then the wind blows from a slantwise direction as in Figure 14(b). The number of
turbines in a specific row is also mentioned as this differs for the wind directions.

Figure 14: A depiction of the configuration of the OG-WindFarm with different wind direction
and how they affect the rows in the farm in (a) and (b).

Turbine row 1 2 3 4 5 6 7 8

# of turbines 8 8 8 8 8 8 8 8

Efficiency 100% 72% 72% 72% 70% 70% 68% 68%

Table 1: Efficiencies of the rows of turbines when the wind is blowing straight.

Turbine row 1 2 3 4 5 6 7 8

# of turbines 15 13 11 9 7 5 3 1

Efficiency 100% 83% 81% 77% 74% 74% 72% 70%

Table 2: Efficiencies of the rows of turbines when the wind is blowing slantwise.

Turbines are denoted by TN . Each wind turbine, from T1...T64 is subject to efficiency losses,
dependent on the row that the wind turbine is located in. However, as the wind blows
from various directions, the row in which the wind turbine is located differs over time. It is
attempted to approach these variations as close as possible, but in an efficient way. When
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taking only the straight and slantwise wind directions into account, one is left with eight wind
directions that are depicted in Figure 15(a). Taking into account eight different efficiencies
corresponding to wind directions for each wind turbine results large computational efforts. It
has therefore been decided to only take into account the four main wind directions of which
the boundaries correspond to the excluded wind directions, depicted by the dashed lines in
Figure 15(b).

Figure 15: Converting eight wind directions (a) to four wind directions (b) in order to generate
a wind power data set.

Taking four different wind directions means that the efficiencies in Table 1 and 2 should be
combined. In order to do so, the combined efficiencies corrected for the number of turbines
in a row are taken to assign an efficiency per turbine row. The results are given in Table 3.

Turbine row 1 2 3 4 5 6 7 8

Efficiency 100% 79% 77% 75% 72% 72% 69% 68%

Table 3: Combined efficiencies for the turbine rows.

Data set generation

In order to make the calculations, a specific wind turbine should be selected. Data was
retrieved for the MHI Vestas Offshore V164-8.0 MW (turbine models.com, 2016). The power
curve of the MHI Vestas Offshore V164-8.0 MW is depicted in Figure 16.
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Figure 16: The power curve for the MHI Vestas Offshore V164-8.0 MW turbine.

The relevant parameters of the MWI Vestas Offshore V164-8.0 MW and the other parameters
required for calculating the power as in Equation 1 are listed in Table 4. The efficiency of
the turbine was calculated from Equation 1 by using the rated power, Pr, at the rated wind
speed, vr.

Parameter Value Description [units]

Pr 8 Rated power of the wind turbine [MW ]
vr 4.0 Rated wind speed [m/s]
vo 25.0 Cut-out wind speed [m/s]
vi 13.0 Cut-in wind speed [m/s]
A 21164 Swept area [m2]
η 0.2809 Efficiency of the wind turbine [-]
ρ 1.225 Density of air [kg/m3]

Table 4: Model parameters for generation of a wind turbine power production data set.

To calculate the power of a wind turbine in the aforementioned grid, a location should be
selected that wind data can be retrieved from. A location in the North Sea is chosen and its
data is received from the KNMI (KNMI, 2019). For the calculations, the hourly data of 2017,
2018 and 2019 are used. Whenever the wind data was not available, the data of the days
before as used to replace these values. The model that was developed to allocate the power
to each wind turbine on a given time step is included in Appendix A. A validation of the
data used and generated is also provided in this appendix. The data set generated is used as
an input to the control model.

Limitations

There are factors that have an influence on the generation of wind power that have been
disregarded in this study. Both factors may have a significant effect on the power production
of a wind turbine, but are not included in this research for simplicity reasons. These factors
are as follows.
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• Maximum ramp-up/down rate: A wind turbine has a maximum ramp-up/down
rate, which means that its power production can only increase or decrease with a max-
imum rate per time unit. For example, a wind turbine cannot go from not moving at
all to operation at rated wind speed within a second. Usually, a wind turbine can be
ramped up with not more than 10% of its rated power per minute (Singh and Singh,
2009).

• Time it takes to face the wind: When the wind is changing direction, it takes some
time for a wind turbine to face the wind again and harvest the maximum amount of
wind energy.

2.4 Electricity markets

The second external input for the model is the price of electricity. In this section, all informa-
tion required to understand the relevant electricity markets and how to obtain the required
historic data is explained. Once a data set containing electricity prices per time step is
obtained, the revenues from the model can be calculated.

Since the 90s, many countries have opened their electricity markets to manage the electrical
power system as opposed to the old system where electricity was regulated through a state
monopoly. The EU has even imposed the open electricity markets on its countries in order
to work towards a deregulated electricity market, where production and distribution are
separated from transport. The purpose of a deregulated electricity market is twofold (Kiener,
2006):

• To encourage competition between players on the market in order to reduce the costs
of electricity. This results in the price of electricity being determined by the supply and
demand on the market instead of being determined by a single operator.

• To enable the free circulation of electricity between the countries within the EU to strive
for a joint power system which has a common market, as sharing energy resources is
one way to stabilize the power system.

A current development in this area is that more and more renewable power sources are adopted
in the power systems, while the electricity demand also increases. Both factors influence the
power systems’ operation and planning significantly. Given this factor in combination with the
rapid development of communication technology, the Real-Time electricity Markets (RTM)
are implemented. Building an efficient and effective transaction platform in order to balance
the power system operations can be considered one of the main functions of RTMs (Wang
et al., 2015). Balancing the power system operations, or balance management, includes
continuous balancing of supply and demand which ultimately leads to a stabilized power
system and secured electricity supply. Balance management is a crucial practice as the total
production has to equal the total consumption at each point in time to have a stabilized
system frequency. When the grid frequency starts to deviate from its reference value, the
system runs out of balance and ultimately the system may collapse. The electricity markets
should be designed to deal with this property (KULEnergyInstitute, 2015; van der Veen and
Hakvoort, 2016).
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Figure 17: An overview of the different electricity markets and their relation to the actual
point of delivery (KULEnergyInstitute, 2015).

Balance management is executed by the Balance Responsible Parties (BRPs) and Balancing
Service Providers (BSPs). The physical process that is concerned with the generation and
consumption of electricity remains managed by the generators and consumers, respectively.
Therefore, the BRP can be described as an administrative entity that is responsible for
balancing a portfolio of production and consumption connections, whereas the BSPs are
responsible for balancing the imbalances caused by the BRPs and are directly paid for their
services by the BRPs (van der Veen et al., 2011; KULEnergyInstitute, 2015). The design of
electricity markets is such that it is able to deal with imbalances. There exist different types
of electricity markets, of which some start years before the actual delivery, while others end
after the actual delivery. An overview of the different electricity markets is given in Figure
17 (KULEnergyInstitute, 2015).

The day-ahead market is the market where is electricity is traded one day before the actual
delivery. When trading on the day-ahead market finishes, the market zone has to be in bal-
ance. The intra-day market is where the electricity is traded on the day of delivery. It enables
market participants to correct for imbalances that occur on the day itself, for example when
there is a sudden deviation from the expected electricity production. Finally, the balancing
markets take action when there is a real-time imbalance by activating reserves (KULEnergyIn-
stitute, 2015). The current trend of the day-ahead and intra-day market coupling between the
countries in Europe enables balancing market integration even further (van der Veen et al.,
2011). The EPEX SPOT is the exchange for the power spot markets in Europe and covers a
number of countries that are situated in the heart of Europe. In total, these markets represent
50% of the European electricity consumption. A few of these countries that are close to the
OG-Windfarm are the UK, The Netherlands and Germany (EPEXSPOT, nd).

Electricity markets that would suit the OG-WindFarm best would display significant fluctu-
ations with peaks, due to the storing potential of the Ocean Grazer and the desired situation
where the electricity may be stored when the prices are low and the stored electricity may
be sold when the prices are high. In addition, the price market should be close to the chosen
location of the OG-WindFarm to limit transportation costs. The Dutch electricity market
would be a nearby and suitable choice. The Dutch electricity market can be split into the
day-ahead market, the intra-day market and the balancing market, which is the automatic
Frequency Restoration Reserves (aFRR) market (Bijl, 2019).
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2017 2018 2019

90.5% 89.6% 92.7%

Table 5: The percentages that the prices of the aFRR-up market and aFRR-down market are
equal.

For this research it has been decided to select two markets and execute case studies on both of
them: one non-balancing market and one balancing market. For the non-balancing markets,
there are two options: the day-ahead market and the intra-day market. The Dutch day-ahead
market volume in 2018 was 37.5 TWh, while the Dutch intra-day market volume in 2018 was
only 2.1 TWh (EPEXSPOT, 2019). Since the day-ahead market displays a much larger share
than the intra-day market, the electricity prices, ξ (e/MWh), of the day-ahead market are
selected for this research. This data is publicly available and was retrieved from the ENTSOE
Transparency Platform (ENTSOE, 2019). In this data set, the electricity prices are given per
hour.

The balancing market that is used for this research is the aFRR market. This market consists
of the aFRR-up and aFRR-down market. The aFRR-up market is concerned with delivering
more power to the network by either consuming less energy or producing more energy, while
the aFRR-down market is concerned with extracting power from the network by execution
of the exact opposite: consuming more energy or producing less energy (TenneT, 2018). The
prices for the aFRR-up and aFRR-down market were retrieved for the years 2017, 2018 and
2019 from the website of TenneT (TenneT, 2019). In this data set, electricity prices are
provided per 15 minutes. From this data it was observed that the prices of electricity on the
aFRR-up and aFRR-down markets are often equal. Table 5 depicts the percentage of time
that the prices of the aFRR-up market and aFRR-down market are exactly the same. From
the values of this table it is concluded that the model can be run with either of these price
markets without the results deviating significantly from one another. Data has been retrieved
from the years 2017, 2018 and 2019 to compare model outcomes from several years and gain
more confidence in the resulting revenues. Table 6 depicts the highest, the lowest and the
mean price in the data sets retrieved. From this table it can be observed that the prices of
the aFRR-up market fluctuate between values that are significantly more extreme than the
prices of the day-ahead market. In addition, negative prices occur in the data set, which
has the implication that one pays for supplying electricity to the market and receives money
when absorbing electricity from the market. The latter may also be potentially interesting
for Ocean Grazer BV. Even though balancing efforts are already in a matured state by the
network across Europe, prices still fluctuate significantly, showing potential for the Ocean
Batteries. In addition, with the increasing amount of renewable energy sources introduced in
the market, prices are expected to fluctuate even more due to the intermittent character of
renewable energy sources, increasing potential for the Ocean Batteries even further. There
are some assumptions regarding the price markets that are applied in this research:

• Perfect forecasting: since a historical data set is selected, the assumption exists that
prices are perfectly known in advance. For the day-ahead market this is close to reality,
since prices are revealed one day in advance. For the aFRR markets this is unrealistic, as
prices are determined in real time. However, for this research it is assumed that these
prices are also known in advance, as previous research has also taken this approach
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Price market Highest price Lowest price Mean price

Day-ahead(2017) 151.07 1.74 39.31

Day-ahead(2018) 175.00 0.55 52.53

Day-ahead(2019) 121.46 -9.02 41.20

aFRR-up(2017) 906.67 -500.00 43.18

aFRR-up(2018) 515.15 -418.64 52.41

aFRR-up(2019) 936.12 -487.65 42.55

Table 6: The highest, lowest and mean prices of the retrieved data sets. All prices are in
e/MWh.

(Helseth, 2018; Bijl, 2019). As a result, the model will overestimate the profitability
with respect to the aFRR market.

• Unconstrained production: for this research it is assumed that there are no con-
straints regarding the amount of electricity produced. Essentially this means that the
production is not restricted by the demand of the market.

• No selling limitations: electricity can be sold at each hour and these hours can be
decided by the electricity producer.

• Instant production: electricity can be produced instantly. The (small) start-up time
that a turbine requires to operate at full capacity is disregarded for this research.

• Positive prices: from Table 8 it is derived that prices can attain a negative value.
When this occurs, the price is set to zero such that the energy is never sold for a
negative price.

A requirement for the control is that it is built in such a way that different price market data
sets can serve as an input to the control model. It becomes increasingly important in the
future to sell the electricity at real time, or close to real time, justifying the assumption that
the electricity can be sold at each moment. From now on, the aFRR-up market is referred to
as the aFRR market. In this chapter, research question 2, Which external input is required
for the control model?, was answered.
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3 Dynamical model of the Ocean Batteries

Before any control model can be developed, there has to be a model describing the dynamics
of the Ocean Batteries. As explained earlier in this chapter, in the ideal situation this model
would only be represented by an efficiency describing the losses as a result of the pump and the
turbine, which functions are essentially performed by the same device. To find this efficiency,
however, there are a number of factors that should be considered. These factors are first
considered on a conceptual level before deciding whether or not to include their numerical
values in this research. This chapter is dedicated to investigating the effects of these factors
and eventually finding the resulting efficiencies.

The technicalities of the Ocean Battery

Before it can be defined which factors influence the efficiency losses of the Ocean Battery,
it should be investigated which elements are part of the Ocean Battery design. Figure 18
displays the current design of the Ocean Battery. For this research only the parts that the
fluid can move through and therefore lose energy in are of interest. In the case of the Ocean
Battery these parts are identified as tubes holding fluid, the flexible storage bladder, pipes
through which the fluid flows and a device that acts as a pump and a turbine. As mentioned
before, the electricity from wind turbines used to drive the pump of the Ocean Battery could
also directly be sold to the electricity grid. It is therefore expected that when it is decided
to sell the energy from the storage, the energy from the wind turbines should be sold to the
electricity grid as well. Moreover, a decision to store the energy from the wind turbines in this
case results in efficiency losses due to the storage process and is therefore undesirable. Based
on this reasoning it is decided to continue the research with a PaT instead of a separate pump
and turbine. Below the aforementioned elements of the Ocean Grazer storage that result in
efficiency losses are explained in more detail.

3.1 Factors affecting the efficiency of the Battery

The identified factors that have an influence of the efficiency of the Ocean Battery are as
follows.

1. Losses due to the efficiency of the PaT

These losses consist of the losses due to the pumping function and the losses due to the
turbine function of the PaT. The performance of the Ocean Battery largely depends
on the type of PaT that is installed: PaT devices are designed for a specific flow rate,
available head and pipeline system. Nevertheless, these devices operate across a range of
the aforementioned specifications, only at a lower efficiency than the optimum conditions
(Morabito and Hendrick, 2019).

Variable pressure difference

The design of the Ocean Battery is such that the PaT is subject to a varying pressure
difference. This pressure difference occurs through the changing water level in the fluid
reservoirs (see tubes in Figure 18). As a result, the pressure that has to be overcome by
the PaT to pump the water to the bladder and vice versa changes over time. A change
in pressure is equivalent to a change in head, which can be calculated by

H = D − hf , (6)
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Figure 18: Example of the Ocean Grazer storage system design.

where
H is the head that the pump is subject to in [m],
D is the depth of the Ocean Grazer storage in [m],
hf is the height of the fluid in the concrete pipes in [m].

The head directly influences the flow rate through the pump according to

Q =
P · ηp
ρ · g ·H

, (7)

where
Q is the flow rate in [m3/s],
P is the pump power in [W ],
ηp is the efficiency of the pump [−],
ρ is the density of the fluid in [kg/m3],
g is the gravitational acceleration in [m/s2],
H is the head that the pump is subject to in [m] (Mousavi et al., 2019).

From this equation it can be derived that the flow rate changes over time. This affects
the amount of fluid that can be pumped into the bladder and similarly the amount
of energy that can be stored. For this research, effects of the variable pressure are
excluded.

Another factor to consider regarding the efficiency of the PaT is the start-up time
and its corresponding efficiency. As the PaT cannot operate as a pump and turbine
simultaneously, the device has to be reversed whenever its function changes. Although
relatively small, a certain amount of time is required to reverse the PaT and to reach its
full potential again, which is the start-up time (Nicolle et al., 2014). For this research it
is assumed that the effects of the start-up efficiency on the results are insignificant and
it will therefore not be incorporated. However, the lifetime of a PaT can be optimized
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when it is reversed as little as possible and this factor may become important when
costs of the system are also considered.

For the level of detail required in this research it is assumed sufficient to assign a
constant efficiency to the pump and turbine function of the PaT. From the literature and
previous research it was determined that the following are realistic values (Neutrium,
2012; Dijkstra et al., 2016):

• Efficiency of the pump function ηp = 0.9.

• Efficiency of the turbine function ηt = 0.85.

2. Losses in the pipes: It should also be considered that friction losses occur when
the fluid flows through the pipes (Dijkstra et al., 2016).The value of the friction losses
depends on the shape and length of the pipes. It requires detailed calculations to find
an accurate efficiency value for these losses. Previous research to find this value has
been studied in order to make a realistic estimation (van Kessel, 2020). Based on this
work, a small but significant value is assumed to represent the losses in the pipes as a
single efficiency value as follows:

• Efficiency of the pipes ηc = 0.9.

3. Other losses: It is plausible that there are other losses due to the displacement of
the fluid inside the Ocean Battery. For this research it is assumed that these losses are
not significant enough to be incorporated. A detailed study about the efficiency of the
Ocean Battery may look at additional losses inside the system.

In this section, the losses in the system have been identified and a number has been assigned
that describes the efficiency as a single value that results from the losses. In the next section,
the equations that were used for the model of the Ocean Battery dynamics are listed and
explained.

3.2 Equations describing the Ocean Battery dynamics

The dynamics of the Ocean Battery can be divided into two parts: the pumping process
(’storing’) and the turbine process (’draining’). It is required to gain insight in the behavior
of the Ocean Battery before designing a controller. Referring back to the goal of this thesis,
ultimately the interest is focused on the amount of revenue that is generated by the system.
Revenue is generated by multiplying the energy sold by the prices at that specific time.
Prices of energy are per MWh of energy sold. Therefore, the behavior of the Ocean Battery
is described in terms of how the state of the storage units, which is the storage level, changes
over time energy. The change of energy in the storage is calculated by

Ėt = Estore,t − Edrain,t, (8)

where
Ė is the rate of change of energy at time t in [MWh],
Estore is the amount of energy stored at time t in [MWh],
Edrain is the amount of energy drained at time t in [MWh].
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In order to make this equation suitable to be implemented in a model that can be evaluated
numerically on a digital computer, the system is discretized using Euler’s method by

dx

dt
=

[x(t0 + ∆t)− x(t0)]

∆t
:=

x(k + 1)− x(k)

Ts
, (9)

from (Kulakowski et al., 2007).

When applying Euler’s method to Equation 8, the change of energy in the system can be
displayed by

Ek+1 = Ek +
Ts

3600
(Estore,k − Edrain,k), (10)

where TS represents the sampling time in [s].

A suitable sampling time is determined after the storing and draining process are explained
in more detail. This is executed below.

Storing process

When the storage is filled, the fluid is pumped from the tube reservoirs to the flexible bladder.
Equations describing this process account for the efficiency losses in the system and the
available space for energy in the bladder. The available energy is described by

Eav,k+1 = Emax − Ek, (11)

where
Eav is the available space for energy in the bladder [MWh],
Emax is the maximum storage level in [MWh].

The potential amount of energy that can be pumped into the bladder is now given by

Ein,k =

{
Ts

3600 · Pp, Eav,k >
Ts

3600 · Pp

Eav,k, else,
(12)

where
Ein is the amount of energy that can be pumped into the bladder in [MWh],
Eav is the available space for energy in the bladder [MWh],
Pp is the maximum power of the pump in [MW ].

The amount of energy that can be stored within one time step can now be calculated by

Estore,k = Ein,k · ηP , (13)

where
Estore is the energy stored at time k in [MWh],
Ein is the amount of energy that can be pumped into the bladder in [MWh],
ηP is the efficiency of the pumping mode of the PaT, calculated as ηp · ηc [−].
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Draining process

The steps that have to be undertaken to calculate the amount of energy that can be drained
from the bladder at one time step are similar to the steps for the storing process. Small
changes are made to the previous equations to finally describe the energy that can be drained
from the bladder. First, Equation 11 is substituted by the amount of energy left in the
bladder that can be drained to the tube reservoirs. If this amount is not sufficient to use the
full capacity of the PaT in turbine mode, the energy has to be adapted. Equation 12 from
the storing process is therefore substituted by

Eout,k =

{
Ts

3600 · Pt, Ek >
Ts

3600 · Pt

Ek, else,
(14)

where
Eout is the amount of energy that can be drained from the bladder in [MWh],
Ts is the sampling time in [s],
Pt is the maximum power of the turbine mode of the PaT in [MW ],
Ek is the storage level at the previous time step in [MWh].

The amount of energy that can be drained within one time step can now be calculated by

Edrain,k = Eout,k · ηT , (15)

where
Edrain is the energy drained at time k in [MWh],
Eout is the amount of energy drained from the bladder in [MWh],
ηT is the efficiency of the turbine mode of the PaT, calculated as ηt · ηc [−].

Calculation of the maximum storage capacity

Both the storing process and draining process depend on a variable that has to be calculated,
which is the maximum storage capacity of the Ocean Battery. This capacity is dependent on
the depth at which the Ocean Battery is situated and can be calculated by using the pressure
of the ocean, the pressure of the atmosphere and the maximum volume of the storage as

Emax = Vmax ·∆p. (16)

The volume is, contrary to the maximum energy, not dependent on depth. Equation 16 was
derived from rewriting Equation 7 into

Q = P · ηP ·∆p, (17)

by using
p = ρ · g ·H, (18)

where
p is the pressure in [Pa],
ρ is the density of the fluid in [kg/m3],
g is the gravitational acceleration in [m/s2],
H is the head that the PaT is subject to in [m].(Neutrium, 2012)

Using Q = V/t and substituting this together with Equation 17 into E = P · t leads to the
formula in Equation 16.
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3.3 Simulations

A simulation is executed to observe the behavior of the Ocean Battery when storing up to
almost full capacity and draining to an almost empty bladder again once. When the full
capacity is taken, just slightly before the storage reaches full capacity, the amount of energy
that can be pumped in is infinitely small and it therefore takes a long time to fill the storage
completely. The same holds for the draining process. The parameters used in this simulation
are listed in Table 8. Hereby it is assumed that the Ocean Battery is placed in water with
a depth of 40 meters and that the PaT has a maximum power of 1 MW. The PaT operates
at this power unless the resources are not sufficient anymore. The maximum volume was
calculated from a simplified version of the Ocean Battery design. The calculation of the
maximum volume is included in Appendix B.

Parameter Value Description [units]

Ts 900 Sampling time [s]
ηp 0.85 Efficiency of the pump mode [−]
ηt 0.9 Efficiency of the turbine mode [−]
ηk 0.9 Efficiency of the pipes [−]
pocean 400000 Ocean pressure [Pa]
patm 100000 Atmospheric pressure [Pa]
Vmax 25132 Maximum volume of bladder [m3]
Pp 1 Maximum power of the pump mode [MW ]
Pt 1 Maximum power of the turbine mode [MW ]

Table 7: Model parameters.

The efficiency results are listed in Table 8. Previous research about the efficiency of the
Ocean Battery concluded that the round trip efficiency was close to 56% (van Kessel, 2020),
which is a bit lower than the results in this research. This difference can be explained by
the amount of simplicity that was introduced in this research, as in this research it was not
accounted for changing efficiency as a result of the changing flow rate. Therefore, the model
in this research overestimates the efficiency of the system. Nevertheless, the efficiency only
deviates a few percent from the efficiency of previous research and the presented model is
therefore accepted. One of the main purposes of the simulation was to verify the efficiency

Pump mode efficiency 0.77

Turbine mode efficiency 0.81

Round trip efficiency 0.62

Table 8: Efficiencies of the Ocean Battery.

of the pump mode and turbine mode of the PaT, and the round trip efficiency of the Ocean
Grazer storage. The efficiency is calculated by comparing the total energy input and the
total energy output, both for the whole process and for the separate pumping and draining
processes.
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Figure 19: Results change in energy level from filling and draining the bladder once.

Simulation results

The behavior of the Ocean Battery with respect to filling and draining the bladder is depicted
in Figure 19. The calculated maximum storage capacity of the Ocean Battery is Emax = 2.44
MWh. From this figure it can be derived that the model behaves as expected: the energy
is stored until the storage is almost full, whereby storing the last bit of energy has a curved
shape. Draining the storage happens thereafter until it is almost empty again. From the
simulations it is observed that filling and draining the storage once takes approximately 6.5
hours. The efficiencies that resulted from the model by comparing the actual energy output
to the energy input are exactly the same as the efficiencies in Table 8. The Python model
used for these simulations is included in Appendix C.

3.4 Validation of the dynamical model

An essential part of the development of the model is to validate a model’s result and to gain
confidence about its correctness (Robinson, 1997; Sargent, 2013). Several techniques can be
used to validate a model. To validate the dynamical model of the Ocean Battery, the following
quantitative validation techniques are identified as suitable: parameter variability (sensitivity
analysis) and analytical calculations.

Parameter variability

Parameter variability, or sensitivity analysis, can for example be executed by changing the
value of an input parameter to observe the effect on the model’s output. The model is
validated when the outcomes display the same relationships as would occur in the real system
(Sargent, 2013). For the simulations, a sampling time of Ts = 900s was selected, as previous
research has shown this is a suitable time step for simulating the Ocean Battery (Dijkstra
et al., 2016). A sensitivity analysis has been executed on the sampling time to find the effects
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of changing this parameter. To simulate continuous time, a sampling time of Ts = 0.01s
has been selected. This sets a reference value for the other sampling times. When using a
larger sampling time, the situation may occur in which the storage is filled to its maximum
before the time step has finished. Therefore, the simulation time, which is the time it takes
for the Ocean Battery to fill and drain once, is expected to increase when increasing the
sampling time.The disadvantage of the longer simulation time is that when the PaT is in
pump mode during a time step and the storage reaches its maximum capacity before the end
of the time step, there is a certain amount of time that nothing can happen with the energy
in the storage. The results of the sensitivity analyses are presented in Table 9. From the
table it can be derived that the model behaves according to expectation, as the simulation
time increases, and all sampling times still present the same round trip efficiency. Based on
these results it is concluded that the Parameter variability validation was successful.

Sampling time [s] Simulation time [s] Round trip efficiency

0.01 20269 0.62

300 21000 0.62

900 22500 0.62

1200 24000 0.62

1800 25200 0.62

3600 36000 0.62

Table 9: Relation between the sampling time and the total simulation time when filling and
draining the storage once.

Analytical calculations

Analytical calculations belong to the category of validating a model with the results of other
(validated) models. When a model is simple enough, analytical calculations are a suitable
method for validation (Sargent, 2013). For the dynamical model of the Ocean Battery, it is
calculated analytically how long it would take to fill and drain the storage once. The results
of the calculations are depicted in Table 10. The results show that the difference between
the total time of the simulation model and the analytical calculations is only 0.1%. This
very small difference can be explained by the fact that the once the storage is almost full
or almost empty, the PaT cannot operate at full capacity anymore, while for the analytical
calculations it was assumed that the PaT could always operate at full capacity. Nevertheless,
the difference is small enough to conclude that the dynamical model of the Ocean Battery is
valid. The analytical calculations are included in Appendix D.

Storing time [s] Draining time [s] Total time [s]

Simulation model 11498 8796 20295

Analytical calculations 11485 8784 20269

Table 10: Comparison between the simulation model and analytical calculations.
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3.5 Dynamical model for the distributed system

A few changes have to be made to the dynamical model in order to fit the distributed system
of Ocean Batteries. First, the amount of energy that is pumped into storage is dependent
of energy production from the wind turbines. This factor is added to the model. Second,
the dynamical model has to be adapted such that it fits multiple storage units and multiple
energy sources. As a result, the control input u consists of all variables necessary to control
N Ocean Batteries and wind turbines, which can be explained as follows by identifying which
actions influence the state of the system.

• uRG controls the amount of energy that storage i receives from wind turbine j at time
step k. As there may be more than one wind turbine that has a connection to storage
i, the sum of the energy received by all wind turbines that have a connection to storage
i is added to the energy in storage i.

• uRS controls the amount of energy that storage i receives from neighboring storage j
at time step k. As again, there may be several storage units connected to storage i, the
sum of the energy received from the neighboring storage units is added to the energy
in storage i.

• uSS controls the amount of energy sent to neigboring storage j from storage i at time
step k. As explained above, the sum is taken of all energy sent to neighboring storage
units and this value is subtracted from the energy in storage i.

• uSC controls the amount of energy that is sold from storage i to the electricity grid at
time step k. As the electricity grid is a single entity, there can be only one value that
is subtracted from the energy in storage i.

• uGC controls the amount of energy that is sold from wind turbine i to the electricity
grid. This control variable does not appear in the state of the Ocean Batteries, but does
in the revenue calculations.

The dynamical model is expanded such that it calculates the states of all Ocean Batteries in
the system. The final equation for calculating the state of individual storage i is formulated
as

Ei,k+1 = Ei,k + ηP

#G∑
j=1

uRG
i,j,k · EG

j,k+1 + ηT · ηP
#S∑

j=1,i 6=j

uRS
i,j,k · Ej,k

−ηT · Ei,k

 #S∑
j=1,i 6=j

uSSi,j,k

+ uSCi,k

 , i = 1,..,S,

(19)

where
Ei is the storage level of storage i in [MWh],
EG

j is the energy generated by wind turbine j in [MWh],
S is the number of storage units in the system,
G is the number of wind turbines in the system,
uRG, uRS , uSS , uSC are the control variables to be determined by the optimization [−].
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Model assumptions

A few assumptions are made for the dynamical model. These assumptions are listed below.

• There are no energy losses inside the cables. This assumption is not realistic, as there
are always energy losses in a cable. However, for this research it is out of the scope to
include cable lengths. When the cable lengths are within acceptable range, the cable
losses are expected to be only a few percent (Commission et al., 2007).

• Electricity can flow through cables in both ways, implying that electricity can go back
and forth between the storage units in the system.

• Cables are not restricted by a cable capacity, which means that the amount of electricity
that is allowed to flow through a single cable is unlimited.

• The model is linear, implying that the state of the system is not subject to non-linearity
with respect to the amount of energy stored or sold.

• The Ocean Batteries and wind turbines have no down-time, which means that they are
never out of operation.

By obtaining the dynamical model for the distributed system of Ocean Batteries, sub-question
3, how can the dynamical model of the Ocean Battery be developed?, is answered and the
development of the dynamical model is finished.
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4 The control systems model

The goal of this thesis is to design a control model that ensures that revenues of the distributed
system of Ocean Batteries are maximized. Revenues are maximized when the energy is sold
from the storage units and the wind turbines when the prices are favorable. Therefore, a
control strategy has to be adopted to determine when to sell the energy from the storage
units and the wind turbines. The aim is to adopt a control strategy that accomplishes
the highest possible performance with the resources available. Before the control strategy
is selected, the type of control is specified. In this section, a brief literature review about
possible control strategies is conducted. Thereafter a suitable control strategy is selected and
the corresponding control model is developed.

4.1 The distributed control system

A Distributed Control System (DCS), is a control system in which each subsystem contains
its own control, as opposed to the central control system that controls the actions of all
subsystems. The DCS ensures that the subsystem executes the necessary actions that lead to
the desired state of the subsystem. Although each DCS has its own autonomous controller,
there can still be an operator that controls the state of the whole system centrally.

The aim is to maximize the revenues that can be generated by the system consisting of the
Ocean Batteries and the wind turbines as a whole. As the actions of the individual Ocean
Batteries affect one another, it seems most promising to adopt a supervisory control that
assigns the information on the desired state of the subsystems by means of control variables to
the Ocean Batteries and wind turbines. Optimal integration of all subsystems into the whole
system studied in this research is ensured when a supervisory control is adopted. Resulting
revenues from the chosen control strategy are as high as possible with the given resources
from adopting this type of control. Previous research has shown that adopting a supervisory
control is a suitable choice for renewable energy systems (Qi et al., 2010, 2011). In literature,
the possibility to decentralize the control actions of the subsystems completely has also been
investigated. One of the limitations of a central control system, which is the complexity of the
computation, can be overcome by decentralizing these control systems, but an optimized state
of the system as a whole cannot be ensured (Kumar et al., 2005; Qi et al., 2012). Therefore,
for this research it has been decided to adopt a central supervisory control system to inform
the distributed controllers of the subsystems about their optimal control variables u.

4.2 Control strategies

For the evaluation of control strategies, the research goal and degree of complexity in the
system are considered. To enable maximization of the revenues, a control strategy is selected
that can deal with optimization problems. In addition, the control strategy should be able to
deal with constraints on the state of the system. If there is a suitable control strategy that
has sufficient predictive power to determine when the energy should be stored and sold to the
market based on the electricity prices and the weather forecast, this should be the preferred
control strategy considering the price peaks and no-production periods that occur in the data
sets as described in Chapter 2. From literature it was derived that common control strategies
can be categorized as Rule Based Control (RBC) or Model Predictive Control (MPC). RBCs
operate at pre-defined set points for the market prices for example to deal with energy systems
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efficiently. On the other hand, MPC can predict future states of the system based on input
data and optimizes for example the revenues of the system over a sliding horizon that is
subject to an objective function (Clauß et al., 2017). In the subsections below both types of
control strategies are explained in more detail.

Rule Based Control

Rule Based Controls are a common approach for controlling power systems and are suitable
to be implemented for simulations. Other advantages include concept simplicity, broad appli-
cability and these type of controls are known as computationally fast (Lee and El-Sharkawi,
2008; Galus et al., 2010). In addition, updated states can easily be calculated by RBC that
uses decision rules to execute this (Clauß et al., 2017). An example of a decision rule in this
context is that the energy stored in the Ocean Grazers is sold when the price of electricity
exceeds a certain value, set as the threshold price. Although there are many advantages to
Rule Based Controls, there is also a major disadvantage as RBCs are not able to optimize the
overall system behavior (Lee and El-Sharkawi, 2008; Galus et al., 2010; Clauß et al., 2017).

Model Predictive Control

In short, Model Predictive Control can be described as a strategy that is able to make a
forecast on the state of the system. where Rule Based Control is not able to optimize the
overall system behavior, MPC is (Meral and Çeĺık, 2019). MPC guarantees stability of the
system for all conditions, which leads to the strategy being assumed one of the advanced
control methods (Darabian and Jalilvand, 2017). With MPC, an optimization is conducted
by predicting the optimal state of the system now based on the performance of the system over
a predefined time horizon (Galus et al., 2010). In order to achieve this, for MPC knowledge
is required on the controlled output desired trajectory, or the behavior of the system with
respect to for example electricity price (Abdeltawab and Mohamed, 2015). Model Predictive
Control is considered one of the most promising developments as it is able to take into account
the future weather and electricity price forecast (Clauß et al., 2017), which is precisely what
is required of the control strategy. The disadvantages of MPC that are discussed in literature
are that MPC is computationally demanding and sensitive to parameter changes (Galus et al.,
2010; Bouzid et al., 2015).

Comparison between RBC and MPC

When comparing both control strategies, a trade-off analysis on the advantages and disad-
vantages of the control strategies has resulting in the following. For this research it is decided
that although Model Predictive Control is computationally demanding, it satisfies the re-
quirements specified in 4.1 better than Rule Based Control and is therefore selected as the
appropriate control strategy to develop the supervisory control model. In addition, Model
Predictive Control has proven its applicability in several comparable studies (Dijkstra et al.,
2016; Barradas-Berglind et al., 2016; Alkano, 2016), showing its potential.

Model Predictive Control: the working principle

In this section, the working principle of Model Predictive Control is explained in detail. MPC
is generally applied to control the behavior of dynamic systems. In short, MPC uses an
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Figure 20: Illustration of the working principle of Model Predictive Control(1)

internal system model to determine which actions in the system give the best performance
over a predefined time horizon by solving an optimization problem. A finite horizon is used
that consists of N predicted time steps in a receding horizon. In other words, predictions are
made at the supervisory controller at each time step to determine the adequate actions of the
distributed controllers (Galus et al., 2010). Consequently, an algorithm should be developed
that is executed each sampling period, whereby only the first value of the optimal sequence
is returned to the system (Vazquez et al., 2014). A schematic representation of the MPC
working principle is depicted in Figure 20. The MPC controller is composed of the following:

• Internal dynamical model: the internal dynamical model represents the behavior of
the studied system. This internal model is identical to the studied system, but is only
used within the MPC Controller to make predictions on its future states.

• Cost function: a cost function J is used for the optimizer. The cost function is
optimized over the receding horizon. In words, the cost function that is used for this
research is the sum of the revenues generated by the wind turbines and the Ocean
Batteries in the system over the entire prediction horizon.

• Optimization algorithm: this algorithm is composed of the cost function and the
constraints that the states of the system are subject to. The optimization algorithm
ultimately optimizes a control input u.

After the MPC controller has optimized the provided optimization problem, the first
value of the optimal sequence is sent to the distributed control systems (the ’plants’)
in terms of the control variables. Calculations are performed in the distributed con-
trol system by implementation of the control variable(s). An output is generated and
used for the next computations in the supervisory MPC Controller at the next time
step. Another way to illustrate the working principle of MPC is presented in Figure
21. The advantages of MPC are clearly visible in this figure, as the output follows a
smooth curve towards the reference trajectory. From the description of MPC, the generic
algorithm of Model Predictive Control is as follows, inspired by the algorithm that is
presented in (Dijkstra, 2016). The state is in this algorithm described by x and prediction
parameters are distinguished from model parameters by adding a hat to the variable.
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Figure 21: Illustration of the working principle of Model Predictive Control(2)

1. Initialize parameters, vectors and time step k
2. Set x̂k = xk
3. Solve the optimization problem by the model of the system within the MPC controller.
The optimization problem is of the form:

max
û

J =
N∑
k=1

f(x̂k, ûk)

subject to constraints including the dynamics of the system, the upper and lower bound
of the input and state variables.

4. Take the first value of the optimized control variables and set uk = ûk
5. Make system calculations with this control variable
6. Increment k and repeat

This algorithm is used to formulate the algorithm for the control model developed in this
research. In Chapter 1, it was mentioned that the control model is developed in Python.
Therefore, it is investigated whether there exists a method to apply MPC in Python.

Application of MPC in Python

From literature it was derived that MPC has previously been implemented in Python (Takacs
et al., 2015). There is a module available in the Python library for optimization, which is
the SciPy package. From this package, the Optimize module contains a solver for many min-
imization algorithms, including nonlinear optimizations, that is able to deal with constraints
(Virtanen et al., 2020; Oliphant, 2007). Within the optimization package, the optimization
method has to be specified. The Sequential Least SQuares Programming (SLSQP) method
is a suitable choice, as this method is able to deal with bounds on the control variable and
constraints on the system (Bouzid et al., 2015).
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4.3 Design of the control model

In this section, the design of the control model is explained. From Chapter 4.2 it was derived
that for the design of the predictive controller, the elements that have to be designed are the
internal dynamical model and the optimization algorithm, which consists of the cost function
and the constraints that the states of the system are subject to. All elements are specified in
this section.

Internal dynamical model

The internal dynamical model is identical to the dynamical model of the Ocean Battery, which
has been developed in Chapter 3. The dynamical model from Equation 19 is transformed to
the internal dynamical model of the MPC controller as

Êi,k+1 = Êi,k + ηP

#G∑
j=1

ûRG
i,j,k · ÊG

j,k+1 + ηT · ηP
#S∑

j=1,i 6=j

ûRS
i,j,k · Êj,k

−ηT · Êi,k

 #S∑
j=1,i 6=j

ûSSi,j,k

+ ûSCi,k

 , i = 1,..,S,

(20)

where
Êi is the predicted storage level of storage i in [MWh],
ÊG

j is the predicted energy generated by wind turbine j in [MWh],

ûRG, ûRS , ûSS , ûSC are the predicted control variables from the optimization [−],
S is the number of storage units in the system,
G is the number of wind turbines in the system,
ηP is the efficiency of the pumping process [−],
ηT is the efficiency of the draining process [−].

The values of ûRG, ûRS , ûSS and ûSC are not independent of one another. For example, the
PaT cannot operate as a pump and turbine simultaneously, implying that a storage can either
receive energy or send energy. Whenever there is a dependency between the control variables,
a constraint is applied to prevent the control variables from conflicting with one another.

The cost function

Recalling the goal of this thesis, this research aims to maximize the revenues that can be
obtained by the distributed system of Ocean Batteries, including wind turbines and the
electricity market. The goal has been taken into account for the identification of the cost
function J . The cost function relates the states of the system, the storage levels of the Ocean
Batteries, to the revenue that can be obtained by the system. Revenues can be obtained in
two different ways, as described below. Both types of electricity can be sold for the market
price, ξ, in e/MWh.

1. By directly selling the electricity generated by the wind turbines in the system. The
energy from the wind has already been corrected for the efficiency losses in the wind
turbine by the model in Appendix A.
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2. By selling the electricity from the storage units. The energy from the storage units is
corrected for the efficiency in Equation 20.

The prices of the day-ahead market are provided per hour, while the prices of the aFRR
market are provided per 15 minutes. The sampling time is chosen accordingly. The revenue
from a storage can be calculated by

Ri,k+1 = ξk+1 · ηT · uSCi,k · Ei,k, i = 1,..,S, (21)

where
Ri is the revenue from storage i in [e],
ξ is the price of electricity in [e],
ηT , u

SC , Ei as defined in (19),

and the revenue from a wind turbine is calculated by

Ri,k = ξk · uGC
i,k · EG

i,k, i = 1,..,G, (22)

where
Ri is the revenue from wind turbine i in [e],
uGC is a control variable from the optimization [−],
ξ, EG

j as defined in (21) and (19), respectively.

The cost function is now defined as the sum of the expected revenues from the storage and
the wind turbines over the entire prediction horizon. Mathematically, this can be formulated
as

max
û

J = max
û

N∑
k=1

(

#S∑
i=1

Ri(k) +

#G∑
j=1

Rj(k)). (23)

4.4 The optimization algorithm

The last element to be specified for the design of the MPC Controller is the optimization
algorithm. As mentioned above, the optimization algorithm is composed of the cost function
and the constraints that the states of the model are subject to. The cost function has been
identified in the previous section and is formulated in Equation 23. In this section, first the
constraints and bounds are identified and explained, and mathematically presented. There-
after, the full optimization problem is depicted. The section is finished with the optimization
algorithm that completes the supervisory predictive control model.

Constraints

The model is subject to several constraints. The constraints are listed below and thereafter
explained in more detail. Since the model in this research is linear, all constraints appear in
the model explicitly.

1. The PaT cannot operate in pump and turbine mode simultaneously.

2. The PaT has a maximum operational capacity.

3. Ocean Batteries have a maximum storage capacity.

4. Ocean Batteries and wind turbines cannot sell more than 100% of their available energy.
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1. The PaT cannot operate in pump and turbine mode simultaneously

The implication of this constraint is that either a storage receives energy from another storage
or a wind turbine (or both), or a storage sends energy to another storage or the market (or
both). The control variables have to be constrained such that either one of the options
can happen at one time step. Recalling Equation 20, four types of control variables were
identified (ûRG

i,k , û
RS
i,k , û

SS
i,k , û

SC
i,k ). In this equation, ûRG

i,k and ûRS
i,k control incoming energy from

other storage units or wind turbines, and ûSSi,k and ûSCi,k control outgoing energy to other
storage units or the market. The constraint can now be formulated as

(ûRG
i,k + ûRS

i,k ) · (ûSSi,k + ûSCi,k ) = 0, i = 1,..,S. (24)

By multiplying the control variables as in (24), it is ensured that a particular storage is either
filling or draining at a time step.

2. The PaT has a maximum operational capacity

The implication of this constraint is that the amount of energy that is either received or
sent at a time step, cannot exceed the capacity of the PaT. A constraint is formulated that
ensures that the control variable multiplied with the available energy does not exceed the PaT
capacity. Since constraint 1 already ensures that a storage does not operate in pump and
turbine mode simultaneously, constraint 2 can combine both operations into one constraint
as

TC − ηP
#G∑
j=1

ûRG
i,j,k · ÊG

j,k+1 + ηT · ηP
#S∑

j=1,i 6=j

ûRS
i,j,k · Êj,k

−ηT · Êi,k

 #S∑
j=1,i 6=j

ûSSi,j,k

+ ûSCi,k

 , i = 1,..,S,

(25)

where
TC is the PaT capacity in [MWh],
ηP , û

RG, ÊG, ηT , û
RS , Ê, ûSS , ûSC as in (20).

For this research it has been decided that all storage units have the same PaT installed. The
PaT capacity is given in [MW ]. For this constraint, the PaT capacity is corrected for the
time step such that it can be defined in [MWh].

3. Ocean Batteries have a maximum storage capacity

The energy inside a storage cannot exceed the maximum capacity of the Ocean Battery. The
capacity is dependent on the depth at which the Ocean Battery is located and the dimensions
of the Ocean Battery. For the constraint this means that the energy that a storage receives
must be less than the available capacity of that storage. All Ocean Batteries in the system
have the same maximum capacity. The constraint is formulated as

Emax −

ηP #G∑
j=1

ûRG
i,j,k · ÊG

j,k+1 + ηT · ηP
#S∑

j=1,i 6=j

ûRS
i,j,k · Êj,k

 ≥ 0, (26)

where
Emax is the maximum storage capacity in [MWh],
ηP , û

RG, ÊG, ηT , û
RS , Ê as in (20).
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4. Ocean Batteries and wind turbines cannot sell more than 100% of their available energy

This constraint is straight-forward but should nevertheless be adopted in the model. It ensures
that the sum of the control variables that control the amount of energy that is sent from a
storage (ûSS , ûSC) or a wind turbine (ûSS , ûGC) does not exceed 1, as it is not possible to sell
more than 100% of the available energy. The constraints corresponding to the storage units
and the generators are #S∑

j=1,i 6=j

ûSSi,j,k

+ ûSCi,k

 ≤ 1, i = 1,..,S, and (27)

#S∑
j=1

ûSSi,j,k

+ ûGC
i,k

 ≤ 1, i = 1,..,G, (28)

where
ûSS , ûSC as in (20) and ûGC as in (22).

Bounds

As the control variables represent a percentage of available energy that is sent, it is easy to
understand that no less than 0% and no more than 100% of the available energy can be moved
within the system. The control variables are therefore all bounded as

0 ≤ ûRG, ûRS , ûSS , ûSC , ûGC ≤ 1. (29)

The optimization problem

The full optimization problem, including the cost function, the constraints and the bounds
that the states of the system are subject to, is presented in the statement below.
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max
û

J =
N∑
k=1

(

#S∑
i=1

Ri(k) +

#G∑
j=1

Rj(k)) (30)

s.t.: Êi,k+1 = Êi,k + ηP

#G∑
j=1

ûRG
i,j,k · ÊG

j,k+1 + ηT · ηP
#S∑

j=1,i 6=j

ûRS
i,j,k · Êj,k

−ηT · Êi,k

 #S∑
j=1,i 6=j

ûSSi,j,k

+ ûSCi,k

 , i = 1,..,S

(ûRG
i,k + ûRS

i,k ) · (ûSSi,k + ûSCi,k ) = 0, i = 1,..,S

TC − ηP
#G∑
j=1

ûRG
i,j,k · ÊG

j,k+1 + ηT · ηP
#S∑

j=1,i 6=j

ûRS
i,j,k · Êj,k

−ηT · Êi,k

 #S∑
j=1,i 6=j

ûSSi,j,k

+ ûSCi,k

 ≥ 0, i = 1,..,S

Emax −

ηP #G∑
j=1

ûRG
i,j,k · ÊG

j,k+1 + ηT · ηP
#S∑

j=1,i 6=j

ûRS
i,j,k · Êj,k

 ≥ 0, i = 1,..,S

 #S∑
j=1,i 6=j

ûSSi,j,k

+ ûSCi,k

 ≤ 1, i = 1,..,S

#S∑
j=1

ûSSi,j,k

+ ûGC
i,k

 ≤ 1, i = 1,..,G

0 ≤ ûRG, ûRS , ûSS , ûSC , ûGC ≤ 1

In this optimization problem, Ri and Rj are calculated from (21) and (22), respectively. ÊG

is imported from the wind power production data set.

The optimization algorithm

Now that the MPC Contoller has been designed, the last step is to define optimization algo-
rithm that solves the aforementioned optimization problem. The inputs for the algorithm are
related to the design of the system such as the depth, the wind power data and price data,
among other parameters related to the Ocean Battery design including the efficiency and
capacity of the PaT and the maximum volume of the bladder. Another input that defines the
interconnections between the Ocean Batteries and the wind turbines is the adjacency matrix
of the system. The optimization algorithm is depicted in the table below, where τ presents
the total number of time steps.
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Algorithm: Revenue maximizing by MPC

Inputs: ξ, A, EG, Ei,0,
Outputs: u, R

1: for k = 0, .., τ do
2: solve the optimization problem in (30)
3: return ûi,k = {ûi,0, .., ûi,N}, i = 1, ..S
4: ui,k ← ûi,0 ∀ûi,k in U = {ûRG

i,k , û
RS
i,k , û

SS
i,k , û

SC
i,k }

5: calculate Ei,k+1 with (19) and ui,k
6: return Ri,k +Rj,k from (21) and (22)
7: end for

This optimization algorithm is used to determine the most beneficial control actions such
that the total revenues of the system, composed of the revenues from the storage units and
the revenues from the wind turbines, are maximized. The results from the closed loop im-
plementation of the optimization algorithm are discussed in Chapter 6. From a step-by-step
approach, first a One-Storage-One-Generator (1S1G) simulation model, that consists of one
storage and one wind turbine, of the optimization problem was developed. Thereafter, a
Multiple-Storage-Multiple-Generator (MSMG) simulation model, that can process multiple
storage units and multiple generators was developed. Results from both simulation models
appear in Chapter 6. In addition, a Rule Based Control model was developed to compare
the results from both strategies (RBC and MPC) with respect to the obtained results. The
’rule’ that is applied to the RBC model relates to the decision to store or sell based on a
threshold price ξ. The simulation models for the 1S1G RBC model, 1S1G MPC model and
MSMG MPC model are included in appendices G, F and H, respectively. In the next chapter,
the presented control models are validated. In this section, an answer has been provided to
sub-question 4, what would be an suitable control strategy and how can this control strategy
be applied to the dynamical model?, and the corresponding control model has been designed.
With the design of the control model, the treatment design phase from the engineering cycle
by Wieringa has been finished.
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5 Validation of the distributed storage control system

In the development of a prediction model, a validation step is required as it is important that
the prediction model provides valid outcome predictions (Steyerberg et al., 2019). In this
section, the control models developed in the previous sections are validated. The validation
step is executed using the techniques in the article of Sargent (Sargent, 2013). Several quanti-
tative and qualitative techniques are applied to the different control models. At each control
model it is discussed which techniques are used and how.

5.1 Validation of the MPC 1S1G model

The MPC 1S1G model is validated using a combination of techniques. Animation and pre-
diction validation are combined for the first validation and sensitivity validation is executed
to conclude the validation. Both validation techniques are applied in a qualitative analysis.

Animation and prediction validation

Animation is a qualitative validation technique that uses a graphical representation of how
the model evolves over time. Predictive validation makes use of a predicted system behavior
and compares this with the model’s behavior to see if it displays the same (Sargent, 2013). It
can be predicted on a conceptual level how the model is expected to behave. When prices are
lower than average, it is expected that the model stores the energy such that it can be sold to
the market when the prices are high again, especially considering the lossless storage property
of the Ocean Battery. Similarly, when the prices are high, it is expected that the model sells
all energy to optimize the revenues obtained during the simulation. For this validation step,
the 1S1G model has been simulated for one day such that it is graphically visible how the
simulation model behaves. Figure 22 displays this behavior. By placing both the energy
storage level and price graphs in the figure directly below each other, it can be observed that
the model behaves as expected, as the energy is stored when the prices are low and is sold
when the prices are at its peak. In addition, for the highest price peak in the model it would
be expected that the Ocean Battery fills completely before this peak and drains fully during
the peak. From Figure 22 it is observed that this is indeed the case. It can therefore be
concluded that this validation step was successful.

Parameter variability

Parameter variability, or sensitivity analysis, can be used as a qualitative validation technique
that consists of changing the input values to the model such that the effects on the model’s
behavior and output can be studied (Sargent, 2013). For this validation step it has been
decided to change the input parameters with respect to the efficiency of the pump and the
turbine. This validation technique is again combined with animation to observe the model’s
behavior. Five different efficiency parameters have been selected to test the validity of the
model. One would expect the following: if the efficiency of the Ocean battery is low, only
a little amount of energy is stored. When the efficiency increases, more energy is stored.
Following all assumptions explained in Chapter 4, the only motivation to store energy is to
sell it later for a higher price. This price difference has to overcome the efficiency losses
at minimum, which is why it is expected that the higher the efficiency, the more energy is
stored over time. From Figure 23 is can be observed that this is indeed the case, concluding
that also this validation step was successful. An interesting outcome in this validation step
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Figure 22: The behavior of the simulation model when simulated for a day in terms of storage
level (a) and price (b).

is that at least for the first day of January 2019, when the efficiency parameters are set to
a realistic value (ηP = 75% & ηT = 80%), no energy is stored at all. This means that the
fluctuations in price are not large enough to overcome the efficiency losses. For the purpose
of this research an efficiency is selected for the actual simulations that allows the model to
store a significant amount of energy. The basic settings for the simulations in this section can
be found in Appendix E.

5.2 Validation of the RBC 1S1G model

The RBC 1S1G model is validated using the parameter variability and comparison to other
models techniques. Both techniques are applied in a quantitative analysis.

Parameter variability

For the parameter variability validation step of this model, also the efficiency is adapted to
observe the model’s behavior. This cannot be executed similarly to the previous step, as the
decision to store energy is solely based on the threshold price and therefore independent of
the efficiency. Another method of determining the validity by changing the efficiency is to
compare the total amount of energy sent to the Ocean Battery to the total amount of energy
sold from the storage. For this validation step, a piece of code was added to the model that
keeps track of these amounts of energy. It is expected that due to fact that a storage fills up
to its maximum slower at a lower efficiency, the amount of energy sent to storage is higher
in this case. In addition, the total amount of energy sold from the storage is lower when the
efficiency is lower. In summary, the lower the efficiency, the more energy sent from the wind
turbine to the storage and the less energy sold from the storage to the customer. The results
of changing this parameter are listed in Table 11.
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Figure 23: The effect of efficiency on the storage levels with the day-ahead market (2019).
The efficiencies are (a) ηP = 0.75, ηT = 0.8; (b) ηP = 0.8, ηT = 0.85; (c) ηP = 0.85, ηT = 0.9;
(d) ηP = 0.9, ηT = 0.95; (e) ηP = 1, ηT = 1.
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Efficiency Total energy received [MWh] Total energy sold [MWh]

ηP = 75%, ηT = 80% 6050 3630

ηP = 80%, ηT = 85% 5809 3950

ηP = 85%, ηT = 90% 5586 4273

ηP = 90%, ηT = 95% 5381 4600

ηP = 100%, ηT = 100% 5013 5013

Table 11: Effects of changing the efficiency parameters on the amount of energy sent to the
storage and sold from the storage.

Comparison to another model

For the second quantitative validation step, the outcomes of the model are compared to
another model that was developed in Excel. In this Excel model, the amount of times the
price exceeds the mean price of the data set is counted, as the actions of the RBC model
are dependent on this value as the threshold price. Also a piece of code is therefore added
to the RBC model to count the number of times the decision is made to drain the storage.
The data sets from 2017-2019 of the day-ahead market and aFRR market were used for these
calculations. The results are depicted in Tables 12 and 13. It can be observed that the results
are identical, which concludes that also this validation was successful. All basic settings for
the simulations in this section can be found in Appendix E.

Data set Mean price [e] Amount of times mean is exceeded

Day-ahead 2017 39.31 13896

Day-ahead 2018 52.53 15844

Day-ahead 2019 41.20 15296

aFRR-up 2017 43.18 6847

aFRR-up 2018 52.41 9712

aFRR-up 2019 42.55 8750

Table 12: The amount of times the mean of the data set is exceeded for various price data
sets, by the Excel model.

Data set Mean price [e] Amount of times mean is exceeded

Day-ahead 2017 39.31 13896

Day-ahead 2018 52.53 15844

Day-ahead 2019 41.20 15296

aFRR-up 2017 43.18 6847

aFRR-up 2018 52.41 9712

aFRR-up 2019 42.55 8750

Table 13: The amount of times the mean of the data set is exceeded for various price data
sets, by the Python model.
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Figure 24: The behavior of the simulation model when simulated for a day in terms of storage
levels (a) and price (b).

5.3 Validation of the MSMG model

Finally, to validate the multiple-storage-multiple-generator model two techniques are used
that have also been used for the other validations: prediction validation and sensitivity vali-
dation. Prediction validation is applied as a qualitative validation again, while the sensitivity
validation is applied in a quantitative analysis.

Prediction validation

For the prediction validation, a similar approach has been taken as for the MPC 1S1G model,
namely to plot the curve of the energy in storage over time and check this graph with the
expectations. An example has been taken of four storage units, of which two are directly
connected to a wind turbine and two are not. For this model it is expected that the storage
units that are connected to a wind turbine fill up more often and to a higher extent. For the
model where it is assumed that a connection can pass a storage system instead of forcing the
energy to be stored first before it can be transferred, it is expected that it is more or less
random which storage is used. Figures 24 and 25 display these curves according to expectation
and it is therefore concluded that the validation was successful.
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Figure 25: The behavior of the simulation model when simulated for a day in terms of storage
levels (a) and price (b).
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Sensitivity validation

Also for the MSMG model, a quantitative analysis has been executed to validate the model
by investigating the effects of changing the efficiency of the PaT. Previously in this section it
was observed that once the efficiency is increased or decreased, more or less energy is stored
in the Ocean Batteries. For this validation step, the same efficiencies as in Figure 23 are
tested in the MSMG MPC model. The simulation time is one day and the prediction horizon
is set to 3 hours, which is equivalent to 6 time steps. The resulting amounts of energy sent to
the storage from the wind turbine are presented in Table 14. From this table it is observed
that the higher the efficiency, the more energy stored. In addition, the revenues generated
from the model also tend to increase with an increasing efficiency. The fact that revenues
can sometimes be slightly less when increasing the efficiency can be explained by that only
one simulation for this validation was executed with each combination of efficiencies. The
general trend, namely that the amount of energy stored becomes higher once the efficiency
is increased, is a trend that is also expected in a real-world situation and it is therefore
concluded that this validation was successful. All basic settings for these simulations are
included in Appendix E. In this chapter, an answer to sub-question 5, how can the proposed

Efficiency Total energy received [MWh] Revenue [e]

ηP = 75%, ηT = 80% 23.5 15840

ηP = 80%, ηT = 85% 26.2 15804

ηP = 85%, ηT = 90% 31.2 16432

ηP = 90%, ηT = 95% 30.7 16313

ηP = 100%, ηT = 100% 36.1 16847

Table 14: Effects of changing the efficiency parameters on the amount of energy stored from
the wind turbine and the revenues generated by the system.

control model be validated? has been provided and the control model has been validated by
using these techniques. The successful validation of the control model marks the end of the
treatment validation phase of the engineering cycle by Wieringa as explained in Chapter 1.
The results can now be generated from the validated control model.
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6 Results

In this chapter the results from the simulations are discussed. This chapter is organized as
follows. First, the simulation set-up is explained. Second, a reference model is developed that
calculates the revenues of the system without the implementation of Ocean Batteries. There-
after, all results from the 1S1G model simulations are discussed, including the comparison of
different price markets and the effects of different PaT efficiencies and prediction horizons.
In addition, a comparison is made between the RBC and MPC results. Once insight in these
results is provided, the results of the simulations with the MSMG model are discussed. The
simulations for the MSMG are executed with a case study model. However, the developed
MSMG model is generic, implying that any adjacency matrix of a system can serve as an
input to the model to study the effects of changing the interconnections. Again, different
price markets are tested, but insight is also provided in the behavior of the individual stor-
age systems. Furthermore, sensitivity analyses are executed on the turbine capacity and the
depth of the Ocean Batteries. The chapter is finished with a section that discusses the effects
of extending the model with the possibility to buy energy from the market.

6.1 Simulation set-up

Recalling from Chapter 4, the model requires several external inputs. The price and wind
power data sets, and the adjacency matrix describing the interconnections between the Ocean
Batteries and wind turbines are imported from an Excel file. In Chapter 2 it was found that
the prices can become negative, especially for the aFRR market. For this research it is
assumed that prices are always positive, i.e. ξ ≥ 0. All negative prices are therefore set to
0. The practical implication of this measurement is that if a situation occurs that the prices
are negative and the storage units are full, electricity from the wind turbine is not sold to the
market.

The initial state of the system, Ei,0 , is assumed to be zero for all i, which means that all storage
units are empty when the simulations are started. Next to these inputs, there is a number of
variables that the model uses for its calculations, such as the depth of the Ocean Batteries,
the maximum volume of the bladder and the efficiency and capacity of the PaT. The total
simulation time that was selected was 1 year, as seasonal fluctuations in for example price
or wind are now incorporated. For the simulation set-up, a distinction is made between the
1S1G set-up and the MSMG set-up. All parameters used for the 1S1G simulations are listed
in Table 15 and all parameters used for the MSMG simulations are listed in Table 16. For the
MSMG simulations, the number of Ocean Batteries and wind turbines have to be entered by
the user of the model in order for it to work. Changes between both set-ups are as follows.
First, the sampling time was changed from 900 [s] to 1800 [s] due to the large computational
time of the MSMG simulation model. In Chapter 6.3 the effects of changing the sampling
time are discussed. In addition, the efficiency of the PaT has been changed for the purpose
of the research. The number of storage units in a cluster has also been changed to 3 for
the MSMG simulations such that the total storage capacity matches the energy production
from the wind turbines. All is explained in more detail in the corresponding sections of this
chapter.
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Parameter Value Description [units]

ST 31536000 Total simulation time [s]
Ts 900 Sampling time [s]
P 4 Prediction horizon [hours]
pocean 400000 Ocean pressure [Pa]
patm 100000 Maximum volume of the bladder [m3]
ηP 0.75 Efficiency of the pump mode of the PaT [−]
ηT 0.8 Efficiency of the turbine mode of the PaT[−]
nrS 4 Number of storage units in a cluster [−]
TC 1 Capacity of the PaT [MW ]

Table 15: Parameters used for the 1S1G simulations.

Parameter Value Description [units]

ST 31536000 Total simulation time [s]
Ts 1800 Sampling time [s]
P 3 Prediction horizon [hours]
pocean 400000 Ocean pressure [Pa]
patm 100000 Maximum volume of the bladder [m3]
ηP 0.95 Efficiency of the pump mode of the PaT [−]
ηT 0.95 Efficiency of the turbine mode of the PaT[−]
nrS 3 Number of storage units in a cluster [−]
TC 1 Capacity of the PaT [MW ]

Table 16: Parameters used for the MSMG simulations.

6.2 Reference model: without storage

A model is developed that sets a reference revenue for all future simulations. In this model,
the energy that is generated and the price from two different price markets are an input to
the model. The revenues are now calculated by

Rj,k = ξk · EG
j,k, j = 1,..,G, (31)

where R, ξ,EG are as in (22) and (19).

The resulting revenues are depicted in the graph in Figure 26. In this figure a distinction was
made between the revenues for one operating wind turbine and two operating wind turbines.
This distinction was made because results are generated for a One-Storage-One-Generator
case study, thereby requiring the revenues from one wind turbine as a reference, and for a
Multiple-Storage-Multiple-Generator case study, whereby two generators are in operation.
Power data has been used from wind turbine 1 and 10 in the OG-WindFarm (see Appendix
A). From Figure 26 it was derived that the yearly revenue differs for the three years that the
data was retrieved from. The explanation for this is either that the wind turbine production
fluctuates over the years or that the prices fluctuate over the years. The Python model and
the numbers of the revenues in the graph for the reference model are included in Appendices
I and J, respectively.
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Figure 26: The calculated revenues from the day-ahead market (a) and aFRR market (b).

Figure 27: The set-up of the system for the 1S1G case study.

6.3 Results of the simulations: One-Storage-One-Generator

In this section, first the results from the MPC simulations are discussed. Thereafter, the
results from the RBC simulations are discussed and finally, a comparison is made between
the two control strategies with respect to the reference case built in the previous section. The
set-up of the system for the 1S1G case is depicted in Figure 27.

Model Predictive Control results

During the development of the MPC model, it was observed that the SciPy optimizer did
not always return feasible results and that this phenomenon was correlated with the initial
conditions of the control variable u that is used for the optimizer. In addition, it is also
dependent on the initial conditions what the optimizer returns as result of the objective
function. This can be considered a limitation to the model, as it is expected that improvement
in this area is possible. A part where the model checks if all constraints are satisfied by the
outcome of the optimizer was added to the model and the model was run several times
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to check how much the final outcome would deviate between runs. It was found that the
difference between the individual runs was less than 1%, which is acceptable and it was
therefore concluded that the model does not need several iterations to find the best result
from the optimizer. For this simulation an efficiency of 100% of the pump and turbine was
used. The outcomes of the simulations can be found in Appendix J.

Sensitivity of model parameters

In this section, the sensitivity of different parameters in the system with respect to the
resulting revenues and computation time has been investigated, including the sampling time,
the number of storage units in a cluster, the prediction horizon and the efficiency of the PaT.

The effects of changing the sampling time to 30 minutes

As one of the issues regarding the implementation of MPC is that computational times can
be large, it was tested whether changing the sampling time from 15 to 30 minutes has a large
effect on the final results. When the sampling time becomes larger, the situation occurs more
often that the storage is full or empty before the time step has finished, which essentially means
that the system has to wait until the time step is finished before it can do something else.
For executing these tests, the yearly revenues have been calculated from the market prices
of the day-ahead market and the aFRR market for the years 2017-2019. Again, an efficiency
of 100% was used for the pump and turbine. From these simulations, it was observed that
the resulting revenues on average only differed 0.4% in case of the day-ahead market and
5.2% for the aFRR market. The difference between these results can be explained by the
following. For the aFRR market, the prices are determined each 15 minutes, which means
that if the sampling time increases to 30 minutes, every one out of two data points is skipped
by the simulation model. A different approach to this issue could be to take the average of
the two data points that fall within the time step. This has not been tested for this research.
Apart from the difference in revenue, another interesting aspect of the simulation is the total
computation time for both sampling times. The results of this study are listed in Table 17.
From this table it was derived that computation times are significantly larger for a sampling
time of 15 minutes. As long as the simulation finishes within reasonable time, the sampling
time of 15 minutes is preferred. However, from the little deviations in final results of the
simulations discussed above, it was concluded that a sampling time of 30 minutes is also
sufficient. The resulting revenues are included in Appendix J.

Data set Ts = 900 s Ts = 1800 s

Day-ahead market (2017) 00:36:04 00:05:14

Day-ahead market (2018) 00:38:02 00:05:15

Day-ahead market (2019) 00:35:04 00:04:48

aFRR market (2017) 01:02:58 00:08:48

aFRR market (2018) 00:57:58 00:08:25

aFRR market (2019) 01:01:34 00:08:37

Table 17: Computation times for a yearly simulation with MPC 1S1G code in hh : mm : ss.
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Figure 28: The calculated revenues from a variable number of storage systems in a cluster for
the 1S1G MPC model.

The effects of changing the number of storage units in a cluster

The number of Ocean Batteries in a cluster represents N storage units that are always in
the same state. The number of Ocean Batteries in a cluster influences the PaT capacity and
the total storage capacity of the cluster. The simulations have been executed with the day-
ahead (2019) and aFRR (2019) price market, and a PaT efficiency of 100%. The resulting
yearly revenues are depicted in Figure 28. From this figure it is observed that the difference in
revenues for the day-ahead market are relatively small, while the difference in revenues for the
aFRR market with an increasing number of storage systems in a cluster is significant. This
difference between the price markets can be explained by the price fluctuations that occur
in both price markets: for the aFRR market the price fluctuations are larger and the model
would therefore benefit more from a larger capacity when it is operating in this market. The
general trend is that revenues increase with an increase in Ocean Batteries in a cluster for
the same reason as just mentioned, namely that the capacity is higher for a larger number of
Ocean Batteries in a cluster, which results in more revenues whenever the price peaks occur.
From now on, the simulations are continued with four Ocean Batteries in a cluster. It should,
however, be noted that the optimum number of storage systems in a cluster also depends on
the costs of the Ocean Batteries. These costs are not included in this research.

Investigate the effects of changing the prediction horizon

The prediction horizon provides information about how far into the future the prices and
wind turbine power can be observed or forecasted. In addition, the revenues over the full
prediction horizon are optimized. Simulations have been executed with data from the day-
ahead market (2019) and aFRR market (2019). An efficiency of 100% for the PaT was
used for these simulations. The resulting yearly revenues are depicted in Figure 29. From
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Figure 29: The calculated revenues from different prediction horizons for the 1S1G MPC
model.

this figure it can be derived that the revenues increase significantly when the prediction
horizon is changed from 4 to 12 time steps. The interpretation of this result is that a better
forecast can be made when the model can observe the required input values further into
the future. However, this is not a relation that continues forever. Already from Figure 29
it is observed that the revenues do not increase significantly anymore when the prediction
horizon is increased from 24 to 48 time steps. The computation time, however, increases
exponentially with the increasing prediction horizon as in Figure 30. The data points for the
computation times were interpolated to observe the relation between the prediction horizon
and the computation time. The computation times for the aFRR market are almost twice as
high as the computation times for the day-ahead market. This difference can be explained
by the fact that the simulations for the aFRR market have more trouble finding a feasible
solution. Based on the results of these simulations, a prediction horizon of 24 time steps has
been selected for further simulations. The tables representing the numbers that appear in
Figure 29 and 30 are included in Appendix J.

The effects of the efficiency of the PaT

The effects of changing the efficiency of the pump and turbine mode have also been investi-
gated. The starting point was the efficiency that is close to the real efficiency of the Ocean
Battery (ηP = 0.75 & ηT = 0.8) and from there the efficiency was increased. The resulting
revenues are depicted in Figure 31. In this figure it seems the revenues are not highly de-
pendent on the efficiency. However, the difference in resulting revenues between the scenario
with the lowest efficiency and the scenario without efficiency losses is more than 20%, which
is a large difference. In addition, recalling the reference prices from the case in which there
were no Ocean Batteries implemented gives e687603 (day-ahead, 2019) and e751783 (aFRR,
2019). The revenues for the lowest efficiencies are e691004 and e996447 for the day-ahead
market and aFRR market, respectively. The general interpretation is that the MPC still
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Figure 30: The computation times for different prediction horizons for the 1S1G MPC model.

optimizes the revenues of the system. However, for the day-ahead market this results in a sit-
uation where hardly any energy is stored since the difference in revenue is only 0.5%. For the
aFRR market, this difference is still more than 30%. Based on these results, the calculations
are continued with an efficiency of 85% for the pump mode and 90% for the turbine mode.

Results of the MPC 1S1G simulations

Now that all parameter sensitivities have been investigated and suitable values have been
selected, the final MPC 1S1G simulations have been executed. The results have been gener-
ated for different price markets and are presented in Table 18. These results are compared
to the results from the reference case (without storage) and the results of the RBC strategy
at the end of Chapter 6.3. The predictive control ensures that the energy is sold from the
wind turbines and storage units when the price is favorable, thereby maximizing the revenue
generated by the system from this approach.

Data set Revenue [e]

Day-ahead market (2017) 749756

Day-ahead market (2018) 924766

Day-ahead market (2019) 703323

aFRR market (2017) 1236307

aFRR market (2017) 1323391

aFRR market (2017) 1082613

Table 18: Yearly revenues for the 1S1G MPC strategy.

Rule Based Control results

The Rule Based Control algorithm relies on the rule that above a certain threshold price,
energy is always sold from the wind turbine and storage, while below this threshold price, as
much energy as possible is stored. For this research, the threshold price is set to the mean of
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Figure 31: The resulting revenues from varying efficiencies for the pump and turbine mode
of the PaT for the 1S1G MPC model.

the price market data set. The remainder of the RBC code is based on heuristics: per time
step the state of the system is evaluated and the possible actions based on the previous state
of the system are determined. For example, when the storage was almost full at t − 1 and
the market price at t is again below the threshold price, only that part of the energy can be
stored that does not exceed the space in the storage. The space in the storage is calculated
by

SiSk+1 = Emax − Ek, (32)

where
SiS is the available space in the storage in [MWh],
Emax is the maximum capacity of the storage in [MWh],
E is the energy already in the storage in [MWh].

Furthermore, the state of the system and the revenues generated by the RBC strategy are
calculated by

Ek+1 = Ek + uGk · ηT · EG
k+1 − uSk · Ek, and (33)

Rk = ξk · ((1− uGk ) · EG
k + uSk · ηT · Ek (34)

where
uGk is the variable that controls the wind turbine [−],
uSk is the variable that controls the storage [−], and
all other variables as defined before.
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The algorithm applied for the RBC strategy is described below.

Algorithm: Revenue by RBC

Inputs: ξ, EG, E0,
Outputs: u, R

1: for k = 0, .., τ do
2: calculate the available space in storage from (32)
3: if ξk ≥ ξTP

4: let uGk = 1
5: if Ek ≥ TC
6: let uSk = TC

Ek

7: else
8: let uSk = 1
9: else
10: let uSk = 0
11: calculate SiSk+1 from (32)
12: if SiSk ≤ EG

k

13: let uGk = SiSk

EG
k

13: else
14: let uGk = 1
15: calculate Ek+1 with (33) and uGk , u

S
k

16: return R(ξk, u
G
k , u

S
k , Ek from (34)

17: end for

Also for the RBC strategy the effects of changing the efficiency on the resulting revenues
have been investigated before arriving at the final simulations for the different price markets.
All other parameters that have been investigated in the previous section that are applicable
to the RBC strategy are the same as for the MPC strategy. The results from varying the
efficiency of the RBC strategy are discussed below.

The effects of the efficiency of the PaT

The same efficiencies have been investigated for the pump mode and the turbine mode of the
PaT as for the MPC strategy. The resulting revenues are depicted in Figure 32. Recalling
the reference prices from the case in which there were no Ocean Batteries implemented gives
e687603 (day-ahead, 2019) and e751783 (aFRR, 2019). For the RBC strategy, the lowest
efficiency result in revenues of e660928 (day-ahead, 2019) and e906916 (aFRR, 2019). It
is observed that this means that for the day-ahead market, the lowest efficiencies result in
a yearly revenue that is below the reference case and therefore undesirable. Only when the
efficiencies are above ηP = 85% and ηT = 90%, the RBC strategy is able to generate higher
revenues than the reference case, but even then the difference is insignificant (e687603 versus
e688466). For the aFRR market, the RBC strategy is still significantly better than the
reference case, even for the worst efficiency.

Results for the RBC 1S1G simulations

Also for the RBC strategy, the results for different price markets have been generated. The
resulting revenues are presented in Table 19. In the next section, these results are compared
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Figure 32: The resulting revenues from varying efficiencies for the pump and turbine mode
of the PaT.

to the results from the reference case and the results of the MPC strategy. It should be
mentioned that for the simulations of the RBC strategy, the results may be more promising
once the sensitivity of the threshold price is investigated and the best value of this parameter
is selected. However, this is not executed for this research.

Data set Mean [e] Revenue [e]

Day-ahead market (2017) 39.31 730969

Day-ahead market (2018) 52.53 902562

Day-ahead market (2019) 41.20 688466

aFRR market (2017) 43.18 1128840

aFRR market (2017) 52.41 1170752

aFRR market (2017) 42.55 981079

Table 19: Yearly revenues for the RBC strategy.

Comparison between the control strategies

The revenues that were obtained from the simulations in the previous sections have been
depicted all-together to visualize the performance of the strategies compared to the reference
case. The comparison of the results for the day-ahead market is depicted in Figure 33. From
this graph it is observed that the RBC strategy is hardly an improvement to the reference case
in terms of yearly revenues. The MPC strategy shows some potential, though relatively small.
It could be argued that this can be seen as a ’worst case scenario’, as there are other benefits
of including storage units in a system. One of these benefits is the ability to guarantee a stable
power output from the system or to use the storage units for the purpose of peak shaving.
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Figure 33: Yearly revenues from the reference case and the RBC and MPC strategies for the
day-ahead market.

Another benefit could be that cable capacities can be decreased when adopting storage units
in the system, or the impact of storage systems increases when the cable capacity is decreased
(de Jonge, 2019). An effect of this would be that cable costs can be significantly reduced when
storage units are implemented in the system.

For the aFRR market, however, the results are promising. Applying a RBC strategy improves
the revenues with 28% compared to the reference case, while the MPC strategy improves the
revenues by more than 41%. This is a very large improvement. However, a limitation to this
simulation is that the assumption of perfect price forecast for the aFRR market is unrealistic,
since prices are determined in real time and can be known only 15 minutes in advance. This
has a large impact on the MPC model, which uses a prediction horizon of 4 hours. For the
MSMG model it is investigated what the effects are of changing the prediction horizon to 15
minutes. For the 1S1G model it is observed that the RBC model also performs well for the
aFRR market. Therefore, if there would be an excellent determination of the threshold price,
for example based on the mean historic price, there is also potential without the need for a
predictive model.

Summary of the 1S1G simulation results

A brief summary is given from the results obtained in this section. First of all, the revenues
from a reference case in which there are no Ocean Batteries implemented were calculated.
Thereafter, the MPC strategy has extensively been evaluated based on parameter sensitivity
with respect to the sampling time, number of storage units in a cluster, prediction horizon
and efficiency of the PaT before the final results were presented. Similarly, for the RBC
model the sensitivity of the efficiency has also been evaluated before presenting the final
simulation results. At the end, the different control strategies were compared to each other
and to the reference case. From the comparison it can be concluded that the MPC strategy
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Figure 34: Yearly revenues from the reference case and the RBC and MPC strategies for the
aFRR market.

has the largest potential, but the RBC strategy is also better than the reference case. From
the results it can also be concluded that operating on the aFRR market is the best choice,
as results can be significantly better than the reference case with respect to yearly revenues
(28% for the RBC strategy and 41% for the MPC strategy). The results are overestimated for
both strategies, as the RBC strategy assumes that the mean price for the full year is known,
while the MPC strategy makes use of a larger prediction horizon than is actually possible.
Nevertheless, it is expected that there is more potential in operating in this market than in
the day-ahead market due to the larger price fluctuations that occur.

6.4 Results of the simulations: Multiple-Storage-Multiple-Generator

In this section, the results from the MSMG simulations are discussed. The MSMG simulations
are executed for a specific case study: from the OG-WindFarm two wind turbines have
been selected of which the power data serves as an input to the MPC model. Furthermore,
four clusters of storage units are present in the system. These clusters of storage units are
composed of three individual storage units each. As there are already two clusters of storage
units per wind turbine, the number of storage units in a cluster has been reduced. The set-
up of the system for the case study is depicted in Figure 35. In this figure, the electricity
cables represent the interconnections between the Ocean Batteries, the wind turbines and
the electricity grid. Only storage units that have a direct connection to a wind turbine, the
’direct storage units’ are allowed to sell their generated electricity to the electricity grid. The
so-called ’indirect storage units’ have to send their energy to a direct storage first. Essentially,
this means that it takes two time steps to sell from an indirect storage to the electricity grid.
For the storing process this procedure is reversed. Wind turbines are always allowed to sell
their electricity directly to the electricity grid. For the simulations, the results of the ’indirect
model’ are compared to the results of a ’direct model’, where all indirect storage units are
allowed to store directly from all neighboring wind turbines and sell directly to the electricity
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Figure 35: Set-up of the system for the MSMG case study.

grid. Thereafter, the sensitivity of the turbine capacity and the storage capacity in terms
of the depth of the Ocean Batteries are analyzed. Furthermore, an extension to the model
has been realized to allow the system to buy energy from the electricity grid. The results
of this study are also discussed in this section, which is concluded with a comparison of all
calculated revenues. Throughout this section, insight is provided into the behavior of the
individual Ocean Batteries.

Simulation considerations

In this section, the results of the indirect storing simulations are discussed. First of all, the
sampling time has been increased from 15 minutes to 30 minutes, as the simulations require
a significant amount of time to finish. The simulations were executed by the University
Peregrine cluster on a Intel Xeon E5 2680 processor. The computation times for a yearly
simulation of the model for the different price markets is given in Table 20. These computation
times hold for a sampling time of 30 minutes and are based on averages of the price markets
from 2017-2019 and with a prediction horizon of 3 hours. The efficiency that was used is

Price market Indirect model Direct model

Day-ahead 12:30:00 05:30:00

aFRR 26:00:00 10:00:00

Table 20: The computation times for a yearly simulation of the MSMG MPC model for the
different price markets in hh:mm:ss.

95% for both the pump and turbine mode of the PaT, since from the simulations it was
observed that a relatively small amount of energy was stored in the Ocean Batteries for a
lower efficiency. By using a high efficiency the potential of the model can be shown and a
comparison can be made between the indirect and direct model. The effects of changing the
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Figure 36: Revenues of the MSMG simulations for the years 2017-2019 of the day-ahead
market.

prediction horizon on the computation times for a monthly simulation have also been studied.
The results of this study are listed in Table 21. Based on the lengthy computation times of a
prediction horizon of 6 hours, a prediction horizon of 3 hours is used for further simulations.

Prediction horizon Day-ahead market aFRR market

1 hour 00:03:36 00:04:16

3 hours 00:58:10 02:06:12

6 hours 09:41:07 > 24:00:00

Table 21: The computation times for a monthly simulation of the MSMG MPC model for a
varying prediction horizon in hh:mm:ss.

Results of the simulations from the day-ahead market

The revenues resulting from the simulations for the day-ahead price market are depicted in
Figure 36. A distinction is made between the resulting revenues from the indirect model and
the direct model and the revenues are compared to the reference case. From this figure it
is derived that for the day-ahead market, the results are only slightly better than the model
without storage. As explained in Chapter 6.3, the situation where a wind turbine can sell an
unlimited amount of electricity to the electricity grid at any time is hard to be improved by
storage units when the price fluctuations in the market are small. Therefore, the model is
considered ’worst case scenario’ and many adaptations can be made to limit electricity flows
through cables, and thereby reducing cable costs, to increase the positive effect of the MPC
strategy.

Yearly revenues do not provide any insight into the behavior of the individual storage units
in the system. Therefore, the maximum storage levels and the total amount of energy sent
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to each of the storage units have been investigated. The resulting values for the maximum
storage level are presented in Table 22. The fact that direct connections exist between wind
turbines and all storage units in the direct model becomes clearly visible from this table.
For the direct model, all storage units are filled to their maximum at some point. For the
indirect model, the indirect storage units S2 and S3 are often not filled to their maximum
storage level as it requires two time steps to fill or drain the storage with the accompanying
efficiency losses. The fluctuations of the prices of the day-ahead market are apparently not
large enough to overcome these drawbacks.

Storage# Max level in 2017 Max level in 2018 Max level in 2019
[MWh] [MWh] [MWh]

Indirect 1 6,0 6,3 6,9
model 2 1,3 1,4 1,3

3 1,4 1,4 1,4
4 6,0 6,0 6,1

Direct 1 7,3 7,3 7,3
model 2 7,3 7,3 7,3

3 7,3 7,3 7,3
4 7,3 7,3 7,3

Table 22: Maximum storage levels (day-ahead market) for the MSMG simulations with the
MPC strategy.

The total amount of energy sent to each of the storage units is presented in Table 23. From
this table it is derived that indirect storage units are barely used for the day-ahead market,
whereas the direct storage units are used to a similar extent for both models. The total
proportion of energy sent to storage with respect to the total amount of energy produced is
presented in Table 24. From this table it can be observed that only a relatively small amount
of energy is stored compared to the amount of energy produced. The results for the direct
model are significantly better than for the indirect model.

Storage# Stored in 2017 Stored in 2018 Stored in 2019
[MWh] [MWh] [MWh]

Indirect model 1 1692 1483 1366
2 19 31 30
3 26 26 29
4 1310 1208 1011

Direct model 1 1537 1347 1190
2 1530 1380 1237
3 1510 1387 1232
4 1536 1316 1207

Table 23: Total energy sent to storage (day-ahead market) for the MSMG simulations with
the MPC strategy.
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Year Total production Sent to storage Percentage stored
[MWh] [MWh]

Indirect model 2017 30170 2962 9.8%
2018 28967 2639 9.1%
2019 27876 2323 8.3%

Direct model 2017 30170 6434 21.3%
2018 28967 5716 19.7%
2019 27876 5123 18.4%

Table 24: The proportion of energy sent to storage for both models over the years 2017-2019.

Figure 37: Revenues of the MSMG simulations for the years 2017-2019 of the aFRR market.

Results of the simulations from the aFRR market

Also for the aFRR market, results have been produced. The same format as for the day-ahead
market was used for the aFRR market. Resulting revenues from the aFRR market for the
years 2017-2019 and for the indirect and direct models are depicted in Figure 37. From this
figure it is observed that both the indirect model and the direct model show large potential
compared to the day-ahead market, as revenues can increase by around 20% for the indirect
model and even close to 50% for the direct model. The results of this model rely heavily on
the ability to sell a large amount of energy once the price peaks in the aFRR market occur.
When for example the cable capacity would be restricted, it is expected that revenues slightly
decrease as a result, though it it likely that more energy is stored.

The maximum storage levels for the individual storage units and the total amount of energy
sent to the storage units have also been investigated for the aFRR market. The results are
presented in Table 25 and Table 26. Evaluating the numbers in these tables results in that
similar behavior is observed as for the day-ahead market. However, it seems that the total
amount of energy sent to storage is higher than for the day-ahead market.
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Storage# Max level in 2017 Max level in 2018 Max level in 2019
[MWh] [MWh] [MWh]

Indirect 1 5,7 6,0 7,1
model 2 1,5 1,5 1,5

3 1,5 1,4 1,7
4 5,9 6,0 7,3

Direct 1 6,3 7,3 7,3
model 2 6,4 7,3 7,3

3 7,2 7,3 7,3
4 6,0 7,3 7,3

Table 25: Maximum storage levels (aFRR market) for the MSMG simulations with the MPC
strategy.

Storage# 2017 2018 2019
[MWh] [MWh] [MWh]

Indirect model 1 4438 3954 4222
2 122 90 113
3 89 94 103
4 3472 3243 3297

Direct model 1 3265 2937 3018
2 3177 2983 3093
3 3238 3003 3113
4 3209 3022 3050

Table 26: Total energy sent to storage (aFRR market) for the MSMG simulations with the
MPC strategy.

The results from investigating the total amount of energy that is stored relative to the total
energy production are presented in Table 27. This confirms the hypothesis that the proportion
of energy stored is higher for the aFRR market as compared to the day-ahead market, as the
proportion stored is on average 25% for the indirect model and even 45% for the direct model.
This indicates great potential for the MPC model to be applied on the aFRR market.

As discussed earlier in this chapter, assuming perfect forecast for the aFRR market is unre-
alistic. Therefore, simulations have been executed with a sampling time of 15 minutes and
a prediction horizon of 2 time steps, which means that both the current price and the price
in 15 minutes can be observed by the prediction model, in order to simulate the real-world
behavior as close as possible. Resulting revenues and total energy stored are compared to
the indirect model with a prediction horizon of 3 hours. The results are depicted in Figure
38 and Table 28. From the figure it is derived that indeed less revenues are obtained when
the prediction horizon is set to 15 minutes, but the MPC strategy is still able to improve
revenues compared to the reference case by around 25%. The total amount of energy stored
is logically also smaller when the prediction horizon is set to 15 minutes. The table learns
that roughly 35% less energy is stored. Although using a prediction horizon of 15 minutes
decreases the positive effect of the MPC strategy on the total revenues, these results are still
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Year Total production Sent to storage Percentage stored
[MWh] [MWh]

Indirect model 2017 30170 7720 25.6%
2018 28967 7031 24.3%
2019 27876 7324 26.3%

Direct model 2017 30170 13567 45,0%
2018 28967 12574 43.4%
2019 27876 12921 46.4%

Table 27: The proportion of energy sent to storage for both models over the years 2017-2019.

Figure 38: Revenues of the MSMG simulations for the years 2017-2019 with varying prediction
horizons.

considered promising.

Summary of the results

For both the day-ahead and the aFRR market, the resulting revenues have been evaluated
for an indirect model and a direct model and both have been compared to the reference case.
For the day-ahead market, the results show little potential, as resulting revenues are only
slightly better than the reference case and the total amount of energy stored is only around
10% for the indirect model and around 20% for the direct model. In addition, for the indirect
model the Ocean Batteries are not filled to their maximum at any point in time. For the
direct model this is the case and therefore this model may benefit from a greater depth of the
Ocean Batteries.

For the aFRR market, the results show large potential, as around 20% higher revenues are
obtained from the indirect model and even 50% for the direct model. In addition, the total
amount of energy stored is higher than for the day-ahead market, namely 25% for the indirect
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Year Total production Sent to storage Percentage stored
[MWh] [MWh]

Indirect model 2017 30170 7720 25.6%
(P = 3 hr) 2018 28967 7031 24.3%

2019 27876 7324 26.3%

Indirect model 2017 30170 5102 16.9%
(P = 15 min) 2018 28967 4576 15.8%

2019 27876 4779 17,1%

Table 28: The proportion of energy sent to storage for both prediction horizons over the years
2017-2019.

model and 45% for the direct model. Even when the prediction horizon is reduced to a realistic
value, the revenues are about 15% higher than the reference case and around 18% of the energy
is stored. These results are still significantly better than for the day-ahead market. In this
section, an answer has been provided to sub-question 6: what are the revenues obtained by
the control model in comparison with a no storage system for a predefined case study?.

6.5 Sensitivity analyses

In this section, a sensitivity analysis is executed with respect to the turbine capacity and the
depth at which the Ocean Batteries are placed such that the total storage capacity increases.

Results from the turbine capacity sensitivity analysis

When the turbine capacity is increased, more energy may be stored or drained at a specific
time step, thereby opening the possibility to sell more energy when the price peaks occur. The
sensitivity has been investigated for both the day-ahead and the aFRR market. The resulting
revenues are depicted in Figure 39. From this figure it is derived that the revenues of the
day-ahead market are not significantly affected by increasing the turbine capacity, while the
revenues of the aFRR market can benefit from this up to an increase in revenue of 15% for a
turbine capacity of 4 MW. However, considering the fact that turbines are usually expensive,
it should be investigated whether the net present value of the turbine can be positive.

The total energy stored from different turbine capacities is depicted in Table 29. It is observed
that the amount of energy stored in the Ocean Batteries increases significantly for the aFRR
market, as opposed to the day-ahead market. The table is in line with the results from Figure
39. From both figures it is observed that the largest gain can be obtained by increasing the
turbine capacity from 1 MW to 2 MW . This option should therefore carefully be considered
once the final design is specified.

Results from the depth sensitivity analysis

Also a study to the sensitivity of the storage capacity has been executed. The depth is varied
from 40 meters until 70 meters, thereby increasing the total storage capacity from 7.33 MWh
to 13.61 MWh. Although one of the storage units was filled to its maximum for the aFRR
market, changing the depth of the system has little to no impact on the yearly revenues
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Figure 39: Revenues of the sensitivity of the turbine capacity with the MSMG simulations.

Turbine capacity [MW] Energy stored [Mwh] Energy stored [MWh]
day-ahead (2019) aFRR (2019)

1 2323 7324

2 2993 9679

3 3338 10780

4 3364 11304

Table 29: Total amount of energy stored as a result of increasing the turbine capacity with
the MSMG simulations.

resulting from the MPC strategy. The revenues obtained by these simulations are presented
in Table 30 and the total amount of energy stored is presented in Table 31. Both of these
tables indicate that increasing the depth for the Ocean Batteries would not result in higher
revenues or more energy stored with its current design.

Summary of the results

From the sensitivity analyses for the turbine capacity and the depth of the Ocean Batteries,
the following can be concluded. Increasing the turbine capacity has a positive effect on the
yearly revenues, but it should be investigated whether the increased revenues are high enough
to cover the costs of a turbine with a larger capacity. Especially increasing the turbine capacity
from 1 MW to 2 MW seems a promising modification to the storage design. Increasing the
depth of the Ocean Batteries, however, has little to no effect on the yearly revenues or the
amount of energy stored. This outcome may be due to the current design of the Ocean
Battery. If the design is changed in the future, another analysis can be executed to observe
the effects of changing the depth for the new design. In this section, sub-question 7, how are
the storage capacity and turbine capacity related to the generated revenue?, is answered.
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Depth [m] Revenue [e] Revenue [e]
day-ahead (2019) aFRR (2019)

40 1142382 1527080

50 1142414 1532689

60 1142044 1531546

70 1141822 1534316

Table 30: Yearly revenues from the sensitivity analysis to the depth of the Ocean Batteries.

Depth [m] Energy stored [MWh] Energy stored [MWh]
day-ahead (2019) aFRR (2019)

40 2323 7324

50 2296 7340

60 2290 7352

70 2289 7345

Table 31: Total amount of energy stored as a result of increasing the depth of the Ocean
Batteries with the MSMG simulations.

6.6 Model extension: possibility to buy from the market

For the purpose of this research, the model has been extended with the possibility to buy
electricity from the market to fill the storage units. A few assumptions are made for this
addition. These assumptions are as follows.

• Electricity can be bought from the market for the price at which the electricity can also
be sold at that time.

• Electricity from the market is always available and unlimited.

In addition to these assumptions, a modification to the model is that negative prices are no
longer set to zero. This essentially means that a situation may occur in which electricity is
bought from the market for a negative price, which increases revenues of the system when
it absorbs electricity. On the other hand, it is still not allowed that electricity is sold to the
market for a negative price. A few situations are identified as possibly interesting for the
extension of buying energy from the market.

1. The wind turbines are not producing (enough) energy to be stored when a price peak
is approaching.

2. Negative prices occur often and revenues of the system increase when it absorbs elec-
tricity.

To investigate whether both situations occur in the price markets and production, it has been
studied what the percentage of occurrence of both situations is.

Does it occur that wind turbines are not producing energy for a significant amount of time?

For all data sets from 2017-2019 with the wind power production the percentage of time
steps that the wind turbine is producing less than 2 MW on average over an hour, which
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is only 25% of its rated power, has been calculated. The results are presented in Table 32.
These results show that almost one-third of the time the wind turbine is producing little to
no electricity. Results from an analysis with this extension are therefore possibly interesting.

Year 2017 2018 2019

% no production 28.2% 34.4% 30.8%

Table 32: The percentage of time that the wind production is lower than 2 MW .

Do negative prices occur often?

For both the day-ahead market and the aFRR market the percentage of time that negative
prices occur has been studied. The results are presented in Table 33. The answer to the

Price market Year % negative prices

Day-ahead 2017 0.0%

Day-ahead 2018 0.0%

Day-ahead 2019 0.03%

aFRR 2017 5.5%

aFRR 2018 4.5%

aFRR 2019 3.7%

Table 33: The percentage of time that prices are negative.

question heading this subsection is therefore that in the day-ahead market, negative prices
hardly ever occur, while for the aFRR market, prices are less uncommon. From this result it
was decided to continue this analysis only with the aFRR market. Before simulations could
be executed, a few small adaptations to the model are made. First, an additional control
variable is introduced.

• uRC controls the amount of energy that is bought from the market and stored in storage
i at time step k. The electricity grid is a single entity, which means that there is only
one value that has to be added to the energy in storage i.

Then, the energy that is bought from the market has to be added to Equation 20. The
formula now reads as

Êi,k+1 = Êi,k + ηP

#G∑
j=1

ûRG
i,j,k · ÊG

j,k+1 + ηT · ηP
#S∑

j=1,i 6=j

ûRS
i,j,k · Êj,k + ηP · ûRC

i,k · EM

−ηT · Êi,k

 #S∑
j=1,i 6=j

ûSSi,j,k

+ ûSCi,k

 , i = 1,..,S,

(35)

where
Êi is the predicted storage level of storage i in [MWh],
ÊG

j is the predicted energy generated by wind turbine j in [MWh],

EM is the available energy from the market in [MWh],
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Figure 40: Revenues of the possibility to buy energy from the market from the MSMG
simulations.

ûRG, ûRS , ûSS , ûSC , ûRC are the predicted control variables from the optimization [−],
ηp is the efficiency of the pumping process [−],
ηt is the efficiency of the draining process [−].

Finally, the costs of electricity bought from the market should be subtracted from the revenues
that are obtained by the storage units. The formula for the revenues now reads as

Ri,k+1 = ξk
(
ηT · uSCi,k · Ei,k − uRC

i,k · EM
)

, i = 1,..,S, (36)

where
Ri is the revenue from storage i in [e],
ξ is the price of electricity in [e],
ηT , u

SC , uRC , Ei, E
M as defined in (35).

The optimization problem in (43) is adapted accordingly and included in Appendix K. With
the adaptions made to the models, simulations were executed. The results are analyzed in a
similar way as in Chapter 6.4. The results are generated for the indirect model. The yearly
revenues for this model over the years 2017-2019 with the aFRR market is depicted in Figure
40. From this figure it is derived that the indirect model benefits largely from the possibility
to buy energy from the market. Revenues increase by around 30% compared to the situation
in which this possibility was not there.

Year Stored from wind turbine Bought from market
[MWh] [MWh]

2017 1086 15829

2018 1008 15392

2019 1015 16088

Table 34: The amount of energy stored from the wind turbine and bought from the market
for 2017-2019.
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It has been investigated much energy is actually bought from the market. The results are
presented in Table 34. With these promising results, an answer has been provided to sub-
question 8: what are the effects of introducing the possibility to store energy that is bought
from the market? From this table it is observed that a much larger share that is sent to
storage is originating from the market. Recalling the amount of energy stored from the wind
turbine from Chapter 6.4, the amount of energy stored from a wind turbine when there is
no possibility to buy from the market (around 7500 MWh) is significantly larger than when
there is a possibility to buy energy from the market (around 1000 MWh). This difference can
be explained by the fact that the model makes no distinction between buying energy from the
market and storing energy from wind turbines: both result in equal revenues. Investigating
the consequences gives that in real-life it is undesirable that the storage is not particularly
used for the wind turbines, but rather for excess energy of the market. The model should
be adapted such that it chooses storing energy from the wind turbines over storing energy
from the market. Nevertheless, the total amount of energy stored when there is a possibility
to buy from the market (around 17000 MWh) is more than twice the value of without this
possibility and it is therefore considered to be a valuable extension to the model.
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7 Discussion

The discussion is organized as follows. First, a brief summary is provided of the research steps
that have been undertaken and the relevance of the developed distributed control model has
been analyzed. Thereafter, the limitations of this research are discussed in relation to the
assumptions made in this research. Finally, the possibilities for further research are listed
and explained to finalize the discussion.

7.1 Summary of the research

The goal of this thesis was to “develop a control model that ensures higher revenues of the
distributed system of Ocean Batteries compared to a system without storage.” In order to
achieve this goal, a number of research questions has been formulated. Throughout this
report, answers were provided to these research questions, which were used to eventually
develop the control model. The developed control model needs several inputs, such as the
forecasted prices of the market and forecasted electricity production by the power source that
activates the Ocean Batteries. After the strategy to retrieve these inputs was defined, the
dynamical model of the Ocean Batteries was developed. To incorporate the full design of the
system, the power source – for this research being wind turbines – and the interconnections
between the Ocean Batteries, the wind turbines and the electricity grid have been studied
and added to the model.

Different control strategies have been evaluated and applied to the model to develop the final
control model. It has been decided to adopt a distributed control model with a supervisory
MPC controller that decides on the actions of the distributed subsystems in the system.
The proposed distributed control model has been validated and an extensive research to the
results has been reported, including an analysis of parameter variability (which values should
be selected for the parameters of the model?) for a simplified version of the model in which
there is only one turbine and one storage in the system. In addition, a case study was
performed that researched the revenues that could be obtained by the system in comparison
to the revenues obtained by the reference case – in which there were no Ocean Batteries
implemented. A sensitivity analysis has been executed for the turbine capacity and the depth
of the Ocean Batteries in the system. Lastly, the proposed control model was extended with
the possibility to buy electricity from the market.

In the developed control model, Ocean Batteries are used solely to store energy that can be
sold for a higher price at a later time. However, in practice storage units are not implemented
in a system solely to generate revenues. There are other interesting purposes that require
storage units, especially as an addition to renewable energy systems. The purposes can
be for example to ensure a stable energy supply from the wind turbines, to minimize the
cable capacities in the system – thereby reducing costs – or for the purpose of peak shaving.
Delivering a stable supply can be a useful purpose as this opens the possibility to sign contracts
for a fixed and favorable price of electricity by a grid operator. It is therefore derived that
the control model developed in this research can be considered a basis for extending the
model with the purposes mentioned. It is expected that more energy is stored in the system
as a result. For this research, the amount of energy stored in the Ocean Batteries was
slightly disappointing, especially for the day-ahead market. However, taking into account the
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efficiency losses of the Ocean Battery and the current purpose of the model it makes sense
that for a price market that has little fluctuations, also a little amount of energy is stored.

In Chapter 1, the expected business context and technological aspects were mentioned. Evalu-
ation of these aspects results in the following. The developed control model is able to increase
revenues of the system compared to a system in which there are no Ocean Batteries involved,
thereby contributing to the business context that Ocean Grazer BV is mainly concerned with.
The developed distributed control model is considered an interesting tool that can be applied
for further analyses of deep-sea storage systems. From the structure of the developed con-
trol model and the possibilities to apply the model on various designs of the system, with
different parameters, it was derived that the technological aspects are present to a sufficient
extent. A contribution is made to the industrial context by providing insight in the behavior
of individual storage units in a distributed control system.

7.2 Limitations

There are some limitations to this research that have to be mentioned. These limitations refer
to the assumptions made for the development of the control model and to the risk analysis
provided in Chapter 1. First, some of the assumptions are highlighted and their limitations
are discussed. Thereafter, the limitations related to the risks of the research are discussed.

1. Perfect forecasting

In this research, perfect forecasting of prices and energy production has been assumed. Al-
though already discussed throughout the research, it should still be mentioned that perfect
forecasting is unrealistic for the aFRR market and the developed MPC model therefore over-
estimates the revenues that can be obtained for this situation.

2. Unconstrained production & no selling limitations

For this research it was assumed that the demand of the market is unlimited, which is not
the case in a real-world setting. However, the demand of the market is dependent on many
other factors and could therefore not realistically be estimated for this research. If further
research is conducted in this area, it may be worth investigating the demand of electricity.

3. Exclusion of cable design

Not only is it unrealistic to assume no energy losses inside the cable, there is also always a
certain cable capacity constraining the flow of electricity. Cable lengths and capacities have
not been taken into account for this research. This means that the model allows the energy
to travel over large distances without any form of penalty, which should be incorporated into
the control model to account for real-world behavior.

4. Instant production

The effects of the start-up time and reverse time of the PaT have been disregarded in this
research. However, it should be investigated whether its effects are indeed as small as assumed
in this research. More information on this topic is provided in the section with further
research.
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5. No down-time

Down-time of the Ocean Batteries or wind turbines caused by for example maintenance or
failures has not been modelled. However, to resemble a real-world situation, the effects can
be included as a percentage for testing the control model, for example. If the control model
is applied in a real-world situation, the measured states of the subsystems are an input to
the supervisory MPC controller, which should take adequate control actions once it observes
that a subsystem is out of operation. This is necessary to account for a reduction in total
capacity for example.

A limitation related to the risks associated to this research is the fact that power production
from the wind turbines has been calculated rather than using an actual power production
data set. The results may therefore deviate from the values in this research when the actual
power production appears to be different. Once the model would be applied in a real-world
situation, however, it receives (forecasted) power from the power source and the model can
still function as in this research.

Furthermore, only one case study was executed in this research, which means that the effects
of changing the interconnections between the storage units and the wind turbines could not
be investigated. This limitation was caused by time constraints, and by the fact that the
distributed control model was computationally very demanding. A solution to the latter
problem is that part of the code - the iterations of optimization before a feasible solution is
obtained - may be parallelized. However, it is not possible to parallelize the full code, as the
iterations of the time steps are dependent of one another.

Related to the issue of the model requiring several iterations to find a feasible optimized
result, it is worth mentioning that it was observed that the SciPy optimizer did not always
return the optimum result. Although it never returned a value deviating significantly from the
optimum, it must be noted that in theory the SciPy SLSQP minimizer is a local minimizer,
which finds the local optimum instead of the global optimum. It may be investigated whether
another method can be applied that ensures the global optimum is found by the optimizer.

The last limitation to this research is related to the lack of time for this research project
to execute a full and complete analysis of the system. Nothing can be concluded on the
profitability of the distributed system of Ocean Batteries without including the costs of the
system, which has not been executed for this research. This is also an interesting direction
for further research.

7.3 Further research

There are several possibilities identified for future research. It is believed that the developed
distributed control mode with the supervisory MPC controller serves as a basis for the future
research mentioned below.

Extensions of the model with the aforementioned purposes

In the summary of the research it was stated that the distributed control model developed is
considered a basis for the following purposes of the model: to ensure a stable energy supply
from the wind turbines, for the purpose of peak shaving or to minimize the cable capacities
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in the system. The latter application is discussed below. These purposes can be added to the
model, possibly with adaptation of the objective function and are therefore recommended as
further research.

Cable optimization study

Large potential is expected when incorporating the cables between the Ocean Batteries and
the wind turbines into an optimization study in which costs are included. It may for example
be penalized when energy travels over a large distance. Distances between the Ocean Batter-
ies, wind turbines and the electricity grid should be provided to the model. In this study, the
losses of the cables can be incorporated and the optimum arrangement of Ocean Batteries
inside a wind farm can be determined.

PaT optimization study

Many assumptions have been made in this research with respect to the PaT implemented in
the Ocean Batteries as discussed in the section above. There are many design considerations
with respect to the PaT that can be incorporated into a optimization study. Again, it is
important that costs are also included in this study. Examples of the design considerations
of the PaT are the type of turbine and its capacity. The type of PaT determines the effects
of the start-up and reversing process of the PaT in terms of time and efficiency, but also the
lifetime expectation of the PaT as a function of the switches made between pumping mode
and turbine mode. The turbine capacity determines how much energy can be stored or sold
at a specific time step. An interesting thought is that when the number of switches of the
PaT is minimized, a situation may occur that a storage is empty and the system cannot
deliver full capacity. A higher turbine capacity may account for this. The model should
eventually determine, based on the profits that can be obtained by the system, whether it is
beneficial to keep all storage units in operation at any time or whether it allows storage units
to fully drain. The trade-off between costs and revenues is key in this study. In addition to
the discussed considerations with respect to the PaT, previously in this research it was also
mentioned that incorporation of a variable speed PaT allows the device to operate closer to
its optimum efficiency, which can be an interesting factor to take into account for the PaT
optimization study.

Floating wind turbines

Without diving into this topic, in Chapter 1 it was mentioned that the Ocean Batteries may
be applied as anchors for floating wind turbines. Once this becomes an idea that is expected
to be realized in the nearby future, optimization with respect to this design of the system
can be executed. The control model developed in this research serves as an excellent basis
for this study.

85



8 Conclusion

Concluding remarks on the research presented are made in this section. A two-stage analysis
has been presented in Chapter 6. The first stage consisted of analyzing the system when there
was only one Ocean Battery and one wind turbine incorporated. The different design choices
for the model have been investigated in this stage and a comparison between two control
strategies has been made. Only the best-performing control strategy, MPC, was implemented
in the final control model. The second stage consisted of analyzing the system in which there
were more Ocean Batteries and more than one wind turbine incorporated through a case
study including four Ocean Batteries and two wind turbines. The conclusions from both
stages are as follows.

Stage 1: One-Storage-One-Generator

First of all, the different design choices for the model have been analyzed. Conclusions from
this analysis include the following.

• A sampling time of 30 minutes is a suitable choice for the model.

• The higher the number of storage units in a cluster, the more revenue can be generated.
However, only for the aFRR market this increase is significant.

• A prediction horizon larger than 3 hours is a suitable choice for the model when making
a trade-off between the predictive power of the model and the computation time.

• With the current numbers of efficiency of the Ocean Battery, little energy generated
by the wind turbines is actually stored. The higher the efficiency, the more the Ocean
Batteries are used.

Furthermore, the MPC strategy has been compared to the RBC strategy and the reference
case with respect to revenues. When the efficiency is chosen higher than the current value, but
lower than the ambitions for the future, namely ηP = 85% and ηT = 90%, the RBC strategy
is hardly an improvement to the reference case in terms of yearly revenues for the day-ahead
market. However, the threshold price that determines whether the Ocean Batteries sell their
energy can be optimized, which can possibly result in higher revenues. The MPC strategy
can improve revenues by approximately 3%, which is also really small. The interpretation is
that little energy is stored.

More promising results have been obtained for the aFRR market, where even the RBC strat-
egy is able to improve revenues with 28% and the MPC strategy is able to improve revenues
by more than 40%, both with respect to the reference case. The results of both strategies are
overestimated as the RBC strategy assumes that the mean price for the full year is known,
while the MPC strategy makes use of a larger prediction horizon than is actually possible.
Nevertheless, it is expected that there is more potential in operating in this market than in
the day-ahead market due to the larger price fluctuations that occur.

Stage 2: Multiple-Storage-Multiple-Generator

Results from the case study of the MSMG model are presented in this stage. Two models
have been developed, an ’indirect’ model and a ’direct’ model, of which the latter assumes
connections exist between all Ocean Batteries and wind turbines in the system, while for the
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indirect model this is not the case and sometimes two time steps are required to transfer
energy from a wind turbine to an indirect storage. Similar results from the day-ahead market
have been obtained as for the 1S1G model: resulting revenues are only slightly better than
the reference case and the total amount of energy stored is only around 10% for the indirect
model and around 20% for the direct model. In addition, for the indirect model the Ocean
Batteries are not filled to their maximum at any point in time. For the direct model this is
the case and therefore this model may benefit from a greater depth of the Ocean Batteries.

For the aFRR market, the results show large potential, as around 20% higher revenues are
obtained from the indirect model and even 50% for the direct model compared to the reference
case. In addition, the total amount of energy stored is higher than for the day-ahead market,
namely 25% for the indirect model and 45% for the direct model. Even when the prediction
horizon is reduced to a realistic value, the revenues are about 15% higher than the reference
case and around 18% of the energy is stored. These results are still significantly better than
for the day-ahead market.

From the sensitivity analysis to the turbine capacity and the depth of the Ocean Batteries,
the following can be concluded. Increasing the turbine efficiency has a positive effect on
the yearly revenues, but it should be investigated whether the increased revenues are high
enough to cover the costs of a turbine with a larger capacity. Especially increasing the turbine
capacity from 1MW to 2MW seems a promising modification to the storage design. Increasing
the depth of the Ocean Batteries, however, has little to no effect on the yearly revenues or
the amount of energy stored. This outcome may be due to the current design of the Ocean
Battery. If the design is changed in the future, another analysis can be executed to observe
the effects of changing the depth for the new design.

The results from extending the model with the possibility to buy energy from the market are
very promising: twice as much energy is stored in the Ocean Batteries and revenues increase
by approximately 30% compared to the system without this option. It should be noted,
however, that sometimes the model buys energy from the market and sells energy from the
wind turbines simultaneously instead of storing the energy from the wind turbines since it
makes no difference from a revenue perspective. Not only is this physically impossible, it is
also undesirable and should be penalized in further analyses.

The main research question that served as a basis throughout this research, how should the
distributed system of Ocean Batteries be controlled?, can finally be answered. From a revenue
maximization point of view, it is advised to adopt a distributed control system consisting of
the distributed controls of the subsystems and a supervisory MPC controller that determines
the optimum actions of the system as a whole. It has been proven that revenues obtained can
be higher than for the reference case without Ocean Batteries. Although many extensions to
the presented control model have not been included due to time restrictions of this research,
it is nevertheless concluded that the goal of this research is achieved.
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Appendices

A Generation of wind data set

For generating the wind data set, the wind directions and velocities were taken from the KNMI
data set. The wind directions were categorized into four categories that were described in the
chapter. For example: when the wind was blowing from North-East to South-East, between
45◦and 135◦, the wind direction was classified as East. The same method applies for the
other wind directions. The distribution of the wind directions in the obtained data set and
the average wind speed per wind direction is as in Figure 41. From the figure it can be
derived that the wind is blowing from the South or West for more than half of the time, with
West as the dominant wind direction. It would therefore be expected that the turbines facing
West would perform best in terms of their power output. In addition, wind from the West is
also stronger, which enables a higher power output and strengthens the hypothesis that wind
turbines facing West will produce a higher power output.

The Python code that was used to generate the wind power output is included on the next
page. It is a simple peace of code that inputs a data set, does some calculations on its values
and outputs the power data set. The allocation of the turbines from T1...T64 is depicted in
Figure 42. The resulting power outputs for the 64 wind turbines in the OG-WindFarm is
depicted in the graph in Figure 43. In this graph there are some major peaks shown. These
peaks correspond to the rows facing the West direction, which is according to expectation.
The other rows that are in the first row for any of the wind direction also perform better than
the rows in the middle, which is in line with expectation.

Figure 41: Distribution of the wind directions in the data set (left) and average wind speed
per wind direction (right).
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Figure 42: Configuration and allocation of turbines in the grid.

Figure 43: Power output per wind turbine produced with the wind data set.
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Python code

import xlrd
import os
import openpyxl
Wind Data = xlrd.open workbook(”Wind month.xlsx”)
sheet = Wind Data.sheet by index(0)

# Create a new blank Workbook to store the powers
wb = openpyxl.Workbook()
sheet2 = wb.active

# Insert variables
PR = 8 # Rated power in MW
VI = 4.0 # Cut-in speed in m/s
VR = 13.0 # Rated wind speed in m/s
VO = 25.0 # Cut-out wind speed in m/s
Rho = 1.225 # Density of air in kg/m3
Eta = 0.2809 # Efficiency of the turbine + generator
A = 21164 # Swept area in m2

for i in range(3, sheet.ncols):
for j in range(1, sheet.nrows):
V = sheet.cell value(j, i)

if (V >= VI and V < VR):
Power = (0.5 * A * Rho * Eta * (V**3))/(10**6)

elif (V >= VR and V < VO):
Power = PR

else:
Power = 0

Powerdata = sheet2.cell(row = j+1, column = i+1)
Powerdata.value = Power

wb.save(”Powerdatas.xlsx”)
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B Calculation of the volume of the Ocean Grazer storage

The volume of the Ocean Grazer storage is approximated by calculating the volume of the
concrete pipes. For this approximation it was assumed that the inner diameter of the pipes
is 10 meters and that the space between the two concrete pipes is also 10 meters. A top-view
of the Ocean Grazer is depicted in Figure 44.

Figure 44: Top-view of the Ocean Grazer.

The volume of a pipe is calculated by Equation 37 and the parameters used for the calculations
are listed in Table 35. The area is calculated by π ·r2. The length of the pipes is calculated by
subtracting the length of the corners from the total circumference of the pipes. The resulting
volumes are depicted in Table 36

V = A · L (37)

Where
V is the volume of the pipe in [m3]
A is the cross-sectional area of the pipe in [m2]
L is the length of the pipe in [m]

Parameter Aout Ain Lout Lin

Value 25π m2 25π m2 240 m 80 m

Table 35: Parameters for the calculation of the volume of the Ocean Grazer.

Vout 18849 m3

Vin 6283 m3

Vtotal 25132 m3

Table 36: Volume of the Ocean Grazer storage.
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C Dynamical model of the Ocean Grazer storage

import time
from scipy.optimize
import minimize
from matplotlib.pyplot import plot,show,figure,subplot,title,ylabel
import numpy as np
from numpy import *

# set printoptions: print values up to 2 decimals
np.set printoptions(formatter=’float’: lambda x: ”0:0.2f”.format(x))

# initialize parameters
ts = 3600 # sampling time [s]
N = 40000000 # take large number for creating vectors of unknown length
Eta p = 0.85 # pump efficiency [-]
Eta l = 0.9 # loss efficiency [-]
Eta t = 0.9 # turbine efficiency [-]
Eta pump = Eta p*Eta l # total efficiency pumping process [-]
Eta turbine = Eta t*Eta l # total efficiency turbine process [-]
p1 = 400000 # ocean pressure [Pa]
p2 = 100000 # atmospheric pressure [Pa]
V max = 25132 # maximum volume of the tubes [m3]
PP = 1 # rated power of the pump [MW]
PT = 1 # rated power of the turbine [MW]

# initialize vectors variables
ES = np.zeros(N) # energy in storage [MWh]
E in = np.zeros(N) # energy to storage [MWh]
E out = np.zeros(N) # energy from storage [MWh]
V = np.zeros(N) # volume of storage [m3]
Energy in = 0 # total energy to storage [MWh]
Energy out = 0 # total energy from storage [MWh]
Energy in act = 0 # total energy in bladder [MWh]
Energy out pot = 0 # total energy from bladder [MWh]

# calculate the maximum storage capacity [MWh]
dPav = p1 - (p2/2)
E max = ((V max*dPav)/3600)/10**6
print(f’Maximum storage level = {E max} MWh)

u = 0 # u = 0: store, u = 1: drain
i = 1 # count the time steps
st = 0 # count the storing time steps
dr = 0 # count the draining time steps
while True:

# if the water level is below 0.95 and it hasn’t been before, store energy.
# if not, release the energy
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if ES[i-1] < 0.999*E max and u == 0:
Label = ’store’
SiS = E max - ES[i-1]
if SiS < (ts/3600)*PP: # check if there is still enough space in storage

P in = (ts/3600)*PP
else:

P in = SiS
E in[i] = P in*Eta pump # calculate energy that goes into storage
Energy in act = np.add(Energy in act,E in[i]) # add it to total energy in
Energy in = np.add(Energy in,P in) # calculate energy used
st += 1

else:
u = 1 # time to release
Label = ’release’
if ES[i-1] < (ts/3600)*PT: # check if there is still enough energy in storage—

P out = (ts/3600)*PT
else:

P out = ES[i-1]
E out[i] = P out*Eta turbine # calculate energy that reaches customer
Energy out = np.add(Energy out,E out[i]) # add it to total energy out
Energy out pot = np.add(Energy out pot,P out) # calculate energy out of storage
dr += 1

# calculate storage level volume of the bladder
if Label == ’store’:

ES[i] = ES[i-1] + E in[i]
elif Label == ’release’:

ES[i] = ES[i-1] - P out

# if the reservoir is almost empty, stop
if ES[i] ¡ 0.0001*E max and u == 1:

break
i += 1

# make efficiency calculations
Eta total = Energy out/Energy in # calculate the roundtrip efficiency
Tot Eta pump = Energy in act/Energy in # calculate the efficiency of the pump
Tot Eta turbine = Energy out/Energy out pot # calculate the efficiency of the turbine

print(f’Efficiency of the pump = {Tot Eta pump})
print(f’Efficiency of the turbine = {Tot Eta turbine})
print(f’Round trip efficiency OG battery = {Eta total})
print(f’Total time to fill the storage = {(st*ts)} seconds’)
print(f’Total time to drain the storage = {(dr*ts)} seconds’)
print(f’Time to fill & drain the storage = {(i)*ts} seconds’)
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D Validation of the dynamical model

One of the validation techniques applied to validate the dynamical model was comparison to
analytical calculations. It has been decided to analytically calculate the theoretical time it
takes to fill and drain the storage and compare them to the model results. The analytical
calculations are executed as follows. First, the maximum storage capacity was calculated by

Emax = Vmax ·∆pav =
(25132 · 350000)/3600

106
= 2.44 MWh (38)

∆pav = pocean −
patm

2
= 400000− 100000

2
= 350000 Pa (39)

Then, the efficiency of the pump and the turbine were determined from the assigned values
as ηpump = 0.765 and ηturbine = 0.81. A turbine capacity of 1MW is used. Effectively, of each
MW that is used to drive the pump, only 0.765 MWh goes into storage due to efficiency
losses. The time it takes to fill the storage is now calculated as

Tfill =
Emax

Ein
=

2.44

0.765
= 3.19 hours ≈ 11485 seconds (40)

Although the turbine also has efficiency losses, the energy that is drained from the storage
is still equal to the turbine capacity. Efficiency losses occur before the energy reaches the
customer. The time to drain the storage is calculated as

Tdrain =
2.44

1
= 2.44 hours ≈ 8784 seconds (41)

The total time to fill and drain the storage is therefore

T = Tfill + Tdrain = 11485 + 8784 = 20269 seconds (42)
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E Basic settings for the validation simulations

This appendix consists of the basic settings used in the simulations with the purpose of
validating the simulation models.

Validation of the MPC 1S1G model

For both simulations, the day-ahead data set from 2019 was used. All other parameters are
listed in Table 37.

Parameter Value Description [units]

Ts 900 Sampling time [s]
P 4 Prediction horizon [hours]
nrS 4 Number of storage units in cluster [−]
pocean 400000 Ocean pressure [Pa]
patm 100000 Atmospheric pressure [Pa]
Vmax 25132 Maximum volume of bladder [m3]
TC 1 Capacity of the PaT [MW ]

Table 37: Basic settings for the validation of the MPC 1S1G model by prediction validation
and parameter variability.

Validation of the Heuristics 1S1G model

For the simulation of the parameter variability, the day-ahead price data from 2019 were used.
The threshold price was set at the mean of the data set. All other parameters are listed in
Table 38.

Parameter Value Description [units]

Ts 900 Sampling time [s]
nrS 4 Number of storage units in cluster [−]
pocean 400000 Ocean pressure [Pa]
patm 100000 Atmospheric pressure [Pa]
Vmax 25132 Maximum volume of bladder [m3]
TC 1 Capacity of the PaT [MW ]

Table 38: Basic settings for the validation of the MPC 1S1G model by prediction validation
and parameter variability.

Validation of the MPC MSMG model

For the qualitative validation, the day-ahead price data from 2019 were used and for the
quantitative validation, the aFRR price data from 2019 were used. All other settings are
listed in Table 39
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Parameter Value Description [units]

Ts 1800 Sampling time [s]
P 3 Prediction horizon [hours]
nrS 3 Number of storage units in cluster [−]
pocean 400000 Ocean pressure [Pa]
patm 100000 Atmospheric pressure [Pa]
Vmax 25132 Maximum volume of bladder [m3]
TC 1 Capacity of the PaT [MW ]
ηP 0.95 Efficiency of the pump mode of the PaT [−]
ηT 0.95 Efficiency of the turbine mode of the PaT [−]

Table 39: Basic settings for the validation of the MPC MSMG model by prediction validation
and parameter variability.
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F One-Storage-One-Generator RBC simulation model

import numpy as np
import xlrd
import time
import sys from statistics import mean

# import dataset
Price Data = xlrd.open workbook(”FINAL Price Data.xlsx”)
Power Data = xlrd.open workbook(”FINAL Power Data.xlsx”)
DayAhead = Price Data.sheet by name(’DayAhead’)
aFRRup = Price Data.sheet by name(’aFRRup’)
Windpower = Power Data.sheet by name(’2019’) # or 2018 or 2017

# set printoptions: print values up to 2 decimals
np.set printoptions(formatter=’float’: lambda x: ”0:0.2f”.format(x))

# initialize parameters
simtime = 31536000 # total simulation time [s] = 1 year
ts = 900 # sampling time [s] = 15 min
N = int(simtime/ts) # number of time steps
WT = 2 # number of wind turbines
C = 4 # 4 = 2019; 3 = 2018; 2 = 2017 p1 = 400000 # ocean pressure [Pa]
p2 = 100000 # atmospheric pressure [Pa]
V max = 25132 # maximum volume of the tubes [m3]
Eta pump = 0.85 # efficiency of pumping process [-]
Eta turbine = 0.9 # efficiency of turbine process [-]
nrS = 4 # number of storage systems in a cluster [-]
TC = (ts/3600)*nrS # turbine capacity [MW]

# initialize vectors
ES = np.zeros(N) # energy stored [MWh]
EG = np.zeros(N) # wind turbine data [MW]
M = np.zeros(N) # prices of electricity [e]
R = np.zeros(N) # revenue [e]

# make vector with price data
for i in range(1,N+1):

M[i-1] = aFRRup.cell value(i,C) # aFRRup or DayAhead

# find mean price
mu = mean(M)
print(f’Mean: mu’)
TP = mu
print(f’Threshold price = TP’)
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# make vector with generation data, based on ts = 15 mins
for j in range(1,N+1):

EG[j-1] = (ts/3600)*Windpower.cell value(j,2)

# calculate the maximum storage capacity [MWh]
dPav = p1 - (p2/2)
E max = nrS*((V max*dPav)/3600)/10**6

# calculate storage level and revenue at t = i
for i in range(N):

if M[i] > TP: # sell energy
if ES[i-1] > TC: # sell TC

ES[i] = ES[i-1] - TC
R[i] = M[i]*(EG[i] + Eta turbine*TC)

else: # sell EG
ES[i] = 0
R[i] = M[i]*(EG[i] + Eta turbine*ES[i-1])

else: # store energy
SiS = E max - ES[i-1] # calculate space in storage
if SiS > 0:

if SiS ≥ EG[i]:
if EG[i] ≤ TC: # store EG

ES[i] = ES[i-1] + Eta pump*EG[i]
R[i] = 0

else: # store TC
ES[i] = ES[i-1] + Eta pump*TC
R[i] = M[i]*(EG[i]-TC)

else:
if SiS ≥ TC: # store TC

ES[i] = ES[i-1] + Eta pump*TC
R[i] = M[i]*(EG[i] - TC)

else: # store SiS
ES[i] = ES[i-1] + Eta pump*SiS
R[i] = M[i]*(EG[i] - SiS)

else: # no space in storage
ES[i] = ES[i-1]# nothing happens to ES
if M[i] > 0: # only sell if price > 0

R[i] = M[i]*EG[i]

# print total revenue
print(f’Total Revenue = e{np.sum(R[:])}’)
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G One-Storage-One-Generator MPC simulation model

import numpy as np
import xlrd
import time
import sys
from statistics import mean
from scipy.optimize import minimize
from matplotlib.pyplot import plot,show,figure,subplot,title,ylabel

# import dataset
Price Data = xlrd.open workbook(”FINAL Price Data.xlsx”)
Power Data = xlrd.open workbook(”FINAL Power Data.xlsx”)
DayAhead = Price Data.sheet by name(’DayAhead’)
aFRRup = Price Data.sheet by name(’aFRRup’)
Windpower = Power Data.sheet by name(’2019’) # or 2018 or 2017

# set printoptions: print values up to 2 decimals
np.set printoptions(formatter=’float’: lambda x:”0:0.2f”.format(x),threshold=sys.maxsize)

# initialize parameters
simtime = 31536000 # total simulation time [s] = 1 year
ts = 900 # sampling time [s] = 15 min
N = int(simtime/ts) # number of time steps
WT = 2 # number of wind turbines
C = 4 # 4 = 2019; 3 = 2018; 2 = 2017 p1 = 400000 # ocean pressure [Pa]
p2 = 100000 # atmospheric pressure [Pa]
V max = 25132 # maximum volume of the tubes [m3]
Eta pump = 0.85 # efficiency of pumping process [-]
Eta turbine = 0.9 # efficiency of turbine process [-]
nrS = 4 # number of storage systems in a cluster [-]
TC = (ts/3600)*nrS # turbine capacity [MW]
n = 2 # number of control variables [-]

# define prediction horizon
P = 24

# initialize vectors
ES = np.zeros(N) # energy stored [MWh]
EG = np.zeros(N) # wind turbine data [MW]
M = np.zeros(N) # prices of electricity [e]
R = np.zeros(N) # revenue [e]
u = np.zeros(n) # control variable [-]

# initialize prediction vectors
ES hat = np.zeros(P) # prediction energy stored [MWh]
EG hat = np.zeros(P) # prediction energy generated [MWh]
M hat = np.zeros(P) # prediction prices of electricity [e]
R hat = np.zeros(P) #predicted revenue [e]
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# make vector with price data
for i in range(1,N+1):

M[i-1] = aFRRup.cell value(i,C) # aFRRup or DayAhead

# make vector with generation data, based on ts = 15 mins
for j in range(1,N+1):

EG[j-1] = (ts/3600)*Windpower.cell value(j,2)

# calculate the maximum storage capacity [MWh]
dPav = p1 - (p2/2)
E max = nrS*((V max*dPav)/3600)/10**6

globals()[’u hat dict’] = {} # make dictionary to calculate all variables

def get vars(u hat):
key = hash(u hat.data.tobytes())
u hat dict = globals()[’u hat dict’]
if u hat dict.get(key):

return u hat dict[key]
es hat = np.zeros(P p)
con1 = np.ones(P p)
con2 = np.ones(P p)
con3 = np.ones(P p)

for k in range(P p):
if k == 0:

es hat[-1] = ES[i - 1]
EG hat[k] = EG[k+i]
es hat[k] = es hat[k - 1] + (1 - u hat[n * k]) * Eta pump * EG hat[k]

- u hat[n * k + 1] * es hat[k - 1]
M hat[k] = M[k + i]
R hat[k] = -M hat[k] * (u hat[n * k] * EG hat[k] + u hat[n * k + 1] * Eta turbine

* es hat[k - 1])
con1[k] = 0.0001 - (1 - u hat[n * k]) * u hat[n * k + 1]
con2[k] = TC - (u hat[n * k + 1] * es hat[k - 1]) - (1 - u hat[n * k]) * EG hat[k]
con3[k] = E max - es hat[k]

objective = np.sum(R hat[:])
globals()[’u hat dict’][key] = {

’con1’: con1,
’con2’: con2,
’con3’: con3,
’r hat’:R hat,
’eg hat’:EG hat,
’es hat’:es hat,
’m hat’:M hat,
’objective’: objective,

}
return globals()[’u hat dict’][key]
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# prediction model {}
def objective(u hat):

return get vars(u hat)[’objective’]

# definition of constraints
1: PaT cannot act as a pump and turbine simultaneously
def constraint1(u hat):

return get vars(u hat)[’con1’]

# 2: pump/turbine capacity has a maximum value
def constraint2(u hat):

return get vars(u hat)[’con2’]

# 3: the energy storage level cannot exceed the maximum storage level
def constraint3(u hat):

return get vars(u hat)[’con3’]

t = time.time()
iterations = []
for i in range(N): # if i ≥ N-P, it cannot predict further into the future, adjust P

if i ≥ N - P:
P p = N - i

else:
P p = P

# randomize initial guess
Result = []
it = 0
while not Result:

u hat0 = np.random.uniform(low=0, high=1, size=(n * P p))

# MPC calculation
bnds = [(0, 1)] * n * P p
cons1 = {’type’:’ineq’, ’fun’: constraint1}
cons2 = {’type’:’ineq’, ’fun’: constraint2}
cons3 = {’type’:’ineq’, ’fun’: constraint3}
cons = ([cons1, cons2, cons3])
solution = minimize(objective, u hat0, method=’SLSQP’, bounds=bnds,

constraints=cons)
del globals()[’u hat dict’]
globals()[’u hat dict’] = {}
u hat = solution.x
obj = -objective(u hat)

# check whether the generated u hat satisfies the constraints
con1 = constraint1(u hat)
con2 = constraint2(u hat)
con3 = constraint3(u hat)
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min const = -0.0001
if all([np.all(con1 > min const), np.all(con2 > min const), np.all(con3 > min const)]):

Result.append(obj)
u hatbest = u hat

it += 1
iterations.append(it)

# calculate storage level and revenue at t = i
u[0] = u hatbest[0]
u[1] = u hatbest[1]
ES[i] = ES[i - 1] + (1 - u[0]) * Eta pump * EG[i] - u[1] * ES[i - 1]

print(’Total Revenue = e{np.sum(R[:])})
print(’Theoretical max storage level = {E max})
print(’Actual max storage level = {np.amax(ES)})
print(’Difference = {E max - np.amax(ES)})
print(f’Total amount of energy to storage = np.sum(ETS)’)
print(f’Total amount of energy produced = np.sum(EG)’)
elapsed = time.time() - t
print(elapsed)

# figure to show all relevant parameters outcomes
figure(1)
subplot(211)
plot(ES)
ylabel(’ES’)
subplot(212)
plot(M)
ylabel(’Price’)
show()
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H Multiple-Storage-Multiple-Generator MPC simulation
model

import numpy as np
import xlrd
import time
import sys
from statistics import mean
from scipy.optimize import minimize
from matplotlib.pyplot import plot,show,figure,subplot,title,ylabel

# import dataset
Price Data = xlrd.open workbook(”FINAL Price Data.xlsx”)
Power Data = xlrd.open workbook(”FINAL Power Data.xlsx”)
Adjacency Matrix = xlrd.open workbook(”Adjacency Matrix.xlsx”)
DayAhead = Price Data.sheet by name(’DayAhead’)
aFRRup = Price Data.sheet by name(’aFRRup’)
Windpower = Power Data.sheet by name(’2019’) # or 2018 or 2017
A Matrix = Adjacency Matrix.sheet by index(0)

# set printoptions: print values up to 2 decimals
np.set printoptions(formatter=’float’: lambda x:”0:0.2f”.format(x),threshold=sys.maxsize)

# initialize parameters
simtime = 31536000 # total simulation time [s] = 1 year
ts = 1800 # sampling time [s] = 30 min
N = int(simtime/ts) # number of time steps
WT = 2 # number of wind turbines
C = 4 # 4 = 2019; 3 = 2018; 2 = 2017 p1 = 400000 # ocean pressure [Pa]
p2 = 100000 # atmospheric pressure

Pa

V max = 25132 # maximum volume of the tubes [m3]
Eta pump = 0.95 # efficiency of pumping process [-]
Eta turbine = 0.95 # efficiency of turbine process [-]
nrS = 3 # number of storage systems in a cluster [-]
TC = (ts/3600)*nrS # turbine capacity [MW]
S = 4 # number of Ocean Batteries
G = 2 # number of wind turbines
dim = S+G+1 # dimension of control variable

# define prediction horizon
P = 6

# initialize vectors
ES = np.zeros((S,N)) # energy stored [MWh]
EG = np.zeros((G,N)) # wind turbine data [MW]
ESav = np.zeros((dim,N)) # available energy [MWh]
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EFT = np.zeros(N) # energy from wind turbine to storage [MWh]
M = np.zeros(N) # prices of electricity [e]
R = np.zeros((S+G,N)) # revenue [e]
Rtotal = np.zeros(N) # total revenues [e]
u = np.zeros(dim**2) # control variable [-]
u form = np.zeros(dim**2) # make adjacency matrix
u best = np.zeros(dim**2) # make adjacency matrix

# make vector with price data
for i in range(1,N+1):

M[i-1] = aFRRup.cell value(2*i,C) # aFRRup or DayAhead
if M[i-1] < 0:

M[i-1] = 0

# make vector with generation data, based on ts = 15 mins
for j in range(1,N+1):

for i in range(G):
EG[i,j-1] = (ts/3600)*Windpower.cell value(2*j,2+i)

# import adjacency matrix
for a in range(A Matrix.nrows):

for b in range(A Matrix.ncols):
u form[dim*a+b] = A Matrix.cell value(a,b)

# find size of u hat
c = 0
CV = 0
while c < u form.size:

if u form[c] == 1:
CV += 1

c += 1

# calculate the maximum storage capacity [MWh]
dPav = p1 - (p2/2)
E max = nrS*((V max*dPav)/3600)/10**6

globals()[’u hat dict’] = {} # make dictionary to calculate all variables

def get vars(u hat):
key = hash(u hat.data.tobytes())
u hat dict = globals()[’u hat dict’]
if u hat dict.get(key):

return u hat dict[key]
es hat = np.zeros((S,P p))
con1 = np.ones(S*P p)
con2 = np.ones(S*P p)
con3 = np.ones(S*P p)
con4 = np.ones(dim*P p)
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for k in range(P p):
if k == 0:

es hat[:,-1] = ES[:,i - 1] # start with the energy at the previous time step
EG hat[:,k] = EG[:,k + i] #import right values from EG
M hat[k] = M[k + i] #import right values from M
#make available energy array
ESav hat[:S+G,k] = np.append(es hat[:,k-1],EG hat[:,k])
ESav hat[:,k] = np.append(ESav hat[:S+G,k],0)

# make a matrix of u hat
for a in range(A Matrix.nrows):

for b in range(A Matrix.ncols):
u form[dim*a+b] = A Matrix.cell value(a,b)

y = 0
for t in range(dim**2):

if u form[t] == 1:
u form[t] = u hat[k*CV+y]
y = y + 1

else:
u form[t] = 0

# calculate updated storage levels
for j in range(S):

if u form[j*dim+dim-1] > 0:
for g in range(G):

EFT hat[g] = u form[(S+g)*dim+j]*ESav hat[S+g,k]
es hat[j,k] = es hat[j,k-1] + Eta pump*np.sum(EFT hat[:])

+ Eta turbine*Eta pump*np.sum(u form[j:S*dim:dim]*ESav hat[:S,k])
- np.sum(u form[j*dim:j*dim+dim])*ESav hat[j,k]

else:
es hat[j,k] = es hat[j,k-1] + Eta turbine*Eta pump*np.sum(u form[j:S*dim:dim]

*ESav hat[:S,k]) - np.sum(u form[j*dim:j*dim+dim-1])*ESav hat[j,k]

# calculate revenue
for j in range(S): # revenue from storage units

if u form[j*dim+dim-1] > 0:
R hat[j,k] = -M hat[k]*u form[j*dim+dim-1]*Eta turbine*es hat[j,k-1]

else:
R hat[j,k] = 0

for j in range(G): # revenue from generators
R hat[S+j,k] = -M hat[k]*(1-np.sum(u form[(S+j)*dim:(S+j+1)*dim-1]))

*EG hat[j,k]
Rtotal hat[k] = np.sum(R hat[:,k])

# calculate constraints
for j in range(S):

# con1: PaT cannot act as pump and turbine at the same time
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con1[S*k+j] = 0.0001 - np.sum(u form[j*dim:j*dim+dim])*np.sum(u form[j::dim])
# con2: there exists a turbine capacity of 1 MW
con2[S*k+j] = TC - (np.sum(u form[j*dim:j*dim+dim])*ESav hat[j,k])
- np.sum(u form[j::dim]*ESav hat[:,k])
# con3: there exists a maximum storage level
con3[S*k+j] = E max - es hat[j,k]

for j in range(dim):
# con4: the sum of the energy from an actor cannot exceed 100%
con4[dim*k+j] = 1.0001 - np.sum(u form[j*dim:j*dim+dim])

# cost function
objective = np.sum(Rtotal hat[:])
globals()[’u hat dict’][key] = {

’con1’: con1,
’con2’: con2,
’con3’: con3,
’con4’: con4,
’objective’: objective,

}
return globals()[’u hat dict’][key]

# prediction model {}
def objective(u hat):

return get vars(u hat)[’objective’]

# definition of constraints
def constraint1(u hat):

return get vars(u hat)[’con1’

def constraint2(u hat):
return get vars(u hat)[’con2’]

def constraint3(u hat):
return get vars(u hat)[’con3’]

def constraint4(u hat):
return get vars(u hat)[’con4’]

start = time.time()
iterations = []
EnergyFromWT = 0
for i in range(N): # if i ≥ N-P, it cannot predict further into the future, adjust P

if i >= N-P:
P p = N-i

else:
P p = P
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# initialize prediction vectors
ES hat = np.zeros((S,P p)) # prediction energy stored [MWh]
EG hat = np.zeros((G,P p)) # prediction energy generated [MWh]
EFT hat = np.zeros(G) # predicted energy from wind turbines to storage units
ESav hat = np.zeros((dim,P p)) # predicted available energy [MWh]
M hat = np.zeros(P p) # prediction prices of electricity [e]
R hat = np.zeros((S+G,P p)) # predicted revenue [e]
Rtotal hat = np.zeros(P p)

#randomize initial guess
Result = []
it = 0
while not Result:

u hat0 = np.random.uniform(low=0,high=1,size=(CV*P p))

# MPC calculation
bnds = [(0, 1)]*CV*P p
cons1 = {’type’:’ineq’, ’fun’: constraint1}
cons2 = {’type’:’ineq’, ’fun’: constraint2}
cons3 = {’type’:’ineq’, ’fun’: constraint3}
cons4 = {’type’:’ineq’, ’fun’: constraint1}
cons = ([cons1,cons2,cons3,cons4])
solution = minimize(objective,u hat0,method=’SLSQP’,bounds=bnds,
constraints=cons)
del globals()[’u hat dict’]
globals()[’u hat dict’] = {}
u hat = solution.x
obj = -objective(u hat)

# check whether u hat satisfies the constraints
con1 = constraint1(u hat)
con2 = constraint2(u hat)
con3 = constraint3(u hat)
con4 = constraint4(u hat)

min const = -0.0001
if all([np.all(con1 > min const), np.all(con2 > min const), np.all(con3 > min const),
np.all(con4 > min const)]):

Result.append(obj)
u hatbest = u hat
# make a matrix of u hatbest
for a in range(A Matrix.nrows):

for b in range(A Matrix.ncols):
u best[dim*a+b] = A Matrix.cell value(a,b)

y = 0
for t in range(dim**2):
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if u best[t] == 1:
u best[t] = u hatbest[k*CV+y]
y = y + 1

else:
u best[t] = 0

for q in range(G):
u best[(S+q+1)*dim-1] = 1-np.sum(u best[(S+q)*dim:(S+q+1)*dim-1])

it+=1
iterations.append(it)
u = u best

# construct array with available energy
ESav[:S+G,i] = np.append(ES[:,i-1],EG[:,i])
ESav[:,i] = np.append(ESav[:S+G,i],0)

#calculate updated storage levels
for j in range(S):

if u form[j*dim+dim-1] > 0:
for g in range(G):

EFT[g] = u[(S+g)*dim+j]*ESav[S+g,i]
ES[j,i] = ES[j,i-1] + Eta pump*np.sum(EFT[:])

+ Eta turbine*Eta pump*np.sum(u[j:S*dim:dim]*ESav[:S,i])
- np.sum(u[j*dim:j*dim+dim])*ESav[j,i]

EnergyFromWT += np.sum(EFT[:])
else:

ES[j,i] = ES[j,i-1]
+ Eta turbine*Eta pump*np.sum(u[j:S*dim:dim]*ESav[:S,i])
- np.sum(u[j*dim:j*dim+dim-1])*ESav[j,i]

# calculate revenue
for j in range(S): # revenue from storage units

if u[j*dim+dim-1] > 0:
R[j,i] = M[i]*u[j*dim+dim-1]*Eta turbine*ES[j,i-1]

else:
R[j,i] = 0

for j in range(G):# revenue from generators
if 1-np.sum(u[(S+j)*dim:(S+j+1)*dim-1]) < 0:

Portion sold = 0
else:

Portion sold = 1-np.sum(u[(S+j)*dim:(S+j+1)*dim-1])
R[S+j,i] = M[i]*Portion sold*EG[j,i]

# total revenue
Rtotal[i] = sum(R[:,i])
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I Reference model: without storage

import numpy as np
import xlrd
import openpyxl

# import dataset
Price Data = xlrd.open workbook(”FINAL Price Data.xlsx”)
Power Data = xlrd.open workbook(”FINAL Power Data.xlsx”)
DayAhead = Price Data.sheet by name(’DayAhead’)
aFRRup = Price Data.sheet by name(’aFRRup’)
Windpower = Power Data.sheet by name(’2019’) # or 2018 or 2017

# set printoptions: print values up to 2 decimals
np.set printoptions(formatter=’float’: lambda x: ”0:0.2f”.format(x))

# initialize parameters
simtime = 31536000 # total simulation time [s] = 1 year
ts = 1800 # sampling time [s] = 15 min
N = int(simtime/ts) # number of time steps
WT = 2 # number of wind turbines
C = 4 # 4 = 2019; 3 = 2018; 2 = 2017

# initialize vectors
EG = np.zeros((WT,N)) # wind turbine data [MW]
M = np.zeros(N) # prices of electricity [e]
R = np.zeros((WT,N)) # revenue [e]

# make vector with price data
for i in range(1,N+1):

M[i-1] = aFRRup.cell value(2*i,C) # aFRRup or DayAhead

# activate this part if you have 1 wind turbine

### make vector with generation data
##for j in range(1,N+1):
## EG[0,j-1] = (ts/3600)*Windpower.cell value(2*j,2)
##
### calculate the revenue eliminate negative prices
##for i in range(N):
## if M[i] > 0:
## R[0,i] = M[i]*EG[0,i]

# activate this part if you have >1 wind turbine

# make vector with generation data
for i in range(2,Windpower.ncols):

for j in range(1,N+1):
EG[i-2,j-1] = (ts/3600)*Windpower.cell value(2*j,i)
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# calculate the revenue eliminate negative prices
for i in range(N):

for j in rangerange(WT):
if M[i] > 0:

R[j,i] = M[i]*EG[j,i]
print(R[:,i])

# print total revenue
print(f’Total Revenue = e{np.sum(R[:])})
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J Simulation results

Data set Revenue (e)

Day-ahead market (2019) 751175

Day-ahead market (2019) 751165

Day-ahead market (2019) 751325

Day-ahead market (2019) 751266

Day-ahead market (2019) 751182

Day-ahead market (2019) 751206

Table 40: Test whether one iteration for the optimizer is sufficient with 1S1G MPC model.

Data set Revenue (e) Revenue (e) Difference (%)
(Ts = 900s) (Ts = 1800s)

Day-ahead market (2017) 803422 800165 0.4

Day-ahead market (2018) 988511 984317 0.4

Day-ahead market (2019) 751203 748317 0.4

aFRR market (2017) 1342228 1253838 7

aFRR market (2018) 1439498 1382827 4.1

aFRR market (2019) 1179923 1128615 4.5

Table 41: Test the effects of sampling time on the yearly revenues with 1S1G MPC model.

Number of storage units Revenue (e) Revenue (e)
day-ahead (2019) aFRR (2019)

1 709992 863539

2 727247 986464

4 751357 1181008

6 766747 1325803

Table 42: Test the relation between the number of Ocean Batteries in a cluster and the yearly
revenue with 1S1G MPC model.
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Prediction horizon Revenue (e) Revenue (e)
day-ahead (2019) aFRR (2019)

4 (1 hour) 697914 (00:02:32) 1026578 (00:04:09)

12 (3 hours) 745583 (00:18:51) 1159587 (00:31:11)

16 (4 hours) 751345 (00:34:02) 1180037 (01:01:57)

24 (6 hours) 757194 (01:24:57) 1201775 (02:38:58)

48 (12 hours) 762765 (09:15:08) 1215053 (17:48:03)

Table 43: Test the effects of prediction horizon on the yearly revenues with computation times
of the simulation in hh:mm:ss with 1S1G MPC model.

ηp ηt Revenue (e) Revenue (e)
day-ahead (2019) aFRR (2019)

0.75 0.80 691004 996447

0.80 0.85 694706 1037290

0.85 0.90 702908 1081291

0.90 0.95 718445 1129617

1 1 757194 1201775

Table 44: Test the effects of the efficiency of the PaT on the yearly revenue with 1S1G MPC
model.

Data set Revenue (e)

Day-ahead market (2017) 749756

Day-ahead market (2018) 924766

Day-ahead market (2019) 703323

aFRR market (2017) 1236307

aFRR market (2017) 1323391

aFRR market (2017) 1082613

Table 45: Yearly revenues for the 1S1G MPC strategy.

ηp ηt Revenue (e) Revenue (e)
day-ahead (2019) aFRR (2019)

0.75 0.80 660928 906916

0.80 0.85 674802 944078

0.85 0.90 688466 981079

0.90 0.95 701933 1018599

1 1 721205 1083939

Table 46: Test the effects of the efficiency of the PaT on the yearly revenues of the RBC
model.
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Data set Mean (e) Revenue (e)

Day-ahead market (2017) 39.31 730969

Day-ahead market (2018) 52.53 902562

Day-ahead market (2019) 41.20 688466

aFRR market (2017) 43.18 1128840

aFRR market (2017) 52.41 1170752

aFRR market (2017) 42.55 981079

Table 47: Yearly revenues for the RBC strategy.

Year Indirect model Direct model

2017 e1198871 e1244271

2018 e1520417 e1576104

2019 e1142382 e1177447

Table 48: Yearly revenues (day-ahead market) for the MSMG simulations with the MPC
strategy.

Storage 2017 2018 2019

Indirect model 1 6,0 6,3 6,9
2 1,3 1,4 1,3
3 1,4 1,4 1,4
4 6,0 6,0 6,1

Direct model 1 7,3 7,3 7,3
2 7,3 7,3 7,3
3 7,3 7,3 7,3
4 7,3 7,3 7,3

Table 49: Maximum storage levels (day-ahead market) for the MSMG simulations with the
MPC strategy.

Storage 2017 2018 2019

Indirect model 1 1692 1483 1366
2 19 31 30
3 26 26 29
4 1310 1208 1011

Direct model 1 1537 1347 1190
2 1530 1380 1237
3 1510 1387 1232
4 1536 1316 1207

Table 50: Total energy sent to individual storage units (day-ahead market) for the MSMG
simulations with the MPC strategy.
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2017 2018 2019

Total production (MWh) 30170 28967 27876

Sent to storage (MWh), 2962 2639 2323
Indirect model

Sent to storage (MWh), 6434 5716 5123
Direct model

Table 51: Total energy sent to storage units (day-ahead market) for the MSMG simulations
with the MPC strategy.

Year Indirect model Direct model

2017 e1692001 e2165750

2018 e1990390 e2455104

2019 e1527080 e1955968

Table 52: Yearly revenues (aFRR market) for the MSMG simulations with the MPC strategy.

Storage 2017 2018 2019

Indirect model (P = 3 hr) 1 5,7 6,0 7,1
2 1,5 1,5 1,5
3 1,5 1,4 1,7
4 5,9 6,0 7,3

Indirect model (P = 15 min) 1 1,2 0,9 1,5
2 0,2 0,6 0,2
3 0,1 0,3 0,3
4 1,0 1,1 1,3

Direct model 1 6,3 7,3 7,3
2 6,4 7,3 7,3
3 7,2 7,3 7,3
4 6,0 7,3 7,3

Table 53: Maximum storage levels (aFRR market) for the MSMG simulations with the MPC
strategy.

120



Storage 2017 2018 2019

Indirect model (P = 3 hr) 1 4438 3954 4222
2 122 90 113
3 89 94 103
4 3472 3243 3297

Indirect model (P = 15 min) 1 2927 2584 1753
2 1 2 1
3 1 1 2
4 2177 1996 2028

Direct model 1 3265 2937 3018
2 3177 2983 3093
3 3238 3003 3113
4 3209 3022 3050

Table 54: Total energy sent to individual storage units (aFRR market) for the MSMG simu-
lations with the MPC strategy.

2017 2018 2019

Total production (MWh) 30170 28967 27876

Sent to storage (MWh), 7720 7031 7324
Indirect model (P = 3 hr)

Sent to storage (MWh), 5102 4576 4779
Indirect model (P = 15 min)

Sent to storage (MWh), 13567 12574 12921
Direct model

Table 55: Total energy sent to storage units (day-ahead market) for the MSMG simulations
with the MPC strategy.

TC Energy stored Day-ahead Energy stored aFRR
(MW ) (MWh) (2019) (MWh) (2019)

1 2323 1142382 7324 1527080

2 2993 1147161 9679 1660317

3 3338 1148424 10780 1711480

4 3364 1148190 11304 1758889

Table 56: Yearly revenues from the turbine capacity sensitivity with MSMG MPC strategy.

Depth Energy stored Day-ahead Energy stored aFRR
(m) (MWh) (2019) (MWh) (2019)

40 2323 1142382 7324 1527080

50 2296 1142414 7340 1532689

60 2290 1142044 7352 1531546

70 2289 1141822 7345 1534316

Table 57: Yearly revenues from the depth sensitivity with MSMG MPC strategy.
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Depth Day-ahead aFRR Max capacity
(m) (2019) (2019) (MWh)

40 6.85 7.33 7.33

50 7.42 6.4 9.42

60 6 6.93 11.52

70 6 6.33 13.61

Table 58: Maximum storage levels from the depth sensitivity with MSMG MPC strategy.

Year Indirect model Indirect model + BFM

2017 e1692001 e2197474

2018 e1990390 e2518177

2019 e1527080 e1994398

Table 59: Yearly revenues (aFRR market) for the MSMG simulations with the MPC strategy
+ buy from market.

Storage 2017 2018 2019

Indirect model 1 5,7 6,0 7,1
2 1,5 1,5 1,5
3 1,5 1,4 1,7
4 5,9 6,0 7,3

Indirect model 1 7,33 7,33 7,33
+ buy from market 2 1,35 5,21 3,86

3 2,24 4,06 4,33
4 7,33 7,33 7,33

Table 60: Maximum storage levels (aFRR market) for the MSMG simulations with the MPC
strategy + buy from market.

Storage 2017 2018 2019

Indirect model 1 4438 3954 4222
2 122 90 113
3 89 94 103
4 3472 3243 3297

Indirect model 1 7927 7633 8014
+ buy from market 2 13 15 8

3 12 20 9
4 7908 7649 7979

Table 61: Total energy sent to individual storage units (aFRR market) for the MSMG simu-
lations with the MPC strategy + buy from market.
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2017 2018 2019

Total production (MWh) 30170 28967 27876

Sent to storage (MWh), 7720 7031 7324
Indirect model

Sent to storage (MWh) 1086 1008 1015
Bought from market (MWh) 15829 15392 16088
Indirect model + BFM

Table 62: Total energy sent to storage units (day-ahead market) for the MSMG simulations
with the MPC strategy + buy from market.

123



K Optimization problem in Chapter 6.6

max
û

J =

N∑
k=1

(

#S∑
i=1

Ri(k) +

#G∑
j=1

Rj(k)) (43)

s.t.: Êi,k+1 = Êi,k + ηP

#G∑
j=1

ûRG
i,j,k · ÊG

j,k+1 + ηT · ηP
#S∑

j=1,i 6=j

ûRS
i,j,k · Êj,k

+ηP · ûRC
i,k · EM − ηT · Êi,k

 #S∑
j=1,i 6=j

ûSSi,j,k

+ ûSCi,k

 , i = 1,..,S

(ûRG
i,k + ûRS

i,k ) · (ûSSi,k + ûSCi,k ) = 0, i = 1,..,S

TC − ηP
#G∑
j=1

ûRG
i,j,k · ÊG

j,k+1 + ηT · ηP
#S∑

j=1,i 6=j

ûRS
i,j,k · Êj,k

+ηP · ûRC
i,k · EM − ηT · Êi,k

 #S∑
j=1,i 6=j

ûSSi,j,k

+ ûSCi,k

 ≥ 0, i = 1,..,S

Emax −

ηP #G∑
j=1

ûRG
i,j,k · ÊG

j,k+1 + ηT · ηP
#S∑

j=1,i 6=j

ûRS
i,j,k · Êj,k + ηP · ûRC

i,k · EM

 ≥ 0, i = 1,..,S

 #S∑
j=1,i 6=j

ûSSi,j,k

+ ûSCi,k

 ≤ 1, i = 1,..,S

#S∑
j=1

ûSSi,j,k

+ ûGC
i,k

 ≤ 1, i = 1,..,G

0 ≤ ûRG, ûRS , ûRC ûSS , ûSC , ûGC ≤ 1

In this optimization problem, Ri and Rj are calculated from (36) and (22), respectively. ÊG

is imported from the wind power production data set and EM is an unlimited amount of
energy that can be bought from the market.
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