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Abstract

In this text, we repeat the definition of a wallpaper group, and the notion of equivalence
of such groups. We present a proof of the classical fact that there are precisely seventeen
equivalence classes of wallpaper groups. This is done by discussing an earlier proof presented
by Schwarzenberger, and adding more details to his argument. This thesis contains a fully
explicit proof using the underlying idea.
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1 Introduction

We classify plane isometries into four types – translations, rotations, reflections, and glide
reflections. We categorize non-identity discrete groups of plane isometries into three types –
rosette groups (finite dihedral groups and their cyclic subgroups), frieze groups, and wallpaper
groups. A rosette group contains no translation; A frieze group contains translations on one
single direction; and a wallpaper group contains translations on more than one directions.

Fedorov [1891], Fricke and Klein [1897], Niggli [1924], and Pólya [1924] gave early classifica-
tions of the 17 types of wallpaper groups [Martin, 1982]. Their approaches are geometric and ad
hoc [Hiller, 1986]. Schwarzenberger [1974] gave an algebraic proof, in which the theories are
correct but necessary non-trivial details are missing. Martin [1982] proved the classification by
discussing the possibilities of generators around a motif, the approach is also geometric. Geo-
metric approach is helpful for construction and visual discrimination of wallpaper patterns [see
e.g. Schattschneider, 1978], but often forces the thought of the audience onto a specific picture
instead of the group of transformations in the plane. Armstrong [1988] presented the 17 types of
wallpaper groups and proved that the different types are indeed not isomorphic. However, he
did not give a definition of equivalence. Artin [2011] explained two groups completely, which
correspond to the subsection q = 2 in Section 4.3 in this text. From this non-exhaustive re-
search of literature, we found mostly geometric approaches of the proof and incomplete algebraic
approaches.

This thesis is based on Schwarzenberger’s ideas. In this thesis we recall the equivalence
relation between wallpaper groups, and prove that under this definition there are precisely
seventeen equivalence classes of wallpaper groups.

Firstly, we recall the related concepts about plane isometries; secondly, we prove the so-called
crystallographic restriction; thirdly, we separate the situation into three cases – no reflection, one
reflection, more than one reflection. Under each case, we prove that there are certain numbers
of equivalent classes of wallpaper groups, and the numbers sum up to seventeen.
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2 Plane Isometries

This is a chapter of preliminaries. We recall a few definitions, propositions and remarks to
be used later. One can use this chapter to ease into the notation. In the end of this chapter, we
prove the classification of plane isometries to make sure that all the definitions in the beginning
are indeed exhaustive.

2.1 Definitions and Group Structure of Plane Isometries

Definition 2.1 (Plane isometry). If σ : R2 → R2 is a transformation of the plane satisfying
‖σ(x)−σ(y)‖ = ‖x− y‖ for every pair of points x, y ∈R2, we call σ an isometry of the plane.

Definition 2.2 (Plane isometry group). Equipped with composition as the binary operation,
the set IsomR2 of the isometries of the plane forms a group (see Proposition 2.18). We call this
group (Isom(R2),◦, id) the isometry group of the plane.

Definition 2.3 (Translation of the plane). If a map τv : R2 →R2 is given by x 7→ x+v for some
v ∈R2, we call τv the translation about the vector v.

Remark 2.4. A translation is a plane isometry, and has an inverse, which is also a translation.
For any translations τv and τw of the plane, we have τ−1

v = τ−v and τv ◦τw = τv+w = τw ◦τv.

Definition 2.5 (Rotation of the plane). If a map ρθ : R2 →R2 is given by x 7→ [ cosθ −sinθ
sinθ cosθ

]
x for

some angle θ, we call ρθ the rotation by angle θ about the origin. A rotation ρ about any point A
by angle θ is defined as the composition ρ = τA ◦ρθ ◦τ−A.

Remark 2.6. A rotation is a plane isometry, and has an inverse, which is also a rotation. For any
rotation ρθ about the origin, we have its inverse ρ−1

θ
= ρ−θ. We also have ρα ◦ρβ = ρα+β for any

two rotations ρα and ρβ about the origin. An arbtrary rotation ρ = τA ◦ρθ ◦τ−A is a composition
of isometries, therefore, also an isometry, it has an inverse τA ◦ρ−θ ◦τ−A, which is, by Definition
2.5, a rotation.

Definition 2.7 (Reflection of the plane). If a map µ : R2 →R2 is given by x 7→ [1 0
0 −1

]
x, we call

µ the reflection across the e1-axis. A reflection across any line l through the origin is defined
as the composition µl = ρ 6 (l) ◦µ, where 6 (l) is the slope angle of l. A reflection across a line m
parallel to l through an arbitrary point A is defined as the composition µm = τA ◦µl ◦τ−A.

Remark 2.8. A reflection µ across the e1-axis is a plane isometry, the inverse is µ itself. An
arbitrary reflection µl = τA ◦ρθ ◦µ◦τ−A is a composition of isometries, therefore, also an isometry.
The inverse of a reflection is the reflection itself. In particular, for lines l and m we have
µl ◦µl = id, and µl ◦µm = ρθ where θ = 26 (m, l). The notation 6 (m, l) means the angle from m to l.

Proposition 2.9. Let µl be a reflection across the line l through the origin. Let t ∈ R2. Then
t−µl(t) ∈ l⊥ and t+µl(t) ∈ l.

Proof. We have µl(t−µl(t)) = µl(t)− id(t) =−(t−µl(t)). Therefore, t−µl(t) ∈ l⊥. We have µl(t+
µl(t))=µl(t)+ id(t)= t+µl(t). Therefore, t+µl(t) ∈ l.
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Remark 2.10. Let l be a line through the origin. Then µl(t)= t if and only if t ∈ l; and µl(t)=−t
if and only if t ∈ l⊥.

Definition 2.11 (Glide reflection of the plane). If a map γl,v : R2 →R2 is a composition γv,l =
τv ◦µl where τv is a non-identity translation, and µl is a reflection across a line l through the ori-
gin, and the vector v is parallel with the reflection axis l, we call γl,v a glide reflection across the
line l through the origin over the vector v. A glide reflection across a line m through an arbitrary
point A parallel to l about the vector v is defined as the composition µm = τA ◦τv ◦µl ◦τ−A.

Remark 2.12. A glide reflection is a plane isometry, and has an inverse, which is also a glide
reflection. Let γ be a glide reflection. Then by definition, γ= τv ◦µl , where v ∈ l. It is a isometry
because τv and µl are isometries by Remark 2.4 and 2.8. Its inverse is µl◦τ−v = τA◦ρθ◦µ◦τ−A◦τ−v,
which is also a composition of isometries, therefore, an isometry.

Remark 2.13. Inherited from the matrix definition, a rotation about the origin is a linear map, a
reflection across a line through the origin is a linear map.

Proposition 2.14. If ϕ is a linear isometry, then ϕ◦τv = τϕ(v) ◦ϕ.

Proof. For any x ∈R2, we have (ϕ◦τv)(x)=ϕ(τv(x))=ϕ(v+ x)=ϕ(v)+ϕ(x)= (τϕ(v) ◦ϕ)(x).

Proposition 2.15. For a non-identity rotation ρθ about the origin and any translation τv, the
composition τv ◦ρθ is a rotation.

Proof. We look for a fixed point of τv ◦ρθ using the equation (τv ◦ρθ)(x)= x. Since ρθ is defined
as x 7→ Ax for some A ∈ SO(2), we can write the equation as v+ Ax = x. Then x = [I − A]−1v.
This inversion make sense because the condition that ρθ 6= id implies that Az 6= z for all z 6= 0.
Hence, ker(A − I) = {0}. Therefore, A − I is invertible. Then for an arbitrary y ∈ R2, we have
(τ−x◦τv◦ρθ◦τx)(y)=−[I−A]−1v+v+A(y+[I−A]−1v)= A y= ρθ(y). Therefore, τv◦ρθ = τx◦ρθ◦τ−x.
By Definition 2.5, τv ◦ρθ is a rotation.

Remark 2.16. A composition ρθ ◦τv is a rotation. By Proposition 2.14, ρθ ◦τv = τρθ(v) ◦ρθ, which
is a rotation as above.

Remark 2.17. A composition µl ◦τv with v ∈ l is a glide reflection. By Proposition 2.14, µl ◦τv =
τµl (v) ◦µl = τv ◦µl , which is a glide reflection.

Equipped with composition as the binary operation, the isometries of the plane form a group
which is denoted (IsomR2,◦, id). We recall the following standard properties of this group.

Proposition 2.18 (Group structure of plane isometries). The isometries of the plane form
a group under composition.

Proof. Closure: Composition of isometries are still isometries. Because for all isometries f and
g, for all x, y ∈R2, we have ‖( f ◦ g)(x)− ( f ◦ g)(y)‖ = ‖ f (g(x))− f (g(y))‖ = ‖g(x)− g(y)‖ = ‖x− y‖.

Associativity: Isometries of the plane are associative under composition. Because for arbi-
trary isometries f , g and h, for every x ∈R2, we have ( f ◦ (g ◦h))(x)= f (g(h(x)))= ( f ◦ g)(h(x))=
(( f ◦ g)◦h)(x).

Unit element: The identity map serves as a unit element. Because for arbitrary isometry f ,
for every x ∈R2, we have (id◦ f )(x)= id( f (x))= f (x)= f (id(x))= ( f ◦ id)(x).
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Inverse: Every plane isometry has an inverse which is also a plane isometry. Let f be an
isometry of the plane. Then by Proposition 2.23, we can write uniquely that f = τv ◦ϕ, where τ
is a translation and ϕ is a linear isometry. Then ϕ−1 ◦τ−v is the inverse of f and an isometry.

Proposition 2.19. The composition τv ◦µl with v 6∈ l is either a glide reflection or a reflection.

Proof. Let µl be a reflection across the line l through the origin. Let τv be a translation
over the vector v 6∈ l. Then we can write v = r + s, where r ∈ l and s ∈ l⊥. Then τv ◦µl =
τr ◦ τs ◦µl = τr ◦ τs/2 ◦ τs/2 ◦µl = τr ◦ τs/2 ◦µl ◦ τµl (s/2). We know that µ(s/2) = −s/2. Therefore,
τv ◦µl = τr ◦τs/2 ◦µl ◦τ−s/2 = τs/2 ◦τr ◦µl ◦τ−s/2. If r 6= 0, then τv ◦µl is a glide reflection across
a line through s/2 parallel to l, by definition. If r = 0, then τv ◦µl is a reflection across a line
through s/2 parallel to l, by definition.

2.2 Classification of Plane Isometries

Lemma 2.20. A plane isometry fixing the origin preserves the standard Euclidean norm.

Proof. Let σ ∈ Isom(R2). Let a ∈R2. Then we have ‖σ(a)‖ = ‖σ(a)−σ(0)‖ = ‖a−0‖ = ‖a‖.

Lemma 2.21. If σ ∈ Isom(R2) safisfy σ(0) = 0 then 〈σ(a),σ(b)〉 = 〈a,b〉 for all a,b ∈ R2. In other
words, a plane isometry fixing the origin preserves the standard Euclidean inner product.

Proof. Let σ ∈ Isom(R2) satisfy σ(0) = 0. Let a,b ∈ R2. Then we have ‖σ(a)‖2 −2〈σ(a),σ(b)〉+
‖σ(b)‖2 = ‖σ(a)−σ(b)‖2 = ‖a−b‖2 = ‖a‖2 −2〈a,b〉+‖b‖2. By Lemma 2.20 we have ‖σ(a)‖ = ‖a‖
and ‖σ(b)‖ = ‖b‖. It follows that 〈σ(a),σ(b)〉 = 〈a,b〉.

Proposition 2.22. A plane isometry is R-linear if and only if it fixes the origin.

Proof. Let σ ∈ Isom(R2) be linear over R. For any x, y ∈R2, any c ∈R2, we have σ(x+y)=σ(x)+σ(y)
and σ(cx)= cσ(x). Therefore, σ(0)=σ(x+ (−x))=σ(x)−σ(x)= 0.

Now we prove the converse. Let σ ∈ Isom(R2) satisfy σ(0)= 0. Let x, y ∈R2, and c ∈R. Then
we have

‖σ(x+ y)−σ(x)−σ(y)‖2

=‖σ(x+ y)‖2 +‖σ(x)‖2 +‖σ(y)‖2 −2〈σ(x+ y),σ(x)〉−2〈σ(x+ y),σ(y)〉+2〈σ(x),σ(y)〉
=‖x+ y‖2 +‖x‖2 +‖y‖2 −2〈x+ y, x〉−2〈x+ y, y〉+2〈x, y〉 (by Lemma 2.20, 2.21)

=‖x+ y− x− y‖2

=0.

Moreover, we have
‖σ(cx)− cσ(x)‖2

=‖σ(cx)‖2 +‖cσ(x)‖2 −2〈σ(cx), cσ(x)〉
=‖σ(cx)‖2 +|c|2 ‖σ(x)‖2 −2c〈σ(cx),σ(x)〉
=‖cx‖2 +|c|2 ‖x‖2 −2c〈cx, x〉 (by Lemma 2.20, 2.21)

=|c|2 ‖x‖2 +|c|2 ‖x‖2 −2c2〈x, x〉
=|c|2 (‖x‖2 +‖x‖2 −2〈x, x〉)
=|c|2 ‖x− x‖2

=0.
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Therefore, σ(x+ y)=σ(x)+σ(y) and σ(cx)= cσ(x). In other words, σ is linear.
In the plane, the linear isometries are precisely those isometries fixing the origin.

Proposition 2.23 (The unique expression of a plane isometry). Every plane isometry can
be written uniquely as a composition of a translation and a linear isometry.

Proof. Existence: Let σ ∈ Isom(R2). We can write σ= τσ(0) ◦ (τ−σ(0) ◦σ). The expression τ−σ(0) ◦σ
is a composition of plane isometries, therefore, also an isometry of the plane. Moreover, we have
(τ−σ(0) ◦σ)(0)= τ−σ(0)(σ(0))= 0. By Proposition 2.22, τ−σ(0) ◦σ is an linear isometry.

Uniqueness: Let σ be any plane isometry. From above, we can express σ as σ = τσ(0) ◦
(τ−σ(0) ◦σ). Assume we can also express σ as σ = τv ◦ϕ for some translation τv and linear
isometry ϕ. We want to prove that v = σ(0) and ϕ = τ−σ(0) ◦σ. The two expressions for the
same isometry σ must be equal, in other words, τv ◦ϕ= σ= τσ(0) ◦ (τ−σ(0) ◦σ). Hence, we have
v = τv(0)= τv(ϕ(0))= (τv ◦ϕ)(0)= (τσ(0) ◦ (τ−σ(0) ◦σ))(0)= τσ(0)

(
(τ−σ(0) ◦σ)(0)

)= τσ(0)(0)=σ(0). and
ϕ= τ−v ◦τv ◦ϕ= τ−v ◦σ= τ−σ(0) ◦σ. Thus the two expression coincide.

Remark 2.24. We can write any element σ in Isom(R2) as σ= τv ◦ϕ uniquely with a translation
τv and a linear isometry ϕ. From now on we simply do so without mentioning again.

Proposition 2.25 (Classification of linear isometries). A linear isometry of the plane is ei-
ther a reflection or a rotation.

Proof. Let ϕ be a linear isometry of the plane. By linearity, ϕ can be represented by a 2×2
matrix A. Since ϕ is an isometry, for an arbitrary x ∈R2 we have xT x = ‖x‖2 = ‖ϕ(x)‖2 = ‖Ax‖2 =
[Ax]T [Ax]= xT AT Ax. Hence, AT A = I. It follows that (det(A))2 = 1. Therefore, det(A)=±1. Let
A = [a b

c d
]
. Then [

a2+c2 ab+cd
ab+cd b2+d2

]
= [a c

b d
][a b

c d
]= AT A = I = [1 0

0 1
]
.

By far we have four equalities a2 + c2 = 1, b2 +d2 = 1, ab+ cd = 0, and ad− bc = det(A) = ±1.
The first two equalities a2 + c2 = 1 and b2 +d2 = 1 give us a = cosθ1, c = sinθ1, b = sinθ2, and
d = cosθ2 for some angles θ1,θ2 ∈ [0,2π). (Note that switching to b = cosθ2 and d = sinθ2, or
similarly a = sinθ1 and c = sinθ1, we would obtain the same final conclusion.) After substitution,
the third equality ab+ cd = 0 gives 0 = cosθ1 sinθ2 + sinθ1 cosθ2 = sin(θ1 +θ2). Therefore, the
only posibilities are θ1+θ2 ∈ {0,π,2π,3π}. In other words, θ2 =−θ1 or θ2 =π−θ1 or θ2 = 2π−θ1 or
θ2 = 3π−θ1. The latter two cases merges with the former two respectively up to the evaluation
of sin and cos. Hence, we have either θ2 = −θ1 or θ2 = π−θ1. Now we only need one angle to
express the matrix A.

For the former case θ2 =−θ1, let θ1 = θ, and θ2 =−θ. Then

A = [a b
c d

]= [
cosθ sin(−θ)
sinθ cos(−θ)

]
= [ cosθ −sinθ

sinθ cosθ
]
.

By Definition the matrix A represents a rotation about the origin by angle θ.
For the latter case θ2 =π−θ1, let θ1 = θ, and θ2 =π−θ. Then

A = [a b
c d

]= [
cosθ sin(π−θ)
sinθ cos(π−θ)

]
= [ cosθ sinθ

sinθ −cosθ
]= [ cosθ −sinθ

sinθ cosθ
][1 0

0 −1
]
.

By Definition the matrix A represents a reflection across a line l through the origin with the
slope angle θ.

In both cases above, the fourth equality ad−bc = det(A)=±1 is satisfied.
Therefore, every linear isometry is either a reflection across a line through the origin or a

rotation about the origin.
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Proposition 2.26 (classification of plane isometries). An isometry of the plane is either an
identity, a translation, a rotation, a reflection, or a glide reflection.

Proof. Let σ be a plane isometry, then by Proposition 2.23 we can write uniquely σ= τv◦ϕ where
τv is a translation and ϕ is a linear isometry. We have the following possible cases by toggling τ
and ϕ.

1. If τv = id and ϕ= id, then σ is the identity transformation.
2. If τv 6= id and ϕ= id, then σ is a translation.
3. If τv = id and ϕ 6= id, then σ is an linear isometry, and

a) if ϕ is a reflection across a line l through the origin, then so is σ;
b) if ϕ is a rotation about the origin, then so is σ.

4. If τv 6= id and ϕ 6= id, then v 6= 0, and
a) if ϕ is a reflection across a line l through the origin, and

i. if v ∈ l, then, by definition, σ= τv ◦ϕ is a glide reflection with the axis l;
ii. if v 6∈ l, then σ= τv ◦ϕ is either a glide reflection or a reflection by Proposition

2.19.
b) if ϕ is a rotation about the origin, then σ is a rotation by Proposition 2.15.

Therefore, exhausted all the possibilities, we conclude that every isometry of the plane is either
an identity, or a translation, or a rotation, or a reflection, or a glide reflection.

Notation 2.27 (shared name O(2)). Note that O(2) is the group of orthogonal matrices under
matrix multiplication instead of the group of linear isometries under function composition.
Because these two groups are isomorphic through the mapping A 7−→ [x 7→ Ax], we choose to let
them share the name O(2).
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3 Wallpaper Groups

The goal of this chapter is to recall the definition of wallpaper groups, equivalence relation of
such groups, and prove that there are 17 equivalence classes.

3.1 Wallpaper Groups and Related Concepts

We start from the following map, which removes the translation component of a plane
isometry. It firstly is proven to be a homomorphism. Then its kernel and image are subgroups of
corresponding atmosphere groups. These subgroups are the ingredients for defining wallpaper
groups.

Proposition 3.1. Define π : Isom(R2)→O(2) by τv ◦ϕ 7→ϕ. Then π is a group homomorphism.

Proof. Let τv◦ϕ,τw◦ψ ∈ Isom(R2). Then π(τv◦ϕ◦τw◦ψ)=π(τv◦τϕ(w)◦ϕ◦ψ)=π(τv+ϕ(w)◦ϕ◦ψ)=
ϕ◦ψ=π(τv ◦ϕ)◦π(τw ◦ψ).

Proposition 3.2. Define π : Isom(R2)→O(2) by τv ◦ϕ 7→ϕ. Let G be a group of plane isometries.
Let T be the set of all translations in G. Let π|G : G → π(G) be the restriction of π to G. Then
T = ker(π|G), the set T is a normal subgroup of G, and the set π(G) is a subgroup of O(2). Moreover,
G/T ∼=π(G).

Proof. We know that π : Isom(R2)→O(2) is a homomorphism from Proposition 3.1. Since G is a
subgroup of Isom(R2), the restriction π|G : G →π(G) is also a homomorphism. Hence, π(G) is a
subgroup of O(2). By the definition of kernel, we have ker(π|G) = {τv ◦ϕ ∈G |ϕ= id} = {τv | τv ∈
G}= T. By the homomorphism theorem [see e.g. Top and Müller, 2018, thm. VII.2.11], the set T
is a normal subgroup of G and G/T ∼=π(G).

Definition 3.3 (The point group of a plane isometry group). Define π : Isom(R2)→O(2) by
τv ◦ϕ 7→ϕ. Let G be group of plane isometries. We call the subgroup (π(G),◦, id) of O(2) the point
group of G. In particular, π(G) = {ϕ ∈ O(2) | ∃v ∈R2 : τv ◦ϕ ∈G}. In other words, ϕ ∈ π(G) if and
only if there exists v ∈R2 such that τv ◦ϕ ∈G.

Remark 3.4. Recall that the determinant mapping det: (O(2),◦, id) → ({±1}, ·,1) is a homomor-
phism. Since the point group π(G) of G is a subgroup of O(2), the restriction det |π(G) : π(G)→ {±1}
is also an homomorphism. In particular, ker(det |π(G)) is the set of all matrices in π(G) with
determinant 1, in other words, all rotations in π(G). Therefore, the rotations in π(G) form a
(normal) subgroup.

Definition 3.5 (The translation subgroup of a plane isometry group). Let G be a group
of plane isometries. Its subgroup (T,◦, id) of all translations is called the translation subgroup of
G.

Remark 3.6. Let G be a group of plane isometries. Let T be its translation subgroup. Then
the set L = {v ∈R2 | τv ∈G} forms a group under addition. The groups (T,◦, id) and (L,+,0) are
isomorphic under the mapping ι : τv 7→ v, since ι(τv ◦τw)= ι(τv+w)= v+w = ι(τv)+ ι(τw), and ι has
an obvious inverse ι−1 : v 7→ τv.
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Definition 3.7 (The lattice group of a plane isometry group). Let G be a group of plane
isometries. The set L = {v ∈R2 | τv ∈G} forms a group under addition. We call this group (L,+,0)
the lattice group of G.

Recall the following notion of wallpaper groups [see e.g. Schwarzenberger, 1974, def. p.127].
The two axioms in the definition make sure the group is discrete.

Definition 3.8 (Wallpaper group). Define π : Isom(R2)→O(2) by τv◦ϕ 7→ϕ. A group (W ,◦, id)
of plane isometries is called a wallpaper group if

1. its point group (π(W),◦, id) is finite, and
2. its lattice group (L,+,0) is generated by two R-linearly independent vectors in R2.

Remark 3.9. Note that Z2 ∼= L ∼= T.
The second condition in the Definition of wallpaper group, which is a restriction of lattice

group of a plane isometry group, can be interpreted in the following way. There exists R-linearly
independent vectors v and w generating the lattice group of W . In other words, L = {nv+mw ∈
R2 | n,m ∈Z}.

Equivalently, there exists vectors v,w ∈ R2 independent over R such that the translation
subgroup is generated by two translations which are respectively over two R-linearly independent
vectors. In other words, T = {τnv+mw ∈ IsomR2 | n,m ∈Z}.

The following notion of shift vectors is needed in later proofs involving reflections [see also
Schwarzenberger, 1974, sec. 1, def. (iv)].

Definition 3.10 (The shift vector of a linear isometry). Let W be a wallpaper group. Let
ϕ ∈π(W) satisfy ord(ϕ)= q. A vector a ∈R2 is a shift vector of ϕ in W if there exists v ∈R2 such
that τv ◦ϕ ∈W and a = v+ϕ(v)+ϕ2(v)+·· ·+ϕq−1(v).

Remark 3.11. Note that τa = τv+ϕ(v)+ϕ2(v)+···+ϕord(ϕ)−1(v) = (τv ◦ϕ)ord(ϕ) is a translation in W . Hence,
a ∈ L. We also have ϕ(a) = ϕ(v)+ϕ2(v)+ ·· ·+ϕq−1(v)+ id(v) = a. It follows that if ϕ is a non-
identity rotation then a = 0 and therefore (τv ◦ϕ)q = τ0 = id; and if ϕ is a non-identity reflection
then a is in the reflection axis.

Notation 3.12. We denote the set of all the shift vectors of a linear isometry ϕ as sftvec(ϕ).

Proposition 3.13. Let W be a wallpaper group. Let µl ∈π(W). Then every shift vector of µl is in
l. Any shift vectors of µl differ by a vector of the form t+µl(t) for some t ∈ L.

Proof. All shift vectors of µl are in l. Let a ∈R2 be a shift vector of µl . Then there exists v ∈R2

such that τv◦µl ∈W and a = v+µl(v). We know that µl fixes only the line l. and µl(a)= a. Hence,
a ∈ l.

Let a,a′ ∈ R2 be two distinct shift vectors of µl . Then there exists v,v′ ∈ R2 such that
τv ◦µl ,τv′ ◦µl ∈ W, a = v+µl(v) and a′ = v+µl(v′). Denote t = v− v′. Then a−a′ = t+µ(t). But
τt = τv ◦τ−v′ = τv ◦µl ◦τµ−1

l (−v) ◦µ−1
l = τv ◦µl ◦ (τv′ ◦µ−1

l ) ∈W. Hence, t ∈ L. In other words, a and
a′ differ by a vector of the form t+µl(t) for some t ∈ L.
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3.2 Equivalence of Wallpaper Groups

Recall the following notion of wallpaper group equivalence [see e.g. Schwarzenberger, 1974,
sec. 3].

Definition 3.14 (Equivalence of wallpaper groups). Two wallpaper groups W and W ′ are
equivalent, denoted as W ∼W ′, if there is a isomorphism η : W →W ′, such that the restriction
η|T : T → T ′ is also an isomorphism, where T and T ′ are corresponding translation subgroups of
W and W ′.

In other words, all wallpaper groups have isomorphic translation subgroup, and if the
wallpaper groups are equivalent then also their point groups are isomorphic. However, it is
possible that two wallpaper groups have both isomorphic point groups and isomorphic translation
groups but they are not equivalent.

For example, consider two wallpaper groups W and W ′, where π(W)= 〈µl〉 and π(W ′)= 〈ρπ〉.
The point groups π(W) and π(W ′) are isomorphic but these two wallpaper groups should not be
considered equivalent, and they are indeed not equivalent under our definition of equivalence.

Proposition 3.15. Let W and W ′ be wallpaper groups such that π(W)= 〈µl〉 and ϕ(W ′)= 〈ρπ〉.
Then W and W ′ are not equivalent.

Proof. Since µl ∈ π(W), we know that there exists u ∈ R2 such that τu ◦µl ∈ W. If u 6= 0 and
u 6∈ l⊥, we let v = u. If u = 0, then take v ∈ L \ l⊥. If u ∈ l⊥, then take v = u+w where w ∈ L such
that v 6∈ l⊥. Then we found v ∈ R2 \ {0} such that τv ◦µl ∈W and v 6∈ l⊥. Assume W and W ′ are
equivalent. Then we have an isomorphism η : W → W ′ such that η and η|T are isomorphisms.
Then we shall have τv ◦µl 7→ τv′ ◦ρπ for some v′ ∈ R2. Because η is an isomorphism, we have
(τv ◦µl)2 7→ (τv′ ◦ ρπ)2. However, (τv ◦µl)2 = τv+µl (v) 6= id and (τv′ ◦ ρπ)2 = id. We know that
isomorphisms map the identity to the identity. Hence, we have a contradiction.

3.3 Possibilities of Point Groups

The finiteness of the point group restrict the possibilities of the point groups of a wallpaper
group. In this section we recall this so-called the crystallographic restriction (Theorem 3.21), the
proof of which contains a key ingredient – Proposition 3.19 stating that the lattice group of a
wallpaper group admits a non-zero vector of minimal length.

Lemma 3.16. Let G be a non-trivial finite group of plane rotations about the origin. Every
non-identity element of G can be written as the form (ρ2π/b)a for some positive coprime integers a
and b.

Proof. Let G be a non-trivial finite group of plane rotations. Let ρθ be a non-identity element
in G. Because of the finiteness of G, there exists a integer i > 0 such that ρ iθ = (ρθ)i = id. Then
iθ = j2π for some integer j > 0. We have θ = j/i ·2π. Let a = j/gcd(i, j) and b = i/gcd(i, j). Then
ρθ = (ρ2π/b)a.

Lemma 3.17. Let G be a non-trivial finite group of plane rotations about the origin. If there
exists an element (ρ2π/b)a ∈G where a and b are positive coprime integers, then ρ2π/b ∈G.
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Proof. Let (ρ2π/b)a ∈ G where a and b are positive coprime integers. By Bézout’s Identity
[see Top and Müller, 2018, thm. I.1.12], there exist integers c and d satisfying ac+ bd = 1.
Then we have cr = ca/b = (1− bd)/b = 1/b−d. It follows that c(2πr) = 2π/b−2πd. Therefore,
(ρ2πr)c = ρ2π/b−2πd = ρ2π/b. By the group structure of G, we have ρ2π/b = (ρ2πr)c ∈G.

The following lemma is an analogue of Lemma V.2.6 in Top and Müller [2018].

Proposition 3.18. Let G be a non-trivial finite group of rotations in the plane about the origin.
Then G = 〈ρ2π/ord(G)〉.
Proof. Let G be a non-trivial finite group of rotations in the plane about the origin. Because of the
finiteness of G, we can find a rotation of minimal angle ρα in G. By Lemma 3.16, ρα = (ρ2π/n)m

for some coprime positive integers m and n. By Lemma 3.17, ρ2π/n ∈G. Because of minimality,
m = 1. Hence, the rotation of minimal angle is of the form ρ2π/n for a positive integer n.

Now we prove that G = 〈ρ2π/n〉. By Lemma 3.16, we can write any element of G in the form
(ρ2π/b)a where a and b are coprime positive integers. Let (ρ2π/b)a be such a representation of an
arbitrary element of G. By Lemma 3.17, ρ2π/b is also an element of G. By the group structure of
G, ρ2π/b ◦ρ2π/n = ρ2π/b+2π/n is also an element of G. We know that 2π/b+2π/n = 2π · p/ lcm(b,n)
for some positive integer p, where p and lcm(b,n) are coprime. Hence, ρ2π/b+2π/n = (ρ2π/ lcm(b,n))p.
By Lemma 3.17, ρ2π/ lcm(b,n) is also an element of G. Because of the minimality of 2π/n we
have 2π/ lcm(b,n)≥ 2π/n. In other words, lcm(b,n)≤ n. But we know that lcm(b,n)≥ n. Hence,
lcm(b,n) = n. It follows that b | n. In other words, n = kb for some integer k. Hence, (ρ2π/b)a =
(ρ2π/n)ak. An arbitrary element of G can be written as a power of ρ2π/n. Therefore, G is generated
by ρ2π/n, in other words, cyclic.

Moreover. n = ord(ρ2π/n)= ord(〈ρ2π/n〉)= ord(G). It follows that G = 〈ρ2π/ord(G)〉.

Proposition 3.19. Let L be a lattice group of a wallpaper group. Then for every d > 0, there are
only finitely many vectors in L with their length smaller than d. Moreover, L admits a non-zero
vector of minimal length.

Proof. Let (L,+,0) be the lattice group of a wallpaper group. Then by Definition there exists
R-linearly independent vectors v and w in R2 such that L = Zv+Zw. Take a nonzero vector
mv+nw from L. Its length is ‖mv+nw‖.

‖mv+nw‖2 =〈mv+nw,mv+nw〉
=m2〈v,v〉+2mn〈v,w〉+n2〈w,w〉
=m2‖v‖2 +2mn〈v,w〉+n2‖w‖2.

Let a = ‖v2‖ > 0 and b = 〈v,w〉 and c = ‖w‖2 > 0. Then

‖mv+nw‖2 =am2 +2bmn+ cn2

=a · (m2 +2b/a ·mn+ c/a ·n2)

=a · ((m+b/a ·n)2 + (−b2/a2 + c/a) ·n2)

=(1/a) · (am+bn)2 + (1/a2)(ac−b2) ·n2.

By Cauchy Schwartz’ inequality, we have ‖v‖‖w‖ ≥ |〈v,w〉|. In our case, the equality does
not happen since v and w are R-linearly independent. Thus, we have ‖v‖2‖w‖2 > |〈v,w〉|2.
Equivalently, ac > b2. Denote x = 1/a > 0 and y= (1/a2)(ac−b2)> 0 then

‖mv+nw‖2 = (ma+nb)2x+n2 y.
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Let d > 0. Let (ma+ nb)2x+ n2 y < d. Then we have n2 y < d. Therefore, |n| < √
d/y. We

can only have finitely many options for the integer n. Let n be fixed and satisfy n2 y< d. Then
(ma+nb)2x < d−n2 y. We have |ma+nb| <

√
(d−n2 y)/x. Denote e =

√
(d−n2 y)/x, By triangular

inequality, we have
∣∣|ma|− |nb|∣∣≤ |ma+nb| < e. Hence, |ma| ∈ (|nb|− e, |nb|+ e). It follows that

|m| ∈ (
(|nb|− e)/a, (|nb|+ e)/a

)
. We have finitely many options of the integer m. Therefore, for any

d > 0, we have finitely many options of (m,n) ∈Z such that ‖nv+nw‖ < d.
In other words, if L = 〈v,w〉 is the lattice group of a wallpaper group, then for any d > 0 the

set {(m,n) ∈Z | mv+nw ∈ L, 0< |mv+nw| < d} is finite.
Fix d >min{‖v‖,‖w‖}. Then the set {(m,n) ∈Z | mv+nw ∈ L, 0< |mv+nw| < d} is finite. It

is also non-empty because it contains at least one of v and w. Therefore, we can pick a pair (m,n)
of integers such that ‖nv+nw‖ is nonzero and minimal. In other words, we can pick a non-zero
vector of minimal length in L.

Proposition 3.20. Let W be a wallpaper group with point group π(W) and lattice group L. If
t ∈ L and ϕ ∈π(W), then ϕ(t) ∈ L.

Proof. Let W be a wallpaper group. Let L be the lattice group of W , and π(W) be the point group
of W. Let t ∈ L. Then τt ∈ W. Let ϕ ∈ π(W). Then there exists v ∈ R2 such that τv ◦ϕ ∈ W. By
the group structure of W, we have τv ◦ϕ◦τt ∈W. By Proposition 2.14, ϕ◦τt = τϕ(t) ◦ϕ. Hence,
τv◦τϕ(t)◦ϕ ∈W . In other words, τϕ(t)◦τv◦ϕ ∈W . It follows that τϕ(t) = (τϕ(t)◦τv◦ϕ)◦(τv◦ϕ)−1 ∈W .
In other words, ϕ(t) ∈ L.

Theorem 3.21 (Crystallographic restriction). The rotations in the point group of a wallpa-
per group form a finite cyclic group of order 1, 2, 3, 4 or 6.

Proof. Let W be a wallpaper group. Let π(W) be the point group of W . Then π(W) is finite.
Let H0 be the set of rotations in the point group H of W . By Remark 3.4, H0 is a subgroup of

π(W). H0 is finite since H is finite. Let q = ord(H0).
If q = 1, then H0 = {id}. This is possible because the group generated by translations over

two R-linearly independent vectors in R2 can form a wallpaper group.
Suppose q > 1. By Proposition 3.18, H0 is cyclic group of order q generated by ρ2π/q. We

only need to prove q can only be picked from 1, 2, 3, 4 or 6. Let L be the lattice group of W. By
Lemma 3.19, L admits a vector of minimal length. Let t be such a vector. By Proposition 3.20,
ρ2π/q(t) ∈ L. Hence, ρ2π/q(t)− t ∈ L. Because of the minimality of t, we must have

‖t‖ ≤ ‖ρ2π/q(t)− t‖ =
∣∣∣det(

[−1+cos(2π/q) −sin(2π/q)
sin(2π/q) −1+cos(2π/q)

]
)
∣∣∣‖t‖ = |2−2cos(2π/q)|‖t‖.

Hence, 1 ≤ |2−2cos(2π/q)| = 2−2cos(2π/q). It follows that cos(2π/q) ≤ 1/2. This means 2π/q ∈
[π/3,5π/3]. Hence, q ∈ [6/5,6]∩Z>1 = {2,3,4,5,6}.

Let q be odd and larger than 1. Then (q−1)/2 is an integer, and (q−1)π/q = π−π/q is an
integral multiple of 2π/q. Hence, ρπ−π/q ∈ H0. By Proposition 3.20, ρπ−π/q(t) ∈ L. It follows that
ρπ−π/q(t)+ t ∈ L. Because of the minimality of t we have

‖t‖ ≤ ‖t+ρπ−π/q(t)‖ =
∣∣∣det(

[
1+cos(π−π/q) −sin(π−π/q)

sin(π−π/q) 1+cos(π−π/q)

]
)
∣∣∣‖t‖ = |2+2cos(π−π/q)|‖t‖.

Hence, 1≤ |2+2cos(π−π/q)| = |2−2cos(π/q)| = 2−2cos(π/q). It follows that cos(π/q)≤ 1/2. This
means π/q ∈ [π/3,5π/3]. Hence, q ∈ [3/5,3]∩Z>1,odd = {3}.

Now we have that q can be 1; if q 6= 1, then q ∈ {2,3,4,5,6}; if q is odd and larger than 1, then
q = 3. In conclusion, q ∈ {1,2,3,4,6}.
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Remark 3.22. An illustration of the proof is as follows. If q ∈ 2Z>0 \{1,2,3,4,6}, then we have
a contradiction as Figure 3.1a. If q ∈ (1+2Z>0) \ {1,2,3,4,6}, then we have a contradiction as
Figure 3.1b.

0
t

ρ2π/q(t)

(a) ‖t‖ > ‖ρ2π/q(t)− t‖
0

t

ρπ−π/q(t)

−t

(b) ‖t‖ > ‖t+ρπ−π/q(t)‖

Figure 3.1: Two contradictions from q ∈Z\{1,2,3,4,6}
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4 Classification of Wallpaper Groups

The goal of this chapter is to reproduce a proof that there exist precisely 17 equivalence
classes of wallpaper groups. We separate cases and prove that the wallpaper groups are
equivalent under each case. Then we discuss how the wallpaper groups under different cases
are indeed not equivalent. We eventually exhaust the possibilities, and reach our conclusion.

4.1 Point Group Containing No Reflection

In this section we prove that there are precisely five equivalence classes of wallpaper groups
with no reflection in their point groups using Definition 3.14. In order to do so, we need to create
an isomorphism mapping one group to another. The idea is to create an isomorphism between
the translation subgroups first. Then expand this isomorphism to the whole wallpaper group.
We know that the translation subgroup of a wallpaper group is a normal subset. It is natural to
expect this expansion to map cosets to cosets.

Lemma 4.1 (Writing a wallpaper as the union of translation subgroup cosets). Let W be
a wallpaper group with π(W)= 〈ρ2π/q〉. Let T be the translation subgroup of W. Then there exists
v ∈ R2 such that τv ◦ρ2π/q ∈ W. Meanwhile, W = ⋃q−1

i=0 T ◦ (τv ◦ρ2π/q)i and this union is disjoint.
Moreover, every element in W can be expressed uniquely in the form τw ◦ (τu ◦ρ)i for some w ∈ L
and i ∈ {0, . . . , q−1}.

Proof. Let W , T and π(W) satisfy the premises. Denote ρ = ρ2π/q.
Since ρ ∈π(W), by Definition 3.3, there exists v ∈R2 such that τv ◦ρ ∈W . Then for every i ∈Z

we have (τv ◦ρ)i ∈W . By Proposition 3.2, T is a normal subgroup of W , meanwhile, W /T ∼=π(W).
Hence, the representatives of the cosets of T can be picked in the fiber on each element of π(W).
We see that π maps {(τv◦ρ)i}q−1

i=0 to all the elements of π(W). Therefore, for each i ∈ {0,1, . . . , q−1},
we can take (τv ◦ρ)i as a representative of T ◦ (τv ◦ρ)i. Note that when we pick a different i,
the image of (τv ◦ρ)i in π(W) is different. Hence, (τv ◦ρ)i|q−1

i=0 are indeed elements in different
fibers. Therefore, {T ◦ (τv ◦ρ)i}q−1

i=0 is a partition of W, and we can write W as a disjoint union
W =⋃q−1

i=0 T ◦ (τv ◦ρ)i.
By Proposition 2.23, we can express any element of W uniquely as τu ◦ρ i for some u ∈R2 and

i ∈ {0, . . . , q−1}. Observe that τu ◦ρ i = τu−v−ρ(v)−···−ρ i−1(v) ◦ (τv ◦ρ)i. Denote w = u−v−ρ(v)−·· ·−
ρ i−1(v). Then τw ◦ (τv ◦ρ)i = τu ◦ρ i is unique.

We see τw = τu ◦ρ i ◦ (τv ◦ρ)−i ∈W . Therefore, τw ∈ T.

Remark 4.2. If W is a wallpaper group with π(W) = 〈ρ2π/q〉, for a choice of v ∈ R2 such that
τv ◦ρ2π/q ∈ W, without mentioning again, we write an element of W in the form τw ◦ (τv ◦ρ)i,
where τw ∈ T.

Remark 4.3 (It is possible to create a bijection). Let W and W ′ be wallpaper groups with π(W)=
〈ρ2π/q〉. Denote ρ = ρ2π/q. Let L and L′ be the lattice groups of W and W ′ respectively. Let
λ : L → L′ be an isomorphism.

By Lemma 4.1, the cosets {T ◦τv ◦ρ}q−1
i=1 form a partition of W, and the cosets{T ′ ◦τv′ ◦ρ}q−1

i=1
form a partition of W ′. We can, therefore, define η : W →W ′ by τw ◦ (τv ◦ρπ)i 7→ τλ(w) ◦ (τv′ ◦ρπ)i

for i ∈ {1, . . . , q−1}. Meanwhile, we can also define its inverse η−1 : W ′ →W by τw′ ◦ (τv′ ◦ρπ)i 7→
τλ−1(w) ◦ (τv ◦ρπ)i for i ∈ {1, . . . , q−1}.
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Remark 4.4 (A “natural” isomorphism between translation subgroups). Let W and W ′ be two
wallpaper groups. Let L = 〈v,w〉 and L′ = 〈v′,w′〉 be the lattice groups of W and W ′ respec-
tively. If we define λ : L → L′ by mv+nw 7→ mv′+nw′ for all m,n ∈Z, then λ is an isomorphism.
Moreover, if we define γ : T → T ′ by τt 7→ τλ(t), then γ is an isomorphism.

In the case that the point groups are trivial, we can simply map the translation subgroups
(the whole groups) to each other with this “natural” isomorphism.

Theorem 4.5 (0 reflection, q = 1). Let W and W ′ be wallpaper groups with π(W)=π(W ′)= {id}.
Let L = 〈v,w〉 and L′ = 〈v′,w′〉 be the lattice groups of W and W ′ respectively. Let T and T ′ be the
translation subgroups respectively. Define λ : L → L by mv+nw 7→ mv′+nw′ for all m,n ∈Z. Then
we can define η : W →W ′ by τw 7→ τλ(w). Moreover, η : W →W ′ and η|T : T 7→ T ′ are isomorphisms.

Proof. Since π(W) = π(W ′) = {id}, we have W = T and W ′ = T ′. By Remark 4.4, η = η|T is an
isomorphism.

Corollary 4.6 (0 reflection, q = 1, equivalence). Let W and W ′ be wallpaper groups with
π(W)=π(W ′)= {id}. Then W ∼W ′.

Theorem 4.7 (0 reflection, q ∈ {2,3,4,6}, isomorphism*). Let q ∈ {2,3,4,6}. Let W and W ′ be
wallpaper groups with point group π(W)=π(W ′)= 〈ρ2π/q〉, lattice groups L and L′, translation
subgroups T and T ′, respectively. Denote ρ = ρ2π/q. Let v,v′ ∈R2 satisfy τv ◦ρ ∈W and τv′ ◦ρ ∈W ′.
Let λ : L → L′ be an isomorphism. Define η : W → W ′ by τw ◦ (τv ◦ρ)i 7→ τλ(w) ◦ (τv′ ◦ρ)i for all
i ∈ {0, . . . , q−1}. If ρ ◦λ=λ◦ρ, then η : W 7→W ′ and η|T : T 7→ T ′ are isomorphisms.

Proof. By Remark 4.3, we know that η has an inverse. Now we only need to prove that η is an
homomorphism. Let v ∈R2 such that τv ◦ρ ∈W. Let τw1 ◦ (τv ◦ρ)i ∈W and τw2 ◦ (τv ◦ρ) j ∈W. By
repetitively applying Proposition 2.14 We have (τw1◦(τu◦ρ)i)◦(τw2◦(τu◦ρ) j)= τw1+ρ i(w2)◦(τu◦ρ)i+ j.
Since when i+ j ≥ q we can bring the power down using the fact (τv ◦ρ)q = id in Remark 3.11,
we know that η maps τw1+ρ i(w2) ◦ (τu ◦ρ)i+ j to τλ(w1+ρ i(w2)) ◦ (τu′ ◦ρ)i+ j.

Suppose ρ ◦λ = λ◦ρ. By Proposition 4.11, we have ρ i ◦λ = λ◦ρ i for every i ∈ {0, . . . , q−1}.
Then λ(w1 +ρ i(w2)) = λ(w1)+ (λ ◦ρ i)(w2) = λ(w1)+ (ρ i ◦λ)(w2) = λ(w1)+ρ i(λ(w2)). Therefore,
τλ(w1+ρ i(w2)) ◦ (τu′ ◦ρ)i+ j = τλ(w1)+ρ i(λ(w2)) ◦ (τu′ ◦ρ)i+ j.

Again by repetitively applying Proposition 2.14, we obtain τλ(w1)+ρ i(λ(w2))◦(τu′◦ρ)i+ j = (τλ(w1)◦
(τu′ ◦ρ)i) ◦ (τλ(w2) ◦ (τu′ ◦ρ) j). We know that (τλ(w1) ◦ (τu′ ◦ρ)i) ◦ (τλ(w2) ◦ (τu′ ◦ρ) j) = η((τw1 ◦ (τu ◦
ρ)i))◦η((τw2 ◦ (τu ◦ρ) j)). In other words, η((τw1 ◦ (τu ◦ρ)i) = η((τw1 ◦ (τu ◦ρ)i))◦η((τw2 ◦ (τu ◦ρ) j)).
Hence, η is a homomorphism.

Having an inverse, η is an isomorphism.
By construction, the restriction η|T : T → T ′ is an isomorphism. In fact, η|T = η|i=0 is simply

the map τt 7→ τλ(v).

Theorem 4.8 (0 reflection, q = 2). Let W and W ′ be wallpaper groups with π(W) = π(W ′) =
〈ρπ〉. Let L = 〈v,w〉 and L′ = 〈v′,w′〉 be the lattice groups of W and W ′ respectively. Let T and
T ′ be the translation subgroups respectively. Define λ : L → L′ by mv+nw 7→ mv′+nw′ for all
m,n ∈ Z. Let u,u′ ∈ R2 satisfy τu ◦ρπ ∈ W and τu′ ◦ρπ ∈ W ′. Then we can define η : W → W ′

by τw ◦ (τu ◦ ρπ)i 7→ τλ(w) ◦ (τu′ ◦ ρπ)i for i = 1,2. Moreover, η : W → W ′ and η|T : T 7→ T ′ are
isomorphisms.
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Proof. By Remark 4.4, λ is an isomorphism. For all m,n ∈Z, we have ρπ(λ(mv+nw))= ρπ(mv′+
nw′)=−mv′−nw′ =λ(−mv−nw)=λ(ρπ(mv+nw)). Therefore, ρπ ◦λ=λ◦ρπ. By Theorem 4.7,
η and η|T are isomorphisms.

Corollary 4.9 (0 reflection, q = 2, equivalence). If W and W ′ be wallpaper groups with π(W)=
π(W ′)= 〈ρπ〉, then W ∼W ′.

Lemma 4.10. Let W be a wallpaper group with π(W) = 〈ρ2π/q〉, where q ∈ {3,4,6}. Denote
ρ = ρ2π/q. Let L be the lattice groups of W. Pick t ∈ L of minimal length. Then t and ρ(t) form a
basis of L. In other words, L =Zt+Zρ(t).

Proof. Fix q ∈ {3,4,6}. Denote ρ = ρ2π/q. Let W be a wallpaper group with π(W)= 〈ρ〉. Let L be
the lattice groups of W . Let t ∈ L be of minimal length. By Proposition 3.20, ρ(t) ∈ L. Therefore,
{mt+nρ(t) | m,n ∈Z}⊆ L.

Assume for contradiction that L 6=Zt+Zρ(t). Then we can pick v ∈ L \ (Zt+Zρ(t)). Such a
vector must be of the form v = at+bρ(t) where a,b ∈R are not both integers.

Assume b ∈ Z. Then (a− [a])t = v− [a]t− bρ(t) ∈ L, but (a− [a])t is shorter than t, which
contradicts the minimality of t. Assume a ∈ Z. Then (b− [b])ρ(t) = v− at− [b]ρ(t) ∈ L, but
(b− [b])ρ(t) is shorter than t, which contradicts the minimality of t.

Assume a,b ∈R\Z. Then |a−[a]| ≤ 1/2 or |a−[a]−1| ≤ 1/2, and |b−[b]| ≤ 1/2 or |b−[b]−1| ≤ 1/2.
Pick c =min{|a−[a]|, |a−[a]−1|}≤ 1/2, and d =min{|b−[b]|, |b−[b]−1|}≤ 1/2. Then ct+dρ(t) ∈ L.
However, ‖ct+dρ(t)‖ ≤ c‖t‖+d‖ρ(t)‖ = (c+d)‖t‖. We know that the equality does not happen
because 0 < 2π/q < π. Hence, we have ‖ct+dρ(t)‖ < (c+d)‖t‖ ≤ ‖t‖. We have found a vector
ct+dρ(t) shorter than t, which contradicts the minimality of t.

Therefore, L =Zt+Zρ(t).

Proposition 4.11. Let t, t′ ∈ R2 \ {0}. Let q ∈ Z>2. Denote ρ = ρ2π/q. Define λ : R2 → R2 by
at+bρ(t) 7→ at′+bρ(t′) for all a,b ∈R. Then for every i ∈ {1,2, . . . , q−1} we have ρ i ◦λ=λ◦ρ i.

Proof. Suppose ρ(t) = At where A =
[

cos(2π/q) −sin(2π/q)
sin(2π/q) cos(2π/q)

]
. Then we can find its eigenvalues z =

e j2π/q and z̄ = e− j2π/q, where j = p−1. Hence, A = X−1DX for a non-singular matrix X and
D = [ z 0

0 z̄
]
.

Pick any i ∈ {0, . . . , q − 1}. Let ρ i t = at + bρ(t) for some a,b ∈ R. Then A i t = aIt + bAt.
Then [A i − bA − aI]t = 0. Since t 6= 0, the matrix A i − bA − aI is singular. In other words,
det(A i−bA−aI)= 0. But X−1(A i−bA−aI)X = D i−bA−aI =

[
zi−bz−a 0

0 z̄i−bz̄−a

]
. Hence, we have

det(D)= (zi−bz−a)(z̄i−bz̄−a)= |zi−bz−a|2 = |z̄i−bz̄−a|2 = 0. It follows that zi−bz−a = 0 and
z̄i −bz̄−a = 0. Therefore, A i −bA−aI = X (D i −bA−aI)X−1 = 0. In other words, ρ i = a id+bρ.

It follows that ρ i t′ = at′+bρ(t′). We know λ(ρ i t)=λ(at+bρ(t))= at′+bρ(t′) by the premises.
Hence, λ(ρ i(t)) = ρ i t′. Moreover, ρ(λ(at+ bρ(t))) = ρ(at′+ bρ(t′)) = aρ(t′)+ bρ2(t′) = aλ(ρ(t))+
bλ(ρ2(t))=λ(ρ(at+bρ(t))) for all a,b ∈R. Hence, ρ i ◦λ=λ◦ρ i.

Theorem 4.12 (0 reflection, q ∈ {3,4,6}). Let W and W ′ be wallpaper groups with π(W) =
π(W ′) = 〈ρ2π/q〉, lattice groups L and L′, translation sugroups T and T ′, respectively, where
q ∈ {3,4,6}. Denote ρ = ρ2π/q. Let t ∈ T and t′ ∈ T ′ be of minimal length. Then we can de-
fine λ : L → L′ by mt+ nρ(t) 7→ mt′ + nρ(t′) for all m,n ∈ Z. Let v,v′ ∈ R2 satisfy τv ◦ρπ ∈ W
and τv′ ◦ρπ ∈ W ′. Define η : W → W ′ by τw ◦ (τv ◦ρ)i 7→ τλ(w) ◦ (τv′ ◦ρ)i for i ∈ {0, . . . , q−1}. Then
η : W →W ′ and η|T : T 7→ T ′ are isomorphisms.
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Proof. By Lemma 4.10, we can define such a map λ. By Remark 4.4, λ is an isomorphism.
By Proposition 4.11, ρ i ◦λ = λ ◦ρ i for every i ∈ {0, . . . , q−1}. By Theorem 4.7, η and η|T are
isomorphisms.

Corollary 4.13 (0 reflection, q ∈ {3,4,6}, equivalence). If W and W ′ be wallpaper groups
with π(W)=π(W ′)= 〈ρ2π/q〉, where q ∈ {3,4,6}, then W ∼W ′.

Remark 4.14. Let W and W ′ be wallpaper groups with π(W)= 〈ρ2π/q〉 and π(W ′)= 〈ρ2π/q′〉, where
q, q′ ∈ {3,4,6}. If q 6= q′ then W 6∼ W ′. Because equivalent wallpaper groups admit isomorphic
point groups, and these two point groups are not isomorphic when q 6= q′.

Theorem 4.15. We have five equivalence classes of wallpaper groups with their point group
containing only rotations.

Proof. This follows directly from Corollary 4.6, Corollary 4.9, Corollary 4.13, and Remark 4.14.

4.2 Point Group Containing Only One Reflection

In this section we follow a similar recipe.

Lemma 4.16 (Writing a wallpaper group as a union of cosets). Let W be a wallpaper group
with point group π(W)= 〈µl〉 and translation subgroup T. Pick v ∈R2 such that τv◦ρµl ∈W. Then
W = T ∪T ◦ (τv ◦µl) and this union is disjoint. Moreover, every element in W can be expressed
uniquely in the form τw ◦ (τu ◦µl)i for some w ∈ L and i ∈ {0,1}.

Proof. This is an analogue of Lemma 4.1. Denote µ = µl By Proposition 3.2, T is a normal
subgroup of W, meanwhile, W/T ∼= π(W). Hence, the representatives of the cosets of T can
be picked in the fiber on each element of π(W). We see that π(id)∪π(τv ◦µ) = {id,µ} = π(W).
Therefore, id and (τv◦ρ) are representatives of the cosets T and T◦(τv◦µl) respectively. Therefore,
{T,T ◦ (τv ◦µl)} is a partition of W , and we can write W as a disjoint union W = T ∪T ◦ (τv ◦µ).

By Proposition 2.23, we can express any element of W uniquely as τu ◦µi
l for some u ∈ R2

and i ∈ {0,1}. Observe that if i = 0, then τu ◦µi = τu ∈ T; if i = 1 then τu ◦µ= τu−v ◦τv ◦µ. Denote
w = u−v. Then τw = τu ◦µ◦ (τv ◦µ)−1 ∈W . Hence, τw ∈ T.

Remark 4.17 (It is possible to create a bijection). Let W and W ′ be wallpaper groups with π(W)=
〈µl〉 and π(W ′)= 〈µl′〉. Let L and L′ be the lattice groups of W and W ′ respectively. Let λ : L → L′

be an isomorphism. Pick v,v′ ∈ R2 such that τv ◦µl ∈W and τv′ ◦µl′ ∈W . By Lemma 4.16, the
cosets T and T◦(τv◦µl) form a partition of W , and the cosets T ′ and T ′◦(τv′ ◦µl′ ) form a partition
of W ′. We can, therefore, define η : W → W ′ by τw ◦ (τu ◦µl)i 7→ τλ(w) ◦ (τu′ ◦µl′)i for i ∈ {0,1}.
Meanwhile, we can also define its inverse η−1 : W ′ →W by τw′ ◦ (τu′ ◦µl′)i 7→ τλ−1(w′) ◦ (τu ◦µl)i for
i ∈ {0,1}.

Lemma 4.18. Let W be a wallpaper group with its point group π(W) containing a reflection µl .
Let L be the lattice group of W. Then there exists r ∈ L∩ l and s ∈ L∩ l⊥ of minimal length.

Proof. Since µl ∈π(W), there exists u ∈R2 such that τu ◦µl ∈W. We can always pick a w ∈ L to
make v = u+w non-zero and not perpendicular to l and not parallel to l. Then τv ◦µl ∈W . Then
τv+µl (v) = (τv ◦µl)2 ∈W .
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Denote a = v+µl(v). Note that µl(a) = a. Hence, a ∈ L ∩ l. Because v 6= 0 and v 6∈ l⊥,
we have a 6= 0. Therefore, L∩ l \ {0} 6= ;. Let d > ‖a‖. Then a ∈ {v ∈ L∩ l | ‖v‖ < d}. Then
{v ∈ L ∩ l | ‖v‖ < d} 6= ;. By Lemma 3.19, {v ∈ L | 0 < ‖v‖ < d} is finite. Hence, its subset
{v ∈ L∩ l | 0< ‖v‖ < d} is also finite. Therefore, there exists r ∈ L∩ l of minimal length.

Denote b = v−µl(v). Then µl(b) = µl(v)− id(v) = −b. Hence, b ∈ L∩ l⊥. Because v 6= 0 and
v 6∈ l, we have b 6= 0. Therefore, L∩ l⊥ \ {0} 6= ;. Let e > ‖b‖. Then b ∈ {v ∈ L∩ l⊥ | 0 < ‖v‖ < e}.
Then {v ∈ L∩ l⊥ | 0< ‖v‖ < e} 6= ;. By Lemma 3.19, the set {v ∈ L | 0< ‖v‖ < d} is finite. Hence, its
subset {v ∈ L∩ l⊥ | 0< ‖v‖ < d} is also finite. Therefore, there exists s ∈ L∩ l⊥ of minimal length.

Lemma 4.19. Let W be a wallpaper group with π(W)= 〈µl〉 = {id,µl}, where l is a line through the
origin. Let r ∈ L∩ l and s ∈ L∩ l⊥ be of minimal length. Suppose t ∈ L. Then either t ∈ L\(Zr+Zs)
or t ∈ (r+ s)/2+Zr+Zs. In other words, L ⊆ (Zr+Zs)∪ ((r+ s)/2+Zr+Zs).

Proof. If t ∈ L \ (Zr+Zs) then the proof is finished.
Assume t = ar + bs ∈ L \ (Zr +Zs), where a,b ∈ R. We know that µl(t) = ar − bs. Then

2ar = t+µl(t) ∈ L∩ l and 2bs = t−µl(t) ∈ L∩ l⊥.
The numbers 2a and 2b are both integers. Otherwise, (2a− [2a])r ∈ L∩ l is non-zero and

shorter than r, or (2b− [2b])s ∈ L∩ l⊥ is non-zero and shorter than s, which contradict the
minimality of r or s.

Also neither a nor b can be an integer. If a,b ∈Z, then t ∈ 〈r, s〉, which contradicts the premise.
If a ∈Z and b 6∈Z, then (b− [b])s ∈ L∩ l⊥ is nonzero and shorter than s, which contradicts the
minimality of s. If a 6∈Z and b ∈Z, then (a− [a])r ∈ L∩ l is nonzero and shorter than s, which
contradicts the minimality of r.

Therefore, we have 2a,2b ∈ Z but a,b 6∈ Z. In other words, it holds that a,b ∈ 1/2+Z.
Therefore, t ∈ (r+ s)/2+Zr+Zs.

Lemma 4.20. Let W be a wallpaper group with π(W)= 〈µl〉, where l is a line through the origin.
Let r ∈ L∩ l and s ∈ L∩ l⊥ be of minimal length. Then either L =Zr+Zs or L =Z(r+ s)/2+Zr.

Proof. If L =Zr+Zs, the proof is finished. Assume L 6=Zr+Zs. Then there exists t ∈ L\(Zr+Zs).
By Lemma 4.19, we have t ∈ (r+s)/2+Zr+Zs. Let t = (r+s)/2= mr+ns for some m,n ∈Z. Because
of the group structure of L, we have t+Zr+Zs ⊆ L. We know t+Zr+Zs = (r+ s)/2+Zr+Zs.
Hence, (r+ s)/2+Zr+Zs ⊆ L. In other words, (Zr+Zs)∪ ((r+ s)/2+Zr+Zs)⊆ L. By Lemma 4.19,
L ⊆ (Zr+Zs)∪ ((r+ s)/2+Zr+Zs). This means L = (Zr+Zs)∪ ((r+ s)/2+Zr+Zs). We see that
(Zr+Zs)∪ ((r+ s)/2+Zr+Zs)=Z(r+ s)/2+Zr.

Proposition 4.21. Let W be a wallpaper group with point group π(W). Suppose µl ∈π(W). Let
r ∈ L∩ l be of minimal length. Then every shift vector of µl is in the set Zr.

Proof. By Proposition 3.13, every shift vector of µl is in l. Let a = kr be a shift vector of µl . Then
k must be an integer. Otherwise, (k− [k])r ∈ L∩ l is nonzero and shorter than r, contradicts the
minimality of r. Therefore, all shift vectors of µl are in Zr.

Proposition 4.22. Let W be a wallpaper group with π(W). Suppose µl ∈π(W). Let r ∈ L∩ l be of
minimal length. Suppose there exists t ∈ L such that t+µl(t)= r. Then Zr is the set of all the shift
vectors of µl .
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Proof. By Proposition 4.21, all shift vectors of µl are contained in Zr. Since µl ∈ π(W), there
exists v ∈R2 such that τv ◦µl ∈W . Then v+µl(v) is a shift vector of µl . Then v+µl(v)= (m+1)r
for some m ∈Z. Then r = v+µl(v)−mr = v−mt+µl(v−mt). We know τv−mt ◦µl ∈W . Therefore,
r is a shift vector of µl . Then we can write r = w+µl(w) where w ∈R2 satisfies τw ◦µl ∈W .

Let n ∈Z. Since r = t+µl(t), we have nr = r+ (n−1)r = w+µl(w)+ (n−1)(t+µl(t))= w+ (n−
1)t+µl(w+ (n−1)t). We know τw+(n−1)t ◦µl ∈ W, since t ∈ L. Hence, nr is a shift vector of µl .
Thus, every element of Zr is a shift vector of µl . Therefore, Zr is the set of all the shift vectors of
µl .

Proposition 4.23. Let W be a wallpaper group with point group π(W) and lattice group L.
Suppose µl ∈π(W). Let r ∈ L∩ l be of minimal length. Suppose that there exists no t ∈ L such that
t+µl(t)= r. Then either 2Zr or r+2Zr is the set of all the shift vectors of µl .

Proof. By Proposition 4.21, every shift vector of µl is in Zr. Let cr ∈ L be a shift vector of µl ,
where c ∈Z. Then there exists v ∈ R2 such that τv ◦µl ∈ W and cr = v+µl(v). Let n ∈Z. Then
cr+2nr = v+nr+µl(v+nr). We know that τv+nr ◦µl = τnr ◦τv ◦µl ∈W . Hence, cr+2nr is a shift
vector of µl . Therefore, every element of cr+2Zr is a shift vector of µl . By Proposition 3.13,
there are no other shift vectors in L other than the ones in cr+2Zr. Therefore, every shift vector
of µl is in cr+2Zr. Since c ∈Z, the set cr+2Zr is either 2Zr or r+2Zr.

Lemma 4.24. Let W be a wallpaper group with π(W)= 〈µl〉, where l is a line through the origin.
Let r ∈ L∩ l and s ∈ L∩ l⊥ be of minimal length. If L =Zr+Zs, then either 2Zr or r+2Zr is the
set of all the shift vectors of µl .

Proof. Suppose L =Zr+Zs. By Proposition 4.23, either 2Zr or r+2Zr is the set of all the shift
vectors of µl .

Lemma 4.25. Let W be a wallpaper group with π(W)= 〈µl〉 = {id,µl}, where l is a line through
the origin. Let r ∈ L∩ l and s ∈ L∩ l⊥ be of minimal length. If L =Z(r+ s)/2+Zr, then Zr is the
set of all the shift vectors of µl .

Proof. Pick w = (r+ s)/2 ∈ L. Then w+µl(w)= r. By Proposition 4.22, Zr is the set of all the shift
vectors of µl .

Lemma 4.26 (1 reflection, cases of sftvec(µl)). Let W be a wallpaper group with π(W)= 〈µl〉 =
{id,µl}, where l is a line through the origin. Let r ∈ L∩ l and s ∈ L∩ l⊥ be of minimal length. Let
L =Zr+Zs. Then one of the sets Zr, 2Zr and r+2Zr is the set of all the shift vectors of µl .

Proof. By Lemma 4.20, either L =Zr+Zs or L =Z(r+ s)/2+Zr. Assume L =Z(r+ s)/2+Zr. By
Lemma 4.25, Zr is the set of shift vectors of µl . Assume L =Zr+Zs. By Lemma 4.24, either 2Zr
or r+2Zr is the set of shift vectors of µl .

Proposition 4.27. Let W and W ′ be a wallpaper group with point groups π(W) = 〈µl〉 and
π(W) = 〈µl′〉 respectively, and lattice groups L and L′ respectively. Let r ∈ L ∩ l, s ∈ L ∩ l⊥,
r′ ∈ L∩ l′, and s′ ∈ L∩ l′⊥ be of minimal length. Define λ : L → L′ such that λ(r)= r′ and λ(s)= s′.
Then λ◦µl =µl′ ◦λ.
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Proof. Take any u ∈ L. We can write u = ar+bs for a,b ∈R. Then λ(µl(u))=λ(ar−bs)= ar′−bs′,
and µl′(λ(u))=µl′(ar′+bs′)= ar′−bs′. Hence, λ(µl(u))=µl′(λ(u)). Therefore, λ◦µl =µl′ ◦λ.

Theorem 4.28 (1 reflection, q = 1, isomorphism*). Let W and W ′ be two wallpaper groups,
with point groups π(W)= 〈µl〉 and π(W ′)= 〈µl′〉, lattice groups L and L′, translation subgroups T
and T ′ respectively. Let r ∈ L∩ l, s ∈ L∩ l⊥, r′ ∈ L∩ l′ and s′ ∈ L∩ l′⊥ be of minimal length. Suppose
λ : L → L′ is an isomorphism such that λ(r)= r′ and λ(s)= s′. Let v,v′ ∈R2 satisfy τv ◦µl ∈W and
τv′ ◦µl′ ∈W ′ and λ(v+µl(v))= v′+µl(v′). Define η : W →W ′ by τw ◦ (τv ◦µl)i 7→ τλ(w) ◦ (τv′ ◦µl′ )i for
i ∈ {0,1}. Then η : W →W ′ and η|T : T → T ′ are isomorphisms.

Proof. Let u ∈ R2. Write u = ar + bs for a,b ∈ R. Then λ(µl(u)) = λ(ar − bs) = ar′ − bs′, and
µl′(λ(u))=µl′(ar′+bs′)= ar′−bs′. Therefore, λ◦µl =µl′ ◦λ.

Let τw1 ◦ (τv ◦µl)i and τw2 ◦ (τv ◦µl) j be elements of W. By repetitively applying Proposition
2.14, (τw1 ◦ (τv ◦µl)i)◦ (τw2 ◦ (τv ◦µl) j)= τw1+µi

l (w2) ◦ (τv ◦µl)i+ j.

Since λ(v+µl(v))= v′+µl′ (v′), we have that η maps (τv ◦µl)2 = τv+µl (v) to (τv′ ◦µl′ )2 = τv′+µl′ (v′).
Therefore, for all i, j ∈ {0,1}, including the cases that i+ j > 1, η maps τw1+µi

l (w2) ◦ (τv ◦µl)i+ j to

τλ(w1+µi
l (w2)) ◦ (τv′ ◦µl′)i+ j.

By linearity of λ, we have τλ(w1+µi
l (w2)) ◦ (τv′ ◦µl′)i+ j = τλ(w1)+λ(µi

l (w2)) ◦ (τv′ ◦µl′)i+ j. Since

λ◦µl =µl′ ◦λ, we have τλ(w1)+λ(µi
l (w2)) ◦ (τv′ ◦µl′)i+ j = τλ(w1)+µi

l′ (λ(w2)) ◦ (τv′ ◦µl′)i+ j. By repetitively

applying Proposition 2.14, τλ(w1)+µi
l′ (λ(w2)) ◦ (τv′ ◦µl′)i+ j = η(τw1 ◦ (τv ◦µl)i))◦η(τw2 ◦ (τv ◦µl) j)).

Therefore, η is an homomorphism. By Remark 4.17, the inverse of η exists. Therefore, η is
an isomorphism. We know that η|T is an isomorphism by construction.

Remark 4.29 (why different ones are different). Suppose we have an isomorphism between the
groups, which is also an isomorphism between the translation subgroups. Then there must be
some consequences of this map. If we violate them then they are not equivalent.

Remark 4.30. Let W be a wallpaper group with π(W)= 〈µl〉 = {id,µl}, where l is a line through
the origin. Let r ∈ L∩ l and s ∈ L∩ l⊥ be of minimal length.

Let L =Z(r+ s)/2+Zr. Let Zr be the set of all the shift vectors of µl . Then 0 is a shift vector
of µl . Then there exists v ∈R2 such that Then 0= v+µl(v).

Let L =Zr+Zs. Let 2Zr be the set of all the shift vectors of µl . Then 0 is a shift vector of µl .
Then there exists v ∈R2 such that 0= v+µl(v).

Let L =Zr+Zs. Let r+2Zr be the set of all the shift vectors of µl . Then r is a shift vector of
µl Then there exists v ∈R2 such that r = v+µl(v).

Theorem 4.31 (1 reflection, q = 1, sftvec(µl)=Zr). Let W and W ′ be two wallpaper groups,
with point groups π(W) = 〈µl〉 and π(W ′) = 〈µl′〉, lattice group L and L′, translation subgroups
T and T ′ respectively. Let r ∈ L∩ l, s ∈ L∩ l⊥, r′ ∈ L∩ l′ and s′ ∈ L∩ l′⊥ be of minimal length.
Suppose L = Z(r+ s)/2+Zr and L′ = Z(r′+ s′)/2+Zr′. Suppose Zr and Zr′ are the sets of all
the shift vectors of µl and µl′ respectively. Let v,v′ ∈ R2 satisfy 0 = v+µl(v) and 0 = v′+µl′(v′).
Define λ : L → L′ by m(r + s)/2+ nr 7→ m(r′+ s′)/2+ nr′ for all m,n ∈ Z. Define η : W → W ′ by
τw ◦ (τv ◦µl)i 7→ τλ(w) ◦ (τv′ ◦µl′)i for i ∈ {0,1}. Then η and η|T are isomorphisms.

Proof. From the premises, 0= v+µl(v) and 0= v′+µl′(v′). Therefore, λ(v+µl(v))= 0= v′+µl(v′).
By Remark 4.4, λ is an isomorphism. By Theorem 4.28, η and η|T are isomorphisms.
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Corollary 4.32 (1 reflection, q = 1, sftvec(µl)=Zr, equivalence). Let W and W ′ be two wall-
paper groups, with point groups π(W)= 〈µl〉 and π(W ′)= 〈µl′〉, lattice group L and L′ respectively.
Let r ∈ L∩ l, s ∈ L∩ l⊥, r′ ∈ L∩ l′ and s′ ∈ L∩ l′⊥ be of minimal length. Suppose L =Z(r+ s)/2+Zr
and L′ = Z(r′+ s′)/2+Zr′. Suppose Zr and Zr′ be the sets of all the shift vectors of µl and µl′

respectively. Then W ∼W ′.

Theorem 4.33 (1 reflection, q = 1, sftvec(µl)= 2Zr). Let W and W ′ be two wallpaper groups,
with point groups π(W) = 〈µl〉 and π(W ′) = 〈µl′〉, lattice group L and L′, translation subgroups
T and T ′ respectively. Let r ∈ L∩ l, s ∈ L∩ l⊥, r′ ∈ L∩ l′ and s′ ∈ L∩ l′⊥ be of minimal length.
Suppose L =Zr+Zs and L′ =Zr′+Zs′. Suppose 2Zr and 2Zr′ are the sets of all the shift vectors
of µl and µl′ respectively. Let v,v′ ∈R2 satisfy 0 = v+µl(v) and 0 = v′+µl′(v′). Define λ : L → L′

by mr+ns 7→ mr′+ns′ for all m,n ∈Z. Define η : W →W ′ by τw ◦ (τv ◦µl)i 7→ τλ(w) ◦ (τv′ ◦µl′)i for
i ∈ {0,1}. Then η and η|T are isomorphisms.

Proof. From the premises, 0= v+µl(v) and 0= v′+µl′(v′). Therefore, λ(v+µl(v))= 0= v′+µl(v′).
By Remark 4.4, λ is an isomorphism. By Theorem 4.28, η and η|T are isomorphisms.

Corollary 4.34 (1 reflection, q = 1, sftvec(µl)= 2Zr, equivalence). Let W and W ′ be two wall-
paper groups, with point groups π(W)= 〈µl〉 and π(W ′)= 〈µl′〉, lattice group L and L′ respectively.
Let r ∈ L∩ l, s ∈ L∩ l⊥, r′ ∈ L∩ l′ and s′ ∈ L∩ l′⊥ be of minimal length. Suppose L =Zr+Zs and
L′ =Zr′+Zs′. Suppose 2Zr and 2Zr′ are the sets of all the shift vectors of µl and µl′ respectively.
Then W ∼W ′.

Theorem 4.35 (1 reflection, q = 1, sftvec(µl)= r+2Zr). Let W and W ′ be two wallpaper groups,
with point groups π(W)= 〈µl〉 and π(W ′)= 〈µl′〉, lattice group L and L′, translation subgroups T
and T ′ respectively. Let r ∈ L∩ l, s ∈ L∩ l⊥, r′ ∈ L∩ l′ and s′ ∈ L∩ l′⊥ be of minimal length. Suppose
L =Zr+Zs and L′ =Zr′+Zs′. Suppose r+2Zr and r′+2Zr′ are the sets of all the shift vectors
of µl and µl′ respectively. Let v,v′ ∈ R2 satisfy r = v+µl(v) and r = v′+µl′(v′). Define λ : L → L′

by mr+ns 7→ mr′+ns′ for all m,n ∈Z. Define η : W →W ′ by τw ◦ (τv ◦µl)i 7→ τλ(w) ◦ (τv′ ◦µl′)i for
i ∈ {0,1}. Then η and η|T are isomorphisms.

Proof. From the premises, r = v+µl(v) and r = v′+µl′(v′). Therefore, λ(v+µl(v)) = λ(r) = r′ =
v′+µl(v′). By Remark 4.4, λ is an isomorphism. By Theorem 4.28, η and η|T are isomorphisms.

Corollary 4.36 (1 reflection, q = 1, sftvec(µl)= r+2Zr, equivalence). Let W and W ′ be two
wallpaper groups, with point groups π(W) = 〈µl〉 and π(W ′) = 〈µl′〉, lattice group L and L′

respectively. Let r ∈ L∩ l, s ∈ L∩ l⊥, r′ ∈ L∩ l′ and s′ ∈ L∩ l′⊥ be of minimal length. Suppose
L =Zr+Zs and L′ =Zr′+Zs′. Suppose r+2Zr and r′+2Zr′ are the sets of all the shift vectors of
µl and µl′ respectively. Then W ∼W ′.

Proposition 4.37. Let W and W ′ be two wallpaper groups, with point groups π(W)= 〈µl〉 and
π(W ′)= 〈µl′〉, lattice group L and L′ respectively. Let r ∈ L∩ l, s ∈ L∩ l⊥, r′ ∈ L∩ l′ and s′ ∈ L∩ l′⊥
be of minimal length. Suppose L =Zr+Zs and L′ =Zr′+Zs′. Suppose 2Zr and r′+2Zr′ are the
sets of all the shift vectors of µl and µl′ respectively. Then W 6∼W ′.

Proof. Assume there is such an isomorphism. Let v ∈R2 such that τv ◦µl ∈W and (τv ◦µl)2 = id.
Then τv ◦µl 7→ τv′ ◦µl′ for some v′ ∈ R2. Then (τv ◦µl)2 7→ (τv′ ◦µl′)2. We know that (τv′ ◦µl′)2 ∈
τr′+2Zr′ . Hence, (τv′ ◦µl′)2 6= id. However, this is impossible, since an isomorphism maps identity
to identity.
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Proposition 4.38. Let W and W ′ be two wallpaper groups, with point groups π(W)= 〈µl〉 and
π(W ′)= 〈µl′〉, lattice group L and L′ respectively. Let r ∈ L∩ l, s ∈ L∩ l⊥, r′ ∈ L∩ l′ and s′ ∈ L∩ l′⊥
be of minimal length. Suppose L =Z(r+ s)/2+Zr and L′ =Zr′+Zs′. Suppose Zr and r′+2Zr′

are the sets of all the shift vectors of µl and µl′ respectively. Then W 6∼W ′.

Proof. The proof is identical as Proposition 4.37.

Proposition 4.39. Let W and W ′ be two wallpaper groups, with point groups π(W)= 〈µl〉 and
π(W ′)= 〈µl′〉, lattice group L and L′ respectively. Let r ∈ L∩ l, s ∈ L∩ l⊥, r′ ∈ L∩ l′ and s′ ∈ L∩ l′⊥
be of minimal length. Suppose L =Z(r+ s)/2+Zr and L′ =Zr′+Zs′. Suppose Zr and 2Zr′ are the
sets of all the shift vectors of µl and µl′ respectively. Then W 6∼W ′.

Proof. Assume there is such an isomorphism. Let v ∈R2 such that τv ◦µl ∈W and (τv ◦µl)2 = τr.
Then τv◦µl 7→ τv′ ◦µl′ for some v′ ∈R2. Then (τv◦µl)2 7→ (τv′ ◦µl′ )2. We know that (τv′ ◦µl′ )2 ∈ τ2Zr′ .
But we know that there is no generator of L′ in 2Zr′ and r is one of the generators of L. We have
a contradiction.

Theorem 4.40. We have three equivalence classes of wallpaper groups with their point group
containing one single reflection.

Proof. This follows directly from Corollary 4.32, Corollary 4.34, Corollary 4.36, Proposition 4.37,
Proposition 4.38, and Proposition 4.39.

4.3 Point Group Containing More Than One Reflection

Lemma 4.41. Let H = 〈µk,µm〉 be finite, where k and m are distinct lines through the origin.
Then all rotations in H form a cyclic subgroup H0. Moreover, there exists a line l through the
origin such that 6 (l,m)=π/ord(H0) and H = 〈µl ,µm〉.
Proof. Let H = 〈µk,µm〉 be finite, where k and m are distinct lines through the origin. Then
µk ◦µm = ρ2 6 (m,k). Then H admits at least one subgroup 〈ρ2 6 (m,k)〉 of rotations. Let H0 be the set
of all the rotations in H. Then H0 is finite because H is finite. Let q = ord(H0). By Proposition
3.18, H0 = 〈ρ2π/q〉.

Let l = ρπ/q(m). Then 6 (m, l)=π/q. Then µl ◦µm = ρ2π/q. Then µl ∈ H.
Now we want to prove H = 〈µl ,µm〉. Assume that H 6= 〈µl ,µm〉. Then we can pick µn ∈

H \ 〈µl ,µm〉, where n is a line through the origin. Then n 6= (ρπ/q)i(m) for any i ∈Z. Otherwise,
6 (n,m)= iπ/q, and µn ◦µm = ρ2iπ/q = (µl ◦µm)i, then µn ∈ 〈µl ,µm〉, contradicting the assumption.
Now we have n 6= (ρπ/q)i(m) for any i ∈Z. Then 6 (n,m) 6= iπ/q for any i ∈Z. Then µm ◦µn 6= ρ2iπ/q
for any i ∈Z. This is not possible since H0 contains all the rotations in H, and is cyclic. This
is a new rotation in H0 that is not a power of the generator, which is impossible. Therefore,
H = 〈µl ,µm〉.

Remark 4.42. By the preceding lemma, any finite group of linear isometries generated by two
reflections can be expressed as 〈µl ,µm〉 where 6 (m, l) = π/q and q is the order of the rotation
subgroup. We simply do so without mentioning this fact again.
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Lemma 4.43. Let W be a wallpaper group with point group π(W) = 〈µl ,µm〉 and translation
subgroup T, where 6 (m, l) = π/q and q ∈ {2,3,4,6}. Pick u,v ∈ R2 such that τu ◦ρµl ,τv ◦ρµl ∈ W.
Then W =⋃

i∈{0,1}, j∈{0,...,q−1} T ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j and this union is disjoint. Moreover,
every element in W can be expressed uniquely in the form τu ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j for some
u ∈ L, i ∈ {0,1} and j ∈ {0, . . . , q−1}.

Proof. By Proposition 3.2, T is a normal subgroup of W, meanwhile, W/T ∼= π(W). Hence, the
representatives of the cosets of T can be picked in the fiber on each element of π(W). We see
that {π((τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j)}i, j = {µi

l ◦ρ
j
2π/q}i, j = π(W). Therefore, (τv ◦µl)i ◦ (τw ◦µm ◦

τv ◦µl) j ∈ W are the representatives of the cosets T ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j. Therefore,
{T ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j}i, j is a partition of W, and we can write W as a disjoint union
W =⋃

i∈{0,1}, j∈{0,...,q−1} T ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j.
By Proposition 2.23, we can express any element of W uniquely as τt ◦µi

l ◦ρ j for some t ∈R2,
i ∈ {0,1} and j ∈ {0, . . . , q−1}. By repetitively applying Proposition 2.14, τt◦µi+ j

l ◦µ j
m = τu◦(τv◦µl)i◦

(τw ◦µm ◦τv ◦µl) j, where u = t−µl(v)−·· ·−µi+ j−1
l (v)−µi+ j

l (w)−µi+ j
l (µm(w))−·· ·−µi+ j

l (µ j−1
m (w)),

which is also unique. Then τu = τt ◦µi+ j
l ◦µ j

m ◦ ((τv ◦µl)i ◦ (τw ◦µm ◦ τv ◦µl) j)−1 ∈ W. Hence,
τu ∈ T. The expression τt ◦µi

l ◦ρ j = τu ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j is a unique expression in
T ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j.

Remark 4.44. Let W and W ′ be wallpaper groups with π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉. Let
L and L′ be the lattice groups of W and W ′ respectively. Let λ : L → L′ be an isomorphism. Let
v,w,v′,w′ ∈R2 satisfy τv ◦µl ,τw ◦µm ∈W and τv′ ◦µl′ ,τw′ ◦µm′ ∈W ′.

We can define η : W →W ′ by τu◦(τv◦µl)i◦(τw◦µm◦τv◦µl) j 7→ τλ(u)◦(τv′◦µl′ )i◦(τw′◦µm′◦τv′◦µl′ ) j.
Meanwhile, we can also define its inverse η−1 : W ′ →W by τu′ ◦ (τv′ ◦µl′)i ◦ (τw′ ◦µm′ ◦τv′ ◦µl′) j 7→
τλ−1(u′) ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j.

Lemma 4.45. Let W be a wallpaper group with point group π(W)= 〈µl ,µm〉, where 6 (l,m)=π/q
and q ∈ {3,4,6}. Let L and L′ be their lattice groups respectively, Let r ∈ L∩ l and s ∈ L∩m be of
minimal length. Then there exist k,n ∈Z+ such that r+µm(r)= ks and s+µl(s)= nr. Moreover,
if q = 3, then either (k,n) = (1,1) and equivalently ‖s‖ = ‖r‖; if q = 4, then either (k,n) = (2,1)
and equivalently ‖r‖ =p

2‖s‖, or (k,n)= (1,2) and equivalently ‖s‖ =p
2‖r‖; if q = 6, then either

(k,n)= (3,1) and equivalently ‖r‖ =p
3‖s‖, or (k,n)= (1,3) and equivalently ‖s‖ =p

3‖r‖.

Proof. Since r, s ∈ L, we know r+µm(r) ∈ L∩m and s+µl(s) = nr ∈ L∩ l. Then we can write
k,n ∈R such that r+µm(r)= ks and s+µl(s)= nr. Assume k and n are not both integers. Then
(k− [k])s ∈ L∩ m or (n− [n])r ∈ L∩ l, but they are shorter than s and r respectively, which
contradicts the minimality of r and s. Hence, k and l are integers. They must be positive since
6 (r, s) ∈ (0,2π). Therefore, there exist k,n ∈Z+ such that r+µm(r)= ks and s+µl(s)= nr.

We know ‖r+µm(r)‖ = 2cos(π/q)‖r‖ and ‖s+µl(s)‖ = 2cos(π/q)‖s‖.
Suppose q = 3. Then |k|‖s‖ = ‖ks‖ = ‖r+µm(r)‖ = ‖r‖ and |n|‖r‖ = ‖nr‖ = ‖s+µl(s)‖ = ‖s‖. It

follows that |kn| = 1. Then (k,n)= (1,1) and equivalently ‖r‖ = ‖s‖.
Suppose q = 4. Then |k|‖s‖ = ‖ks‖ = ‖r+µm(r)‖ = p

2‖r‖ and |n|‖r‖ = ‖nr‖ = ‖s+µl(s)‖ =p
2‖s‖. It follows that |kn| = 2. Then either (k,n) = (2,1) and equivalently ‖r‖ = p

2‖s‖, or
(k,n)= (1,2) and equivalently ‖s‖ =p

2‖r‖.
Suppose q = 6. Then |k|‖s‖ = ‖ks‖ = ‖r+µm(r)‖ = p

3‖r‖ and |n|‖r‖ = ‖nr‖ = ‖s+µl(s)‖ =p
3‖s‖. It follows that |kn| = 3. Then either (k,n) = (3,1) and equivalently ‖r‖ = p

3‖s‖, or
(k,n)= (1,3) and equivalently ‖s‖ =p

3‖r‖.
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Proposition 4.46. Let W and W ′ be wallpaper groups with point group π(W) = 〈µl ,µm〉 and
π(W ′)= 〈µl′ ,µm′〉 respectively, where 6 (l,m)=π/2. Let L and L′ be the lattice groups respectively.
Let r ∈ L∩ l, s ∈ L∩m, r′ ∈ L′∩ l′ and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose
λ : L → L′ gives λ(r)= r′ and λ(s)= s′. Then λ◦µl =µl′ ◦λ and λ◦µm =µm′ ◦λ.

Proof. Let u ∈ L. Since we don’t know if r and s forms a basis of L, we write u = ar+ bs for
a,b ∈R. Then λ(µl(u))=λ(ar−bs)= ar′−bs′, and µl′(λ(u))=µl′(ar′+bs′)= ar′−bs′. Moreover,
λ(µm(u))=λ(−ar+bs)=−ar′+bs′, and µl′(λ(u))=µl′(ar′+bs′)=−ar′+bs′. Therefore, λ◦µm =
µm′ ◦λ.

Proposition 4.47. Let W and W ′ be a wallpaper group with point groups π(W)= 〈µl ,µm〉 and
π(W ′)= 〈µl′ ,µm′〉 resepectively, where 6 (l,m)= 〈(l′m′)=π/q and q ∈ {3,4,6}. Let L and L′ be their
lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩m, r′ ∈ L∩ l′, and s′ ∈ L∩m′ be of minimal length.
Suppose ‖r‖ ≥ ‖s‖ and ‖r′‖ ≥ ‖s′‖. Define a linear map λ : L → L′ such that λ(r)= r′ and λ(s)= s′.
Then λ◦µl =µl′ ◦λ and λ◦µm =µm′ ◦λ.

Proof. By Lemma 4.45, there exist k,n ∈Z+ such that r+µm(r)= ks and s+µl(s)= nr, there exist
k′, l′ ∈Z+ such that r′+µm′ (r′)= k′s′ and s+µl′ (s′)= l′r′. Note that by the premises ‖r‖ ≥ ‖s‖ and
‖r′‖ ≥ ‖s′‖, we have ‖r‖/‖s‖ = ‖r′‖/‖s′‖. Suppose q = 3. By Lemma 4.45, (k,n) = (k′,n′) = (1,1).
Suppose q = 4. By Lemma 4.45, either (k,n) = (k′,n′) = (2,1) or (k,n) = (k′,n′) = (1,2). Suppose
q = 6. By Lemma 4.45, either (k,n) = (k′,n′) = (3,1) or (k,n) = (k′,n′) = (1,3). Therefore, in
all cases, (k, l) = (k′, l′). Then we have µm(r) = ks − r, µl(s) = nr − s, µm(r′) = ks′ − r′, and
µl(s′)= nr′− s′.

Let u ∈ L. Then we can write u = ar+bs for a,b ∈R. Then λ(µl(u))=λ(µl(ar+bs))=λ(ar+
bµl(s))=λ(ar+b(nr− s))=λ((a+bn)r− s)= (a+bn)r′− s′. Moreover, µl′ (λ(u))=µl′ (λ(ar+bs))=
µl′ (ar′+bs′)= ar′+bµl′ (s′)= ar′+b(nr′−s′)= (a+bn)r′−s′. Hence, λ(µl(u))=µl′ (λ(u)), similarly,
λ(µm(u))=µm′(λ(u)). Therefore, λ◦µl =µl′ ◦λ and λ◦µm =µm′ ◦λ.

Theorem 4.48 (>1 reflection, q ∈ {2,3,4,6}, isomorphism*). Let W and W ′ be two wallpa-
per groups, with π(W) = 〈µl ,µm〉, and π(W ′) = 〈µl′ ,µm′〉, where 6 (l,m) = 6 (l′,m′) = π/q and
q ∈ {2,3,4,6}. Let L and L′ be the lattice groups of W and W ′ respectively. Let r ∈ L∩ l, s ∈ L∩m,
r′ ∈ L′ ∩ l′ and s′ ∈ L′ ∩ m′ be non-zero and of minimal length. Let λ : L → L′ be an isomor-
phism such that λ(r) = r′ and λ(s) = s′. Let v,w,v′,w′ ∈ R2 satisfy τv ◦µl ∈ W, τw ◦µm ∈ W,
τv′ ◦µl′ ∈ W ′, τw′ ◦µm′ ∈ W ′. Suppose λ(v+µl(v)) = v′+µl′(v′) and λ(w+µm(w)) = w′+µm′(w′).
Suppose λ◦µl =µl′ ◦λ and λ◦µm =µm′ ◦λ. Define η : W →W ′ by τu◦(τv◦µl)i ◦(τw◦µm◦τv◦µl) j 7→
τλ(u) ◦ (τv′ ◦µl′)i ◦ (τw′ ◦µm′ ◦τv′ ◦µl′) j for every i ∈ {0,1} and j ∈ {0, . . . , q−1}. Then η and η|T are
isomorphisms.

Proof. Firstly, we prove that η is a homomorphism. We want to prove that η(σ1◦σ2)= η(σ1)◦η(σ2)
for all σ1,σ2 ∈W .

Let σ1 = τu1 ◦(τv◦µl)i1 ◦(τw◦µm◦τv◦µl) j1 ∈W and σ2 = τu2 ◦(τv◦µl)i2 ◦(τw◦µm◦τv◦µl) j2 ∈W .
For a shorter expression, we omit the composition symbol and parenthesis, when possible.
We write σ1 = τu1(τv ◦µl)i1(τwµmτvµl) j1 and σ2 = τu2(τvµl)i2(τwµmτvµl) j2 . Then by repeatedly
applying Proposition 2.14, σ1 ◦σ2 = τu1τµi

lµ
j
mµ

j
l (u2)(τvµl)i1(τwµmτvµl) j1(τvµl)i2(τwµmτvµl) j2 .

Suppose j1 = 0 or i2 = 0. Then σ1◦σ2 = τu1τµi1
l µ

j1
m µ

j1
l (u2)(τvµl)i1+i2 (τwµmτvµl) j1+ j2 . Then η(σ1◦

σ2)= τλu1τλµi1
l µ

j1
m µ

j1
l (u2)(τv′µl′ )i1+i2 (τw′µm′τv′µl′ ) j1+ j2 . We know that this is well-defined also when

i1+ i2 ≥ 2 or j1+ j2 ≥ q. Assume i1+ i2 ≥ 2. Then we can express the part (τvµl)i1+i2 in σ1 ◦σ2 as
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τv+µl v(τvµl)i1+i2−q. The corresponding part in η(σ1◦σ2) is τλ(v+µl v)(τv′µl′ )i1+i2−q. In the premises,
we have λ(v+µlv)= v′+µlv′. Hence, τλ(v+µl v)(τv′µl′)i1+i2−q = τv′+µl v′(τv′µl′)i1+i2−q = (τv′µl′)i1+i2 .
Assume j1 + j2 ≥ q. Since τwµmτvµl is a rotation about the origin, its shift vector is 0. In other
words, (τwµmτvµl)q = id. Then we can express the part (τwµmτvµl) j1+ j2 as (τwµmτvµl)i1+i2−q.
Then in η(σ1 ◦σ2), the corresponding part is (τw′µm′τv′µl′)i1+i2−q = (τw′µm′τv′µl′)i1+i2 . Now we
consider the part τλu1τλµi1

l µ
j1
m µ

j1
l (u2) in η(σ1◦σ2). We know λ◦µl =µl′ ◦λ. Hence, λµi1

l µ
j1
mµ

j1
l (u2)=

µ
i1
l′ µ

j1
m′µ

j1
l′ λ(u2). Then τλu1τλµi1

l µ
j1
m µ

j1
l (u2) = τλu1τµi1

l′ µ
j1
m′µ

j1
l′ λ(u2). By assembling, we have η(σ1 ◦σ2)=

τλu1τµi1
l′ µ

j1
m′µ

j1
l′ λ(u2)(τv′µl′)i1+i2(τw′µm′τv′µl′) j1+ j2 . Then by Repetitively applying Proposition 2.14,

we have η(σ1 ◦σ2)= τλu1(τv′µl′)i1(τw′µm′τv′µl′) j1 ◦τλu2(τv′µl′)i2(τw′µm′τv′µl′) j2 = η(σ1)◦η(σ2).
Suppose j1 6= 0 and i2 = 1. Then σ1◦σ2 = τu1τµi1

l µ
j1
m µ

j1
l (u2)(τvµl)i1 (τwµmτvµl) j1 (τvµl)1(τwµmτvµl) j2 .

We see that (τwµmτvµl) j1(τvµl)1 gives us (τwµmτvµl) j1−1(τwµm)τv+µl v. We move this τv+µl v to
the front of (τvµl)i1 by repetitively applying Proposition 2.14, then it becomes τ

µ
i1
l µ

j1
m µ

j1−1
l (v+µl v).

Hence, we have σ1◦σ2 = τu1τµi1
l µ

j1
m µ

j1
l (u2)τµi1

l µ
j1
m µ

j1−1
l (v+µl v)(τvµl)i1 (τwµmτvµl) j1−1(τwµm)1(τwµmτvµl) j2 .

We can repeat a similar procedure with the left over (τwµm)1, and then with (τvµl)i1 , and keep
going until we acheive the following. σ1 ◦σ2 = τ◦ (τvµl)x(τwµmτvµl)y where τ= τu1τµi1

l µ
j1
m µ

j1
l (u2) ◦

τ∑
kϕk(v+µl v)τ

∑
nϕn(w+µmw) and x, y ∈Z≥0 and each ϕk or ϕn represent an element in π(W), which

is a complicated composition of µl and µm. We know that λ ◦µl = µl′ ◦λ and λ ◦µm = µm′ ◦
λ.We use ϕ′

n to represent the expression corresponding to ϕn with µl replaced by µl′ and
µm replaced by µm′ , as is ϕ′

k. Then λ ◦ϕk = ϕ′
k ◦λ and λ ◦ϕn = ϕ′

n ◦λ for every possible k
and n. Then we have η(σ1 ◦σ2) = τ′ ◦ (τv′µl′)x(τw′µm′τv′µl′)y, where τ′ = τλ(u1)τλµi1

l µ
j1
m µ

j1
l (u2) ◦

τλ
∑

kϕk(v+µl v)τλ
∑

nϕn(w+µmw) = τλ(u1)τµi1
l µ

j1
m µ

j1
l λ(u2) ◦ τ∑

kϕ
′
kλ(v+µl v)τ

∑
nϕ

′
nλ(w+µmw). By the premises,

we have λ(v+µlv) = v′+µl′v′ and λ(w+µmw) = w′+µm′w′. Therefore, τ′ = τλ(u1)τµi1
l µ

j1
m µ

j1
l λ(u2) ◦

τ∑
kϕ

′
k(v′+µl′v′)τ

∑
nϕ

′
n(w′+µm′w′). By repetitively applying Proposition 2.14 and v′+µl′v′ = (τv′µl′)2

and w′+µm′w′ = (τw′µm′)2, we reverse the procedure in W ′ according to what we did in W for
σ1 ◦σ2. Then we have η(σ1 ◦σ2)= τλ(u1)(τv′µl′)i1(τw′µm′τv′µl′) j1(τv′µl′)1(τw′µm′τv′µl′) j2 . In other
words, η(σ1 ◦σ2)= η(σ1)◦η(σ2).

Hence, η is a homomorphism. By Remark 4.44, η has an inverse η−1. Therefore, η is an
isomorphism. η|T is simply T → T ′ given by τt 7→ τλ(t), which is an isomorphism by construction.

q = 2

Lemma 4.49. Let W be a wallpaper group with π(W) = 〈µl ,µm〉, where 6 (l,m) = π/2. Let L
be its lattice group. Let r ∈ L∩ l, s ∈ L∩m be of minimal length. Then either L = Zr+Zs or
L =Z(r+ s)/2+Zr.

Proof. This proof is a quick version of the proofs of Lemma 4.19 and Lemma 4.20. If L =Zr+Zs,
the the proof is finished. Assume L 6=Zr+Zs. Let t ∈ L\(Zr+Zs). Write t = ar+bs, where a,b ∈R.
We know µl(t)= ar−bs and µm(t)=−ar+bs. Then 2ar = t+µl(t) ∈ L and 2bs = t+µm(t) ∈ L. Thus,
2a,2b ∈Z. We know that a,b 6∈Z. Otherwise, either L =Zr+Zs contradicts the premise or we
violate the minimality of r or s. Therefore, a,b ∈ 1/2+Z, which means t ∈ (r+s)/2+Zr+Zs. Hence,
L \ (Zr+Zs)⊆ ((r+ s)/2+Zr+Zs). In other words, L ⊆ (Zr+Zs)∪ ((r+ s)/2+Zr+Zs). We know
that there exists this t ∈ (r+s)/2+Zr+Zs. Then t+Zr+Zs ⊆ L. But t+Zr+Zs = (r+s)/s+Zr+Zs.
Hence, (r + s)/2+Zr +Zs ⊆ L. In other words, (Zr +Zs)∪ ((r + s)/2+Zr +Zs) ⊆ L. Therefore,
L = (Zr+Zs)∪ ((r+ s)/2+Zr+Zs)=Z(r+ s)/2+Zr.
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Lemma 4.50. Let W be a wallpaper group with π(W). Suppose µl ,µm ∈π(W). Let r ∈ L∩ l and
s ∈ L∩m be of minimal length. Suppose L = Z(r+ s)/2+Zr. Then Zr is the set of all the shift
vectors of µl , and sZ is the set of all the shift vectors of µm.

Proof. Denote w = (r+ s)/2 ∈ L. Then r = w+µl(w) and s = w+µl(w). By applying Proposition
4.22 to µl , we have that Zr is the set of all the shift vectors of µl . By applying Proposition 4.22
to µm, we have that sZ is the set of all the shift vectors of µm.

Lemma 4.51. Let W be a wallpaper group with π(W)= 〈µl ,µm〉, where 6 (l,m)=π/2. Let r ∈ L∩ l
and s ∈ L∩m be of minimal length. If L =Zr+Zs, then either 2Zr or r+2Zr is the set of all the
shift vectors of µl , and either 2Zs or s+2Zs is the set of all the shift vectors of µm.

Proof. By applying Proposition 4.23 to µl , either 2Zr or r+2Zr is the set of all the shift vectors
of µl . By applying Proposition 4.23 to µm, either 2Zs or s+2Zs is the set of all the shift vectors
of µm.

Lemma 4.52 (>1 reflection, p = 2, cases of sftvec(µl) and sftvec(µm)). ] Let W be a wallpa-
per group with π(W) = 〈µl ,µm〉, where 6 (l,m) = π/2. Let r ∈ L∩ l and s ∈ L∩m be of minimal
length. Then one of the following situation happens.

1. L =Z(r+ s)/2+Zr, the sets of shift vectors of µl and µm are Zr and Zs respectively;
2. L =Zr+Zs, the sets of shift vectors of µl and µm are 2Zr and 2Zs respectively;
3. L =Zr+Zs, the sets of shift vectors of µl and µm are r+2Zr and s+2Zs respectively;
4. L =Zr+Zs, the sets of shift vectors of µl and µm are r+2Zr and 2Zs respectively, or the

sets of shift vectors of µl and µm are 2Zr and s+2Zs respectively.

Proof. This is a direct result of Lemma 4.49, Lemma 4.50 and Lemma 4.51.

Theorem 4.53 (>1 reflection, q = 2, L =Z(r+ s)/2+Zr, sftvec(µl)=Zr, sftvec(µm)=Zs). Let W
and W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respectively,
where 6 (l,m) = π/2. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩ m,
r′ ∈ L′ ∩ l′ and s′ ∈ L′ ∩ m′ be non-zero and of minimal length. Suppose L = Z(r + s)/2+Zr
and L′ = Z(r′ + s′)/2+Zr′. Suppose sftvec(µl) = Zr and sftvec(µm) = Zs. Let v,w,v′,w′ ∈ R
satisfy v+µl(v) = 0, w+µm(w) = 0, v′ +µl′(v′) = 0 and w′ +µm′(w′) = 0. Define λ : L → L′ by
m(r+ s)/2+nr 7→ m(r′+ s′)/2+nr′ for all m,n ∈Z. Define η : W →W ′ by τu ◦ (τv ◦µl)i ◦ (τw ◦µm ◦
τv ◦µl) j 7→ τλ(u)◦ (τv′ ◦µl′)i ◦ (τw′ ◦µm′ ◦τv′ ◦µl′) j for all i ∈ {0,1} and j ∈ {0,1}. Then η and η|T are
isomorphisms.

Proof. By Remark 4.4, λ is an isomorphism. Therefore, η|T is an isomorphism. Note λ(r) = r′

and λ(s) = s′. By the premises, λ(v+µl(v)) = 0 = v′+µl′(v) and λ(w+µm(w)) = 0 = w′+µm′(w).
Let u ∈ L. Write u = mr+ns for m,n ∈Z. Then λ(µl(u))=λ(mr−ns)= mr′−ns′, and µl′(λ(u))=
µl′(mr′+ns′)= mr′−ns′. Therefore, λ◦µl =µl′ ◦λ. Similarly, λ◦µm =µm′ ◦λ. By Theorem 4.48,
η is an isomorphism.

Corollary 4.54 (>1 reflection, q = 2, L =Z(r+ s)/2+Zr, sftvec(µl)=Zr, sftvec(µm)=Zs, equiv).
Let W and W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respec-
tively, where 6 (l,m)=π/2. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩m,
r′ ∈ L′∩ l′ and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose L =Z(r+ s)/2+Zr and
L′ =Z(r′+ s′)/2+Zr′. Suppose sftvec(µl)=Zr and sftvec(µm)=Zs. Then W ∼W ′.
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Theorem 4.55 (>1 reflection, q = 2, L =Zr+Zs, sftvec(µl)= 2Zr, sftvec(µm)= 2Zs). Let W and
W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respectively, where
6 (l,m)=π/2. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩m, r′ ∈ L′∩ l′ and
s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose L =Zr+Zs and L′ =Zr′+Zs′. Suppose
sftvec(µl) = 2Zr and sftvec(µm) = 2Zs. Let v,w,v′,w′ ∈ R satisfy v+µl(v) = 0, w+µm(w) = 0,
v′+µl′(v′) = 0 and w′+µm′(w′) = 0. Define λ : L → L′ by mr + ns 7→ mr′+ ns′ for all m,n ∈ Z.
Define η : W →W ′ by τu ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j 7→ τλ(u)◦ (τv′ ◦µl′)i ◦ (τw′ ◦µm′ ◦τv′ ◦µl′) j for
all i ∈ {0,1} and j ∈ {0,1}. Then η and η|T are isomorphisms.

Proof. By Remark 4.4, λ is an isomorphism. Therefore, η|T is an isomorphism. Note λ(r) = r′

and λ(s)= s′. By the premises, λ(v+µl(v))= 0= v′+µl′ (v) and λ(w+µm(w))= 0= w′+µm′ (w). By
Proposition 4.46, λ◦µl =µl′ ◦λ and λ◦µm =µm′ ◦λ. By Theorem 4.48, η is an isomorphism.

Corollary 4.56 (>1 reflection, q = 2, L =Zr+Zs, sftvec(µl)= 2Zr, sftvec(µm)= 2Zs, equiv). Let
W and W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respectively,
where 6 (l,m)=π/2. Let L and L′ be the lattice groups respectively. Let r ∈ L∩l, s ∈ L∩m, r′ ∈ L′∩l′

and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose L =Zr+Zs and L′ =Zr′+Zs′. Sup-
pose sftvec(µl)= 2Zr and sftvec(µm)= 2Zs. Then W ∼W ′.

Theorem 4.57 (>1 reflection, q = 2, L =Zr+Zs, sftvec(µl)= r+2Zr, sftvec(µm)= s+2Zs). Let
W and W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respectively,
where 6 (l,m)=π/2. Let L and L′ be the lattice groups respectively. Let r ∈ L∩l, s ∈ L∩m, r′ ∈ L′∩l′

and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose L =Zr+Zs and L′ =Zr′+Zs′. Suppose
sftvec(µl)= r+2Zr and sftvec(µm)= s+2Zs. Let v,w,v′,w′ ∈R satisfy v+µl(v)= r, w+µm(w)= s,
v′+µl′(v′) = r′ and w′+µm′(w′) = s′. Define λ : L → L′ by mr+ ns 7→ mr′+ ns′ for all m,n ∈ Z.
Define η : W →W ′ by τu ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j 7→ τλ(u)◦ (τv′ ◦µl′)i ◦ (τw′ ◦µm′ ◦τv′ ◦µl′) j for
all i ∈ {0,1} and j ∈ {0,1}. Then η and η|T are isomorphisms.

Proof. By Remark 4.4, λ is an isomorphism. Therefore, η|T is an isomorphism. Note λ(r) = r′

and λ(s)= s′. By the premises, λ(v+µl(v))= λ(r)= r′ = v′+µl′(v) and λ(w+µm(w))= λ(s)= s′ =
w′+µm′(w). By Proposition 4.46, λ◦µl = µl′ ◦λ and λ◦µm = µm′ ◦λ. By Theorem 4.48, η is an
isomorphism.

Corollary 4.58 (>1 reflection, q = 2, L =Zr+Zs, sftvec(µl)= r+2Zr, sftvec(µm)= s+2Zs, equiv).
Let W and W ′ be wallpaper groups with point group π(W) = 〈µl ,µm〉 and π(W ′) = 〈µl′ ,µm′〉 re-
spectively, where 6 (l,m) = π/2. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l,
s ∈ L∩m, r′ ∈ L′∩ l′ and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose L =Zr+Zs and
L′ =Zr′+Zs′. Suppose sftvec(µl)= r+2Zr and sftvec(µm)= s+2Zs. Then W ∼W ′.

Theorem 4.59 (>1 reflection, q = 2, L =Zr+Zs, sftvec(µl)= r+2Zr, sftvec(µm)= 2Zs). Let W
and W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respectively,
where 6 (l,m)=π/2. Let L and L′ be the lattice groups respectively. Let r ∈ L∩l, s ∈ L∩m, r′ ∈ L′∩l′

and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose L =Zr+Zs and L′ =Zr′+Zs′. Sup-
pose sftvec(µl)= r+2Zr and sftvec(µm)= 2Zs. Let v,w,v′,w′ ∈R satisfy v+µl(v)= r, w+µm(w)= 0,
v′+µl′ (v′)= r′ and w′+µm′ (w′)= 0. Define λ : L → L′ by mr+ns 7→ mr′+ns′ for all m,n ∈Z. Define
η : W →W ′ by τu◦(τv◦µl)i◦(τw◦µm◦τv◦µl) j 7→ τλ(u)◦(τv′ ◦µl′ )i◦(τw′ ◦µm′ ◦τv′ ◦µl′ ) j for all i ∈ {0,1}
and j ∈ {0,1}. Then η and η|T are isomorphisms.
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Proof. By Remark 4.4, λ is an isomorphism. Therefore, η|T is an isomorphism. Note λ(r)= r′ and
λ(s)= s′. By the premises, λ(v+µl(v))=λ(r)= r′ = v′+µl′(v) and λ(w+µm(w))= 0= w′+µm′(w).
By Proposition 4.46, λ◦µl =µl′ ◦λ and λ◦µm =µm′ ◦λ. By Theorem 4.48, η is an isomorphism.

Corollary 4.60 (>1 reflection, q = 2, L =Zr+Zs, sftvec(µl)= r+2Zr, sftvec(µm)= 2Zs). Let W
and W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respectively,
where 6 (l,m)=π/2. Let L and L′ be the lattice groups respectively. Let r ∈ L∩l, s ∈ L∩m, r′ ∈ L′∩l′

and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose L =Zr+Zs and L′ =Zr′+Zs′. Sup-
pose sftvec(µl)= r+2Zr and sftvec(µm)= 2Zs. Then W ∼W ′.

Remark 4.61 (>1 reflection, q = 2, L =Zr+Zs, sftvec(µl)= 2Zr, sftvec(µm)= s+2Zs). Let W and
W ′ be wallpaper groups with point group π(W) = 〈µl ,µm〉 and π(W ′) = 〈µl′ ,µm′〉 respectively,
where 6 (l,m) = π/2. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩m,
r′ ∈ L′ ∩ l′ and s′ ∈ L′ ∩ m′ be non-zero and of minimal length. Suppose L = Zr +Zs and
L′ = Zr′ +Zs′. Let v,w,v′,w′ ∈ R satisfy v+µl(v) = 0, w+µm(w) = s, v′ +µl′(v′) = 0 and w′ +
µm′(w′) = s′. Define λ : L → L′ by mr + ns 7→ mr′+ ns′ for all m,n ∈ Z. Define η : W → W ′ by
τu◦(τv◦µl)i ◦(τw◦µm◦τv◦µl) j 7→ τλ(u)◦(τv′ ◦µl′ )i ◦(τw′ ◦µm′ ◦τv′ ◦µl′ ) j for all i ∈ {0,1} and j ∈ {0,1}.
Then η and η|T are isomorphisms.

Note that this is simply Theorem 4.59 with r and s flipped, and therefore, this can not be
counted as a different case.

Remark 4.62. The different cases are indeed not equivalent because of similar reasoning as
Proposition 4.37, Proposition 4.38, and Proposition 4.39.

Theorem 4.63. There are four equivalence classes with point groups containing more than one
reflection and rotation subgroups of order 2.

Proof. This follows from Corollary 4.54, Corollary 4.56, Corollary 4.58, Corollary 4.60, Remark
4.61 and Remark 4.62.

q = 3

Lemma 4.64. Let W be a wallpaper group with π(W)= 〈µl ,µm〉, where 6 (l,m)=π/3. Let r ∈ L∩ l,
s ∈ L∩m be of minimal length and 6 (r, s)=π/3. Then either L =Zr+Zs or L =Z(r+ s)/3+Zr.

Proof. If L =Zr+Zs, the proof is finished. Assume L 6=Zr+Zs.
Take t ∈ L \ (Zr+Zs). Write t = ar+bs, where a,b ∈R. We know that r+µm(r) ∈ L∩m and

s+µl(s) ∈ L∩ l. Hence, r+µm(r)= js and s+µl(s)= kr for some j,k ∈Z+. We know ‖r+µm(r)‖ = r
and ‖s+µl(s)‖ = s. Hence, | jk| = 1. Hence, either j = 1 and k = 1. In other words, ‖r‖ = ‖s‖.
Then µm(r) = s− r and µl(s) = r− s. Then µm(t) = a(s− r)+ bs and µl(t) = ar+ b(r− s). Then
t+µm(t) = (a+ 2b)s ∈ L and t+µl(t) = (2a+ b)r ∈ L. Then a+ 2b ∈ Z and 2a+ b ∈ Z. Then
3a,3b ∈Z, a−b ∈Z and 3a+3b ∈Z. Since a,b 6∈Z, either a,b ∈ 1/3+Z or a,b ∈ 2/3+Z. Hence, t ∈
((r+s)/3+Zr+Zs)∪(2(r+s)/3+Zr+Zs). Hence, L\(Zr+Zs)⊆ ((r+s)/3+Zr+Zs)∪(2(r+s)/3+Zr+Zs.
Then L ⊆ (Zr+Zs)∪ ((r+ s)/3+Zr+Zs)∪ (2(r+ s)/3+Zr+Zs).

We know there exist this t ∈ ((r+ s)/3+Zr+Zs)∪ (2(r+ s)/3+Zr+Zs), such that t ∈ L. Then
either t ∈ (r+s)/3+Zr+Zs or t ∈ 2(r+s)/3+Zr+Zs. Assume t ∈ (r+s)/3+Zr+Zs. Then t+Zr+Zs ⊆ L,
which means (r+s)/3+Zr+Zs ⊆ L. Meanwhile, −t+Zr+Zs ⊆ L, which means 2(r+s)/3+Zr+Zs ⊆ L.
Hence, L ⊇ (Zr+Zs)∪ ((r+ s)/3+Zr+Zs)∪ (2(r+ s)/3+Zr+Zs). Assume t ∈ 2(r+ s)/3+Zr+Zs.
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Then t+Zr+Zs ⊆ L, which means 2(r+ s)/3+Zr+Zs ⊆ L. Meanwhile, −t+Zr+Zs ⊆ L, which
means (r+ s)/3+Zr+Zs ⊆ L. Hence, L ⊇ (Zr+Zs)∪ ((r+ s)/3+Zr+Zs)∪ (2(r+ s)/3+Zr+Zs).

In conclusion, L = (Zr+Zs)∪ ((r+s)/3+Zr+Zs)∪ (2(r+s)/3+Zr+Zs). We see that (Zr+Zs)∪
((r+ s)/3+Zr+Zs)∪ (2(r+ s)/3+Zr+Zs)=Z(r+ s)/3+Zr.

Lemma 4.65. Let W be a wallpaper group with π(W)= 〈µl ,µm〉, where 6 (l,m)=π/3. Let r ∈ L∩ l,
s ∈ L∩m be of minimal length and 6 (r, s)= π/3. Then the set of all shift vectors of µl is Zr and
the set of all shift vectors of µm is Zs.

Proof. For both cases L = Zr+Zs or L = Zr+Zs. We know s+µl(s) = r and r+µm(r) = s. By
applying Proposition 4.22 to µl , the set of all shift vectors of µl is Zr. By applying Proposition
4.22 to µm, the set of all shift vectors of µm is Zs.

Lemma 4.66. Let W be a wallpaper group with π(W)= 〈µl ,µm〉, where 6 (l,m)=π/3. Let r ∈ L∩ l,
s ∈ L∩m be of minimal length and 6 (r, s)=π/3. Then

Lemma 4.67 (>1 reflection, q = 3, cases of sftvec(µl) and sftvec(µm)). Let W be a wallpaper
group with π(W)= 〈µl ,µm〉, where 6 (l,m)=π/3. Let r ∈ L∩ l, s ∈ L∩m be of minimal length and
6 (r, s)=π/3. Then one of the following cases happens.

1. L =Zr+Zs, the set of all shift vectors of µl is Zr and the set of all shift vectors of µm is Zs;
2. L =Z(r+ s)/3+Zr, the set of all shift vectors of µl is Zr and the set of all shift vectors of µm

is Zs.

Proof. This is a direct consequence of Lemma 4.64 and Lemma 4.65.

Theorem 4.68 (>1 reflection, q = 3, L =Zr+Zs, sftvec(µl)=Zr, sftvec(µm)=Zs). Let W and
W ′ be wallpaper groups with point group π(W) = 〈µl ,µm〉 and π(W ′) = 〈µl′ ,µm′〉 respectively,
where 6 (l,m) = π/3. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩ m,
r′ ∈ L′∩ l′ and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose ‖r‖ ≥ ‖s‖ and ‖r′‖ ≥ ‖s′‖.
Suppose L = Zr+Zs and L′ = Zr′+Zs′. Let v,w,v′,w′ ∈ R satisfy v+µl(v) = 0, w+µm(w) = 0,
v′+µl′(v′) = 0 and w′+µm′(w′) = 0. Define λ : L → L′ by mr + ns 7→ mr′+ ns′ for all m,n ∈ Z.
Define η : W →W ′ by τu ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j 7→ τλ(u)◦ (τv′ ◦µl′)i ◦ (τw′ ◦µm′ ◦τv′ ◦µl′) j for
all i ∈ {0,1} and j ∈ {0,1,2}. Then η and η|T are isomorphisms.

Proof. By Remark 4.4, λ is an isomorphism. Therefore, η|T is an isomorphism. Note λ(r) = r′

and λ(s)= s′. By the premises, λ(v+µl(v))= 0= v′+µl′ (v) and λ(w+µm(w))= 0= w′+µm′ (w). By
Proposition 4.47, λ◦µl =µl′ ◦λ and λ◦µm =µm′ ◦λ. By Theorem 4.48, η is an isomorphism.

Corollary 4.69 (>1 reflection, q = 3, L =Zr+Zs, sftvec(µl)=Zr, sftvec(µm)=Zs, equiv). Let
W and W ′ be wallpaper groups with point group π(W) = 〈µl ,µm〉 and π(W ′) = 〈µl′ ,µm′〉 respec-
tively, where 6 (l,m)=π/3. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩m,
r′ ∈ L′∩ l′ and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose ‖r‖ ≥ ‖s‖ and ‖r′‖ ≥ ‖s′‖.
Then W ∼W ′

Theorem 4.70 (>1 reflection, q = 3, L =Z(r+ s)/3+Zr, sftvec(µl)=Zr, sftvec(µm)=Zs). Let W
and W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respectively,
where 6 (l,m)=π/3. Let L and L′ be the lattice groups respectively. Let r ∈ L∩l, s ∈ L∩m, r′ ∈ L′∩l′

and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose ‖r‖ ≥ ‖s‖ and ‖r′‖ ≥ ‖s′‖. Suppose
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L =Zr+Zs and L′ =Zr′+Zs′. Let v,w,v′,w′ ∈R satisfy v+µl(v)= 0, w+µm(w)= 0, v′+µl′ (v′)= 0
and w′+µm′ (w′)= 0. Define λ : L → L′ by m(r+s)/3+nr 7→ m(r′+s′)/3+nr′ for all m,n ∈Z. Define
η : W → W ′ by τu ◦ (τv ◦µl)i ◦ (τw ◦µm ◦ τv ◦µl) j 7→ τλ(u) ◦ (τv′ ◦µl′)i ◦ (τw′ ◦µm′ ◦ τv′ ◦µl′) j for all
i ∈ {0,1} and j ∈ {0,1,2}. Then η and η|T are isomorphisms.

Proof. By Remark 4.4, λ is an isomorphism. Therefore, η|T is an isomorphism. Note λ(r) = r′

and λ(s)= s′. By the premises, λ(v+µl(v))= 0= v′+µl′ (v) and λ(w+µm(w))= 0= w′+µm′ (w). By
Proposition 4.47, λ◦µl =µl′ ◦λ and λ◦µm =µm′ ◦λ. By Theorem 4.48, η is an isomorphism.

Corollary 4.71 (>1 reflection, q = 3, L =Z(r+ s)/3+Zr, sftvec(µl)=Zr, sftvec(µm)=Zs, equiv).
Let W and W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respec-
tively, where 6 (l,m)=π/3. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩m,
r′ ∈ L′∩ l′ and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose ‖r‖ ≥ ‖s‖ and ‖r′‖ ≥ ‖s′‖.
Suppose L =Zr+Zs and L′ =Zr′+Zs′. Then W ∼W ′.

Proposition 4.72. Let W and W ′ be wallpaper groups with point group π(W) = 〈µl ,µm〉 and
π(W ′)= 〈µl′ ,µm′〉 respectively, where 6 (l,m)=π/3. Let L and L′ be the lattice groups respectively.
Let r ∈ L∩ l, s ∈ L∩m, r′ ∈ L′∩ l′ and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose
‖r‖ ≥ ‖s‖ and ‖r′‖ ≥ ‖s′‖. Suppose L =Zr+Zs and L =Z(r′+ s′)/3+Zr′ . Then W 6∼W ′.

Proof. Assume W ∼ W ′. Then there exists an isomorphism η with an isomorphic restriction
on translation subgroups. Let v,w ∈ R2 satisfy τv ◦µl ∈ W, τw ◦µm ∈ W, (τv ◦µl)2 = τr, and
(τw ◦µm)2 = τs. Since isomorphism maps generators to generators, we must have at least
one of τr and τs mapped to τ(r′+s′)/3. Without loss of generality, assume τr 7→ τ(r′+s′)/3. We
know (r′+ s′)/3 6∈ l ∪m. Hence, (r′+ s′)/3 is not a shift vector. Hence, there is no v′ ∈ R2 such
that τv′ ◦µl′ ∈ W and (τv′ ◦µl′)2 = τ(r′+s′)/3, and there is no w′ ∈ R2 such that τw′ ◦µm′ ∈ W and
(τw′ ◦µm′)2 = τ(r′+s′)/3. This is a contradiction, since the isomorphism maps (τv ◦µl)2 to such an
element.

Theorem 4.73. There are two equivalence classes of wallpaper groups with point groups con-
taining more than one reflections and the rotation subgroups of the point groups are of order 3.

Proof. This follows from Corollary 4.69, Corollary 4.71, and Proposition 4.72.

q = 4

Lemma 4.74. Let W be a wallpaper group with π(W)= 〈µl ,µm〉, where 6 (l,m)=π/4. Let r ∈ L∩ l,
s ∈ L∩m be of minimal length and 6 (r, s)=π/4. Then L =Zr+Zs.

Proof. If L = Zr+Zs, the proof is finished. Assume L 6= Zr+Zs. Take t ∈ L \ (Zr+Zs). Write
t = ar+bs, where a,b ∈R. We know that r+µm(r) ∈ L∩m and s+µl(s) ∈ L∩l. Hence, r+µm(r)= js
and s+µl(s) = kr for some j,k ∈ Z+. We know ‖r+µm(r)‖ =p

2r and ‖s+µl(s)‖ =p
2s. Hence,

| jk| = 2. Hence, either j = 2 and k = 1, or j = 1 and k = 2.
Suppose j = 2 and k = 1. Then µm(r)= 2s− r and µl(s)= r− s. Then µm(t)= a(2s− r)+bs and

µl(t)= ar+b(r− s). Then t+µm(t)= (2a+2b)s ∈ L and t+µl(t)= (2a+b)r ∈ L. Then 2a+2b ∈Z
and 2a+b ∈Z. Then a,b ∈Z, contradicts that t ∈ L \ (Zr+Zs).

Suppose j = 1 and k = 2. Then µm(r)= s− r and µl(s)= 2r− s. Then µm(t)= a(s− r)+bs and
µl(t)= ar+b(2r− s). Then t+µm(t)= (a+2b)s ∈ L and t+µl(t)= (2a+2b)r ∈ L. Then a+2b ∈Z
and 2a+2b ∈Z. Then a,b ∈Z, contradicts that t ∈ L \ (Zr+Zs).
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Lemma 4.75 (>1 reflection, p = 4, cases of sftvec(µl) and sftvec(µm)). Let W be a wallpaper
group with π(W)= 〈µl ,µm〉, where 6 (l,m)=π/4. Let r ∈ L∩ l, s ∈ L∩m be of minimal length and
6 (r, s)=π/4. Suppose ‖r‖ ≥ ‖s‖. Then one of the following situation happens.

1. The set of shift vectors of µl is Zr, and the set of shift vectors of µm is 2Zs.
2. The set of shift vectors of µl is Zr, and the set of shift vectors of µm is s+2Zs.

Proof. We know that r+µm(r) ∈ L∩m and s+µl(s) ∈ L∩ l. Hence, r+µm(r)= js and s+µl(s)= kr
for some j,k ∈ Z+. We know ‖r+µm(r)‖ = p

2r and ‖s+µl(s)‖ = p
2s. Hence, | jk| = 2. Hence,

either j = 2 and k = 1, or j = 1 and k = 2. Since ‖r‖ ≥ ‖s‖, we have k = 1 and j = 2. Then
µm(r)= 2s− r and s+µl(s)= r.

Because s+µl(s)= r, by Proposition 4.22, the set of all shift vectors of µl is Zr.
Assume there exists t ∈ L such that s = t+µm(t). Write t = ar+bs. Then µm(t)= aµm(r)+bs =

a(2s− r)+ bs. Then s = t+µm(t) = (2a+2b)s. This is impossible since by Lemma 4.74, a,b ∈Z.
Therefore, there exists no t ∈ L such that s = t+µm(t). By Proposition 4.23, the set of shift vectors
of µm is either 2Zs or s+2Zs.

Theorem 4.76 (>1 reflection, q = 4, L =Zr+Zs, sftvec(µl)=Zr, sftvec(µm)= 2Zs). Let W and
W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respectively, where
6 (l,m) = π/4. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩m, r′ ∈ L′∩ l′

and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose ‖r‖ ≥ ‖s‖ and ‖r′‖ ≥ ‖s′‖. Suppose
L =Zr+Zs and L′ =Zr′+Zs′. Suppose sftvec(µl) =Zr and sftvec(µm) = 2Zs. Let v,w,v′,w′ ∈ R
satisfy v+µl(v) = 0, w+µm(w) = 0, v′ +µl′(v′) = 0 and w′ +µm′(w′) = 0. Define λ : L → L′ by
mr+ ns 7→ mr′+ ns′ for all m,n ∈ Z. Define η : W → W ′ by τu ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j 7→
τλ(u) ◦ (τv′ ◦µl′)i ◦ (τw′ ◦µm′ ◦ τv′ ◦µl′) j for all i ∈ {0,1} and j ∈ {0,1,2,3}. Then η and η|T are
isomorphisms.

Proof. By Remark 4.4, λ is an isomorphism. Therefore, η|T is an isomorphism. Note λ(r) = r′

and λ(s)= s′. By the premises, λ(v+µl(v))= 0= v′+µl′ (v) and λ(w+µm(w))= 0= w′+µm′ (w). By
Proposition 4.47, λ◦µl =µl′ ◦λ and λ◦µm =µm′ ◦λ. By Theorem 4.48, η is an isomorphism.

Corollary 4.77 (>1 reflection, q = 4, L =Zr+Zs, sftvec(µl)=Zr, sftvec(µm)= 2Zs, equiv). Let
W and W ′ be wallpaper groups with point group π(W) = 〈µl ,µm〉 and π(W ′) = 〈µl′ ,µm′〉 respec-
tively, where 6 (l,m)=π/4. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩m,
r′ ∈ L′∩ l′ and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose ‖r‖ ≥ ‖s‖ and ‖r′‖ ≥ ‖s′‖.
Suppose L = Zr+Zs and L′ = Zr′+Zs′. Suppose sftvec(µl) = Zr and sftvec(µm) = 2Zs. Then
W ∼W ′.

Theorem 4.78 (>1 reflection, q = 4, L =Zr+Zs, sftvec(µl)=Zr, sftvec(µm)= s+2Zs). Let W and
W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respectively, where
6 (l,m) = π/4. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩m, r′ ∈ L′∩ l′

and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose ‖r‖ ≥ ‖s‖ and ‖r′‖ ≥ ‖s′‖. Suppose
L =Zr+Zs and L′ =Zr′+Zs′. Suppose sftvec(µl)=Zr and sftvec(µm)= s+2Zs. Let v,w,v′,w′ ∈R
satisfy v+µl(v) = 0, w+µm(w) = s, v′+µl′(v′) = 0 and w′+µm′(w′) = s′. Define λ : L → L′ by
mr+ ns 7→ mr′+ ns′ for all m,n ∈ Z. Define η : W → W ′ by τu ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j 7→
τλ(u) ◦ (τv′ ◦µl′)i ◦ (τw′ ◦µm′ ◦ τv′ ◦µl′) j for all i ∈ {0,1} and j ∈ {0,1,2,3}. Then η and η|T are
isomorphisms.
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Proof. By Remark 4.4, λ is an isomorphism. Therefore, η|T is an isomorphism. Note λ(r)= r′ and
λ(s)= s′. By the premises, λ(v+µl(v))= 0= v′+µl′(v) and λ(w+µm(w))=λ(s)= s′ = w′+µm′(w).
By Proposition 4.47, λ◦µl =µl′ ◦λ and λ◦µm =µm′ ◦λ. By Theorem 4.48, η is an isomorphism.

Corollary 4.79 (>1 reflection, q = 4, L =Zr+Zs, sftvec(µl)=Zr, sftvec(µm)= s+2Zs, equiv).
Let W and W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respec-
tively, where 6 (l,m)=π/4. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩m,
r′ ∈ L′∩ l′ and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose ‖r‖ ≥ ‖s‖ and ‖r′‖ ≥ ‖s′‖.
Suppose L =Zr+Zs and L′ =Zr′+Zs′. Suppose sftvec(µl)=Zr and sftvec(µm)= s+2Zs. Then
W ∼W ′.

Remark 4.80. The different cases are indeed not equivalent because of similar reasoning as
Proposition 4.37.

Theorem 4.81. There are two equivalence classes of wallpaper groups with point groups con-
taining more than one reflections and the rotation subgroup of the point groups are of order 4.

Proof. This follows from Corollary 4.77, Corollary 4.79, and Remark 4.80.

q = 6

Lemma 4.82. Let W be a wallpaper group with π(W)= 〈µl ,µm〉, where 6 (l,m)=π/6. Let r ∈ L∩ l,
s ∈ L∩m be of minimal length and 6 (r, s)=π/6. Then L =Zr+Zs.

Proof. If L =Zr+Zs, the proof is finished.
Assume L 6=Zr+Zs. Take t ∈ L \ (Zr+Zs). Write t = ar+ bs, where a,b ∈R. We know that

r+µm(r) ∈ L∩m and s+µl(s) ∈ L∩ l. Hence, r+µm(r)= js and s+µl(s)= kr for some j,k ∈Z+.
We know ‖r+µm(r)‖ =p

3r and ‖s+µl(s)‖ =p
3s. Hence, | jk| = 3. Hence, either j = 3 and k = 1,

or j = 1 and k = 3.
Assume j = 3 and k = 1. Then µm(r)= 3s− r and µl(s)= r− s. Then µm(t)= a(3s− r)+bs and

µl(t)= ar+b(r− s). Then t+µm(t)= (3a+2b)s ∈ L and t+µl(t)= (2a+b)r ∈ L. Then 3a+2b ∈Z
and 2a+b ∈Z. Then a,b ∈Z, contradicts that t ∈ L \ (Zr+Zs).

Assume j = 1 and k = 3. Then µm(r)= s− r and µl(s)= 3r− s. Then µm(t)= a(s− r)+bs and
µl(t)= ar+b(3r− s). Then t+µm(t)= (a+2b)s ∈ L and t+µl(t)= (2a+3b)r ∈ L. Then a+2b ∈Z
and 2a+3b ∈Z. Then a,b ∈Z, contradicts that t ∈ L \ (Zr+Zs).

Therefore, L =Zr+Zs.

Lemma 4.83 (>1 reflection, p = 6, cases of sftvec(µl) and sftvec(µm)). Let W be a wallpaper
group with π(W)= 〈µl ,µm〉, where 6 (l,m)=π/6. Let r ∈ L∩ l, s ∈ L∩m be of minimal length and
6 (r, s)=π/6. Then the sets of shift vectors of µl is Zr, and the sets of shift vectors of µm is Zs.

Proof. We know that r+µm(r) ∈ L∩m and s+µl(s) ∈ L∩ l. Hence, r+µm(r)= js and s+µl(s)= kr
for some j,k ∈ Z+. We know ‖r+µm(r)‖ = p

3r and ‖s+µl(s)‖ = p
3s. Hence, | jk| = 3. Hence,

either j = 3 and k = 1, or j = 1 and k = 3.
Assume j = 3 and k = 1. Then s+µl(s)= r and µl(s)+µm(µl(s))= s. By Proposition 4.22, the

sets of shift vectors of µl is Zr, and the sets of shift vectors of µm is Zs.
Assume j = 1 and k = 3. Then r+µm(r) = s and µm(r)+µl(µm(r)) = r. By Proposition 4.22,

the sets of shift vectors of µl is Zr, and the sets of shift vectors of µm is Zs.
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Theorem 4.84 (>1 reflection, q = 6, L =Zr+Zs, sftvec(µl)=Zr, sftvec(µm)=Zs). Let W and
W ′ be wallpaper groups with point group π(W) = 〈µl ,µm〉 and π(W ′) = 〈µl′ ,µm′〉 respectively,
where 6 (l,m) = π/6. Let L and L′ be the lattice groups respectively. Let r ∈ L∩ l, s ∈ L∩ m,
r′ ∈ L′∩ l′ and s′ ∈ L′∩m′ be non-zero and of minimal length. Suppose ‖r‖ ≥ ‖s‖ and ‖r′‖ ≥ ‖s′‖.
Suppose L = Zr+Zs and L′ = Zr′+Zs′. Let v,w,v′,w′ ∈ R satisfy v+µl(v) = 0, w+µm(w) = 0,
v′+µl′(v′) = 0 and w′+µm′(w′) = 0. Define λ : L → L′ by mr + ns 7→ mr′+ ns′ for all m,n ∈ Z.
Define η : W →W ′ by τu ◦ (τv ◦µl)i ◦ (τw ◦µm ◦τv ◦µl) j 7→ τλ(u)◦ (τv′ ◦µl′)i ◦ (τw′ ◦µm′ ◦τv′ ◦µl′) j for
all i ∈ {0,1} and j ∈ {0,1,2,3,4,5}. Then η and η|T are isomorphisms.

Proof. By Remark 4.4, λ is an isomorphism. Therefore, η|T is an isomorphism. Note λ(r) = r′

and λ(s)= s′. By the premises, λ(v+µl(v))= 0= v′+µl′ (v) and λ(w+µm(w))= 0= w′+µm′ (w). By
Proposition 4.47, λ◦µl =µl′ ◦λ and λ◦µm =µm′ ◦λ. By Theorem 4.48, η is an isomorphism.

Corollary 4.85 (>1 reflection, q = 6, L =Zr+Zs, sftvec(µl)=Zr, sftvec(µm)=Zs, equiv). Let
W and W ′ be wallpaper groups with point group π(W)= 〈µl ,µm〉 and π(W ′)= 〈µl′ ,µm′〉 respectively,
where 6 (l,m)=π/6. Then W ∼W ′

Theorem 4.86. There exists only one equivalence class of wallpaper groups with point groups
containing more than two reflections and rotation subgroups of order 6.

Proof. This follows from Corollary 4.85.

Theorem 4.87 (17 wallpaper groups). There exists seventeen equivalence classes of wallpaper
groups.

Proof. This follows from Theorem 4.15, Theorem 4.40, Theorem 4.63, Theorem 4.73, Theorem
4.81, and Theorem 4.86.
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5 Examples of Wallpaper Patterns

In this appendix, we present a corresponding wallpaper pattern to each wallpaper group
equivalence class. The table before each group of illustrations shows the correspondence between
the theorems and the wallpaper patterns. A good explanation of the notation to each wallpaper
group equivalence class can be found in Schattschneider [1978].

No reflection The following illustrations are wallpaper patterns corresponding to wallpaper
groups with no reflection.

Table 5.1: No reflection

Notation Description

p1 0 reflection, q = 1.
p2 0 reflection, q = 2.
p3 0 reflection, q = 3.
p4 0 reflection, q = 4.
p6 0 reflection, q = 6.

(a) p1 (b) p2 (c) p3

(d) p4 (e) p6

Figure 5.1: No reflection

One reflection The following illustrations are wallpaper patterns corresponding to wallpaper
groups with only one reflection.

Table 5.2: One reflection

Notation Description

pm 0 reflection, q = 1, sftvec(µl)= 2Zr.
pg 0 reflection, q = 1, sftvec(µl)= r+Zr.
cm 0 reflection, q = 1, sftvec(µl)=Zr.
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(a) pm (b) pg (c) cm

Figure 5.2: One reflection

More than one reflection The following illustrations are wallpaper patterns corresponding
to wallpaper groups with more than one reflection.

Table 5.3: More than one reflections, q = 2

Notation Description

pmm >1 reflection, q = 2, L =Zr+Zs, sftvec(µl)= 2Zr, sftvec(µm)= 2Zs.
pmg >1 reflection, q = 2, L =Zr+Zs, sftvec(µl)= r+Zr, sftvec(µm)= 2Zs.
pgg >1 reflection, q = 2, L =Zr+Zs, sftvec(µl)= r+2Zr, sftvec(µm)= s+2Zs.
cmm >1 reflection, q = 2, L =Z(r+ s)/2+Zr, sftvec(µl)=Zr, sftvec(µm)=Zs.

p31m >1 reflection, q = 3, L =Zr+Zs, sftvec(µl)=Zr, sftvec(µm)=Zs.
p3m1 >1 reflection, q = 3, L =Z(r+ s)/3+Zr, sftvec(µl)=Zr, sftvec(µm)=Zs.

p4m >1 reflection, q = 4, L =Zr+Zs, sftvec(µl)=Zr, sftvec(µm)= 2Zs.
p4g >1 reflection, q = 4, L =Zr+Zs, sftvec(µl)=Zr, sftvec(µm)= s+2Zs.

p6m >1 reflection, q = 6, L =Zr+Zs, sftvec(µl)=Zr, sftvec(µm)=Zs.

(a) pmm (b) pmg (c) pgg

(d) cmm

Figure 5.3: q = 2
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(a) p31m (b) p3m1

Figure 5.4: q = 3

(a) p4m (b) p4g

Figure 5.5: q = 4

(a) p6m

Figure 5.6: q = 6
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6 Discussion and Conclusion

In this manuscript we have reproduced Schwarzenberger’s proof in detail. We first recalled
the notions of plane symmetries and their group structure. We proved the unique expression of a
plane isometry, the classification of linear isometries, and classification of plane isometries. We
recalled the development of the definition of wallpaper groups. we recalled the definition of shift
vectors and related results for later use. We recalled the definition of equivalence of wallpaper
groups and analyzed its consequence. We reproduced the proof of the so-called crystallographic
restriction. We then separated the possible cases. In particular the point group of a wallpaper
groups can contain no reflection, one reflection, or more than one reflection. We proved that
when the point group contains no reflection, there are five possibilities, under each possibility the
wallpaper groups are equivalent, and the wallpaper groups from different equivalence classes
are indeed not equivalent. We then did the same for the case that the point group contains no
reflection, and the case that the point group contains more than one reflection. In the end, we
conclude that there are indeed seventeen wallpaper group equivalence classes.

This proof should be able to stimulate a recognition procedure. Seeing a wallpaper pattern,
we first look for reflections / glide reflections to see how many reflections are in the point group,
then we look for rotation orders, then we distinguish the lattice basis, then we look for non-trivial
shift vectors (the case that the shift vectors are odd multiples of the shortest translation vector
on the reflection axis).
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