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Abstract

In this work, a method for trajectory tracking of robotic arms is designed and implemented on the
Philips Experimental Robot Arm, a robotic arm intended for research applications. To demonstrate
the method, several experiments are conducted, where the arm is led to draw a desired shape on
a canvas. To this end, a passivity-based control law for trajectory tracking of fully actuated
mechanical systems is proposed. The system is modeled in the port-Hamiltonian framework for
mechanical systems. The closed-loop system is proven to be globally asymptotically stable by
Lyapunov’s second method and La Salle’s invariance principle. The proposed control strategy
is naturally saturated and requires only position measurements, omitting the need for velocity
measurements by extension of the system. This control law is compared against a non-saturated
equivalent to show differences in performance.

For the task of drawing, three degrees of freedom are required to let the end-effector of the arm
follow the desired path. To deal with sensor offsets and position errors, a force-based drawing
enhancement heuristic approach is proposed. This heuristic approach enables a successful drawing
application for the PERA. An additional two degrees of freedom in the wrist are considered to
control the orientation of the end effector. The implementation of these joints is successful, but at
the cost of the performance of the heuristic approach.
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Chapter 1

Introduction

In the last few decades, robots have become an important part of modern day industry and soci-
ety. Initially developed for the production industry, scientific research has allowed the applications
of robotics to diverge. Therefore, applications in for example healthcare, home automation (do-
motics), and military operations, are becoming increasingly common (Harmo et al., 2005; Lin,
Bekey, and Abney, 2008; Okamura, Mataric, and Christensen, 2010). Due to the widening of
the application fields of robotics, the required operations are becoming more and more complex.
Therefore, there is a great interest in the development of robust, high precision controllers to reg-
ulate the actuation of robotic joints.

In this work, the focus is on the design and implementation of a control law for the Philips Exper-
imental Robot Arm (PERA). This is a robotic arm, developed by Philips Applied Technologies,
which closely resembles the functions of a human arm (Rijs et al., 2014). The aim of the project
is to design a control law, such that the end-effector follows a desired trajectory. To demonstrate
this, we aim to let the PERA draw on a canvas. In the project, several implementation issues are
addressed, like the absence of velocity sensors in the PERA, the saturation of the joint motors and
errors in sensor measurements and canvas placement.

The port-Hamiltonian (pH) framework is used to model the PERA, and a passivity-based con-
trol (PBC) approach is adopted to successfully achieve trajectory tracking. In this chapter, the
mechanical system under study is introduced. Then, an introduction to the pH framework for
modeling of mechanical systems is provided. Moreover, the scope of this project is presented,
along with the further outline of the thesis.

1.1 The PERA

The PERA is a fully actuated robotic arm with seven degrees of freedom (DoF). The system has
been developed for research purposes by Philips Applied Technologies (Rijs et al., 2014), where
the main objective is to mimic the motion of a human arm. The arm consists of a shoulder,
elbow, wrist and gripper, and is equipped with force and position sensors in each joint, which can
be used for control purposes. In the past decade, the PERA in the University of Groningen has
been the subject of a large number of studies (Mendels, 2011; Bögel, 2012; Bol, 2012; de Jong,
2013; Siemonsma, 2014; Koops, 2014; Leeuwerik, 2015; Muñoz-Arias, 2015; van den Bos, 2019).
In particular, this work continues the line of research studied in van den Bos (2019), where the
main goal was to achieve set point regulation (SPR). Due to the lines of research, the structure
of this thesis somewhat similar to that of the work mentioned, especially in the preliminaries,
experimental setup and control design (Chapters 2-4).

This thesis deals with two limitations of the PERA, i.e. the absence of velocity sensors and the
saturation limits on the current sent to the motors, which are needed to prevent damage on the
DC motors. Hence, following the ideas exposed in van den Bos (2019), this thesis aims to design
a control law for the PERA, which is saturated and does not require velocity measurements. A
detailed description of the PERA is given in Chapter 3.
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1.2 Port-Hamiltonian framework for mechanical systems
To design a control law for mechanical systems like the PERA, the first step is to derive an
analytical model of the system. For the modeling of mechanical systems, several approaches exist
(van der Schaft, 2004). In this thesis, the system of the PERA is modeled in the pH framework,
first mentioned in (Maschke and van der Schaft, 1992). In this framework, the total energy of
the system is modeled in the Hamiltonian function, which is based on the law of conservation of
energy (Serway and Jewett, 2018). By use of the Hamiltonian function, a dynamical model of the
mechanical system can be constructed.

The energy-based setting of the pH framework allows for passivity-based control of the system.
In passive systems, the emphasis is on the energy exchange of the system with the environment
(Ortega et al., 2013). The property of passivity of a system implies that the system cannot produce
any energy by itself. Therefore, the energy supplied to a passive system is greater than the energy
that is stored. The difference in energy is dissipated from the system. In this work, the property
of passivity is used to stabilize the system on he desired trajectories.

Using the pH approach has several advantages compared to other approaches, such as the classical
Lagrangian, Newtonian and Euler-Lagrange approaches. These advantages are listed below.

• The framework has a clear physical interpretation (Duindam et al., 2009).

• Interconnections and dissipation of energy can be clearly identified (Duindam et al., 2009).

• Most pH systems are passive (also the PERA), allowing PBC (van der Schaft, 2000).

• The Hamiltonian can be taken as a candidate Lyapunov function, which allows stability
analysis by Lyapunov’s direct method (van der Schaft, 2000).

• The pH framework allows extension of the dynamics of the mechanical system (van der Schaft,
2000; Duindam et al., 2009).

In recent years, PBC of pH systems has been used to propose saturated control laws for mechan-
ical systems which do not require velocity measurements (Dirksz, Scherpen, and Ortega, 2008;
Wesselink, 2018; Wesselink, Borja, and Scherpen, 2018; Veltman, 2019; van den Bos, 2019). This
thesis will continue this line of work by applying new control laws for trajectory tracking of the
PERA.

1.3 Scope
The main goal of this work is to develop a drawing routine for the PERA. The PERA is commanded
to let the gripper follow a desired trajectory on a canvas, such that the marker attached to the
gripper of the PERA draws the desired shape. In the experiments, the first basic shape attempted
to draw is a circle.

To attain the goal of developing a drawing routine, a PBC strategy for trajectory tracking is
proposed. The control law is saturated and does not require velocity measurements. Furthermore,
the closed-loop system can be proven to be globally asymptotically stable by Lyapunov’s second
method and LaSalle’s invariance principle. Since the concept of the control law is relatively new,
the tuning of the controller gains is thoroughly investigated. To narrow the scope of this project,
three DoF of the PERA are considered; shoulder pitch, shoulder yaw and elbow pitch. When the
goal of trajectory tracking is attained, the drawing routine is enhanced by dealing with steady-
state errors and sensor offsets. This enhancement is achieved by adapting the desired trajectory
of the shoulder pitch joint, such that a constant force is exerted on the canvas. The adaption of
the desired joint trajectory is based on the measurements of the force sensors in the wrist of the
PERA. Moreover, the wrist pitch and yaw are included in the system, to control the orientation
of the end effector with respect to the canvas.

1.4 Outline of the thesis
This thesis is structured as follows.



3 1.4. Outline of the thesis

• In Chapter 2 the theoretical background for the scientific contributions in this work are
presented. The concepts of stability and passivity are discussed, and the pH framework is
discussed, along with its properties. Moreover, the modeling of the PERA is discussed.

• Chapter 3 discusses the experimental setup of the PERA. The model of the inertia matrix
and potential energy of the mechanical system is presented and further information on the
PERA is provided.

• The contents of Chapter 4 are devoted to the control design. The dynamics of the system as
presented in the pH framework are given and a canonical transformation is applied in order
to obtain an error system. The remainder of this chapter deals with the proposal of control
strategies to stabilize the error system.

• The work of Chapter 5 is devoted to the results obtained in simulations and experiments.
The desired trajectories are defined, and the control law proposed is thoroughly tested in
simulations and experiments. The results are compared to those of another, non-saturated
control law. Furthermore, a heuristic to enhance the quality of the drawings produced by
the PERA is proposed and the orientation of the end-effector is considered.

• Finally, in Chapter 6, concluding remarks are presented. Moreover, several options for future
research in the line of this work are suggested.





Chapter 2

Preliminaries

This chapter provides the required background for the contributions presented in this thesis. The
preliminaries entail the established theoretical concepts and scientific principles that are used as a
basis on which this work continues.

First, the concepts of stability and passivity are discussed. Then, the pH representation of me-
chanical systems is considered and linked to the concepts discussed earlier. Furthermore, PBC
is discussed. Finally, the theory required for the mathematical modeling of n-DoF mechanical
systems is provided.

2.1 Stability
In words, an equilibrium is stable if, when the initial states of the system are sufficiently close to
the equilibrium, the states of the system remain in a certain region around the equilibrium (Aström
and Murray, 2010). Different forms of stability exist, of which the most important ones are defined
in this chapter. In this thesis, the focus is on stability in the sense of Lyapunov. Mathematical
definitions of equilibria and stability, based on the definitions in Khalil (2002), van der Schaft
(2000), and Aström and Murray (2010), are given in Definitions 2.1 and 2.2.

Consider a non-linear system of the form f : Rn → Rs

ẋ = f (x(t, x0)) . (2.1)

Definition 2.1 (Equilibrium (Khalil, 2002)). The point x∗ ∈ Rn is an equilibrium of the system
(2.1) if and only if f∗ = 0n.

Definition 2.2 (Stability (Khalil, 2002)). An equilibrium of a system of the form (2.1) is called

i. stable, if ∀ε > 0 ∃δ > 0 such that

‖x0 − x∗‖ < δ =⇒ ‖x (t, x0)− x∗‖ < ε ∀t ≥ t0. (2.2)

ii. locally asymptotically stable (AS), if it is stable and ∃δ1 > 0 such that

‖x0 − x∗‖ < δ1 =⇒ lim
t→∞

x (t, x0) = x∗. (2.3)

iii. globally asymptotically stable (GAS), if it is stable and

lim
t→∞

x (t, x0) = x∗ ∀x0 ∈ Rn. (2.4)

iv. unstable, if it is not stable, i.e. ∃ε > 0 such that ∀δ > 0 ∃x0, t1 for which

‖x0 − x∗‖ < δ =⇒ ‖x (t, x0)− x∗‖ ≥ ε. (2.5)
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In the following subsections, Lyapunov’s first and second method, as well as LaSalle’s invariance
principle are discussed. These tools can be used to prove (asymptotic) stability of non-linear
systems.

2.1.1 Lyapunov’s Second Method

Lyapunov’s second method, also referred to as Lyapunov’s direct method, was first presented by
the Russian mathematician, mechanician and physicist Aleksandr Mikhailovich Lyapunov in 1892
(Lyapunov, 1992). The method utilizes the auxiliary function of the system V (x), which is called
the Lyapunov function, to prove stability of the system. Theorem 2.1 defines the method according
to the definitions by van der Schaft (2000), Khalil (2002), and Aström and Murray (2010).

Theorem 2.1 (Lyapunov’s Second Method (Khalil, 2002)). Consider a system of the form
(2.1), with an equilibrium in x∗. If there is a neighborhood Ω of x∗, and a function V (x) : Ω→ R
such that on Ω

i. V (x) is continuously differentiable, i.e. V (x) ∈ C1 (Ω,R),

ii. V (x) is positive definite with respect to x∗, i.e. V (x∗) = 0 and V (x) > 0, ∀x ∈ Ω\x∗,

iii. V̇ (x) is negative semi-definite with respect to x∗, i.e. V̇ (x) ≤ 0 ∀x ∈ Ω,

then V (x) is a Lyapunov function and x∗ is a stable equilibrium for (2.1). If in addition

iv. V̇ (x) is negative definite relative to x∗, i.e. V̇ (x) < 0 ∀x ∈ Ω\x∗,

then V (x) is a strong Lyapunov function and x∗ is a locally AS equilibrium for (2.1). If moreover

v. The neighborhood Ω is the set of real numbers, i.e. Ω = R,

vi. V (x) is radially unbounded, i.e. V (x)→∞ as ‖x‖ → ∞,

then the stability properties of system (2.1) are global.

Remark. The Lyapunov function is positive definite (condition ii of Theorem 2.1) if the gradient
of the Lyapunov function evaluated at the equilibrium returns a zero vector and the Hessian of the
Lyapunov function is positive definite, i.e.

[∇V ]∗ = 0n[
∇2V

]
> 0.

(2.6)

For a proof of Theorem 2.1, the reader is referred to (Khalil, 2002).

2.1.2 LaSalle’s Invariance Principle

In many cases, Lyapunov’s second method is sufficient to prove stability of the (closed-loop) non-
linear system under study. Asymptotic stability, however, can be difficult to prove with Lyapunov’s
second method, as the time derivative of the Lyapunov function is not always negative definite
with respect to the equilibrium (condition iv of Theorem 2.1). In this case, LaSalle’s invariance
principle can be used as a tool to prove asymptotic stability.

LaSalle’s invariance principle, also known as the Krasovskii-Lasalle’s invariance principle or Barbashin-
Krasovskii-Lasalle’s invariance principle (Hancock and Papachristodoulou, 2012), can be used to
prove asymptotic stability of non-linear systems when Lyapunov’s second method can only ensure
stability (LaSalle, 1960; Krasovskii, 1963). The invariance principle is given in Theorem 2.2 after
the definition of an invariant set is provided in Definition 2.3. The definition and theorem are
based on the ones found in the work of van der Schaft (2000), Khalil (2002), and Aström and
Murray (2010).



7 2.2. Passive systems

Definition 2.3 (Positively invariant Set (Khalil, 2002)). A set S is called an invariant set for
system (2.1) if the states x(t, x0), with initial condition x0 in S, remain in S for all t > 0, i.e.

x0 ∈ S =⇒ x(t, x0) ∈ S ∀t ≥ 0. (2.7)

In other words, if x starts in S, it remains in S for all time.

Theorem 2.2 (LaSalle’s Invariance Principle (Khalil, 2002)). Consider a system of the form
(2.1) with equilibrium x∗ and Lyapunov function V (x), with x ∈ Rn, on some neighborhood Ω of
the equilibrium. This set Ω contains an positively invariant neighborhood K of x∗. For every initial
condition x0 ∈ K, as t→∞ the states x(t, x0) converge to the positively invariant and nonempty
subset

G :=
{
x∗ ∈ K

∣∣ V̇ (x) = 0 ∀t ≥ 0
}
. (2.8)

In particular, if G contains no invariant sets other than x = x∗, then x∗ is an AS equilibrium. If
moreover K ≡ Rn, then x∗ is a GAS equilibrium.

For the proof of Theorem 2.2, the reader is referred to the work of LaSalle (1960) and Krasovskii
(1963).

2.1.3 Lyapunov’s First Method

The so-called Lyapunov’s first method, utilizes the linearization of the system around the equilib-
rium to prove stability of the equilibrium. The method is defined in Theorem 2.3.

Theorem 2.3 (Lyapunov’s First Method (Khalil, 2002)). Consider a system of the form (2.1),
with the equilibrium x∗. The linearization of the system around the equilibrium is given by

ẋ = A(x− x∗), (2.9)

with

A =
∂f

∂x
(x∗). (2.10)

Then,

i. If the real part of all eigenvalues is strictly negative, the equilibrium x∗ is locally AS.

ii. If at least one eigenvalue has a positive real part, the equilibrium x∗ is unstable.

iii. If the real part of at least one eigenvalue is equal to zero, while the real part of all other eigen-
values is strictly negative, no conclusion can be drawn about the stability of the equilibrium
x∗.

For a proof of Theorem 2.3, the reader is referred to (Khalil, 2002).

2.2 Passive systems

The concept of passivity is defined in Definition 2.4. This definition is based on the formulations in
van der Schaft (2000). For further elaboration on this subject the reader is referred to this work.

Consider a non-linear system of the form

ẋ = f(x, u)

y = h(x, u),
(2.11)
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with states x = (x1, . . . , xn)
>, the system inputs u ∈ U and the system outputs y ∈ Y . The linear

spaces U and Y are assumed to be n-dimensional, i.e. the system is fully actuated.

Definition 2.4 (Passivity (van der Schaft, 2000)). Consider a system of the form (2.11). The
supply rate of the system is defined as

s : U × Y → R. (2.12)

The system is said to be passive if there exists a storage function S : Rn → R+, such that for all
x0 ∈ Rn, all t1 ≥ t0 and all input functions u(·)

S (x (t1)) ≤ S (x0) +

∫ t1

t0

s(t)dt. (2.13)

This inequality is called the dissipation inequality. For passive systems, the dissipation inequality
can be rewritten as the power inequality

Ṡ (x (t)) ≤ u>y. (2.14)

If the system is passive, y denotes the passive output of the system.

If (2.13) and (2.14) hold with equality for all x0 and all u(·), the system (2.11) is conservative.

2.3 Port-Hamiltonian representation of mechanical systems

In this project, the pH framework is used for the mathematical modeling of the PERA (Maschke
and van der Schaft, 1992). For mechanical systems, the states in the pH framework are given by the
generalized positions q ∈ Rn and momenta p ∈ Rn of the system. The dynamics of a mechanical
system in the pH framework are described by (van der Schaft, 2000)[

q̇

ṗ

]
=

[
0n×n In×n

−In×n −D(q)

][ ∂H
∂q (q, p)

∂H
∂p (q, p)

]
+

[
0n×m

G

]
u

y = G>
∂H

∂p
(q, p),

(2.15)

where D(q) ∈ Rn×n is the damping matrix such that D(q) = D(q)> ≥ 0, G ∈ Rn×m is the full
rank input matrix and u, y ∈ Rm with m ≤ n are the input and output vectors, respectively. The
Hamiltonian function H(q, p), which is equal to the total energy of the system, is given by

H(q, p) =
1

2
p>M−1(q)p+ V (q), (2.16)

where M(q) ∈ Rn×n the inertia matrix of the mechanical system and V (q) ∈ R the potential
energy of the mechanical system.

Using (2.15) and (2.16), the system can be expressed as

q̇ = p>M−1(q)

ṗ = − 1
2

n∑
i=1

eip
> ∂M−1(q)

∂qi
p− ∂V

∂q +Gu

y = G>q̇.

(2.17)
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2.3.1 Passivity of port-Hamiltonian systems

The representation of a mechanical system in the pH framework can be used to prove passivity
of the system, since the Hamiltonian equation is a natural storage function for the system. Due
to the pH structure, the power inequality (2.14) is always satisfied. In particular, from the pH
representation of mechanical systems (2.15), we have.

Ḣ =

(
∂H

∂q

)>
q̇ +

(
∂H

∂p

)>
ṗ

=

(
∂H

∂q

)>
∂H

∂p
+

(
∂H

∂p

)>(
−∂H
∂q
−D∂H

∂p
+Gu

)

=

(
∂H

∂q

)>
∂H

∂p
−
(
∂H

∂p

)>
∂H

∂q︸ ︷︷ ︸
=0

−
(
∂H

∂p

)>
D
∂H

∂p︸ ︷︷ ︸
>0

+

(
∂H

∂p

)>
G︸ ︷︷ ︸

=y>

u

= −
(
∂H

∂p

)>
D
∂H

∂p
+ y>u ≤ y>u

(2.18)

Thus, the pH system is passive with respect to the passive output y. In the case that the system’s
natural damping is ignored, we get

Ḣ = y>u, (2.19)

indicating that the system is conservative.

2.3.2 Partial linearization via coordinate changes

Canonical transforms can be applied to pH systems for different proposes, e.g., Fujimoto and Sugie
(2001) and Viola et al. (2007). This section particularly focuses on the Partial Linearization via
Coordinate Changes (PLvCC) as proposed in Venkatraman et al. (2010).

Define the matrix Ψ ∈ Rn×n as the lower Cholesky factorization of M−1(q), i.e. (Dereniowski and
Kubale, 2003),

M−1(q) = Ψ(q)Ψ>(q). (2.20)

Consider the new coordinate P = Ψ>(q)p. Then, from (2.15) it follows that[
q̇

Ṗ

]
=

[
0n×n Ψ(q)

−Ψ>(q) J(q, p)−D(q)

][
∂H̄
∂q (q, P)

∂H̄
∂P (q, P)

]
+

[
0n×n

Ψ>(q)G

]
u

y = G>Ψ(q)
∂H̄

∂P
(q, P) = G>q̇,

(2.21)

with the Hamiltonian

H̄(q, P) =
1

2
P>P + V (q), (2.22)

where J(q, p) ∈ Rn×n is a skew-symmetric matrix representing the gyroscopic forces in the system
(Romero, Ortega, and Sarras, 2014). The elements of this matrix are defined as

Jij(q, p) = −p> [Ψi,Ψj ] . (2.23)
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In Venkatraman et al. (2010), several conditions ensuring J = 0n×n are provided.

2.4 Passivity-Based Control
The principle of passivity allows the design of control laws through the method of PBC, first
introduced by Ortega and Spong (1989). The main principle of PBC, is to define the input such
that the closed-loop system is rendered passive with respect to a desired storage function which
has a minimum in the desired equilibrium (Ortega et al., 2013). As a result, the equilibrium can
be proven to be stable.

There are two main approaches for PBC. In the "classical" approach, the desired storage function
is defined beforehand, with a minimum at the desired equilibrium. In this thesis, the desired
storage function is equal to the desired Hamiltonian function. Then, the controller is designed,
such that the closed-loop system is passive and Lyapunov’s second method can be used to prove
stability of the system. This process is referred to as energy shaping. In classical PBC, damping is
often injected to ensure AS. In the second PBC approach, the desired structure of the closed-loop
system is selected, after which the possible energy functions are considered (Ortega et al., 2002).
To this end, a control law of the form

ũ = k(x) + û (2.24)

is applied to the system, transforming the system into the desired structure. The next step is then
to design û such that the closed-loop system can be proven to be AS.

2.5 Mechanical system modeling
Following from the definition of the Hamiltonian function of n-DoF mechanical systems in (2.16),
the inertia matrix and potential energy function of the system are needed for the mathematical
modeling of the system. Therefore, this section provides the necessary tools to determine the
inertia matrix and the potential energy function.

2.5.1 Denavit-Hartenberg convention
A well known method which allows mathematical modeling of robotic arms is the Denavit-Hartenberg
(DH) convention, first introduced by Denavit and Hartenberg (1955). In this thesis, the convention
is followed as described by Craig (2009). The DH convention requires the placement of frames (the
X, Y and Z-axis) for each joint. For a detailed description of how to place the frames, see Craig
(2009), Spong and Vidyasagar (2008), and Siciliano and Khatib (2016). From the frames, four
parameters can be determined to describe each link. The four parameters are defined as follows:

ai = the distance from Zi to Zi+1, measured along Xi

αi = the angle from Zi to Zi+1, measured about Xi

di = the distance from Xi−1 to Xi, measured along Zi

θi = the angle from Xi−1 to Xi, measured about Zi

(2.25)

In (2.25), the subscript i denotes the i-th ink or joint number. The convention is visualized for
two arbitrary links in Figure 2.1.
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Figure 2.1: Frames and DH parameters for two arbitrary links - by Elhami and Dashti (2016)

2.5.2 Transformation matrix

Using the DH parameters, the transformation from frame i − 1 to frame i can be defined as a
rotation about X (αi−1), a translation about X (ai−1), a rotation about Z (θi) and a translation
about Z (di). The resulting general transformation matrix is (Craig, 2009)

i−1
i T =


cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) − sin(αi−1)di

sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) cos(αi−1)di

0 0 0 1

 . (2.26)

Using (2.26), the homogeneous transformation matrix from the base frame to the ith frame is
defined as

0
iT = 0

1T
1
2T . . .

i−1
i T

=

[
Ri oi

01×3 1

]
,

(2.27)

where Ri ∈ R3×3 represents the rotation matrix from the base frame to the ith frame and oi ∈ R3

is the position vector from the base frame to the ith frame.

2.5.3 Jacobian

The Jacobian matrix should be defined for each link. The Jacobian matrix defines the mapping from
the velocities and forces in joint space to the velocities and forces in Cartesian space, respectively
(Craig, 2009). The columns of the Jacobian matrix are given by (Spong and Vidyasagar, 2008)

Ji =

[
Jvi
Jωi

]
=

[
zi−1 × (on − oi−1)

zi−1

]
, (2.28)

where Jvi ∈ R3 denotes the ith column of the linear Jacobian matrix, Jωi ∈ R3 denotes the ith
column of the angular Jacobian matrix, zi−1 ∈ R3 denotes the third column of the rotation matrix
Ri and on, oi−1 ∈ R3×3 denote the position vector from the base frame to the {i− 1}th frame and
the final frame, respectively.
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In the Jacobian matrix for the ith link, the first i columns are defined by (2.28). The remaining
columns of the Jacobian matrix of the same link are equal to zero, such that the Jacobian matrix
of link i, J̄i ∈ R6×n. Therefore, we have the linear and angular Jacobian matrices of link i,
J̄vi , J̄ωi

∈ R3×n.

2.5.4 Principal moment of inertia

The final component that is needed before the inertia matrix can be computed, is the principal
moment of inertia about the Z-axis, which is part of the inertia tensor (Spong and Vidyasagar,
2008). Simplifying the links of the robotic arm such that each link can be represented as a cuboid
with constant density, the principal moment of inertia of link i about the Z-axis follows from its
definition as

Ii =
mi

12
(x2
i + y2

i ), (2.29)

where mi ∈ R is the mass of link i and xi, yi ∈ R represent the size of the link in the direction of
the X-axis and Y -axis, respectively.

2.5.5 Inertia matrix

Using the rotation matrices, Jacobian matrices and the principal moments of inertia, the inertia
matrix of the system is obtained by (Spong and Vidyasagar, 2008)

M(q) =

n∑
i=1

[
miJ̄vi(q)>J̄vi(q) + J̄ωi

(q)>Ri(q)IiRi(q)>J̄ωi
(q)
]
. (2.30)

Note that the argument q is inserted here, representing the angular positions of the joints of the
PERA.

2.5.6 Potential energy

For the PERA, the total potential energy of the system is equal to the gravitational potential
energy of the system. The potential energy can be split up into the potential energy per link of
the PERA. The potential energy of link i is given by

Vi(q) = mighi + Vref,i, (2.31)

where mi ∈ R is the mass of link i, g = 9.81 [ms2 ] is the acceleration due to gravity, hi ∈ R is
the height of the center of mass (CoM) of the ith link and Vref,i ∈ R is a constant such that the
minimum of Vi is at zero.

The relative height of the i-th joint with respect to the base frame is given by the position of the
axis of rotation of the i-th joint on the Z-axis, i.e.

Hi = e3oi (2.32)

By observation of the PERA and verification by experiments (see Chapter 5), it was determined
that the CoM of each link is located at approximately one third of the link’s length. Therefore,
the height of the CoM of link i is defined as

hi =
2

3
Hi−1 +

1

3
Hi. (2.33)



13 2.5. Mechanical system modeling

The total potential energy of the system is given by the sum of the potential energy of all links,
i.e.,

V (q) =

n∑
i=1

Vi(q). (2.34)





Chapter 3

Experimental setup

In this thesis, experiments are conducted with the PERA, where a model-based control approach is
implemented. Therefore, the first step in the control design is to develop a suitable mathematical
model of the system. To this end, this chapter provides all required information on the current
setup of the PERA at the University of Groningen.

The kinematics of the PERA are described in Section 3.1. Next, the model of the PERA is reduced
to the three DoF that are used in this thesis and the DH parameters are obtained in Section 3.2.
Then, the inertia matrix and potential energy of the PERA are derived in Section 3.3 and 3.4,
after which the end-effector is described in Section 3.5. The hardware of the motors is discussed
in Section 3.6 and finally, this chapter concludes with a description of the sensors in the PERA in
Section 3.7.

3.1 Kinematics
The PERA is a robotic arm with seven DoF, excluding the end-effector, which can bee seen as the
eighth DoF. The arm is developed to resemble a human arm (Rijs et al., 2014). To this end, the
joints of the arm are located in the shoulder (3 DoF), elbow (2 DoF), and wrist (2 DoF) of the
arm. The robotic arm is mounted to a frame representing the human upper body.

Figure 3.1 provides a graphical representation of the arm, where the letters R, P and Y denote a
joints roll, pitch and yaw, while the subscripts S, E and W denote the corresponding joint (shoulder,
elbow and wrist, respectively).

Figure 3.1: Kinematics of the PERA - by Rijs et al. (2014)

The range of motion (RoM) of each joint is limited by mechanical end stops inside the arm. The
RoM of the joints is given in Table 3.1, with Figure 3.1 as the zero-position. For visual descriptions
of the RoM of the joints, the reader is referred to the manual of the PERA (Rijs et al., 2014). The
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characteristics of the links between joints are given in Table 3.2. Note that the shoulder joints,
elbow joints and wrist joints are considered to be one joint of multiple (two or three) DoF. To
accommodate this in the modeling of the PERA, these joints can be expressed as two or three,
connected by links of zero length (Spong and Vidyasagar, 2008). Thus, three links of non-zero
length allow the connection of all joints and the gripper to the base frame. These links resemble
the human upper arm, lower arm and hand.

Joint Min. Max.
RS 0° +90°
PS −90° +90°
YS −90° +90°
PE −90° +55°
YE −105° +105°
PW −57° +57°
YW −45° +45°

Gripper 0° +45°

Table 3.1: Restrictions on the joint angles of
the PERA (Rijs et al., 2014; van den Bos,
2019)

Link Length [m] Mass [kg]

Upper arm 0.32 (L1) 2.9 (m1)
Lower arm 0.28 0.8

Hand 0.20 0.2

Table 3.2: Specifications of the links of the PERA (Rijs
et al., 2014)

3.2 Denavit-Hartenberg parameters
In the past, the spatial dynamics of the PERA have been described by Bol (2012), Koops (2014),
Muñoz-Arias (2015), and van den Bos (2019). In this thesis, however, only the shoulder pitch,
shoulder yaw and elbow pitch are considered. From now on, the position of these joints will be
referred to as q1, q2 and q3, respectively. Furthermore, the end effector is considered as a fourth
DoF. A schematic representation of the PERA with the joints in this thesis is provided in Figure
3.2. Note that, since the wrist joints are not used, the lower arm and hand now become one link
(L2 = 0.48 [m], m2 = 1.0 [kg]).

Figure 3.2: Schematic representation of the PERA

The DH parameters for the configuration of the PERA in Figure 3.2 are obtained by the convention
as described in Chapter 2. The results are in Table 3.3.

To verify the validity of the DH parameters, a graphical model of the PERA was constructed in
MATLAB®, using the Robotic Toolbox developed by Corke et al. (1996). The resulting model is
depicted in Figure 3.3. This result verifies that the DH parameters are correct. The constructed
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i αi−1 ai−1 di θi

1 π
2 0 0 q1

2 −π2 0 −0.32 q2

3 π
2 0 0 q3 − π

2

4 0 −0.48 0 0

Table 3.3: Denavit-Hartenberg link parameters

MATLAB® model is constructed such that joint rotations in the model are true to the rotations
of the physical PERA. Furthermore, the zero position of the model is equal to that of the PERA.

(a) q1 = 0°, q2 = 0°, q3 = 0° (b) q1 = 20°, q2 = 0°, q3 = 70°

Figure 3.3: Graphical model of the PERA

3.3 Inertia matrix

Following the method described in Chapter 2, the inertia matrix of the PERA was obtained from
the DH parameters in Table 3.3. Following (2.30), the inertia matrix is given by

M(q) =


I1 + I2 + I3 + (m1 +m2)L2

1 sin2 (q1) 0 I3 cos (q1)

0 I2 + I3 +m2L
2
1 0

I3 cos (q1) 0 I3

 . (3.1)

Filling in the values for I1, I2, I3, m1, m2, L1 and L2 yields

M(q) =


0.05 + 0.40 sin2 (q1) 0 0.02 cos (q1)

0 0.42 0

0.02 cos (q1) 0 0.02

 . (3.2)



Chapter 3. Experimental setup 18

3.4 Potential energy
Using (2.34), the potential energy is computed as

V (q) = −
(

1

3
m1 +m2

)
gL1 cos (q1) +

1

3
m2gL2

[
cos (q2) sin (q1) sin (q3)− cos (q1) cos (q3)

]
, (3.3)

with the partial derivative of the potential energy with respect to q,

∂V

∂q
(q) =


(

1
3m1 +m2

)
gL1 sin (q1) + 1

3m2gL2

[
cos (q2) cos (q1) sin (q3) + sin (q1) cos (q3)

]
− 1

3m2gL2

[
sin (q2) sin (q1) sin (q3)

]
1
3m2gL2

[
cos (q2) sin (q1) cos (q3) + cos (q1) sin (q3)

]
 .
(3.4)

Inserting the values for m1, m2, g, L1 and L2 yields

V (q) = −6.17 cos (q1) + 1.57
[

cos (q2) sin (q1) cos (q3)− cos (q1) cos (q3)
]
, (3.5)

with the partial derivative with respect to q,

∂V

∂q
(q) =


6.17 sin (q1) + 1.57

[
cos (q2) cos (q1) sin (q3) + sin (q1) cos (q3)

]
−1.57

[
sin (q2) sin (q1) sin (q3)

]
1.57

[
cos (q2) sin (q1) cos (q3) + cos (q1) sin (q3)

]
 . (3.6)

3.5 End-Effector
The PERA is equipped with a two-finger gripper as end-effector, allowing the arm to grasp objects.
The outline of the gripper is given in Figure 3.4. The grippers’ symmetrical fingers can be opened
or closed simultaneously by an actuating Maxon motor, which is located inside the red rectangle
in Figure 3.4. the rational motion of the motor is transformed into a translational motion by the
screw, which is located inside the orange rectangle in Figure 3.4. The screw is connected to the
fingers by cables (yellow lines in Figure 3.4). A linear spring is located between the fingers, such
that a force is exerted when the distance between the fingers is less than four centimeters. This
ensures that the fingers’ positions are symmetric when grasping an object. For a more elaborate
description of the gripper and its dynamics, the reader is referred to the theses of de Jong (2013),
Siemonsma (2014), and van den Bos (2019).

Figure 3.4: Picture of the gripper of the PERA - by van den Bos (2019)
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3.6 Joint actuation
For the design and tuning of a control law, knowledge of the actuation of the joints of the PERA
is required. Therefore, this section elaborates on the motors, gearing and boards which actuate
the rotational joints of the PERA. First, the actuation of the motors via boards is discussed, after
which the working principles of the differential drives in the PERA are explained. Next, relevant
parameters of the motors and gearing are provided. Then, these parameters are used to determine
appropriate saturation limits of the control law. Furthermore, this chapter concludes with the
original control law which is implemented on the PERA.

3.6.1 Boards
The communication between the PC and the PERA runs through four RT-motion USB motion
control boards. Each board puts through the sensor and actuation signals for two motors. The
boards are accessed by the PC via a USB connection. Table 3.4 shows which joints and motors
are connected to which board.

The control signal from the PC is sent to the motors via the corresponding boards. Since it is not
possible to send a current to the motors directly, a input signal in counts is sent to the boards.
This input signal is translated to the desired current by a non-linear amplifier. The behaviour of
the non-linear amplifier differs per board. This is depicted in Figure 3.5.

(a) Shoulder motors 1 and 2 (board 1) (b) Shoulder motor 3 (board 3)

Furthermore, the signals from sensors in the PERA are sent to the PC through the boards. The
present sensors and their signals are discussed in Section 3.7. For a detailed overview of the wiring
of the PERA, the reader is referred to Appendix A.

Board number Joint 1 Joint 2 Motor 1 Motor 2
1 RS PS S1 S2

2 PE YE E1 E2

3 YS Gripper S3 G
4 PW YW W1 W2

Table 3.4: Board numbers and corresponding joints
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(c) Elbow motors 1 and 2 (board 2) (d) Gripper motor (board 3)

Figure 3.5: Behaviour of non-linear amplifiers - by Rijs et al. (2014)

3.6.2 Differential drives

Boards 1, 2 and 3 in the previous section connect the PC to the differential drives in the shoulder,
elbow and wrist, respectively. These differential drives are actuated by two motors, such that that
the dynamics of the differential drive are described by

ϕout,1 = 1
2 (ϕmotor,1 + ϕmotor,2)

ϕout,2 = 1
2 (ϕmotor,1 − ϕmotor,2)

Tout,1 = Tmotor,1 + Tmotor,2

Tout,2 = Tmotor,1 − Tmotor,2,

(3.7)

where ϕ denotes the angle of rotation, T denotes the torque exerted and the subscripts out1 and
out2 refer to the first1 and orthogonal second2 DoF actuated by the differential drive, respectively,
while the subscripts motor1 and motor2 refer to the orange gears in Figure 3.6.

Figure 3.6: Schematic outline of the differential drives in the PERA - by Rijs et al. (2014)

Since the joints considered in this project are the shoulder pitch, shoulder yaw and elbow pitch, the
differential drives of the shoulder and elbow are used to actuate one DoF each. For the shoulder,
the shoulder pitch (PS) is the second DoF of the differential drive and therefore, the first DoF
(RS) does not move from the zero position (ϕout1 = Tout1 = 0). This allows the rewriting of (3.7)

1RS , PE and PW
2PS , YE and YW
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as

ϕS1 = −ϕS2

TS1
= −TS2

,
(3.8)

where the subscripts S1 and S2 denote the first and second motor in the shoulder. Similarly, the
differential drive at the elbow actuates only the first DoF (PE), such that the dynamics of the
differential drive become

ϕE1 = ϕE2

TE1 = TE2 ,
(3.9)

where the subscripts E1 and E2 refer to the motors in the elbow of the PERA. From (3.8) and
(3.9), it follows that for the joints in this thesis that are actuated by a differential drive, both
motors of the drive deliver half of the required torque on the joint. To accommodate this fact,
a factor kd was added to the conversion of joint torque to motor current, see Section 3.6.4. The
values of kd for different joints are defined in Table 3.5.

Joint kd

S1 2
S2 −2
S3 1
E1 2
E2 2

Table 3.5: Values of the factor kd

3.6.3 Motor and gearing parameters
The joints of the PERA are actuated by eight DC motors, produced by Maxon Group (Rijs et al.,
2014). An image of such a motor is depicted in Figure 3.7. The parameters of the motors and

Figure 3.7: DC motor of the PERA (S1 and S2) - by Maxon Group (n.d.)

gearing differ from joint to joint. Therefore, relevant information on these matters is provided in
Table 3.6. Gearing ratios are the total gearing ratios in the PERA, as defined in Rijs et al. (2014).
Other parameter values are taken from the data-sheets of the parts. The reader is referred to
Appendix B for the complete data-sheets.

3Since the gripper is not a rotational joint, the gearing ratio given is that of the gearing part.
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Motor(s) Motor
part no.

Gearing
part no.

Torque
constant (km)

Gearing
ratio (Gr)

Gearing
efficiency (η)

Nominal
voltage

S1 and S2 268216 166940 53.8 [mN ·mA ] 550 0.70 48 [V ]

S3 268214 166940 25.9 [mN ·mA ] 371.25 0.70 24 [V ]

E1 and E2 118752 166938 23.4 [mN ·mA ] 348 0.75 24 [V ]

G 118641 110314 16.0 [mN ·mA ] 17 3 0.83 24 [V ]

Table 3.6: Motor and gearing part numbers and parameters

3.6.4 Saturation limits

The controller proposed in this thesis determines the required torque on each joint. However, the
input to the motors is a current sent by the boards. Therefore, the desired torque is converted to
the desired current, which is in turn converted to a signal in counts, such that the motors receive
the desired current from the boards.

First, the desired torque on the joint is translated to the desired current from the motor. This
transformation is given by

ucurrent,i =
1000 · 1000 · utorque,i

Gr · η · km · kd
, (3.10)

where the values of parameters are given in Tables 3.5 and 3.6 and the subscript i denotes the joint.
The two factors 1000 are added to transform the units such that the desired torque is transformed
from N ·m to mN ·m and the desired current is transformed from A to mA.

Next, the value of the desired current for each motor is translated to a signal in counts. The
relation of the signal in counts and the current sent to the motor was previously given in Figure
3.5. As discussed in (Koops, 2014), the best approach to compute the desired signal in counts is
to approximate the average graphs in Figure 3.5 by a second order polynomial. The limits of the
gripper motor are defined such that

−28000 ≤ ucounts ≤ 28000, (3.11)

while the limits of all other motors are such that

−16000 ≤ ucounts ≤ 16000. (3.12)

These symmetrical saturations have been introduced in (Bol, 2012), to protect the motors of the
PERA from high currents which could damage the motors. The polynomial approximations are
fitted to the non-linear amplifier values within these limits. The following second order polynomial
approximations are found using the polyfit function in MATLAB®.

ucounts,S1,S2 = −0.05u2
current,S1,S2

+ 57.532ucurrent,S1,S2 + 198.72

ucounts,S3 = −0.0486u2
current,S3

+ 57.525ucurrent,S3 − 545.36

ucounts,E1,E2
= −0.0088u2

current,E1,E2
+ 26.01ucurrent,E1,E2

+ 3080.7

ucounts,G = −0.7652u2
current,G + 292.19ucurrent,G + 846.19

(3.13)

The non-linear relationships are plotted in Figures 3.8 and 3.9.

From the relationships given in (3.10), (3.11), (3.12) and (3.13) and the parameter values given
in Tables 3.5 and 3.6, the saturation limits on the torque can now be computed. These limits are
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Figure 3.8: Relationship between the desired current and the signal in counts (joint motors)
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Figure 3.9: Relationship between the desired current and the signal in counts (gripper motor)

defined as

−18.77 ≤ u1 ≤ 18.77

−3.32 ≤ u2 ≤ 3.32

−7.72 ≤ u3 ≤ 7.72.

(3.14)

By designing the control law according to the limits in (3.14), it is ascertained that the signal to
the boards will never exceed the limits in (3.11) and (3.12).

3.7 Sensors
To finalize this chapter, the sensors of the PERA are discussed. Sensors allow the measurement of
the states of the PERA. These measurements can subsequently be used to control the robotic arm
by a control law. Each joint of the PERA is equipped with a force sensor (Osram SFH 9202) and
two types of positions sensors.

3.7.1 Force sensors
Each DoF of the PERA contains a compliant element, which is attached to the load side of
the gearing, such that the deformation of the element is not influenced by the gearing friction.
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By approximation, the deformation of the compliant element is proportional to the load force.
Therefore, the magnitude of the force can be determined from the deformation, which is measured
by an optical sensor (Rijs et al., 2014).

In this thesis, only the force sensors in the wrist of the PERA are used. The force sensors of
the joints of the PERA measure the combination of the motor force, gravitational force and other
external forces on the joint. Moreover, the force sensor in the gripper measures not only these
forces, but also the force induced by the spring in the gripper. For a more detailed description of
the force dynamics in the gripper, the reader is referred to the works of Bol (2012) and Siemonsma
(2014). The force measured by sensors can be simplified to (van den Bos, 2019)

Fsensor = Fint + Fext, (3.15)

where Fint denotes the force on the joint generated by the motor and Fext denotes the gravitational
force on the motor and, in the case of the gripper, the spring force on the joint.

The signal from the force sensor in the gripper is saturated, such that (Siemonsma, 2014)

0 ≤ Fsensor ≤ 200. (3.16)

The signals from the other force sensors are presumably saturated as well, but this is not investi-
gated in this thesis. Note that the signal from the force sensors is given in counts, not in Newtons
or Newton-meters.

3.7.2 Position sensors

In the PERA, each joint is equipped with two types of position sensors; Hall angle sensors and motor
encoders. The Hall sensors measure the magnitude of the magnetic field to determine the absolute
position of the joint. The Hall angle sensors on the PERA are developed by AustriaMicrosystems
(AMS)(Rijs et al., 2014); the elbow is equipped with 10-bit Hall angle sensors (AS5040), resulting in
a resolution of 0.352°, and the other joints are equipped with 12-bit Hall angle sensors (AS5145),
resulting in a resolution of 0.088°. The major downside of Hall angle sensors is that they are
very susceptible to external magnetic fields. For more information on the Hall angle sensors of
the PERA, the reader is referred to the work of Bol (2012) and the data-sheets of the sensors
(Appendix B).

In this thesis, the motor encoders are used to measure the position of joints. The encoders are
designed and produced by Maxon group. The encoders are located on the motor axis, such that
the relative position of the motor is measured and translated into a signal in counts. The part
numbers and translation constants of encoders in the PERA are given in Table 3.7. Note that the
column ’Degrees per Count’ gives the conversion factor from encoder counts on the motor to the
position of the joint (or in the case of a differential drive, final gear) in degrees. These conversion
factors are taken from the existing PERA controller code. Furthermore, the part numbers of the
encoders were found on the parts of the PERA, except for the encoder of the gripper, which has
no visible part number.

Joint Motor(s) Part No. Degrees per Count
q1 S1, S2 225783 6.45 · 10−4

q2 S3 225783 9.45 · 10−4

q3 E1, E2 225778 4.54/4.38 · 10−4

W1, W2 228177 2.43/− 2.72 · 10−3

G 323052 6.00 · 10−4

Table 3.7: Encoder part numbers and translation constants

The major downside of using the encoder sensors is the offset in the measurements. Every time the
PERA is activated, the encoders are recalibrated by determining and compensating for the offset.
However, the determination of this offset is not perfect and returns a different value every time
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the PERA is activated. Therefore, the zero positions of the joints in one experiment may slightly
differ from the zero positions in the next experiment.

3.8 Original control law
For the sake of completeness, the original control strategy of the PERA is discussed here. In the
original control files, the desired torque on the joints of the PERA is defined by a simple PID
control law. This control law is applied to the error of the joint positions with respect to the
desired positions. When the system is started, the desired positions are set to the current posi-
tions. Via a terminal window, the desired positions can be altered, such that the joint moves to
the desired position. The PID tuning of the original control file is given in Table 3.8. As can
be observed, the integral gains are all equal to zero, such that the control laws of the joints are
actually PD controllers. Moreover, the gripper is controlled with a simple proportional controller.
In the experiments conducted in this thesis, the joints which are not considered are kept at the
initial position by these PD controllers.

Joint P I D
RS 4 0 0.5
PS 4 0 0.5
YS 40 0 0.5
PE 10 0 1
YE 10 0 1
PW 10 0 0.8
YW 10 0 0.8

Gripper 30 0 0

Table 3.8: PID tuning of the original controller of the joints of the PERA





Chapter 4

Control design

The goal of this chapter is to propose a controller for the PERA and prove stability of the closed-
loop system. The PERA does not have any velocity sensors and derivation of the velocity from the
position sensors was deemed insufficiently accurate by Bol (2012). Therefore, the control law to be
proposed cannot make use of the velocities of the joints. The control laws proposed in this chapter
are a continuation on the works of Wesselink (2018), Wesselink, Borja, and Scherpen (2018), and
van den Bos (2019).

First, the mathematical modeling of the PERA is discussed. The desired system dynamics are
defined and by comparison of the actual system dynamics to the desired system dynamics, the
error dynamics are found. Next, the error dynamics are re-expressed in the pH framework and
three control laws are proposed to stabilize the error dynamics in the desired equilibrium. The
last controller proposed is used in the experiments, as discussed in the next chapter. Finally, the
chapter concludes with a section on the complete control of the joints and gripper of the PERA.

4.1 Mathematical modeling

Several steps need to be taken to allow stabilization of the joints of the PERA on the desired
trajectory. First, the PERA is modeled in the pH framework. It should be noted that the natural
damping of the system is not considered, because it is unknown. Then, to determine the desired
steady-state control input, the desired system is obtained. Furthermore, the error dynamics of the
PERA are defined, allowing control strategies for the system to be proposed.

4.1.1 System dynamics

As discussed earlier, the PERA is a fully actuated system and three joints are considered in this
thesis, i.e. m = n = 3. Therefore, the input matrix G is defined as the identity matrix, i.e. G = I3.
Moreover, the elements of the input vector u denote the torque exerted by the motors on their
respective joints. Therefore, following, (2.15), the dynamics of the PERA in the pH framework are
described by [

q̇

ṗ

]
=

[
03×3 I3

−I3 03×3

][ ∂H
∂q (q, p)

∂H
∂p (q, p)

]
+

[
03×3

I3

]
u

y =
∂H

∂p
(q, p),

(4.1)

with the general Hamiltonian function, as given in (2.16).

Next, the PLvCC transform proposed by Venkatraman et al. (2010), as discussed in Subsection
2.3.2, is applied to the PERA, such that the inertia matrix becomes constant in the new coordinates,
while the pH structure of the system is preserved. This is done to simplify the system, which allows
for the control strategies proposed. As a result, we have the dynamics of the PERA in the new
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coordinates as [
q̇

Ṗ

]
=

[
03×3 Ψ(q)

−Ψ>(q) J(q, p)

][
∂H̄
∂q (q, P)

∂H̄
∂P (q, P)

]
+

[
03×3

Ψ>(q)

]
u

y = Ψ(q)
∂H̄

∂P
(q, P) = q̇,

(4.2)

with the Hamiltonian (2.22)

H̄(q, P) =
1

2
P>P + V (q), (4.3)

where the potential enegry V (q) is given by (3.3) and

Ψ(q) =


6.0×1010√

1.5×1021 sin2(q1)+1.1×1020
0 0

0 1.5 0

−6.0×1010 cos(q1)√
1.6×1021−1.5×1021 cos2(q1)

0 7.2

 ; J(q, p) = 03×3, (4.4)

which follows form (2.20) and (2.23). It is verified that

Ψ(q)Ψ>(q) = M−1(q), (4.5)

with M(q) as in (3.2). Note that the matrix Ψ(q) is full rank.

4.1.2 Desired system dynamics

The desired dynamics of the system are used as a reference for the actual system. The desired
dynamics should satisfy the actual dynamics (4.2) (Aström and Murray, 2010), i.e. the desired
trajectory can be followed. The desired dynamics of the system depend fully on the desired
trajectory. Following (4.2), the desired dynamics of the system, i.e. the system dynamics for the
desired states, are described by[

q̇d

Ṗd

]
=

[
03×3 Ψ(q)

−Ψ>(q) 03×3

] ∂H̄d

∂qd
(qd, Pd)

∂H̄d

∂Pd
(qd, Pd)

+

[
03×3

Ψ>(q)

]
ud

yd = Ψ(qd)
∂H̄

∂P
(qd, Pd) = q̇d,

(4.6)

with the Hamiltonian

H̄d(qd, Pd) =
1

2
P>d Pd + V (qd). (4.7)

Assuming that the positions converge to the desired trajectory, i.e.,

lim
t→∞

q(t) = qd(t), (4.8)

the desired steady-state input is defined as

ud =
∂V

∂q
(qd) + Ψ−>(qd)

dΨ−1(qd)q̇d
dt

(4.9)
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to satisfy the system dynamics.

4.1.3 Error dynamics
The dynamics of the state errors are found by comparing the actual system dynamics to the desired
system dynamics. The error dynamics of the system are given by ˙̃q

˙̃
P

 =

[
03×3 Ψ(q)

−Ψ>(q) 03×3

][
∂V
∂q (q)− ∂V

∂q (qd)

P̃

]
+

[
03×3

Ψ>(q)

]
ũ

ỹ = q̇ − q̇d = ˙̃q,

(4.10)

where q̃ = q−qd denotes the position error of the joints, P̃ = P−Pd denotes the error of the canonical
transform of generalized momenta and ũ = u−ud denotes the control input which should eradicate
the state errors on the desired trajectory.

4.1.4 Error dynamics in the port-Hamiltonian Framework
To express the system in (4.10) in the pH structure again, PBC is applied. Based on (2.24), ũ is
defined as

ũ =
∂V

∂q
(q)− ∂V

∂q
(qd) + û, (4.11)

such that the error dynamics are represented by ˙̃q

˙̃
P

 =

[
03×3 Ψ(q)

−Ψ>(q) 03×3

] ∂H̃
∂q̃ (P̃)

∂H̃
∂P̃

(P̃)

+

[
03×3

Ψ>(q)

]
û

ỹ = Ψ(q)
∂H̃

∂P̃
(P̃) = ˙̃q,

(4.12)

with the Hamiltonian

H̃(P̃) =
1

2
P̃>P̃. (4.13)

As discussed in Chapter 2, this system is passive and lossless, as it is expressed in the pH framework
without damping. The passivity of the system is useful for the following control designs, since PBC
for pH systems allows addressing complex problems in a structured way (Muñoz-Arias, 2015).

4.2 Trajectory tracking control
The aim of the control laws proposed in this section is to asymptotically stabilize the PERA on
a desired trajectory. The control input on this desired trajectory is given by (4.9). However, due
to disturbances and inaccuracies in the modeling, state errors can arise. To eradicate these errors,
three control laws defining û are proposed in the coming subsections. The main purpose of the
control laws is to asymptotically stabilize the error dynamics (4.12) to zero in the equilibrium,
such that the states converge to the desired trajectory.

4.2.1 Passivity-Based Control
Here, a PBC strategy which GAS the origin of the error system is proposed. Damping is injected
into the closed-loop system via the Kd

˙̃q term in the control law. The control law proposed is
structured as a PD-PBC law, since the control law consist of a term proportional to the position
error (Kp) and a term proportional to the derivative of this error (Kd).
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Theorem 4.1. Consider the error dynamics in (4.12). The control law

û = −Kpq̃ −Kd
˙̃q, (4.14)

with Kp, Kd ∈ R3×3, Kp = K>p > 0 and Kd = K>d > 0, asymptotically stabilizes the system
globally with the equilibrium [q̃, P̃]> = (03,03).

Proof. Since

˙̃q = Ψ(q)P̃, (4.15)

the control law in (4.14) transforms system (4.12) into ˙̃q

˙̃
P

 =

[
03×3 Ψ(q)

−Ψ>(q) −Ψ>(q)KdΨ(q)

] ∂H̃d

∂q̃ (q̃, P̃)

∂H̃
∂P̃

(q̃, P̃)


ỹ = Ψ(q)

∂H̃

∂P̃
(P̃) = ˙̃q,

(4.16)

with the Hamiltonian

H̃d(q̃, P̃) =
1

2
P̃>P̃ +

1

2
q̃>Kpq̃. (4.17)

The desired equilibrium of the system is [q̃, P̃]>∗ = (03,03). Then, the partial derivative of the
Hamiltonian with respect to the states, evaluated at the desired equilibrium, is given by

[
∇H̃d

]
∗

=

 ∂H̃d

∂q̃ (q̃, P̃)

∂H̃d

∂P̃
(q̃, P̃)


∗

=

[
Kpq̃

P̃

]
∗

=

[
03

03

]
, (4.18)

while evaluation of the Hessian matrix yields

[
∇2H̃d

]
=

 ∂2H̃d

∂q̃2
∂2H̃d

∂q̃∂P̃

∂2H̃d

∂P̃∂q̃
∂2H̃d

∂P̃2

 =

[
Kp 03×3

03×3 I3

]
, (4.19)

which is positive definite and independent of the states. This implies that the closed-loop Hamil-
tonian has a minimum in the origin, i.e. argmin

{
H̃d(q̃, P̃)

}
= 06. Hence, and following from (2.6),

the Hamiltonian is positive definite with respect to the equilibrium. On the other hand, the time
derivative of the Hamiltonian function (4.17) is given by

˙̃
Hd(q̃, P̃) = −

(
∂H̃d

∂P̃
(q̃, P̃)

)>
Ψ>(q)KdΨ(q)

(
∂H̃d

∂P̃
(q̃, P̃)

)
= − ˙̃q>Kd

˙̃q ≤ 0. (4.20)

Hence, the desired equilibrium is stable in the sense of Lyapunov with the Lyapunov function
H̃d. Asymptotic stability, however, cannot be proven with Lyapunov’s second method, as the time
derivative of the Lyapunov function is not negative definite relative to the equilibrium (condition
iv of Theorem 2.1). Therefore, it is necessary to conduct another stability analysis; in this case,
LaSalle’s invariance principle is applied to prove asymptotic stability of the closed-loop system.

Let

Ω :=
{
q̃, P̃ ∈ R3

∣∣ ˙̃
Hd = 0

}
. (4.21)
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Following from LaSalle’s invariance principle, if a point can stay identically in Ω, it is a AS
equilibrium of the system. Furthermore, since H̃d is radially unbounded, the stability properties
of the system are global. Recalling that the matrices Kd and Ψ(q) are full rank, it follows from
(4.20) that if ˙̃

Hd = 0,

˙̃q ≡ 03 ⇔ ΨP̃ ≡ 03 ⇔ P̃ ≡ 03.

Hence,

P̃ ≡ 03 =⇒ ˙̃
P ≡ 03 ⇔ −Ψ>Kpq̃ −����

���
�:03

Ψ>(q)KdΨ(q)P̃ ≡ 03 ⇔ Ψ>Kpq̃ ≡ 03 ⇔ q̃ ≡ 03.

Therefore, ˙̃
Hd ≡ 0, if and only if,

q̃ ≡ 03

P̃ ≡ 03.
(4.22)

By LaSalle’s invariance principle, the system is GAS with the equilibrium [q̃, P̃]> = (03,03). QED

4.2.2 Control without velocity measurements

As discussed in Chapter 2, the PERA is not equipped with velocity sensors. Hence, in this
subsection, the control law proposed in Theorem 4.1 is adapted to overcome this issue. The next
theorem proposes a control law which allows stabilization of the system without the necessity of
velocity measurements. In the method used here, proposed in Dirksz, Scherpen, and Ortega (2008),
the dynamics of the system are extended by the introduction of a new, virtual state xc ∈ R3, which
is linearly related to the position errors. This state is used to inject damping into the closed-loop
system (Wesselink, Borja, and Scherpen, 2018). As opposed to the method of Dirksz, Scherpen,
and Ortega (2008), the control law proposed does not require any partial differential equations to
be solved.

Theorem 4.2. Consider the error dynamics in (4.12). Define the dynamics of the new state xc
as

ẋc = −Rc (KIz +Kcxc) , (4.23)

with z = q̃ + xc, Rc, KI , Kc ∈ R3×3, Rc = R>c > 0, KI = K>I > 0 and Kc = K>c > 0. Then, the
control law

û = −KIz (4.24)

renders the error system GAS with the equilibrium [q̃, P̃, xc]
> = (03,03,03).

Proof. The definitions in (4.23) and (4.24) transform system (4.12) into
˙̃q

˙̃
P

ẋc

 =


03×3 Ψ(q) 03×3

−Ψ>(q) 03×3 03×3

03×3 03×3 −Rc




∂H̃d

∂q̃ (q̃, P̃, xc)

∂H̃d

∂P̃
(q̃, P̃, xc)

∂H̃d

∂xc
(q̃, P̃, xc)


ỹ = Ψ(q)

∂H̃d

∂P̃
(q̃, P̃, xc) = ˙̃q,

(4.25)
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with the Hamiltonian

H̃d(q̃, P̃, xc) =
1

2
z>KIz +

1

2
P>P +

1

2
x>c Kcxc. (4.26)

The desired equilibrium of the system is [q̃, P̃, xc]
>
∗ = (03,03,03). Then, the partial derivative of

the Hamiltonian with respect to the states, evaluated at the desired equilibrium, is given by

[
∇H̃d

]
∗

=


∂H̃d

∂q̃ (q̃, P̃, xc)

∂H̃d

∂P̃
(q̃, P̃, xc)

∂H̃d

∂xc
(q̃, P̃, xc)


∗

=


KIz

P̃

KIz +Kcxc


∗

=


03

03

03

 , (4.27)

while evaluation of the Hessian matrix yields

[
∇2H̃d

]
=


∂2H̃d

∂q̃2
∂2H̃d

∂q̃∂P̃
∂2H̃d

∂q̃∂xc

∂2H̃d

∂P̃∂q̃
∂2H̃d

∂P̃2
∂2H̃d

∂P̃∂xc

∂2H̃d

∂xc∂q̃
∂2H̃d

∂xc∂P̃
∂2H̃d

∂x2
c

 =


KI 03×3 KI

03×3 I3 03×3

KI 03×3 KI +Kc

 , (4.28)

which is positive definite and independent of the states. This implies that the closed-loop Hamil-
tonian has a minimum in the origin, i.e. argmin

{
H̃d(q̃, P̃)

}
= 06. Hence, and following from

(2.6), the Hamiltonian is positive definite with respect to the equilibrium. Furthermore, the time
derivative of the Hamiltonian function (4.26) is given by

˙̃
Hd(q̃, P̃, xc) = −

(
∂H̃d

∂xc
(q̃, P̃, xc)

)>
Rc

(
∂H̃d

∂xc
(q̃, P̃, xc)

)
≤ 0. (4.29)

Therefore, the desired equilibrium is stable in the sense of Lyapunov with the Lyapunov function
H̃d. Asymptotic stability, however, cannot be proven with Lyapunov’s second method, as the time
derivative of the Lyapunov function is not negative definite relative to the equilibrium (condition
iv of Theorem 2.1). Therefore, it is necessary to conduct another stability analysis; again, LaSalle’s
invariance principle is applied to prove asymptotic stability of the closed-loop system.

Let

Ω :=
{
q̃, P̃, xc ∈ R3

∣∣ ˙̃
Hd = 0

}
. (4.30)

Following from LaSalle’s invariance principle, if a point can stay identically in Ω, it is a AS
equilibrium of the system. moreover, since H̃d is radially unbounded, the stability properties of
the system are global. Recalling that the matrices KI , Kc, Rc and Ψ(q) are full rank, it follows
from (4.29) that if ˙̃

Hd = 0,

∂H̃d

∂xc
≡ 03.

Following from the dynamics of xc, this implies that

ẋc ≡ 03 =⇒ d

dt
(KIz +Kcxc) = KI ż +Kc���

03

ẋc ≡ 03 ⇔ ż ≡ 03.
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From the definition of z, it follows that

ż ≡ ˙̃q +���
03

ẋc ⇔ ˙̃q ≡ 03 ⇔ Ψ(q)P̃ ≡ 03 ⇔ P̃ ≡ 03.

Therefore,

P̃ ≡ 03 =⇒ ˙̃
P ≡ 03 ⇔ −Ψ(q)>KIz ≡ 03 ⇔ z ≡ 03.

In the dynamics of xc, this renders

ẋc = Rc

(
��
�*

03
KIz +Kcxc

)
≡ 03 ⇔ xc ≡ 03,

which, by the definition of z, implies

z = q̃ +��*
03xc ≡ 03 ⇔ q̃ ≡ 03.

Therefore, ˙̃
Hd ≡ 0, if and only if,

q̃ ≡ 03

P̃ ≡ 03

xc ≡ 03.

(4.31)

By LaSalle’s invariance principle, the system is GAS with the equilibrium [q̃, P̃]> = (03,03,03).
QED

4.2.3 Saturated control without velocity measurements

In the original controller code of the PERA, the input signal from the PD control strategy is
saturated at the limits provided in (3.11) and (3.12). However, input signal saturation is known
to be a source of performance degeneration (Ma and Yang, 2008). Therefore, the control law in
Theorem 4.2 was adapted such that it becomes saturated itself. Based on the work of van den Bos
(2019), it is expected that this control law performs better than the one proposed in Theorem 4.2.
The resulting saturated control law which renders the error dynamics stable in the zero equilibrium
is proposed in the following theorem.

Theorem 4.3. Consider the error dynamics in (4.12). Define a new state xc ∈ R3 with the
dynamics

ẋc = −Rc
(

3∑
i=1

eiαi tanh (βizi) +Kcxc

)
, (4.32)

with z = q̃ + xc, Rc, Kc ∈ R3×3, Rc = R>c > 0, Kc = K>c > 0 and αi, βi > 0. Then the saturated
control law

û = −
3∑
i=1

eiαi tanh (βizi) (4.33)

renders the error system GAS with the equilibrium in [q̃, P̃, xc]
> = (03,03,03).
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Proof. The definitions in (4.32) and (4.33) transform system (4.12) into the closed-loop system
˙̃q

˙̃
P

ẋc

 =


03×3 Ψ(q) 03×3

−Ψ>(q) 03×3 03×3

03×3 03×3 −Rc




∂H̃d

∂q̃ (q̃, P̃, xc)

∂H̃d

∂P̃
(q̃, P̃, xc)

∂H̃d

∂xc
(q̃, P̃, xc)


ỹ = Ψ(q)

∂H̃d

∂P̃
(q̃, P̃, xc) = ˙̃q,

(4.34)

with the Hamiltonian

H̃d(q̃, P̃, xc) =

3∑
i=1

ai
βi

ln (cosh (βizi)) +
1

2
P>P +

1

2
x>c Kcxc. (4.35)

The desired equilibrium of the system is [q̃, P̃, xc]
>
∗ = (03,03,03). Then, the partial derivative of

the Hamiltonian with respect to the states, evaluated at the desired equilibrium, is given by

[
∇H̃d

]
∗

=


∂H̃d

∂q̃ (q̃, P̃, xc)

∂H̃d

∂P̃
(q̃, P̃, xc)

∂H̃d

∂xc
(q̃, P̃, xc)


∗

=


3∑
i=1

eiαi tanh (βizi)

P̃

3∑
i=1

eiαi tanh (βizi) +Kcxc


∗

=


03

03

03

 , (4.36)

while evaluation of the Hessian matrix yields

∇2H̃d =


3∑
i=1

eie
>
i αiβi

[
1− tanh2 (βizi)

]
03×3

3∑
i=1

eie
>
i αiβi

[
1− tanh2 (βizi)

]
03×3 I3 03×3

3∑
i=1

eie
>
i αiβi

[
1− tanh2 (βizi)

]
03×3

3∑
i=1

eie
>
i αiβi

[
1− tanh2 (βizi)

]
+Kc

 ,
(4.37)

such that, at the desired equilibrium, the Hessian becomes

[
∇2H̃d

]
∗

=


3∑
i=1

eie
>
i αiβi 03×3

3∑
i=1

eie
>
i αiβi

03×3 I3 03×3

3∑
i=1

eie
>
i αiβi 03×3

3∑
i=1

eie
>
i αiβi +Kc

 . (4.38)

Following from (4.37) and (4.38), the Hessian matrix is positive definite and has its maximum
located in the desired equilibrium. This implies that the closed-loop Hamiltonian has a minimum
in the origin, i.e. argmin

{
H̃d(q̃, P̃)

}
= 06. Therefore, and following from (2.6), the Hamiltonian is

positive definite with respect to the equilibrium. Moreover, the time derivative of the Hamiltonian
function (4.35) is given by

˙̃
Hd(q̃, P̃, xc) = −

(
∂H̃d

∂xc
(q̃, P̃, xc)

)>
Rc

(
∂H̃d

∂xc
(q̃, P̃, xc)

)
≤ 0. (4.39)

Hence, the desired equilibrium is stable in the sense of Lyapunov with the Lyapunov function
H̃d. Asymptotic stability, however, cannot be proven with Lyapunov’s second method, as the time
derivative of the Lyapunov function is not negative definite relative to the equilibrium (condition iv
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of Theorem 2.1). Hence, it is necessary to conduct another stability analysis. Once more, LaSalle’s
invariance principle is applied to prove asymptotic stability of the closed-loop system.

Let

Ω :=
{
q̃, P̃, xc ∈ R3

∣∣ ˙̃
Hd = 0

}
. (4.40)

Following from LaSalle’s invariance principle, if a point can stay identically in Ω, it is a AS
equilibrium of the system. Moreover, since H̃d is radially unbounded, the stability properties of
the system are global. Recalling that the matrices Kc, Rc and Ψ(q) are full rank, it follows from
(4.39) that if ˙̃

Hd = 0,

∂H̃d

∂xc
≡ 03.

Following from the dynamics of xc, this implies that

ẋc ≡ 03 =⇒ d

dt

(
3∑
i=1

eiαi tanh (βizi) +Kcxc

)

=

(
3∑
i=1

eie
>
i αiβi

[
1− tanh2 (βizi)

])
︸ ︷︷ ︸

>0

ż +Kc���
03

ẋc ≡ 03 ⇔ ż ≡ 03.

From the definition of z, it follows that

ż ≡ ˙̃q +���
03

ẋc ⇔ ˙̃q ≡ 03 ⇔ Ψ(q)P̃ ≡ 03 ⇔ P̃ ≡ 03.

Therefore,

P̃ ≡ 03 =⇒ ˙̃
P ≡ 03 ⇔ −Ψ(q)>

3∑
i=1

eiαi tanh (βizi) ≡ 03 ⇔ z ≡ 03.

In the dynamics of xc, this renders

ẋc = Rc


���

���
���:

033∑
i=1

eiαi tanh (βizi) +Kcxc

 ≡ 03 ⇔ xc ≡ 03,

which, by the definition of z, implies

z = q̃ +��*
03xc = 03 ⇔ q̃ ≡ 03.

Therefore, ˙̃
Hd ≡ 0, if and only if,

q̃ ≡ 03

P̃ ≡ 03

xc ≡ 03.

(4.41)

By LaSalle’s invariance principle, the system is GAS with the equilibrium [q̃, P̃]> = (03,03,03).
QED
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4.3 PERA control

4.3.1 Joint control
In the experiments, the control law proposed in Theorem 4.3 is used to stabilize the error dynamics
of the trajectory. The total torque that should be exerted on the joints follows from the definition
of ũ, (4.9), (4.11) and (4.33) and is given by

u =
∂V

∂q
(q) + Ψ−>(qd)

dΨ−1(qd)q̇d
dt

−
3∑
i=1

eiαi tanh (βizi) . (4.42)

The control law above can be physically interpreted as follows. The gradient of the potential energy
with respect to the joint positions compensates for the gravitational forces acting on the PERA.
The second term can be seen as the desired torques on the joints if there are no gravitational
forces acting on the joints and there are no errors in the joint positions. The final term in (4.42)
eliminates the state errors in the system.

The values of α should be designed such that the control input abides by the saturation limits in
(3.14). The maximum allowable values of α depend on the maximum and minimum of the first
two terms of (4.42).

In the code for the PERA, the desired torque is found with control law (4.42), which is then
transformed into a signal in counts as in (3.10) and (3.13). In the next chapter, this control
strategy is tested on the PERA.

4.3.2 Gripper control
For the application of the trajectory tracking control in the coming chapter, the gripper is required
to hold the marker tight. Therefore, the input to the gripper motor is set to the a constant positive
signal, i.e.

ucounts,G = 18000. (4.43)

Setting the input to the gripper motor to this level ensures that the marker is held tight, while the
maximum continuous current over the motor is not exceeded (see Appendix B).



Chapter 5

Results and discussion

This chapter aims to validate the controllers developed in Chapter 4, and discuss the corresponding
results. First, the desired trajectory is defined, such that the end-effector of the PERA follows the
path of a circle in the Cartesian space. Second, the control law proposed in Theorem 4.3 is applied to
the mathematical model of the PERA in simulations, with the desired trajectory which was defined
beforehand. From the simulations, the control strategy is taken and step by step implemented into
the physical PERA. When the performance of the control strategy is deemed sufficiently successful,
the strategy is compared with the non-saturated version proposed in Theorem 4.2. Next, the
controllers are implemented to perform a ’drawing routine’. Furthermore, other trajectories are
applied to the control law, to verify the performance of the control law on other trajectories.
Moreover, a heuristic approach is proposed to enhance the quality of the drawings produced by
the PERA. Finally, the chapter concludes with the extension of the system to five DoF, allowing
control over the orientation of the marker with respect to the canvas.

5.1 Desired trajectory

The controller proposed in Theorem 4.3 is validated by letting the end-effector of the PERA follow
the path of a circle. The final application of this experiment is to let the gripper hold a marker,
such that the PERA can draw a circle on a canvas which is placed upright and in front of the
PERA (normal to the X-axis in the Cartesian space). To this end, we let the first joint remain in
the zero position, while the second and third joints follow a sine and cosine trajectory relative to
the position shown in Figure 3.2, respectively. As a result, the desired trajectory becomes

qd =


qd,1

qd,2

qd,3

 =


0

arcsin
(
r
L2

)
sin
(

2π
T t
)

π
2 − arcsin

(
r
L2

)
cos
(

2π
T t
)
 (5.1)

with r ∈ R+ the radius of the circle, T ∈ R+ the period of the circle trajectory and t ∈ R+ the
time. Substituting the value of L2 and setting T = 15 [s] and r = 0.2 [m] yields

qd ≈


0

0.43 sin (0.42t)

1.57− 0.43 cos (0.42t)

 . (5.2)
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Figure 5.1: Cartesian y- and z-coordinates of the desired circle trajectory of the end-effector of the
PERA in the plane x = 0.44

If this trajectory is followed precisely, this would allow the PERA to draw a circle with the Cartesian
coordinates (Stover and Weisstein, n.d.)

x =
√
L2

2 − r2 ≈ 0.44 (5.3)

y = r sin

(
2π

T
t

)
≈ 0.2 sin (0.42t) (5.4)

z = −L1 − r cos

(
2π

T
t

)
≈ 0.36− 0.2 cos (0.42t) . (5.5)

The circle, in Cartesian coordinates, is depicted in Figure 5.1

The desired trajectory of the PERA is visualized using MATLAB® and the Robotic Toolbox
developed by Corke et al. (1996) (see Appendix C for the script). The result is in Figure 5.2,
where the red line is the path to be followed by the end-effector.

(a) 3D view (b) Side view

Figure 5.2: Visualization of the desired trajectory of the PERA

Following from (4.4) and (5.2), the second term of the control law (4.42), which can be seen as the



39 5.2. Simulations

desired input when there are no position errors, gravitational forces or damping, becomes

Ψ−>(qd)
dΨ−1(qd)q̇d

dt
=


0.0015 cos(0.42t)

−0.032 sin(0.42t)

0.0015 cos(0.42t)

 . (5.6)

This term induces the desired frictionless acceleration of the joints. Due to the large period of the
desired trajectory, the magnitude of this term is relatively small compared to the other terms in
the control law. Based on (3.6) and (5.6), the values of α should be selected according to

α =


α1

α2

α3

 ≤


11.03

1.71

6.15

 , (5.7)

such that saturation of the control law (4.42) within the limits in (3.14) is ensured.

5.2 Simulations
Before testing the controller on the actual PERA system, simulations are preformed to verify the
stability of the controller first. Tuning of the controller gains plays an important role in obtaining
the desired performance of the closed-loop system. Since the number of gains to be tuned is quite
large (α, β, Kc, Rc), some simplifications are made. First of all, the values of α are set slightly
lower than their limits, i.e.

α =


11.0

1.7

6.0

 . (5.8)

Furthermore, the gain matrices Kc and Rc are set to be diagonal matrices to limit the amount of
gains to tune.

To determine a starting point for the manual tuning of the controller, Lyapunov’s first method
is used. A tuning loop is designed in MATLAB®, such that the real parts of the poles of the
linearized closed-loop system around the equilibrium are all strictly negative, ensuring stability
near the equilibrium. The tuning loop can be found in Appendix D. From this starting point,
simulations were preformed in Simulink®, using the mathematical model (4.2) with the control
law (4.42). The model used for the simulations can be found in Appendix E. By further tuning of
the controller using trial and error, the desired results were obtained.

The main finding from the tuning is that the value of β should be sufficiently large to ensure a
fast response of the controller; when the values of β are too small, oscillations occur in the error
of the positions. Furthermore, it is found that the tuning of the diagonal elements of the matrices
Kc and Rc is a very delicate procedure; by trial and error the controller is tuned to the desired
performance, but this is a time-consuming and difficult task.

The final controller gains selected for the simulations is given by

α =


11.0

1.7

6.0

 β =


40

30

30

 Kc = diag{1, 2, 0.1} Rc = diag{0.4, 0.11, 0.5}. (5.9)

Simulations are performed using these controller gains and the initial position of the PERA set
as the downward position, q0 = 03. Furthermore, the initial time is set to zero, i.e. t0 = 0. The
results of the simulation are plotted in Figure 5.3.
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Figure 5.3: Simulation results. The colored lines represent the position of the joints during the
simulation. The dashed lines represent the desired positions.

The figure shows that the convergence to the trajectory is successful and fast. To allow a better
observation of the start of the simulation, Figure 5.3 was zoomed into to obtain Figure 5.4. It
becomes clear that, although there is some undesired movement of the joints as a result of the
trajectory initiation, the simulations converge to the desired trajectory smoothly. The peak in the
response of the shoulder pitch joint (q1) is caused by the force on this joint, resulting from the
motion of the elbow pitch joint (q3).
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Figure 5.4: First second of the simulation results

These results are inserted into the visualization script (Appendix C) to observe the trajectory
followed by the end-effector of the PERA in the simulations. As can be seen in the resulting figure
(Figure 5.5), the model indeed converges to the desired trajectory (Figure 5.2).

From these results, it can be concluded that the selected control law theoretically stabilizes the
system on the desired trajectory. Convergence is achieved well within one second, and the overshoot
of the elbow pitch joint (q3) is small and rapidly rejected. The first joint shows a response to the
strong motion of the third joint during the start of the trajectory, but this disturbance is rapidly
rejected as well.
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(a) 3D view (b) Side view

Figure 5.5: Visualization of the simulated trajectory of the PERA

5.3 Experiments

By conducting experiments, the control law (4.42) is verified in a real environment. This is done
in several steps. First, the gravity compensation of the control law is verified. Second, SPR is
preformed. Next, trajectory tracking is performed on the desired trajectory of a circle. Using
these results, a canvas is placed such that the PERA draws a circle. Finally, other trajectories are
considered, the drawing routine is enhanced by proposing a heuristic approach, and the orientation
of the end-effector is considerd.

5.3.1 Gravity compensation

In the first experiments, the potential energy of the PERA as specified in (3.6) was verified. The
partial derivative of the potential energy with respect to the positions acts as a gravity compensator
for the system. Therefore, (3.6) can be verified by using only the first term of (4.42) as the control
law, such that

u =
∂V

∂q
(q). (5.10)

If the potential energy is correct, the gravity will be compensated by the input, resulting in the
PERA standing still, i.e. q = q0. To test this, the PERA was manually moved to various random
initial positions before the controller was activated. With the control law activated, there was no
motion from the initial position. This confirms the gravity compensation by the control law, which
implies that the determined potential energy is correct.

5.3.2 Set Point Regulation

Next, following in the footsteps of van den Bos (2019), SPR was performed with the PERA to
further verify the modeling of the system. The goal of SPR indicates that the desired velocities of
the joints are equal to zero, such that the second term of the control law (4.42) is equal to zero,
i.e.

u =
∂V

∂q
(q)−

3∑
i=1

eiαi tanh (βizi) . (5.11)
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In this experiment, it was found that the control law (5.11) works for SPR, as was previously
determined in van den Bos (2019). However, the control law renders a steady-state error. By tuning
of the controller, this steady-state error can be reduced, but not fully eradicated. Furthermore,
it was found in the SPR experiments that the tuning from simulations did not return the desired
results in the experiments. When manually tuning the control law, one particularly interesting
feature of the tuning was found; to obtain a smooth motion (meaning no large overshoot or
oscillations) from the initial position to steady-state, the value of β should not be too large,
especially not when the initial error is relatively large. However, for the steady-state error to be
as small as possible, the value of β should be large, such the input signal arising from the error is
sufficiently large.

This finding poses an issue for the tracking of the desired trajectory (5.2) from the initial position,
since the initial error of the elbow pitch joint would be rather large (q̃3 ≈ 1.14 rad). Therefore,
the PERA is initialized in a point close to the starting point of the trajectory, using SPR. During
the first five seconds of the experiment, the desired positions are defined as

qd =


0

0

1.14 sin(0.31t)

 , (5.12)

such that at time t = 5, the PERA is initialized in

q0 ≈


0

0

1.14

 . (5.13)

Because the desired position of the elbow pitch joint changes from zero to 1.14 with time, the
position error is never large and the value of β can be set to a large value without causing oscillations
or large overshoots. At time t = 5, the virtual state is set to xc = 03, such that the system is
initialized in the desired starting position.

5.3.3 Trajectory tracking
Finally, the trajectory tracking experiments were conducted, aiming to track the desired trajectory
(5.2). As a starting point, the gains obtained in simulations and SPR experiments were used.
However, several issues arised, e.g., the input signal to the shoulder yaw joint (q2), was not strong
enough to let the joint follow the trajectory at the desired velocity. This was caused by the factor
α2, which should be tuned at a higher value to make the shoulder yaw joint converge to the
trajectory. On the other hand, increasing the value of α2 would violate the limits on α in (5.7),
which secure the saturation in (3.12). However, it is known that the initial position of the shoulder
pitch joint is approximately equal to zero, while the desired position of this joint is equal to zero,
i.e. q2,0 ≈ q2,d = 0. This indicates that the magnitude of the gravity compensation ((3.6)) for
the shoulder yaw joint remains well below its maximum during the experiment, since the second
element of the gravity compensation is equal to zero when the position of the shoulder pitch joint
is equal to zero. Therefore, the value of α can be slightly increased in the experiments without
jeopardizing the saturation limits of the motors.

Another issue arised in the motion of the the elbow pitch joint (q3) of the PERA. The joint
expressed a shaking behaviour, which can be seen as oscillations of the joint about the desired
trajectory. In an attempt to follow the desired trajectory using the original PD control strategy of
the PERA, it was determined that the shaking was also present in this experiment. This indicates
that the shaking was not caused by the control law used, but by the hardware of the PERA.
Presumably, the shaking was caused by either the natural damping of the PERA, looseness in the
gearing, or hysteresis in the sensor measurements. By extensive tuning of the controller gains and
increasing the sampling rate of the control loop from 100 [Hz] to 200 [Hz], the shaking of the joint
was eradicated. The oscillations are still present in the input signal, but they are not (visibly)
carried through to the movement of the joint. It should be mentioned that this tuning eradicates
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the shaking only on the desired trajectory. A different trajectory may require a different tuning.
For example, during the initialization of the PERA, the elbow pitch joint does express the shaking
behaviour (see Figure 5.7).

The final controller gains selected in the experiments is given by

α =


11.0

2.0

6.0

 β =


400

100

120


Kc =diag{30, 20, 200} Rc =diag{0.0001, 0.00001, 0.45}.

(5.14)

This tuning was selected to obtain the desired performance while removing the shaking from the
motion of the elbow joint. In the experiments, SPR is preformed in the first five seconds to initialize
the PERA. After that, the value of the new state xc is set to xc = 03 and the trajectory is initiated.
The results are plotted in Figure 5.6. The results show that the PERA stabilizes on the desired
trajectory successfully.
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Figure 5.6: Experimental results. The colored lines represent the position of the joints during the
experiment. The dashed lines represent the desired positions.

By zooming in to the first two seconds of the experiment, it is found that convergence is fast
(Figure 5.7). Furthermore, by observing the position errors in Figure 5.8, it is found that the
PERA follows the desired trajectory closely in steady-state; for the two joints that make the major
motions (q2 and q3), the absolute position error remains smaller than 0.05 [rad], i.e. |q̃| < 0.05.

Figure 5.9 depicts the input to the motors during the experiments. Obviously, the input signals
match the motion of the joints in Figure 5.6. Moreover, the figure shows oscillations in the input
signal of the elbow pitch joint (q3), especially when the motion of the joint is downward, i.e. along
the direction of gravity. These oscillations are what remains of the previously discussed shaking of
the joint. As opposed to the shaking, the oscillations in the input signal could not be eradicated
by tuning of the controller.

For the sake of visualization of the trajectory followed by the PERA in the experiments, the data
obtained in the experiments were plugged into the visualization script (Appendix C). Comparison
of Figure 5.10 and Figure 5.2 confirms that the trajectory covered is approximately equal to the
desired trajectory.
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Figure 5.7: First two seconds of the experimental results
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Figure 5.8: Position errors in the experiment
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Figure 5.9: Input signals in the experiment

From the experiments it becomes clear that there exists a steady-state error in the joint positions.
This steady-state error could presumably be reduced by using an integral term in the control law.
However, introducing a integral term has some drawbacks. Most importantly, the introduction of
an integral term would cause the pH structure of the closed-loop system to be lost, such that the
system can only be proven locally AS by Lyapunov’s first method (van den Bos, 2019). Moreover,
the introduction of an integral term may cause large overshoots, oscillations or slower response
of the controller (Albertos et al., 1997). Since the steady-state errors are reasonably small, it is
decided not to use an integral term in the control law.
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(a) 3D view (b) Side view

Figure 5.10: Visualization of the trajectory covered by the PERA in experiments

5.3.4 Comparison with non-saturated control

To compare the performance of the saturated controller with another controller, the non-saturated
control law proposed in Theorem 4.2 was implemented into the system, resulting in the overall
control law

u =
∂V

∂q
(q) + Ψ−>(qd)

dΨ−1(qd)q̇d
dt

−KIz. (5.15)

This input signal is translated to a signal in counts following (3.13), which is then saturated at the
limits in (3.12). The system is initialized during the first five seconds, in the exact same way as in
the experiments with the saturated controller; using the control law in (4.42) with the controller
gains

α =


11.0

2.0

6.0

 β =


400

100

120


Kc =diag{30, 20, 200} Rc =diag{0.0001, 0.00001, 0.45}

(5.16)

for SPR. At time t = 5, the value of the new state xc is set to xc = 03 and the trajectory is
initiated using control law (5.15) with the controller gains

KI = diag{400, 300, 600} Kc = diag{30, 10, 60} Rc = diag{0.0008, 0.00001, 0.5}. (5.17)

As in the saturated experiments, the tuning was selected to obtain the desired performance while
removing the shaking from the motion of the elbow joint. The results are plotted in Figure 5.11.
The results show that the performance is comparable with that of the saturated control law. The
main difference that can be seen from comparing figures 5.6 and 5.11 is that the non-saturated
control strategy results in larger errors in the position of the elbow joint (q3). The position errors
and input signals of the three joints are given in Figures 5.12 and 5.13.

From comparison of Figures 5.8 and 5.12 it can be observed that for q1 and q3, the performance
of the saturated controller is better in terms of position errors. For q2, however, the position error
is larger when using the saturated controller. The logical explanation of these observations is that
due to the shape of the hyperbolic tangent used in the saturated controller, the input in at a
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Figure 5.11: Experimental results (non-saturated). The colored lines represent the position of the
joints during the experiment. The dashed lines represent the desired positions.
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Figure 5.12: Position errors in the experiment (non-saturated)
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Figure 5.13: Input signals in the experiment (non-saturated)

high level for errors larger than some limit value. In the case of the second joint, the value of
α is too small due to the saturation limit, resulting in relatively poor performance compared to
the non-saturated control law. Furthermore, when the input signals to the joints are compared
(Figures 5.9 and 5.13), they seem equal. The signal to the second joint is oscillating more for the
non-saturated control law, while the oscillations in the third joint are larger when the saturated
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control law is used.

Again, the trajectory followed by the PERA is visualized in Figure 5.14. It can be observed from
comparison of this figure to Figures 5.2 and 5.10 that the motion obtained with the non-saturated
control law is less well positioned on the X-axis than the result with the saturated control law.
This is caused by the larger error in the elbow pitch joint (q3).

(a) 3D view (b) Side view

Figure 5.14: Visualization of the trajectory covered by the PERA in experiments (non-saturated)

In Table 5.1, the results of the saturated experiments and non-saturated experiments are further
assessed on four properties. As could be expected, the saturated control law has a relatively low
maximum input signal. Only for the shoulder pitch joint, the maximum input is higher with the
saturated control law, which is caused by the large value of β. The total energy used by the motors
is surprisingly equal for the first two joints. The third joint, however, uses more energy with the
saturated control law. This is caused by the oscillations in the control signal. As a result, the
maximum position errors of the first and third joint are both smaller when the saturated control
law is used. The maximum position error of the second joint is smaller for the non-saturated
controller. This is, as discussed above, caused by the low value of α in the saturated controller of
the second joint. The average error positions are all proportional to the maximum error positions.

Property Parameter Control type
Saturated Non-saturated

Maximum input
signal [counts]

max{u1} 2, 128 2, 094
max{u2} 12, 122 15, 800
max{u3} 15, 646 16, 000

Total energy used
[N ·m]

∫
|u1| 24.04 23.48∫
|u2| 16.60 16.83∫
|u3| 75.23 56.30

Maximum position
error [rad]

max{q̃1} 3.00 · 10−4 1.90 · 10−3

max{q̃2} 2.67 · 10−2 1.06 · 10−2

max{q̃3} 3.29 · 10−2 6.39 · 10−2

Average position
error [rad]

mean{q̃1} 2.17 · 10−4 1.90 · 10−3

mean{q̃2} 1.50 · 10−2 5.40 · 10−3

mean{q̃3} 1.85 · 10−2 4.13 · 10−2

Table 5.1: Comparison of the performance of the saturated controller with the performance of
the non-saturated controller during the coverage by the end-effector of one circle trajectory, i.e.
5 < t ≤ 20.
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Remark (Table 5.1). To obtain the total energy used, the input signal in counts was translated
to the resulting current over the motors using the polynomial approximations of the non-linear
amplifiers of the motors (3.13). The absolute values of these data were numerically integrated by
the trapezoidal rule (Atkinson, 2008),∫ 5

20

|ui| dt = ∆t

(
N−1∑
k=2

|ui,k|+
|ui,N |+ |ui,1|

2

)
, (5.18)

with the sampling time ∆t = 1
200 [Hz] = 0.005 [s], ui.k the input over the motor(s) of joint qi in

data point k and N = 3001 the number of data points. This value was multiplied by the nominal
voltage over the motors, resulting in the total energy used in [N ·m].

Note that the total energy used is the total energy used per motor. Hence, the total energy used
by the shoulder and elbow pitch joints (q1 and q3) is twice as large.

5.3.5 Drawing a circle
For a final visualization of the trajectory followed by the system in the experiments, the end-effector
of the PERA is equipped with a marker. To allow the gripper to hold the marker tight, a holder
part is used (Figure 5.15). This part was originally developed for the thesis of Leeuwerik (2015),
its intention being to allow the PERA to hold painting brushes. In the experiments, the holder
was used to allow some motion of the marker to compensate for errors in the joint positions and
sensor measurements. To ensure that the marker maintains contact with the canvas, a spring was
added between the marker and the gripper.

(a) Image of the holder with marker
(b) CAD drawing of the holder - by Leeuwerik
(2015)

Figure 5.15: Marker holder for the PERA

After mounting the marker and holder to the gripper of the PERA, a canvas (whiteboard) is placed
such that a circle is drawn on the canvas when the PERA is following the desired trajectory. The
result is shown in Figure 5.16a. To show the path of the marker on the canvas more clearly, the
photo was edited, resulting in Figure 5.16b. The resulting drawing (Figure 5.16) closely mimics
the shape of a circle. Still, it is not a perfect circle, which is due to joint position errors, motion of
the marker and the sensor offsets discussed in Chapter 3. The position errors are partially caused
by the normal force exerted on the end-effector by the canvas. Due to the unpredictable position
sensor offsets, it was difficult to position the canvas correctly; in most experiments, only half of the
circle was drawn, or the motion of the PERA was completely halted by the normal force exerted
by the canvas. Furthermore, it can be seen in the result that the pressure of the marker on the
canvas is not constant over time.
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(a) Photo (b) Edited

Figure 5.16: Circle drawn by the PERA

5.3.6 Other trajectories
To further demonstrate the performance of the control law proposed in Theorem 4.3, it was decided
to design two more trajectories for the end effector, such that the PERA would draw the shapes of a
lemniscate and a heart. These trajectories are considered more complex than the circle trajectory.
Due to the complexity of the calculations of the inverse kinematics of the PERA, the desired
trajectories are polynomial approximations of the desired positions of the joints. To ensure a good
fit (in the sense of least-squares), only one period of motion is tracked, i.e. the shape is tracked
once per experiment. Because the closed-loop system was found to theoretically converge to any
desired trajectory, the results of simulations for the other trajectories are not provided.

Lemniscate

For the application of drawing of a lemniscate (infinity symbol) with a period of 15 seconds, the
desired Cartesian coordinates of the end effector are defined as (Weisstein, n.d.[b])

x = 0.44

y =
0.16
√

2 cos
(

2π
T t
)

sin2
(

2π
T t
)

+ 1

=
0.23 cos (0.42t)

sin2 (0.42t) + 1

z = −L1 +
0.2
√

2 sin
(

2π
T t
)

cos
(

2π
T t
)

sin2
(

2π
T t
)

+ 1

= −0.36 +
0.28 sin (0.42t) cos (0.42t)

sin2 (0.42t) + 1
,

(5.19)

such that the PERA follows a lemniscate-shaped path in the plane x = 0.44. The y- and z-
coordinates are depicted in Figure 5.17.

The trajectory of the end-effector in Cartesian space was translated to the desired trajectory of
the PERA in joint space by using the inverse kinematics function (ikine()) from the Robotic
Toolbox by Corke et al. (1996) in MATLAB®. This function returned a set of 3001 data points
with the desired joint angles at discrete times between zero and fifteen seconds after the initiation
of the trajectory (one period). However, since the goal of this thesis is trajectory tracking and not
SPR, the desired trajectory of the joints should be a differentiable function. Therefore, 20th order
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Figure 5.17: Cartesian y- and z-coordinates of the desired lemniscate trajectory of the end-effector
of the PERA in the plane x = 0.44

polynomial approximations of the desired joint trajectories were constructed, using the polyfit()
function in MATLAB®. The functions of the desired trajectory, along with the MATLAB® script
used to compute these functions, can be found in Appendix F. The approximations found were
used to compute the desired steady-state input (ud).

As was done previously for the circle trajectory, the desired trajectory of the PERA is visualized
in Figure 5.18.

(a) 3D view (b) Side view

Figure 5.18: Visualization of the desired trajectory of the PERA (lemniscate)

Similar to the circle trajectory experiments, the PERA is initialized using SPR in the first five
seconds of the experiment, with

qd =


0.05

0.50

1.45 sin(0.31t)

 , (5.20)

such that at time t = 5, the PERA is initialized at

q0 ≈


0.05

0.50

1.45

 . (5.21)
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Note that the second term in (5.20) is not a time function, as opposed to the third term. This
is due to the larger strength of the motors in the third joint, which would cause oscillations in
the response. For the second joint, the motor can exert its maximum force without causing any
oscillations, due to its relatively low strength. At time t = 5, the virtual state is set to xc = 03,
such that the system is initialized in the desired starting position.

Next, the desired lemniscate trajectory is started, with the saturated control law proposed in (4.42)
and the controller gains as in (5.14). The result is shown in Figure 5.19.
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Figure 5.19: Experimental results (lemniscate). The colored lines represent the position of the
joints during the experiment. The dashed lines represent the desired positions.

This trajectory is visualized in Figure 5.20. From comparison with Figure 5.18, it becomes clear
that the trajectory travelled by the end-effector is not perfect, but approaches the desired path
quite successfully. Furthermore, the lemniscate is slightly tilted around the Y -axis compared with
the desired trajectory. When attempting to draw the lemniscate on a canvas, this poses an issue.

(a) 3D view (b) Side view

Figure 5.20: Visualization of the trajectory covered by the PERA in experiments (lemniscate)
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Heart

For the application of drawing of a heart, the desired Cartesian coordinates of the end effector are
defined as (Weisstein, n.d.[a])

x = 0.44

y =
1

80
16 sin3

(
2π

T
t

)
= 0.2 sin3 (0.42t)

z =
1

80

(
13 cos

(
2π

T
t

)
− 5 cos

(
4π

T
t

)
− 2 cos

(
6π

T
t

)
− cos

(
8π

T
t

))
− 0.4

= 0.16 cos (0.42t)− 0.06 cos (0.84t)− 0.03 cos (1.26t)− 0.01 cos (1.68t)− 0.4,

(5.22)

such that the PERA follows a heart-shaped path in the plane x = 0.44. The y- and z-coordinates
are depicted in Figure 5.21.
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Figure 5.21: Cartesian y- and z-coordinates of the desired heart trajectory of the end-effector of
the PERA in the plane x = 0.44

Using the same method as discussed for the lemniscate, 20th order polynomial approximations of
the desired trajectory were constructed. These approximation, as well as the MATLAB® script
used to find them, can be found in Appendix F. In this script, the desired input (ud) is constructed
from the polynomials.

Again, the desired trajectory of the PERA is visualized in Figure 5.22.

Similar to the other experiments, the PERA was initialized with SPR in the first five seconds of
the experiment, with

qd =


0.19

0

0.71 sin(0.31t)

 , (5.23)

such that at time t = 5, the PERA is initialized at

q0 ≈


0.19

0

0.71

 . (5.24)
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(a) 3D view (b) Side view

Figure 5.22: Visualization of the desired trajectory of the PERA (heart)

At time t = 5, the virtual state is set to xc = 03, such that the system is initialized in the desired
starting position.

Then, the desired heart trajectory is started, using the saturated control law proposed in (4.42) and
the controller gains as in (5.14). The result is shown in Figure 5.23. This trajectory is visualized
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Figure 5.23: Experimental results (heart). The colored lines represent the position of the joints
during the experiment. The dashed lines represent the desired positions.

in Figure 5.24. From comparison with Figure 5.22, it becomes clear that the trajectory travelled
by the end-effector shows some visible differences with the desired trajectory. Furthermore, there
is some variance of the x-coordinate of the end-effector, which should be invariant. These issues
are problematic for drawing the heart in the current setup.
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(a) 3D view (b) Side view

Figure 5.24: Visualization of the trajectory covered by the PERA in experiments (heart)

5.3.7 Drawing enhancement

To enhance the drawings produced by the PERA, the position sensor offsets, position errors and
slightly wrong placement of the canvas have to be dealt with. Furthermore, in the case of the
lemniscate and heart, errors of the polynomial approximations are present. Therefore, a heuristic
approach to update the desired position of the shoulder pitch joint (q1) is proposed. This strategy
aims to regulate the position of the joint, such that the force exerted by the canvas on the end-
effector of the PERA remains below the desired maximum. When the forces measured in the wrist
joints of the PERA are above a specified level, the desired position of the shoulder pitch joint (qd,1)
is decreased, such that the x-coordinate of the end-effector in the Cartesian space decreases and
the PERA can continue its motion without being halted by the canvas. When the forces in the
wrist decrease to below another specified level, the value of qd,1 is gradually brought back to its
original value, such that the end-effector maintains contact with the canvas.

To determine the ’normal’ force measured by the force sensors during the motion of the PERA,
i.e. without disturbances of the canvas, the averages of the signal of the two force sensors in the
wrist during the first circle motion (5 ≤ t ≤ 20) are determined by

µW1 =

4001∑
k=1001

FW1(k)

N

µW2 =

4001∑
k=1001

FW2(k)

N
,

(5.25)

with µ the mean signal form the force sensor during initialization, F the signal from the force
sensor, k the sample-number, such that for k = 1, t(k) ≈ 0 [s], for k = 1001, t(k) ≈ 5 [s] and for
k = 4001, t(k) ≈ 20 [s], N = 3001 the number of samples used to determine the mean and the
subscripts W1 and W2 denoting the first and second force sensor in the wrist, respectively.

Using the means, the total force deviation e is given by

e(k) = |FW1(k)− µW1|+ |FW2(k)− µW2| . (5.26)
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To filter the noise coming from the sensor measurements, a simple moving average (SMA) is applied
to the total force deviation, such that

eSMA(k) =
1

M

k∑
i=k−M+1

e(i), (5.27)

with M = 200 the number of samples used for the SMA.

The following sequence is used to update the desired position of the shoulder pitch joint, starting
after the first circle motion, i.e. at t = 20.

qd,1,new(k) = qd,1(t(k))− c(k), (5.28)

where the compensation angle c in radians is updated according to

c(k) =

{
c(k − 1) + 0.002, if eSMA(k) > l1

c(k − 1)− 0.002, if eSMA(k) < l2 and c(k − 1) > 0,
(5.29)

with l1 and l2 denoting the upper and lower bounds on the SMA of the total force deviation. These
bounds ensure that the magnitude of the compensation angle remains constant when the SMA is
within the bounds. If the SMA is greater than the upper limit, the compensation angle increases
and when the SMA is smaller than the lower limit, the value of the compensation angle decreases
back to zero.

Use of this heuristic approach allows the dealing with sensor offsets and errors in the positions of
the joint and placement of the canvas. This ensures that the marker remains in contact with the
canvas, as long as the canvas is close to the correct position. The downside of this approach is that
the value of qd,1 is changed with respect to the desired trajectory. As a result, the object drawn
by the PERA does not have the exact shape that is intended. Furthermore, when the pressure of
the marker on the canvas is such that the total force deviation is oscillating around the limit on
the total force deviation, this causes oscillations in the desired position of the shoulder pitch joint.
In time, this issue was largely solved by tuning of the upper and lower bounds.

In a new experiment, a circle is drawn by the PERA using the proposed heuristic approach with

l1(k) =4.7t(k)− 906

l2(k) =4.7t(k)− 606.
(5.30)

These bounds are determined by comparison of the values of eSMA during experiments without
external disturbances and during experiments where the canvas acted as an external disturbance.

An average experiment would result in drawings such as the one depicted in Figure 5.25. The
corresponding SMA of the total force deviation (eSMA) and compensation angle c are plotted in
Figure 5.26. However, the drawing quality could be greatly improved by altering the orientation
of the canvas; the best result is shown in Figure 5.27a. To show the path of the marker on the
canvas more clearly, the photo was edited, resulting in Figure 5.27b. Comparison of Figure 5.27 to
Figure 5.16 shows that the pressure of the marker on the canvas is larger and more constant, and
therefore the quality of the drawing is better. It can be concluded that the error in the drawing
arising from the positioning errors of sensors, joints and canvas is worse than the errors arising
from the change in trajectory due to the heuristic approach.

Furthermore, an attempt is made to draw the shapes of the heart and lemniscate, by using the
proposed heuristic approach. For the lemniscate, the limits are set to

l1(k) =800

l2(k) =500.
(5.31)
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(a) Photo (b) Edited

Figure 5.25: Average result with the heuristic approach for drawing enhancement

The best result obtained is shown in Figure 5.28. The shaking of the elbow joint results in the
irregularities which are visible in the drawing. Although the shape of the lemniscate is not perfect,
the result is close to the desired trajectory.

For the heart, the limits are set to

l1(k) =3.3t(k) + 750

l2(k) =3.3t(k) + 450.
(5.32)

The best result is shown in Figure 5.29. It is clearly visible that the shape is not exactly as
desired. On the other hand the shape of a heart is clearly recognizable, and contact with the
canvas is maintained throughout the trajectory.

From the experiments, it is concluded that the heuristic approach for drawing enhancement allows
the dealing with errors and offsets, enabling the PERA to draw the desired shapes. It should be
mentioned, however, that the proposed heuristic approach is far from optimal. While it improves
the drawing results of the circle, the result was still very dependent on the placement of the canvas
with respect to the PERA. For the application of drawing with robotic arms, it may be interesting
to further develop this heuristic approach in the future, by involving other joints and force sensors
in the heuristic approach and adapting the limits and update sequence of the compensation angle.
Another option to maintain a constant pressure on the canvas may be to use the Jacobian matrix
obtained in this work to design a force control strategy as described in Spong and Vidyasagar
(2008), Craig (2009), and Siciliano and Khatib (2016) and many other works.
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Figure 5.26: Values of eSMA and the resulting compensation angle of the shoulder pitch joint. The
blue lines represent the results when there is no disturbance. The red lines represent the case of
the experiment resulting in Figure 5.25

(a) Photo (b) Edited

Figure 5.27: Circle drawn by the PERA, using the heuristic approach for drawing enhancement

(a) Photo (b) Edited

Figure 5.28: Lemniscate drawn by the PERA, using the heuristic approach for drawing enhance-
ment



Chapter 5. Results and discussion 58

(a) Photo (b) Edited

Figure 5.29: Heart drawn by the PERA, using the heuristic approach for drawing enhancement



59 5.3. Experiments

5.3.8 End-effector orientation

In another approach to improving the drawings produced by the PERA, control of the orientation
of the end-effector is investigated. Including the wrist of the PERA allows the orientation of the
marker to remain perpendicular to the canvas. This is assumed to improve the drawing quality. To
allow implementation of the wrist joints into the system, all steps previously done for the shoulder
pitch, shoulder yaw and elbow pitch need to be repeated for the wrist joints.

System modeling (5 DoF)

As a first step towards implementation of the wrist joint in the experiments, a new model is
constructed. The following schematic representation of the PERA follows from the inclusion of the
wrist.

Figure 5.30: Schematic representation of the PERA (5DoF)

The corresponding DH parameters are in Table 5.2. Using the Robotic Toolbox, a new graphical
model is obtained, as shown in Figure 5.31.

i αi−1 ai−1 di θi

1 π
2 0 0 q1

2 −π2 0 −0.32 q2

3 π
2 0 0 q3 − π

2

4 0 0.28 0 q4

5 −π2 0 0 q5

6 0 0.20 0 0

Table 5.2: Denavit-Hartenberg link parameters (5 DoF)

Using the same procedure as used for the model with three DoF, the inertia matrix and potential
energy vector are obtained (see Appendix G). The magnitude of the potential energy is such that

∣∣∣∣∂V∂q (q)

∣∣∣∣ ≤


7.74

1.57

1.57

0.13

0.13


. (5.33)

From the inertia matrix, the Cholesky factorization of its inverse (Ψ(q)) is obtained. Furthermore,
the gyroscopic forces matrix for the five DoF model, which is non-zero in this case, is computed
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(a) q1 = 0°, q2 = 0°, q3 = 0°, q4 = 0°, q5 = 0° (b) q1 = 20°, q2 = 0°, q3 = 70°, q4 = 20°, q5 = 0°

Figure 5.31: Graphical model of the PERA (5 DoF)

following the procedure of Venkatraman et al. (2010). Moreover, the equation for the desired
steady-state input is now defined as

ud =
∂V

∂q
(qd) + Ψ−>(qd)

dΨ−1(qd)q̇d
dt

−Ψ−>(qd)J(qd, pd)Ψ
−1(qd)q̇d︸ ︷︷ ︸

γ

. (5.34)

Due to the high complexity of the γ-term in this equation, it could not be computed in real-
time during simulations or experiments. Therefore, the value of this input for each time step was
computed beforehand and then taken from an external file during simulations.

Due to the changed desired steady-state input, the control law for the torque on each joint is now
given by

u =
∂V

∂q
(q) + γ −

3∑
i=1

eiαi tanh (βizi) . (5.35)

Experimental setup of the wrist

Next, the experimental setup of the wrist is investigated. The behaviour of the non-linear amplifiers
in the wrist is plotted in Figure 5.32. Because this relationship is virtually linear, it is approximated
by

ucounts,W1,W2
= 70.5ucurrent,W1,W2

. (5.36)

Furthermore, the relation between current over the wrist motors and torque on the joints is given
by

ucurrent,W1
=

1000 · 1000 · (utorque,q4 + utorque,q5)

Gr · η · km · kd
(5.37)

ucurrent,W2
=

1000 · 1000 · (utorque,q4 − utorque,q5)

Gr · η · km · kd
, (5.38)
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Figure 5.32: Behaviour of non-linear amplifiers in the wrist - by Rijs et al. (2014)

with Gr = 290 (Rijs et al., 2014), η = 0.70 (Appendix B), km = 21.2 [mN ·mA ] (Appendix B) and
kd = 2.

This leads to the saturation limits on the torque inputs on the wrist joints as

−1.95 ≤ uq4 + uq5 ≤ 1.95

−1.95 ≤ uq4 − uq5 ≤ 1.95.
(5.39)

Desired trajectory (5 DoF)

For the end-effector to follow the path of a circle, the desired trajectory in joint space is given by

qd =



qd1

qd2

qd3

qd4

qd5


=



0

arcsin
(
r
L2

)
sin
(

2π
T t
)

π
2 − arcsin

(
r
L2

)
cos
(

2π
T t
)

arcsin
(
r
L2

)
cos
(

2π
T t
)

− arcsin
(
r
L2

)
sin
(

2π
T t
)


(5.40)

with L2 ∈ R+ the new length of the second link (lower arm), r ∈ R+ the radius of the circle,
T ∈ R+ the period of the circle trajectory and t ∈ R+ the time. Due to limitations in the RoM
of the wrist yaw, it is not feasible to take the desired radius as r = 0.2 [m] again. Therefore, the
radius is set to r = 0.14 [m]. Substituting L2 = 0.28 [m] and setting T = 15 [s] yields

qd =



0

0.52 sin (0.42t)

1.57− 0.52 cos (0.42t)

0.52 cos (0.42t)

−0.52 sin (0.42t)


. (5.41)

Compared to the original desired trajectory in (5.2), the amplitude of the second and third joint
has become larger. Furthermore, the wrist joints have been added to assure that the orientation
of the marker is perpendicular to that of the canvas. The Cartesian x-coordinate of the plane on
which to draw is given by x =

√
L2

2 − r2 + L3, were L3 = 0.2 [m] is the length of the hand, such
that x ≈ 0.44. The desired trajectory is visualized in Figure 5.33
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(a) 3D view (b) Side view

Figure 5.33: Visualization of the desired trajectory of the PERA (5 DoF)

From the desired trajectory (5.41), it follows that the second term of the control law (5.35)

|γ| ≤



0.0032

0.044

0.0052

0.0030

6.89 · 10−5


. (5.42)

Assuming that for the desired wrist gains α4 = α5, and following from (5.33), the saturation limits
in (3.14) and (5.39) are always satisfied if

α =



α1

α2

α3

α4

α5


≤



11.03

1.71

6.14

0.85

0.85


. (5.43)

Simulations (5 DoF)

Using the new modeling of the PERA, simulations are performed. The values of α are selected as

α =



11.0

2.0

6.0

0.85

0.85


(5.44)
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in both the simulations and experiments. In the simulations, the other controller gains are selected
as

β =



40

40

30

30

30


Kc = diag{30, 10, 5.3, 1.8, 1.8} Rc = diag{0.2, 0.23, 1.22, 1.5, 1.5} (5.45)

The simulations are performed using this tuning for the controller and the initial position of the
PERA set as the downward position, i.e. q0 = 05. Moreover, the initial time is set to zero, i.e.
t0 = 0. The results of the simulation are plotted in Figure 5.34.
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Figure 5.34: Simulation results (5 DoF). The colored lines represent the position of the joints
during the simulation. The dashed lines represent the desired positions.

The figure shows that the convergence to the trajectory is successful and fast. To allow a better
observation of the start of the simulation, Figure 5.34 is zoomed into to obtain Figure 5.35. It
becomes clear that, although there is some undesired movement of the joints as a result of the
trajectory initiation, the simulations smoothly converge to the desired trajectory. Considerable
overshoots, like that of the elbow pitch joint (q3), are especially undesirable. Therefore, the system
is initialized at a position close to the starting point of the trajectory during the experiments.

The results were visualized to observe the trajectory followed by the end-effector of the PERA in
the simulations. As can be seen in the resulting figure (Figure 5.36), the overshoot of the elbow
pitch joint results in a serious error on the trajectory, but after the first second, the system indeed
converges to the desired trajectory (Figure 5.33).
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Figure 5.35: First second of the simulation results (5 DoF)

(a) 3D view (b) Side view

Figure 5.36: Visualization of the simulated trajectory of the PERA (5DoF)

Experiments (5 DoF)

Next, experiments with the PERA are conducted. The α controller gains are selected as in (5.44).
Moreover, the other controller gains are selected as

β =



400

100

120

50

50


Kc = diag{30, 20, 200, 0.1, 0.1} Rc = diag{0.0001, 0.00001, 0.055, 0.0001, 0.0001}

(5.46)
In the first experiments, a new issue with the elbow of the PERA arised. Due to inequalities between
the two elbow motors, the elbow yaw joint (YE) exhibited undesired motion. Since incorporation
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of the second elbow joint in the control would lead to tighter restrictions on the magnitude of the
control signal for the elbow pitch joint, it was decided to deal with the motion of the elbow yaw
joint by altering the inputs to the wrist joints, such that

qd,4,new =qd,4 cos(YE) + qd,5 sin(YE)

qd,5,new =− qd,4 sin(YE) + qd,5 cos(YE)

[
∂V

∂q4

]
new

=
∂V

∂q4
cos(YE) +

∂V

∂q5
sin(YE)

[
∂V

∂q5

]
new

=− ∂V

∂q4
sin(YE) +

∂V

∂q5
cos(YE)

γ4,new =γ4 cos(YE) + γ5 sin(YE)

γ5,new =− γ4 sin(YE) + γ5 cos(YE).

(5.47)

The experimental results are shown in Figure 5.37.
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Figure 5.37: Experimental results (5DoF). The colored lines represent the position of the joints
during the experiment. The dashed lines represent the desired positions.

By zooming in to the first two seconds of the experiment, it is found that convergence is successful
(Figure 5.38). Furthermore, by observing the position errors in Figure 5.39, it is found that the
magnitude of these errors is within the same range as that of the second and third joint. Compared
to the experiments with three DoF (Figure 5.8), the magnitude of the error on the position of the
second joint is larger in the new experiments. The first and third joint, however, show the same
behaviour as in the three DoF case. The magnitude of the position errors on the wrist joints are of
the same order as those of the elbow joint. Moreover, it should be noted that, while the controller
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Figure 5.38: First two seconds of the simulation results (5 DoF)

gains of the elbow did not change with respect to the gains in the three DoF experiment, the
shaking did return to the motion of the joint. This is caused by the fact that the amplitude of this
joint is increased in the five DoF experiments.

Figure 5.40 depicts the input to the motors during the experiments. Clearly, the input signals
match the motion of the joints in Figure 5.37. As in the experiments with three DoF, the figure
shows oscillations in the input signal of the elbow pitch joint (q3), especially when the motion of
the joint is downward.

The trajectory followed by the PERA in the experiment is visualized in Figure 5.41. From com-
parison to Figure 5.33 it can be seen that the followed trajectory is close to the desired trajectory,
although errors in the five joints make the curves of the circle less appealing than the results with
the three DoF arm. Due to these errors, it was deemed impossible to draw a circle without using
some drawing enhancement technique.

First, to allow the PERA with five DoF to draw, the possibilities for using the previously proposed
heuristic approach for drawing enhancement are investigated. However, in the new experiments,
there are forces arising from the motion of the wrist, such that disturbances arising from the canvas
cannot be distinguished by the wrist force sensors. Therefore, the following new heuristic approach
for drawing enhancement is proposed.

qd,1,new(k) = qd,1(t(k))− c(k), (5.48)

where

c(k) =

{
c(k − 1) + 0.002, if q̃(k)>q̃(k) > l1

c(k − 1)− 0.002, if q̃(k)>q̃(k) < l2 and c(k − 1) > 0,
(5.49)

with

l1(k) =0.1

l2(k) =0.05.
(5.50)

These limits are defined such that they are never exceeded when there is no disturbance from the
canvas. Using the proposed heuristic approach, several attempts were made to draw the circle.
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Figure 5.39: Position errors in the experiment (5 DoF)
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Figure 5.40: Input signals in the experiment (5 DoF)
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(a) 3D view (b) Side view

Figure 5.41: Visualization of the trajectory covered by the PERA in experiments (5DoF)

(a) Photo (b) Edited

Figure 5.42: Attempted circle drawing (5 DoF)

Unfortunately, the approach did not improve the drawing as desired. The result is in Figure 5.42.
Due to time constraints in the project, it was not possible to test another approach. Again, to
perform a more successful drawing routine is a subject of future work. Presumably, implementing
a force control strategy on the shoulder pitch joint would yield better results.



Chapter 6

Conclusion and future work

In this concluding chapter, the main contributions presented in this thesis are summarized. The
control law and results are discussed, as well as the drawing routine. Other contributions are
mentioned and insights about the tuning of the controller gains are provided. Furthermore, rec-
ommendations for future work in the line of this research are provided.

6.1 Concluding remarks

In this work, a PBC approach for trajectory tracking was developed for the PERA. In theory, the
controller globally asymptotically stabilizes the system on the desired trajectory. Furthermore, the
control law proposed in this work is naturally saturated and does not require velocity measurements.
The control law uses gravity compensation, which is based on accurate modeling of the gravitational
force action on the PERA. Moreover, it is not necessary to solve any partial differential equations
when this control approach is used. The control approach proposed was validated by executing a
drawing routine with the PERA.

In the conducted experiments, it was found that with the appropriate tuning of the controller gains,
the desired trajectory was followed with a minor steady-state error. Especially for the shoulder
pitch joint, which is actuated by relatively high-power motors, the saturated control law performed
well, such that the steady-state error converged to a very low value (max{q̃1} = 3.00·10−4). As was
shown by van den Bos (2019), for SPR, the steady-state errors could be eradicated by introducing
an integral gain in the controller, at the cost of the global property of the theoretical asymptotic
stability of the closed-loop system. For trajectory tracking, however, this is not the case, because
the desired positions are time-dependent. Although the introduction of an integral gain might
improve the results, it was decided not to do this, because for the drawing routine, other factors
had a more significant impact on the quality of the drawings produced by the PERA. While the
errors in the joint positions were generally small, the positioning of the canvas to draw on and
the offsets of the position sensors were considered to have a greater influence on the quality of the
drawing routine.

Therefore, a heuristic approach was developed to update the desired positions of the joints based
on the force exerted by the canvas on the PERA, such that the quality of the drawings produced
by the PERA was enhanced.

Moreover, the performance of the proposed control law was compared to the performance of a non-
saturated variant. For both control laws, the controller gains were tuned to the desired performance.
It was concluded that the performance of the saturated control law is better in terms of steady-state
position errors, as long as the power of the actuating motors is slightly larger than the minimally
required power. The total energy used does not differ much between the two control laws.

Further contributions of this work are

• the design of polynomial approximations of the behaviour of the non-linear amplifiers in the
motors. These polynomials relate the current over the motors to the signal in counts.

• the solving of issues in the existing controller code of the PERA, such as
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– errors in the motor and gearing parameters used to translate the desired torque to a
motor input.

– an error in the sensor used to measure the position of the shoulder pitch. Originally,
the desired position of the shoulder pitch was compared to the position of the shoulder
yaw.

– an error in the coded limitations on the RoM of joints. Originally, the shoulder pitch
joint was limited at 0 ≤ q1 ≤ π

2 , such that the desired position could not be set to a
negative value.

• several insights about the tuning of the proposed control law. In these findings the experi-
mental performance of the elbow pitch joint is not considered, since it was tuned to remove
the shaking from the motion of the joint. This tuning did not necessarily result in the best
performance in terms of convergence.

– The value of α should be set as high as possible while maintaining the saturation limits
of the control signal, such that the full potential of the motor can be used for actuation.

– To minimize the steady-state error, the value of β should be set to a high value, such
that when the position error is small, the input remains strong enough to make the
joint move closer to the desired trajectory. When the position error is relatively large,
however, a large value of β will cause the magnitude of the input signal to be close to
the maximum input signal. If the value of α is large, this will result in overshoot or
oscillations in the motion of the joint. Therefore, best performance will be achieved
with this control law if the system is initialized close to the desired starting position.

– The tuning of the values of elements of the Kc matrix remains a bit vague. In this
research, Kc was chosen as a diagonal matrix. In simulations, different values (0.1 ∼ 30)
resulted in the best performance of the control law on different joints. Similarly, in
the experiments, a wide range of values (0.1 ∼ 200) yielded the best results. The
difference in tuning between simulations and experiments is most likely caused by the
natural damping of the PERA, which is not considered in the model that was used for
simulations.

– Furthermore, the tuning of the values in the Rc matrix, remains vague as well. As is
the case for the Kc matrix, Rc was chosen as a diagonal matrix in this work. It is clear
that the values should be relatively small, since higher values cause oscillations in the
value of xc, which are amplified in the control signal. In the simulations, the values
ranged between 0.11 and 1.5, while in the experiments, the best results were obtained
with values of a much smaller magnitude (1.0 · 10−5 ∼ 1.0 · 10−4). Again, this difference
is presumably caused by the natural damping of the PERA.

6.2 Future work
In this work, the simulations and experimental results obtained with the proposed control law have
been presented. The findings in this work give rise to several opportunities for future work on the
control law, drawing routine and PERA.

During the transition from simulations to experiments, it was found that the natural damping of
the mechanical system has a significant influence on the behaviour of the system. Therefore, it
is recommended to test the control law on mechanical systems where the natural damping of the
system is known. This will decrease the effort in the transition from simulations to experiments,
such that new insights in the tuning of the control law can be obtained. Furthermore, new trajecto-
ries can be investigated in experiments, possibly using more DoF. For instance, Dr. Daniel Dirkz,
who is an university contact at Philips Drachten, mentioned during a short visit that a possible
trajectory would be to mimic the motion of a human shaving. Experiments with these types of
trajectories would make the research more interesting from a business perspective. Another op-
portunity for future research would be the introduction of variable controller gains. For example,
the value of β can be set to be dependent on time or error, such that the motion of the joints
will be smooth for large errors while ensuring a small steady-state error. Another example would
be to define the value of α such that the full potential of the motors can be used, regardless of
the magnitude of the gravity compensating component. Moreover, the effects of selecting the gain
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matrices Kc and Rc as positive definite matrices in stead of diagonal matrices may be investigated.

There are several options to enhance the results of the drawing routine, e.g., the drawing enhance-
ment heuristic proposed in this work may be adapted by considering other force sensors, joints
and limits. This will allow the drawing of more complex shapes. Another approach could be to
use a force control strategy to maintain a constant pressure on the canvas. In addition, visual
control may be applied to determine the orientation of the canvas in the Cartesian space. Using
the orientation of the canvas, a set of points on the canvas can be constructed, which can then be
translated into a desired trajectory in joint space by computing the inverse kinematics. Further-
more, the ideal drawing angle between the marker and canvas can be investigated. This will allow
a smooth motion of the marker over the canvas.

Finally, there are some suggestions for future work on the mechanical system of the PERA itself.
Most importantly, the sensors should be re-calibrated, such that the sensor signals correspond
closely to the actual joint positions. Furthermore, a recommendation is to experimentally deter-
mine an approximation of the natural damping of the system, such that this can be included in the
modeling and simulation. Finally, the cause of the shaking of the elbow joint should be determined
to solve this issue.
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Appendix A

PERA wiring

On the next page, the wiring diagram of the PERA is shown (Rijs et al., 2014). It should be noted
that in the current setup, the force sensor of the gripper is connected to the wrist board (4) in
stead of the grippers own board (3). For more information on these wiring changes, see (Leeuwerik,
2015; van den Bos, 2019).
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Appendix B

Data-sheets Maxon parts

Since the data-sheets of the Hall angle sensors produced by AMS are quite comprehensive, they are
not added here. The data-sheets can be found on https://ams.com/documents/20143/36005/
AS5040_DS000374_3-00.pdf/c4dd3ec3-24f4-f3a2-0eca-811af6c30c84 (AS5040) and https:
//ams.com/documents/20143/36005/AS5145_DS000398_1-00.pdf/4964e511-a5bd-4e73-2d33-
5259e407a179 (AS5145). Table B.1 lists the joints of the PERA and the corresponding Maxon
Motors parts.

Joint(s) Motor(s) Motor
Part No.

Gearing
Part No.

Encoder
Part No.

q1 S1 and S2 268216 166940 225783
q2 S3 268214 166940 225783
q3 E1 and E2 118752 166938 225778
q4 and q5 W1 and W2 110164 143979 228177

G 118641 110314 323052

Table B.1: Maxon part numbers

The following pages contain the data-sheets of the Maxon parts in the following order.

• Data-sheet motors q1 and q2.

• Data-sheet motors q3.

• Data-sheet motors q4 and q5.

• Data-sheet motor gripper.

• Data-sheet gearings q1, q2 and q3.

• Data-sheet gearings q4 and q5.

• Data-sheet gearing gripper.

• Data-sheet encoders q1 and q2.

• Data-sheet encoders q3.

• Data-sheet encoders q4 and q5.

• Data-sheet encoder gripper.

The data-sheets are taken from the Maxon catalog (https://www.maxongroup.com/).

https://ams.com/documents/20143/36005/AS5040_DS000374_3-00.pdf/c4dd3ec3-24f4-f3a2-0eca-811af6c30c84
https://ams.com/documents/20143/36005/AS5040_DS000374_3-00.pdf/c4dd3ec3-24f4-f3a2-0eca-811af6c30c84
https://ams.com/documents/20143/36005/AS5145_DS000398_1-00.pdf/4964e511-a5bd-4e73-2d33-5259e407a179
https://ams.com/documents/20143/36005/AS5145_DS000398_1-00.pdf/4964e511-a5bd-4e73-2d33-5259e407a179
https://ams.com/documents/20143/36005/AS5145_DS000398_1-00.pdf/4964e511-a5bd-4e73-2d33-5259e407a179
https://www.maxongroup.com/
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12 18 24 36 48
8170 8590 8810 8590 8490
301 213 165 106 78.6

7630 7910 8050 7840 7760
51.6 75.5 85.6 86.6 89.7

4 4 3.47 2.28 1.74
853 1000 1020 1000 1050
61.1 50.3 39.3 25.2 19.6
85 87 87 87 88

0.196 0.358 0.611 1.43 2.45
0.034 0.07 0.119 0.281 0.513
13.9 19.9 25.9 39.8 53.8
685 479 369 240 178
9.64 8.61 8.7 8.61 8.09
3.4 3.24 3.05 2.98 2.94
33.7 35.9 33.5 33.1 34.7

M 1:2

310005 310006 310007 310008 310009
268193 268213 268214 268215 268216

	
� 6.0 K/W
� 1.7 K/W
� 16.3 s
� 593 s
� -30…+100°C
� +125°C

� 0.05 - 0.15 mm
� 0.025 mm
� 5.6 N
� 110 N 

� 1200 N
� 28 N

� 1
� 13
� 260 g

ESCON 36/2 DC	 454
ESCON Module 50/5	 455
ESCON 50/5	 457
EPOS4 50/5	 463
EPOS4 Mod./Comp. 50/5	 463
EPOS2 P 24/5 	 470
MAXPOS 50/5	 473

Stock program
Standard program
Special program (on request)

Part Numbers

Specifications Operating Range Comments

n [rpm] Continuous operation
In observation of above listed thermal resistance 
(lines 17 and 18) the maximum permissible winding 
temperature will be reached during continuous op-
eration at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

maxon Modular System Details on catalog page 32

April 2019 edition / subject to change 	 maxon DC motor

according to dimensional drawing
shaft length 15.7 shortened to 8.7 mm

RE 30  ∅30 mm, Graphite Brushes, 60 Watt

Values at nominal voltage
1 Nominal voltage V
2 No load speed rpm
3 No load current mA
4 Nominal speed rpm
5 Nominal torque (max. continuous torque)	 mNm
6 Nominal current (max. continuous current)	 A
7 Stall torque mNm
8 Stall current A
9 Max. efficiency %

Characteristics
10 Terminal resistance W
11 Terminal inductance mH
12 Torque constant mNm/A
13 Speed constant rpm/V
14 Speed / torque gradient rpm/mNm
15 Mechanical time constant ms
16 Rotor inertia gcm2

	 Thermal data
17	 Thermal resistance housing-ambient
18	 Thermal resistance winding-housing
19	 Thermal time constant winding
20	 Thermal time constant motor
21	 Ambient temperature
22	 Max. winding temperature

	 Mechanical data (ball bearings)
23	 Max. speed� 12 000 rpm
24	 Axial play
25	 Radial play
26	 Max. axial load (dynamic)
27	 Max. force for press fits (static) 

(static, shaft supported)
28	 Max. radial load, 5 mm from flange

	 Other specifications
29	 Number of pole pairs
30	 Number of commutator segments
31	 Weight of motor

	 Values listed in the table are nominal.
	 Explanation of the figures on page 68.

	 Option
	 Preloaded ball bearings

Planetary Gearhead
∅32 mm
0.75 - 6.0 Nm
Page 348–355

Motor Data

Recommended Electronics:
Notes	 Page 32

Koaxdrive
∅32 mm
1.0 - 4.5 Nm
Page 359
Screw Drive
∅32 mm
Page 382–387

Encoder MR
256 - 1024 CPT,
3 channels
Page 433
Encoder HED_ 5540
500 CPT, 
3 channels
Page 440/442
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9 15 18 24 30 42 48 48 48
10000 9660 10200 9560 9860 11100 10300 8240 5050

110 60.8 53.9 36.9 30.5 25.2 20.1 15.2 8.52
8970 8430 8850 8330 8640 9920 9160 7040 3830
11.1 20.5 22.9 26.3 26.7 27.1 27.7 28.7 30
1.5 1.5 1.46 1.16 0.968 0.784 0.653 0.536 0.343
232 225 220 243 249 283 264 209 129
29.1 15.8 13.5 10.4 8.72 7.94 6.03 3.81 1.44
76 82 83 85 86 87 87 86 84

0.309 0.952 1.33 2.32 3.44 5.29 7.96 12.6 33.4
0.028 0.088 0.115 0.238 0.353 0.551 0.832 1.31 3.48
7.96 14.3 16.3 23.4 28.5 35.6 43.8 55 89.6
1200 670 586 408 335 268 218 174 107
46.5 44.7 48 40.3 40.4 39.8 39.6 39.8 39.7
5.68 4.87 4.77 4.55 4.47 4.4 4.37 4.37 4.35
11.7 10.4 9.49 10.8 10.6 10.6 10.5 10.5 10.5

M 1:2

118749 118750 118751 118752 118753 118754 118755 118756 118757
302002 302003 302004 302005 302006 302007 302001 302008 302009

	
� 14 K/W
� 3.1 K/W
� 12.5 s
� 612 s
� -30…+100°C
� +125°C

� 0.05 - 0.15 mm
� 0.025 mm
� 3.2 N
� 64 N 

� 800 N
� 16 N

� 1
� 11
� 130 g

ESCON Module 24/2	 454
ESCON 36/2 DC	 454
ESCON Module 50/5	 455
ESCON 50/5	 457
EPOS4 Mod./Comp. 24/1.5	 462
EPOS4 50/5	 463
EPOS4 Mod./Comp. 50/5	 463
EPOS2 P 24/5 	 470
MAXPOS 50/5	 473

Stock program
Standard program
Special program (on request)

Part Numbers

Specifications Operating Range Comments

n [rpm] Continuous operation
In observation of above listed thermal resistance 
(lines 17 and 18) the maximum permissible winding 
temperature will be reached during continuous op-
eration at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

maxon Modular System Details on catalog page 32

April 2019 edition / subject to change 	 maxon DC motor

according to dimensional drawing
shaft length 15.7 shortened to 4 mm

RE 25  ∅25 mm, Graphite Brushes, 20 Watt

Values at nominal voltage
1 Nominal voltage V
2 No load speed rpm
3 No load current mA
4 Nominal speed rpm
5 Nominal torque (max. continuous torque)	 mNm
6 Nominal current (max. continuous current)	 A
7 Stall torque mNm
8 Stall current A
9 Max. efficiency %

Characteristics
10 Terminal resistance W
11 Terminal inductance mH
12 Torque constant mNm/A
13 Speed constant rpm/V
14 Speed / torque gradient rpm/mNm
15 Mechanical time constant ms
16 Rotor inertia gcm2

	 Thermal data
17	 Thermal resistance housing-ambient
18	 Thermal resistance winding-housing
19	 Thermal time constant winding
20	 Thermal time constant motor
21	 Ambient temperature
22	 Max. winding temperature

	 Mechanical data (ball bearings)
23	 Max. speed� 14 000 rpm
24	 Axial play
25	 Radial play
26	 Max. axial load (dynamic)
27	 Max. force for press fits (static) 

(static, shaft supported)
28	 Max. radial load, 5 mm from flange

	 Other specifications
29	 Number of pole pairs
30	 Number of commutator segments
31	 Weight of motor

	 Values listed in the table are nominal.
	 Explanation of the figures on page 68.

	 Option
	 Preloaded ball bearings

Motor Data

Planetary Gearhead
∅26 mm
0.75 - 4.5 Nm
Page 346

Recommended Electronics:
Notes	 Page 32

Planetary Gearhead
∅32 mm
0.75 - 6.0 Nm
Page 348/349/352
Koaxdrive
∅32 mm
1.0 - 4.5 Nm
Page 359

DC-Tacho DCT
∅22 mm
0.52 V
Page 449
Brake AB 28
24 VDC
0.4 Nm
Page 491

Screw Drive
∅32 mm
Page 382–387

Encoder MR
128 - 1000 CPT,
3 channels
Page 432
Encoder Enc
22 mm
100 CPT, 2 channels
Page 437
Encoder HED_ 5540
500 CPT,
3 channels
Page 440/442
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M 1:1

110156 110158 110159 110160 110161 110162 110163 110164 110165 110166 110167 110168
139848 353023 353024 231171 353025 353026 231174 353027 353028 353029 316659 353603

	
� 20 K/W
� 6.0 K/W
� 10.2 s
� 313 s
� -30…+85°C
� +125°C

� 0.05 - 0.15 mm
� 0.012 mm
� 1 N
� 80 N 

� 440 N
� 2.8 N

� 0.05 - 0.15 mm
� 0.025 mm
� 3.3 N
� 45 N 

� 240 N
� 12.3 N

� 1
� 9
� 54 g

ESCON Module 24/2	 454
ESCON 36/2 DC	 454
ESCON Module 50/5	 455
ESCON 50/5	 457
EPOS4 Mod./Comp. 24/1.5	 462
EPOS4 Mod./Comp. 50/5	 463
MAXPOS 50/5	 473

6 9 9 12 12 15 18 24 24 36 48 48
9240 9690 8500 10200 9170 10000 9770 10500 8480 9630 9110 8210
83.1 57.9 49.6 45.8 40.5 36 29 23.7 18.4 14.2 9.99 8.84
6240 6530 5350 7060 6000 6890 6600 7380 5270 6420 5840 4940
5.91 6.88 7.04 6.96 6.95 6.93 6.92 6.9 6.97 6.86 6.75 6.86
1.08 0.859 0.77 0.681 0.613 0.534 0.432 0.347 0.283 0.21 0.147 0.135
19.4 22.1 19.8 23.7 20.9 22.9 22 23.7 18.9 21.1 19.2 17.6
3.29 2.59 2.04 2.17 1.72 1.65 1.29 1.12 0.721 0.606 0.393 0.325
67 70 69 72 70 72 72 73 70 72 71 70

1.82 3.48 4.42 5.53 6.96 9.09 14 21.5 33.3 59.4 122 148
0.106 0.223 0.288 0.363 0.445 0.585 0.891 1.37 2.1 3.69 7.3 8.97
5.9 8.55 9.73 10.9 12.1 13.9 17.1 21.2 26.2 34.8 48.9 54.3

1620 1120 981 875 790 689 558 450 364 274 195 176
500 454 446 444 455 452 457 456 461 468 487 479
21.3 20.5 20.4 20.2 20.3 20.2 20.1 20.1 20.1 20.1 20.2 20.1
4.07 4.32 4.37 4.36 4.26 4.27 4.2 4.2 4.16 4.09 3.97 4.01

Stock program
Standard program
Special program (on request)

Specifications Operating Range Comments

n [rpm] Continuous operation
In observation of above listed thermal resistance 
(lines 17 and 18) the maximum permissible winding 
temperature will be reached during continuous op-
eration at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

maxon Modular System � Details on catalog page 32

Part Numbers

maxon DC motor	 April 2019 edition / subject to change

A-max 22  ∅22 mm, Graphite Brushes, 6 Watt

Values at nominal voltage
1 Nominal voltage V
2 No load speed rpm
3 No load current mA
4 Nominal speed rpm
5 Nominal torque (max. continuous torque)	 mNm
6 Nominal current (max. continuous current)	 A
7 Stall torque mNm
8 Stall current A
9 Max. efficiency %

Characteristics
10 Terminal resistance W
11 Terminal inductance mH
12 Torque constant mNm/A
13 Speed constant rpm/V
14 Speed / torque gradient rpm/mNm
15 Mechanical time constant ms
16 Rotor inertia gcm2

Motor Data

	 Thermal data
17	 Thermal resistance housing-ambient
18	 Thermal resistance winding-housing
19	 Thermal time constant winding
20	 Thermal time constant motor
21	 Ambient temperature
22	 Max. winding temperature

	 Mechanical data (sleeve bearings)
23	 Max. speed� 9800 rpm
24	 Axial play
25	 Radial play
26	 Max. axial load (dynamic)
27	 Max. force for press fits (static) 

(static, shaft supported)
28	 Max. radial load, 5 mm from flange

	 Mechanical data (ball bearings)
23	 Max. speed� 9800 rpm
24	 Axial play
25	 Radial play
26	 Max. axial load (dynamic)
27	 Max. force for press fits (static) 

(static, shaft supported)
28	 Max. radial load, 5 mm from flange

	 Other specifications
29	 Number of pole pairs
30	 Number of commutator segments
31	 Weight of motor
	
	 Values listed in the table are nominal.
	 Explanation of the figures on page 68.

	 Option
	 Ball bearings in place of sleeve bearings

Planetary Gearhead
∅22 mm
0.1 - 0.6 Nm
Page 337/338
Planetary Gearhead
∅22 mm
0.5 - 2.0 Nm
Page 339/341

Encoder MEnc
∅13 mm
16 CPT, 2 channels
Page 417

Spur Gearhead
∅24 mm
0.1 Nm
Page 345

with terminals
with cables

Recommended Electronics:
Notes	 Page 32

Encoder MR
32 CPT,
2 / 3 channels
Page 429
Encoder MR
128 / 256 / 512 CPT,
2 / 3 channels
Page 430
Encoder Enc
22 mm
100 CPT, 2 channels
Page 437

Screw Drive
∅22 mm
Page 380/381
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M 1:1

118628 118629 118630 118631 118632 118633 118634 118635 118636 118637 118638 118639 118640 118641 118642

	
� 33 K/W
� 7.0 K/W
� 4.88 s
� 259 s
� -20…+65°C
� +85°C

� 0.05 - 0.15 mm
� 0.014 mm
� 0.8 N
� 15 N 

� 95 N
� 1.4 N

� 1
� 7
� 27 g

ESCON Module 24/2	 454
ESCON 36/2 DC	 454
ESCON Module 50/5	 455
ESCON 50/5	 457
EPOS4 Mod./Comp. 24/1.5	 462
MAXPOS 50/5	 473

3 3.6 3.6 4.8 6 6 7.2 9 10 12 15 18 21 24 30
12000 13600 11900 13600 13600 12100 13100 13800 13200 13300 13400 13000 14100 13800 14000

168 164 136 121 95.5 81 75.3 64 53.9 45.4 36.8 29.2 28 23.8 19.5
9520 10800 8780 10100 10300 8660 9790 10600 10100 10200 10400 9910 11100 10800 11000
1.22 1.32 1.58 1.92 2.05 2.17 2.12 2.17 2.32 2.3 2.31 2.36 2.29 2.33 2.28
0.72 0.72 0.72 0.72 0.602 0.558 0.495 0.422 0.383 0.319 0.259 0.212 0.192 0.167 0.134
7.44 8.13 7.11 8.58 9.25 8.35 9.03 10.1 10.5 10.4 10.5 10.4 11.1 11 10.9
3.46 3.51 2.69 2.73 2.33 1.87 1.82 1.69 1.52 1.25 1.03 0.814 0.809 0.688 0.556
50 53 53 57 60 60 61 63 64 65 65 66 66 66 66

0.867 1.02 1.34 1.76 2.57 3.21 3.96 5.32 6.6 9.56 14.6 22.1 26 34.9 54
0.021 0.025 0.032 0.046 0.073 0.092 0.114 0.164 0.223 0.316 0.486 0.75 0.871 1.19 1.79
2.15 2.31 2.65 3.14 3.97 4.46 4.96 5.95 6.94 8.27 10.2 12.7 13.7 16 19.7
4440 4130 3610 3040 2410 2140 1930 1600 1380 1160 932 750 696 595 485
1790 1830 1830 1700 1560 1540 1540 1430 1310 1340 1330 1300 1320 1300 1330
12.8 11.4 10.5 9.44 8.68 8.46 8.23 7.93 7.74 7.62 7.51 7.42 7.39 7.37 7.38

0.681 0.596 0.548 0.53 0.53 0.526 0.512 0.528 0.565 0.545 0.541 0.544 0.536 0.543 0.529

Stock program
Standard program
Special program (on request)

Part Numbers

Specifications Operating Range Comments

n [rpm] Continuous operation
In observation of above listed thermal resistance 
(lines 17 and 18) the maximum permissible winding 
temperature will be reached during continuous op-
eration at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

maxon Modular System Details on catalog page 32

April 2019 edition / subject to change 	 maxon DC motor

RE 13  ∅13 mm, Graphite Brushes, 3 Watt

Values at nominal voltage
1 Nominal voltage V
2 No load speed rpm
3 No load current mA
4 Nominal speed rpm
5 Nominal torque (max. continuous torque)	 mNm
6 Nominal current (max. continuous current)	 A
7 Stall torque mNm
8 Stall current A
9 Max. efficiency %

Characteristics
10 Terminal resistance W
11 Terminal inductance mH
12 Torque constant mNm/A
13 Speed constant rpm/V
14 Speed / torque gradient rpm/mNm
15 Mechanical time constant ms
16 Rotor inertia gcm2

Motor Data

	 Thermal data
17	 Thermal resistance housing-ambient
18	 Thermal resistance winding-housing
19	 Thermal time constant winding
20	 Thermal time constant motor
21	 Ambient temperature
22	 Max. winding temperature

	 Mechanical data (sleeve bearings)
23	 Max. speed� 16 000 rpm
24	 Axial play
25	 Radial play
26	 Max. axial load (dynamic)
27	 Max. force for press fits (static) 

(static, shaft supported)
28	 Max. radial load, 5 mm from flange

	 Other specifications
29	 Number of pole pairs
30	 Number of commutator segments
31	 Weight of motor

	 Values listed in the table are nominal.
	 Explanation of the figures on page 68.

Planetary Gearhead
∅13 mm
0.05 - 0.15 Nm
Page 328

Recommended Electronics:
Notes	 Page 32

Planetary Gearhead
∅13 mm
0.2 - 0.35 Nm
Page 329

Encoder MR
16 CPT,
2 channels
Page 426

Encoder MEnc
∅13 mm
16 CPT, 2 channels
Page 416

Encoder MR
64 - 256 CPT,
2 channels
Page 427/428
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RE 25, 10 W 125 81.1 91.0 91.0 97.7 97.7 104.4 104.4 104.4 111.1 111.1 111.1 111.1
RE 25, 10 W 125 MR 419 92.1 102.0 102.0 108.7 108.7 115.4 115.4 115.4 122.1 122.1 122.1 122.1
RE 25, 10 W 125 Enc 22 426 95.2 105.1 105.1 111.8 111.8 118.5 118.5 118.5 125.2 125.2 125.2 125.2
RE 25, 10 W 125 HED_5540 429/431 101.9 111.8 111.8 118.5 118.5 125.2 125.2 125.2 131.9 131.9 131.9 131.9
RE 25, 10 W 125 DCT 22 438 103.4 113.3 113.3 120.0 120.0 126.7 126.7 126.7 133.4 133.4 133.4 133.4
RE 25, 20 W 126 69.6 79.5 79.5 86.2 86.2 92.9 92.9 92.9 99.6 99.6 99.6 99.6
RE 25, 20 W 126 MR 419 80.6 90.5 90.5 97.2 97.2 103.9 103.9 103.9 110.6 110.6 110.6 110.6
RE 25, 20 W 126 HED_5540 430/433 90.4 100.3 100.3 107.0 107.0 113.7 113.7 113.7 120.4 120.4 120.4 120.4
RE 25, 20 W 126 DCT22 438 91.9 101.8 101.8 108.5 108.5 115.2 115.2 115.2 121.9 121.9 121.9 121.9
RE 25, 20 W 126 AB 28 480 103.7 113.6 113.6 120.3 120.3 127.0 127.0 127.0 133.7 133.7 133.7 133.7
RE 25, 20 W 126 HED_5540/AB 28 430/480 120.9 130.8 130.8 137.5 137.5 144.2 144.2 144.2 150.9 150.9 150.9 150.9
RE 25, 20 W 127 AB 28 480 115.2 125.1 125.1 131.8 131.8 138.5 138.5 138.5 145.2 145.2 145.2 145.2
RE 25, 20 W 127 HED_5540/AB 28 480 132.4 142.3 142.3 149.0 149.0 155.7 155.7 155.7 162.4 162.4 162.4 162.4
RE 30, 60 W 129 94.6 104.5 104.5 111.2 111.2 117.9 117.9 117.9 124.6 124.6 124.6 124.6
RE 30, 60 W 129 MR 420 106.0 115.9 115.9 122.6 122.6 129.3 129.3 129.3 136.0 136.0 136.0 136.0
RE 30, 60 W 129 HED_5540 429/431 115.4 125.3 125.3 132.0 132.0 138.7 138.7 138.7 145.4 145.4 145.4 145.4
RE 35, 90 W 130 97.6 107.5 107.5 114.2 114.2 120.9 120.9 120.9 127.6 127.6 127.6 127.6
RE 35, 90 W 130 MR 420 109.0 118.9 118.9 125.6 125.6 132.3 132.3 132.3 139.0 139.0 139.0 139.0
RE 35, 90 W 130 HED_5540 429/431 118.3 128.2 128.2 134.9 134.9 141.6 141.6 141.6 148.3 148.3 148.3 148.3
RE 35, 90 W 130 DCT 22 438 115.7 125.6 125.6 132.3 132.3 139.0 139.0 139.0 145.7 145.7 145.7 145.7
RE 35, 90 W 130 AB 28 480 133.7 143.6 143.6 150.3 150.3 157.0 157.0 157.0 163.7 163.7 163.7 163.7
RE 35, 90 W 130 HEDS 5540/AB 28 429/480 150.9 160.8 160.8 167.5 167.5 174.2 174.2 174.2 180.9 180.9 180.9 180.9
A-max 26 151-158 71.3 81.2 81.2 87.9 87.9 94.6 94.6 94.6 101.3 101.3 101.3 101.3
A-max 26 152-158 MEnc 13 408 78.4 88.3 88.3 95.0 95.0 101.7 101.7 101.7 108.4 108.4 108.4 108.4
A-max 26 152-158 MR 419 80.1 90.0 90.0 96.7 96.7 103.4 103.4 103.4 110.1 110.1 110.1 110.1
A-max 26 152-158 Enc 22 426 85.7 95.6 95.6 102.3 102.3 109.0 109.0 109.0 115.7 115.7 115.7 115.7
A-max 26 152-158 HED_5540 430/432 89.7 99.6 99.6 106.3 106.3 113.0 113.0 113.0 119.7 119.7 119.7 119.7
A-max 32 159/161 89.5 99.4 99.4 106.1 106.1 112.8 112.8 112.8 119.5 119.5 119.5 119.5
A-max 32 160/162 88.1 98.0 98.0 104.7 104.7 111.4 111.4 111.4 118.1 118.1 118.1 118.1
A-max 32 160/162 MR 420 99.3 109.2 109.2 115.9 115.9 122.6 122.6 122.6 129.3 129.3 129.3 129.3
A-max 32 160/162 HED_5540 430/432 108.9 118.8 118.8 125.5 125.5 132.2 132.2 132.2 138.9 138.9 138.9 138.9

M 1:2

166930 166933 166938 166939 166944 166949 166954 166959 166962 166967 166972 166977

3.7 : 1 14 : 1 33 : 1 51 : 1 111 : 1 246 : 1 492 : 1 762 : 1 1181 : 1 1972 : 1 2829 : 1 4380 : 1
26⁄ 7 676⁄49

529⁄16
17576⁄343

13824⁄125
421824⁄1715

86112⁄175
19044⁄25

10123776⁄8575
8626176⁄4375

495144⁄175
109503⁄25

6 6 3 6 4 4 3 3 4 4 3 3
166931 166934 166940 166945 166950 166955 166960 166963 166968 166973 166978
4.8 : 1 18 : 1 66 : 1 123 : 1 295 : 1 531 : 1 913 : 1 1414 : 1 2189 : 1 3052 : 1 5247 : 1

24⁄5 624⁄35
16224⁄245

6877⁄56
101062⁄343

331776⁄625
36501⁄40

2425488⁄1715
536406⁄245

1907712⁄625
839523⁄160

4 4 4 3 3 4 3 3 3 3 3
166932 166935 166941 166946 166951 166956 166961 166964 166969 166974 166979
5.8 : 1 21 : 1 79 : 1 132 : 1 318 : 1 589 : 1 1093 : 1 1526 : 1 2362 : 1 3389 : 1 6285 : 1

23⁄4 299⁄14
3887⁄49

3312⁄25
389376⁄1225

20631⁄35
279841⁄256

9345024⁄6125
2066688⁄875

474513⁄140
6436343⁄1024

3 3 3 3 4 3 3 4 3 3 3
166936 166942 166947 166952 166957 166965 166970 166975

23 : 1 86 : 1 159 : 1 411 : 1 636 : 1 1694 : 1 2548 : 1 3656 : 1
576⁄25

14976⁄175
1587⁄10

359424⁄875
79488⁄125

1162213⁄686
7962624⁄3125

457056⁄125

4 4 3 4 3 3 4 3
166937 166943 166948 166953 166958 166966 166971 166976

28 : 1 103 : 1 190 : 1 456 : 1 706 : 1 1828 : 1 2623 : 1 4060 : 1
138⁄5 3588⁄35

12167⁄64
89401⁄196

158171⁄224
2238912⁄1225

2056223⁄ 784
3637933⁄896

3 3 3 3 3 3 3 3
1 2 2 3 3 4 4 4 5 5 5 5
1 3 3 6 6 6 6 6 6 6 6 6

1.25 3.75 3.75 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
80 75 75 70 70 60 60 60 50 50 50 50
118 162 162 194 194 226 226 226 258 258 258 258
0.7 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.5 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

26.5 36.4 36.4 43.1 43.1 49.8 49.8 49.8 56.5 56.5 56.5 56.5

  maxon gear	 June 2018 edition / subject to change

Stock program
Standard program
Special program (on request)

overall length overall length

maxon Modular System
+ Motor Page + Sensor/Brake Page Overall length [mm] = Motor length + gearhead length + (sensor/brake) + assembly parts

Technical Data
Planetary Gearhead 	 straight teeth
Output shaft 	 stainless steel
	 Shaft diameter as option	 8 mm
Bearing at output 	 ball bearing
Radial play, 5 mm from flange	 max. 0.14 mm
Axial play	 max. 0.4 mm
Max. axial load (dynamic)	 120 N
Max. force for press fits	 120 N
Direction of rotation, drive to output	 =
Max. continuous input speed	 8000 rpm
Recommended temperature range	 -40…+100°C
Number of stages 	 1	 2	 3	 4	 5
Max. radial load, 10 mm
	 from flange	 90 N	 140 N	 200 N	 220 N	 220 N

Option: Low-noise version

Planetary Gearhead GP 32 C  ∅32 mm, 1.0–6.0 Nm
Ceramic Version

Part Numbers

	

Gearhead Data
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm

Part Numbers
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm

Part Numbers
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm

Part Numbers
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm

Part Numbers
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm
	 4 	 Number of stages
	 5 	 Max. continuous torque 	 Nm
	 6 	 Max. intermittent torque at gear output 	 Nm
	 7 	 Max. efficiency 	 %
	 8 	 Weight 	 g
	 9 	 Average backlash no load 	 °
	10 	 Mass inertia 	 gcm2

	11 	 Gearhead length L1 	 mm

Appendix B. Data-sheets Maxon parts 86
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A-max 19 143/144 51.6 58.4 65.2 65.2 72.0 72.0 72.0 78.8 78.8 78.8 78.8
A-max 19, 1.5 W 144 MR 416/417 56.7 63.5 70.3 70.3 77.1 77.1 77.1 83.9 83.9 83.9 83.9
A-max 19, 1.5 W 144 Enc 22 426 66.0 72.8 79.6 79.6 86.4 86.4 86.4 93.2 93.2 93.2 93.2
A-max 19, 1.5 W 144 MEnc 13 407 59.1 65.9 72.7 72.7 79.5 79.5 79.5 86.3 86.3 86.3 86.3
A-max 19, 2.5 W 145/146 54.2 61.0 67.8 67.8 74.6 74.6 74.6 81.4 81.4 81.4 81.4
A-max 19, 2.5 W 146 MR 416/417 58.5 65.3 72.1 72.1 78.9 78.9 78.9 85.7 85.7 85.7 85.7
A-max 19, 2.5 W 146 Enc 22 426 68.6 75.4 82.2 82.2 89.0 89.0 89.0 95.8 95.8 95.8 95.8
A-max 19, 2.5 W 146 MEnc 13 407 61.7 68.5 75.3 75.3 82.1 82.1 82.1 88.9 88.9 88.9 88.9
A-max 22 147-150 54.6 61.4 68.2 68.2 75.0 75.0 75.0 81.8 81.8 81.8 81.8
A-max 22 148/150 MR 416/417 59.6 66.4 73.2 73.2 80.0 80.0 80.0 86.8 86.8 86.8 86.8
A-max 22 148/150 Enc 22 426 69.0 75.8 82.6 82.6 89.4 89.4 89.4 96.2 96.2 96.2 96.2
A-max 22 148/150 MEnc 13 407 61.7 68.5 75.3 75.3 82.1 82.1 82.1 88.9 88.9 88.9 88.9

M 1:1

143971 143974 143980 143986 143990 143996 144002 144004 144011 144017 144023

3.8 : 1 14 : 1 53 : 1 104 : 1 198 : 1 370 : 1 590 : 1 742 : 1 1386 : 1 1996 : 1 3189 : 1
15⁄4 225⁄16

3375⁄64
87723⁄845

50625⁄256
10556001⁄28561

59049⁄100
759375⁄1024

158340015⁄114244
285012027⁄142805

1594323⁄500

4 4 4 3.2 4 3.2 4 4 3.2 3.2 4
143972 143975 143981 143987 143991 143997 144003 144006 144012 144018 144024
4.4 :1 16 : 1 62 : 1 109 : 1 231 : 1 389 : 1 690 : 1 867 : 1 1460 : 1 2102 : 1 3728 : 1

57⁄13
855⁄52

12825⁄208
2187⁄20

192375⁄832
263169⁄676

1121931⁄1625
2885625⁄3328

3947535⁄2704
7105563⁄3380

30292137⁄8125

3.2 3.2 3.2 4 3.2 3.2 3.2 3.2 3.2 3.2 3.2
143973 143976 143982 143988 143992 143998 144005 144007 144013 144019 144025
5.4 : 1 19 : 1 72 : 1 128 : 1 270 : 1 410 : 1 850 : 1 1014 : 1 1538 : 1 2214 : 1 4592 : 1

27⁄5 3249⁄169
48735⁄676

41553⁄325
731025⁄2704

6561⁄16
531441⁄625

10965375⁄10816
98415⁄64

177147⁄80
14348907⁄3125

2.5 3.2 3.2 3.2 3.2 4 2.5 3.2 4 4 2.5
143977 143983 143989 143993 143999 144008 144014 144020

20 : 1 76 : 1 157 : 1 285 : 1 455 : 1 1068 : 1 1621 : 1 2458 : 1
81⁄4 1215⁄16

19683⁄125
18225⁄64

5000211⁄10985
273375⁄256

601692057⁄371293
135005697⁄54925

4 4 2.5 4 3.2 4 3.2 3.2
143978 143984 143994 144000 144009 144015 144021

24 : 1 84 : 1 316 : 1 479 : 1 1185 : 1 1707 : 1 2589 : 1
1539⁄65

185193⁄2197
2777895⁄8788

124659⁄260
41668425⁄35152

15000633⁄8788
3365793⁄1300

3.2 3.2 3.2 3.2 3.2 3.2 3.2
143979 143985 143995 144001 144010 144016 144022
29 : 1 89 : 1 333 : 1 561 : 1 1249 : 1 1798 : 1 3027 : 1
729⁄25

4617⁄52
69255⁄208

2368521⁄4225
1038825⁄832

373977⁄208
63950067⁄21125

2.5 3.2 3.2 3.2 3.2 3.2 3.2
1 2 3 3 4 4 4 5 5 5 5

0.5 0.6 1.2 1.2 1.8 1.8 1.8 2.0 2.0 2.0 2.0
0.8 0.9 1.9 1.9 2.7 2.7 2.7 3.0 3.0 3.0 3.0
84 70 59 59 49 49 49 42 42 42 42
42 55 68 68 81 81 81 94 94 94 94
1.0 1.2 1.6 1.6 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
25.4 32.2 39.0 39.0 45.8 45.8 45.8 52.6 52.6 52.6 52.6

June 2018 edition / subject to change 	 maxon gear	

Stock program
Standard program
Special program (on request)

overall length overall length

maxon Modular System
+ Motor Page + Sensor/Brake Page Overall length [mm] = Motor length + gearhead length + (sensor/brake) + assembly parts

Technical Data
Planetary Gearhead 	 straight teeth
Output shaft 	 stainless steel, hardened
Bearing at output 	 ball bearing
Radial play, 10 mm from flange	  max. 0.2 mm
Axial play	 max. 0.2 mm
Max. axial load (dynamic)	 100 N
Max. force for press fits	 100 N
Direction of rotation, drive to output	 =
Max. continuous input speed	 8000 rpm
Recommended temperature range	 -40…+100°C
Number of stages 	 1	 2	 3	 4	 5
Max. radial load, 10 mm
	 from flange	 30 N	 50 N	 55 N	 55 N	 55 N

Planetary Gearhead GP 22 C  ∅22 mm, 0.5–2.0 Nm
Ceramic Version

Part Numbers

	

Gearhead Data
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm

Part Numbers
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm

Part Numbers
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm

Part Numbers
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm

Part Numbers
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm

Part Numbers
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm
	 4 	 Number of stages
	 5 	 Max. continuous torque 	 Nm
	 6 	 Max. intermittent torque at gear output 	 Nm
	 7 	 Max. efficiency 	 %
	 8 	 Weight 	 g
	 9 	 Average backlash no load 	 °
	10 	 Mass inertia 	 gcm2

	11 	 Gearhead length L1* 	 mm
*L1 is–2.8 mm for calculating the overall length
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RE 13 105/107 35.4 39.3 43.1 47.0 50.8
RE 13, 0.75 W 107 MR 413-415 42.5 46.4 50.2 54.1 57.9
RE 13, 0.75 W 107 MEnc 13 407 43.2 47.1 50.9 54.8 58.6
RE 13 109/111 47.6 51.5 55.3 59.2 63.0
RE 13, 2 W 111 MR 413-415 54.7 58.6 62.4 66.3 70.1
RE 13, 2 W 111 MEnc 13 407 55.4 59.3 63.1 67.0 70.8
RE 13, 1.5 W 113/115 38.5 42.4 46.2 50.1 53.9
RE 13, 1.5 W 115 MR 413-415 44.6 48.5 52.3 56.2 60.0
RE 13, 1.5 W 115 MEnc 13 407 46.5 50.4 54.2 58.1 61.9
RE 13, 3 W 117/119 50.7 54.6 58.4 62.3 66.1
RE 13, 3 W 119 MR 413-415 56.8 60.7 64.5 68.4 72.2
RE 13, 3 W 119 MEnc 13 407 58.7 62.6 66.4 70.3 74.1
A-max 12 137/138 37.6 41.5 45.3 49.2 53.0
A-max 12, 0.5 W 138 MR 413-415 41.7 45.6 49.4 53.3 57.1
EC 13, 6 W 208 37.4 41.3 45.1 49.0 52.8
EC 13, 12 W 209 49.6 53.5 57.3 61.2 65.0

M 1:1

	 4.1 : 1	 144300 	 131 : 1	 352393
	 5.1 : 1	 352391 	 275 : 1	 144303
	 17 : 1	 144301 	 664 : 1	 352394
	 26 : 1	 352392 	 1119 : 1	 144304
	 67 : 1	 144302 	 3373 : 1	 352395

110313 110314 110315 110316 110317

4.1 : 1 17 : 1 67 : 1 275 : 1 1119 : 1
57⁄14

3249⁄196
185193⁄2744

10556001⁄38416
601692057⁄537824

1.5 1.5 1.5 1.5 1.5
352365 352366 352367 352368 352369
5.1 : 1 26 : 1 131 : 1 664 : 1 3373 : 1

66⁄13
4356⁄169

287496⁄2197
18974736⁄28561

1252332576⁄371293

1.5 1.5 1.5 1.5 1.5
1 2 3 4 5

0.20 0.20 0.30 0.30 0.35
0.30 0.30 0.45 0.45 0.53
91 83 75 69 62
11 14 17 20 23
1.0 1.2 1.5 1.8 2.0

0.025 0.015 0.015 0.015 0.015
16.0 19.9 23.7 27.6 31.4

June 2018 edition / subject to change 	 maxon gear	

Stock program
Standard program
Special program (on request)

maxon Modular System
+ Motor Page + Sensor/Brake Page Overall length [mm] = Motor length + gearhead length + (sensor/brake) + assembly parts

overall length overall length

Planetary Gearhead GP 13 A  ∅13 mm, 0.2–0.35 Nm
Technical Data
Planetary Gearhead 	 straight teeth
Output shaft 	 stainless steel, hardened
Bearing at output 	 sleeve bearing
Radial play, 6 mm from flange	 max. 0.055 mm
Axial play	 0.02–0.10 mm
Max. axial load (dynamic)	 8 N
Max. force for press fits	 100 N
Direction of rotation, drive to output	 =
Max. continuous input speed	 8000 rpm
Recommended temperature range	 -40…+100°C
Number of stages 	 1	 2	 3	 4	 5
Max. radial load, 6 mm
	 from flange	 8 N	 12 N	 16 N	 20 N	  20 N

Option Ball Bearing Part Numbers Technical Data

Planetary Gearhead 	 straight teeth
Output shaft 	 stainless steel, hardened
Bearing at output 	 preloaded ball bearings
Radial play, 6 mm from flange	 max. 0.04 mm
Axial play at axial load	 < 5 N	 0 mm
		  > 5 N	 max. 0.04 mm
Max. axial load (dynamic)	 8 N
Max. force for press fits	 25 N
Direction of rotation, drive to output	 =
Max. continuous input speed	 8000 rpm
Recommended temperature range	 -40…+100°C
Number of stages 	 1	 2	 3	 4	 5
Max. radial load, 6 mm
	 from flange	 10 N	 15 N	 20 N	 25 N	  25 N
Gearhead values according to sleeve bearing version 

Gearhead length: L1 + 0.2 mm

Part Numbers

Gearhead Data
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm

Part Numbers
	 1 	 Reduction
	 2 	 Absolute reduction   
	 3 	 Max. motor shaft diameter 	 mm
	 4 	 Number of stages
	 5 	 Max. continuous torque 	 Nm
	 6 	 Max. intermittent torque at gear output 	 Nm
	 7 	 Max. efficiency 	 %
	 8 	 Weight 	 g
	 9 	 Average backlash no load 	 °
	10 	 Mass inertia 	 gcm2

	11 	 Gearhead length L1* 	 mm
* for A-max 12 is L1 + 0.3 mm

Appendix B. Data-sheets Maxon parts 88
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RE 30, 15 W 128 32 79.4 79.4 79.4 79.4 79.4
RE 30, 15 W 128 GP 32, 0.75 - 4.5 Nm 344 32 • • • • •
RE 30, 60 W 129 32 79.4 79.4 79.4 79.4 79.4
RE 30, 60 W 129 GP 32, 0.75 - 4.5 Nm 342 32 • • • • •
RE 30, 60 W 129 GP 32, 0.75 - 6.0 Nm 344-349 32 • • • • •
RE 30, 60 W 129 GP 32 S 374-379 32 • • • • •
RE 35, 90 W 130 32 82.4 82.4 82.4 82.4 82.4
RE 35, 90 W 130 GP 32, 0.75 - 4.5 Nm 342 32 • • • • •
RE 35, 90 W 130 GP 32, 0.75 - 6.0 Nm 344-349 32 • • • • •
RE 35, 90 W 130 GP 32, 4.0 - 8.0 Nm 350 32 • • • • •
RE 35, 90 W 130 GP 42, 3 - 15 Nm 354 32 • • • • •
RE 35, 90 W 130 GP 32 S 374-379 32 • • • • •
RE 40, 25 W 131 32 82.4 82.4 82.4 82.4 82.4
RE 40, 150 W 132 32 82.4 82.4 82.4 82.4 82.4
RE 40, 150 W 132 GP 42, 3 - 15 Nm 354 32 • • • • •
RE 40, 150 W 132 GP 52, 4 - 30 Nm 359 32 • • • • •
A-max 32 160/162 32 72.7 72.7 72.7 72.7 72.7
A-max 32 160/162 GP 32, 0.75 - 6.0 Nm 344-347 32 • • • • •
A-max 32 160/162 GS 38, 0.1 - 0.6 Nm 353 32 • • • • •
A-max 32 160/162 GP 32 S 374-379 32 • • • • •
EC-max 40, 70 W 226 31.8 73.9 73.9 73.9 73.9 73.9
EC-max 40, 70 W 226 GP 42, 3 - 15 Nm 355 31.8 • • • • •
EC-max 40, 120 W 227 31.8 103.9 103.9 103.9 103.9 103.9
EC-max 40, 120 W 227 GP 52, 4 - 30 Nm 360 31.8 • • • • •

1

9

2

10

225783 228452 225785 228456 225787

256 500 512 1000 1024
3 3 3 3 3
80 200 160 200 320

18 750 24 000 18 750 12 000 18 750

R

R

R

L ± 10

RE/A-max� L = 506
EC-max� L = 500

  maxon sensor	 June 2018 edition / subject to change

Stock program
Standard program
Special program (on request)

Encoder MR  Type L, 256–1024 CPT, 3 Channels, with Line Driver

maxon Modular System
+ Motor Page + Gearhead Page ∅ Enc [mm] Overall length [mm] / • see Gearhead

Part Numbers

Type
Counts per turn
Number of channels
Max. operating frequency (kHz)
Max. speed (rpm)

Direction of rotation cw (definition cw p. 60)

Technical Data Pin Allocation Connection example
Supply voltage VCC � 5 V ± 5%
Typical current draw� 14 mA
Output signal� TTL compatible
Phase shift Φ � 90°e ± 45°e
Index pulse width� 90°e ± 45°e
Operating temperature range � -25…+85 °C
Moment of inertia of code wheel � ≤ 1.7 gcm2

Output current per channel � max. 5 mA

The index signal I is synchronized with channel A or B. Opt. terminal resistance R > 1 kW

  1	 N.C.
  2	 VCC

  3	 GND
  4	 N.C.
  5	 Channel A
  6	 Channel A
  7	 Channel B
  8	 Channel B
  9	 Channel I (Index)
10	 Channel I (Index)

DIN Connector 41651/
EN 60603-13
flat band cable AWG 28

s∆ 45°e<
s2 s      = 90°e1..4s1s4s3

U

U

U

U

U

U

High

High

High

Low

Low

Low

90°e

Channel A

Channel B

Channel I

Cycle C = 360°e

Pulse P = 180°e

Phase shift

overall length overall length

Line receiver
Recommended IC's:
- MC 3486
- SN 75175
- AM 26 LS 32

Channel B

Channel B

Channel A

Channel A

Channel I

Channel I

GND

VCC
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RE 25 125/127 25 65.5 65.5 65.5 65.5 65.5
RE 25 125/127 GP 26, 0.75 - 4.5 Nm 340 25 • • • • •
RE 25 125/127 GP 32, 0.75 - 6.0 Nm 342-347 25 • • • • •
RE 25 125/127 KD 32, 1.0 - 4.5 Nm 352 25 • • • • •
RE 25 125/127 GP 32 S 374-379 25 • • • • •
RE 25, 20 W 126 25 54.0 54.0 54.0 54.0 54.0
RE 25, 20 W 126 GP 22, 0.5 Nm 333 25 • • • • •
RE 25, 20 W 126 GP 26, 0.75 - 4.5 Nm 340 25 • • • • •
RE 25, 20 W 126 GP 32, 0.75 - 6.0 Nm 342-347 25 • • • • •
RE 25, 20 W 126 KD 32, 1.0 - 4.5 Nm 352 25 • • • • •
RE 25, 20 W 126 GP 32 S 374-379 25 • • • • •
A-max 26 152-158 25 53.5 53.5 53.5 53.5 53.5
A-max 26 152-158 GP 26, 0.75 - 4.5 Nm 340 25 • • • • •
A-max 26 152-158 GS 30, 0.07 - 0.2 Nm 341 25 • • • • •
A-max 26 152-158 GP 32, 0.75 - 6.0 Nm 342-347 25 • • • • •
A-max 26 152-158 GS 38, 0.1 - 0.6 Nm 353 25 • • • • •
A-max 26 152-158 GP 32 S 374-379 25 • • • • •
EC-max 30, 40 W 224 25 54.2 54.2
EC-max 30, 40 W 224 GP 32, 1 - 8.0 Nm 347/350 25 • •
EC-max 30, 40 W 224 KD 32, 1.0 - 4.5 Nm 352 25 • •
EC-max 30, 40 W 224 GP 32 S 374-379 25 • •
EC-max 30, 60 W 225 25 76.2 76.2
EC-max 30, 60 W 225 GP 32, 1 - 8.0 Nm 347/350 25 • •
EC-max 30, 60 W 225 KD 32, 1.0 - 4.5 Nm 352 25 • •
EC-max 30, 60 W 225 GP 42, 3 - 15 Nm 355 25 • •

1

9

2

10

225771 225773 225778 225805 225780

128 256 500 512 1000
3 3 3 3 3
80 160 200 320 200

37 500 37 500 24 000 37 500 12 000

R

R

R

L ± 10

RE/A-max� L = 506
EC-max� L = 500

June 2018 edition / subject to change	 maxon sensor	

Stock program
Standard program
Special program (on request)

Encoder MR  Type ML, 128–1000 CPT, 3 Channels, with Line Driver

maxon Modular System
+ Motor Page + Gearhead Page ∅ Enc [mm] Overall length [mm] / • see Gearhead

Part Numbers

Type
Counts per turn
Number of channels
Max. operating frequency (kHz)
Max. speed (rpm)

Direction of rotation cw (definition cw p. 60)

Technical Data Pin Allocation Connection example
Supply voltage VCC � 5 V ± 5%
Typical current draw� 14 mA
Output signal� TTL compatible
Phase shift Φ � 90°e ± 45°e
Index pulse width� 90°e ± 45°e
Operating temperature range � -25…+85 °C
Moment of inertia of code wheel � ≤ 0.7 gcm2

Output current per channel � max. 5 mA

The index signal I is synchronized with channel A or B. Opt. terminal resistance R > 1 kW

  1	 N.C.
  2	 VCC

  3	 GND
  4	 N.C.
  5	 Channel A
  6	 Channel A
  7	 Channel B
  8	 Channel B
  9	 Channel I (Index)
10	 Channel I (Index)

DIN Connector 41651/
EN 60603-13
flat band cable AWG 28

s∆ 45°e<
s2 s      = 90°e1..4s1s4s3

U

U

U

U

U

U

High

High

High

Low

Low

Low

90°e

Channel A

Channel B

Channel I

Cycle C = 360°e

Pulse P = 180°e

Phase shift

overall length overall length

Line receiver
Recommended IC's:
- MC 3486
- SN 75175
- AM 26 LS 32

Channel B

Channel B

Channel A

Channel A

Channel I

Channel I

GND

VCC
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RE 16, 2 W 120 16 28.0 28.0 28.0 28.0 28.0 28.0
RE 16, 2 W 120 GP 16, 0.1 - 0.6 Nm 328/329 16 • • • • • •
RE 16, 2 W 120 GP 16 S 369/370 16 • • • • • •
RE 16, 3.2 W 122 16 45.4 45.4 45.4 45.4 45.4 45.4
RE 16, 3.2 W 122 GP 16, 0.1 - 0.6 Nm 328/329 16 • • • • • •
RE 16, 3.2 W 122 GP 16 S 369/370 16 • • • • • •
RE 16, 4.5 W 124 16 48.4 48.4 48.4 48.4 48.4 48.4
RE 16, 4.5 W 124 GP 16, 0.1 - 0.6 Nm 328/329 16 • • • • • •
RE 16, 4.5 W 124 GP 16 S 369/370 16 • • • • • •
A-max 16 140/142 16 30.4 30.4 30.4 30.4 30.4 30.4
A-max 16 140/142 GS 16, 0.01 - 0.1 Nm 324-327 16 • • • • • •
A-max 16 140/142 GP 16, 0.1 - 0.6 Nm 328/329 16 • • • • • •
A-max 16 140/142 GP 16 S 369/370 16 • • • • • •
A-max 19, 1.5 W 144 19 34.0 34.0 34.0 34.0 34.0 34.0
A-max 19, 1.5 W 144 GP 19, 0.1 - 0.3 Nm 330 19 • • • • • •
A-max 19, 1.5 W 144 GP 22, 0.5 - 2.0 Nm 333/335 19 • • • • • •
A-max 19, 1.5 W 144 GS 24, 0.1 Nm 339 19 • • • • • •
A-max 19, 1.5 W 144 GP 22 S 372/373 19 • • • • • •
A-max 19, 2.5 W 146 19 35.8 35.8 35.8 35.8 35.8 35.8
A-max 19, 2.5 W 146 GP 19, 0.1 - 0.3 Nm 330 19 • • • • • •
A-max 19, 2.5 W 146 GP 22, 0.5 - 2.0 Nm 333/335 19 • • • • • •
A-max 19, 2.5 W 146 GS 24, 0.1 Nm 339 19 • • • • • •
A-max 19, 2.5 W 146 GP 22 S 372/373 19 • • • • • •
A-max 22 148/150 22 36.9 36.9 36.9 36.9 36.9 36.9
A-max 22 148/150 GP 22, 0.1 - 0.6 Nm 331/332 22 • • • • • •
A-max 22 148/150 GP 22, 0.5 - 2.0 Nm 333/335 22 • • • • • •
A-max 22 148/150 GS 24, 0.1 Nm 339 22 • • • • • •
A-max 22 148/150 GP 22 S 372/373 22 • • • • • •

1

9

2

10
156 ±10

228179 228177 228181 228182 201937 201940

128 128 256 256 512 512
2 3 2 3 2 3
80 80 160 160 320 320

37 500 37 500 37 500 37 500 37 500 37 500

R

R

R

June 2018 edition / subject to change	 maxon sensor	

Stock program
Standard program
Special program (on request)

Encoder MR  Type M, 128–512 CPT, 2/3 Channels, with Line Driver

maxon Modular System
+ Motor Page + Gearhead Page ∅ Enc [mm] Overall length [mm] / • see Gearhead

Part Numbers

Type
Counts per turn
Number of channels
Max. operating frequency (kHz)
Max. speed (rpm)

Direction of rotation cw (definition cw p. 60)

Technical Data Pin Allocation Connection example
Supply voltage VCC � 5 V ± 5%
Typical current draw 2 channel� 11 mA
Typical current draw 3 channel� 14 mA
Output signal� TTL compatible
Phase shift Φ � 90°e ± 45°e
Index pulse width� 90°e ± 45°e
Operating temperature range � -25…+85 °C
Moment of inertia of code wheel � ≤ 0.09 gcm2

Output current per channel � max. 5 mA

The index signal I is synchronized with channel A or B. Opt. terminal resistance R > 1 kW

  1	 Motor +
  2	 VCC

  3	 GND
  4	 Motor –
  5	 Channel A
  6	 Channel A
  7	 Channel B
  8	 Channel B
  9*	 Channel I (Index)
10*	 Channel I (Index)

DIN Connector 41651/
EN 60603-13
flat band cable AWG 28
*version with 3 channels

s∆ 45°e<
s2 s      = 90°e1..4s1s4s3

U

U

U

U

U

U

High

High

High

Low

Low

Low

90°e

Channel A

Channel B

Channel I

Cycle C = 360°e

Pulse P = 180°e

Phase shift

overall length overall length

Line receiver
Recommended IC's:
- MC 3486
- SN 75175
- AM 26 LS 32

Channel B

Channel B

Channel A

Channel A

Channel I

Channel I

GND

VCC
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EC-max 16, 5 W 219 16 31.3 31.3 31.3 31.3 31.3 31.3
EC-max 16, 5 W 219 GP 16, 0.1 - 0.6 Nm 328/329 16 • • • • • •
EC-max 16, 5 W 219 GP 16 S 369/370 16 • • • • • •
EC-max 16, 8 W 221 16 43.3 43.3 43.3 43.3 43.3 43.3
EC-max 16, 8 W 221 GP 16, 0.2 - 0.6 Nm 329 16 • • • • • •
EC-max 16, 8 W 221 GP 22, 0.5 - 2.0 Nm 336 16 • • • • • •
EC-max 16, 8 W 221 GP 16 S/GP 22 S 369/373 16 • • • • • •
EC-max 22, 12 W 222 16 41.7 41.7 41.7 41.7 41.7 41.7
EC-max 22, 12 W 222 GP 22, 0.5 - 2.0 Nm 336/337 16 • • • • • •
EC-max 22, 12 W 222 KD 32, 1.0 - 4.5 Nm 352 16 • • • • • •
EC-max 22, 12 W 222 GP 22 S 372/373 16 • • • • • •
EC-max 22, 25 W 223 16 58.2 58.2 58.2 58.2 58.2 58.2
EC-max 22, 25 W 223 GP 22/GP 32 337/347 16 • • • • • •
EC-max 22, 25 W 223 GP 32 S 374-379 16 • • • • • •

1

9

2

10
156 ±10

1

9

2

10
300 ±10

228179 228177 228181 228182 201937 201940

128 128 256 256 512 512
2 3 2 3 2 3
80 80 160 160 320 320

37 500 37 500 37 500 37 500 37 500 37 500

R

R

R

  maxon sensor	 June 2018 edition / subject to change

Stock program
Standard program
Special program (on request)

Encoder MR  Type M, 128–512 CPT, 2/3 Channels, with Line Driver

maxon Modular System
+ Motor Page + Gearhead Page ∅ Enc [mm] Overall length [mm] / • see Gearhead

Part Numbers

Type
Counts per turn
Number of channels
Max. operating frequency (kHz)
Max. speed (rpm)

Direction of rotation cw (definition cw p. 60)

Technical Data Pin Allocation Connection example
Supply voltage VCC � 5 V ± 5%

  MR Encoder EC-max 16 / EC-max 22

Typical current draw 2 channel� 11 mA
Typical current draw 3 channel� 14 mA
Output signal� TTL compatible
Phase shift Φ � 90°e ± 45°e
Index pulse width� 90°e ± 45°e
Operating temperature range � -25…+85 °C
Moment of inertia of code wheel � ≤ 0.09 gcm2

Output current per channel � max. 5 mA

The index signal I is synchronized with channel A or B. Opt. terminal resistance R > 1 kW

  1	 N.C.
  2	 VCC

  3	 GND
  4	 N.C.
  5	 Channel A
  6	 Channel A
  7	 Channel B
  8	 Channel B
  9*	 Channel I (Index)
10*	 Channel I (Index)

DIN Connector 41651/
EN 60603-13
flat band cable AWG 28
*version with 3 channels

  MR Encoder EC 16 / EC 22

s∆ 45°e<
s2 s      = 90°e1..4s1s4s3

U

U

U

U

U

U

High

High

High

Low

Low

Low

90°e

Channel A

Channel B

Channel I

Cycle C = 360°e

Pulse P = 180°e

Phase shift

Line receiver
Recommended IC's:
- MC 3486
- SN 75175
- AM 26 LS 32

Channel B

Channel B

Channel A

Channel A

Channel I

Channel I

GND

VCC
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RE 8, 0.5 W, A 99   8 22.6
RE 8, 0.5 W, A 99 GP 8, 0.01 - 0.1 Nm 318   8 •
RE 8, 0.5 W, A 99 GP 8 S 367–368   8 •
RE 10, 0.75 W 101 10 22.8 22.8 22.8
RE 10, 0.75 W 101 GP 10, 0.005 - 0.15 Nm 319/320 10 • • •
RE 10, 1.5 W 103 10 30.4 30.4 30.4
RE 10, 1.5 W 103 GP 10, 0.005 - 0.15 Nm 319/320 10 • • •
RE 13, 0.75 W 106 13 26.3 26.3 26.3
RE 13, 0.75 W 107 13 28.7 28.7 28.7
RE 13, 0.75 W 107 GP 13, 0.05 - 0.15 Nm 322 13 • • •
RE 13, 0.75 W 107 GP 13, 0.2 - 0.35 Nm 323 13 • • •
RE 13, 2 W 110 13 38.5 38.5 38.5
RE 13, 2 W 111 13 40.9 40.9 40.9
RE 13, 2 W 111 GP 13, 0.05 - 0.15 Nm 322 13 • • •
RE 13, 2 W 111 GP 13, 0.2 - 0.35 Nm 323 13 • • •
RE 13, 1.5 W 114 13 28.4 28.4 28.4
RE 13, 1.5 W 115 13 30.8 30.8 30.8
RE 13, 1.5 W 115 GP 13, 0.05 - 0.15 Nm 322 13 • • •
RE 13, 1.5 W 115 GP 13, 0.2 - 0.35 Nm 323 13 • • •
RE 13, 3 W 118 13 40.6 40.6 40.6
RE 13, 3 W 119 13 43.0 43.0 43.0
RE 13, 3 W 119 GP 13, 0.05 - 0.15 Nm 322 13 • • •
RE 13, 3 W 119 GP 13, 0.2 - 0.35 Nm 323 13 • • •
A-max 12, 0.5 W 138 12 25.3 25.3 25.3
A-max 12, 0.5 W 138 GP 10, 0.01 - 0.15 Nm 320 12 • • •
A-max 12, 0.5 W 138 GS 12, 0.01 - 0.03 Nm 321 12 • • •
A-max 12, 0.5 W 138 GP 13, 0.05 - 0.15 Nm 322 12 • • •
A-max 12, 0.5 W 138 GP 13, 0.2 - 0.35 Nm 323 12 • • •

323049 323050 334910 323051 323052 323053 323054

64 64 100 128 128 256 256
2 2 2 2 2 2 2

80 80 100 160 160 320 320
75 000 75 000 60 000 75 000 75 000 75 000 75 000

s∆ 45°e<
s2 s      = 90°e1..4s1s4s3

90°e

R

C

R

C

  maxon sensor	 June 2018 edition / subject to change

Stock program
Standard program
Special program (on request)

overall length overall length

Encoder MR  Type S, 64–256 CPT, 2 Channels, with Line Driver

maxon Modular System
+ Motor Page + Gearhead Page ∅ Enc [mm] Overall length [mm] / • see Gearhead

Technical Data Pin Allocation Connection example
Supply voltage VCC � 5 V ± 5%
Typical current draw � 11 mA
Output signal � TTL compatible
Phase shift Φ � 90°e ± 45°e
Operating temperature range � -25…+85 °C
Moment of inertia of code wheel � ≤ 0.005 gcm2

Output current per channel � max. 5 mA

Terminal resistance R = typical 120 Ω
Capacitor C ≥ 0.1 nF per m line length

Part Numbers

Type
Counts per turn
Number of channels
Max. operating frequency (kHz)
Max. speed (rpm)

Direction of rotation cw (definition cw p. 60)

  1	 Motor +
  2	 VCC

  3	 GND
  4	 Motor –
  5	 Channel A
  6	 Channel A
  7	 Channel B
  8	 Channel B
  9	 N.C.
10	 N.C.

  1	 Motor +
  2	 VCC

  3	 GND
  4	 Motor –
  5	 Channel A
  6	 Channel A
  7	 Channel B
  8	 Channel B

Part Numbers 323049 – 323054
Pin 1 – 10 / X = 0.3 ±0.05 / Y = 11 −0.1 / L = 80 ±3
Compatible connector:  
Molex 52207-1033, Tyco 1-84953-0 
Pitch 1.0 mm, top contact style

Part Numbers 334910
Pin 1 – 8 / X = 0.3 ±0.03 / Y = 4.5 ±0.07 / L = 84 ±3
Compatible connector:  
Molex 52745-0833

Line receiver
Recommended IC's:
- MC 3486
- SN 75175
- AM 26 LS 32

Channel B

Channel B

Channel A

Channel A

GND

VCC

E
nc

od
er

, L
in

e 
D

riv
er

Channel A

Channel B

Cycle C = 360°e

Pulse P = 180°e

Phase shift
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Appendix C

Visualization script

1 %% Initialize PERA
2 % Create the Link object , with the 3 joints from DH table
3 L(1) = Link('revolute','d',0,'a',0,'alpha',pi/2,'modified','offset',0) ;
4 L(2) = Link('revolute','d',−.32,'a',0,'alpha',−pi/2,'modified','offset',0) ;
5 L(3) = Link('revolute','d',0,'a',0,'alpha',pi/2,'modified','offset',−pi/2) ;
6

7 % Create homogeneous transformation matrix from final joint to end−effector
8 A34 = [1 0 0 12/25; 0 1 0 0; 0 0 1 0; 0 0 0 1];
9

10 % Create and plot PERA
11 PERA = SerialLink(L,'name','PERA');
12 PERA.tool = A34;
13 PERA.plotopt ={'workspace' , [−.5 .5 −.5 .5 −1.2 .5]} ; % Zero configuration
14 PERA.plot([0 0 0])
15 % PERA.plotopt ={'workspace' , [−.2 1 −.5 .5 −.6 .4]} ; % Example configuration ...

(q1=20 deg; q3=70 deg)
16 % PERA.plot([(2*pi)/18 0 (7*pi)/18])
17 % PERA.teach
18

19 %% Desired circle trajectory simulation
20 traj = ct(.2,1,2);
21 figure(1)
22 PERA.plot(traj,'trail',{'r','LineWidth',1})
23

24 %% Simulated trajectory simulation
25 load('simulated_trajectory.mat', 'controller_trajectory_simulation')
26 q1 = controller_trajectory_simulation(2,1:10:end);
27 q2 = controller_trajectory_simulation(3,1:10:end);
28 q3 = controller_trajectory_simulation(4,1:10:end);
29 figure(2)
30 % PERA.plotopt ={'workspace' , [−.1 .8 −.4 .3 −.9 .1]} ;
31 PERA.plot([q1' q2' q3'],'trail',{'r','LineWidth',1})
32

33 %% Experimental trajectory simulation
34 % Data of the experiment is imported in columns via import button
35 q11 = q1(1:3:4002);
36 q21 = q2(1:3:4002);
37 q31 = q3(1:3:4002);
38

39 PERA.plot([q11 q21 q31],'trail',{'r','LineWidth',1})
40

41 %% Circle trajectory function
42 function circle_trajectory = ct(r,T,time)
43 % Draw a circle on a plane in the direction of Y
44 % Input: Radius of circle, Period for drawing a circle, Time duration in seconds
45 % Output: Trajectory planning for joints q1, q2, q3
46 t = 0:0.005:time;
47 s = length(t);
48 q1 = zeros(1,s);
49 q2 = asin(r/.48)*sin((2*pi/T)*t);
50 q3 = ones(1,s)*pi/2 − asin(r/.48)*cos((2*pi/T)*t);
51 circle_trajectory = [q1' q2' q3'];
52 end





Appendix D

Tuning script

1 %% Initialize
2 q1 = sym('q1','real');
3 q2 = sym('q2','real');
4 q3 = sym('q3','real');
5 q = [q1;q2;q3];
6 p1 = sym('p1','real');
7 p2 = sym('p2','real');
8 p3 = sym('p3','real');
9 p = [p1;p2;p3];

10 x1 = sym('x1','real');
11 x2 = sym('x2','real');
12 x3 = sym('x3','real');
13 x = [x1;x2;x3];
14

15 states=[q;p;x];
16

17 r1 = sym('r1','real');
18 r2 = sym('r2','real');
19 r3 = sym('r3','real');
20 R=diag([r1,r2,r3]);
21

22 k1 = sym('k1','real');
23 k2 = sym('k2','real');
24 k3 = sym('k3','real');
25 K=diag([k1,k2,k3]);
26

27 a1 = sym('a1','real');
28 a2 = sym('a2','real');
29 a3 = sym('a3','real');
30 a = [a1;a2;a3];
31

32 b1 = sym('b1','real');
33 b2 = sym('b2','real');
34 b3 = sym('b3','real');
35 b = [b1;b2;b3];
36

37 T=[(26843545600*5^(1/2))/(1509102191936324763648*sin(q1)^2 + ...
110317174072316078125)^(1/2), 0, 0; 0, ...
(26843545600*7616037329846245771365^(1/2))/1523207465969249154273, 0; ...
−(26843545600*5^(1/2)*cos(q1))/(1619419366008640841773 − ...
1509102191936324763648*cos(q1)^2)^(1/2), 0, (20*195^(1/2))/39];

38

39 f1=T*p;
40 f2=−transpose(T)*a.*tanh(b.*(q+x));
41 f3=−R*(a.*tanh(b.*(q+x))+K*x);
42

43 f=[f1;f2;f3];
44

45 A=[diff(f,q1),diff(f,q2),diff(f,q3),...
46 diff(f,p1),diff(f,p2),diff(f,p3),...
47 diff(f,x1),diff(f,x2),diff(f,x3)];
48

49
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50 %% Trial and error substitution
51 % Substitute equilibrium
52 A1=subs(A,{q1 q2 q3 p1 p2 p3 x1 x2 x3},...
53 {0 0 0 0 0 0 0 0 0});
54

55 % Substitute gains
56 A2=subs(A1,{r1 r2 r3 k1 k2 k3 a1 a2 a3 b1 b2 b3},...
57 {0.0001 0.00001 0.055 10 20 100 11 2 6 120 100 120});
58

59 % Compute eigenvalues
60 e=vpa(real(eig(A2)),2);
61

62

63 %% Tuning loop
64 eigmax0=0;
65 eigmax1=0;
66 eigmax2=0;
67 eigmax3=0;
68 tuning1=zeros(3,1);
69 tuning2=zeros(3,1);
70 tuning3=zeros(3,1);
71 eig0=zeros(9,1); % Current eigenvalues
72 eig1=zeros(9,1); % Best eigenvalues
73 eig2=zeros(9,1); % Second best eigenvalues
74 eig3=zeros(9,1); % Third best eigenvalues
75 errors=0;
76 e = eig(A1)
77 fileID=fopen('myfile.txt','w');
78 % tic;
79 for i=[0.001:0.0005:0.011 0.02:0.0025:0.11 0.15:0.05:0.7]
80 for j=[0.01:0.01:0.14 0.15:0.05:1.1 2:0.5:11 20:5:100]
81 for k=[50:2:150]
82 eig0=subs(e,{r1 r2 r3 k1 k2 k3 b1 b2 b3},{i i i j j j k k k});
83 fprintf(fileID,'%6.3f\n',[i j k]);
84 fprintf(fileID,'\n');
85 try
86 eigmax0=max(real(vpa(eig0,2)));
87 eigmin0=min(real(vpa(eig0,2)));
88 upperlimit=logical(eigmax0≤0);
89 lowerlimit=logical(eigmin0>−20);
90 catch
91 fprintf('Failed for i=%6.3f, j=%6.3f, k=%6.3f\n',[i, j, k])
92 errors=errors+1;
93 end
94 if upperlimit==1 && lowerlimit==1
95 if eigmax0<eigmax1
96 eig3=eig2;
97 tuning3=tuning2;
98 eigmax3=eigmax2;
99 eig2=eig1;

100 tuning2=tuning1;
101 eigmax2=eigmax1;
102 eig1=eig0;
103 tuning1=[i;j;k];
104 eigmax1=eigmax0;
105 fprintf(fileID,'New best:\n');
106 fprintf(fileID,'%6.3f\n',tuning1);
107 elseif eigmax0<eigmax2
108 eig3=eig2;
109 tuning3=tuning2;
110 eigmax3=eigmax2;
111 eig2=eig0;
112 tuning2=[i;j;k];
113 eigmax2=eigmax0;
114 elseif eigmax0<eigmax3
115 eig3=eig0;
116 tuning3=[i;j;k];
117 eigmax3=eigmax0;
118 end
119 end
120 end
121 end
122 end



99

123 % toc
124 fprintf('There were %d errors\n',errors)
125 fprintf('The best solution was:\n')
126 vpa(eig1,2)
127 fprintf('With i=%6.3f, j=%6.3f, k=%6.3f\n',tuning1)
128 fprintf('The second best solution was:\n')
129 vpa(eig2,2)
130 fprintf('With i=%6.3f, j=%6.3f, k=%6.3f\n',tuning2)
131 fprintf('The third best solution was:\n')
132 vpa(eig3,2)
133 fprintf('With i=%6.3f, j=%6.3f, k=%6.3f\n',tuning3)
134

135 fclose(fileID);





Appendix E

Simulation model

The simulations were preformed in Simulink® using the fixed-step ode8 (Dormand-Prince) solver
method with a step size of 0.005. This step size is chosen to match the sampling rate of the actual
PERA control loop. The MATLAB® code in the function (fcn) block in the model is given below.

Figure E.1: Simulink® model used for simulations

1 function output = fcn(x)
2 q1 = x(1);
3 q2 = x(2);
4 q3 = x(3);
5 q = [q1; q2; q3]; % Joint positions
6 P1 = x(4);
7 P2 = x(5);
8 P3 = x(6);
9 P = [P1; P2; P3]; % Transformed momenta

10 x_c1 = x(7);
11 x_c2 = x(8);
12 x_c3 = x(9);
13 x_c = [x_c1; x_c2; x_c3]; % Artificial state
14 t = x(10);
15

16 % Trajectory: Circle parameters
17 r = .2; % Radius of circle in meters
18 T = 15; % Period for drawing a circle in seconds
19
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20 % Trajectory: Desired positions
21 q_d1 = 0;
22 q_d2 = asin(r/.48)*sin((2*pi/T)*t);
23 q_d3 = pi/2 − asin(r/.48)*cos((2*pi/T)*t);
24 q_d = [q_d1; q_d2; q_d3];
25

26 % Trajectory: Derivative of desired positions
27 dq_d1 = 0;
28 dq_d2 = (2*pi*asin((25*r)/12)*cos((2*pi*t)/T))/T;
29 dq_d3 = (2*pi*asin((25*r)/12)*sin((2*pi*t)/T))/T;
30 dq_d = [dq_d1; dq_d2; dq_d3];
31

32 % Error positions
33 q_bar = q − q_d;
34

35 % Desired transformed momenta
36 P_d = [0; (2580715296368087*7616037329846245771365^(1/2)*pi*cos((2*pi*t)/15))...
37 /6044629098073145873530880000;...
38 (2580715296368087*195^(1/2)*pi*sin((2*pi*t)/15))/...
39 4503599627370496000];
40 % Derivative of desired transformed momenta
41 dP_d = [0; ...
42 −(2580715296368087*7616037329846245771365^(1/2)*pi^2*sin((2*pi*t)/15))/...
43 45334718235548594051481600000;...
44 (2580715296368087*195^(1/2)*pi^2*cos((2*pi*t)/15))/33776997205278720000];
45 % Error transformed momenta
46 P_bar = P − P_d;
47

48 % System matrices and gains
49 % Cholesky transform of the inertia matrix (Lower triangular, such that ...

M^−1=T*T^T and P=T^T * p):
50 psi = [(26843545600*5^(1/2))/(1509102191936324763648*sin(q1)^2 + ...

110317174072316078125)^(1/2), 0, 0; 0, ...
(26843545600*7616037329846245771365^(1/2))/1523207465969249154273, 0; ...
−(26843545600*5^(1/2)*cos(q1))/(1619419366008640841773 − ...
1509102191936324763648*cos(q1)^2)^(1/2), 0, (20*195^(1/2))/39];

51 % Gyroscopic forces matrix
52 J2 = zeros(3,3);
53 alpha = [11;1.7;6]; % Chosen s.t. saturation limits cannot be exceeded
54 beta = [40; 30; 30];
55 K_c = diag([1 2 .1]);
56 R_c = diag([.4 .11 0.5]);
57

58 % Potential energies
59 dVdq = [6.17*sin(q1) + 1.57*cos(q3)*sin(q1) + 1.57*sin(q3)*cos(q1)*cos(q2); ...

−1.57*sin(q3)*sin(q1)*sin(q2); 1.57*sin(q3)*cos(q1) + ...
1.57*cos(q3)*cos(q2)*sin(q1)];

60 dV_ddq_d = [6.17*sin(q_d1) + 1.57*cos(q_d3)*sin(q_d1) + ...
1.57*sin(q_d3)*cos(q_d1)*cos(q_d2); −1.57*sin(q_d3)*sin(q_d1)*sin(q_d2); ...
1.57*sin(q_d3)*cos(q_d1) + 1.57*cos(q_d3)*cos(q_d2)*sin(q_d1)];

61

62 % Gradients of Hamiltonian
63 % H = 1/2*P_bar.'*P_bar + V(q)
64 dHdq = dVdq;
65 dHdP = P;
66

67 % Input
68 z = q_bar + x_c;
69 dphidz = [alpha(1)*tanh(beta(1)*z(1)); alpha(2)*tanh(beta(2)*z(2)); ...

alpha(3)*tanh(beta(3)*z(3))];
70 u_bar = dVdq − dV_ddq_d − dphidz;
71 u_d = dV_ddq_d + (psi.')\dP_d;
72 u = u_bar + u_d;
73

74 % Time−derivatives of states
75 dq = psi*dHdP;
76 dP = (−psi.')*dHdq + J2*dHdP + (psi.')*u;
77 dx_c = −R_c*(K_c*x_c + dphidz);
78

79 % Output
80 output = [dq; dP; dx_c; u; q_bar];
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Trajectory generation script

The 20th order polynomial approximations of the desired joint trajectories to let the end-effector
of the PERA follow the shape of a lemniscate are given by
qd,1 =3.0 · 10−16t20 − 4.2 · 10−14t19 + 2.7 · 10−12t18 − 1.0 · 10−10t17 + 2.7 · 10−9t16

− 4.9 · 10−8t15 + 6.6 · 10−7t14 − 6.3 · 10−6t13 + 4.2 · 10−5t12 − 1.7 · 10−4t11

+ 1.4 · 10−4t10 + 3.3 · 10−3t9 − 0.025t8 + 0.1t7 − 0.26t6 + 0.43t5 − 0.45t4

+ 0.31t3 − 0.15t2 − 0.021t+ 0.046

qd,2 =− 1.8 · 10−15 ∗ t20 + 2.7 · 10−13 ∗ t19 − 1.8 · 10−11 ∗ t18 + 7.5 · 10−10 ∗ t17

− 2.1 · 10−8 ∗ t16 + 4.3 · 10−7 ∗ t15 − 6.6 · 10−6 ∗ t14 + 7.6 · 10−5 ∗ t13 − 6.8 · 10−4 ∗ t12

+ 4.7 · 10−3 ∗ t11 − 0.025 ∗ t10 + 0.1 ∗ t9 − 0.31 ∗ t8 + 0.69 ∗ t7 − 1.1 ∗ t6 + 1.2 ∗ t5

− 0.84 ∗ t4 + 0.37 ∗ t3 − 0.19 ∗ t2 − 0.014 ∗ t+ 0.5

qd,3 =2.2 · 10−16 ∗ t20 − 4.9 · 10−14 ∗ t19 + 4.6 · 10−12 ∗ t18 − 2.5 · 10−10 ∗ t17 + 8.9 · 10−9 ∗ t16

− 2.2 · 10−7 ∗ t15 + 4.2 · 10−6 ∗ t14 − 5.9 · 10−5 ∗ t13 + 6.3 · 10−4 ∗ t12 − 5.2 · 10−3 ∗ t11

+ 0.033 ∗ t10 − 0.16 ∗ t9 + 0.6 ∗ t8 − 1.6 ∗ t7 + 3.3 ∗ t6 − 4.6 ∗ t5 + 4.4 ∗ t4 − 2.7 ∗ t3

+ 0.87 ∗ t2 + 0.16 ∗ t+ 1.4.

Similarly, the polynomial approximations of the desired joint trajectories to let the end-effector of
the PERA follow the shape of a heart are given by
qd,1 =8.9 · 10−16 ∗ t20 − 1.3 · 10−13 ∗ t19 + 9.3 · 10−12 ∗ t18 − 4.0 · 10−10 ∗ t17 + 1.2 · 10−8 ∗ t16

− 2.5 · 10−7 ∗ t15 + 4.0 · 10−6 ∗ t14 − 4.9 · 10−5 ∗ t13 + 4.7 · 10−4 ∗ t12 − 3.5 · 10−3 ∗ t11

+ 0.021 ∗ t10 − 0.093 ∗ t9 + 0.32 ∗ t8 − 0.84 ∗ t7 + 1.6 ∗ t6 − 2.2 ∗ t5 + 2.0 ∗ t4 − 1.1 ∗ t3

+ 0.22 ∗ t2 − 0.042 ∗ t+ 0.19
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qd,2 =1.7 · 10−19 ∗ t20 + 1.1 · 10−15 ∗ t19 − 1.6 · 10−13 ∗ t18 + 1.1 · 10−11 ∗ t17 − 4.3 · 10−10 ∗ t16

+ 1.2 · 10−8 ∗ t15 − 2.3 · 10−7 ∗ t14 + 3.2 · 10−6 ∗ t13 − 3.5 · 10−5 ∗ t12 + 2.9 · 10−4 ∗ t11

− 1.8 · 10−3 ∗ t10 + 8.2 · 10−3 ∗ t9 − 0.028 ∗ t8 + 0.067 ∗ t7 − 0.1 ∗ t6 + 0.089 ∗ t5

− 6.8 · 10−4 ∗ t4 − 0.085 ∗ t3 + 0.024 ∗ t2 − 5.0 · 10−3 ∗ t+ 2.2 · 10−4

qd,3 =− 7.3 · 10−16 ∗ t20 + 1.1 · 10−13 ∗ t19 − 7.6 · 10−12 ∗ t18 + 3.2 · 10−10 ∗ t17 − 9.4 · 10−9 ∗ t16

+ 2.0 · 10−7 ∗ t15 − 3.2 · 10−6 ∗ t14 + 3.9 · 10−5 ∗ t13 − 3.7 · 10−4 ∗ t12 + 2.7 · 10−3 ∗ t11

− 0.016 ∗ t10 + 0.07 ∗ t9 − 0.24 ∗ t8 + 0.62 ∗ t7 − 1.2 ∗ t6 + 1.6 ∗ t5 − 1.4 ∗ t4 + 0.76 ∗ t3

− 0.018 ∗ t2 + 0.029 ∗ t+ 0.71.

Because of the great length of the expressions for the desired input for both shapes, these expres-
sions are not given here. The MATLAB® script used to define the trajectories is given below.
Note that the scripts in Appendices C and E need to be ran prior to running this script, as the
matrix Ψ (T in the script) and the SerialLink object that represents the PERA (PERA) are needed
to compute the desired input and the inverse kinematics, respectively.

1 %% Inverse kinematics to generate trajectory: lemniscate
2 t=0:0.005:15;
3 a=0.2;
4 L1=0.36;
5 L2=0.48;
6 r=0.2;
7 period=15;
8 x_lemniscate=zeros(length(t),1);
9 y_lemniscate=zeros(length(t),1);

10 z_lemniscate=zeros(length(t),1);
11 lemniscate_trajectory=zeros(length(t),3);
12 for i=1:length(t)
13 x_lemniscate(i)=sqrt(L2^2−r^2);
14 y_lemniscate(i)=0.8*(a*sqrt(2)*cos(((2*pi)/period)*t(i)))/(sin(((2*pi)/period)...
15 *t(i))*sin(((2*pi)/period)*t(i))+1);
16 z_lemniscate(i)=(a*sqrt(2)*cos(((2*pi)/period)*t(i))*sin(((2*pi)/period)*t(i)))...
17 /(sin(((2*pi)/period)*t(i))*sin(((2*pi)/period)*t(i))+1)−L1;
18 translation=transl(x_lemniscate(i),y_lemniscate(i),z_lemniscate(i));
19 q = PERA.ikine(translation,'mask',[1 1 1 0 0 0]);
20 lemniscate_trajectory(i,1)=q(1);
21 lemniscate_trajectory(i,2)=q(2);
22 lemniscate_trajectory(i,3)=q(3);
23 end
24

25 %% Inverse kinematics to generate trajectory: heart
26 t=0:0.1:15;
27 a=0.0125;
28 L1=0.36;
29 L2=0.48;
30 r=0.2;
31 period=15;
32 x_heart=zeros(length(t),1);
33 y_heart=zeros(length(t),1);
34 z_heart=zeros(length(t),1);
35 heart_trajectory=zeros(length(t),3);
36 for i=1:length(t)
37 x_heart(i)=sqrt(L2^2−r^2);
38 y_heart(i)=a*(16*(sin(((2*pi)/period)*(t(i)−7.5)))^3);
39 z_heart(i)=a*(13*cos(((2*pi)/period)*(t(i)−7.5))−5*cos(((4*pi)/period)*(t(i)−7.5))...
40 −2*cos(((6*pi)/period)*(t(i)−7.5))−cos(((8*pi)/period)*(t(i)−7.5)))−0.4;
41 translation=transl(x_heart(i),y_heart(i),z_heart(i));
42 q = PERA.ikine(translation,'mask',[1 1 1 0 0 0]);
43 heart_trajectory(i,1)=q(1);
44 heart_trajectory(i,2)=q(2);
45 heart_trajectory(i,3)=q(3);
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46 end
47

48 %% Plot: lemniscate
49 % PERA.plot(lemniscate_trajectory,'trail',{'r','LineWidth',1})
50

51 figure(5)
52 p_lemniscate1 = polyfit(t',lemniscate_trajectory(:,1),20);
53 plot(t,lemniscate_trajectory(:,1),'r')
54 hold on
55 plot(t, polyval(p_lemniscate1, t),'k')
56 title('q_1 (lemniscate trajectory)')
57 grid
58

59 figure(6)
60 p_lemniscate2 = polyfit(t',lemniscate_trajectory(:,2),20);
61 plot(t,lemniscate_trajectory(:,2),'m')
62 hold on
63 plot(t, polyval(p_lemniscate2, t),'k')
64 title('q_2 (lemniscate trajectory)')
65 grid
66

67 figure(7)
68 p_lemniscate3 = polyfit(t',lemniscate_trajectory(:,3),20);
69 plot(t,lemniscate_trajectory(:,3),'b')
70 hold on
71 plot(t, polyval(p_lemniscate3, t),'k')
72 title('q_3 (lemniscate trajectory)')
73 grid
74

75 %% Plot: heart
76 % PERA.plot(heart_trajectory,'trail',{'r','LineWidth',1})
77

78 figure(8)
79 p_heart1 = polyfit(t',heart_trajectory(:,1),20);
80 plot(t,heart_trajectory(:,1),'r')
81 hold on
82 plot(t, polyval(p_heart1, t),'k')
83 title('q_1 (heart trajectory)')
84 grid
85

86 figure(9)
87 p_heart2 = polyfit(t',heart_trajectory(:,2),20);
88 plot(t,heart_trajectory(:,2),'r')
89 hold on
90 plot(t, polyval(p_heart2, t),'k')
91 title('q_2 (heart trajectory)')
92 grid
93

94 figure(10)
95 p_heart3 = polyfit(t',heart_trajectory(:,3),20);
96 plot(t,heart_trajectory(:,3),'r')
97 hold on
98 plot(t, polyval(p_heart3, t),'k')
99 title('q_3 (heart trajectory)')

100 grid
101

102 %% u_d for all shapes
103 t = sym('t','real');
104 q_d1_lemniscate=0; q_d2_lemniscate=0; q_d3_lemniscate=0; q_d1_heart=0; ...

q_d2_heart=0; q_d3_heart=0;
105 for i=1:21
106 q_d1_lemniscate=q_d1_lemniscate + p_lemniscate1(i)*t^{(21−i);
107 q_d2_lemniscate=q_d2_lemniscate + p_lemniscate2(i)*t^{(21−i);
108 q_d3_lemniscate=q_d3_lemniscate + p_lemniscate3(i)*t^{(21−i);
109 q_d1_heart=q_d1_heart + p_heart1(i)*t^{(21−i);
110 q_d2_heart=q_d2_heart + p_heart2(i)*t^{(21−i);
111 q_d3_heart=q_d3_heart + p_heart3(i)*t^{(21−i);
112 end
113 dq_d1_lemniscate = diff(q_d1_lemniscate,t);
114 dq_d2_lemniscate = diff(q_d2_lemniscate,t);
115 dq_d3_lemniscate = diff(q_d3_lemniscate,t);
116 dq_d_lemniscate = [dq_d1_lemniscate; dq_d2_lemniscate; dq_d3_lemniscate];
117 dq_d1_heart = diff(q_d1_heart,t);
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118 dq_d2_heart = diff(q_d2_heart,t);
119 dq_d3_heart = diff(q_d3_heart,t);
120 dq_d_heart = [dq_d1_heart; dq_d2_heart; dq_d3_heart];
121

122 P_d_lemniscate = (subs(T, {q1, q2, q3}, {q_d1_lemniscate, q_d2_lemniscate, ...
q_d3_lemniscate}))\dq_d_lemniscate;

123 dP_d_lemniscate = diff(P_d_lemniscate,t);
124 u_d_lemniscate = ((subs(T, {q1, q2, q3}, {q_d1_lemniscate, q_d2_lemniscate, ...

q_d3_lemniscate})).')\dP_d_lemniscate;
125

126 P_d_heart = (subs(T, {q1, q2, q3}, {q_d1_heart, q_d2_heart, q_d3_heart}))\dq_d_heart;
127 dP_d_heart = diff(P_d_heart,t);
128 u_d_heart = ((subs(T, {q1, q2, q3}, {q_d1_heart, q_d2_heart, ...

q_d3_heart})).')\dP_d_heart;



Appendix G

Model of the five degrees of freedom
PERA

The elements of the inertia matrix of the five DoF PERA, i.e. M(q) ∈ R5×5, are given by
m11 =I1,zz + I2,zz + I3,zz + I4,zz + I5,zz + L2

1m1 + L2
1m2 + 2L2

1m3 + 2L2
2m3 − L2

1m1 cos2(q1)

− L2
1m2 cos2(q1)− 2L2

1m3 cos2(q1)− 2L2
2m3 cos2(q2) + 4L1L2m3 cos(q3)

+ 2L2
2m3 cos2(q1) cos2(q2)− 2L2

2m3 cos2(q1) cos2(q3) + 2L2
2m3 cos2(q2) cos2(q3)

− 2L2
2m3 cos2(q1) cos2(q2) cos2(q3)− 4L1L2m3 cos2(q1) cos(q3)

+ 4L2
2m3 cos(q1) cos(q2) cos(q3) sin(q1) sin(q3) + 4L1L2m3 cos(q1) cos(q2) sin(q1) sin(q3)

m12 =− 2L2m3 sin(q2)(L1 cos(q1) sin(q3)− L2 cos(q2) sin(q1) + L2 cos(q1) cos(q3) sin(q3)

+ L2 cos(q2) cos2(q3) sin(q1))

m13 =I3,zz cos(q1) + I4,zz cos(q1) + I5,zz cos(q1) + 2L2
2m3 cos(q1)− 2L2

2m3 cos(q1) cos2(q3)

+ 2L1L2m3 cos(q2) sin(q1) sin(q3) + 2L2
2m3 cos(q2) cos(q3) sin(q1) sin(q3)

m14 = sin(q1) sin(q2)(2m3L
2
2 + 2L1m3 cos(q3)L2 + I4,zz + I5,zz)

m15 =I5,zz sin(q1) sin(q2)

m21 =− 2L2m3 sin(q2)(L1 cos(q1) sin(q3)− L2 cos(q2) sin(q1) + L2 cos(q1) cos(q3) sin(q3)

+ L2 cos(q2) cos2(q3) sin(q1))

m22 =I2,zz + I3,zz + I4,zz + I5,zz + L2
1m1 + L2

1m2 + 2L2
1m3 + 2L2

2m3 cos2(q2) + 2L2
2m3 cos2(q3)

+ 4L1L2m3 cos(q3)− 2L2
2m3 cos2(q2) cos2(q3)

m23 =− 2L2m3 sin(q2) sin(q3)(L1 + L2 cos(q3))

m24 = cos(q2)(2m3L
2
2 + 2L1m3 cos(q3)L2 + I4,zz + I5,zz)

m25 =I5,zz cos(q2)

m31 =I3,zz cos(q1) + I4,zz cos(q1) + I5,zz cos(q1) + 2L2
2m3 cos(q1)− 2L2

2m3 cos(q1) cos2(q3)

+ 2L1L2m3 cos(q2) sin(q1) sin(q3) + 2L2
2m3 cos(q2) cos(q3) sin(q1) sin(q3)

m32 =− 2L2m3 sin(q2) sin(q3)(L1 + L2 cos(q3))

m33 =I3,zz + I4,zz + I5,zz + 2L2
2m3 sin2(q3)

m34 =0

m35 =0

m41 = sin(q1) sin(q2)(2m3L
2
2 + 2L1m3 cos(q3)L2 + I4,zz + I5,zz)

m42 = cos(q2)(2m3L
2
2 + 2L1m3 cos(q3)L2 + I4,zz + I5,zz)

m43 =0
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m44 =2m3L
2
2 + I4,zz + I5,zz

m45 =I5,zz

m51 =I5,zz sin(q1) sin(q2)

m52 =I5,zz cos(q2)

m53 =0

m54 =I5,zz

m55 =I5,zz

Substitution of parameters yields
m11 =0.072 cos(q3)− 0.42 cos2(q1)− 0.031 cos2(q2)− 0.072 cos2(q1) cos(q3) + 0.031 cos2(q1) cos2(q2)

− 0.031 cos2(q1) cos2(q3) + 0.031 cos2(q2) cos2(q3)− 0.031 cos2(q1) cos2(q2) cos2(q3)

+ 0.072 cos2(q1) cos(q2) sin(q1) sin(q3) + 0.063 cos(q1) cos(q2) cos(q3) sin(q1) sin(q3) + 0.49

m12 =− 4.5 · 10−3 sin(q2) ∗ (8 cos(q1) sin(q3)− 7 cos(q2) sin(q1) + 7 cos(q2) cos2(q3) sin(q1)

+ 7 cos(q1) cos(q3) sin(q3))

m13 =0.038 cos(q1)− 0.031 cos(q1) cos2(q3) + 0.036 cos(q2) sin(q1) sin(q3)

+ 0.031 cos(q2) cos(q3) sin(q1) sin(q3)

m14 =6.9 · 10−23 sin(q1) sin(q2) ∗ (5.2 · 1020 cos(q3) + 4.7 · 1020)

m15 =7.3 · 10−4 sin(q1) sin(q2)

m21 =− 4.5 · 10−3 sin(q2) ∗ (8 cos(q1) sin(q3)− 7 cos(q2) sin(q1) + 7 cos(q2) cos2(q3) sin(q1)

+ 7 cos(q1) cos(q3) sin(q3))

m22 =0.072 cos(q3) + 0.031 cos2(q2) + 0.031 cos2(q3)− 0.031 cos2(q2) cos2(q3) + 0.43

m23 =− 4.5 · 10−3 sin(q2) sin(q3) ∗ (7 cos(q3) + 8)

m24 =6.9 · 10−23 cos(q2) ∗ (5.2 · 1020 cos(q3) + 4.7 · 1020)

m25 =7.3 · 10−4 cos(q2)

m31 =0.038 cos(q1)− 0.031 cos(q1) cos2(q3) + 0.036 cos(q2) sin(q1) sin(q3)

+ 0.031 cos(q2) cos(q3) sin(q1) sin(q3)

m32 =− 4.5 · 10−3 sin(q2) sin(q3) ∗ (7 cos(q3) + 8)

m33 =0.031 sin2(q3) + 6.9 · 10−3

m34 =0

m35 =0

m41 =6.9 · 10−23 sin(q1) sin(q2) ∗ (5.2 · 1020 cos(q3) + 4.7 · 1020)

m42 =6.9 · 10−23 cos(q2) ∗ (5.2 · 1020 cos(q3) + 4.7 · 1020)

m43 =0

m44 =0.033

m45 =7.3 · 10−4

m51 =7.3 · 10−4 sin(q1) sin(q2)

m52 =7.3 · 10−4 cos(q2)

m53 =0

m54 =7.3 · 10−4

m55 =7.3 · 10−4



109

The elements of the vector of potential energies of the five DoF PERA, i.e. ∂V (q)
∂q ∈ R5, are given

by

v1 =gm2(L1 sin(q1)− 1

3
L2(− cos(q3) sin(q1)− sin(q3) cos(q1) cos(q2)))

− gm3(
1

3
L3(cos(q5)(sin(q4)(sin(q3) sin(q1)− cos(q3) cos(q1) cos(q2)) + cos(q4)(− cos(q3) sin(q1)

− sin(q3) cos(q1) cos(q2))) + cos(q1) sin(q2) sin(q5))− L1 sin(q1) + L2(− cos(q3) sin(q1)

− sin(q3) cos(q1) cos(q2))) +
1

3
L1gm1 sin(q1)

v2 =− gm3(
1

3
L3(cos(q5)(sin(q3) cos(q4) sin(q1) sin(q2) + cos(q3) sin(q1) sin(q2) sin(q4))

+ cos(q2) sin(q1) sin(q5)) + L2 sin(q3) sin(q1) sin(q2))− 1

3
L2gm2 sin(q3) sin(q1) sin(q2)

v3 =gm3(L2(sin(q3) cos(q1) + cos(q3) cos(q2) sin(q1))− 1

3
L3 cos(q5)(sin(q4)(− cos(q3) cos(q1)

+ sin(q3) cos(q2) sin(q1))− cos(q4)(sin(q3) cos(q1) + cos(q3) cos(q2) sin(q1))))

+
1

3
L2gm2(sin(q3) cos(q1) + cos(q3) cos(q2) sin(q1))

v4 =− 1

3
L3gm3 cos(q5)(sin(q4)(− cos(q3) cos(q1) + sin(q3) cos(q2) sin(q1))− cos(q4)(sin(q3) cos(q1)

+ cos(q3) cos(q2) sin(q1)))

v5 =− 1

3
L3gm3(sin(q5)(cos(q4)(− cos(q3) cos(q1) + sin(q3) cos(q2) sin(q1)) + sin(q4)(sin(q3) cos(q1)

+ cos(q3) cos(q2) sin(q1))) + cos(q5) sin(q1) sin(q2))

Substitution of parameters yields
v1 =6.2 sin(q1)− 0.13 cos(q5)(sin(q4)(sin(q3) sin(q1)− cos(q3) cos(q1) cos(q2))

+ cos(q4)(− cos(q3) sin(q1)− sin(q3) cos(q1) cos(q2)))− 1.3− cos(q3) sin(q1)

+ 1.3 sin(q3) cos(q1) cos(q2)− 0.13 cos(q1) sin(q2) sin(q5)

v2 =− 0.13 cos(q5)(sin(q3) cos(q4) sin(q1) sin(q2) + cos(q3) sin(q1) sin(q2) sin(q4))

− 1.3 sin(q3) sin(q1) sin(q2)− 0.13 cos(q2) sin(q1) sin(q5)

v3 =1.3 sin(q3) cos(q1)− 0.13 cos(q5)(sin(q4)(− cos(q3) cos(q1) + sin(q3) cos(q2) sin(q1))

− cos(q4)(sin(q3) cos(q1) + cos(q3) cos(q2) sin(q1)))− 1.3− cos(q3) cos(q2) sin(q1)

v4 =− 0.13 cos(q5)(sin(q4)(− cos(q3) cos(q1) + sin(q3) cos(q2) sin(q1))− cos(q4)(sin(q3) cos(q1)

+ cos(q3) cos(q2) sin(q1)))

v5 =− 0.13 sin(q5)(cos(q4)(− cos(q3) cos(q1) + sin(q3) cos(q2) sin(q1)) + sin(q4)(sin(q3) cos(q1)

+ cos(q3) cos(q2) sin(q1)))− 0.13 cos(q5) sin(q1) sin(q2)
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