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Abstract

Faculty of Science and Engineering

University of Groningen

Master of Science

Spatial-Based Model Predictive Control for Trajectory Generation in
Autonomous Racing

by S. DE BOER

An attractive research direction within automation is autonomous vehicles and es-
pecially in the last decade, applications in this topic have undergone tremendous
improvement. Within the field of vehicle control, autonomous racing has gained in-
creased interest in terms of research. Understanding how a race car driver controls
a vehicle at its friction limits can provide insights into the development of vehicle
safety systems.

An integrated plan-and track control algorithm to automatically steer an autonomous
race car along an optimized desired trajectory is designed, using Model Predictive
Control. A kinematic bicycle model is employed to derive the dynamics of the ve-
hicle. Commonly used time-dynamics are reformulated to spatial dynamics by ex-
pressing equations in terms of the center-line of the track and are used to design the
controller. Hence, the name Spatial-Based Model Predictive Control (MPC). The ut-
most advantage of this reformulation is the allowance of natural modeling of static
and dynamic objects (representing race opponents) as spatial bounds on the track.

The nonlinear vehicle dynamics are successively linearized around previous solu-
tions of the MPC problem, allowing the problem to be formulated as a convex opti-
mization problem. The objective of the Spatial-Based MPC controller is to maximize
the progress along the center-line of a given track, while ensuring smoothness along
the way. The performance of the controller is tested on manually created tracks rep-
resenting several segments of the F1 Suzuka Circuit in Japan. Several simulations
are executed to validate and show robustness of the Spatial-Based MPC controller,
also in the presence of race opponents.
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https://www.rug.nl/




v

Contents

Abstract iii

1 Introduction 1
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Autonomous Vehicle System . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Path Planning and Trajectory Tracking . . . . . . . . . . . . . . . 2

1.2 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Study 7
2.1 Autonomous Vehicle System . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Vehicle Overtaking Manoeuvre . . . . . . . . . . . . . . . . . . . 8

2.2 Vehicle Model Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Geometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Kinematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Path Planning & Trajectory Control at the limit of friction . . . . . . . . 14
2.3.1 Racing line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Vehicle Model 17
3.1 Kinematic Bicycle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Spatial Dynamics Reformulation . . . . . . . . . . . . . . . . . . . . . . 19

4 Controller Design 23
4.1 Model Predictive Control (MPC) . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Control Ojective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Racing Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Linear Space Varying (LSV)-Model . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Final Control Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Simulation Setup 33
5.1 Nonholonomic vs. holonomic robots . . . . . . . . . . . . . . . . . . . . 33
5.2 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



vi

5.3 F1 Suzuka Circuit Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Simulation and Results 35
6.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 Validation of Jrace . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.2 Validation of Jsmooth . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Friction Coefficient µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.1 µ on S-curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.2 µ on Hairpin Curve . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3.1 Prediction Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3.2 Track Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.3 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.4 Overtaking Manoeuvres . . . . . . . . . . . . . . . . . . . . . . . 42

7 Discussion 47

8 Conclusion 49

9 Future Research 51

A Convexity Definitions (Princeton University, 2020) 53

B MPC Matrix Derivation 55
B.1 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

C Additional track information 59
C.1 Track 1: S-curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
C.2 Track 2: 90-degrees curve . . . . . . . . . . . . . . . . . . . . . . . . . . 60
C.3 Track 3: Hairpin curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

D Trajectories for changing friction coefficient µ 61
D.1 change in µ on S-curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
D.2 Change in µ on hairpin curve . . . . . . . . . . . . . . . . . . . . . . . . 63

E Varying Horizon Lengths N and Step Lengths ∆s 65
E.1 Constant N = 5 and varying ∆s . . . . . . . . . . . . . . . . . . . . . . . 65
E.2 Constant ∆s = 4 and varying N . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 67



vii

List of Figures

1.1 SAE classification for autonomous vehicles . . . . . . . . . . . . . . . . 3
1.2 Core competencies of a typical autonomous vehicle system with sys-

tem boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Overview of autonomous vehicle system (Amer et al., 2017) . . . . . . 8
2.2 Overview of a basic overtaking manoeuvre . . . . . . . . . . . . . . . . 9
2.3 Vehicle Axis System used in Vehicle Modelling (Kissai et al., 2019) . . . 10
2.4 Ackermann steering configuration (Amer et al., 2017) . . . . . . . . . . 10
2.5 Kinematic vehicle models . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Dynamic vehicle models . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 General control architecture for an autonomous vehicle . . . . . . . . . 14
2.8 Effect of using Centre of Percussion on a dynamic bicycle model . . . . 15
2.9 Perfect racing line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Considered kinematic bicycle model in global- and curvilinear coor-
dinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Visualization of inertial coordinates . . . . . . . . . . . . . . . . . . . . 20

5.1 F1 Suzuka Circuit, Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Representation of Track Segments . . . . . . . . . . . . . . . . . . . . . 34

6.1 Validation of objective function Jrace . . . . . . . . . . . . . . . . . . . . 36
6.2 Validation of Jsmooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 MPC iterations vs. spatial states . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Variation of friction values µ on S-curve . . . . . . . . . . . . . . . . . . 38
6.5 Variation of friction values µ on Hairpin curve . . . . . . . . . . . . . . 39
6.6 Constant N = 5 and changing ∆s . . . . . . . . . . . . . . . . . . . . . . 40
6.7 Constant ∆s = 4 and changing N . . . . . . . . . . . . . . . . . . . . . . 41
6.8 Simulation on different track segments . . . . . . . . . . . . . . . . . . . 41
6.9 Variation in initial values . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.10 Scenario 1: one race opponent . . . . . . . . . . . . . . . . . . . . . . . . 43
6.11 Scenario 2: two race opponents . . . . . . . . . . . . . . . . . . . . . . . 44
6.12 Scenario 3: three race opponents . . . . . . . . . . . . . . . . . . . . . . 45
6.13 Computation times in the presence of race opponents . . . . . . . . . . 45

A.1 Convexity of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 Illustration of definition of convexity of function . . . . . . . . . . . . . 54

C.1 Track information S-curve . . . . . . . . . . . . . . . . . . . . . . . . . . 59
C.2 Track information 90-degrees curve . . . . . . . . . . . . . . . . . . . . . 60



viii

C.3 Track information hairpin curve . . . . . . . . . . . . . . . . . . . . . . . 60

D.1 From left to right: µ = 0, µ = 0.5, µ = 0.8, µ = 1 . . . . . . . . . . . . . . 61
D.2 From left to right: µ = 2, µ = 3, µ = 10 . . . . . . . . . . . . . . . . . . . 62
D.3 From left to right: µ = 0, µ = 0.5, µ = 0.8, µ = 1, µ = 2, µ = 3, µ = 10 . 63

E.1 S-curve trajectory with constant N = 5 and changing ∆s . . . . . . . . . 65
E.2 S-curve trajectory with constant N = 5 and changing ∆s . . . . . . . . . 66



ix

List of Tables

1.1 Levels of vehicle autonomy classified by the SAE . . . . . . . . . . . . . 2

3.1 Spatial States of the vehicle model . . . . . . . . . . . . . . . . . . . . . 22
3.2 Control inputs of the spatial vehicle model . . . . . . . . . . . . . . . . 22

6.1 Initial values for validation . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Effect of varying planning horizon and step length . . . . . . . . . . . . 40





xi

List of Abbreviations

ACC Adaptive Cruise Control
ADAS Advanced Driver Assistence Systems
AGV Autonomous Ground Vehicle
CG Center of Gravity
LSV Linear Space Varying
LTV Linear Time Varying
MPC Model Predictive Control
(R)DW Dienst Wegverkeer
RWD Rear Wheel Driven
SAE Society (of) Automotive Engineers
UAV Unmanned Aerial Vehicle
UUV Unmanned Underwater Vehicle
V2V Vehicle (to) Vehicle
ZOH Zero Order Hold





xiii

List of Symbols

∆s step length m
N prediction horizon -
µ friction coefficient -
δ steering angle rad
κv car curvature m−1

ψ yaw angle rad
ψ̇ yaw rate rad s−1

vx longitudinal velocity m s−1

Cv curvature rate rad m−2

Ey lateral deviation w.r.t. center-line track m
Ey angular deviation w.r.t. center-line track rad
ax longitudinal acceleration m s−2

s spatial coordinate m
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Chapter 1

Introduction

The use of autonomous systems have become prevalent and are used to perform
tasks that are originally considered mundane, dangerous or time-consuming. In-
creased programming technology entails an increased demand of robotic devices
able to work in complex environments without human assistance. On the one hand
this trend has been unfavourable for a huge amount of people, as millions of jobs
has been lost to automation already (Forbes, 2019). On the other hand, innovative
activities in the automatic control field has led to a significant boost in research inter-
est. An attractive research direction within automation is autonomous vehicles and
especially in the last decade, this topic has undergone tremendous improvement. As
knowledge of autonomous vehicles and its applications proliferates, so does the de-
ployment of these vehicles. For example, governmental institutions invest heavily
in the development of these technologies for military purposes. The application of
Unmanned Aerial Vehicles (UAV) for area surveillance in the air or Unmanned Un-
derwater Vehicles (UUV) for underwater mine detection, are common actions taken
by respectively military forces and the navies (Angelov, 2012).

This research focuses on vehicles for terrestrial purposes only, which are commonly
referred to as Autonomous Ground Vehicles (AGV). For this particular field, a large
number of research directions have been taken in the past. Interesting concepts like
car platooning or convoying (Amoozadeh et al., 2015), lane changing, emergency
stopping, obstacle avoidance and overtaking manoeuvres (Ozguner, Acarman, and
Redmill, 2011) have been defined over the last decade. Two main aspects contribut-
ing to these topics are path planning and trajectory tracking, for which many control
techniques are proposed in literature. State-of-the art autonomous vehicles have
demonstrated a great deal of successes, but still cannot compete with human drivers
in many ways, leading to interesting challenges to solve. One particular challenge
for autonomous vehicles, induced by professional race car driving, is vehicle con-
trol at the limit of friction. Race car drivers have the ability to operate their car at
top speed, while the tires experience frictions at their limits, without losing control
by utilising their internal vehicle model to coordinate steering, throttle and brake
inputs (Kritayakirana and Gerdes, 2012).
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1.1 Research Motivation

1.1.1 Autonomous Vehicle System

Advanced Driver-Assistance Systems (ADASs) were designed to reduce or even
eliminate traffic errors and for the enhancement of overall traffic and transport ef-
ficiency (Brookhuis, De Waard, and Janssen, 2019). The continuing evolution of
technology in the automotive industry aims to deliver systems like these with even
greater safety benefits, such that that one day fully automated vehicles drive us in
stead of us driving them. A vision that, considering the proliferation within this
branch of technology, seems to be on the verge of becoming reality (NHTSA, 2018).
Research in the field of ADASs has been conducted for several decades and has
shown that, by minimizing human errors, less road fatalities occurs when an ADAS
is employed (Cafiso and Di Graziano, 2012), (Pascual and Pablo, 2009). Since au-
tonomous safety features are frequently used and referred to nowadays, the US So-
ciety of Automotive Engineers (SAE) provided an infographic chart to classify au-
tonomous vehicle systems into six different levels, as can be seen in Figure 1.1 (SAE,
2018). Additionally, Table 1.1 summarizes the classification from no automation
to full automation performed by the Automated Driving System (ADS) (NHTSA,
2018).

Classification Description
Level 0 No Automation Driver performs all driving tasks
Level 1 Driver Assistance Driver has hands on the wheel
Level 2 Partial Automation Hands off the wheel, eyes on the road
Level 3 Conditional Automation Hands off the wheel, eyes off the road
Level 4 High Automation ADS performs all driving tasks
Level 5 Full Automation Humans are passengers

TABLE 1.1: Levels of vehicle autonomy classified by the SAE

This research is done in collaboration with Dienst Wegverkeer (RDW), which is an
organization that approves and licenses vehicles and vehicle parts in The Nether-
lands (RDW, 2018). Since the number of vehicles with autonomous features expands
rapidly, RDW is curious about the working principles of control software imple-
mented in autonomous cars. Recently, RDW launched a self-driving challenge in
which a go-kart was targeted to drive autonomous by means of line detection. This
technique is rather simplistic in this form, as the car follows solely a reference line
without any other moving obstacles present. Since this situation is not in line with
real-life occurrences, a more in-depth research is done in the context of this thesis.
Topics such as location, automatic map construction, monitoring, path planning and
trajectory tracking for a certain generated environment has increased research inter-
est due to their overlap with real-world situations. Especially trajectory planning
and tracking constitute two important operations of an autonomous vehicle system
(Ozguner, Acarman, and Redmill, 2011) and is elaborated on further in the next sec-
tion.

1.1.2 Path Planning and Trajectory Tracking

As can be seen in Figure 1.2, the core competencies of an autonomous vehicle soft-
ware system can be roughly categorized into three components: perception, planning
and control. The systems perception refers to the process of converting incoming raw
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FIGURE 1.1: SAE classification for autonomous vehicles

data from the sensors or Vehicle to Vehicle (V2V) communication to recognition of
certain objects (e.g. another car or a pedestrian) in the surrounding environment, i.e.
a representation of the environment. It is analogous to how the human brain pro-
cesses information through sight and it counts as input for the planning process. The
planning system is the ability of the autonomous vehicle to make certain decisions
to achieve predefined goals. Doing so, the vehicle knows how to act in a certain
situation such as slowing down, turning left/right etc. Lastly, the control system is
related to the process of converting goals and intentions from the planning system
into actual actions. Currently, high-end vehicles are equipped with autonomous
safety systems. Features such as assisted braking, line detection and following en-
hance the safety of these high-end vehicles. However, these applications can solely
help in trivial driving situations. In reality, driving situations are highly determined
by human inputs and their driving habits (Schwarting et al., 2017). In terms of soft-
ware language, these driving habits are controlled by path planning and trajectory
tracking and these terms will be briefly discussed in this section.

Path planning can be defined as the computation of desired actions of motion pro-
files for autonomous machines (Biagiotti and Melchiorri, 2008). Autonomous vehi-
cles are dependent on the real-time state of the vehicle and information about its
surrounding such that a local path is derived that ensures a safe drive while devi-
ation from the global trajectory (the overall journey) is minimized. According to
(Katrakazas et al., 2015), local path planning is defined as real-time planning of the
vehicle’s transition from one feasible state to the next, while satisfying the vehicle’s
kinematic limits based on vehicle dynamics and constrained by occupant comfort,
lane boundaries and traffic rules, while, at the same time, avoiding obstacles. Differ-
ent strategies for planning an path for overtaking can be found in literature. Classical
techniques such as potential fields, cell-decomposition, interdisciplinary methods
and optimal control have the drawback of not being able to include the vehicle dy-
namic. A relatively new concept for local path planning is the employment of Model
Predictive Control (MPC). Many researchers favour this method for path planning,
due to its ability to more efficient handling of system constraints, vehicle dynamics
and non-linearities. The working principles of this approach will be further elabo-
rated on in Chapter 3.
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Trajectory tracking is referred to as computing the actuator input that enables the
autonomous vehicle to track a desired trajectory. In trajectory tracking control, the
longitudinal- and lateral movements of the vehicle is governed along a specified
path or trajectory. It is a popular and mature scientific field with a profusion of
control methods available in literature. Assessment of tracking controllers for au-
tonomous vehicles is executed through properties such as real-time capability, ro-
bustness, operating range and control parameter tuning (Dixit et al., 2018). Same as
for path planning control, MPC can be utilised in trajectory tracking controllers and
has been found to perform quite well and provide accurate tracking performance.
Due to its ability to include vehicle- and tire dynamics, MPC is often used in con-
trol problems for complex and high-speed driving situations. Handling a vehicle at
its limit of friction is an example of such a complex situation. Extensive research is
done on enabling the control of autonomous vehicles when tires experience friction
at their limits, but still much knowledge can be gained from understanding how race
car drivers maintain both a tracked path and car stability, especially when operating
at the limit of friction.

1.2 Research Scope

As explained previously, this research scopes down on the path planning and trajec-
tory control of an autonomous vehicle system. Within a typical autonomous vehicle
system, the boundaries can be indicated as in Figure 1.2. Within the field of vehicle
control, autonomous racing has gained increased interest in terms of research. Un-
derstanding how a race car driver controls a vehicle at its friction limits can provide
insights into the development of vehicle safety systems during manoeuvres that re-
quire full handling capabilities.

As stated, path planning and trajectory tracking of autonomous vehicles have nu-
merous control strategies. In this research, MPC will be applied to effectively gen-
erate trajectories in race situations. Several track segments will be manually created
and simulated on with Python, to find the optimal track by optimizing a defined
objective with the MPC method. By doing so, an integrated path planning and tra-
jectory tracking control problem for autonomous racing is desired to be solved.

FIGURE 1.2: Core competencies of a typical autonomous vehicle sys-
tem with system boundaries
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1.3 Research Goal

In line with the previous sections, the research goal is to design a plan-and track con-
trol algorithm to automatically steer an autonomous race car along an optimized desired
trajectory, using model predictive control.

A main research question and, inherently, some underlying sub-questions will pro-
vide the necessary guidance in achieving the above-mentioned goal:

How to generate optimal trajectories for autonomous overtaking using Model Predictive
Control?

• SQ1: Which vehicle model is suitable for trajectory generation in autonomous
racing?

• SQ2: How is the trajectory generation control algorithm designed?

• SQ3: How robust is the proposed control algorithm?

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 gives an overview
of the researched literature for convenient background information. The proposed
vehicle model, fundamental in Model Predictive Control, is given in chapter 3. Sub-
sequently, the implementation of the vehicle dynamics within the MPC scheme is
elaborated on in chapter 4. The simulation setup is given in chapter 5 en the con-
sequent simulations and results in chapter 6. Chapter 7 is utilized to discuss these
results, whereupon final conclusions and future work are given in respectively chap-
ter 8 and 9.
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Chapter 2

Literature Study

This chapter provides an overview of the studied topics useful throughout this the-
sis. Section 2.1 elaborates in more detail on the complexity and components of au-
tonomous driving. Section 2.2 gives an overview of different strategies to model
vehicle dynamics. From these strategies, the best approach for the problem at hand
will be chosen and justified. Subsequently, Section 2.3 describes the vehicle control
of within the topic of autonomous racing.

2.1 Autonomous Vehicle System

Problems in finding collision-free trajectories do not limit themselves in the automo-
tive field, but also exist in fields like nautics, aerospace and robotics. Although path
planning for robots and vehicles are very much alike, there are some features re-
sponsible for some crucial differences between the two. Therefore, methods that are
applied to robots commonly cannot be employed directly for autonomous vehicles.
Complex driving situations for autonomous vehicles develop a need for adaptation
of the method to these complex driving situations. It is simply not feasible to prede-
fine all possible all possible traffic situations that can be encountered.

One big difference that needs to be addressed is those of a robot being holonomic or
non-holonomic. A car is an example of a non-holonomic vehicle, indicating that it
only can move forward/backward in the direction perpendicular to the rear wheel
axis. This means that a car is, in contrary to holonomic (i.e. omniwheel) robots,
unable to move straight to the side. Moreover, the turning radius of a car is limited
due to mechanical bounds on the wheel. Taking non-holonomic constraints as such
into account, makes it a lot harder to plan- and track trajectories for non-holonmic
robots than omniwheel robots.

Recall from Chapter 1 that roughly perception, planning and control are distin-
guished in the software system of an autonomous vehicle. Within these components,
studies in autonomous behavior have been going on for years. Beyond the regular
speed regulation, like Adaptive Cruise Control (ACC) applications, autonomous be-
havior like car following or platooning all contribute to the autonomous behavior
of future cars (Ozguner, Acarman, and Redmill, 2011). Figure 2.1 depicts the au-
tonomous vehicle system and its interconnecting parts as a whole.
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FIGURE 2.1: Overview of autonomous vehicle system (Amer et al.,
2017)

2.1.1 Sensors

As briefly stated before, sensing and perception have the important task of gathering
information about the surrounding environment to recognize specific objects. Sen-
sors are the components in the car that enables this, just as eyes for a human being
enable to understand what exactly is going on in the surroundings. In terms of obsta-
cle avoidance in path planning, many different types of sensors haven been develop-
ment, amongst which sonar, infrared/ultrasonic sensors, LiDAR, laser range finders
and camera (Anavatti, Francis, and Garratt, 2015). From these sensors types, data
processing techniques are applied to update positions and directions of the mov-
ing obstacles. Moreover, it determines current states such as the speed and heading
angle of the controlled vehicle. Each type of sensor have their benefits and disad-
vantages and for this reason, most autonomous vehicles use a combination multiple
sensors to add extra redundancy. Combining multiple sensor readings compensates
for the weaknesses of various sensors is often referred to as sensor fusion.

2.1.2 Vehicle Overtaking Manoeuvre

When considering a certain path or route that a vehicle has to take, one can imagine
that several maneuvers (e.g. lane changes, crossing intersections or left/right turns)
have to be taken in order to successfully reach the destination point. Dealing with
maneuvers like these is also an important aspect of path planning and trajectory
control. (Zhang et al., 2013) state that, when driving in a structured environment,
complex maneuvers can be decomposed into two basic sub-maneuvers: lane chang-
ing and lane-keeping. An overtaking manoeuvre is an excellent example for this
statement, since it can be decomposed in a series of sub-maneuvers. Considering a
high-way situation where a faster car want to overtake a slower car, then the actual
overtake manoeuvre consist of respectively a left lane change, lane keeping and a
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right lane change. Figure 2.2 depicts this manoeuvre, as (i) represents the left lane
change, (ii) the lane keeping manoeuvre and (iiia) the right lane change. The sub-
ject vehicle (SV) overtakes the leading vehicle (LV), while maintaining a safe lateral,
approaching and merging distance. Although Figure 2.2 shows an overtaking ma-
noeuvre on a straight path where left-side overtaking is often only included, research
on possible overtaking on the ’wrong’ side is also done in (Kala and Warwick, 2015).

FIGURE 2.2: Overview of a basic overtaking manoeuvre

2.2 Vehicle Model Strategies

The way in which the vehicle is modelled plays a crucial role in two aspects of the
path planning & trajectory control. (Amer et al., 2017) reviewed the state of the art
modelling techniques in path tracking control, from which the highlights are anal-
ysed in this section. Several types of vehicles models, depending on its linearity and
type of behavior it simulates, can be categorised. Vehicle models play a crucial role
in two aspects of the controller development. The first aspect is the simulation of the
vehicle system. During the development of any controller, a vehicle model is usually
employed to simulate the vehicles behaviour under the influence of the proposed
controller. The second aspect concerned with the vehicle model is the control law
in path planning and trajectory control, which is often based on the mathematical
representation of the vehicle system. The most common way to do so, is by em-
ploying a linearized vehicle model. However, several promising developments in
establishing controllers based on non-linear vehicle models have been proposed as
well. In general, the types of modelling are categorised in geometric, kinematic and
dynamic vehicle models. Each configuration has its own advantages and purpose,
depending on the implementation and properties that are desired to be studied. To
give some perspective on the common representation of a vehicle model generally
used in handling studies, the vehicle axis system with common nomenclature and
important symbols is given in Figure 2.3.

The roll, pitch and yaw axes coincide at the vehicle’s center of gravity (CG). The
variables corresponding to the different axes will contribute in the path planning
and trajectory control of the study. To what extend each variable will play a role
depends on the particular vehicle model considered and is elaborated on in the next
sections.

2.2.1 Geometric
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FIGURE 2.3: Vehicle Axis System used in Vehicle Modelling (Kissai
et al., 2019)

FIGURE 2.4: Ackermann steering configura-
tion (Amer et al., 2017)

In the field of trajectory control, deriv-
ing control laws via a geometric ap-
proach is repeatedly proposed in lit-
erature (Lee, Leok, and McClamroch,
2010), (Gajbhiye and Banavar, 2016).
With regard to autonomous vehicles,
the geometric vehicle model is often
used in path planning and trajectory
control. By modelling a vehicle in a
geometric manner, only geometrical di-
mensions of the vehicle are considered
and kinematic and dynamic properties
are neglected. During any manoeuvre,
this model only considers the dimen-
sions and positions of the vehicle with no regard to its velocity and acceleration. It
is constructed based on the Ackermann steering principle, which states that the line
perpendicular to all wheels, should intersect at an imaginary point in the extension
of the rear axis (Figure 2.4). This model was especially important in developing the
pure pursuit method, one of the most popular trajectory tracking controllers (Amer
et al., 2017). Due its simplicity in parameters, this model is hardly ever used for
simulation of the vehicle state. The most important parameter in this model is the
steering angle, which can be derived from Figure 2.4 as

θ = tan−1
(

l
R

)
(2.1)

2.2.2 Kinematic

Kinematic can be defined as the study of a motion of a body regardless of that body’s
internal forces, inertia and energy. The corresponding kinematic vehicle model,
therefore, describes the motion of the vehicle in terms of its position, velocity and ac-
celeration without any regard of its internal dynamics. The kinematic vehicle model
is widely used in studies regarding path planning and trajectory control, due to its
simplicity and its feature to be able to describe the motion of the vehicle. Important
aspects like vehicle velocity, acceleration in lateral direction and its yaw motion with
respect to fixed axes (or local coordinates) and global axes (global coordinates) are
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described by the kinematic vehicle model. This vehicle is also able to both simulate
the vehicles behavior like position, velocity and acceleration during manoeuvring,
as well as deriving the mathematical representation used for the control law of the
system. Kinematic vehicle models are often employed for control at relatively low
speeds, since dynamics are not included (Schwarting, Alonso-Mora, and Rus, 2018).
These types of models can be roughly decomposed in three different types of models;
the full vehicle model (Figure 2.5a), the bicycle model (Figure 2.5b) and the extended
bicycle model including slip angle.

(A) Full vehicle model (B) Reduced bicycle model

FIGURE 2.5: Kinematic vehicle models

Full Vehicle Kinematic Model
This model represents the vehicle kinematics by perceiving the car as a whole and
describes it by means of two sets of coordinates. Firstly, the local coordinates (x, y)
are set to act as rigid body of the vehicle. Secondly, global coordinates (X, Y) are
set to be fixed on the earth coordinates. Since this research considers an overtaking
manoeuvre, the considered vehicle is always moving and the local coordinates are,
therefore, always taken as moving coordinates with respect to the global coordinates.
Considering the kinematic full vehicle model in Figure 2.5a, the following kinematic
equation can be formulated:[

vX
vY

]
=

[
cos ψ − sin ψ
sin ψ cos ψ

] [
vx
vy

]
(2.2)

where vX = v cos ψ and vY = v sin ψ.

Kinematic Bicycle Model
A simplified version of the full vehicle and the four wheels are reduced to only two
wheels is the kinematic bicycle model, as can be seen in Figure 2.5b. Despite the
fact that the model is less complex, different studies have shown that the kinematic
bicycle model for path planning and trajectory control is sufficient for generating
satisfactory results (Liu et al. (2014), Kong et al. (2015)). The biggest advantage of
using the kinematic bicycle model is the permitted neglect of the slip of each wheel
to the vehicle’s direction by assuming only one wheel per axis. Consequently, the
driving- and velocity direction of the vehicle are equivalent.

Extended Kinematic Bicycle Model
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Some studies (Schwarting et al. (2017), Lucet, Lenain, and Grand (2015)) use a ex-
tended version of the kinematic bicycle model to include the slip angle on both rear-
and front wheel to allow for slippery terrains. Its graphical form stays intact, but
the kinematic equations will differ since new slip velocities are introduced. The new
symbols VLR and VSR respectively express the rear wheel longitudinal slip veloci-
ties and the real wheel side slip velocities. βR refers to the rear wheel sideslip angle
and βF is the sideslip angle for the front wheel. Considering these extra entities, the
following equations of motion can be derived:

vX = v cos ψ−VLR cos ψ−VSR sin ψ
vY = v sin ψ−VLR sin ψ + VSR cos ψ

ψ̇ = v−VLR
L

[
tan βR + tan

(
δ− βF

)] (2.3)

2.2.3 Dynamic

An even more complex way of modelling a vehicle is to include its dynamics: the
internal forces, energy or momentum. While considering these elements, the dy-
namic vehicle model describes the motion of the vehicle in terms of its position,
velocity and acceleration. In contrary to the kinematic vehicle model, the dynamic
version includes tire forces and, therefore, perform better in studies that consider
vehicles operating at high speeds or performing aggressive manoeuvres (Schwart-
ing, Alonso-Mora, and Rus, 2018). Besides that, the overall geometric and kinematic
relationships discussed previously are included as well, resulting in an exhaustive
vehicle model. Recall from Section 2.2 that linearity play a role in categorising the
vehicle models as well. Due to the added internal forces, energy and momentum,
the dynamic vehicle model is subdivided into two main categories: linear and non-
linear dynamic models. For each of these classes, again the full vehicle- and bicycle
model are distinguished and are depicted in respectively Figure 2.6a and Figure 2.6b.

(A) Full vehicle model (B) Reduced bicycle model

FIGURE 2.6: Dynamic vehicle models

Linear Dynamic Models
A common method to derive the equations of motion in the dynamics of a vehicle
is using the Newtonian approach. For the longitudinal plane, this method includes
translational motion in lateral x, longitudinal y and rotational motion around the z-
axis. Recall from Figure 2.3 that in vehicle dynamics these motions around the z-axis
is better known as yaw ψ and yaw rate r.



2.2. Vehicle Model Strategies 13

The equations of motion of the dynamic full vehicle model are written in Eq. 2.4,
based on (Junmin Wang, Steiber, and Surampudi, 2008).

Fxrr + Fxrl + Fx f l cos δ + Fy f l sin δ + Fx f r cos δ + Fy f r sin δ = mbax
Fyrr + Fyrl − Fx f l sin δ− Fx f sin δ + Fy f l cos δ + Fx f cos δ + Fy f r cos δ = mbay

∑ Mzij +
[
−Fyrr − Fyrl

]
lr +

[
Fx f l sin δ + Fy f l cos δ + Fx f r sin δ + Fy f r cos δ

]
l f

+
[

Fx f r cos δ− Fx f l sin δ + Fy f l sin δ− Fy f r sin δ− Fxrl + Fxrr

]
t
2 = Iz,CGψ̈

(2.4)

Following Eq. 2.4, the vehicle is considered to have the following elements:

• sprung mass mb

• moment of inertia of the sprung mass about the z-axis ICG

• acceleration ax of longitudinal motion in x-direction

• acceleration ay of lateral motion in y-direction

• yaw motion with yaw angle ψ about the z-axis

The position of each wheel of the vehicle is indicated with either subscript i or sub-
script j, where i stand for front or rear and j denotes left or right. By doing so, all
wheels can be denoted separately. This is not necessary when the bicycle model is
used, since it only considers a front and rear wheel. The other elements are, however,
used in the simplified dynamical bicycle model and the corresponding equations of
motion, based on (Hoffmann et al., 2007), are shown in Eq. 2.5. The tire forces are
generated due to interaction of the tires with the surface. During manoeuvring, the
tires deform in both longitudinal and lateral direction causing friction forces which
are originally non-linear. For this reason, linear dynamic models commonly employ
linearization by assuming linear tire forces acting on each of the tires, i.e. a linear tire
model. These types of tire models assume a linear relationship between slip angles
and resp. both lateral and longitudinal tires forces, Fy and Fx.

Fxr + Fx f cos δ + Fy f sin δ = mbax
Fyr − Fx f sin δ + Fy f cos δ = mbay

Fyrlr +
[

Fx f sin δ + Fy f cos δ
]

l f = Iz,CGψ̈
(2.5)

Considering both Eq. 2.4 and Eq. 2.5, it can be noticed that the tire forces are the
main contribution in the dynamic vehicle model. It is the main contributing external
factor and it can also be considered as main source of external disturbance as well as
the grip that governs the vehicle’s motion.

Non-linear Dynamic Models
When a non-linear vehicle model is used in deriving the control law of the subject
vehicle, tire models are also employed to simulate the lateral and longitudinal tire
forces on each separate wheel during any manoeuvre. Considering non-linearity
of tire dynamics enables to simulate the vehicle’s response in high-speed and large
steering angle situations. Moreover, including non-linearity of tires can improve the
controller performance when considering a vehicle at the limit of friction. Incorpo-
rating a non-linear tire model into the controller design is one of the approaches to
include tire non-linearity and is suitable for both the full vehicle- and bicycle model.
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The choice of tire model depends on how the vehicle dynamics are structured. A
suitable tire model for handling non-linear tire dynamics is examined in the next
section.

2.3 Path Planning & Trajectory Control at the limit of friction

Trajectory control is a crucial function of an autonomous overtaking system and a
variety of control methods have been proposed in current literature. Path planning
and trajectory tracking constitute the two main functions of this particular control
field and for these functionalities a collection of state-of-the art strategies is given
in (Dixit et al., 2018). Figure 2.7 presents the general control architecture for au-
tonomous vehicles and constitute, as stated, of path planning (considered the same
as trajectory planning) and trajectory tracking.

FIGURE 2.7: General control architecture for an autonomous vehicle

In general, there are two basic approaches to trajectory generation with known path
information. The first one is to optimize both trajectory generation and tracking
simultaneously, while the second one decouples both. Since MPC is known to be
suitable for both path planning and trajectory tracking, the integrated approach is
further examined in this section. MPC has become a popular method in vehicle con-
trol and (Guo et al., 2018) use it to design a simultaneous trajectory planning and
tracking controller for an intelligent vehicle. According to (Schwarting et al., 2017),
MPC performs well in complex, high-speed situation where full dynamic vehicle
models are employed. Considering that the vehicle operates at the limit of friction, a
dynamic vehicle model is essential to include tire friction forces. (Kritayakirana and
Gerdes, 2012) were the first to introduce a concept called Centre of Percussion (COP)
in vehicle control by applying to design a steering controller for an autonomous
race car, to minimize both the heading and lateral deviations. Since then several re-
searchers applied COP and utilized it as error reference point in simulations, leading
to simplified calculations and improved stability for vehicle operating at the limit of
friction. The COP is the point on a certain object at which translational and longi-
tudinal forces cancel each other out. At this point, called a pivot point, the rear tire
forces do not influence the lateral motion of the COP. (Hiraoka, Nishihara, and Ku-
mamoto, 2009) used the COP to propose an automatic path-tracking controller of a
four-wheel steering (4WS) vehicle based on the sliding mode control theory, where
the centres of percussion with respect to the rear/front wheels are front/rear control
points of a full dynamic vehicle model. In (Song et al., 2015), COP is used in the
controller by utilizing a dynamic bicycle model. Since the rear lateral force produces
a lateral and a rotational component at the centre of mass, the rear tires do not exert
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FIGURE 2.8: Effect of using Centre of Percussion on a dynamic bicycle
model

a lateral force at the COP and the lateral effects of both components are cancelled
out at the COP. This phenomenon is illustrated by means of Eq. 2.6 and Figure 2.8.

xcop =
Iz

lrm
Fyr

m
= xcop

lrFyr

Iz

(2.6)

Iz is the moment of inertia around the z-axis, lr is the distance between the rear axle
and the center of mass.

2.3.1 Racing line

Within the formula 1, a racing line is referred to as the fastest line or arc through a
corner on a race circuit. The trajectory of the racing line depends on the severity of
the corner, how long the following straight is and what kind of car is being driven.
The goal is to always carry as much speed in the braking zone, through the corner
and onto the next straight.

In most cases, the racing line makes use of the entire width of the track to lengthen
the radius of a turn. This means entering at the outside edge, touching the apex-
point on the inside edge, whereafter it exits the turn by returning outside.

Figure 2.9 shows the fastest race line on a 90 degrees curve. The apex is a point on
the inside edge of a curve that allows the vehicle to have the smallest curvature and,
consequently, the largest speed possible when cornering.
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FIGURE 2.9: Perfect racing line
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Chapter 3

Vehicle Model

The vehicle model plays a crucial role in designing the controller, elaborated on in
the next chapter, for two main reasons. First, the derivation of the control law is
often based on the mathematical representation of the vehicle model. Second, the
vehicle model is commonly used to simulate the behaviour of the proposed vehi-
cle model and the performance of the proposed controller. The employed vehicle
model for this thesis, the reasoning of this choice and its benefits and drawbacks are
explained in Section 3.1. Subsequently, Section 3.2 discusses the reformulation of the
vehicle dynamics in terms of the center line of the track, represented by a curvilinear
coordinate system.

3.1 Kinematic Bicycle Model

As explained in Chapter 2, dynamic vehicle models tend to perform better in high-
speed situations than kinematic vehicle models. Especially for racing situations
where friction limit at the tires is considered, tire forces should be included. For these
reasons, a full dynamical vehicle model would be beneficial to derive the equations
of motion used in the controller design.

However, using high-complex vehicle models lead to extremely difficult computa-
tions often yielding high and inefficient computation times. As explained in Chapter
2, the simpler models like the kinematic bicycle model have been proven to show
quite some resemblance in terms of trajectory planning performance, regardless of
the simplifications made in the model. The biggest advantage of the bicycle model
is the permitted neglect of slip for each wheel, since the wheels are simplified to be
attached to only one frame. Hence, driving- and velocity direction of the vehicle are
the same. For the sake of the mentioned simplicity and assuming that the model
is accurate enough, the kinematic bicycle model is used to generate the optimized
trajectories in this thesis. Moreover, (Kong et al., 2015) have shown that the accuracy
of the bicycle model can be improved by increasing the discretization time of the
model. For this thesis, that is beneficial for the discretization step length, as a larger
step length allows for planning further ahead in the track. Section 3.2 describes the
reformulation of the time-domain kinematic equations to space-based equations and
its consequent advantages.
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The assumption that slip for each tire in the kinematic bicycle model is eliminated,
is related to the non-holonomic nature of the car-like robot. Non-holonomic means
that the vehicle has two degrees of freedom, in this case forward/backward mo-
tion and turning. This is obvious the case for any car-like vehicle. According to
(De Luca, Oriolo, and Samson, 1998), a Rear-Wheel Driven (RWD) non-holonomic
vehicle’s movements can approximately be described by its time-domain kinematic
equations. Given the fact that formula 1 cars are RWD and non-holonomic by nature,
it can be modeled as the aforementioned kinematic bicycle model as follows:


ẋ
ẏ
ψ̇
δ̇

 =


cos ψ
sin ψ

tan δ/L
0

 v1 +


0
0
0
1

 v2 (3.1)

where ẋ, ẏ are the time-derivatives of the vehicle’s coordinates (x, y) in the global
coordinate system, ψ the yaw angle, δ the steering angle and L the wheel-to-wheel
distance of the vehicle. v1 and v2 denote the driving- and steering input, respectively.
Modelling a car-like robot like this comes with one singularity in the lateral domain.
When the front wheels have turned 90 degrees (δ = ±π

2 ) normal to the longitudinal
axis of the chassis, the car becomes jam. However, this discontinuity is often resolved
by setting constraints on the steering angle.

Considering that the slip angles at both tires of the bicycle model are zero, leads to
elimination of the lateral component of the vehicle velocity (v1 = vx). This gives rise
to equations of motions purely based on geometric relationships governing the sys-
tem. Hence, (3.1) can be reformulated as the following set of differential equations:



ẋ =
dx
dt

= vx cos(ψ) (3.2a)

ẏ =
dy
dt

= vx sin(ψ) (3.2b)

ψ̇ =
dψ

dt
=

vx

L
tan(δ) (3.2c)

As stated before, it is assumed that the wheels do not slip at surface contact, but can
freely rotate around their rotation axis. Vehicle control mainly focuses on the lateral
and longitudinal aspect of the utonomous vehicle. This often entails in the steering
angle δ being the control input for the lateral domain and acceleration as control
input for the longitudinal domain. The steering angle can directly be related to the
vehicle curvature κv as:

κv =
tan(δ)

L
.

Implementing this into Eq. (3.2), extending the model with the longitudinal acceler-
ation and taking the derivative of vehicle curvature gives the following equations:

ψ̇ = κVvx

v̇x = −µvx + ax
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κ̇v = Cv

where ax is the longitudinal acceleration, µ a longitudinal friction coefficient and Cv
the curvature rate of the vehicle. The influence of µ on the trajectories is investigated
during the simulation phase.

FIGURE 3.1: Considered kinematic bicycle model in global- and
curvilinear coordinate system

The main contribution of the curvilinear coordinate system is the introduction of the
vehicle’s position along the center-line of the track as variable s. Furthermore, the
lateral deviation and the heading displacement between the vehicle and the center-
line of track are respectively modelled as Ey and Eψ. The way of deriving these
variables in done geometrically and is explained in the subsequent section.

The time-domain kinematics as explained can be formulated as system of Ordinary
Differential Equations (ODE) as follows:

ζ̇(t) = f (ζ(t), u(t)) (3.3)

where ζ(t) ∈ Rn is the state of the system at time t, u(t) ∈ Rm the control inputs,
n the number of states and m the number of control inputs. The states in the time-
domain are defined above as follows: ζ = [Ey, Eψ, vx, κv]T. The two control inputs
are u = [ax, Cv]T. Note that these states are defined for the curvilinear coordinate
system, as the global coordinates x and y are changed to Ey and Eψ The considered
vehicle model is given in Figure 3.1, illustrating the relationship between two differ-
ent coordinate systems considered in this thesis: the global coordinate system and
the curvilinear coordinate system.

3.2 Spatial Dynamics Reformulation

Instead of commonly used time-dependent dynamics, track-dependent (or spatial)
dynamics are proposed in this thesis. By doing so, a natural formulation of obsta-
cles and road bounds under varying vehicle speed can be formulated (Buyval et al.,
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2017). Moreover, describing the dynamics in the space-domain has the convenient
advantage of making the system independent of both time and speed. Consequently,
track limitations become simple (convex) state bounds, which are independent of the
vehicle speed. The main detail of formulating the dynamics in this way, is that the
dynamics are derived about a curve σ that defines the center-line of the track. It
is assumed that track information is known beforehand, since these parameters are
necessary in the computations of the vehicle dynamics. Figure 3.1 describes the kine-
matic bicycle model in both frames, where the coordinate s defines arc-length along
the track σ as the projected vehicle position along the track. The derived spatial co-
ordinates Ey and Eψ, critical in the curvilinear coordinate system, are shown. The
rest of the spatial states are given in Table 3.1 and how they are derived is explained
below.

FIGURE 3.2: Visualization of inertial coordi-
nates

From Figures 3.1 and 3.2, important
kinematic equations can be derived ge-
ometrically as follows. The lateral dis-
placement of the vehicle with respect to
the center-line is

Ey :=

∥∥∥∥∥
[

X
Y

]
−
[

Xσ

Yσ

]∥∥∥∥∥ (3.4)

and the yaw angle of the vehicle with
respect to the path is

Eψ := ψ− ψσ, (3.5)

where ψσ in Figure 3.2 corresponds to
ψs in Figure 3.1. Xσ and Yσ denote the position of the current reference point on the
path s and ψσ the orientation. Other important geometric relations, essential for the
formulation of the vehicle dynamics in this thesis, can be derived from Figures 3.1
and 3.2 and are given below:

vσ = (ρσ − Ey)ψ̇
σ = vx cos(Eψ) (3.6)

ṡ = ρσψ̇σ =
ρσ

ρσ − Ey
vx cos(Eψ) =

vx cos(Eψ)

1− Eyκs
(3.7)

where vσ is the projected vehicle velocity along the tangent (i.e. the direction) of
the path, ρσ the radius of the local curvature of σ, ψ̇σ the rate of change of the path
orientation and ṡ is the vehicle velocity along the path (note the difference between
vσ and ṡ). Recall from Section 3.1 the variables Ey and Eψ, indicating the position
of the vehicle relative to the center-line of the track in the curvilinear coordinate
system. From Figures 3.1 and 3.2, the time derivatives of these spatial coordinates
are derived geometrically as well

Ėy = vx sin
(

Eψ

)
Ėψ = ψ̇− ψ̇σ

(3.8)
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The spatial dynamics of state vector ζ in relation to the time-dependent dynamics
are given following the chain rule expressing the spatial derivative (ζ

′
) as function

of the time derivative (ζ̇), following (Frasch et al., 2013):

ζ
′
(s) :=

dζ

ds
=

dζ

dt
dt
ds

. (3.9)

Assuming that ṡ 6= 0 at all times, we get dt
ds = 1

ṡ . Therefore, the spatial states can be
derived generically by expressing it in terms of ṡ as follows:

ζ ′(s) = ζ̇
1
ṡ

(3.10)

where ζ̇ is defined as in Eq. (3.3). Considering this reformulation of dynamics, the
final spatial vehicle dynamics can be derived according Eq. (3.10):

E′y(s) =
Ėy

ṡ
= (1− Eyκs) tan

(
Eψ

)
(3.11a)

E′ψ(s) =
Ėψ

ṡ
=

(
1− Eyκs

)
cos

(
Eψ

) κv − ψ′σ (3.11b)

v′x(s) =
v̇x

ṡ
= −

(
1− Eyκs

)
cos

(
Eψ

) µ +

(
1− Eyκs

)
vx cos

(
Eψ

) ax (3.11c)

κ′v(s) =
κ̇v

ṡ
=

(
1− Eyκs

)
vx cos

(
Eψ

)Cv. (3.11d)

Equations (3.11a) – (3.11d) describe the spatial dynamics considered for the kine-
matic bicycle model. These dynamics are considered throughout the thesis and used
for the MPC formulation in the controller design. The complete reformulation from
time (Eq. (3.3)) to spatial vehicle dynamics can now be formulated as:

ζ ′(s) = f (ζ(s), u(s)), (3.13)

where the corresponding states and control inputs are given in respectively table 3.1
and 3.2. Note that the original control inputs are given as acceleration ax and car
curvature κv. However, in Eq. (3.11c) κv is represented as state the inputs for the
vehicle model are ax and Cv. To ensure an accurate model discretization, where the
rates of vehicle inputs are constant between samples, the same must hold for the
control inputs between samples.

Consequently, by considering the kinematic bicycle model within the curvilinear co-
ordinate system, all computations are done within this frame as well. Since distance
and time within this topic are significantly correlated, time information can - if nec-
essary - be retrieved by integrating dt

ds along σ as in Eq. (3.14):
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State Unit Description
Ey m Deviation from center-line
Eψ rad Yaw angle relative to path
vx m/s Longitudinal velocity
κv m−1 Vehicle curvature

TABLE 3.1: Spatial States of the vehicle model

Control Range Unit Description
ax [-5, 5] m/s2 Longitudinal acceleration
Cv [-0.2, 0.2] m−2 Vehicle sharpness

TABLE 3.2: Control inputs of the spatial vehicle model

t(s) =
∫ s

s0

1
ṡ(τ)

dτ (3.14)

As stated, the computations are done in the spatial domain. However, inertial coor-
dinates may be recovered by transforming the spatial coordinates back to the Carte-
sian frame as follows:

X = Xσ − Ey sin
(
ψσ
)

Y = Yσ + Ey cos
(
ψσ
)

ψ = ψσ + Eψ
(3.15)

This is essential for the MPC controller explained in the next chapter. The reference
trajectories are calculated in the spatial domain, visualized in the global frame by
using Eq. (3.15) and derived back to the curvilinear coordinate system again. This is
an iterative process, for which the amount of iterations depend on the length of the
track segment. The exact working method of the algorithm is given by means of a
pseudo code in section 4.4.
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Chapter 4

Controller Design

The proposed vehicle model of the previous chapter has, as explained, influence on
the way the controller is designed. This chapter elaborates on the aspects belonging
to the design of the controller. In section 4.1, the choice of using Model Predictive
Control will be clarified and the method at hand will be described. The reasoning
behind the objective of the controller is explained in section 4.3. Section 4.3 describes
the derivation of the successive linearized an discretized vehicle dynamics. The fi-
nal control structure and MPC formulation, including made assumptions led to this
formulation, are given in section 4.4.

4.1 Model Predictive Control (MPC)

In terms of vehicle control, dynamic controllers tend to perform better in complex
driving situations since vehicle dynamics are taken into account. This is done either
by directly deriving a control law from the dynamical vehicle model or by includ-
ing some of the dynamical properties. Model Predictive Control (MPC) combines
the properties of dynamic, optimal and adaptive controllers resulting in a suitable
approach to tackle the problem at hand. MPC is also known as Receding-Horizon
(RC) and owes its success to its simplicity in terms of logic, making it well suitable
in handling non-linearities and constraints (Allgöwer and Zheng, 2012). MPC uses
a model to predict future states of the system. The trajectory planning and execution
are performed at each step, allowing to take both the car dynamics and the position
of other vehicles into account. The term MPC does not designate a specific control
strategy to the vehicle model, but rather uses an abundant range of control methods,
which make explicit use of the model at hand. By doing so, optimal control inputs
to the model are determined, based on minimization of a certain objective function.
The objective function is subjected to certain constraints that set physical limits on
the vehicle model, such as maximum acceleration, but the constraints are also used
to formulate limitations in the track environment.

The main challenge of using MPC formulation for optimization problems, is the
guarantee of real-time feasibility and convergence. Typically, when formulating the
problem in a nonlinear and non-convex framework, this appears to be extremely dif-
ficult and not feasible ((Frasch et al., 2013)). For this reason, the dynamic equations
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of the vehicle are successively linearized and discretized (see section 4.3), allowing
the problem to be formulated as a convex optimization problem.

A path planning problem can also be formulated as a convex optimization problem
by linearizing the vehicle dynamics and constraints (Bevan, Gollee, and O’reilly,
2010). Bevan et al. (2010) enforce the vehicle to be within the space-varying road
boundaries by taking vehicle dynamics explicitly into account during the path plan-
ning phase. The spatial kinematic bicycle model in combination with the curvilinear
coordinate system, as explained in 3 , is used to predict the motion of the simulated
vehicle (and controlling it in a receding horizon manner).

In this case, the number of points in the prediction horizon and the discretization
step length are determined after several experiments with varying horizon length
and step size. Important is that the prediction horizon is long enough to optimize
over the subsequent turn, since these are the track segments we are interested in.
In general, a shorter discretization step is beneficial in terms of model prediction
accuracy, since the control input is not constant for so long. However, a shorter
discretization step would require more prediction horizon points, which would lead
to a more expensive optimization problem. This is a common trade-off within the
MPC method and is elaborated on further in chapter 6.

4.2 Control Ojective

4.2.1 Racing Behaviour

With autonomous racing being the overarching subject in this thesis, the MPC con-
troller aims at solving an optimization problem suitable and reasonable for racing
behaviour. This is one of the reasons for choosing to express the vehicle dynamics
in terms of spatial coordinate s. In the most rational way of thinking, racing is to
get to finish line as fast as possible. In other words, the time to travel from starting-
to finish line must be minimized. Considering the explained dynamics in Chapter
3, minimizing the travel time can be expressed in terms of progression along the
center-line of the track as maximizing ṡ, inspired by (Lima et al., 2018). Since min-
imization problems are more common in practice, the problem will be denoted as
minimization of 1

ṡ . Considering Eq. (3.7) and implementing the choice of 1
ṡ results

in minimizing, as explained in section 4.1, the following Receding-Horizon objective
function:

1
ṡ
=

1− κsEy

vx cos(Eψ)
(4.1)

As explained, convex optimization problems tend to give results representative for
real-time implementation. For this reason, 1

ṡ is approximated by Taylor expansions,
imposing a linear (and therefore convex) objective function. Proof of convexity of
linear functions is given in Appendix A. Following Appendix B.1, 1

ṡ is approximated
by Taylor approximations with respect to Ey,re f 6= 0, Eψ,re f = 0 and vx,re f 6= 0 result-
ing in

d 1
s′

dt
= γ1Ey + γ2E2

ψ + γ3vx. (4.2)
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The constant values γ1, γ2 and γ3 are the partial derivatives explained in Eq. (B.5):

γ1 =
∂ 1

ṡ
∂Ey

∣∣∣∣∣
Ey,re f ,Eψ,re f ,vx,re f

, γ2 =
∂2 1

ṡ
∂E2

ψ

∣∣∣∣∣
Ey,re f ,Eψ,re f ,vx,re f

, γ3 =
∂ 1

ṡ
∂vx

∣∣∣∣∣
Ey,re f ,Eψ,re f ,vx,re f

(4.3)

Note that the angular deviation Ey is approximated using the second order Taylor
Expression. This is done in order to capture the fact that cos(Eψ,re f ) is maximum
when Eψ,re f = 0. The partial derivatives are given below:

γ1 =
∂ 1

ṡ
∂Ey,re f

= − κs

vx,re f cos(Eψ,re f )
(4.4)

∂ 1
ṡ

∂Eψ,re f
=

(
1− Ey,re f κs

)
tan(Eψ,re f ) sec(Eψ,re f )

vx,re f
(4.5)

γ3 =
∂ 1

ṡ
∂vx,re f

= −

(
1− Ey,re f κs

)
v2

x,re f cos(Eψ,re f )
(4.6)

.

As explained, the angular deviation is derived following the second order approxi-
mation as

γ2 =
∂2 1

s
∂E2

ψ,re f
=

(
1− Ey,re f κs

)
sec(Eψ,re f )

(
tan2 Eψ,re f + sec2 Eψ,re f

)
vx,re f

(4.7)

Filling in the mentioned linearization points and considering that tan(0) = 0 and
sec(0) = 1, leaves the following constant values:

γ1 = − κs

vx,re f

γ2 =
1
2

1− Ey,re f κs

vx,re f

γ3 = −
1− Ey,re f κs

2v2
x,re f

(4.8)

The derived equations in (4.8) finally result in the objective function that aims at
maximizing the progress along the center-line of the track:

Jrace(Ey, Eψ, vx) =
N−1

∑
k=0

γ1Ey + γ2E2
ψ + γ3vx, (4.9)

where k is the discrete step length and N the prediction horizon. Eq. (4.9) encourages
progress maximization along the center-line s, since the first term causes maximum
lateral deviation for curves. In other words, if the road turns left (κs > 0), then
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Ey > 0 and vice versa causing the vehicle to seek the apex of the curve. The second
term minimizes the angular deviation with respect to the center-line of the track,
making the choice of Taylor approximating around Eψ = 0 a valid one. Lastly, the
third term causes maximization of longitudinal velocity vx.

4.2.2 Smoothness

During first simulations, the generated trajectories were found to be quite static and
not smooth at all. Especially for higher discretization steps ∆s less precise results
were obtained. A smaller step length would yield more precise results, but more
iterations are needed to allow planning over the same track segment. Therefore, to
enable feasibility and enforce smoothness of the trajectory even with greater step
lengths, an additional cost term Jsmooth is proposed:

Jsmooth(κv) =
N−2

∑
k=1
| κv[k− 1]− 2κv[k] + κv[k + 1] | . (4.10)

where k is again the discrete step length and Jsmooth can be considered a measure of
the second derivative of κv in discrete form and can be seen as a criterion for com-
fort. The rationale behind this comes form common practice, where sudden changes
in the curvature of the vehicle path highly deteriorates the trajectory smoothness
(Bonab and Emadi, 2019). Considering no slip-conditions (as we do with the kine-
matic bicycle model), the path curvature is related to the vertical tire angle and, in-
herently, to the steering wheel. In practice, the most comfortable way to approach a
corner while driving is to steadily turn the steering wheel. Consequently, the deriva-
tive of change in steering angle and vehicle curvature is kept constant. Validation of
this comfort control objective is done in Chapter 6.

Conclusively, the final control objective can be seen as a measure of maximizing
progress along the center-line of the track while ensuring trajectory smoothness,
taken into account all the state variables from Table 3.1, by considering

min J(ζ) = Jrace + Jsmooth (4.11)

.

4.2.3 Constraints

As explained in Section 4.1, physical limits and environment conditions are imple-
mented within the MPC formulation as certain constraints, which are explained in
this section. Since the dynamics are modeled within the curvilinear coordinate sys-
tem as derived in Chapter 3, the lane boundaries are defined by spatially dependent
state bounds as:

Ey min ≤ Ey ≤ Ey max. (4.12)

Recall from section 3.2 that the spatial reformulation of the dynamics allows natural
formulation of both static and dynamic obstacles. In the presence of other vehicles,
the bounds on (4.13) can be changed assumed that route information of the other ve-
hicle is known. Depending on this route, a driving environment can be determined
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based on heuristics (in this case overtaking left or right). Basically, this means that
the lane boundaries are narrowed for specific parts of a given race track.

Considering a racing environment, only forward motion of the car is assumed. Ex-
pressed in the curvilinear coordinate system, this can be defined by spatially depen-
dent bounds as well:

Eψ min ≤ Eψ ≤ Eψ max, (4.13)

where Eψ min = (−π
4 , 0] and Eψ max = [0, π

4 ).

The curvature rate Cv and longitudinal acceleration ax as control inputs are limited
by constant bounds as:

vx min ≤ vx ≤ vx max,
ax min ≤ ax ≤ ax max,
κv min ≤ κv ≤ κv max,

Cv min ≤ Cv ≤ Cv max.

Note that all constraints are spatially bounded since the vehicle dynamics are spa-
tially expressed. Formulation in this way results in lateral vehicle dynamics (Ey and
Eψ) as in Eq. (3.11a) and (3.11b) being independent of the longitudinal velocity vx.
This in-dependency enables constant spatial discretization of steps ∆s, since the dis-
cretization is not influenced by vehicle speed in this way.

4.3 Linear Space Varying (LSV)-Model

4.3.1 Linearization

Linear time varying (LTV) models obtained by linearization are employed to con-
struct a tractable convex optimization problem to be solved at each discrete sam-
pling time. This model is successively linearized around a valid equilibrium point
at each time step in order to allow posing a convex optimization problem. (Ka-
triniok and Abel, 2011) have shown that linearizations of nonlinear vehicle mod-
els over the considered prediction horizon improves the accuracy of the prediction
and conqequently the performance of the controller. They compared it to an LTV-
MPC controller that considers a static vehicle model (i.e. linearizations remain un-
changed over the prediction horizon), which led to remarkable results. A commonly
used linearization point in vehicle control is linearizing around the center-line of
the track itself, when the goal is to steer the state of the system to the center-line
(i.e. (Ey, Eψ) = (0, 0) as in (Falcone et al., 2008)). As explained earlier, racing lines
are quite the opposite of steering the car around the center-line. In most cases, the
racing line makes use of the entire width of track to lengthen the radius of a turn
as explained in Chapter 2. For this reason, linearizing around the center-line of the
track would probably not give a sufficient approximation of the nonlinear function.
Alternatively, using solutions of previous iterations from the optimization problem
as reference (ζ̄, ū) for successive linearization gives more appropriate approxima-
tions.
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
E′y
E′ψ
v′x
κ′v

 = ζ ′ = f (ζ, u) =


f1(ζ, u)
f2(ζ, u)
f3(ζ, u)
f4(ζ, u)

 =



(
1− Eyκs

)
tan(Eψ)

(1−Eyκs)κv

cos(Eψ)
− ψ′σ

(1−Eyκs)
v cos(Eψ)

ax

(1−Eyκs)
v cos(Eψ)

Cv


(4.14)

The strategy in which the information gained in solving the previous problem is
used in choosing a starting point in an IPM is known as a warm-start strategy
(Shahzad, Kerrigan, and Constantinides, 2010). In this case, it is implemented in
a way that a proper initial guess acts as warm-start for the MPC optimization prob-
lem given in section 4.4.

By linearizing around the solution of previous iterations, the following holds:

ζ̇ =


∂ f1
∂Ey

∂ f1
∂Eψ

∂ f1
∂vx

∂ f1
∂κv

∂ f2
∂Ey

∂ f2
∂Eψ

∂ f2
∂vx

∂ f2
∂κv

∂ f3
∂Ey

∂ f3
∂Eψ

∂ f3
∂vx

∂ f3
∂κv

∂ f4
∂Ey

∂ f4
∂Eψ

∂ f4
∂vx

∂ f4
∂κv

 (ζ − ζ̄) +


∂ f1
∂a

∂ f1
∂C

∂ f2
∂a

∂ f2
∂C

∂ f3
∂a

∂ f3
∂C

∂ f4
∂a

∂ f4
∂C

 (u− ū) + f (ζ̄, ū) (4.15)

Since the vehicle dynamics are expressed in spatial coordinates, the model will be
referred to as Linear Space Varying (LSV)-Model.

4.3.2 Discretization

Now that a linearized vehicle model is obtained, discrete matrices Ad and Bd are
found using Zero Order Hold (ZOH) discretization as extensively explained in Ap-
pendix B. In the case of matrix Ac being nonsingular (i.e. invertible), the discretizated
matrices can be approximated as

M(k) = exp

[ Ac Bc
0 0

]
∆s

 =

[
AZOH

d BZOH
d

0 I

]
(4.16)

The optimization problem is constrained by the space-varying vehicle dynamics as:

ζ(k + 1) = AZOH
d (k)ζ(k) + BZOH

d (k)u(k) + HZOH
c (k), k > 0 (4.17)

Following the steps in appendix B leads the the following matrices describing these
final dynamics:
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AZOH
d (k) =



κs tan Ēψ − (1−κs)
cos2 Ēψ

0 0

− κs κ̄v
cos Ēψ

(1−Ēyκs)κ̄v tan Ēψ

cos Ēψ
0 (1−Ēyκs)κ̄

cos Ēψ

κs(µv̄x−ā)
v̄x cos Ēψ

(Ēyκs−1)(µv̄x−ā) tan Ēψ

v̄x cos Ēψ
− (1−Ēyκs)ā

v̄2 cos Ēψ
0

− κsC̄
v̄x cos ēψ

(1−ĒyκS)C̄ tan Ēψ

v̄x cos Ēψ
− (1−Ēyκs)C̄

v̄2
x cos Ēψ

0


, (4.18)

BZOH
d (k) =


0 0
0 0

(1−Ēyκs)
cos Ēψ

0

0 (1−Ēyκs)
cos Ēψ

 . (4.19)

The spatial state vector ζ and control vector u are given in table 3.1 and table 3.2.

4.4 Final Control Structure

Based on the previous sections, the final structure of the model predictive control
algorithm will be derived. Besides the vehicle dynamics of Section 3.2 and the over-
taking constraints discussed in Section 3.2, some assumptions have to be made while
designing the algorithm. These assumptions are summarized below.

Assumption 1: The subject vehicle drives at maximum possible velocity and, therefore,
overtakes the other vehicle at maximum possible velocity.

Assumption 2: The vehicles only have forward motion, which can be justified by the vehicles
being in a racing environment.

Assumption 3: The center line of the track is used as reference line for both vehicles and
information about the track parameters is known.

Assumption 4: Drivers enter the track while racing and state measurements at this time is
available, making the warm-start strategy with appropriate initial guesses a valid choice.
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At each discretization step length ∆s, the spatial-based MPC controller solves the
following constrained convex optimization problem:

minimize
ū, α

Jrace(Ey, Eψ, vx) + Jsmooth(κv) + ηαTα (4.20a)

subject to ζk+1 = AZOH
d,k ζk + BZOH

d,k uk + HZOH
d,k , (4.20b)

ζ0 = ζ(s), (4.20c)
Ey min − αEy ≤ Ey ≤ Ey max + αEy , (4.20d)

Eψmin − αEψ ≤ Eψ ≤ Eψ max + αEψ , (4.20e)

vx min − αvx ≤ vx ≤ vx max + αvx , (4.20f)
κv min − ακv ≤ κv ≤ κv max + ακv , (4.20g)
ax min ≤ ax ≤ ax max, (4.20h)
Cv min ≤ Cv ≤ Cv max, (4.20i)
αEψ ≥ 0, αEy ≥ 0, αvx ≥ 0, αακ ≥ 0, (4.20j)

k = 0, . . . , N − 1 (4.20k)

The objective function (4.20a) is described in section 4.2. Additionally, a slack vari-
able vector α is implemented in order to increase the feasibility region of the con-
straints. By doing so, initial hard constraints are softened and the optimal solution is
easier to find. The penalization diagonal η = diag(ηEy , ηEψ , ηvx , ηκv) is added to push
the slack variables toward zero, causing the problem to stay as much as possible
within the initial hard constraints. It is assumed that these possible minor over-
shoots of the bounds is valid. For example, in the case of bounds on Ey, the race car
is preferred to generate a trajectory slightly outside the track bounds over immediate
shutdown (i.e. when no solution is found). The vehicle dynamics from constraint
(4.20b) are derived in section 4.3 and the initial state ζ0 is estimated by proper guess
(i.e. the warm start) ζ(s) in constraint (4.20c). The spatial states and control inputs
are limited by constant bounds as explained in section 4.2.3 and can be found in the
MPC scheme as constraints (4.20d) – (4.20k).

Chapter 3 and 4 describe the proposed vehicle model and the derivation of the MPC
scheme. Conclusively, the complete working mechanism of the spatial-based MPC
algorithm is summarized by means of a pseudo-code on the next page. Recall that
discretization is done in terms of spatial parameter ∆s. This means that the maxi-
mum number of iterations imax to complete a specific track segment depends on the
length of that segment.
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Algorithm 1: Pseudo-code Spatial-Based MPC
1: Initialize warm start ζ0 = ζ(s) to compute optimal input sequence ū
2: for i = 0, . . . , imax do

3: for k = 0, . . ., N-1 do
Linearize around (ζ̄k, ūk) (4.15) and discretize (4.16);
Solve MPC formulation (4.20a)-(4.20k) with CVXPY;
if Solution is optimal then

ζ̄k = ζk , ūk = uk ;
else

Solver cannot solve MPC;
end

end
Recover global coordinates (3.15)

end
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Chapter 5

Simulation Setup

5.1 Nonholonomic vs. holonomic robots

The omniwheel robots often used in the DTPA lab are unique in the sense that
they are able to move freely in two directions, enabling the conversion from a non-
holonomic (car-like models) to a holonomic robot. Non-holonomic robots, consid-
ered in this thesis, have two controllable degrees-of-freedom. In other words, for-
ward/backward motion and turning is possible.

Perfect tracking of certain reference trajectories is achievable only if the reference
trajectory is suitable for the physical vehicle. Meaning that a trajectory, which is
feasible for a unicycle-type vehicle, is not necessarily feasible for a car-like vehicle
(such as modelled with the kinematic bicycle model) (Morin and Samson, 2008). For
this reason, performing simulations on the Nexus robots represented by mathemat-
ical expressions derived from the bicycle model would not be representative for real
world situations. Therefore, the nexus robots will be outside the scope of this thesis.

5.2 Simulation Environment

Since the used kinematic bicycle model does not match the omniwheel robots used in
the DTPA lab of the University of Groningen (RUG), these robots cannot be used for
simulation. Therefore, commonly used simulation software like Gazebo will not be
used in this project. However, since Gazebo is compatible and works well with soft-
ware like Robot Operating System (ROS) in combination with Python, the latter one
is used for coding and simulation. All results are generated in Python with the mod-
ule called Matplotlib. Since simulation in Gazebo with a representative simulation
robot (an Ackermann Steering Robot for example) could be a future project, Python
as programming language is useful due to its compatibility with ROS. The optimiza-
tion problem as in (4.20a) - (4.20k) is modeled as an convex optimization problem in
a Python-embedded modeling language called CVXPY (Diamond and Boyd, 2016).
Within The problem is initialized with proper guesses and subsequently, the convex
optimization problem is solved at each sampling time k, over the prediction horizon
N with step length ∆s.
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As explained in Chapter 4, the racetrack is manually created and imported into the
simulation environment by using a cubic-spline planner where the spline is repre-
senting the center-line of the track. Boundary conditions such as road width are
generated in the same fashion, resulting in track visualization according to Figure
5.2.

5.3 F1 Suzuka Circuit Japan

As explained in Section 5.2, the center-line of the track is manually created and im-
ported into the simulation environment. To simulate the performance of the con-
troller design, the Formula 1 Suzuka Circuit (Figure 5.1) is considered and replicas
of different segments of the track are manually created with the cubic spline planner
and imported into the simulation environment.

FIGURE 5.1: F1 Suzuka Circuit, Japan

From Figure 5.1, an approximation of respectively the S-curve (3-4-5), the 90-degrees
turn (9) and U-turn of the hairpin (10-11) are created with the cubic spline planner
and used for simulation purposes. The result of running these segments through the
cubic spline planner are given in the figure below.
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FIGURE 5.2: Representation of Track Segments
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Chapter 6

Simulation and Results

This chapter is devoted to the obtained results from the simulations. Section 6.1 is
meant to validate whether the cost function as proposed in Section 4.2 is performing
as scheduled or not. Subsequently, the effect of varying friction coefficient µ on the
generated trajectory is analyzed in Section 6.2. Finally, Section 6.3 tests the robust-
ness of the controller in terms of varying planning horizon and step length, track
variation, initial conditions and in the presence of race opponents. The values with
which simulations are done are given in each section. However, constraints as in
(4.20d) – (4.20j) stay within the following bounds:

4− αEy ≤ Ey ≤ 4 + αEy

−π

4
− αEψ ≤ Eψ ≤

π

4
+ αEψ

0− αvx ≤ vx ≤
150
3.6

+ αvx

− tan(δmax)

L
− ακv ≤ κv ≤

tan(δmax)

L
+ ακv

−5 ≤ ax ≤ 5
−0.2 ≤ Cv ≤ 0.2

With maximum steering angle δmax = π
4 and length of the car L = m. In all simula-

tions, the slack variables α are present in the objective function and pushed towards
zero as much as possible.

6.1 Validation

6.1.1 Validation of Jrace

In order to validate whether the LSV-MPC scheme is functioning according to the
formulated problem, each segment of the cost function is taken into consideration
separately. Different experiments are executed to validate the functionality of the
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cost function in terms of solve time and solve cost. The initial values for the valida-
tion are given in Table 6.1. These initial values indicate that the vehicle enters the
track in a straight way at the center-line with 40 m/s, showing no angular deviation.

State/parameter Unit Value
Ey m 0
Eψ rad 0
vx m/s 40
κv m−1 0
N - 10
∆s m 4
µ - 0

TABLE 6.1: Initial values for validation

The results of solving the MPC scheme by simulating the cost segments separately
are given in Figure 6.1. Recall the rationale behind the cost function, as it tries to
maximize the progress along the center-line of the track. The first term γ1 tries to
maximize the lateral deviation along with the curve of the track. It can clearly be
seen that once the prediction horizon recognizes a curve is coming up, the controller
steers the vehicle to the boundary of the track. Figure 6.1a validates that this objec-
tive segment is reached. The functionality of γ2 in the objective is to minimize the
heading angle with respect to the center-line of the track. In practice this means it
will try to follow the track along the center-line, as shown in Figure 6.1b When only
γ3 was considered as objective, the solver could not solve the MPC scheme. There-
fore, Figure 6.1c shows the three components all together. Additional experiments
were conducted by making combinations of the three segments. It was experienced
that adding γ3 to the combination of γ1 and γ2 did not change the generated trajec-
tory. This coincides with statements made in Chapter 4, where the discretization was
said to be independent of longitudinal velocity vx. This value increased linearly to
its maximum vmax, but did not affect the lateral dynamics (Ey, Eψ). Further analysis
on this subject is done in Section 6.2.
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(A) First term: γ1
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(B) Second term: γ2
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(C) Complete term Jrace

FIGURE 6.1: Validation of objective function Jrace

6.1.2 Validation of Jsmooth

To show the effect of Jsmooth on the predicted trajectory, first the term is analyzed
separately (i.e. cost objective only dependent on Jsmooth). Subsequently, Jrace is added
to see the effect of simultaneously optimizing both Jrace and Jsmooth.
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(A) Jsmooth considered separately
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(B) Jrace + Jsmooth

FIGURE 6.2: Validation of Jsmooth

Figure 6.2a shows the effect when only Jsmooth is considered as objective. It can be
clearly seen that lateral- and angular deviations from the center-line are small and
it aims at minimizing the vehicle curvature only. Figure 6.2b shows the effect of
including both components Jrace and Jsmooth, generating a trajectory that maximized
the progress along the center-line of the track, while ensuring curvature smoothness
at the same time. Additionally, the spatial states and some solver information is
given in Figure 6.3 for both Jrace separate and Jrace and Jsmooth combined.
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FIGURE 6.3: MPC iterations vs. spatial states

An aspect that an addition in the objective function could endanger is the computa-
tion time. To check whether the addition of Jsmooth could still be feasible for real-time
application in terms of efficient computation times, the solving times per iteration
are summarized in Figure 6.3 and it can be seen that the effect of adding Jsmooth only
has a minor influence in terms of solving time per MPC iteration.
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6.2 Friction Coefficient µ

Recall the recurring statements that the lateral dynamics (Ey, Eψ) from Eq. (3.11a)
and (3.11b) are independent of the longitudinal speed. This section is meant to
show the effect of changing friction parameter µ on the generated trajectory. De-
spite the fact that maximum longitudinal speed is assumed most of the time, these
simulations were done by setting the initial longitudinal speed to 20 m/s in order to
investigate the speed profile on the S-curve and Hairpin curve. These simulations
ran with horizon length N = 15 and discretization step ∆s = 4.

6.2.1 µ on S-curve

Figure 6.4 summarizes the effect of enlarging the value for µ for the spatial states
vx and κv on the S-curve. Besides evolution of these two states, the results of lateral
dynamics are given in Appendix D and predefined track information in Appendix
C.2. From Figure 6.4a is visible that µ is modeled within the dynamics such that an
increase in µ leads to a higher increase velocity (i.e. higher acceleration). Setting µ
to zero gives an approximately linear increase in velocity, until it hits the maximum
value vx max, which was already stated in Section 6.1.1. The change in curvatures of
the velocity profiles can be connected to the curves present on the track segment. As
example, take µ = 10 in Figure 6.4a and 6.4b and compare it to track information
given in C.1a. The lower µ-values do not affect the velocity- and car curvature pro-
files in the first turn of the S-curve. However, in the second (and sharper) turn of the
S-curve, both velocity and car curvature display odd behaviour.

When comparing the µ-values to the generated trajectories (Appendix D.1), it ap-
pears that the controller fails to steer the vehicle to the apex of the second curve.
More precise, it captures the fact that when the vehicle rapidly accelerates, its un-
able to make sharp turns to some extent. It can be concluded that the higher µ gets,
the faster the vehicle decelerates on higher curvatures of the track and the faster it
accelerates on straight segments. With these observations, µ can in fact be seen as a
friction component for the vehicle dynamics. Neglecting µ causes the controller to
request acceleration at all time. By including µ, the controller is able to capture the
dynamics more realistically as it changes the velocity profile in curvy segments of
the track.
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FIGURE 6.4: Variation of friction values µ on S-curve
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6.2.2 µ on Hairpin Curve

The same simulations were done for the hairpin curve and yields the same observa-
tions, as can be seen in Figure 6.5. When µ obtains a value larger than 1, it starts to
affect the velocity profile and car curvature profile as in Figure 6.5a and 6.5b. Con-
sequently, the optimized trajectories (Appendix D.2) start to change for these values
as well.
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FIGURE 6.5: Variation of friction values µ on Hairpin curve

Since it was noted that µ > 1 shows unfavourable behaviour in the evolution of the
spatial states, further simulations are done by setting µ = 0.8.

6.3 Robustness Analysis

Theoretically, the proposed controller should be robust with respect to uncertain-
ties and disturbances due to the successive linearization and the Receding-Horizon
strategy. This section is meant to show the robustness of the proposed controller in
terms of varieties in conditions/parameters. It is of high importance that robustness
is verified, otherwise certain statements on the performance are not valuable. For
example, if only one track segment is considered during simulation, nothing can be
concluded on performance in general, only on the performance of the design on that
particular segment. This section is meant to analyze the robustness of the MPC con-
troller with regard to different tracks, a variation in parameters and presence of race
opponents.

6.3.1 Prediction Horizon

The change change in step length ∆s and planning horizon N matters a lot in this
thesis, since it determines how far up ahead the track the predictions are done. Due
to methods elaborated on in Chapter 4, a relatively big discretizion step is allowed.
This subsection is meant to illustrate the effect of varying horizon (N) and step (∆s)
lengths on the simulation. For this experiment, the S-curve as in Figure 5.2a is used
with varying horizon and step length compositions as shown in Table 6.2. For these
different compositions of N and ∆s, the number of iterations necessary to complete
the track segments, the sum of the cost function and the total solve time are com-
puted.
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N 5 10
∆s[m] 2 4 6 2 4 6
# Iterations 167 81 52 162 76 47
∑ J(ζ) -16.2 -7.9 -5.2 -35.3 -16.6 -10.4
∑ tsolve[sec] 0.19 0.10 0.06 0.51 0.24 0.15
N 15 20
∆s[m] 2 4 6 2 4 6
# Iterations 157 71 42 152 66 37
∑ J(ζ) -53.3 -24.1 -14.5 -69.8 -30.0 -17.1
∑ tsolve[sec] 0.98 0.40 0.25 1.43 0.66 0.39

TABLE 6.2: Effect of varying planning horizon and step length

It can be seen from Table 6.2 that higher horizon lengths N result in a more time-
consuming optimization problem, which corresponds to statements made in Sec-
tion 4.1. Choosing a composition of N and ∆s is a matter of trade-off between
computation-time and accuracy of the results. A longer horizon length N and a
greater step length ∆s both enable to plan further on the track. However, increas-
ing N lead to an increase in computation time and enlarging ∆s yields less precise
results. As example, Figure E.2 shows the effect of taking a constant horizon length
N = 5 and varying step length ∆s = [2, 4, 6] at the same iteration number. The
N − 1 red dots (as in Eq. (4.20a)) indicate the predictions (around which the vehicle
dynamics are linearized in the next iteration). The purple line is the trajectory the
vehicle has driven so far. It can be clearly seen that the algorithm is able to plan fur-
ther ahead with a greater step length ∆s. Notice also that in Figure 6.6b, the vehicle
is turning to the inner bound of the track much later than in Figure 6.6c, as it recog-
nizes the turn later as well. Appendix E.1 contains the corresponding trajectories of
Figure E.2 over the whole track segment.
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(B) N = 5, ∆s = 4
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FIGURE 6.6: Constant N = 5 and changing ∆s

When simulating it the other way around by keeping ∆s constant and varying with
horizon length N, similar results are depicted in Figure 6.7. The vehicle has not
traveled further along the track as N becomes larger, but is does plan further ahead.
Notice that the larger N, the sooner the vehicle recognizes the turn is coming up.
Consequently, it drives to the inner bound of the track earlier. Especially in Figure
6.7a and 6.7b, this difference is visible. Appendix E.2 contains the corresponding
trajectories of Figure 6.7 over the whole track segment. Looking at Figures E.2b and
E.2c, the trajectory of the first curve is identical, since for both N = 15 and N = 20
the prediction horizon takes the curve into account from the start. In the second
curve, however, a horizon length of 20 identifies the curve sooner and steers to the
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apex almost instantly after the first curve.
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(B) N = 15, ∆s = 4
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FIGURE 6.7: Constant ∆s = 4 and changing N

After the simulations and looking at Table 6.2, it can be concluded that the MPC
controller is robust with respect to a change in planning horizon N and step length
∆s. For the upcoming simulations, N = 15 and ∆s = 4 will remain constant.

6.3.2 Track Variation

Considering the whole track, different segments of the track are taken to simulate
the overall performance of the proposed controller. This subsection shows the MPC
controller performance on the S-curve, the 90-degrees turn and the hairpin curve,
respectively given in Figures 5.2a, 5.2b and 5.2c. The results of simulating the vehicle
on these track segments are summarized in Figure 6.8.
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(A) Results S-curve
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(B) Results 90-degrees turn
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(C) Results hairpin

FIGURE 6.8: Simulation on different track segments

As observed in Figure 6.8 and in other sections, the MPC controller is able to gen-
erate satisfactory results on different tracks with predefined track information as in
Appendix C. Figure 6.8 is considered sufficient to conclude satisfactory performance
of the MPC controller.

6.3.3 Initial Conditions

A variation in initial conditions for the problem formulated in this thesis, concerns
the initial position, heading, velocity and car curvature of the simulated vehicle.
Since properly guessed initial conditions are necessary to get satisfying results, vary-
ing with these initial condition is a good way to show the performance of the con-
troller. The change in initial conditions is tested on the 90-degrees turn and the
hairpin, as in Figures 5.2b and 5.2c. The initial lateral displacement is changed in the
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90-degrees turn and adjustments for initial velocity are tested on the hairpin curve
and corresponding results are depicted in Figure 6.9.
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(A) Ey,0 = −4 on 90-degrees turn
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(B) vx,0 = 20 on hairpin

FIGURE 6.9: Variation in initial values

Considering Figure 6.9a, the vehicle steers toward the curve as soon as it recognizes
it. This behaviour is similar to results shown in previous sections. In the case of
Figure 6.9b, velocity profiles are extensively analysed in Section 6.2. This section
complements robustness claims of the MPC controller with respect to changing ini-
tial conditions.

6.3.4 Overtaking Manoeuvres

In general, there are two ways to formulate an obstacle within the problem. Firstly,
obstacles can be represented by a change in constraints on the driving environment.
In this case this means changing the conditions on the inner- and outer bounds of
the track. Since the problem is formulated in a way that the simulated vehicle stays
within bounds of the track, a change in formulation of the driving corridor can be
used to implement the presence of either moving or static obstacles on the track.
This method is used often in literature because of its simplicity in terms of adding
it to the problem formulation (due to being formulated as linear constraints). Sec-
ondly, additional states for overtaking as in (Buyval et al., 2017) can be formulated
by implementing dynamics of the obstacle in the problem formulation. However,
since the problem is formulated as a convex optimization problem and overtaking
dynamics are not particularly convex, adding it as state for the problem at hand is
rather difficult and quite possibly inaccurate.

This section shows the performance of the controller in the presence of obstacles.
Since the vehicle dynamics are spatially formulated, obstacles can be formulated by
means of bounds on the track as well. The overtaking manoeuvre is then heuristi-
cally determined, assuming that the trajectory of competitors in the track are known.
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In contrary to the bounds on the race track, obstacle bounds should be ideally for-
mulated as hard constraints. As slightly driving outside the race track is not catas-
trophic, impact on a static or dynamic obstacle is. Consequently, the spatial bounds
representing race opponent on the track are modeled without any slack variable α.

Scenario 1: one race opponent on the track segment

This scenario sketches results when one race opponent is present on the track seg-
ment, formulated as hard constraint and, consequently, the feasibility region of the
MPC problem decreases. Figure 6.10 shows the performance of the controller on
the 90-degrees turn and the Hairpin. Since the controller aims at maximizing the
progress along the center-line by (among other things) deviating to the inner bound
of the track at curves, race competitors are modeled to be at that inner curve. In
Figure 6.10a, the opponent drives 2 meters from the inner bound of track in an area
of [40m - 100m]. This area is determined based on an arbitrary speed profile of the
race opponent. When considering the hairpin curve, the scenario is sketched as in
Figure 6.10b.
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(A) Scenario 1.1
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(B) Scenario 1.2

FIGURE 6.10: Scenario 1: one race opponent

The opponents on the track segments are depicted as bounds on the track, indicated
by black markers. It can be clearly seen that on both track segments, Figures 6.10a
and 6.10b, the car seeks to find a path closest to the other vehicle in the turn. This
corresponds to the initial objective of the controller: maximizing progress of the
subject vehicle along the center-line. It can also be seen that the vehicle seeks to
minimize its angular deviation Eψ from the center-line immediately after it exits the
turn.

Scenario 2: two race opponents on the track

This is were the spatial dynamics show its property of naturally formulation of ob-
stacles. In this case, the race opponent are modeled as a dynamic obstacles driving
either 2 or 3 meters from the inner bound of the track. Figure 6.11a shows the sce-
nario where the first car is driving 2 meters from the track in the area of [38m - 108m],
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(B) Scenario 2.2

FIGURE 6.11: Scenario 2: two race opponents

in terms of the spatial coordinate system. The second car drives on the inside of the
second curve, 2 meters away from the bound. This is modeled as an area of [160m -
240m] in the spatial coordinate system. Figure 6.11b shows a similar scenario where
the first race opponent drives 3 meters away from the track bound.

Scenario 3: three race opponents on the track

To check whether the vehicle is able to move its way through two other vehicles,
a scenario with three race opponents is considered. It is similar to the scenario
sketched in Figure 6.11a, but in this case a second opponent driving parallel to the
other opponent in the first curve is considered. It can be observed that the vehi-
cle is able to steer through two other opponents smoothly mainly by minimizing its
angular deviation with respect to the center-line of the track. However, the third
race opponent is overtaken with quite some lateral distance in between. This can be
explained due to the fact that the MPC controller aims to ensure smoothness at all
times. By manoeuvring its way through the first two opponents, it does not have
enough time to steer to the apex of the second curve and, consequently, chooses to
smoothly steer around the third opponent.

Additionally, the simulations in presence of race opponents still show efficient com-
putation times, as illustrated in Figure 6.13. It can be seen that the more race op-
ponents on the track, the higher the mean solve times per iteration. This makes
sense, since more race opponents on track means more constraints leading to a more
computational heavy problem to solve.
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FIGURE 6.12: Scenario 3: three race opponents
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(B) Solve time with 3 race opponents

FIGURE 6.13: Computation times in the presence of race opponents
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Chapter 7

Discussion

A big assumption made during the simulation phase is the no-slip condition of the
kinematic vehicle model. Assuming perfect road-tire grip at all times is something
that in real life cannot be justified, especially not when operating at the limit of fric-
tion as in race environments. Since the relative simple kinematic bicycle model is far
from an identical representation of the vehicle dynamics of a formula 1 car, all results
must be reflected to as such. Theoretically, kinematic models will not be able to cap-
ture important non-linearities that arise from tire-road interaction, which defines car
behaviour. Such conditions require a highly detailed dynamic model of the car in or-
der to plan the trajectory and to ensure its feasibility. For the problem at hand, these
non-linearities are approximated by successive linearization of the vehicle dynamics
arising from the kinematic bicycle model.

Another consequence of utilizing a bicycle model instead of a full vehicle model is
the neglect of vehicle width. Since the 4-wheel vehicle model is simplified to a single-
axis bicycle model, dimension in terms of width is not included. Only the length
of the vehicle is included in the vehicle dynamics as constraint in the optimization
problem of the maximum curvature of the vehicle. Fortunately, by defining spatial
bounds this can be easily overcome by adjusting the bound according to the width
of race opponents.

Lateral acceleration is not taken into account due to the simplicity of the vehicle
model. Initially, the controller requested constant acceleration on the track segments,
independent on the local curvatures of the track. This was the result of the segment
of the cost function that aims at maximizing the longitudinal velocity vx. This effect
is attempted to overcome by introducing friction coefficient µ. Enlarging this value
showed deceleration before curves and higher acceleration after curves. It was ob-
served that this was related to the curvature of the vehicle. Considering the spatial
vehicle dynamics as in Eq. (3.11), this makes sense due to the fact that car curva-
ture κv is dependent on the longitudinal velocity. As the velocity profile changes by
changing µ, the same holds for car curvature κv. A value of µ less than 1 seemed suf-
ficient to capture velocity change in curves without effecting the optimal trajectory.

Unfortunately, real-time feasibility by retrieving time information according to Eq.
(3.14) has not been tested due to time constraints. However, since the optimization
problem is formulated in a convex framework and vehicle dynamics are successively
linearized and discretized, efficient run times can be expected in effort of real-time
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feasibility (Frasch et al., 2013). The trade-off between computation times (i.e. real-
time feasibility) and complexity of the problem is common for MPC formulations.
This thesis focused on efficient computation times rather than deploying a complex
vehicle model.
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Chapter 8

Conclusion

In this thesis, a Spatial-Based MPC algorithm is proposed for autonomous racing.
A main method within the proposed algortihm is the reformulation of the time dy-
namics into spatial dynamics. The biggest advantage of the spatial dynamics is the
allowance of formulating obstacles as constraints on the driving environment. The
controller aims at maximizing the progress (i.e. minimizing travel time) along the
center-line of a predefined track, while ensuring smoothness of the trajectory. The
problem is formulated as a convex optimization problem by linearizing the vehi-
cle dynamics successively around previous predicted optimal solutions of the MPC
scheme.

Formulation of the problem in this fashion resulted in extremely efficient computa-
tion times, making real-time implementation more achievable. The proposed spa-
tially vehicle dynamics allows for natural formulation of obstacles and track condi-
tions. Consequently, speed dependence in the formulation of vehicle dynamics is
eliminated and modeled as independent state. By introducing friction coefficient µ,
the lateral vehicle dynamics seemed to be more affected by the longitudinal vehicle
dynamics as µ adopted higher values. Friction coefficient µ was able to capture the
vehicle dynamics more realistically, especially in the curvy track segments.

On the other hand, vehicle dynamics at the limit of handling are not incorporated re-
sulting in solutions that might not be compatible with reality. Especially within the
MPC method, the trade-off between computational complexity and real-time feasi-
bility/implementation is prominent. The proposed algorithm in this thesis chose for
efficient computation over complex vehicle dynamics.

The proposed MPC algorithm can be considered robust with respect to multiple vari-
ations. The Receding Horizon fashion of modeling, inherent in MPC, has a natural
robustness against uncertainties and disturbances in the environment by optimizing
the problem every sample step ∆s over the predicted horizon N. The controller was
tested with step- and horizon lengths leading to feasible results. Moreover, multiple
tracks were employed and simulated under different initial conditions.

Lastly, overtaking manoeuvres are implemented by changing spatial boundary con-
ditions in the driving environment. By doing so, both static and dynamic obstacles
can be formulated depending on the length of spatial bounds. Depending on the
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beforehand determined obstacle paths, the controller calculates the optimal trajec-
tory along the obstacles. It was noticed that the MPC controller was able to perform
robust overtaking manoeuvres in the presence of multiple race opponents.
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Chapter 9

Future Research

This thesis mainly focused on trajectory generation by considering a rather simple
vehicle model. A interesting research direction would be to deploy a more complex
dynamic model to simulate the behaviour. Tire dynamics (which plays a big role
in racing) could be included by deploying such a complex vehicle model. In many
researches, path planning and control is done in separately. The path planning part
is often sufficiently executed by means of a rather simple vehicle model (such as the
kinematic bicycle model) and the control part by considering a more complex model.
This entails implementing a two-folded approach in stead of an integrated plan- and
control algorithm. It would be interesting to see what the consequent advantages
and disadvantages of such an hierarchical approach would be in comparison to the
integrated approach.

A second future project in mind is to simulate the behaviour in software extensively
used for vehicle control like CarSim, ARCADO, ForcesPro. Programs like these are
extensively used within the field of vehicle control to more accurately model vehicle
dynamics. As for the DTPA lab, an alternative could be to deploy a representative
Ackermann Steering wheel robot into Gazebo/ROS. By doing so, the behaviour of
the controller could be simulated more efficiently in compatible software such as the
ones mentioned above.

Lastly, an interesting direction would be to formulate the problem as more complex
(other than Convex), i.e. Quadratic programming in order to model in other vehi-
cle dynamically as state. Modeling the problem as convex optimization problem is
very time-efficient, but could be less accurate as well. Exploring real-time feasibility
by changing dynamics back to time could be another option within this last future
research direction.
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Appendix A

Convexity Definitions (Princeton
University, 2020)

Definition A.0.1. A set Ω ⊆ Rn is convex, if for all x, y ∈ Ω and ∀λ ∈ [0, 1]

λx + (1− λ)y ∈ Ω

A point of the form λx + (1− λ)y, λ ∈ [0, 1] is called a convex combination of x and
y. As λ varies between [0,1] , a "line segment" is being formed between x and y as
shown in Figure A.1.

FIGURE A.1: Convexity of sets

Definition A.0.2. A function f : Rn → R is convex if its domain dom( f ) is a convex
set and for all x, y ∈ dom( f ) and ∀λ ∈ [0, 1], we have

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y)

In words, this means that if we take any two points x, y, then f evaluated at any
convex combination of these two points should be no larger than the same convex
combination of f (x) and f (y). Geometrically, the line segment connecting (x, f (x))
to (y, f (y)) must sit above the graph of f as in Figure A.2.

Definition A.0.3. A function, f : Rn → R, is linear if f (x + y) = f (x) + f (y) and
f (λx) = λ f (x) for all x, y ∈ U such that either x + y or xy ∈ U respectively.
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FIGURE A.2: Illustration of definition of convexity of function

Following Definitions A.0.3 and A.0.2, it can be concluded that linear functions are
per definition convex. By setting f (λx + λy) = λ f (x) + λ f (y) in Definition A.0.3,
it follows Definition A.0.2 also ∀λ ∈ [0, 1]. These properties are fundamental for the
considered control objective in Section 4.2.
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Appendix B

MPC Matrix Derivation

B.1 Taylor Series

Since Taylor approximations are key in deriving the objective function for this thesis,
a general formulation is given in this appendix. Consider a nonlinear function f (ζ)
of one variable ζ, the Taylor series around linearization point ζ = a is given as

f (ζ) =
∞

∑
k=0

f (k)(a)
k!

(ζ − a)k = f (a) + f ′(a)(ζ − a)︸ ︷︷ ︸
1storder

+
f ′′(a)

2!
(ζ − a)2

︸ ︷︷ ︸
2ndorder

+O (B.1)

Where linear and quadratic approximations are indicated as respectively first- and
second order approximations of the Taylor series. Higher order terms are denoted
as O. When the function consists of more variables such as

dy
dt

= f (y, u) (B.2)

,

then the multi-variable Taylor series, considering two variables y and u, around (ȳ, ū)
is

dy
dt

= f (y, u) ≈ f (ȳ, ū) +
∂ f
∂y

∣∣∣∣∣
ȳ,ū

(y− ȳ) +
∂ f
∂u

∣∣∣∣
ȳ,ū

(u− ū). (B.3)

To simplify the final linearized expression, deviation variable are denoted as y′ =
y− ȳ and u′ = u− ū, resulting in the following approximation:

dy′

dt
= γ1y′ + γ2u′. (B.4)

The values of constants γ1 and γ2 are the partial derivatives of f (y, u) at steady state
conditions:
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α =
∂ f
∂y

∣∣∣∣∣
ȳ,ū

β =
∂ f
∂u

∣∣∣∣
ȳ,ū

(B.5)

B.2 Linearization

This appendix is devoted to a detailed description of the matrices used in the MPC
formulation of chapter 4.

The linearization is done by Taylor approximating the nonlinear dynamics around
the estimated optimal solutions (i.e. the solutions of one MPC iteration) given by
(ζ̄, ū). In general notation, this yields the following:

f (ζ, u) ≈ f
(
ζ̄, ū
)
+

∂ f (ζ, u)
∂z

∣∣∣∣∣
ζ̄,ū

(
ζ − ζ̄

)
+

∂ f (ζ, u)
∂u

∣∣∣∣∣
ζ̄,ū

(u− ū)⇔

⇔ f (ζ, u) ≈ f
(
ζ̄, ū
)
+ Ac

(
ζ − ζ̄

)
+ Bc (u− ū)

(B.6)

.

This allows to write (B.6) in the following compact linear form:

ζ̇ = Acζ + Bcu + Hc (B.7)

Where continuous matrices Ac, Bc and constant matrix Hc are given for the problem
at hand in (B.8) and (B.9)

ζ̇ =


∂ f1
∂Ey

∂ f1
∂Eψ

∂ f1
∂vx

∂ f1
∂κv

∂ f2
∂Ey

∂ f2
∂Eψ

∂ f2
∂vx

∂ f2
∂κv

∂ f3
∂Ey

∂ f3
∂Eψ

∂ f3
∂vx

∂ f3
∂κv

∂ f4
∂Ey

∂ f4
∂Eψ

∂ f4
∂vx

∂ f4
∂κv

 (ζ − ζ̄) +


∂ f1
∂a

∂ f1
∂C

∂ f2
a

∂ f2
∂C

∂ f3
a

∂ f3
∂C

∂ f4
a

∂ f4
∂C

 (u− ū) + f (ζ̄, ū) (B.8)

Which can be rewritten to make it discretizable as follows:

ζ̇ =


∂ f1
∂Ey

∂ f1
∂Eψ

∂ f1
∂vx

∂ f1
∂κv

∂ f2
∂Ey

∂ f2
∂Eψ

∂ f2
∂vx

∂ f2
∂κv

∂ f3
∂Ey

∂ f3
∂Eψ

∂ f3
∂vx

∂ f3
∂κv

∂ f4
∂Ey

∂ f4
∂Eψ

∂ f4
∂vx

∂ f4
∂κv


︸ ︷︷ ︸

Ac

ζ +


∂ f1
∂a

∂ f1
∂C

∂ f2
∂a

∂ f2
∂C

∂ f3
∂a

∂ f3
∂C

∂ f4
∂a

∂ f4
∂C


︸ ︷︷ ︸

Bc

u

+ f (ζ̄, ū)−


∂ f1
∂Ey

∂ f1
∂Eψ

∂ f1
∂vx

∂ f1
∂κv

∂ f2
∂Ey

∂ f2
∂Eψ

∂ f2
∂vx

∂ f2
∂κv

∂ f3
∂Ey

∂ f3
∂Eψ

∂ f3
∂vx

∂ f3
∂κv

∂ f4
∂Ey

∂ f4
∂Eψ

∂ f4
∂vx

∂ f4
∂κv

 ζ̄ −


∂ f1
∂a

∂ f1
∂C

∂ f2
∂a

∂ f2
∂C

∂ f3
∂a

∂ f3
∂C

∂ f4
∂a

∂ f4
∂C

 ū

︸ ︷︷ ︸
Hc

(B.9)
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Where Hc is constant and, therefore, not directly part of the discretization. The dis-
cretization process is further explained in the next section.

B.3 Discretization

The discretization of the continuous linearized system as described in appendix B.2,
is done using the Zero-Order-Hold (ZOH) method. The ZOH method converts
the continuous space equations to discrete space equations by holding each sam-
ple value for one sample interval ∆s, where it is common to assume constant control
signals between the samples (Åström and Wittenmark, 2013). By doing so, the linear
model from (B.7) can be written as an LTV-model (Linear Space Varying in this case)
as explained in chapter 4 in the following way:

ζ(k + 1) = AZOH
d (k)ζ(k) + BZOH

d (k)u(k) + HZOH
d (k), k > 0. (B.10)

These discretized matrices can be derived following

AZOH
d (k) = exp

(
Ac(k)∆s

)
BZOH

d (k) =

(∫ ∆s

0
exp

(
Ac(k)τ

)
dτ

)
Bc(k) = A−1 (Ad − I) Bc

HZOH
d (k) = Hc(k)

(B.11)

,

Where the discretized matrices are obtained by successively applying B.6 each step,
using the discretized version of the reference (ζ̄(k), ū(k)).

Exact discretization following (B.11) is possible if and only if Ac is nonsingular (i.e.
invertible). In case of singularity of Ac, the following property (DeCarlo, Zak, and
Matthews, 1988) can be used to get an auxiliary matrix M for every sampling instant
k:

M(k) = exp

[ Ac Bc
0 0

]
∆s

 =

[
AZOH

d BZOH
d

0 I

]
(B.12)

During the simulations, Eq. (B.12) seemed to give the more robust results in stability.
Therefore, this approach of finding the discrete matrices is used. Recall that Hc in Eq.
(B.9) is constant and, therefore, not taken directly into the discretization. HZOH

d (k)
is approximated as Hc, since Hc contains solutions generated from the discretized
matrices AZOH

d and BZOH
d as in Eq. (B.12).
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Appendix C

Additional track information

C.1 Track 1: S-curve
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FIGURE C.1: Track information S-curve
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C.2 Track 2: 90-degrees curve
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(A) Track curvature 90-degrees curve
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FIGURE C.2: Track information 90-degrees curve

C.3 Track 3: Hairpin curve
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FIGURE C.3: Track information hairpin curve
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Appendix D

Trajectories for changing friction
coefficient µ

D.1 change in µ on S-curve
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FIGURE D.1: From left to right: µ = 0, µ = 0.5, µ = 0.8, µ = 1
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FIGURE D.2: From left to right: µ = 2, µ = 3, µ = 10
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D.2 Change in µ on hairpin curve
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FIGURE D.3: From left to right: µ = 0, µ = 0.5, µ = 0.8, µ = 1,
µ = 2, µ = 3, µ = 10
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Appendix E

Varying Horizon Lengths N and Step
Lengths ∆s

E.1 Constant N = 5 and varying ∆s
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(A) N = 5, ∆s = 2
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(B) N = 5, ∆s = 4
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(C) N = 5, ∆s = 6

FIGURE E.1: S-curve trajectory with constant N = 5 and changing ∆s
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E.2 Constant ∆s = 4 and varying N
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(A) N = 10, ∆s = 4
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(B) N = 15, ∆s = 4
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(C) N = 20, ∆s = 4

FIGURE E.2: S-curve trajectory with constant N = 5 and changing ∆s
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