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ABSTRACT
The Riemann Hypothesis states that any non-trivial zero of the Riemann zeta function has real

part equal to 1/2. In this bachelor’s thesis we study a way to detect such a zero. The zeta function
is a complex function and in a part of the complex plane it is given as an infinite sum. By

restricting the zeta function to the line 1/2+ iR and using the so-called functional equation, a
real function is constructed. A zero of this function corresponds precisely to the imaginary part
of a zero of the zeta function. In this way zeta’s zeros can be plotted and calculated. The zeta

function is a special case of a so-called L-function. We apply the same method to detect zeros of
two other L-functions and plot the results.
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1 INTRODUCTION
In November 1859, Bernhard Riemann published a paper called ’On the Number of
Primes Less Than a Given Magnitude’1. In this paper Riemann introduced methods to
study the zeta function [1], which is the analytic function for z = a+bi

ζ(z) =
∞∑

n=1

1
nz (1.1)

for a > 1 and by analytic continuation for a ≤ 1, z 6= 1. The zeta function could be seen as
a product over the prime numbers

ζ(z)=
∞∑

n=1

1
nz = ∏

p∈P

(
1− 1

pz

)−1
,

where P denotes the set of all prime numbers. Full knowledge of ζ behavior should lead
to full knowledge of the prime numbers [2]. Riemann studied the complex zeros of ζ(z)
and conjectured that all nontrivial zeros (which are those not of the form z = m for m
a negative integer) must lie on the line of complex numbers having real part equal to
1/2. This is known as the Riemann Hypothesis. This has not been proven, but at least
we know that all such nontrivial zeros must lie in the critical strip consisting of those
complex numbers having real part between 0 and 1.

In this paper we find a way to detect the zeros of the zeta function on the line 1/2+ iR.
In the book ’The Riemann Zeta-Function’, Karatsuba and Voronin write about the Hardy
function Z :R→R: "Zeros of ζ(z) on the critical line are the real zeros of the function Z(t)"
[5]. We will investigate the Hardy function and prove that this is indeed the case. We can
then detect a zero of ζ by observing a change of sign in the Hardy function.

On a historical note, the first known paper in which zeros of the zeta function are cal-
culated was published in 1903 by J.P. Gram. He calculated the first 15 non-trivial zeros.
The website ZetaGrid was a project designed to explore roots of the zeta function [13].
When the project ended in 2005, the first 1013 zeros were found to have real part equal
to 1/2. This final contribution was done by X. Gourdon in 2004 [4].

In the second part of this paper we study a generalized form of the zeta function. The
so-called Dirichlet L-series. These are analytic functions for z = a+bi

L(z,χk) =
∞∑

n=1

χk(n)
nz

for a > 0 and by analytic continuation for the complex plane. The functions χk are Dirich-
let characters2 modulo k. We will consider the Dirichlet L-series for χ3 and χ4. In
’Probems in Analytic Number Theory’, the functional equations for these functions are
studied [12]. Using these, we construct for both complex functions a real function analo-
gous to the Hardy function. In this way we are able to detect their zeros as well.

1Originally published in German as ’Über die Anzahl der Primzahlen unter einer gegebenen Grösse’.
2These characters are defined in section 3.1. Note that if we take the constant function mapping χ : n 7→ 1

for all natural n > 0, we obtain the zeta function.
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2 FINDING ROOTS USING A REAL
FUNCTION

2.1 The Hardy function
In this section we introduce the Hardy function Z. This is the function we will be

studying throughout the chapter. We will show in the following sections that the function
is real and that a real number t is a zero of Z if and only if 1/2+ it is a zero of the zeta
function. We use the Hardy function as defined in Chapter 3 of the book ’The Riemann

Zeta-Function’ by Karatsuba and Voronin. [5].

Definition 2.1. Let Γ : C→ C denote the Gamma function. The Hardy Function (also
known as Riemann-Siegel formula) is defined for a real number t as

Z(t)=π−it/2 · Γ
(1

4 + it
2

)∣∣Γ(1
4 + it

2

)∣∣ ·ζ
(
1
2
+ it

)
. (2.1)

Proposition 2.1. The Hardy function has the following properties.

(i) Z(t)= 0 if and only if ζ(1/2+ it)= 0.

(ii) Z : R→R.

The aim of this chapter is proving the two statements above. We first take a closer look
at the function and make the following observations.

Remark. As a first observation, note that if Γ(1/4+ it/2) 6= 0 and exists for t ∈R, then∣∣∣∣∣ Γ
(1

4 + it
2

)∣∣Γ(1
4 + it

2

)∣∣
∣∣∣∣∣ =

∣∣Γ(1
4 + it

2

)∣∣∣∣Γ(1
4 + it

2

)∣∣ = 1,

so it lies on a circle {z ∈C : |z| = 1}. Furthermore, for t ∈R, we see∣∣∣π−it/2
∣∣∣ = ∣∣∣e−it log(π)/2

∣∣∣ = |eix| = 1

with x = t
2 logπ a real number. So π−it/2 also has modulus 1. It then follows that their

product

π−it/2 · Γ
(1

4 + it
2

)∣∣Γ(1
4 + it

2

)∣∣ ∈ {
eiθ : θ ∈ [0,2π)

}
⊂C.

As a consequence,

|Z(t)| =
∣∣∣∣ζ(

1
2
+ it

)∣∣∣∣ .

This shows that if ζ(1/2+ it)= 0, then it follows that Z(t)= 0 as well, which is one side of
Proposition 2.1 (i).
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2.1.1 Approach
To prove Proposition 2.1, we will be covering the following steps.

1. Show that the Gamma function has no zeros. We divide by the absolute value
of the Gamma function of 1/4+ it/2, so we show that this is nonzero. We use Euler’s
reflection formula to show that the Gamma function has no zeros. The proof of
Euler’s reflection formula is an application of Cauchy’s Residue Theorem.

2. Show that the function is real. We will use the functional equation of the zeta
function to show that Z(t)= Z(t).

2.2 Preliminaries
We will recall some knowledge of Complex Analysis that we will be using throughout the

paper. This includes the the definitions of the complex sine and cosine functions and
Euler’s identity.

Definition 2.2. For a complex number z, the functions sin z and cos z are defined as

sin z = eiz − e−iz

2i
and cos z = eiz + e−iz

2
.

Proposition 2.2. (Euler’s Identity) For a complex number z we have

eiz = cos z+ isin z (2.2)

Proof. This follows immediately from the definition:

cos z+ isin z = 1
2

(
eiz + e−iz

)
+ i · 1

2i

(
eiz − e−iz

)
= 1

2

(
eiz + e−iz +

(
eiz − e−iz

))
= 1

2

(
eiz + eiz

)
= eiz.

Proposition 2.3. For a complex number z and a real number x > 0 we have∣∣xz∣∣ = xRe(z).

Proof. Recall that the modulus of a complex number z = a + bi is given as |a + bi| =p
a2 +b2. Applying Euler’s Identity from Proposition 2.2, we see that for a complex num-
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ber z and a real number x > 0 we have∣∣xz∣∣ =
∣∣∣ez log x

∣∣∣
=

∣∣∣eRe(z) log x+iIm (z) log x
∣∣∣

=
∣∣∣eRe(z) log x · eiIm (z) log x

∣∣∣
=

∣∣∣eRe(z) log x
∣∣∣ · ∣∣∣eiIm (z) log x

∣∣∣
=

∣∣∣xRe(z)
∣∣∣ · |cos(Im (z) log x)+ isin(Im (z) log x)| (Euler’s identity)

=
∣∣∣xRe(z)

∣∣∣ · (cos2 (Im (z) log x)+sin2 (Im (z) log x)
)

=
∣∣∣xRe(z)

∣∣∣
= xRe(z). (2.3)

Where we use that cos2(x)+ sin2(x) = 1 and in the final step that for x > 0, we have
xRe(z) > 0.

2.3 The Gamma function
In the introduction, we saw the appearance of the Gamma function in equation (2.1). We
will show that we can use this function for complex values of the form z = 1/4+ it/2. Also,
since we divide by the absolute value of this function, we will show that for a real number

t, Γ(1/4+ it/2) 6= 0.

Definition 2.3. For a complex number z with Re(z)> 0 we define

Γ(z)=
∫ ∞

0
xz−1e−xdx. (2.4)

2.3.1 Convergence
Theorem 2.4. Let a and b be real numbers with a > 0 and consider z = a+ bi ∈ C. Then
Γ(z) converges absolutely.

Proof. Substituting z into the definition and then taking the absolute value gives

|Γ(a+bi)| =
∣∣∣∣∫ ∞

0
x(a−1)+bi e−xdx

∣∣∣∣ (2.5)

We have
|Γ(a+bi)| ≤

∫ ∞

0

∣∣∣x(a−1)+bi e−x
∣∣∣dx =

∫ ∞

0
xa−1e−xdx.

We split the interval of integration at x = 1 so that we need to prove the convergence of
the two integrals in the following sum.

|Γ(a+bi)| ≤
∫ 1

0
xa−1e−xdx +

∫ ∞

1
xa−1e−xdx. (2.6)
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– Let us first study the integral for x ∈ [0,1]. For a real value 0< b < 1, the integral∫ 1

b
xa−1e−xdx

converges. That is, we can find a value G ∈ R, such that
∫ 1

b xa−1e−xdx = G. The
function e−x is monotone decreasing on the interval [0,1]. So we can bound this
value G by

e−1
∫ 1

b
xa−1dx ≤ G ≤

∫ 1

b
xa−1dx.

We calculate the upper bound on the right-hand side explicitly. Since a > 0, we have
that a−1>−1 and thus∫ 1

b
xa−1dx =

[
1
a

xa
]1

x=b
= 1

a
(
1−ba)

.

Note that this is still defined if we send b ↓ 0, again by the fact that a > 0. We have

lim
b↓0

1
a

(
1−ba) = 1

a
.

We conclude that ∫ 1

0
xa−1e−x ≤ 1

a
for a ∈R>0.

– Now we study the integral for x ∈ [1,∞). We make use of the indefinite integral of∫ ∞
1 e−xdx. This integral converges.∫ ∞

1
e−xdx = lim

k→∞
[−e−x]k

x=1 = lim
k→∞

(
e−1 − e−k

)
= 1

e
.

To prove that the second integral in equation (2.6) converges, we will use the method
of mathematical induction to show that for 0< a < n, the integral∫ ∞

1
xa−1e−xdx <

∫ ∞

1
e−xdx < ∞

for all integers n ∈N>0.

– If 0< a < 1, we have that xa−1e−x < e−x if x ≥ 1. Therefore∫ ∞

1
xa−1e−xdx <

∫ ∞

1
e−xdx < ∞.

– To show the following steps, we make an observation. If we still assume 0 <
a < 1, we can apply integration by parts to the integral.∫ ∞

1
xa−1e−xdx = lim

k→∞
[
(a−1)xa−2e−x]k

x=1 + (a−1)
∫ ∞

1
xa−2e−xdx

= (a−1)
e

+ (a−1)
∫ ∞

1
xa−2e−xdx. (2.7)

Now, for 0< a < 2 we see that (a−1)/e ∈R and

xa−2e−x < e−x
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since a−2 is negative. It follows that∫ ∞

1
xa−2e−xdx <

∫ ∞

1
e−xdx <∞

and therefore that for 0 < a < 2, the integral
∫ ∞

1 xa−1e−xdx converges. We will
generalize this idea. If we continue from equation (2.7) and apply integration
by parts again, we see∫ ∞

1
xa−1e−xdx = a−1

e
+ (a−1)

∫ ∞

1
xa−2e−xdx

= a−1
e

+ (a−1) ·
(

a−2
e

+ (a−2)
∫ ∞

1
xa−3e−xdx

)
= a−1

e
+ (a−1)(a−2)

e
+ (a−1)(a−2)

∫ ∞

1
xa−3e−xdx.

We can iterate these steps. We find that for a real number a > 0, we have after
applying integration by parts n times,∫ ∞

1
xa−1e−xdx =

n∑
m=1

(
1
e

m∏
i=1

(a− i)

)
+

(
n∏

i=1
(a− i)

)∫ ∞

1
x(a−n−1)e−xdx, (2.8)

where the latter integral converges by the same argument as before when
a−n−1< 0. That happens when a < n+1.

Suppose we find a number ` ∈N>0 such that for values 0 < a < `, the integral∫ ∞
1 xa−1e−xdx <∞. We apply integration by parts ` times and obtain equation

(2.8) with n = ` and we see that for 0< a < `+1, we have

∑̀
m=1

(
1
e

m∏
i=1

(a− i)

)
<∞ and

∫ ∞

1
x(a−`−1)e−xdx <∞.

The convergence of the integral follows from the fact that xa−`−1 = x(a−1)−` and
0< a < `, so (a−1)−`< 0, and therefore xa−`−1e−x < e−x. As before we have∫ ∞

1
x(a−1)−`e−xdx <

∫ ∞

1
e−xdx <∞

and so the integral
∫ ∞

1 x(a−1)e−xdx converges for 0< a < `+1.

By the principle of mathematical induction we conclude that for a > 0,∫ ∞

1
x(a−1)e−xdx <∞.

That shows us

|Γ(a+bi)| ≤
∫ 1

0
xa−1e−xdx +

∫ ∞

1
xa−1e−xdx <∞.
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2.3.2 Continuation of the Gamma function
The previous proof could be used to show that Γ(z) converges for all complex values of
z, as long as Re(z) > 0. We will now prove the following Theorem for complex numbers
z having Re(z) > 0 and use it to analytically continue the Gamma function for complex
numbers z having Re(z)< 0.

Theorem 2.5. For a complex number z with Re(z)> 0, we have Γ(z+1)= zΓ(z).

Proof. We start with the Gamma function of z+1.

Γ(z+1)=
∫ ∞

0
e−xxzdx.

If we use the substitution u(x)= e−x, implying du(x)=−e−xdx, we have∫ ∞

0
e−xxzdt =−

∫ ∞

0
xzdu(x).

Now apply integration by parts:

−
∫ ∞

0
1 · tzdu(x) = −

([
u(x) · tz]∞

x=0 −
∫ ∞

0
u(x) · d [xz]

du(x)
·du(x)

)
= [

u(x) · xz]∞
x=0 +

∫ ∞

0
u(x)dxz

= [
e−x · xz]∞

x=0︸ ︷︷ ︸
0

+
∫ ∞

0
e−xdxz

Note that
d
dx

xz = z · xz−1 =⇒ dxz = zxz−1dx

Which gives us

Γ(z+1)=
∫ ∞

0
e−xdxz = z

∫ ∞

0
e−xxz−1dt = zΓ(z) (2.9)

For z 6= 0, it follows from Theorem 2.5 that

Γ(z)= Γ(z+1)
z

.

This expression can be iterated:

Γ(z) = Γ(z+1)
z

= Γ(z+2)
z(z+1)

= ·· · = Γ(z+n)
z(z+1) · · · (z+n−1)

.

This is what we will use to continue the Gamma function.

Definition 2.4. Let z be a complex number. If Re(z)≤ 0 and z ∉Z, then choose an integer
n such that Re(z)+n > 0 and define

Γ(z)= Γ(z+n)
z(z+1) · · · (z+n−1)

. (2.10)
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2.3.3 Zeros of the Gamma function
It follows from Theorem 2.5 that if we find a value z for which Γ(z) = 0, then for all
natural numbers n, also Γ(z+ n) = 0, implying that Γ has infinitely many zeroes. We
want to show that the Hardy function Z from Definition 2.1 exists, so we will show that
no complex number z exists with the property Γ(z) = 0, since we divide by Γ(z). The fact
that no such z exists follows from Euler’s Reflection Formula.

Theorem 2.6. (Euler’s Reflection Formula) For z a complex number such that z ∉ Z we
have

Γ(z)Γ(1− z)= π

sin(πz)
.

Before we prove this Theorem, we first show that it implies the result about Γ we need.

Corollary 2.7. The Gamma function has no zeros.

Proof. Assume for contradiction that there exists a complex number z such that Γ(z)= 0.
Let us investigate what this z could be. First of all, z could be a natural number. But
we know that then Γ(z) = (z−1)! which is nonzero. So a natural number z gives no zero.
Secondly, z could be a negative integer. In that case Γ(z) has a pole. So z cannot be a
negative integer either. Left over are all complex values of z that are not integers. In
that case, z satisfies the conditions of Euler’s reflection formula. We substitute z and
obtain

0 =Γ(z)Γ(1− z) = π

sin(πz)
.

This is a contradiction, since for no such z the fraction π/sin(πz)= 0.

We continue with proving Euler’s reflection formula from Theorem 2.6. To build the proof,
we use Lemmas 2.8, 2.9 and 2.10.

Lemma 2.8. For z ∈C\Z we have
∞∑

n=0
(−1)n

(
1

n+ z
+ 1

n+1− z

)
= lim

m→∞
∑

m≥|n|

(−1)n

z−n
. (2.11)

provided that the series converges.

Proof. Let z ∈ C\Z. Starting with the right-hand side, we can write out the sum and
regroup the terms as follows:

lim
m→∞

∑
m≥|n|

(−1)n

z−n
= ·· ·− 1

z−3
+ 1

z−2
− 1

z−1
+ 1

z
− 1

z+1
+ 1

z+2
−·· ·

= 1
z
− 1

z−1
− 1

z+1
+ 1

z−2
+ 1

z+2
− 1

z−3
· · ·

= 1
z
+ 1
−z+1

− 1
z+1

− 1
−z+2

+ 1
z+2

+ 1
−z−3

· · ·

=
(
1
z
+ 1
−z+1

)
−

(
1

z+1
+ 1
−z+2

)
+

(
1

z+2
+ 1
−z−3

)
−·· ·

=
∞∑

n=0
(−1)n

(
1

n+ z
+ 1

n− z+1

)
,
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Lemma 2.9. For a real number t in (0,2π)\{π, π/2, 3π/2} we have

sin
(
π (m+ 1/2) · eit

)
→±∞ as m →∞. (2.12)

Proof. We first use Euler’s Identity from Proposition 2.2 two times and then we apply the
definition of the complex sine function to obtain the following.

sin
(
π (m+ 1/2) · eit

)
= sin

(
π (m+ 1/2) (cos t+ isin t)

)
= sin

(
π (m+ 1/2)cos t+ iπ (m+ 1/2)sin t

)
= sin

(
A cos t+ iA sin t

)
= 1

2i

(
ei(A cos t+iA sin t) − e−i(A cos t+iA sin t)

)
.

= eiA cos t · e−A sin t

2i
− eA sin t · e−iA cos t

2i
.

where we used A =π (m+ 1/2) for ease of notation. Applying Euler’s Identity to the powers
of e that have a cosine function, we rewrite the last line as

sin
(
Aeit

)
= 1

2i

(
e−A sin t cos(A cos t)− eA sin t cos(A cos t)

)
+ i

2i

(
e−A sin t sin(A cos t)+ eA sin t sin(A cos t)

)
. (2.13)

Note that i/2i = 1/2, so that the second term is the real part and the first term is the
imaginary part of sin

(
Aeit). Note that sending m →∞ is the same as sending A →∞.

since A ∼ m. Recall furthermore that for a complex function w = fn + gn i, the limit

lim
n→∞ ( fn + gn i)=∞

if either fn →∞ or gn →∞. Therefore we could just analyze the real term in the equation
above and show that is goes to infinity for t in the specified interval. Let us analyze the
limit of the real part of (2.13).

lim
A→∞

e−A sin t sin(A cos t)︸ ︷︷ ︸
∈[−1,1]

+eA sin t sin(A cos t)︸ ︷︷ ︸
∈[−1,1]

. (2.14)

Splitting the interval of t, we see the following:

– If t ∈ (0,π), then A sin t > 0, so lim
A→∞

e−A sin t = 0 and lim
A→∞

eA sin t =∞.

– If t ∈ (π,2π), then A sin t < 0, so lim
A→∞

e−A sin t =∞ and lim
A→∞

eA sin t = 0.

In conclusion, for t ∈ (0,π)∪(π,2π), the limit in equation (2.14) goes to ±∞ and hence also
equation (2.12) is satisfied for t on this interval.

To finish the proof, we study the problem that appears when A cos t ∈Z×π. In that case
namely sin(A cos t) = 0 and thus the limit . Let us have a closer look at this expression
with A =π(m+1/2). Suppose that we have

cos t ∈Z · π

π(m+1/2)
.
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This would mean that for an integer k,

cos t = 2k
2m+1

Recall that we send m to ∞. Under this limit, the fraction is zero. This means that we
are only left with the one case in which cos t = 0. For t in the interval (0,2π), the cosine
has zeros precisely for t =π/2 and t = 3π/2.
This shows that indeed sin

(
Aeit)→±∞ if t ∈ (0,2π)\{π, π/2, 3π/2}.

Lemma 2.10. For z ∈C\Z we have
π

sin(πz)
= lim

m→∞
∑

m≥|n|

(−1)n

z−n
. (2.15)

Outline. To prove this, we will use a function gz that has residues −π/sin(πz) and
(−1)n/(z − n) at its poles. Then we construct a complex contour depending on m and
apply the Residue Theorem. We then have that contour integral of gz is equal to the sum
of its residues. Finally we send m to infinity and show that the contour integral of gz is
zero. That will then directly imply (2.15).

Proof. Let z be a fixed complex number. Define function gz :C\ ({z}∪Z→C) as follows:

gz : w 7→ π

sin(πw)
· 1

z−w
.

We claim that gz has residues as described in the outline above. Indeed, consider the
poles of this function. Poles appear when the limit of a function goes to infinity. There is
a pole when sin(πw) = 0. That is, whenever w = n ∈ Z, we have a pole of order 1. Also,
when w = z we obtain a pole; z is a simple pole as well.
We now need the residues of gz at both poles. For the first pole, let n ∈Z. Then

Res (n) = lim
w→n

(w−n) · gz(w)

= lim
w→n

π

sin(πw)
· w−n

z−w

= π · lim
w→n

w−n
(z−w)sin(πw)

As w → n, both numerator and denominator go to zero. Therefore we can make use of ’l
Hôspital’s rule. Differentiating numerator and denominator with respect to w then gives

Res (n) = π lim
w→n

1
−sin(πw)+π(z−w)cos(πw)

= 1
(z−n)cos(πn)

= (−1)n

z−n
where we use that 1/cos(πn) = (−1)n for n ∈ Z. We observed there to be a second pole
when w = z. The residue of gz at z is

Res (z) = lim
w→z

(w− z) · gz(w)

= lim
w→z

π

sin(πw)
· w− z

z−w

= lim
w→z

π

sin(πw)
· (−1)

= − π

sin(πz)
.

13



So gz indeed has the required residues. We will now construct a contour in the complex
plane that includes the poles of gz. Pick m ∈N such that m > |z|. Consider now the circle
Cm with radius m+ 1

2 centered at the origin:

Cm :=
{
(m+ 1/2) eit

∣∣∣ 0≤ t ≤ 2π
}

Note that by construction, the pole z ∈ C and also the poles −m,−m+1, · · · ,−1,0,1 · · · ,m−
1,m are in the interior of Cm.

We now recall Cauchy’s Residue Theorem, which states: If C is a simple closed posi-
tively oriented contour and f is analytic inside and on C except at the points z1, z2, · · · , zn
inside C, then ∫

C
f (z)dz = 2πi

n∑
j=1

Res (z j).

Let us apply this Theorem to integrate gz(w) over Cm.∫
Cm

gz(w)dw =
∫

C

1
sin(πw)

· 1
z−w

dw

= 2πi

(
Res (z)+ ∑

n∈C
Res (n)

)

= 2πi

(
− π

sin(πz)
+ ∑

m≥|n|

(−1)n

z−n

)
, (2.16)

Make the observation that if we divide both sides by 2πi and send m to infinity, we obtain
equality (2.15) if we show that lim

m→∞
∫

Cm
gz(w)dw = 0 is equal to zero. Our final step in

this proof is showing that if m →∞, then the integral goes to zero.

To integrate gz over Cm with respect to w, we make the substitution w(t) = (m+ 1/2)eit.
We then see dw = (m+ 1/2)ieitdt and obtain

lim
m→∞

∫
Cm

gz(w)dw = lim
m→∞

∫ 2π

0
gz

(
(m+ 1/2) eit

)
· (m+ 1/2) · i · eitdt

Consider the value of gz
(
(m+ 1/2) eit) · (m+ 1/2) in the integrand.

gz

(
(m+ 1/2) eit

)
· (m+ 1/2) = π

sin(π(m+ 1/2)eit)
· m+ 1/2

z− (m+ 1/2)eit

Now, if we take the limit of m →∞ of the second fraction, we obtain

lim
m→∞

m+ 1/2
z− (m+ 1/2)eit)

= lim
m→∞

1+ 1
2m

z
m − (1+ 1

2m )eit
= − 1

eit .

Therefore, we rewrite the integral as

lim
m→∞

∫
C

gz(w)dw = lim
m→∞

∫ 2π

0

π

sin(π(m+ 1/2)eit)
· m+ 1/2

z− (m+ 1/2)eit · e
it · i dt

= lim
m→∞

∫ 2π

0

−iπdt
sin(π(m+ 1/2)eit)

. (2.17)
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The sine function in the fraction is precisely the function from Lemma 2.9, which tends
to infinity for large m for all t in (0,2π) except for three points. Splitting the integral on
these three points, and use the notation A =π (m+ 1/2) as before, we rewrite (2.17) as

−iπ · lim
A→∞

(∫ π/2

0

dt
sin

(
Aeit

) +∫ π

π/2

dt
sin

(
Aeit

) +∫ 3π/2

π

dt
sin

(
Aeit

) +∫ 2π

3π/2

dt
sin

(
Aeit

))
By Lemma 2.9 it now follows that all four integrals go to zero as A goes to infinity. Thus
indeed,

lim
m→∞

∫
Cm

gz(w)dw = 0

and
π

sin(πz)
= lim

m→∞
∑

m≥|n|

(−1)n

z−n
.

We have now proven Lemmas 2.8 and 2.10. These will be used in the proof of Euler’s
reflection formula below.

Proof. (of Theorem 2.6) We use the analytic continuation of the Gamma function defined
in Definition 2.4 and prove now for 0<Re(z)< 1. For such z, both Re(z)> 0 and Re(1−z)>
0. Hence

Γ(z)Γ(z−1) =
(∫ ∞

0
tz−1e−tdt

)(∫ ∞

0
s−ze−sds

)
=

∫ ∞

0

∫ ∞

0
tz−1s−ze−t−sds dt

=
∫ ∞

0

∫ ∞

0

(
t
s

)z
t−1e−(s+t)ds dt (2.18)

Now, let us apply a transformation. Define u = s+ t and v = t/s. We will now calculate the
Jacobian determinant. Solving the equations for u and v for s and t, we obtain

t = s ·v
Hence

u = s+ t = s+ sv = s(v+1),

which shows
s(u,v) = u

v+1
.

It follows that
t(u,v) = s(u,v) ·v = uv

v+1
The Jacobian determinant then becomes

J(u,v)=
∣∣∣∣∣∣∣∣su sv

tu tv

∣∣∣∣∣∣∣∣=
∣∣∣∣∣
∣∣∣∣∣ 1

v+1 − u
(v+1)2

v
v+1

u(v+1)−uv
(v+12)

∣∣∣∣∣
∣∣∣∣∣=

∣∣∣∣u(v+1)−uv
(v+1)3 + uv

(v+1)3

∣∣∣∣= u
(v+1)2

Next we need to determine the boundary values in the new variables.

We see that

(s, t) 7→
(
u = u+ t, v = t

s

)
(u,v) 7→

(
t = uv

v+1
, s = u

v+1

)
15



are each others inverse as images on the first quadrant. Therefore the boundaries of the
new variables must be u ∈ (0,∞) and v ∈ (0,∞)

Now we can apply the transformation to (2.18) by substitution and a multiplication by J
as calculated above:

Γ(z)Γ(z−1) =
∫ ∞

0

∫ ∞

0

(
t
s

)z
t−1 e−(s+t) ds dt

=
∫ ∞

0

∫ ∞

0
vz (t(u,v))−1 e−v J(u,v) du dv

=
∫ ∞

0

∫ ∞

0
vz v+1

uv
e−v u

(v+1)2 du dv

=
∫ ∞

0

∫ ∞

0

vz−1

v+1
e−v du dv (2.19)

Solving the integral with respect to u:∫ ∞

0

vz−1

v+1
e−v du = lim

k→∞

(
− vz−1

v+1
e−k

)
−

(
− vz−1

v+1
e0

)
= vz−1

v+1
.

Left to solve is the integral that follows from (2.19). If we split the integral into the sum
of two integrals running t in (0,1) and (1,∞) respectively, we obtain

Γ(z)Γ(z−1)=
∫ 1

0

vz−1

1+v
dv+

∫ ∞

1

vz−1

1+v
dv

Now, let us introduce t = 1/v, such that dv =−1/t2 dt, to make a substitution in the second
integral. This substitution has the nice property that at the lower boundary v = 1 implies
t = 1 and at the upper boundary, v →∞ implies t → 0. Thus the integral simplifies to

Γ(z)Γ(z−1) =
∫ 1

0

vz−1

1+v
dv+

∫ ∞

1

vz−1

1+v
dv

=
∫ 1

0

vz−1

1+v
dv+

∫ 0

1

t1−z

t−1 +1

(
− 1

t2

)
dt

=
∫ 1

0

vz−1

1+v
dv+

∫ 1

0

t−z

1+ t
dt

=
∫ 1

0

vz−1

1+v
+ v−z

1+v
dv (2.20)

=
∫ 1

0

vz−1 +v−z

1+v
dv,

where step (2.20) is justified since the integrals share the same interval of integration.
If we write the denominator as 1− (−v), then we recognize the fraction as the result of a
geometric series: ∫ 1

0

vz−1 +v−z

1+v
dv =

∫ 1

0

(
vz−1 +v−z) ∞∑

n=0
(−v)n dv

=
∞∑

n=0
(−1)n

∫ 1

0

(
vn+z−1 +vn−z) dv (2.21)

=
∞∑

n=0
(−1)n

[
vn+z

n+ z
+ vn−z+1

n− z+1

]v=1

v=0

=
∞∑

n=0
(−1)n

(
1

n+ z
+ 1

n− z+1

)
16



If we now recall the result of Lemma 2.10 it follows3 that for z ∈R\Z,

Γ(z)Γ(1− z)= π

sin(πz)
.

2.4 The Zeta function
In this section we study the zeta function. In the introduction we defined the function for

complex z with Re(z)> 1. Since we need the ζ function on the line 1/2+ iR, we need to
analytically extend the function. Apart from that, this section introduces the ξ function —

a product of the zeta function and the gamma function, for which we find a functional
equation. We need the ξ function and its functional equation in order to prove that the

Hardy function maps real numbers to real numbers in the next section.

2.4.1 Continuation of the Zeta function
In the introduction we defined the zeta function for a complex number z with Re(z)> 1 as

ζ(z) =
∞∑

n=1

1
nz .

We want to make sense of ζ(1/2+it) for a real number t and that is why we want to find an
analytic continuation of the zeta function that is defined for a complex number z having
real part equal to 1/2. In the book ’A Course in Arithmetic’ by J.P. Serre [9] we find the
following.

Proposition 2.11. One has

ζ(z) = 1
z−1

+φ(z),

where φ(z) is holomorphic for Re(z)> 0.

In the proof of this Proposition, we will make use of the inequality given in following
Lemma.

Lemma 2.12. Let z be a fixed complex number z with Re(z)> 0 and consider the function

w : [n,n+1]→C, w(t) = 1
nz −

1
tz .

This function satisfies

sup
n≤t≤n+1

|w(t)| = |w(n+1)| ≤ |z|
n−Re(z)+1 . (2.22)

3Note that Lemma 2.10 applies provided that the sum converges. We showed that the gamma function
converges, so the sum on the right-hand side converges as well.

17



Proof. The function w : [n,n+1] → C : t 7→ w(t) as above can be seen as a curve in the
complex plane. It starts at the origin since w(n) = 0. At time t the distance from the
origin is

|w(t)−w(0)| = |w(t)|.
We want to find an upper bound for |w(t)|. The velocity vector at time t is w′(t). The ’real’
velocity is then

|w′(t)| = |z|
tRe(z)+1 .

We have that Re(z)+1> 0 and z is a fixed number. Therefore the velocity is maximal for
t = n (since we have n ≤ t ≤ n+1). So if we want to find an upper bound for the distance
to the origin at time t, we use this maximal velocity without changing direction. In that
case the change in distance is

(t−n)
|z|

nRe(z)+1 .

Since we have 0≤ t−n ≤ 1, the inequality as in (2.22) follows.

Remark. Another method of proving the inequality for n ≤ t ≤ n+1 is showing that∣∣∣∣ 1
nz −

1
tz

∣∣∣∣= ∣∣∣∣∫ t

n

z
τz+1 dτ

∣∣∣∣≤ ∫ t

n

|z|
τRe(z)+1 dτ≤ |z|

nRe(z)+1 .

We now continue by proving the Proposition. This follows the proof as in the book by
Serre.

Proof. (Proposition 2.26) Let z be a complex number such that Re(z)> 1. Then we have∫ ∞

1

1
tz dt =

[
1

1− z
· t1−z

]∞
t=1

= lim
t→∞

1
1− z

(
t1−z −1

) = 1
z−1

.

We rewrite the integral as an infinite sum of integrals.∫ ∞

1

1
tz dz =

∞∑
n=1

∫ n+1

n

1
tz dz.

Using this expression, we rewrite the zeta function.

ζ(z) = 1
z−1

− 1
z−1

+
∞∑

n=1

1
nz

= 1
z−1

+
∞∑

n=1

(
1
nz −

∫ n+1

n

1
tz dt

)
= 1

z−1
+

∞∑
n=1

∫ n+1

n

(
1
nz −

1
tz

)
dt

We indeed have that ζ(z)= (z−1)−1 +φ(z) with

φn(z) =
∫ n+1

n

(
1
nz −

1
tz

)
dt and φ(z) =

∞∑
n=1

φn(z).

Left to show is that φ(z) converges and that it is holomorphic for Re(z) > 0. We see
that every φn(z) is defined for Re(z) > 0 and that these functions are all holomorphic4

4A holomorphic function. is complex differentiable in a neighborhood of every point of its domain.
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Following the proof by Serre, we will show that
∑∞

n=1φn(z) converges normally5 on all
subsets K ⊂C that have the properties

(i) Every z ∈ K has real part Re(z)> 0

(ii) K a compact subset of C.

That is, We want to show that for every such compact subset K ,

∞∑
n=1

sup
z∈K

|φn(z)| =
∞∑

n=1
sup
z∈K

∣∣∣∣∫ n+1

n

(
1
nz −

1
tz

)
dt

∣∣∣∣ < ∞. (2.23)

Note that an upper bound for the integral is given by∣∣∣∣∫ n+1

n

(
1
nz −

1
tz

)
dt

∣∣∣∣ ≤ sup
n≤t≤n+1

∣∣∣∣ 1
nz −

1
tz

∣∣∣∣ (2.24)

In Lemma 2.12 we found a bound for the right-hand side, namely∣∣∣∣ 1
nz −

1
tz

∣∣∣∣≤ |z|
nRe(z)+1 for n ≤ t ≤ n+1.

Now consider an arbitrary subset K ⊂C with the properties as defined above. Combining
(2.23) and (2.24) with the bound from Lemma 2.12 gives

∞∑
n=1

sup
z∈K

|φn(z)| =
∞∑

n=1
sup
z∈K

∣∣∣∣∫ n+1

n

(
1
nz −

1
tz

)
dt

∣∣∣∣ ≤ ∞∑
n=1

sup
z∈K

|z|
nRe(z)+1 . (2.25)

Let us analyze the fraction on the right-hand side. We can find a bound for the fraction
in the following way.

– K is compact, so it is closed and bounded. Therefore, for every z ∈ K we have |z| ≤G
for a fixed real number G.

– The function mapping z 7→ Re(z) is continuous, so it has a minimum value on K .
Denote this minimum by m. Note that we have m > 0 since every z ∈ K has Re(z)>
0.

We therefore have for z ∈ K and n ∈N
|z|

nRe(z)+1 ≤ G
nm+1 and thus sup

z∈K

|z|
nRe(z)+1 ≤ G

nm+1 .

We use this upper bound in equation (2.25) and see that

∞∑
n=1

sup
z∈K

|φn(z)| ≤
∞∑

n=1

G
nm+1 = G

∞∑
n=1

1
nm+1

The series on the right-hand is a so-called p-series defined for a real number p as

∞∑
n=1

1
np .

Such a series is convergent if p > 1. We have m > 0 and thus m+1> 1. It follows that the
sum converges. So

∑∞
n=1 converges normally on the arbitrary chosen subset K ⊂ C. This

finishes the proof.
5Normal convergence implies absolute and uniform convergence.
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2.4.2 Functional equation of the Zeta function
We will now have a look at the functional equation for the zeta function. For this we will
use section 9.3 of the lecture notes by J.H. Evertse [6].

Definition 2.5. Define ξ :C→C as

ξ(z) := 1
2

z(z−1)π−z/2Γ
( z
2

)
ζ(z)

= (z−1)π−z/2Γ
( z
2
+1

)
ζ(z),

where the second line uses the identity z/2Γ (z/2)=Γ(z/2+1) which follows from Theorem
2.5.

Evertse now states a Theorem, immediately followed by a Corollary that gives an implicit
form of the continuation of the zeta function. We will use this continuation to make sense
of the Hardy function.

Theorem 2.13. The function ξ has an analytic continuation to C. For this continuation
we have for z ∈C,

ξ(1− z)= ξ(z).

Proof. The proof of this Theorem is too involved to include in this text. I would like to
refer you to the proof of Theorem 9.7 in the lecture notes by Evertse [6].

Corollary 2.14. (Analytic continuation of the Zeta function)

(i) The function ζ has an analytic continuation to C\{1} with a simple pole with residue
1 at z = 1.

(ii) This analytic continuation of ζ is given by

ζ(1− z) = 21−z ·π−z ·cos
(πz

2

)
·Γ(z) ·ζ(z) for z ∈C\{0,1} (2.26)

Sketch of Proof. (i) We define the analytic continuation of ζ by rewriting ξ.

ζ(z) = ξ(z)πz/2 ·Γ(1
2 z+1

)−1

z−1
.

All terms in this product are analytic on C. Hence ζ is analytic on C\ {1}. Let us inves-
tigate what happens if z = 1. We know Γ has no zeros and also π1/2 6= 0. Apart from that
we see

ξ(1) =
Theorem 5.2 in Evertse’s lecture notes [7] shows that the unique analytic continuation of
ζ has a simple pole with residue 1 at z = 1. That finishes this proof.

Proof. (ii) Now we substitute 1− z into the equation and then we use the continuation of
ξ as stated in Theorem 2.13. For z ∈C\{0,1} we have

ζ(1− z) = ξ(1− z)
1
2 (1− z)(−z)π−(1−z)/2Γ

(1
2 (1− z)

)
= ξ(z)

1
2 z(z−1)π−(1−z)/2Γ

(1
2 (1− z)

)
=

1
2 z(z−1)π−z/2Γ

( z
2

)
1
2 z(z−1)π−(1−z)/2Γ

(1
2 (1− z)

) ·ζ(z).

= F(z)ζ(z)
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Here we have

F(z) = π(1/2)−z · Γ
(1

2 z
)
Γ

(1
2 z+ 1

2

)
Γ

(1
2 − 1

2 z
)
Γ

(1
2 + 1

2 z
)

= π(1/2)−z 21−zpπΓ(z)
π/sin

(
π

(1
2 − 1

2 z
))

= π−z 21−z cos
(
1
2
πz

)
Γ(z),

from which Corollary 2.14 (ii) follows directly.
The second step above is obtained by using Euler’s Reflection Formula (Theorem 2.18)
and the so-called ’duplication formula’ for the Gamma function, which states:

Let z ∈C, such that z 6= 0,−1
2 ,−1,−3

2 ,−2,−5
2 , · · · . Then

p
π ·Γ(2z) = 22z−1Γ(z)Γ

(
z+ 1

2

)
.

This formula is included as Corollary 8.12 in Evertse’s lecture notes [8], in which the
proof can be found.

2.5 Real Function
So far we have been building towards this section. We want to prove that the Hardy

function Z(t) as defined in (2.1) maps real numbers to real numbers. The ξ function that
we just defined will be of importance in proving this. To show the function is indeed real,

we prove that, Z(t)= Z(t) in Theorem 2.16.

2.5.1 Conjugating Z(t)

In Theorem 2.16, we conjugate some of the functions we covered so far. These functions
have the properties as in Lemma 2.15. In proving this Lemma, we will make use of
Definition 2.2 in the form

2isin x = eix − e−ix. (2.27)

Lemma 2.15. Recall ξ from Definition 2.5. Let x > 0 and t be real numbers and z a
complex number. Then the following five things hold.

(i) xz = xz,

(ii) Γ(z)=Γ (z) for z ∈C\Z≤0,

(iii) ζ
(1

2 + it
)= ζ(

1
2 + it

)
= ζ(1

2 − it) for z with Re(z)> 0,

(iv) ξ
(1

2 + it
) = ξ

(
1
2 + it

)
= ξ(1

2 − it).

(v) A(z) := 1
2 z(z−1) is real for z = 1

2 + it.
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Proof. (i) Let us write z = a+ bi for real a and b and rewrite xz as a power of e and
then calculate its conjugate.

xa+bi = e(a+bi) log x

= e(a+bi) log x

= e(a+bi) log x

= xa+bi.

(ii) Let z ∈C. We can write z = (a+1)+bi. Recall that the Gamma function for Re(z)> 0
is given as ∫ ∞

0
xz−1e−xdx.

We first rewrite the integrand of the Gamma function. Using the fact that for z ∈C,
we can write xz = ez log x.

xz−1 e−x = xa+bi e−x

= e(log x)(a+bi) e−x

= ea log x−x ebi(log x).

Now using Euler’s identity (2.2) from Proposition 2.2, we have

ea log x−x ebi(log x) = ea log xe−x (cos(b log x)+ isin(b log x))
= xa e−x (cos(b log x)+ isin(b log x)) . (2.28)

An integral of a complex function over a real domain can be split into a real and an
imaginary part. It therefore has the following property regarding conjugation.∫

R
f (x)dx =

∫
R

a(x)dx+ i
∫
R

b(x)dx

=
∫
R

a(x)dx− i
∫
R

b(x)dx

=
∫
R

a(x)dx− i
∫
R

b(x)dx

=
∫
R

f (x)dx.

With the integrand as in 2.28, we continue. For convenience we denote P := b log x
in the following calculations. First we conjugate, then we divide the term xae−x out.
We make use of the fact that for two complex numbers u and v, we have u ·v = u ·v.

Γ(z) =
∫ ∞

0
(cosP + isinP) xae−x dx

=
∫ ∞

0
(cosP + i ·sinP) xae−x dx

=
∫ ∞

0
(cosP − i ·sinP) xae−x dx

=
∫ ∞

0
(cosP + [isinP −2isinP]) · xae−x dx

=
∫ ∞

0
([cosP + isinP]−2isinP) · xae−x dx.
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Now we recognize both Euler’s identity and the identity from Definition 2.2. We
can now rewrite all terms using powers of e and finish the proof.

Γ(z) =
∫ ∞

0

(
ebi log x − 2i

2i
·
(
ebi log x − e−bi log x

))
· xae−x dx

=
∫ ∞

0

(
xbi − 2i

2i
·
(
xbi − x−bi

))
· xae−x dx

=
∫ ∞

0
x−bixae−x dx

=
∫ ∞

0
xa−bi e−x dx

= Γ (z) .

In Definition 2.4, we extended Γ to z ∈ C\Z<0 as follows. If Re(z) < 0, choose an
integer n such that Re(z)+n > 0 and define

Γ(z)= Γ(z+n)
z(z+1) · · · (z+n−1)

. (2.29)

Conjugating equation 2.29 gives

Γ(z) = Γ(z+1)

z · (z+1) · · · (z+n−1)

= Γ(z+n)

z · (z+1) · · · (z+n−1)

= Γ(z+n)
z · (z+1) · · · (z+n−1)

= Γ(z).

(iii) Recall the analytic continuation of the zeta function as in Proposition 2.26. For a
complex number z with Re(z)> 0,

ζ(z) = 1
z+1

+
∞∑

n=1

∫ n+1

n

(
1
nz −

1
tz

)
dt.

= 1
z+1

+
∞∑

n=1

∫ n+1

n

(
1
nz −

1
tz

)
dt.

= 1
z+1

+
∞∑

n=1

∫ n+1

n

(
1
nz −

1
tz

)
dt.

= 1
z+1

+
∞∑

n=1

∫ n+1

n

(
1
nz

− 1
tz

)
dt.

= ζ(z).

Here we used (i) of this Lemma and the fact that for complex u and w we have
u+w = u+w. Furthermore, we applied conjugation to an integral again as in the
proof of (ii).

(iv) This follows immediately after plugging in z = 1/2+ it into the functional equality
of ξ from Theorem 2.13.

23



(v) If we take z = 1
2 + it, with t real, we have A(z) = −1

8 − t2

2 ∈R.

Theorem 2.16. The Hardy Function as defined in Definition 2.1 satisfies Z(t) ∈ R for all
t ∈R.

Proof. We first rewrite Z using the ξ function from Definition 2.5 and solve it for ζ. Let
z = 1

2 + it and denote A(z)= 1
2 z(z−1). Then

ζ(z) = ξ(z)(1
2 z(z−1)

) ·Γ (z/2) ·π−z/2
= 1

A(z)π−1/4 · ξ
(1

2 + it
)

Γ
(1

4 + it
2

)
π−it/2

,

with A(z)π1/4 a real number. We used that π−z/2 = π−1/4π−it/2. If we substitute this into
Z, some terms divide out.

Z(t) = Γ
(1

4 + it
2

)∣∣Γ(1
4 + it

2

)∣∣ ·π−it/2 ·
(
A(z)π1/4

)−1 · ξ
(1

2 + it
)

Γ
(1

4 + it
2

)
π−it/2

=
(
A(z)π1/4)−1∣∣Γ(1

4 + it
2

)∣∣ ·ξ
(
1
2
+ it

)

Observe that Z(t) = Z(t) if and only if ξ
(1

2 + it
) = ξ

(1
2 + it

)
, which is is indeed the case.

Using Definition 2.5, we have

ξ

(
1
2
+ it

)
= A(z)

π1/4 ·π−it/2 ·Γ
(
1
4
+ it

2

)
·ζ

(
1
2
+ it

)
= A(z)

π1/4 ·π−it/2 ·Γ
(
1
4
+ it

2

)
·ζ

(
1
2
+ it

)
.

Now Lemma 2.15 (i) to (iii) implies that this expression is precisely equal to ξ
(

1
2 + it

)
,

which is equal to ξ
(1

2 + it
)

by (iv) of this Lemma. That shows

Z(t) =
(
A(z)π1/4)−1∣∣Γ(1

4 + it
2

)∣∣ ·ξ
(
1
2
+ it

)
=

(
A(z)π1/4)−1∣∣Γ(1

4 + it
2

)∣∣ ·ξ
(
1
2
+ it

)
= Z(t)

so Z(t) is a real number.
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2.6 Calculating zeros
Now that we know Z is a continuous real function, we can use software to calculate its

zeros. Every sign change of Z locates a zero of the zeta function.

Using Maple, we can plot the function. A plot for 0≤ t ≤ 100 is included in Figure 1. The
code can be found in the appendix.

Figure 1: A plot of Z(t)

To give another illustration, we will use the fsolve6 function of Maple to produce a table
containing the zeroes of Z. The results are included in Table 1.

range of t zero range of t zero range of t zero
(10,20) 14.13472514 (51,55) 52.97032148 (78,80) 79.33737502
(20,23) 21.02203964 (55,58) 56.44624770 (80,83) 82.91038085
(23,30) 25.01085758 (58,60) 59.34704400 (83,85) 84.73549298
(30,32) 30.42487613 (60,64) 60.83177852 (85,88) 87.4252746
(32,35) 32.93506159 (64,66) 65.11254405 (88,90) 88.80911121
(35,40) 37.58617816 (66,68) 67.07981053 (90,93) 92.49189927
(40,42) 40.91871901 (68,70) 69.54640171 (93,95) 94.65134404
(42,45) 43.32707328 (70,75) 72.06715767 (95,97) 95.87063423
(45,49) 48.00515088 (75,76) 75.70469070 (97,100) 98.83119422
(49,51) 49.77383248 (76,78) 77.14484007

Table 1: Zeroes of Z(t) in the interval (0,100) calculated using Maple

6More details can be found in the appendix.
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3 EXTENTION TO OTHER L-SERIES

3.1 Dirichlet L-series
The ζ function is a special case of the so-called Dirichlet L-series. In fact, the ζ is the

Dirichlet L-series for a constant function. The aim of this section is to find zeroes of two
other L-series using a similar method to that of Chapter 2.

Definition 3.1. [10] A Dirichlet character modulo k is a function χk : N→ C satisfying
the following four conditions for all positive integers m,n:

1. χk(1) = 1

2. χk(n) = χk(n+k)

3. χk(m)χk(n) = χk(mn)

4. χk(n)= 0 if k and n have a common divisor greater than one.

Lemma 3.1. Let k be a positive integer. Then χk has the following properties.

(i) For all positive integers a and n we have χk(a+kn)= χk(a).

(ii) The map Z/kZ→C that sends (a mod k) 7→ χk(a) is well-defined for a ≥ 0.

(iii) If a ∈ (Z/kZ)×, then χk(a) ∈C×.

Proof. (i) Let a,k,n be strictly positive integers. Then a+ kn = a+ (k+·· ·+ k), with k
appearing n times. Applying Definition 3.1 part 2 n times shows

χk(a+kn) = χk(a+ (k+·· ·+k︸ ︷︷ ︸
n−times

)) = χk(a+ (k+·· ·+k︸ ︷︷ ︸
n−1−times

)) = ·· · = χk(a).

(ii) We have (a mod k) 7→ χk(a). Now consider another positive integer b such that
b ≡ a mod k. Then there is an integer n such that b = a+ kn. By (i) of this Lemma
it follows that

(b mod k) 7→ χk(b) = χk(a+kn) = χk(a).

So χk is well-defined.

(iii) Let a ∈ (Z/kZ)×. Then there exists an integer m such that (a mod k)m = 1. By using
(1) and (3) of Definition 3.1 we obtain

χk(a)m = χk
(
am) = χk(1) = 1.

So χk(a) ∈C×.
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For a positive integer k, we can construct a new map (that we also call χk), mapping from
(Z/kZ)× →C× in such a way that it is a Dirichlet character modulo k. Namely if it sends
(1 mod k) 7→ 1 and (a mod k) 7→ a, it satisfies conditions 2 and 3 of Definition 3.1. Note
that for all (a mod k) ∈ (Z/kZ)× we have gcd(a,k) = 1. By (4) of Definition 3.1, χk(a) 6= 0.
The map is well-defined by part (ii) of the previous Lemma. In fact, χk is a homomor-
phism of groups since for a,b ∈ (Z/kZ)×, we have χk(a)χk(b)= χk(ab).

To finish the construction of a Dirichlet character, we use this homomorphism to create
an image N→C in the following way.

χk : N→C

: n 7→
{
χk(n) if n mod k ∈ (Z/kZ)×

0 if n mod k ∉ (Z/kZ)×

We will now look at two Dirichlet characters of this type. Namely χ3 and χ4. They are
illustrated in the following two examples.

Example 3.2. For k = 3, the group (Z/3Z)× = {1,2} has two elements. We can therefore
write down χk as an explicit mapping.

χ3 : (Z/3Z)× → {±1}
2 7→ −1
1 7→ 1

Note that it is indeed a homomorphism; χ3(1)χ3(2) = χ3(2) and χ3(2)χ3(2) = χ3(4). As a
map from N to C we have

χ3 : n 7→


1 if n ≡ 1 mod 3
−1 if n ≡ 2 mod 3
0 otherwise

Example 3.3. If we now let k = 4, we see (Z/4Z)× = {1,3}. We can do the same as in the
previous example.

χ4 : (Z/4Z)× → {±1}
3 7→ −1
1 7→ 1

This is also a homomorphism since χ4(1)χ4(3) = χ4(3) and χ4(3)χ4(3) = χ4(9) and finally,
χ4(1)χ3(1)= χ3(1). As a map from N to C we have

χ4 : n 7→


1 if n ≡ 1 mod 4
−1 if n ≡ 3 mod 4
0 otherwise

The Dirichlet characters play an important role in the so-called Dirichlet L-series.

Definition 3.2. A Dirichlet L-series is a series of the form

Lk
(
z,χ

) = ∞∑
n=1

χk(n)
nz (3.1)

where z is a complex number with Re(z) > 0 and χk(n) : N→ C is a Dirichlet character
modulo k. [11]
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Example 3.4. The Riemann ζ-function we discussed in the previous chapter is a Dirichlet
L-series using the constant function χ1(n)= 1.

Example 3.5. We can use Examples 3.2 an 3.3 and obtain the Dirichlet L-series for k = 3
and for k = 4.

L
(
z,χ3

) =
∞∑

n=1

χ3(n)
nz =

∞∑
3 -n

(−1)n−1

nz

L
(
z,χ4

) =
∞∑

n=1

χ4(n)
nz =

∞∑
n odd

(−1)(n−1)/2

nz

Theorem 3.6. For Re(z)> 1, the functions L
(
z,χ3

)
and L

(
z,χ4

)
converge absolutely.

Proof. First consider L
(
z,χ4

)
for Re(z)> 1. Taking absolute values, we see∣∣L (

z,χ4
)∣∣ = ∞∑

n odd

∣∣∣∣ (−1)(n−1)/2

nz

∣∣∣∣ = ∞∑
n odd

1
nRe(z)

where we used |nz| = nRe(z) from Proposition 2.3. Let us define an = 1/nz +1/(n+1)z. We
can write

|ζ(z)| =
∞∑

n odd
an.

Since Re(z)> 1, we have for all natural numbers n > 0,

0 ≤
∣∣∣∣ 1
nz

∣∣∣∣ = 1
nRe(z) ≤ |an|

=
∣∣∣∣ 1
nz +

1
(n+1)z

∣∣∣∣
≤

∣∣∣∣ 1
nz

∣∣∣∣+ ∣∣∣∣ 1
(n+1)z

∣∣∣∣
= 1

nRe(z) +
1

(n+1)Re(z) .

Since ζ(z) converges absolutely, it follows that
∑∞

n odd |1/nz| converges by the Direct Com-
parison Test. That shows L

(
z,χ4

)
converges absolutely.

Now consider L
(
z,χ3

)
for Re(z)> 1. We have∣∣L (

z,χ3
)∣∣ = ∞∑

3 -n

∣∣∣∣ (−1)n−1

nz

∣∣∣∣ = ∞∑
3 -n

1
nRe(z) = |ζ(z)|−

∞∑
3 |n

1
nRe(z) . (3.2)

We will show that the latter sum7 converges. so that the right-hand side converges abso-
lutely. Since Re(z)> 1, we can write

∞∑
3|n

1
nRe(z) =

∞∑
m=1

1
3mRe(z)

= 1
3Re(z)

∞∑
m=1

1
mRe(z)

= 1
3Re(z) |ζ(z)|.

Since ζ(z) converges absolutely, we see that
∑∞

3 |n
1
nz converges absolutely as well. From

equation (3.2) we see that L
(
z,χ3

)
converges absolutely.

7Note that here summation is taken over values of n that do have 3 as a divisor.
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3.2 Functional equations of L-series
Just as with the zeta function, we will study implicit functional equations for L(z,χ3)
and L(z,χ4) that we call ξ. These equations will be used to construct ’Hardy functions’

(i.e. functions analogous to the Hardy function) in the next section.

Definition 3.3. [12] For a Dirichlet character χk the Gauss sum τ(χ) is defined by

τ
(
χk

) = k∑
m=1

χk(m)e2πmi/k

Definition 3.4. A Dirichlet character χk is called even if χk(k−1)= 1 and odd if χk(k−1)=
−1.

Theorem 3.7. (Functional equation of L(z,χk)) Consider a positive integer k, and an odd
Dirichlet character χk. If for a complex number z having Re(z)> 1,

ξ(z,χk) = π−z/2kz/2Γ

(
z+1

2

)
L(z,χk) (3.3)

then ξ(z,χk) is an entire function and

ξ(z,χk)= wχkξ(1− z,χk) (3.4)

where wχk = τ
(
χk

)
/ik1/2 and χk is the complex conjugate of χk.

Proof. The derivation of the ξ(z,χk) is included as Exercise 5.4.5 in the book by M. Ram
Murty [12]. In the solutions section the derivation can be found on page 310. The q used
in that proof is k = 3,4 in our case.

Let us elaborate on some terms that appear in equations (3.3) and (3.4). We are interested
in the Dirichlet L-series for k = 3 and k = 4. So let us calculate wχ3 and wχ4 . Note that
the Gauss sum τ(χk) from Definition 3.3 appears in the product.
In the calculation we will use that

e2πi/3 = −1/2+1/2
p

3 · i
e4πi/3 = −1/2−1/2

p
3 · i

e2πi/4 = = i
e6πi/4 = −i.

Using Theorem 3.7 we have

wχ3 = 1

i
p

3
τ
(
χ3

)
= 1

i
p

3

3∑
m=1

χ3(m)e2πmi/3

= 1

i
p

3

(
e2πi/3 − e4πi/3

)
= 1

i
p

3
i
p

3

= 1.
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and in the same way,

wχ4 = 1
2i
τ
(
χ4

)
= 1

2i

4∑
m=1

χ4(m)e2πmi/4

= 1
2i

(
e2πi/4 − e6πi/4

)
= 1

2i
2i

= 1.

Now we almost have the functional equations for the L-series for k = 3 and k = 4. We saw
in equation (3.4) the complex conjugate χk. We have the following.

Lemma 3.8. For k = 3,4, we have χk = χk : N → C.

Proof. For a natural number k we can display the map χk in two steps as following:

χk : N
χk−→ C

conj.−−−→ C,

such that a natural number n maps to χk(n) and then to its conjugate χk(n) using the
conjugation map. We know explicitly what the images of χ3 and χ4 onto C are from
Examples 3.2 and 3.3. Namely for k = 3,4 we have χk(N) = {0,1,−1}. All elements in the
image are real and thus invariant under the conjugation map. Hence χk = χk.

In conclusion, we have, using (3.3) and (3.4).

ξ(z,χ3) = π−z/23z/2Γ

(
z+1

2

)
L(z,χ3) (3.5)

such that ξ(z,χ3)= ξ(1− z,χ3). And

ξ(z,χ4) = π−z/24z/2Γ

(
z+1

2

)
L(z,χ4) (3.6)

such that ξ(z,χ4)= ξ(1− z,χ4).

3.3 Constructing ’Hardy Functions’ for L-series
Now that we have found equations for ξ(z,χ3) and ξ(z,χ4) and their functional equations,
we can try to construct functions Z(t,χk) :R→R for L(z,χk) that have the same properties

as the Hardy function from Definition 2.1 has. That is, finding a zero of Z(t,χk) is
equivalent to finding a zero of L(z,χk). We make use of the generalized Riemann

hypothesis, which postulates that non-trivial zeros of L-series have real part equal to 1/2.

Let us first consider Z(t,χ3). We want Z(t,χ3) to be a function mapping real numbers to
real numbers. We start off with ξ(z,χ3) as in equation (3.5) and bring L(z,χ3) to the left-
hand side. The generalized Riemann hypothesis postulates that if L(z,χk) is a Dirichlet
L-series with χk a character modulo k, a zero z of L(z,χk) which is not z = m for some
negative integer m, has real part equal to 1/2. This is what we will use. Analogous to
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the Hardy function, we insert the complex value z = 1/2+ it for a real variable t into the
L(z,χ3).

L(z,χ3) = ξ(1/2+ it,χ3)
π−z/23z/2Γ

( z+1
2

)
L(1/2+ it,χ3) = ξ(1/2+ it,χ3)

Γ(3/4+ it/2)
·
(π
3

)it/2 (π
3

)1/4

Now we modify the equality such that we obtain a real number on the right-hand side. If
we first multiply by (3/π)it/2 and then by Γ(3/4+ it/2)/|Γ(3/4+ it/2)| (analogue to the way
the Hardy function has been obtained), terms will be divided out such that we have the
following equality:

Γ(3/4+ it/2)
|Γ(3/4+ it/2)|

(
3
π

)it/2
·L(1/2+ it,χ3) = ξ(1/2+ it,χ3) ·

(
π
3

)1/4

|Γ(3/4+ it/2)|︸ ︷︷ ︸
∈R

(3.7)

We make two observations about this equality.

(i) Suppose we find a value for t such that the left-hand side of this equation is zero.
We have shown before that Γ has no zeroes. Furthermore, (3/π)it/2 cannot be zero.
The conclusion is then that L(1/2+ it,χ3)= 0.

(ii) We see that the equality is real if and only if ξ(1/2+ it,χ3) is real. We prove that in
Lemma 3.10.

Before we can prove Lemma 3.10, we will quickly recall Lemma 2.15 (i) and (ii) from
the previous section. We saw that for complex z and real positive number x we have
Γ(z)=Γ(z) and xz = xz. We also need the following

Lemma 3.9. For k = 3,4, z a complex number and χk a Dirichlet character modulo k we
have L(z,χk)= L(z,χk)= L(z,χk).

Proof. The proof is similar to that of Lemma 2.15 (iii). Take a complex number z and
k = 3,4. We have

L(z,χk) =
∞∑

n=1

χk(n)
nz

=
∞∑

n=1

(
χk(n)
ez logn

)
=

∞∑
n=1

χk(n)

ez logn

=
∞∑

n=1

χk(n)

ez logn

=
∞∑

n=1

χk(n)
nz

= L(z,χk) (3.8)

Using Lemma 3.8, we see L(z,χk)= L(z,χk), which finishes the proof.
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Lemma 3.10. Let t be a real number, k = 3,4 and consider ξ as in (3.3). Then ξ(1/2+ it,χk)
is a real number.

Proof. We will show that ξ(1/2+ it,χk) = ξ(1/2 + it,χk). We use equation (3.3) and use
Lemma 2.15 and 3.9 to obtain the following.

ξ(1/2+ it,χk) = π−(1/2+it)/2 ·k(1/2+it)/2 ·Γ
(
(1/2+ it)+1

2

)
·L(1/2+ it,χk)

= π−(1/2+it)/2 ·k(1/2+it)/2 ·Γ
(
(1/2+ it)+1

2

)
·L(1/2+ it,χk)

= π−(1/2+it)/2 ·k(1/2+it)/2 ·Γ
(

(1/2+ it)+1
2

)
·L(1/2+ it,χk)

= π−(1/2−it)/2 ·k(1/2−it)/2 ·Γ
(
(1/2− it)+1

2

)
·L(1/2− it,χk)

= ξ(1/2− it,χk)

By the functional equality of ξ it follows that ξ(1/2+ it,χk) = ξ(1/2− it,χk) = ξ(1/2+ it,χk).
This shows that ξ(1/2+ it,χk) is a real number for t ∈R.

Now we know that ξ(1/2+ it,χk) is a real number, we recall equation (3.7):

Γ(3/4+ it/2)
|Γ(3/4+ it/2)|

(
3
π

)it/2
·L(1/2+ it,χ3) = ξ(1/2+ it,χ3) ·

(
π
3

)1/4

|Γ(3/4+ it/2)|︸ ︷︷ ︸
∈R

We now see that the right-hand side is a product of real numbers and hence real. This
finishes the construction of Z(t,χ3). We define it as follows.

Definition 3.5. Define the function Z(t,χ3) : R→R as

Z(t,χ3) = Γ(3/4+ it/2)
|Γ(3/4+ it/2)|

(
3
π

)it/2
·L(1/2+ it,χ3)

where L(1/2+ it,χ3) is the Dirichlet L-function for χ3.

If we would have started our reasoning with L(z,χ4), this would have yielded an analo-
gous result which is the following.

Definition 3.6. Define the function Z(t,χ4) : R→R as

Z(t,χ4) = Γ(3/4+ it/2)
|Γ(3/4+ it/2)|

(
4
π

)it/2
·L(1/2+ it,χ4)

where L(1/2+ it,χ3) is the Dirichlet L-function for χ3.
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3.4 Calculating zeros
Now that we know Z(t,χ3) and Z(t,χ4), we can just as with the Hardy function, use

software to calculate zeros.

Python supports both the complex Gamma function and Dirichlet L-series. The code
that was used to calculate their function values can be found in the appendix. Plots for
0 ≤ t ≤ 100 for Z(t,χ3) and Z(t,χ4) are included in Figures 2 and 3. The function as

Figure 2: A plot of Z(t,χ3)

Figure 3: A plot of Z(t,χ4)

defined in Python can also be used to approximate the zeroes. In the interval t ∈ (0,100)
we find that Z(t,χ4) has a root at the following values for t. To calculate these values, the
optimize.brentq-function in Python was used.

6.02094890469759
10.243770304167027
12.988098012312422
16.34260710458749

18.291993196123535
21.450611343983805
23.27837652045953
25.728756425088605

28.359634343025327
32.59218652711716
34.19995750921315
36.14288045830314
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38.51192314171866
40.322674066690546
41.80708462000456
44.6178910586623
45.59958439679156
47.74156228093914
49.72312932378259
51.68609345287053
52.768820767804726
55.26754358469923
56.934374055202426
58.11670711067392

60.42171394900784
62.00863228576777
63.71464111878544
64.976170573096
67.63692086354608
70.18587990880211
72.15548497438188
73.7676355214859
75.1431216474331
76.6963032034302
78.80999831432092
80.21013123836664

81.21395162688314
83.66665601447087
84.73174036378119
86.57766016839027
87.6297181195879
89.80113161669584
91.34970381469758
92.23749991045423
94.1666195859601
96.13601116178056
96.96174157941749
98.75530041575453
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4 CONCLUSION AND DISCUSSION
For the Riemann zeta function, and the two Dirichlet L-series L(z,χ3) and L(z,χ4) we
found a way to detect their zeros. The generalized Riemann hypothesis postulates that
zeros z of these three functions that are not of the form z = m for a negative integer m,
have real part equal to 1/2. Therefore we looked for zeros of this form. The functions we
found to detect such zeros are the following.

– Zeros of the Riemann zeta function ζ can be detected using the Hardy function, that
is defined as Z(t) : R→R:

Z(t) = π−it/2 · Γ (1/4+ it/2)
|Γ (1/4+ it/2)| ·ζ (1/2+ it) .

It has the property that Z : t 7→ 0 if and only if ζ : 1/2+ it 7→ 0.

– Zeros of the L-series L(z,χ3) can be detected using the function Z(t,χ3) : R→R:

Z(t,χ3) = Γ(3/4+ it/2)
|Γ(3/4+ it/2)|

(
3
π

)it/2
·L(1/2+ it,χ3).

It has the property that Z(t,χ3) : t 7→ 0 if and only if L(z,χ3) : 1/2+ it 7→ 0.

– Zeros of the L-series L(z,χ4) can be detected using the function Z(t,χ4) : R→R:

Z(t,χ4) = Γ(3/4+ it/2)
|Γ(3/4+ it/2)|

(
4
π

)it/2
·L(1/2+ it,χ4).

It has the property that Z(t,χ3) : t 7→ 0 if and only if L(z,χ3) : 1/2+ it 7→ 0.

We found analytic continuation of the zeta function to make sense of complex numbers
having real part equal to 1/2. However, no such continuation of the both L functions is
included. Finding such a continuation would complete the section about L-series. Also, it
might be interesting to study how to calculate the zeros of L-functions with character χk
for an integer k. In particular, given the similarities of the Hardy functions, there may
be a way to write a computer program that calculates the zeros of these functions in a
given interval for a given natural number k.
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5 APPENDIX

5.1 Code in Maple
The function values of the Hardy function were calculated using Maple using the code

Z:=t->Pi^(-I*t/2)*GAMMA(1/4+I*t/2)/abs(GAMMA(1/4+I*t/2))*Zeta(1/2+I*t)
plot(Z(t),t=0..100)

To find zeros of the Hardy function, we also use Maple. To do so, the command fsolve,
wants us to define a range for t in which a zero of Z can be found. For example, from the
plot we see that the first zero t1 ∈ (10,20). We give the command

t1:=fsolve(Z,10..20)

and Maple returns the value of t1 = 14.13472514. The results are included in Table 1 of
section 2.

5.2 Code in Python
For the function values of the L-series, we used Python. In the Python code we make
use of the dirichlet-function to generate L(z,χk). The code uses two input arguments; a
complex number z and the list [χk(0),χk(1), · · · ,χk(k−1)], consisting of the function values
of the Dirichlet character χk. In the case k = 3,4 we use

L(z,χ3) = dirichlet(z,[0,1,-1])
L(z,χ4) = dirichlet(z,[0,1,0,-1]).

This function could be used to plot the Zeta function as well In that case

ζ(z) = dirichlet(z,[1])

The Python code for plotting Z(t,χ3) is displayed below. Note that in defining Z3 there
are two splits in the code line to fit the page.

from mpmath import *
import math
import matplotlib.pyplot as plt
import numpy as np

def Z3(t):
return np.real((3/math.pi)**(t/2*j)*
dirichlet(1/2+t*j,[0,1,-1])*
gamma(3/4+t/2*j)/abs(gamma(3/4+t/2*j)))

t = np.arange(0.0, 100.0, 1)

y3=[0 for i in range(500)]
for i in range(500):
y3[i]=Z3(i/5)

t=np.arange(0.0, 100.0, 0.2)
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plt.plot(t, y3, ’k’)
plt.savefig(’Z3plot.pdf’)

A similar Python code plots Z(t,χ4). Note that in defining Z4 there are two splits in the
code line to fit the page.

\begin{verbatim}
from mpmath import *
import math
import matplotlib.pyplot as plt
import numpy as np

def Z4(t):
return np.real((4/math.pi)**(t/2*j)*
dirichlet(1/2+t*j,[0,1,0,-1])*
gamma(3/4+t/2*j)/abs(gamma(3/4+t/2*j)))

t = np.arange(0.0, 100.0, 1)

y4=[0 for i in range(500)]
for i in range(500):
y4[i]=Z4(i/5)

t=np.arange(0.0, 100.0, 0.2)

plt.plot(t, y4, ’k’)
plt.savefig(’Z4plot.pdf’)
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