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Abstract: In this thesis the results of a cellular automaton simulation of majority voting are
reported. A bi-dimensional cellular automaton of 100 x 100 cells is used to simulate the effects of
the majority vote rule with initial majority proportions p in the domain of {0.5, 0.505, ..., 0.995}.
Three topologies are compared, Von Neumann neighbourhood and Moore neighbourhoods with
radius 1 and 2. The results show that an increasing size of the initial majority population, results
in a proportionally larger majority in the final state for initial majority proportions up to 0.56
with the radius 2 Moore neighbourhood, 0.62 with the radius 1 Moore neighbourhood and 0.70
with the Von Neumann neighbourhood. Both Moore neighbourhoods exhibit a stable majority
convergence, always unanimous with initial majorities from p = 0.6 with radius 2 and p = 0.82
with radius 1. The Von Neumann topology only achieves a 100% consistent convergence at around
p = 0.98. The Moore topology Cellular Automata correspond to the Class 1 Cellular Automaton
converging to a stable pattern, while the Von Neumann majority vote cellular automaton is Class

2 converging to an Oscillating pattern with initial majorities of up to 71%.

1 Introduction

Cellular Automata are formal computational mod-
els of artificial life structured as closed worlds of
discrete space and time and locally defined interac-
tions. These were initially envisioned as potential
carriers of self-reproducing behaviour. Their very
first inception is frequently attributed to John von
Neumann and his axiomatic definition presented in
(Von Neumann, 1951). He describes the starting
point for Cellular Automaton as black boxes that
‘[...] react to certain unambiguously defined stimuli,
by certain unambiguously defined responses.” , and
which can be modelled as part of larger organisms
formed of such components. Broadly he describes a
(1) scalable computational model represented in a
(2) n-dimensional discrete space (3) where agents in
(4) a set of possible states (5) evolve by an update
function (6) over discrete time steps.

Arguably an earlier expression of the same propo-
sition is shown in Alan Turing’s paper (Turing,
1990) originally published in 1951. As mentioned in
(Copeland, 2004), Turing phrases a similar construc-
tion to explain morphogenesis in nature. Using a
mathematical definition, he proves that naturally
observable spatial patterns can arise from the dif-
fusion of chemicals reacting with each other. A
bio-chemical expression of patterns behaving like a
Fibonacci series.

The next largely relevant advancement in the
field was Wolfram’s publication describing the Ele-
mentary Cellular Automata as a utensil to model

complex dynamic systems (Wolfram, 1983): “Any
physical system satisfying differential equations
may be approximated as a cellular automaton by in-
troducing finite differences and discrete variables.”

Plenty of research has been done since then in the
field of Cellular Automata. A historical overview of
which can be found in (Sarkar, 2000). Some real life
application examples are: the simulation of forest
fire spreading (Karafyllidis and Thanailakis, 1997),
road traffic (Maerivoet and De Moor, 2005) and ap-
plications of socio-physics to the financial markets
(Vilela et al., 2019). All of these use the described
artificial life simulation to model microscopically
observed behaviour at a macroscopic scale. The
aforementioned features, make Cellular Automaton
a suitable model to simulate the majority vote.

Not only Cellular Automaton but also compa-
rable implementations of dynamic modelling have
been used to simulate the effects of several as-
pects of the majority voting problem. Examples
extracted from the literature are: a Probabilistic
Cellular Automata (Stowinski and MacKay, 2015),
a dynamic small world network (Stone and McKay,
2015) and (Campos et al., 2003), or an implemen-
tation with different agents such as in (Vilela and
Moreira, 2009). Most of the research in this field
includes a noise parameter in the transition rule
that adds stochasticity to the models.

The majority vote problem addresses the con-
vergence of a population of agents to a unanimous
state which is the most frequent in the initial con-
figuration (at ¢ = 0). There should be at least 2



mutually exclusive states, and a transition rule by
which each population unit adopts the state of the
majority of agents to which it is connected. Some-
times this is described as a majority classification
problem, for example when the application is used
to solve a complex computing challenge as in (An-
dre et al., 1996) and (Moore, 1997). In computing
science the simulations are used to search for the
best performing transition rule in achieving the
highest rate of correct classifications. In such set-
ting, the classification is correct when the system
achieves the unanimous state that had the largest
initial population.

A contemporary real-life application of the ma-
jority voting problem exists in political science.
Some electoral systems use a form of majority vote
to form their representative organs, this is still
in practice for example in The United States of
America and United Kingdom. The population is
distributed in districts, each of which will select
one candidate by majority (not unanimity), where
each voter casts one vote to one candidate. This
electoral setting, also called First-Past-the-Post,
has been under scrutiny because of an observed
phenomenon labelled gerrymandering.

Gerrymandering is a process by which the dis-
tricts of an election are deliberately mapped in such
a way that the partitions benefit one of the elec-
toral parties (also called Partisan Gerrymandering).
The technique looks at how the electoral bias is
distributed locally, and attempts to maximise the
number of districts where candidates of one spe-
cific party will achieve a majority, see for example
(Shotts, 2001). In this case, the microscale major-
ity proportion is misrepresented in the macroscale
outcome by manipulating the underlying topology.

The local partitions that are created then as
the outcome of this mapping become the smallest
unit of democratic representation. Underlying, the
majority dynamics within each of those groups will
respond to human opinion formation and decision
making. From social sciences, cognitive psychology
and behavioural sciences, some indicators can be
extracted to look for behavioural markers of the
majority dynamics.

Independently of the social interaction itself, it
seems that humans are more prone to express an
opinion that is shared with a majority. In (Koriat
et al., 2016) researchers show that people would
share the opinion they adhere to when it is aligned
with a perceived majority. The larger the size of the
majority, the more confidently an affiliate opinion
would be communicated. In the absence of a clear
majority, however, one would prefer to compare
himself to the group whose opinions or skills aligns
the most (Festinger, 1954).

This thesis reports on the outcomes of a cellular
automaton simulation of the majority vote. The

majority vote is implemented in line with the above
mentioned principles: at each time step, all cells
will adopt the state of the majority of its neigh-
bours. In the presence of a tie, the current state
of the cell is maintained. Three different neigh-
bourhood topologies are tested, the Von Neumann
neighbourhood and Moore neighbourhoods with
radius 1 and 2.

The purpose of the cellular automaton simulation
is to investigate the effects of the initial proportion
of the majority in the final majority proportion in
a fully deterministic setup.

The investigation reports on the convergence
curve of the Cellular Automata as a function of the
initial majority ratio. Furthermore, it studies the
conditions under which the initial majority always
takes over the complete grid and adopts the initial
majority as a unanimous state.

Finally this thesis also reports on what possible
structures remain in the end state. What perma-
nent patterns appear that do not transform (bound-
aries, islands and oscillators) and in which initial
set-ups these take place.

Section 2 explains the details of the cellular au-
tomaton model and the parameters used in the
simulations. Section 3 shows the outcomes, in-
cluding the convergence curve and snapshots of
the encountered patterns. Finally, section 4 cir-
cles back to the Cellular Automata theory and
the socio-economic and cognitive aspects of the
majority vote introduced in this section.

2 Methods

In this section all the parameters of the simula-
tion and the cellular automaton implementation
are explained. A formal definition of the cellular
automaton is given in the next section together
with the description of the three neighbourhoods
tested.

The simulation is an adaptation of an open
source python software. The original code can
be found in https://gitlab.com/DamKoVosh/
cellular_automaton. The software is published
under Apache License 2.0 and therefore is free to
use. The original code has been modified, and a
new main file was created to implement the ma-
jority vote rule and run the simulation with the
different parameters (neighbourhood and initial
bias). The cellular automaton in this package can
be run with a single process or multiple processes.
Only the single process settings have been used in
this research.


https://gitlab.com/DamKoVosh/cellular_automaton
https://gitlab.com/DamKoVosh/cellular_automaton

2.1 Cellular automaton: formal def-
inition
The formal definition of a cellular automaton is
popularly defined as in (Burguillo, 2018) and (De-
lorme, 1999):
A d-dimensional cellular automaton A, is a 4-
tuple as described in Expression 2.1:

A= (Z4%8,N,f) (2.1)

where:

o 74 is the finite or infinite d-dimensional lattice,
e S is a finite set of cell states for A,

e N is a finite cell subset of Z¢, N = { ¢; | ¢;
= (z1j,...,xq5) , j € {1,...,d} }, and denotes
the neighbourhood of A4,

o f : (S5, N)— S isthelocal transition function,
or local rule, of A.

Circling back to the initial definitions, the neigh-
bourhood N denotes the finite set of unambiguously
defined stimuli to which each cell (black box) reacts
and the transition function f defines the response.
The cells are simultaneously updated by means of
the local transition function at each clock tick. It
is common practice that the neighbourhood subset
does not include the cell itself, neither does so in
this case. However, in the transition rule, when
there is no majority amongst neighbours, the cell’s
self state is used to break the symmetry.

2.2 Model

In this simulation a bi-dimensional grid or lattice
72 is used with dimension length of 100. In practice
this is implemented as a two dimensional array of
cells ¢ with two indexes. The array is periodically
bounded where the edge cells of each side have as
neighbours the edge cells of the opposite side, as
mapped onto a torus.

Each cell in the lattice Z% has a list of neighbours
referenced by relative coordinates. The states of
these neighbours are then used as input for the
transition function to recalculate each cell’s new
state. At every point in time, each cell can be at
one of 2 states in S = {0, 1}.

In the model, three different neighbourhood set-
tings of neighbours are tested. In neither case does
the self state form part of the neighbourhood. The
three topologies are:

e Moore neighbourhood with radius 1: consist-
ing of the 8 adjacent neighbours of cell ¢ as
shown in Table 2.1.
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Table 2.1: Moore neighbourhood with radius 1
of cell C consisting of cells X

e Moore neighbourhood with radius 2: also
called extended Moore neighbourhood, con-
sisting of the 8 adjacent neighbours of ¢ as
shown in table 2.1, plus the 16 adjacent neigh-
bours to that perimeter, as show in 2.2
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Table 2.2: Moore neighbourhood of cell C con-
sisting of cells X

e Von Neumann neighbourhood: consisting of
the 4 neighbouring cells of ¢ at a Manhattan
distance of 1 as shown in table 2.3.
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Table 2.3: Von Neumann neighbourhood of cell
C consisting of cells X and excluding cells E

In each update the whole lattice is updated at
once. At each time step, the entire grid is first
calculated and then updated. In practice, each cell
has a current state and a future state. Once all the
cell’s new states have been defined, the new states
become the current states.

The transition rule f together with the initial
configuration are used to model the majority vote
as defined in the following subsection.

2.3 Majority Vote

In line with what is explained in the introduction,
at each time step the cells will adopt the vote of
the majority of their neighbours. When the initial
configuration of the cellular automaton is drawn,
each of the cells is at one of two states. This is
similar to a voting process where each voter must
choose one of two candidates. Each state (or party)
has then a proportion of the initial vote. Two
elements are then used as varying parameters of
the majority vote in the simulation:



e A majority proportion of the population p in
the initial configuration.

e The transition rule f : (S, N) = S

In the initial configuration the ratio of each of
the state populations is defined. To draw the pro-
portions a probability is used as a parameter. Each
cell will be initiated in the majority state S; with a
probability equivalent to the desired initial major-
ity proportion p. The simulation is run 200 times
per each value of p in the domain {0.5, 0.505, ...,
0.995} in steps of 0.005. One correction has been
made to label the majority always as the initially
larger group. If the initial majority is larger for
the cells with Sy (can happen when p ~ 0.5), this
group is taken as the initial majority.

The transition function f (S, N) = S is
applied to each cell in the cellular automaton si-
multaneously. At each time step the new states are
calculated for each cell and then the whole cellular
automaton is updated at once. The update rule
has been implemented as shown in algorithm 2.1
for all neighbourhoods:

Algorithm 2.1 Calculate A; — A;4;

Input: A;
Output: A,
for each ¢ in Z¢ do
a=0
d=0
for each n in W) do
if S, ==1 then

a=a+1
else
d=d+1
end if
end for
if a« == d then
Set+1 <= Se
else if a > d then
Sc,tJrl <1
else Sq 111 <=0
end if
end for

The model implements an efficiency check: cells
are set as inactive when neither itself nor any of
its neighbours has been updated in the previous
time step. The opposite is true when this changes,
setting the cell back to active. The transition rule
is only applied on active cells, leaving stable areas
of the grid out of the recalculation.

After a few runs, it was observed that the final
stable state was achieved in at most 40 iterations.
In the case of the Moore neighbourhoods the cellu-
lar automaton would arrive to a final stable state.
The Von Neumann neighbourhood set up, however,
shows cyclic two phase oscillating patterns in the

stable state. For safety, the simulation continues
for 100 iterations, after which, the world is redrawn
to a new initial configuration.

2.4 Feature Summary and Analysis

One simulation run is considered as one initial con-
figuration drawn, to which the transition rule is ap-
plied for 100 iterations. The majority proportions
are tested for every proportion p in the domain
{0.5, 0.505, ..., 0.995} (100 values). The simula-
tions are completely symmetric, so the results of
the initial majorities are equally applicable for ini-
tial minority proportions of 1-p. Each proportion
is then run for 200 simulation. The whole process
is repeated for each of the topology settings with
Moore and Von Neumann neighbourhoods. The
model also allows to vary the size of the lattice Z¢,
but this has not been tested in this research.

The random initialiser used for the parameter
p has a constraint: the proportion is implemented
as a probability and the values are approximate.
Although it can be considered that by running
each simulation 200 times the differences in the
initial majority are evened out, in the case of the
0.5 proportion, there is a small limitation. The
majority is 99% of the times one or the other, which
means that the effects of strict 50% are difficult to
explore.

A summary of the constants of the simulation
can be found in Table 2.4. In Table 2.5 the different
tested parameters are displayed.

Definition Value

Number of 200
simulations

performed

with the

same

parameters

Number of 100
discrete time

steps

Dimension length of 100
size each of the

dimensions

Name

Runs

Iterations (t)

Table 2.4: Constants implemented in the simu-
lation

The results of the simulation runs are then aver-
aged for each setting. This means that the results
of each run have an equal weight in the totals dis-
played per majority proportion and per topology
setting.

In the next section the results are shown in a
graph as a mapping of the average proportion of



Name Definition Values Total
Settings
Majority initial {0.5, 100
Propor- popula- 0.505, ...,
tion tion bias  0.995}
of the
majority
Topologies Shape of Moore 3
the radius 1,
neigh- Moore
bour- radius 2,
hood Von Neu-
mann

Table 2.5: Parameters and values tested

the initial majority population against the average
proportion of the final majority for both topologies.
When the average final proportion is 1, the initial
majority always takes over.

3 Results

Two aspects of the simulation are analysed in this
section: (1) key findings and (2) remaining patterns
observed in the end state.

3.1 Key Findings

The results show that an increase in the initial
majority proportion yields a larger increase in the
final majority proportion for initial majorities from
50% till 55.5% with the Moore neighbourhood with
radius 2, from 50% up to 62% with the Moore
neighbourhood with radius 1 and up to 67% with
Von Neumann neighbourhoods.

After these inflection points, the results show a
decreasing marginal conversion rate, such that an
increase in the initial majority proportion yields a
smaller increase in the final majority proportion.
These results are summarised in Figure 3.1 below.

Intuitively, because the self state is used to break
the tie when there is no majority in the neighbour-
hood, a higher proportion of active cells in the
initial state should increase the marginal conver-
gence of the initial majority. The fact that the
self state decides in the event of a tie between
neighbouring cells, directly increases the chances
of the majority taking over. As a consequence, a
higher number of ties will be broken in favour of
the majority group, and the initial majority am-
plified. However, the topology puts limits to the
amplification effect of the initial majority propor-
tion, since minority groups also cluster and create
stable islands of resistance, or oscillators. These

Simulation results per initial majority
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Figure 3.1: The correlation of initial majority
proportion and final majority proportion over-
laid with the tangent lines where the curve
shows a 100% of majority takeover for each of
the topologies. The dots on each of the curves
indicate the start of a negative marginal final
majority per increase in initial majority.

results show the limit to that amplification power
of the initial bias.

The results also show that the islands and oscil-
lators do not always remain. In some scenarios the
initial majority always, 100% of the times takes over
the full cellular automaton. In the implementation
with the radius 2 Moore neighbourhood this effect
is observed when the initial majority is at least
60%, and with radius 1 Moore neighbourhood with
82% of the initial population. In the case of the
Von Neumann neighbourhood, this only happens
at 98%. Figure 3.1 shows the tangent lines over
the convergence curves where the initial majority
proportion always (without exception) converges
to 100% unanimity.

Figures 3.2, 3.3 and 3.4 show in more detail the
number of runs in which (1) there is at least one
cell in a minority state (non-unanimous end state),
and (2) there are no remaining cells in the mi-
nority end state (unanimous end state) per initial
majority proportion. As mentioned above, with a
Moore neighbourhood of radius 2, Figure 3.2 shows
a constant unanimous state with an initial majority
proportion of exactly 0.60. The Moore neighbour-
hood of radius 1 shows 0 non-unanimous end states
with an initial majority proportion starting at 0.82
as seen in Figure 3.3. Figure 3.4 shows the results
with a Von Neumann neighbourhood. In this case,
consistent 100% unanimous outcomes appear with
an initial majority proportion of 0.98.
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Figure 3.2: Histogram showing the count of
unanimous and non-unanimous end states per
initial majority proportion with radius 2 Moore

neighbourhood
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Figure 3.3: Histogram showing the count of
unanimous and non-unanimous end states per

initial majority proportion with a Moore neigh-
bourhood
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Figure 3.4: Histogram showing the count of
unanimous and non-unanimous end states per
initial majority proportion with a Von Neu-
mann neighbourhood

3.2 Patterns, oscillators and bound-
aries

The different settings of the simulation yield a
variety of landscapes of state clusters. When the
proportions of the initial populations are close to

each other, more islands and sizzling boundaries
appear in both topologies. The higher the initial
bias, the smaller and more sparse the minority
clusters will be.

At first sight, it hits the eye that:

e The boundaries of Moore neighbourhood im-
plementations show smoother lines and defined
clusters or islands as seen in Figure 3.5. Only
one oscillator has been found at = 0.5 initial
majority proportion 1 out of 10 times with
radius 1 Moore neighbourhood. In Figure 3.6
shows the final state with the radius 2 Moore
neighbourhood where the boundaries between
clusters are the smoothest amongst the 3 cases.

e The boundaries of Von Neumann neighbour-
hood final states are a lot rougher and they
frequently include oscillators see Figure 3.7

Figure 3.5: Final stable state with radius 1
Moore neighbourhood and an initial majority
of 50%

Figure 3.6: Final stable state with radius 2
Moore neighbourhood and an initial majority
of 50%

When the initial majority proportion is some-
where between 0.5 and 0.7, concrete patterns are
seen, different per topology. With the radius 1
Moore neighbourhood settings, these patterns are
(almost) always stable. Figure 3.8 shows a recur-
rent resistant pattern occurring with a Moore neigh-
bourhood of radius 1 with initial majority up to
73%. With the radius 2 Moore neighbourhood only
one symmetric form has been observed with initial
majority proportion of 0.53 as shown in Figure 3.9.



Figure 3.7: Final state with Von Neumann
neighbourhood and an initial majority of 50%

Final state patterns are considerably different
with a Von Neumann neighbourhood, which fre-
quently yields a bi-phasic oscillating final state with
initial majorities of up to 71%.

(a) 4x4 resistant cross-pattern

(b) 4x5 resistant cross-pattern

Figure 3.8: Resistant cross patterns observed
with radius 1 Moore neighbourhood with initial
proportion up to 0.73

Figure 3.9: Symmetric island pattern observed
with radius 2 Moore neighbourhood and 0.53
initial majority proportion.

The remaining oscillation patterns observed are
also smaller when the initial majority is higher.
Figure 3.10 shows a vertical blinker of 3x7, that
appears at initial majority proportions of 0.5. Fig-
ure 3.11 shows the blinkers that appear when the
initial majority goes up to 60%, these are of sizes
3x3and3 x 2.

Although with low frequency, the simulation with
Moore neighbourhood of radius 1 with an initial
majority population around 50% also shows one
oscillator. The pattern is a two cycle blinker, alter-
nating a vertical by a horizontal 3-cell strip. Figure
3.12, shows a snapshot of the superposition of the
two phases.

(a) Vertical blinker in (b) Vertical blinker in
phase 1 phase 2

Figure 3.10: 3x7 vertical oscillation observed
with Von Neumann neighbourhood at 0.5 initial
proportion

3x3(b) Horizontal 3x2
blinker

(a) Squared
blinker

Figure 3.11: Small oscillation patterns ob-
served with Von Neumann neighbourhood with
initial majority proportion of 0.6

Figure 3.12: Oscillating cross pattern observed
with a Moore neighbourhood and an initial ma-
jority of 50%

Finally, when we increase the initial population
of the majority up to 70% , 80% and 90% with the
Von Neumann neighbourhood, there is still some
resistance. A stable 2 x 2 block keeps coming
up with decreasing density at increasing initial
majority proportions.

According to the classification of Cellular Au-
tomata described by Wolfram in (Wolfram, 1983),
a class one cellular automaton characteristically
has a stable final state and a class two automaton
ends in an oscillating cycle. The majority vote
Moore neighbourhood cellular automaton fits in
the former class and the Von Neumann version in
the latter.

4 Conclusions and Discussion

The cellular automaton simulations of the majority
vote report some conditions under which a major-
ity can become a unanimous state. Furthermore,
it also shows a threshold under which the initial
majority is amplified more with a small initial bias
than with a larger one. These effects are more pro-



nounced with the Moore neighbourhood of radius
2, showing bigger effects when each cell has a larger
set of connections.

These statements align with previous research
such as findings in (Mossel et al., 2014) and
(Stowiriski and MacKay, 2015). These researches
however, implement far more complex rules and
worlds than those used in the model reported here.
The advantage of it being that this Artificial Life
simulation simplifies the micro-scale behaviour as
much as possible and takes advantage of the power
of the cellular automaton to observe the results in
an emerging complex system.

Furthermore, these findings are highly compati-
ble with existing theories of human thinking and
decision making linked to majority dynamics at dif-
ferent levels. Opinions that affiliate to a perceived
majority are endorsed faster, independently of the
social interactions (Koriat et al., 2016). Notwith-
standing what the total majority really is, the ma-
jority that is available to the individual is the one
that will play a role in the cognitive process (Ler-
man et al., 2016). This is also reflected as the
islands and clusters that are formed in the final
state of the majority vote cellular automata, where
the local majority is the less popular state globally.

In line with the aforementioned, it follows from
dynamical psychology that the decision mecha-
nisms of oneself are in continuous interaction with
the decision making processes of those in one’s net-
work (or in this case neighbourhood). As a result,
consolidation, clustering and continuing diversity
will arise as described in (Kenrick et al., 2003).

Finally, frequency also plays a role in the cog-
nitive process of opinion formation. Recurrent
exposure to information reinforces the perception
of validity as found in (Hasher et al., 1977). Which
could be an interpretation of the effect of itera-
tively exposing the individual (or the cell) to the
majority vote, which consolidates the polarisation
of the initial bias.

In terms of finding an optimum state, the major-
ity vote rule shows vulnerability in the presence of
local minima. This phenomenon has been labelled
Madness of the Crowds, when a group aligns on an
answer which seems the most popular, although
erroneous (Lorenz et al., 2011) by removing the
variance or diversity in the individual answers as a
result of social interaction. However, when the cor-
rect answer is the one that strengthens, the same
phenomena has a positive impact and can approach
expert performance (Mavrodiev et al., 2013). Then,
the same behaviour receives the name of Wisdom
of the Crowds.

This is a particularly delicate topic when it is put
in the light of democratic elections. One research
used a cellular automaton to study the effects of
electoral surveys with a majority vote model, see

(Alves et al., 2002). Alves et al. argue that this
could indicate that by repeatedly exposing vot-
ers to the electoral surveys, majorities strengthen,
and in extreme cases democratic systems would be
vulnerable to totalitarianism.

The risk becomes more pronounced when the
method to elect representatives is First-Past-the-
Post, since in these cases minorities could end up
having no representation at all in the democratic
organs. Furthermore, if tools like partisan gerry-
mandering are available to one of the candidate
parties, it becomes fairly easy to target those clus-
ters that are of a differing opinion, or split them
in different districts, in order to manufacture a
favourable bias ratio per district. This is specially
relevant taking in consideration that even in net-
work based social organisations local connections
seem to have a larger impact (Bond et al., 2012).

Further thorough research would be needed to
validate the extent to which the simulation with
cellular automata is applicable to this challenge.
Larger investigations in the precise amplification
of the smallest discrete increases in bias would be
interesting to see how sensitive this majority vote
systems could be in the large scale.

Finally, the model implemented in this thesis
is strictly deterministic, and still the results show
alignment with cognitive processes and social dy-
namics. It would be interesting to explore other
implementations with agents, behaviours or rules
where some systemic method of avoidance is in-
cluded with a deterministic implementation (Berto
and Tagliabue, 2017). The great majority of the lit-
erature found while conducting this research (if not
all) uses complex stochastic variables to model such
effects. However, what other methods are avail-
able to simulate similar behaviours without statisti-
cally manipulating the parameters? A comparison
between those dynamic representations and alter-
native deterministic models would further demon-
strate the potential of artificial life as a computing
tool.
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