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Chapter 1

Introduction

Obstacle avoidance is a classical problem in robotics and many approaches have been
proposed (Choset2005PrinciplesLK). These methods are usually limited to semi
static environments (LaValle and Kuffner Jr, 2000). Online replanning or elastic-band
methods deform the path locally and can therefore be applied for dynamic environ-
ments. However, they lose global convergence and have to be combined together with
global path planning algorithms to create hybrid algorithms. Hybrid algorithms can
switch between global path planning and local deformation (Vannoy and Xiao, 2008).
In order to alleviate computational cost, recent work use customized circuitry on chips
for faster global sampling and evaluation of all feasible paths (Murray et al., 2016).

Formation obstacle avoidance is important when for instance, a group of robots
are carrying an object together and they need to cover a certain distance in an area
crowded with obstacles. A formation which optimizes the use of sensors could be used
to transport a larger object on top of the formation.

Formation, group motion control, and obstacle avoidance are mostly treated as
separate issues in literature. When separate controllers are used jointly, conflict oc-
curs. For example, the formation is distorted when an agent encounters an obstacle.
This kind of behaviour, corresponding to animal flocking, may be useful when the
formation requirement is quite loose, but the robots need to stay at a minimum safe
distance.

In order to achieve group formation, motion control, and obstacle avoidance, a
common coordinate frame is required e.g. a GPS or a gods-view camera above the
formation. The issue of common approaches is tackled by researching methods to
achieve simultaneous group formation, motion control and obstacle avoidance. By
studying and implementing these methods we show that these issues are addressed
appropriately. Moreover, the practical implementation of the presented algorithms in
this thesis is computationally inexpensive, making the proposed algorithms attractive
for autonomous robots with relatively affordable micro-controllers.

1.1 System Description

The full system is build up out of several elements. The simplified system architecture
is illustrated in Figure 1.1. The control parts of the system are coloured blue for clarity.
In addition to that, the state estimate feedback flow is represented as a dashed line
for readability. Each element of the schematic is briefly explained below.

1.1.1 Perception and Localization

The objective of the perception and localization task is to provide the planning and
formation control modules with a representation of the robot’s environments and an
accurate estimate of the robot’s locations in the world. A predefined map, and onboard
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sensors on the robots are used to construct a certain map, called an occupancy grid
map, that gives a representation of the driveable and nondriveable areas. Dynamic
obstacles are also detected and placed on the map. To determine an accurate position
and orientation estimate of the robots, we use a standard 2D localization technique
by Fox et al. (1999). The occupancy grid and the robot’s positions and orientations
provide the world representation in which motion planning and formation control are
performed.

Global Map

Perception and localization

Motion planning Formation control

Path-following control State estimation

Robot vehicle

Desired goal state
Desired formationWorld representation

Motion plan

Control signals

Sensor information

Robot states

State Estimate

Figure 1.1: A schematic illustration of the proposed system archi-
tecture

1.1.2 State Estimation

To control the formation, accurate state estimations of the robots have to be obtained.
We do this by cross-referencing laser scan data against IMU sensor data, and odometry
information from the wheel encoders. The distinct features of the global map act as
markers for the laser scanner in order to determine position and orientation of the
robot. (Ljungqvist et al., 2019)

1.1.3 Motion Planning and Formation Control

Motion planning for omni-wheeled vehicles is relatively simple, since the vehicle kine-
matics are not complex and the state space is relatively small. The factor making
path planning difficult is the non-convexity of the environment, which can cause the
robots to get stuck. Therefore a global path planner is most suited. For the sake of
comparing two methods, we implement, separately, both a local obstacle avoidance
planner as well as a global motion planner.
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1.1.4 Path-Following Control

The path-following control takes the motion plan and converts it into control signals
for the mobile robots. It is crucial that the path-following control follows the states
of the motion plan, otherwise collision with surrounding obstacles can occur. In order
to make sure that the vehicle follows the motion plan, we implement state feedback
control. The proposed path-following control has been proven to stabilize the path-
following error as well as the formation error.

1.2 Problem Statement

Based on the literature overview above, where we have identified that there is currently
a lack of distributed control methods that are capable to simultaneously perform for-
mation control, avoid obstacles dynamically, and reach the target position through
the use of a single low-level control, we can state the research problem that will be
investigated in this thesis as follows:

How to control a group of mobile robots based on local information such that they
(1) reach the desired formation, (2) avoid obstacle collision, and (3) reach the target
pose.

1.3 Research Goal

Based on the research background, we can formulate the following objective in this
research:

"Design a control system using a distributed avoidance-formation control algorithm
and apply it to a Nexus Robot formation equipped with a Lidar sensor"

The focus of this report is the implementation of simultaneous obstacle avoidance and
formation control. Also, being part of the Nexus group, interest lies in applying the
algorithm to the physical Nexus robots.

1.4 Research Objective

The objective of this project is to deliver a solution to the problem of not having an
optimal method for the nexus robots to avoid any moving obstacle. The final step of
the project would be applying the algorithm to a Nexus robot formation. By applying
it to a real robot we can verify our simulated results and test if the methods are robust.

1.5 Research Questions

The main research question is:

"How can we implement a control law comprised of several parts, each responsible for
a different task, such that the closed-loop system converges to the desired formation,
avoids dynamic obstacles, and the whole group converges to the target position?"

Resulting from the main research question, five sub-questions are defined in order to
answer the main question.

• What is needed to model the system?
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• Which algorithms are preferred for the task of simultaneous formation control
and obstacle avoidance?

• How can a control system be designed to ensure stability?

• How well does the system perform under ideal conditions (e.g. numerical simu-
lation)?

• How well does the system perform under various conditions (e.g. physics simu-
lation or real-life testing)?

1.6 Contribution of the Thesis

This research project was motivated by the paper of Chan et al. (2018). In this paper,
we made a contribution to the research in the field of systems and control. The paper
by Chan et al. (2018) displays the control laws that we implemented, and it solves
the problem of obstacle avoidance and rigid formation control quite beautifully. We
added the visualization and thereby concretised the control law. The control law is
describing a process in 2D space, and the 3D visualization is very pleasing to see. We
have found something satisfying in seeing what the control law looks like and that
could only have come about from the function of getting something on the screen to
describe the control law in the original paper by Nelson et al. The implementation in
ROS and Gazebo is available as open-source software 1 and can be used for any robot
formation using laserscan range data.

1.7 Thesis Outline

This thesis is composed of several chapters. Below is a list of the chapters with an
outline of what they contribute to the thesis.

Chapter 2: Background Information
This chapter reviews the current state of the art on approaches that could aid

in achieving the goal of this thesis. These approaches address the problem of path
planning, obstacle avoidance, and formation control.

Chapter 3: Proposed Solution
The main scope of this thesis is to build a system that fulfills the requirements set

in Chapter 1. We will validate our approach in the context of a challenging task. This
investigation takes the form of sending the formation of nexus robots on a specific path
towards a goal location, along which it has to avoid certain dynamic obstacles. The
system should instantly modify the the its motions to avoid colliding with multiple
obstacles.

Chapter 4: Simulation and Experiment Design
This chapter details the simulation setup. The first section describes the Nexus

robots, sensors, hardware descriptions, type of simulations, and the simulation pa-
rameters.

Chapter 5: Results
This chapter contains the results of the simulations and experiments, many of

which were performed several times. A contextual analysis is done. We also comment
on the robustness of the system against environment variety and initial conditions.

Chapter 6: Discussion
1Available at https://github.com/pytrik

https://github.com/pytrik1/Formationsim4
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This chapter analyses the results of the experiments and explains what they imply.
This chapter also discusses limitations of the current approach.

Chapter 7: Conclusion
This chapter restates the aims of this thesis and contains to which conclusions we

have come.
Chapter8: Future Work
This chapter contains suggestions of things we would like to see in the future with

respect to the current project.
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Chapter 2

Background Information

This section contains background information on motion planning, obstacle avoidance,
and formation control. The goal of robot motion planning is to find collision-free
trajectories that allow the robot formation to reach the goal location as fast as possible.
The problem of motion planning can be stated as follows: Given the start pose, desired
goal pose, geometric description of the robot, geometric description of the world,
find a path that moves the robot smoothly from point a to point b while avoiding
collision with any obstacle. Even though the problem of motion planning is defined
in the regular world, it lives in another space: the configuration space. A robot
configuration x is a specification of the positions of all robot points relative to a fixed
coordinate system. A robot configuration is usually expressed as a vector of positions
and orientations. An example of a robot living in the 2D plane, representation of
its state could be: x = (x, y, θ). In 3D space, x would be of the form (x,y,z,α,β,γ).
A robot with multiple joints such as a robotic arm would have a state consisting of
multiple sub-states: x = (x1, x2, .., xn) The configuration space is the space of all
possible configurations. The topology of this space is usually not that of a Cartesian
space. The C-space is described as a topological manifold. The C-space is obtained
by sliding the robot along the edge of the obstacle regions while blowing them up by
the robot radius. The larger the robot, the smaller the C-space is going to be.

Below, an example of the C-space for a robot, with different radii.

Figure 2.1: Example of the C-space for a circular robot. The C-
space is obtained by sliding the robot along the edge of the obstacle

regions.

The continuous environment needs to be discretized for path planning. There are
two general approaches to discretize C-spaces. The fist approach is combinatorial
planning, the second is sampling-based planning. Combinatorial planning methods
produce graphs, or road maps, where each vertex is a configuration in Cfree and each
edge is a collision free path through Cfree (Burgard et al., 2011).
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2.1 Sampling-based Planning

In sampling-based planning we leave the idea of explicitly characterizing the free C-
space. The way we explore the C-space is by basically shining a light around us in
the form of a collision detection algorithm, that probes the C-space to find robot
configurations which lie in the free C-space. We will take a look at dynamic window
approach (DWA) and the rapidly exploring random trees approach (RRT).

2.1.1 Dynamic Window Approach

The dynamic window approach (DWA), also know as model predictive control (MPC)
is an advanced control method used to control a process while satisfying a set of
constraints and a scan of the robot’s environment. What we want is to find a collision-
free path, which brings the robot to the goal in a safe and fast manner. Written below
is a description of how the algorithm works.

1. The algorithm takes a discrete sampling in the robot’s control space.

2. For each sampled velocity, a prediction is made by forward simulation from the
robot’s current state to what would be the state if the sampled velocity were
applied for a short amount of time.

3. Score every trajectory resulting from the forward simulations of each sampled
velocity, using a cost function that contains characteristics such as proximity
to obstacles, proximity to the goal, proximity to the global path, and speed.
Discard any trajectories that collide with obstacles.

4. Pick the trajectory resulting in the lowest cost, and send the associated velocity
command to the mobile robot base.

5. Repeat until goal is reached.

We assume the robot takes motion command in the the form (v, ω). The question
is, which sequence of (v, ω)’s bring us to the goal, are collision free and reachable under
the current vehicle constraints? DWA has a certain velocity search space. Within this
space is the actual velocity, and around it the obstacle free area Va, the dynamic
window, containing the speeds reachable in one time frame Vd, and all the possible
speed of the robot Vs: Space = Vs ∩ Va ∩ Vd Problems of the DWA are overshoot
when a robot drives through are corridor and has to enter a doorway, the robot
does not slow down soon enough and has the make a question mark turn to enter
the doorway successfully. Moreover, local minima might prevent the robot to reach
the goal altogether., but this can be overcome using a local minima-free navigation
function NF1 (Barraquand and Latombe, 1991). The upsides of the DWA are that it
has low processing power requirements, and it is successfully used in many real-world
scenarios.

2.1.2 Rapidly-exploring Random Tree

RRT is a sampling based algorithm used for path planning, where a tree of paths is
built by sampling possible future states of the robots and connecting connecting the
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new states to the tree. The pseudocode for the RRT algorithm is shown in Algorithm 1
Algorithm 1: GENERATE_RRT(xinit,K,∆t)

1 T.init(xinit);
2 for k=1 to K do
3 xrand ← RANDOM_STATE();
4 xnear ← NEAREST_NEIGHBOR(xrand, T );
5 u← SELECT_INPUT(xrand, xnear);
6 xnew ← NEW_STATE(xnear, u,∆t);
7 T.add_vertex(xnew);
8 T.add_edge(xnear, xnew, u);
9 end

10 return T

The function names in the algorithm are fairly self-explanatory. The variable x
denotes the state, u denotes the control sequence, and the tree is denoted by T . In
normal language, the algorithm is basically:

• Create a random point in space.

• Find the nearest node in the current tree to the random point.

• Verify that when we take one step size in the direction of the random point,
there will be no collisions.

• If no collisions and all constraints (e.g. maximum angular acceleration) are
satisfied, attach the new point to the tree.

• repeat until distance between a node in the tree and the goal state is within the
specified margin of error.

RRT* is also a sampling based technique first proposed by Karaman and Frazzoli
(2011). Its anytime, incremental, asymptotically complete and optimal. The path
can continue to be improved in real time. The longer it computes, the better it
becomes.

To conclude, sampling-based planners are more efficient but offer weak guaran-
tees. They are probabilistically complete. Moreover, they are widely used. However,
complex C-spaces and problems with high-dimensionality are still computationally
hard.

2.2 The Bug Algorithms

We start at one of the simplest path finding algorithms, with the simplest name.
There exist many types of bug algorithms. The simplest is Bug0, which moves to the
goal location until an object is detected. It then travels around the object either left
or right, continuously storing the location closest to the goal. Once it has travelled
all the way around, it will have a point stored which is the closest to the goal. It
will then go around the obstacle again until it has reached the point, from which it
the leaves in a straight line towards the goal. This algorithm is obviously extremely
inefficient, which is why there exist improved bug type algorithms, such as the bug2
algorithm.
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2.3 Vector Field Histogram

The vector field histogram algorithm, described first in Borenstein and Koren (1991)
overcomes the issues of sensor noise and misreadings by creating a histogram of mul-
tiple previous sensor readings. The algorithm permits the detection of unknown ob-
stacles and avoids collisions while simultaneously steering the mobile robot toward
the target. The VFH algorithm uses a two-dimensional Cartesian histogram grid as a
world model. This model is continuously updated using range sensor data on-board
the robotic vehicle. Figure 2.2 shows the robot observing two obstacles. The corre-
sponding histogram is shown below. The x-axis represents the angles at which sensor
readings can be performed. The y-axis represents the probability that there is an
obstacle in a certain direction. The probabilities are calculated by creating a local
occupancy grid map of the environment around the robot. The polar histogram is
used to identify all gaps large enough for the robot to fit through. Using a minimal
cost function, each passage is evaluated. The cost depends on the alignment of the
robot current path with the goal.

Figure 2.2: The polar histogram used in VHF algorithm.

The VFH method is based on the following principles:

• A two-dimensional Cartesian histogram grid is continuously updated in real-time
with range data sampled by the on-board range sensors.

• The histogram is converted to a one-dimensional polar histogram, constructed
around the current position of the robot. This will allow a spatial interpretation
of the robot’s instantaneous environment.

• Areas with probabilities below a set threshold value are designated as ’candidate
valleys’. The candidate valley closest to the target direction is selected for
further processing.

• The center of the selected candidate valley is determined and selected as the
direction the robot should turn. The steering of the robot is then actuated so
the robots heading corresponds to the desired direction.

• The speed is reduced when obstacles are encountered head-on.

The real time performance of the VFH can be gauged by looking at the sam-
pling time T for the low-level controller, which is the rate at which steer and speed
commands are issued. The following steps occur during one sampling time T:

1. Obtain lidar information from the sensor controller.
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2. Obtain sonar information from the sensor controller.

3. Update the histogram grid.

4. Create the polar histogram.

5. Determine the free sector and steering direction.

6. calculate the speed command.

7. Communicate with the low-level motion controller (send speed and steer com-
mands and receive position update).

2.4 Edge-Detection

Before the introduction of the VFH algorithm a popular obstacle avoidance method
was based on edge-detection. A sensor is used to determine the position of the vertical
edges of the obstacle and then steer the robot around either one of the detected edges.
The line connecting two visible edges is considered to represent of the boundaries of
the obstacle. This method was used in some previous work in our lab. A disadvantage
of current implementations is that it has to stop moving in order to gather information
and calculate the next course of action. This disadvantage is only limited by computa-
tion power, so the stopping is not an inherent limitation of the algorithm. A drawback
for edge-detection approaches is the sensitivity to sensor accuracy. Shortcomings in
this regard are (1) poor directionality, limiting the accuracy in determining the spa-
tial position of an edge to 10-50cm, depending on the distance to the obstacle and
the angle between the obstacle surface and the axis of the soundwave emitted by the
ultrasonic sensor. (2) Frequent misreading, caused by ultrasonic noise from external
sources or stray reflections from neighboring sensors. Misreadings can not always be
filtered out and can cause false edges to be detected. (3) Specular reflections occur
when the angle between the wavefront and the normal to a smooth surface is too
large. When this happens the surface reflects the soundwaves away from the sensor
and the obstacle is not detected or only partially detected and seen as smaller than it
is in reality. Any of these three drawbacks can cause the algorithm to detect edges at
wrong locations, resulting in wrong paths to be taken (Borenstein and Koren, 1991).

2.5 Potential Field

The potential field algorithm, as described in Khatib (1986) and Borenstein and Koren
(1988), assumes that the robot is attracted by the goal and repulsed by obstacles. This
means that obstacles and the goal exert forces onto the robot. The goal applies an
attractive force and the obstacles apply a repulsive force. The sum of the forces
subsequently determines the heading of the direction and speed to travel. It is a
simple and elegant method, which is why it has a certain popularity. They can also be
implemented quickly and provide good results without the need of many refinements.
Research by Thorpe (source) introduces an approach that combines global and local
path planning. Koren and Borenstein, of the University of Michigan have tested the
potential field methods on real robots and have gained much insight in the strengths
and weaknesses of this method. They have tested the algorithm before 1991, and back
then computing power was limited, which gives reason to think that some problems
are able to be overcome by our current controllers, however they claim the potential
field method has inherent problems, and therefore not related to computing power.



12 Chapter 2. Background Information

The goal of their publication is to find possible remedies and to limit over-optimism
with regard to the simplicity and elegance of the potential field method. Well known
problems of this method are: trap situations due to local minima. If there is a
U shaped obstacle between the robot and the goal, the robot is stuck in a dead-
end. There are heuristic approaches to remedy this problem, however this solution is
highly likely to result in sub-optimal paths. A better solution would be to abandon the
heuristic recovery approach and pursue the method which uses an integrated global
path planner. This way, the local path planner can monitor the path and when a
trap situation is detected, the global path planner can be invoked to plan a new path
based on all available information.

Figure 2.3: Under potential field based control the robot would
not pass through densely spaced obstacles, the resultant force vector
points away from the gap between the obstacles (Koren and Boren-

stein, 1991).

Figure 2.4: Illustration of the potential field algorithm (Susnea et
al., 2009)

2.6 Gaps in Motion Planning Research

For many problems good solutions exist, however, the robot motion planning problem
is not fully solved yet. There exist no good solutions to jointly plan the path under
local constraints that overcome the decoupling of global and local planning.

2.7 Tools

Here we present an overview of the tools required to develop the control system.

2.7.1 Dynamical System

Dynamical systems theory is an area of mathematics that attempts to describe the
behaviour of physical and artificial systems. A dynamical system is a system that
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changes over time. Therefore it can be used to predict a systems behaviour, which
allows correction of the system before a failure occurs. A continuous nonlinear dy-
namical system can be represented by a set of nonlinear differential equations that are
expressed in terms of time t ∈ R+, a d-dimensional vector of state variables ξ ∈ Rd,
and an m-dimensional vector of input variables u ∈ Rm:

2.7.2 PID Control

There are several types of control that deal with finding control laws for a dynamical
system, including optimal control, adaptive and robust controls, inverse dynamics con-
trol and variants of Proportional-Integral-Derivative (PID) control. A PID controller
has the form:

τ(t) = Kpe(t) +Kd
d

dt
e(t) +Ki

∫ t

0
e(τ)dτ (2.1)

where e(t) is the error between a reference trajectory and the actual trajectory, i.e.
e(t) = pr(t)− p(t). The error is converted into a command by the controller. Kp,Ki,
and Kd are gains to adjust the control behavior. The proportional gain scales the cur-
rent error, such that as the error decreases, the output of the controller also decreases.
The integral gain Ki accounts for removing the residual error by adding the cumula-
tive value of the error to the control. When the error converges to zero, the integral
term ceases to grow. For the derivative term it is the rate of change of the error that
determines its magnitude. The faster the error changes, the larger it becomes.

PID Tuning

For small, low torque motors without any gearing, there are several approaches to
PID tuning, however we will attempt a trial by error approach listed below based on
Table 1 in Li et al. (2006).

1. Set all gains to zero.

2. Increase the proportional gain until the response to disturbance is a steady
oscillation.

3. Increase the derivative gain until the oscillations go away in order to make the
system critically damped 1.

4. repeat steps 2 and 3 until increasing the D gain does not stop the oscillations.
item Set both gains to the last stable values.

5. Lastly, increase the integral gain until it provides a desired setpoint.

The disturbance we use is performance of a task, for example moving from start-
point to endpoint, or disturbing the formation by nudging a robot out of place. If the
oscillation are growing larger and larger, the proportional gain needs to be reduced.
Another note is that if the derivative gain is set too high, chatter can occur, where
the system starts vibrating at higher frequency than the normal oscillations. In such
case, reduce the derivative gain term until the chatter stops.

1Critically damped meaning that the damping coefficient c is equal to two times the mass m,
multiplied with the natural frequency ωn of the system, resulting in a damping ratio of 1.0. The
system will not overshoot nor make oscillations when reaching the settling point.
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2.7.3 Robot Navigation and Mapping

Localization is a well-known challenge in robotics. The sensors that can be used to
localize our robot is the lidar and the wheel encoders, which relies on the robot not
slipping. We can then use a map of our environment in combination with lidar data
and data from the wheel encoders to estimate the position and orientation. The wheel
encoders measure the number of rotations of each wheel and thereby change in pose
2 is determined. For this thesis we assume the map to be empty, and therefore lidar
cannot aid in the determination of the pose. Another reason as to why the lidar
cannot aid in mapping is because it is used for formation control, causing data to
be missing or invalid in at least a quarter of the scan range of the lidar (for a square
formation). For the localization we use a GPS sensor, for indoor GPS-like localization.
In a real world application, we would use an ultrasound-based indoor GPS system by
MarvelMind , which has proved to work with similar applications Rosolia et al. (2017).

2.7.4 Routh-Hurwitz Stability

The Routh Hurwitz stability criterion is a necessary and sufficient condition for the
stability of a linear time invariant control system. The Routh test is an algorithm
proposed by Eward John Routh in 1876 to determine whether all the roots of the
characteristic polynomial of a linear system have negative real parts (Routh, 1877).
The roots λ with negative real parts represent solutions of the system that are bounded
eλt and therefore stable, since as time approaches infinity, the exponent term will be
zero. For second and third order polynomials it is relatively simple to determine .
When roots of higher order systems are difficult to obtain a tabular method can be
used to determine stability. This table is called a Routh array. We will not go into
detail on the method of deriving such array, since our system will not be of higher
order.

2.8 Software

Several pieces of software listed in the next subsections are needed for developing the
control system.

2.8.1 Robotic Operating System

One of the requirements is a piece of software which can act as the middle-man between
the operating system and the robots. Our choice is an open-source operating system,
named ROS (Robotic Operating System). Its goal is to support code reuse in robotic
research and development, which is also why we are going to use it. It provides easy
testing and it is already implemented in Python and C++.

2.8.2 Gazebo

Robot simulation is essential for every robotics engineer. A well-designed simulator
makes it possible to rapidly test algorithms, design robots, perform regression testing,
and train AI system using realistic scenarios. Gazebo offers the ability to accurately

2In computer vision and robotics, a typical task is to identify specific objects in an image and
determine each object’s position and orientation. The combination of position and orientation is
referred to as the pose of an object Shapiro and Stockman (2001).
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and efficiently simulate populations of robots in complex indoor and outdoor environ-
ments. All in all, Gazebo provides a robust physics engine, high-quality graphics, and
convenient programmatic and graphical interfaces.

2.8.3 GMapping

The Gmapping package provides laser-based simultaneous localization and mapping
(SLAM), as a ROS node called slam_gmapping (Gmapping). Using slam_gmapping,
we can create a 2D occupancy grid map, like a building floorplan, from laser and pose
data collected by a mobile robot. To make our map we use one mobile robot from
the formation, with one laser range-finder. The robot provides odometry data and is
the laser provides range data. Each incoming scan message is transformed into the
odometry frame.

Figure 2.5: Map generated by the slam_gmapping topic.

2.8.4 Robot Localization

Robot localization is a state estimation tool in ROS. The tool is an implementation
of a nonlinear state estimator for robots moving in three dimensional space. The
localization node, called ekf_localization_node uses an extended Kalman filter (Wan
and van der Merwe, 2006). In the extended Kalman filter, the state transition and
observation models do not need to be linear functions of the state, but may instead
be nonlinear The tool allows for fusion of an arbitrary number of sensors, such as
odometry, an imu, gps, an even multiple sensors of the same type. Per sensor it can
be decided which data should and should not be included in the state estimate. The
tool allows to exclude that data on a per-sensor basis. Using multiple sensors causes
a timing problem. Imagine the robot pose filter was last updated at time t0. The
tool will not update the robot pose filter until at least one piece of data is received
from each sensor. Suppose a message is received from the imu at time t1, and another
message from the odometry sensors at time t2, then the robot pose filter is updated
for t1 using the data from the imu at t1, and a linear interpolation of the pose data
from the odometry sensor of the odometry pose between t0 and t1.

To illustrate why it is useful to rely on multiple sensors data to determine an
estimate of the robot pose, Figure 2.6 shows an experimental result where an RP2
robot started from an initial position (green dot), was driven around, and returned
to the initial position. The odometry plot (blue line) shows the robot in a different
position, while using the robot_pose_ekf tool, combining the odometry with an imu,
shows a more accurate estimation of the end position.
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Figure 2.6: Trajectory of a PR2 robot plotted using both odometry,
and odometry combined with imu pose data (Robot_pose_ekf).

In addition to the extended kalman filter, when we are estimating our pose using
the dynamic window approach, we use a known map. To localize our robot on the
map we utilize the AMCL package. It takes as input the map, filtered odometry from
the ekf package, and lidar scan range information. It puts out a probabilistic point
cloud of locations where the robot could be located.

2.8.5 DWA Local Planner

The dwa_local_planner package contains a controller that drives a movile base in its
plane. The controller connects the path planner to the robot. The path planner creates
a kinematic trajectory using a map. The robot then receives velocity commands based
on the current position and the trajectory. This way it reaches its goal location. Along
the trajectory, the planner creates a value function, represented as a grid map. The
value function is represented as a grid map. Using the value function, the costs of
traversing each grid cell in the local map is calculated. The controller’s function is
then to use this value function to determine dx, dy, dθ values to send to the mobile
robot.
The idea of the Dynamic Window Approach (DWA) algorithm is the following:

1. The algorithm takes a discrete sampling in the robot’s control space.

2. For each sampled velocity, a prediction is made by forward simulation from the
robot’s current state to what would be the state if the sampled velocity were
applied for a short amount of time.

3. Score every trajectory resulting from the forward simulations of each sampled
velocity, using a cost function that contains characteristics such as proximity
to obstacles, proximity to the goal, proximity to the global path, and speed.
Discard any trajectories that collide with obstacles.

4. Pick the trajectory resulting in the lowest cost, and send the associated velocity
command to the mobile robot base.

5. Repeat until goal is reached.

From the It might be interesting to name an alternative to the DWA local planner,
called the Time Elastic Band (TEB) local planner. The overall idea of both planners is
to plan motion of the robot along a given horizon, minimizing cost, while adhering to
the kinematic constraints of the robot. The principle is well known in control theory
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as model predictive control. Computing the optimal solution can be computation-
ally expensive and therefore multiple approaches of finding it are discovered. Both
approaches thus approximate the optimal solution in different ways and the optimiza-
tion strategy differs. The TEB local planner primarily tries to seek a time optimal
solution, but can also be configured for optimal path following (global reference path
fidelity), where it strongly adheres to the reference path. The approach discretizes
the trajectory along the prediction horizon in terms of time. This can result in a large
number of degrees of freedom along the prediction horizon, depending on the step size
of the discretization. On top of that the constraints of the optimization problem are
removed in order to gain shorter computation times. This implies that constraints
can not be guaranteed in any case, so obstacle collision, and breaking through velocity
bounds can still occur. Since the approach relies on continuous optimization, the cost
function must be smooth. It can not cope with grids and costmaps for function eval-
uation. Given enough computational resources, the planner achieves better controller
performance than the DWA local planner, it resolves more scenarios and supports
car-like robotic motions.

2.9 Hardware

When implementing the solution we will use off-the-shelf hardware components. They
are listed below:

2.9.1 Computer Hardware and Software Description

For the simulations, an HP Z240 workstation equipped with an Intel Core i7-6700
CPU, containing four cores with eight threads clocked at 3.4GHz, and 16GB of mem-
ory. The GPU is an NVIDIA Quadro P2000, not required since the simulations are
mostly CPU-bound. The workstation runs Ubuntu 16.04.6 LTS (Xenial) and ROS
Kinetic Kame. The computer served as a master for simulated and real world ex-
periments. For visualization of experiments we used the Gazebo simulator, version
7.0.0. This combination of Linux, ROS and Gazebo is recommended for replicating
the experiments.

2.9.2 Nexus Robot

The nexus robots are equipped with mecanum wheels, which is used to make a special
type of a holonomic drive. Holonomic drive means the robot can move in any direction
without changing its orientation. This type of a drive is useful in close quarters. There
are two different wheels which can enable holonomic drive, the omni-directional wheel
and the mecanum wheel. The omni-wheel has its rollers mounted perpendicular to
the wheel while mecanum wheels have their rollers mounted at a 45 degree angle to
the plane of the normal of the wheel. The mecanum wheels make it necessary to have
a different left and right wheel since the force vectors from the wheel to the ground
have to cancel each other out such that equal input on all wheels causes the robot to
go in a straight line.

2.9.3 Lidar Laser Scanner

The Nexus robots are equipped with an RPLidar A1, which is a low cost 360 degree
laser range scanner. It does not need any coding to setup and range scan data can be
obtained through the Serial port/USB communication interface.
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In Figure 2.7 , the working mechanism of the RPlidar is represented. The system
is based on laser triangulation ranging principle. The system measures distance data
more than 2000 times per second. The lidar emits a modulated infrared laser signal,
the object to be detected then reflects the laser and the returning signal is sampled
by a vision acquisition system. The DSP embedded in the lidar processes the sample
data and outputs a distance value and an angle value between the object and the lidar.
The best results are obtained when detecting an object that appears white, since it
reflects all wavelengths of light. Since in our application we are trying to detect other
agents equipped with lidars, a white shroud has been 3D-printed and with the goal of
a higher detection rate success.

Figure 2.7: The RPLidar A1 working schematic

RPLidar can be used in below application areas:

• General robot navigation and localization

• Smart toy’s obstacle avoidance

• Environment scanning and 3D re-modeling

• General simultaneous localization and mapping (SLAM)

In our application the lidar is going to provide data for formation control, group
motion control and obstacle avoidance. The datasheet for the RPlidar A1 can be
found in (Slamtec, 2016).

2.10 Requirements

Safety: In order to ensure safety, safety instructions and operating policy shall be
provided as a README file. The person or persons operating the system shall be
taught which measures to take in case of emergency. For the top level safety we refer
to the safety rules provided by the DTPA lab support staff, dealing with the rules and
safety regulations of the lab. Most importantly the safety of the batteries and how to
handle with them. Operating environment:

• The system shall be deployed in an open area with at least 2 times the de-
sired distance between agents as a safe radius around the system during the
initialization phase.

• The system shall be able to detect obstacles. The system should provide warning
if there is no possibility of converging to a goal location. Warnings shall be
returned to the master computer.
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• The system should be able to transport a large object from start to desired end
location on top of the robot formation.

• The system should perform obstacle avoidance, detection, and formation control
without the use of a global controller, or master.

• Each agent should broadcast feedback about their obstacle detection control.
An agent’s current state is constantly monitored by its neighbouring agents,
therefore it is not needed to share the agent’s own state data.
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Chapter 3

Proposed Control Methods

In this chapter we go through the proposed control methods. The proposed control
methods both consist of a linear combination of several algorithms. We propose two
different solutions in order to compare them. One uses a reactive type algorithm for
obstacle avoidance and the other solution uses a global planning algorithm combined
with formation control. The chapter opens with the section containing the control
algorithms. We want the solution to be as general as possible in order to be applicable
or simple to adjust to as many problems as possible. First we go through the reactive
approach, after which we explain the path planning approach using DWA.

3.1 The Control Algorithm

In this section the control algorithm based on the previously discussed control law is
elaborated on. The algorithm is explained in normal English, together with require-
ments in order to make the algorithm work in simulation and real-world scenarios.
The assumptions and also its limitations will be briefly summarized. The position
and velocity of each nexus robot are described by the linear equation:

ṗi = ui, i = 1, . . . , N, (3.1)

where pi ∈ R2 and ui ∈ R2 denote the position and controlled velocity of agent i
respectively. We assume no uncontrolled forces cause changes in position. For the
obstacle avoidance, we consider obstacles that can be encapsulated by m ≥ 0 circles
in the plane where the centroid and radii of each circle Ok, k = 1, ...m, are given by
pobsk ∈ R2 and Robsk ∈ R, respectively. The boundary of each obstacle ’k’ is defined by
Each agent has an associate parameter Rsafei which defines the safe distance to the
boundary of any obstacle. We consider this parameter to be constant for all agents i.

One of the features of the control algorithm is the fact that its modular. Each part
of the control law pertaining to a particular task can be removed or added without
jeopardizing the successful completion of other tasks. Therefore our control law is a
linear combination of control laws for different tasks.

ui = ufi + ugi + uoi , (3.2)

where ufi is the local control law for solving the formation control task of the i-th
agent, ugi is the local control law for solving group stabilization task of the i-th agent,
and uoi is the control law for the local collision avoidance task of the i-th agent. Each
task will be detailed in the following subsections. The combination of the control laws
will become our unified control framework. It has to be noticed that the framework
is not restricted to these control laws, but for our application we will focus mainly on
these laws to demonstrate our approach.
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3.1.1 Formation Control Law

For completing the group formation task, we consider relative position-based forma-
tion control:

uf
i = cf

∑
j∈Ni

wij
(
pj − pi − (p∗j − p∗i )

)
, (3.3)

where cf > 0 is the formation gain and wij > 0, i, j = 1, . . . ,N the weight of the edge
(i, j) ∈ E . We can write the above control law in compact form as

U f = cf(L⊗ I2)(p∗ − p), (3.4)

where U f is the stacked vector of uf
i, i = 1, . . . , N and ⊗ is the Kronecker product.

3.1.2 Group Stabilization Control Law

In addition to the above distributed control task of formation control, we can add a
group motion task, where we control the group’s centroid to achieve certain control
behaviour, such as following a certain reference trajectory. We are implementing two
approaches, namely a purely reactive one, and a planning based approach. For com-
pleting the group stabilization task, we consider the existence of a central coordinator.
The coordinator determines the position of the centroid of the formation based on the
positions of the agents and uses it to compute the ugi for the group. Each agent has
the same group stabilization input and therefore: ug

1 = ug
2 = . . . = uN = ug.

In order to demonstrate the framework we propose two separate control laws for
obstacle avoidance and group stabilization. The first one is the following:

ug = −cPpcen + cIγ + cDρ, γ̇ = −pcen,

∫ τ2

τ1

ρ(τ) dτ = pcen, (3.5)

where cP > 0, cI > 0, and cD > 0 are the proportional, integral, and derivative gains
respectively. We write the compact form as

Ug = (1N×1 ⊗−cPpcen + cIγ). (3.6)

3.1.3 Obstacle Collision Avoidance

In order to safely move along a desired trajectory, the agents should avoid any obstacles
during its journey. When an agent i is in close proximity to an obstacle it is assigned
the task of obstacle avoidance. For such a scenario, the following control law is
proposed in Tee et al. (2009):

uoi = cαα
k
i (pi) :=

 0 if
∥∥∥pi − p∗i,k∥∥∥ > Rsafe

cα
pi−p∗i,k
‖pi−p∗i,k‖

2 if
∥∥∥pi − p∗i,k∥∥∥ ≤ Rsafe , (3.7)

where cα > 0 is the gain, and

p∗i,k := argmin
x∈∂Ok

dist(pi, x). (3.8)

The obstacle collision avoidance control law is a reactive algorithm, meaning the
control is only calculated when required. When the relative distance between agent i
and the obstacle k is less than the threshold Rsafe, the agent i is going to activate the
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collision avoidance action. The downside of this type of distributed obstacle avoidance
is that it is only applied locally; when agent i activates the obstacle avoidance, the rest
of the agent will still only be using the group stabilization and the formation control.
Consequently, the unexpected behaviour by agent i causes the formation to deform.
This is negated by introducing a dynamic obstacle controller with state variable ζi.
This state variable is communicated to its neighbors. The local dynamic obstacle
avoidance controller is described by

ζ̇i = cζ
∑
j∈N

wij(ζj − ζi) + uαi

uoi = ζi,

(3.9)

where cζ > 0 is the diffusion gain of the obstacle control law, wij > 0, i, j = 1, . . . N
are the weights of the edges (i, j) ∈ E and uαi is given by

uαi = cαα
k
i (pi) (3.10)

In compact form we write the distributed dynamic obstacle avoidance control law as

ζ̇ = −cζ(L⊗ I2)ζ + Uα

Uo = ζ,
(3.11)

where Uo is the stacked vector of uoi , i = 1 . . . N, and Uα is the stacked vector of uαi .

3.2 Dynamic Window Approach Algorithm

The second control law is the Dynamic Window Approach (DWA), otherwise known
as Model Predictive Control (MPC). The DWA has a cost function which minimizes
certain characteristics and gives weightings to them. The cost functions that will be
applied in order are:

• Oscillation costs: discards oscillating motions.

• Obstacle costs: discards trajectories colliding with obstacles.

• Goal front costs: prefers trajectories that make the robot move forwards to goal.

• Alignment costs: prefers trajectories that keep the nose of the robot on the path.

• Path costs: prefers that the robot stays close to the planned path.

• Goal costs: penalizes trajectories moving away from the goal.

In the dynamic window approach the commands sent to the robot are found in
the velocity space. The dynamics of the robot is incorporated into the method by
reducing the velocity search space to the velocities that can be attained taking into
account the dynamical constraints. The admissible velocities are defined as

Va =
{

(v, ω) | v ≤
√

2 · dist(v, ω) · v̇m ∧ ω ≤
√

2 · dist(v, ω) · ω̇m
}
, (3.12)

where Va is the set of velocities that allow the robot to come to a stop without colliding
with an obstacle, (v, ω) = [vx, vy, ω]T and ·vm and ·ωm are the maximum translational
and angular velocities, respectively.
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3.2.1 Dynamic Window

Since we take into account the limited accelerations of the vehicle motors, the search
space of admissible velocities is reduced to the velocities that can be reached within
the next time interval t.

We consider a three dimensional search space. A triple (vx, vy, ω) is considered
admissible if the robot is able to stop before it reaches the closest obstacle on the
corresponding trajectory. The dynamic window restricts the admissible velocities to
those that can be reached within a short time interval dt given the limited accelerations
of the robot.

3.2.2 Objective Function

The objective function

G(v, ω) =

cσ (cκ · heading_cost(v, ω) + cβ · dist(cv, ω) + cλ · vel(v, ω)) ,
(3.13)

where cκ > 0, cβ > 0, cλ > 0 are the gains of each part of the optimization func-
tion. Parameter cσ has a smoothing function as it smoothes the weighted sum of the
three components. The three components are target heading, clearance, and velocity.
Target heading makes sure that the angle between the robot and the goal is zero.
Clearance makes sure that the robots keep distance dist from obstacles is kept. The
smaller the distance to an obstacle, the more the robot will move around it. Velocity
vel is the forward velocity of the robot, maximizing the robot’s velocity (Fox et al.,
1997). Using distributed DWA and formation control the control law becomes:

ui = ufi + udwai , (3.14)

where udwai is the robot configuration that results in the minimal cost as determined
by the DWA algorithm.

3.3 Robot Detection

The only input data we have for detection of other agents is coming from the laser
scanner, therefore the returned matrix of 360 values needs to be processed. If no
obstacles are detected the RPLidar returns the value of ’inf’. These are set to zero
by our algorithm. The subsequent operation on the input matrix is returning the
angles at which neighbouring agents are detected. We do this by returning the value
of the index an object is detected. We only return the index to the output matrix
z if the object is within a specified range around the desired distance. When we
finished determining the angles at which neighbouring agents are located, we output
the neighbours matrix z and use it as input for the third algorithm to determine the
number of agents and their locations.

3.4 Obstacle Detection

As input for the obstacle detection we use two matrices, namely the laser scanner
input, as well as the matrix containing the positions of the robots. In order to exclude
the robots from the obstacle detection set, we subtract the robot detection matrix
from the original matrix. Every nonzero value that is left should then be an obstacle.
We can verify this by looking at the output of this step. The output is a vector



3.5. Assumptions 25

containing the distance and angle of reflections. The angle is represented by the index
of each value in the vector.

3.5 Assumptions

We assume that initially the robots are approximately in the correct formation, in
order to be able to identify which is which robot the easiest. For example, we have to
assume that if the desired relative angle between robot 2 and 1 is 270 degrees, that
the initial angle between those two robots is between 260 and 280 degrees when we
perform the simulations. Idem with distance. For the distance we assume that during
initialization, the robots are not at a distance greater than 1.5 meters.

During simulations and experiments we always assume that the desired formation
is geometrically feasible.

During simulations and experiments we assume that the initial pose for each robot
is known. During simulations using the dynamic window approach we localize the
robots using amcl, which is a probabilistic localization system for 2D robots. We
compare our sensor readings to a known map in order to estimate position then. In
that case, the initial position is known with a variance of 0.5m in order to show the
robustness of the approach.

For formation control we assume each agent can always obtain relative position
information from its neighbours, meaning agent i has access to pj − pi,∀j in Ni as
defined in Chan et al. (2018). We assume that always at least n-1 robots are detected
for the control law to perform. If an obstacle moves through the formation this
condition is not met. If an obstacle moves through the formation no control input is
updated and re-initialization is going to have to occur.

We assume that one value is shared between the agents for the obstacle avoidance
control. This means that there needs to be information exchanged between agents.
In practice this means that the robots publish the obstacle avoidance state variable
on a network, where, through the master node, the other agents can obtain this value
by means of subscribing to the topic. We assume the communications channel will be
able to handle the communication between the agents.
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Chapter 4

Simulation and Experiment Design

In this chapter the simulation setup is discussed. We describe the simulation setups,
sensors, hardware descriptions, type of simulations, and the simulation parameters.

4.1 Numerical Simulation Setup

The numerical simulation is done in MATLAB. In order to demonstrate the control
laws we perform simulations with four agents. We consider a case where we have a
world with two obstacles, described by the area of a circle. Around the circles we
have another circle, which represents the safe distance between the agents and the
obstacles. The radii of the obstacles and the safe distance are set to 0.75m and 0.5m
respectively. The gains of the control law are determined to be cf = 10 cP = 1
cI = 0.9 cα = 400 cζ = 10. The desired relative positions for the formation are set to
be p∗21 = [0, 3]T , p∗31 = [−2, 0]T and can be seen in Figure 5.1.

For the simulations we assume the robots always spawn approximately in the
correct formation, which makes identification easy. We use a saturation function to
limit the acceleration and maximum velocity of the robots.

4.2 Gazebo Simulation Setup

In order to perform navigation in ROS, we need a map of the environment that we
will operate in. The map can be empty, or filled with objects. For sake of generality
we assume the environment to be very simple, a walled world , populated with a
number of obstacles. The obstacles are convex and randomly distributed. The map is
obtained using a single robot, moving around in our world, without obstacles, using
manual control of the robot.
To perform an experiment, the formation needs to follow a certain trajectory. We let
the local path planner compute a trajectory, and send the computed commands to
the wheel actuators.
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Figure 4.1: Group of four nexus robots.

Figure 4.2: Lidar points nexus 1 visualized in RViz.

In Figure 4.2 we can observe multiple important elements. What we are visualizing
is the map. The map is seen as a black outline. Somewhere on the map are the robots.
The formation of robots is numbered as follows, from left to right, top to bottom:
nexus 3, nexus 4, nexus 2, nexus 1. The lidar points are visualized as flat squares of
size 0.2(m), using a rainbow color. Around the formation is a green circular outline, as
well as a larger white square. The green outline is the footprint of the robot, which can
be set to any shape. In this case a circle of radius 0.9(m). The white square around
the outline is the local costmap of nexus 1. The middle of the costmap is using an
offset from the centre of nexus 1 such that the center of the costmap coincides with
the center of the formation Pcen. Every robot posseses such a costmap, so that the
navigation is considered to be distributed. The last thing we can see is that the
rainbow coloured lidar points shown on the outline of the map are interrupted. These
interuptions, or blind spots, are caused by the other agents in the formation. The
way that the blind spots are removed are through movement of the formation; when
the formation moves, the blind spots move too and therefore all of them eventually
become filled in.

4.2.1 Sensors

To simulate every sensor on the robot, a code snippet for each has to be added to the
robot model xacro file. The code snippet describes the placement on the robot and
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can be configured to match a real life equivalent sensor.
To simulate the RPLidar and IMU we use sensor plugins by (Hsu, 2014). The doc-

umentation on Gazebosim.org can be easily used to achieve any sensor configuration.

4.2.2 Robot Velocity Profile

Velocity profile of the Nexus model looks like the graph in Figure 4.3.
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Figure 4.3: Velocity profile of the Nexus robots.

The velocity profile has four parts. Firstly, the range from 0 to 0.03 is set to
zero since we do not want any jittery movements. Secondly, any input above the
threshold of 0.03 is set to 0.1m/s, which is the desired minimum speed. We set the
speed to 0.1m/s using a logistic curve, which has an ’S’ shape for a smooth transition.
Thirdly, between the inputs of 0.1 to 0.7 we have an acceleration of 1m/s2. Lastly, the
maximum speed is reached at 0.7m/s. Higher speed causes the formation to display
undesirable behaviour during obstacle avoidance.

4.2.3 Determining the Gain Parameters

During the implementation the gains of the control laws have to be determined. This
was done using table 1 of "PID Control System Analysis and Design" (Li et al., 2006).
In the table we can see the effects of every type of gain parameter. Each gain started
at a value close to zero and was increased until desired behaviour was reached.

4.2.4 Configuration Space

Below, an example of the C-space for our robot formation is visualized, which can
only move through translational movements.

http://gazebosim.org/tutorials?tut=ros_gzplugins
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Figure 4.4: Example of the C-space for a robot formation, translation
only. The C-space is obtained by sliding the robot along the edge of

the obstacle regions.
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Chapter 5

Results

This chapter contains the results of the simulations and experiments that were per-
formed in order to validate the approach. Several simulations were performed multiple
times. We also comment on the robustness and the sensitivity of the system in section.
5.3.

5.1 Numerical Simulation Results

For the numerical simulation we initially consider only two cases for simulating dif-
ferent interesting scenario’s. We start with the simplest case where only one of the
agents encounters both obstacles. For the second case, two different agents ’hit’ each
obstacle, and the formation centroid passes over an obstacles. The result of the closed
loop system using the control laws are found in Figure 5.1. From the figures, we can
see that once an agent reaches the safe distance area, the obstacle avoidance is acti-
vated. In the neighbouring agent’s their behaviour we see the diffusion of the obstacle
avoidance behaviour. The neighbouring agents undergo a similar trajectory as the
agent performing an obstacle avoidance manoeuvre. The deformation of the agents is
seen in Figure 5.1(B). The deformation is minimized by the diffusive control law. A
final observation can be made that the control law is able to steer the whole formation
towards the goal state.
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Figure 5.1: Obstacle avoidance trajectory of four omni-wheeled mo-
bile robots.

Figure 5.1 shows the error in the task of simultaneous obstacle avoidance and for-
mation control. The first part of the graph shows the agents converging to a formation.
The formation then travels toward its goal. At iteration 50, agent 1 encounters an ob-
stacle, causing the rigid formation to break. After the obstacle avoidance manoeuvre
is completed, the formation has converged again to its desired relative positions. The
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formation then continues to move towards a goal. We then see that the formation
once again encounters an obstacle. This time, the formation error is less. This is due
to the collision path being less ’head on’ and more at an angle. Head on collisions
cause more error in the formation, whereas the system behaves more favourable during
approaches at an angle.

Table 5.1: The numerical experiments success rates of the approach
by Nelson et al. for SD=1

SD = 1(m)
cα = 300 cα = 400 cα = 500

cF = 8 43 49 45
cF = 9 45 46 42
cF = 10 44 49 39
cF = 11 44 49 44
cF = 12 43 42 49

219/500 232/500 219/500

In Table 5.1 we see the results of our numerical simulations done in order to
see the effect of different gains. The initial positions were taken as p01 = [5, 10]T ,
p02 = [5, 12]T , p03 = [2, 10]T , p04 = [2, 12]T . We perform the simulations 100 times,
using a standard deviation of 1 with regard to the initial locations of the agents.

Table 5.2: The numerical experiments success rates for SD=2

SD = 2(m)
cI = 0.7 cI = 0.8 cI = 0.9 cI = 1.0

cF = 8 46 42 43 45
cF = 9 42 44 43 45
cF = 10 46 42 43 43

134/300 128/300 129/300 133/300

in Table 5.2, we see the result of the sensitivity analysis where the initial positions
are determined based on a binomial distribution with a standard deviation of 2 me-
ters. Among the other input variables are the formation gain and the integral gain
parameters.

5.2 3D Simulation Results

The 3D simulation are performed in Gazebo, which provides a built-in physics engine
called Open Dynamics Engine (ODE). ODE can simulate rigid body dynamics and
collision detection, which satisfies the requirements for our application. Gazebo is
used, so the results are more reliable for real world performance comparison. We
consider several initial condition for simulating different interesting scenario’s. Similar
to the MATLAB simulations, for the first one, we consider no obstacles. In this
simulation we can see that the obstacle avoidance behaviour is not diffused in the
same way as the numerical simulations. The neighbouring agents seem to respond
slower even when gain parameters are increased. Lastly, we observe that the group
stabilization control law is able to steer the whole group towards the goal state within
a reasonable amount of time and within the margin of error that was specified. In
figures 5.2 through 5.5 we can observe four sub-figures. Starting form top left we
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observe the traversed path of each agent. Top right we see the absolute error of each
agent with respect to agent 1 over time. In the third sub-figure, the planned path of
each vehicle is shown, and seen in the final sub-figure is the error of the x, y position
of the formation’s centroid.
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Figure 5.2: Experiment 1: driving along the boundary of a 2(m) by
2(m) square.
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Figure 5.3: Experiment 2: driving around two obstacles.
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Figure 5.4: Experiment 3: enlarged area shows where the formation
attempted to enter a corridor, but went around it instead.
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Figure 5.5: Experiment 4: formation travelling through narrow cor-
ridor (obstacles each side).

5.3 Robustness Analysis

To quantify the robustness and sensitivity of the system we compute the Root Mean
Square Error (RMSE) and perform multiple runs. The Root Mean Square Error is
defined as:

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2
n

, (5.1)

where ŷi are the predicted values, yi are the observed values, and n is the number
of observations. This measure of error can be thought of as some kind of normalized
distance between the vector of predicted values and the vector of measured values.
RMSE is used to measure the error of prediction. So, how much the predictions differ
from the predicted data. If the RMSE is sufficiently small given the problem context,
then we can say the system performing well. If the RMSE is large, it generally means
our model is failing to account for important underlying features of the physical system
and the system is performing badly (Moody, 2019). During our numerical simulations
the RMSE was always below 0.05. For our system this is acceptable, and means that
the model accurately models the behaviour of the physical system. The results of the
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robustness analysis for four experiment performed in Gazebo are present in Table 5.3.
In all of the experiments, the desired inter-agent distance was set to 0.8 meters. The
standard deviation of the error is small in all experiments. We can also see that the
root mean square error does not show any particularly high values.

Table 5.3: Results of experiments in Figures 5.2, 5.3, 5.4, 5.5

Experiment 1 Experiment 2 Experiment 3 Experiment 4
distance
agent 1-# RMSE SD RMSE SD RMSE SD RMSE SD
2 0.0138 0.0062 0.0138 0.0064 0.0480 0.0365 0.0412 0.0292
3 0.0190 0.0097 0.0195 0.0097 0.0653 0.0476 0.0331 0.0233
4 0.0111 0.0079 0.0109 0.0081 0.0520 0.0336 0.0270 0.0200
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Chapter 6

Discussion

This chapter discusses the objective of the research, what was done in the research,
what was found, and what the results mean. Subsequently continuing with looking
at the accuracy of the results, followed by discussing what could have been done
differently in order to obtain more desirable results. Furthermore, a section is reserved
for discussing limitations of the research.

The objective of this project was to deliver a solution to the problem of lacking
a method for the nexus robots to avoid dynamic obstacles while maintaining forma-
tion shape. The objective was approached by formulating five sub questions. The
initial phase of the project consisted of a literature study, finding the state-of-the-art
approaches to tackling the task of obstacle avoidance.

The second phase consisted of implementing the distributed obstacle avoidance-
formation control with coordinated group stabilization by Chan et al. (2018), which
is based on a 2 degree of freedom (DOF) structure, namely the position in a 2D
plane. It is also assumed that obstacle avoidance is done by a maximum of one agent
at a time. The extra DOF, rotation of the formation is not considered. Once the
implementation had been validated, the next phase was the Python implementation
in ROS. The contribution of this thesis is the improvement of the control method and
the development of a ROS package which provides the possibility of obstacle avoidance
and formation control for a group of robots.

Localization of the robot in simulation was done using the wheel odometry as well
as an imu-sensor, which improves the odometry estimates considerably.

6.1 Limitations

Even though the obstacle avoidance state variable ζ is shared between the neigh-
bouring agents, the approach by Chan et al. (2018) as well as the dynamic window
approach still causes the formation to deform during obstacle avoidance manoeuvres.

Failure is possible even if there is a valid path to the goal. The formation can get
’stuck’ when an obstacle is concave. The formation can also get stuck when there is a
clear path to the goal, but the path passes through a narrow doorway. The formation,
which has a width of 1.6 meters, can pass through a two meter gap using the DWA.

The obstacle avoidance algorithm is based on a purely reactive algorithm, and
needs a higher level path planner to perform well in complex environments such as a
maze. A higher level path planner would be able to identify intermediary goals.

The current approach requires communication between agents for the obstacle
avoidance manoeuvres in order to ’diffuse’ the action. The system would be more
robust if it did not rely on such communications.

The system is currently designed for three and four robots. We want to make this
system more generic. A future version would be able to have the same functionality
for ’n’ robots. The problem then is how to determine the centroid of the formation
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for group stabilization. This would be most efficient using a master node, running on
an external computer.

The current approach depends on accurately chosen gain parameters and configu-
ration of the DWA parameters. Manual tuning of the parameters can be difficult for
large systems of robots.

Due to time limitations we were not able to perform experiments in the real world,
as well as thorough comparison of the two approaches in Gazebo. One approach was
tested in numerical analysis and one approach was tested in Gazebo. Therefore we
can not make definite predictions of the performance differences, however we hypoth-
esize the dynamic window approach would perform better in both numerical and 3D
simulations.
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Chapter 7

Conclusion

In this thesis we implemented a distributed control law for achieving formation while
avoiding obstacles for a group of agents. In this implementation, the agents are so-
called Nexus robots, which are omni-wheeled vehicles. They are modelled without
taking angular velocity into account. Combining the formation control and obsta-
cle avoidance with a coordinated group controller it has confirmed the possibility of
steering the formation towards a goal destination while maintaining formation shape
before, during, and after multiple obstacle avoidance manoeuvres. We show that local
path planning can lead to convergence for an autonomous system.

The main novelties introduced in this thesis are that the system works without
requiring GPS or a birds-eye view, we instead use inter-agent distance. We also com-
bined formation control and the dynamic window approach into one control system.

Experiments have shown that we are able to steer the formation to a desired goal
location in interesting scenarios, while maintaining formation shape during and after
obstacle avoidance manoeuvres.

Experiments have shown that the system is robust against initial conditions, as
well as different environments.

The system is easy to maintain and modify. The system is robust against failures,
based on the sensitivity analysis. The system can operate on low-level controllers
with a small amount of RAM and CPU resources since it does not rely on for example
computer vision. Therefore, more power inside the batteries will be saved and can
instead be used by the wheel motors or other moving parts.

Using this framework of separating the controller tasks and adding them together
to form the final control law provides a good basis for further research, where different
control laws can be easily interchanged.
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Chapter 8

Future Work

In this thesis a dynamic window approach is proposed for path planning for a formation
of omni-wheeled vehicles. The results and their limitations give rise to new research
opportunities, some of which are proposed in the following sections.

8.1 Future Work

Hereby a list of recommendations in terms of future projects that can be derived
from this thesis. We hope to see an implementation of different sampling based path
planning approaches in order to find the best one for different use cases. We can
also extend these cases from 2-dimensional navigation, to aerial navigation. Another
future work that should be done is the merging of more sensor data, allowing for
more accurate sensing. We would like to see an application which combines lidar
with camera’s for example. With camera’s it is much easier to see the difference
between another vehicle and an obstacle. With camera’s it is possible to only see a 2D
representation of the 3D world, however, combining the camera with lidar messages,
we would be able to improve the robustness of the system immensely. There are also
alternatives, such as the intel RealSense camera, which is a more expensive alternative
and 5 sensors still would have to be merged to cover 360 degrees. Also, the processing
power of the Arduino microcontrollers could possibly not process the large data stream
produced by four or even five of these cameras.

8.1.1 Real World Application

The control system was supposed to be tested on the real life Nexus robots. A map
of the lab was produced using SLAM, however the nexus robots only have a lidar and
wheel encoders. The wheels sometimes have a certain amount of slip, causing the
odometry information to have an error. An extra sensor such as an IMU should be
added for measuring orientation. The SLAM system worked as intended, however the
RPLidar does not identify all important features in the environment, partly because
it only scans at one specific height and there were a lot of table legs and chair legs.
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Appendix A

The Code

The source code can be found at https://github.com/Pytrik/FormationSim.

https://github.com/Pytrik1/FormationSim4
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