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Abstract

This paper aims to develop a parametric model that indirectly predicts the
outcome of football matches by directly predicting the number of goals both
teams will make in a match. The model is motivated by a desire to exploit
potential inefficiencies in the online betting market. It builds upon existing
work on statistical modelling in sports prediction. The theory behind the mod-
els used is described, as well as the model selection procedures for selecting
the best model. Using historical match data, it finds an optimal prediction
method, based on a Poisson regression model, that gives rise to probabilities on
match outcomes for assigned matches. These probabilities are compared to the
bookmakers odds for the corresponding matches. When the model gives more
favourable probabilities, a bet is placed, and it is found that this strategy was
profitable employing it on the 2018/2019 Eredivisie season.
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1 Introduction

Betting on football matches has been done since the beginning of the twentieth
century and has been growing in popularity ever since. The market size of online
gambling in the Netherlands is close to 600 million euros, and sports betting
is the main contributor to this with a market size of about 260 million euros.
For every football match, one can bet on numerous (and sometimes ridiculous)
things, such as which player will receive a yellow card, in which minute a goal
will be scored and many many more. Whereas there has been some research
done on applying mathematical models to ’beat’ the bookmakers in fixed odds
match outcome betting (win, lose or draw), considerably less research has been
done on the alternative wagers.

The goal of this paper is to develop a generalized linear model to predict the
outcome of matches in the 2018/2019 Eredivisie season. We will use this model
on ’Draw no Bet’ wagers (which team wins if a team wins) to see if we would
be able to ’beat’ the bookmakers by producing more accurate probabilities on
match outcomes than they produced, resulting in a potentially profitable bet-
ting strategy.

Chapter 2 reviews the literature discussing the use of mathematical models
to predict sports matches, in particular, football matches. There is no literature
review about using these models for betting purposes, since this was mostly not
done. Chapter 3 then gives the mathematical theory behind the models, after
which we discuss how we select the best model in Chapter 4. The match data,
as well as the historical odds data that are available and are used are described
in Chapter 5. In Chapter 6, we first develop our models, and then see how they
would have performed. Thereafter, we also check if we would have been able to
make money wagering on ’Draw no Bet’ wagers. A conclusion to the paper and
suggestions for refinements which could lead to further improvements are given
in Chapter 7.
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2 Literature Review

A lot of literature has been written about using statistical methods for mod-
elling sports data. However, the majority of this literature is dedicated to the
traditionally big American sports: American football, basketball, hockey and
baseball. Since the schedules and standings of these sports are more complex
than for regular football leagues, most of this research was not aimed at pre-
dicting matches, but at ranking teams in a better way than the usual rankings.

An exception to this is by Thompson [34], where the alternative ranking of
teams was eventually used for predicting probabilities of upsets between higher
and lower ranked teams. Another exception is [4], where NFL teams strengths
are measured from historical game results to make predictions on future NFL
games, exploiting the paired comparisons models from Thurstone-Mostellor
(Thurstone [35], Mosteller [28]) and Bradley-Terry (Bradley and Terry [6]).

But there has also been some research focussing on the worlds biggest sport,
football. Through a paper by Jochems in 1958 [20], it was already shown that ex-
perts of the game (football journalists) were not able to predict football matches
very accurately, and that statistical models may well do better.

This indeed was the case. Through the years, two main methods were de-
veloped to predict the outcome of a football match.

The first one is by making a model that directly outputs the probabilities
of every match outcome. These models usually use the difference in rating
between teams as the predictor. The Bradley-Terry model mentioned before
is such a model and was also used to predict football match outcomes after it
was extended to accommodate for draws as well (see Davidson [12]). A popular
system to rate teams and players in sports is the Elo-rating system, originally
developed for rating chess players in 1978 by Arpad Elo [15]. An Elo-rating
system that is used for match prediction in football was proposed by Hvattum
and Arntzen [19], who used Elo-rating differences as covariates in ordered logit
regression models.

Early references to statistical modelling of football data concentrate mainly
on the distribution of the number of goals scored in a game. This corresponds
to the other main method of predicting the outcome of a football match, namely
indirectly predicting the outcome by first predicting how many goals both teams
will score and from that calculate the probabilities for each match outcome. A
number of different distributions were used to fit on the goals scored in a game,
including the Poisson distribution (see [27]) and the negative binomial distribu-
tion (see [32]). In this paper we will develop a model of this method, using the
papers of the major contributors to this method of prediction.
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3 Theory

3.1 Generalized Linear Models

3.1.1 Linear Models

A linear model is used to define how the dependent response variables Yi depend
on p explanatory variables x1i, . . . , xpi, for i = 1, . . . , N observations from the
dataset. In a linear model it is assumed that the response variable Yi is normally
distributed. The linear model looks as follows:

Yi = β0 + β1x1i + · · ·+ βpxpi + εi = xTi β + εi, for i = 1, . . . , N

The error terms εi are assumed to be normally distributed with mean µ equal
to 0 and variance σ2, so that εi ∼ N (0, σ2). The model is usually written as

y = Xβ + ε,

where

y =

Y1...
YN

 ,X =

x
T
1
...
xTN

 ,β =

β1...
βp

 , ε =

 ε1...
εN


Linear models help understand the data, and are used to predict future be-
haviour of the data. The least squares estimator and the maximum likelihood
estimator are the two most commonly used estimators to estimate the parameter
vector β. For a linear model, these estimators are equal and given by

β̂MLE = β̂LS = (XTX)−1XTy

The derivation of these estimators can be found in many books on statistics or
econometrics. See for example Dobson [14], or Hayashi [16].

3.1.2 Generalized Linear Models

The biggest shortcoming of the linear model is that the response variables Yi
have to be normally distributed. In many cases the response variable is a count
variable, or even a binary variable. The generalized linear model extends the
linear model in a way such that the response variable is allowed to be any
member of the exponential family. A generalized linear model consists of three
components:

• The response variables Yi, coming from the same distribution form (Nor-
mal, Exponential, Poisson, etc.). This distribution is a member of the
exponential family, in canonical form. That is, the density function of Yi
can be written as

f(y; θ) = eyb(θ)+c(θ)+d(y),

where b, c and d are known functions.
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• The linear predictor ηi, which is a function of the explanatory variables
xi1, . . . , xip, linear in the parameter estimates βi, . . . , βp. Hence,

ηi = xTi β (1)

• A monotone link function g that links the expected value of the response
variable Yi to the linear predictor ηi:

g(E[Yi]) = ηi

Generalized linear models were introduced by Nelder and Wedderburn [29] in
1972. In this paper we will use the maximum likelihood estimates to estimate
the parameters of the model.

3.2 Poisson Distribution

The Poisson distribution is a non-negative discrete probability distribution. It
is named after French mathematician Siméon Denis Poisson, who introduced
the distribution in 1937 [30]. His work theorized the number of wrongful convic-
tions, focussing on certain random variables that counted the number of discrete
occurrences in a given amount of time. However, it was not the first publication
of this distribution, since the result had already been given in 1711 by Abraham
de Moivre [26].

The Poisson distribution expresses the probability of a given number of
events occurring in a fixed interval of time, if these events occur with a known
and constant average rate, independently of the time since the last event. The
rate parameter is the only parameter of the Poisson distribution and it is equal
to the average number of events per fixed time-interval.

A discrete random variable X is said to follow the Poisson distribution with
rate parameter λ > 0 if, for x = 0, 1, 2, . . . , the density function of X is given
by

f(x;λ) = P (X = x) =
λxe−λ

x!
(2)

The expected value, as well as the variance of this Poisson distributed random
variable X are given by

E[X] = var[X] = λ

Since we can rewrite the density (2) as

f(x;λ) = exlog(λ)−λ−log(x!), (3)

the Poisson distribution belongs to the exponential family of distributions. This
allows it to be used for generalized linear models.
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The function that is commonly used to link a response variable Yi, that is con-
sidered to be Poisson distributed with rate parameter λ, to ηi, is the logarithmic
link function

g(E[Yi]) = log(E[Yi]) = log(λ)

This link function keeps the expected value (rate parameter) non-negative, even
when the regressors or regression coefficients have negative values.

3.3 Poisson regression

The Poisson regression model is a generalized linear model used to model count
data. This regression model is derived from the Poisson distribution by allowing
the rate parameter λ to depend on explanatory variables.

Typical data that is used for Poisson regression consists of N independent
observations (Yi,xi), for i = 1, . . . , N . The scalar response variable Yi is the
number of occurrences of the event of interest, and xi is the vector of linearly
independent explanatory variables that are thought to determine Yi.

A regression model follows by conditioning the distribution of Yi on a p-
dimensional vector xi

T = [x1i . . . xpi], and parameters β, through a continu-
ous function λi(xi,β), such that E[yi|xi] = λi(xi,β). We already stated that
the logarithmic link function is most commonly used, so that a regression model
is fully defined by the following equations:

f(yi|xi) =
λyii e

−λi

yi!
, yi = 0, 1, 2, . . .

λi = ex
T
i β

Iteratively reweighted least squares can be used to find the maximum likelihood
estimates of β in Poisson regression.

3.4 Derivation

The derivation below is based on statistical literature, such as [14], and is ad-
justed for the Poisson regression case.

Consider Y1, . . . , YN independent Poisson distributed random variables with
rate parameter λi, for i = 1, . . . , N . Suppose they satisfy the properties of a
generalized linear model. We wish to estimate the parameter vector β, which
is related to the Yi’s through E[Yi] = λi, and the logarithmic link function
g(λi) = log(λi) = xTi β = ηi. xi is a vector (xi1, . . . , xip) corresponding to the
covariate pattern of Yi.
The log-likelihood for each Yi is

li(λi; yi) = yib(λi) + c(λi) + d(yi), (4)
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where b(·), c(·) and d(·) are functions arising from the exponential family form
of the Poisson distribution, see (3).
Substituting those functions, we can rewrite the log-likelihoods (4) as

li(λi; yi) = yilog(λi)− λi − log(yi!) (5)

The log-likelihood for the entire sample Y1, . . . , YN is then

l(λ;y) = ΣNi=1[li(λi; yi)]

= ΣNi=1[yilog(λi)]− ΣNi=1[λi]− ΣNi=1[log(yi!)]

To obtain the maximum likelihood estimates for βj , we need the score function

Uj =
∂l

∂βj

= ΣNi=1[
∂li
∂βj

]

= ΣNi=1[
∂li
∂λi

∂λi
∂βj

] (6)

using the chain rule.
If we treat both terms of the right hand side of (6) separately, for our Poisson
case, we get, using (5), (1) and the chain rule:

∂li
∂λi

=
yi
λi
− 1

and
∂λi
∂βj

=
∂λi
∂ηi

∂ηi
∂βj

=
∂λi
∂ηi

xij

Hence,

Uj = ΣNi=1[(
yi
λi
− 1)xij

∂λi
∂ηi

] (7)

Since the expected value of the score function is zero, the variance covariance
matrix of Uj has terms

Jjk = E[UjUk]

= E{ΣNi=1[(
yi − λi
λi

)xij
∂λi
∂ηi

]ΣNl=1[(
yl − λl
λl

)xlk
∂λl
∂ηl

]}

= ΣNi=1[
E[(yi − λi)2]xijxik

λ2i
(
∂λi
∂ηi

)2], (8)

because E[(yi − λi)(yl − λl)] = 0 for i 6= l as the yi’s are independent.
Using that E[(yi − λi)2] = var[yi] = λi, we can simplify (8) to

Jjk = ΣNi=1[
xijxik
λi

(
∂λi
∂ηi

)2] (9)
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The elements Jjk form the information matrix J . This information matrix can
be rewritten as

J = XTWX, (10)

where W is the N ×N diagonal matrix with diagonal elements

wii =
1

λi
(
∂λi
∂ηi

)2

The equation to estimate β = (β1, . . . , βk) at the mth iteration, using the
method of scoring (see, for example [14]), then is

b(m) = b(m−1) + [J (m−1)]−1U (m−1), (11)

where b(m) is the mth iteration estimate for β.
Multiplying both sides of (11) with J (m−1) gives

J (m−1)b(m) = J (m−1)b(m−1) +U (m−1) (12)

Using equation (7) for the score function Uj and equation (9) for the information,
the expression on the right hand side of (12) can be written as a vector with
elements

Σpk=1ΣNi=1[
xijxik
λi

(
∂λi
∂ηi

)2b
(m−1)
k ] + ΣNi=1[

yi − λi
λi

xij(
∂λi
∂ηi

)]

evaluated at b(m−1).
Therefore, we can rewrite this right hand side of (12) as

XTWz, (13)

with

zi = Σpk=1[xikb
(m−1)
k + (yi − λi)(

∂ηi
∂λi

)]

Hence, using (13) and (10), the estimation equation (12) can be written as

XTWXb(m) = XTWz (14)

This has to be solved iteratively because z and W depend on the estimate, b.
In this paper we use R for fitting generalized linear models. R has an efficient
algorithm based on (14).

11



4 Model Selection

4.1 Kolmogorov-Smirnov test

Before we should look at which explanatory variables we can include in our
model, we have to convince ourselves that the data is from a Poisson distribu-
tion.

The Kolmogorov-Smirnov test [24] is used to decide if a sample comes from a
population with a specified distribution. It depends on the empirical distribution
function, as well as the specified cumulative distribution function of the sample.
For a sample Y1, . . . , YN , the empirical distribution function is defined as:

SN (y) := fraction of sample points less than y

The Kolmogorov-Smirnov test is based on the maximum difference between the
empirical distribution function, and the specified cumulative distribution func-
tion. The test has several limitations, some of which apply to our case. Namely,
the test in its original form does only apply to continuous distributions, and the
parameters of the specified distribution need to be known.

Since these are not the case for us, we cannot use the Kolmogorov-Smirnov
test. However, adaptations to the Kolmogorov-Smirnov test are made to solve
for these problems. To this end, we can use the Kolmogorov-Smirnov test for
the Poisson distribution with unknown mean, described in [9].

The rate parameter of the Poisson distribution is estimated by the mean
value of the sample, ȳ. The test still uses the maximal difference between the
empirical distribution and the specified distribution as its test statistic. The
test statistic is defined as

D = sup
y
|F0(y)− SN (y)|,

where F (y) = P (Yi ≤ y) is the cumulative Poisson distribution function eval-
uated with ȳ as the estimated rate parameter. If D exceeds the critical value
found in [9] for the correct sample characteristics1, we reject the null hypothesis
that the sample is Poisson distributed.

4.2 Including Explanatory Variables

Before we include explanatory variables in our model, we will give a strong theo-
retical basis on why they should be included. This will be done by investigating
the data at our disposal.

1the value of the mean and the sample size indicate a critical value
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4.3 Overdispersion

Overdispersion is a common issue in Poisson regression. For a Poisson random
variable Y , we know that var[Y ] = E[Y ]. Overdispersion in Poisson regression
occurs when the variance of the response variable is greater than the expected
value of this response variable.

Cameron and Trivedi [8] proposed to test the null hypothesis that var[Y ] =
E[Y ] = µ against the alternative hypothesis that var[Y ] = µ + αg(µ), where
α > 0 means overdispersion (and α < 0 underdispersion). The function g is
some monotone function. The coefficient of α can be estimated by an auxiliary
ordinary least squares regression and tested with the corresponding t-statistic,
which is asymptotically normal under the null hypothesis that α = 0.

If the assumption of equidispersion is not justified, then the negative bino-
mial distribution provides an alternative model with var[Yi] = φE[Yi], where
φ > 1 is a dispersion parameter that can be estimated. Overdispersion can be
a consequence of dependence between observations.

4.4 Mc Fadden’s pseudo R2

R2 is a statistic that will give information about the goodness of fit of a model.
In an ordinary least squares regression, R2 is the proportion of the observed
variation of the dependent variable that can explained by the model. The value
of R2 is thus between 0 and 1, and a higher R2 means that more of the variance
can be explained by the model. If we let y denote the dependent response
variable, ȳ the mean of the observations y, ŷ the fitted value of the prediction
and N the number of observations, then R2 is defined as follows:

R2 = 1− ΣNi=1(yi − ŷi)
ΣNi=1(yi − ȳ)

In ordinary least squares the squared error is minimized to estimate the
parameter values. Since we use the maximum likelihood estimators instead,
and since this maximum likelihood estimators do not necessarily minimize the
squared error, we cannot use R2 as a goodness of fit statistic for our models.

As an alternative to R2 for generalized linear modelling, we introduce Mc-
Fadden’s pseudo R2 [25],

R2
McF = 1− l(Mint)

l(Mmin)
,

where Mint is the model of interest, Mmin is the model that only includes an
intercept and l(·) is the value of the log-likelihood.

Unlike ordinary R2, R2
McF does not represent the proportion of explained

variance, but rather the improvement in model likelihood over a null model.

13



Considering the size of our dataset, a R2
McF value between 0.15 and 0.32 indi-

cates a good fit2. Higher values indicate an excellent fit.

4.5 Penalized model selection criteria

The most common approach on the comparison and selection of statistical mod-
els is standard significance testing of nested models. However, such tests po-
tentially have some undesirable properties. They can be very sensitive to small
deviations from the null hypothesis when the sample sizes are large, leading
to the possibility of rejecting reasonably parsimonious models as having a sta-
tistically significant lack of fit. Standard tests also provide little guidance for
choosing between non-nested models that cannot be rejected. One common
class of an alternative selection method is the penalized model selection criteria.

The two most commonly used penalized model selection criteria are the
Bayesian Information Criterion (BIC, Schwarz [33]) and the Akaike Informa-
tion Criterion (AIC, Akaike [3]).
They are based on the maximum value of the log-likelihood function with an
adjustment for the number of parameters that are being estimated and an ad-
justment for the number of observations. We define them as follows, since R

follows this definition as well:

AIC = −2lmax + 2p

BIC = −2lmax + p · ln(N),

where p is the number of parameters that are being estimated, N is the num-
ber of observations (datapoints) and lmax is the maximum value for the log-
likelihood.

For predictive modelling, the AIC is the best statistic to test, according to
Konishi and Kitagawa [22]. The best model when comparing by the AIC, is the
model with the lowest AIC value. We call this value AICmin.

The differnce in AIC between model i and the model with minimal AIC
value is then given as

∆i = AICi −AICmin
Table 1 comes from Burnham and Anderson [7]. It shows how big the difference
in AIC value, compared to AICmin, of a model can be to still be considered.

2see [17]
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∆i level of empirical support for model i
0-2 substantial
4-7 considerably less
>10 essentially none

Table 1: Level of support for model i based on the difference in AIC value.
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5 Data

5.1 Eredivisie

Our research will focus on the prediction of matches in the 2018/2019 season
of the Eredivisie. The Eredivisie is the highest division football league in the
Netherlands, similar to what the Premier league is in England. In the Eredi-
visie, eighteen teams participate every season. Every team plays 34 matches in
a season: a home and away match against every other team.
At the end of a season, the team at the top wins the title and the team at the
bottom will relegate to the second division. Due to a playoff system for rele-
gation (to the second division) and promotion (to the Eredivisie), there will be
either one, two or three new teams in the Eredivisie each season. They entered
the league via promotion.

Since there is no data available of the second division, this is important for
our research, because it means that historical data is not always available for
every team. And if it is, the amount of data available could still differ per team.

5.2 Match statistics data

There is an abundance of statistics available for each match of football that
has been played. We gathered our match data from the free football data site
football-data.co.uk [2] and the engsoccerdata package [11] from R.

For setting up our models, we will use the data of all matches that have been
played in the Eredivisie from the 2010/2011 season up until the season we want
to predict: the 2018/2019 season. This adds up to a total of 2754 matches that
are played over nine consecutive seasons3.

For every match we filtered out the most important statistics we needed for
eventual match prediction. These were the following:

• date on which the match was played

• home team of the match

• away team of the match

• number of goals the home team scored in the match

• number of goals the away team scored in the match

3For some figures and results shown later a larger sized dataset has been used. If this is
the case, this will be explicitly noted.
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Figure4 1 shows us the number of matches that all teams from the 2018/2019
Eredivisie season have played in the Eredivisie in the time span of our dataset
(from 2010/2011 until 2017/2018). The complete dataset can be found here.
As mentioned before, we can see that a difference between the data available
for every team is existing.
For the teams that participated in the 2018/2019 Eredivisie season, there are
ten teams that played every possible match they could, meaning that they never
relegated from the Eredivisie since the 2010/2011 season.
We also see that there are two teams displayed in Figure 1, Fortuna Sittard and
FC Emmen, that have not played in single match in the Eredivisie in the time
span of our dataset, meaning that they forced promotion to the Eredivisie in
the 2017/2018 season, and played in the second division in the other seasons of
our dataset.
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Figure 1: Total matches played during the time span of our dataset by all teams that

participated in the 2018/2019 Eredivisie season.

5.3 Betting Application

5.3.1 Odds

In this paper, we work with decimal odds, since most online betting sites use
these as well. By looking at the odds for every outcome of the match, you can
immediately spot the favourite and the underdog. The underdog has the higher
odds.

These decimal odds represent the amount one wins for every e1 stake. It
represents the total return, and not just the profit. The total potential return
on a stake is calculated as

Total return = stake× decimal odd number

4Captions to figures and tables are written in italic so that they are easily distinguishable
from regular text
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We will bet on ’Draw no Bet’ wagers, which means that we can put money
on either the home team or the away team. If the match then ends up as a
draw, we get our stake back, and we do not lose or win anything with the bet.

5.3.2 ”Draw no Bet” data

We want to predict the outcome of all matches of the 2018/2019 Eredivisie
season. For this we will use the match statistics data that we gathered. But,
thereafter we want to see if our prediction model could have been profitable for
’Draw no Bet’ wagering.
For this purpose, we need the ’Draw no Bet’ odds that bookmakers had for
all of the 2018/2019 Eredivisie matches. These odds can be found on Odd-
sPortal.com [1]. The ’Draw no bet’ odds found on this website give us the best
odds on every match, meaning that it compares odds on the same match for
multiple bookmakers5, and chooses the ones for which the most money is won
for each outcome of the match, see Table 2.
We use the highest odds for every match, since this is the most beneficial to us:
Betting on the highest odds of a match, gives us the biggest return if we win
the bet, making it easier to be profitable.

Bookmaker odds on home win odds on away win odds on draw
A 1.53 2.91 no bet
B 1.50 2.95 no bet
C 1.51 2.93 no bet

Table 2: In this example we would use bookmaker A for the odds of a home win and

bookmaker B for the odds of an away win.

5bet365, Bethard, bwin, Coolbet, Unibet and Wiliam Hill
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6 Model

The outcome of a football match is determined by the number of goals both
teams score. The team that scores the most goals wins the game. We are inter-
ested in Eredivise league games, which means that if the two teams score the
same amount of goals in a match, the match ends up as a draw.
We will predict the outcome of a football match by setting up a model that will
assign probabilities to the number of goals each team scores in a match. From
this, probabilities on the outcome of the match (win, loss) can be calculated.

In Section 6.1 we will analyze the matchdata that we have gathered for
the Eredivisie as described in the previous chapter, as well as checking some
assumptions that we will make in setting up and selecting a best possible pre-
diction model, which will be done in Section 6.2. This model will then be used
in Section 6.3 to see what would have happened if we had used our model to
put money on ’Draw no Bet’ wagers for the 2018/2019 Eredivisie season.

6.1 Pre-analysis of data

6.1.1 Poisson fit

Moroney (1956) [27] was the first one who examined if the Poisson distribution
was a good fit on the number of goals a team scores in a football match.

From Figure 2 we can see that the Poisson distribution, which is a widely ap-
plied standard statistical distribution, does fairly good in explaining how much
goals are made by a team during a football match.
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Figure 2: Observed frequency a certain number of goals was scored by a team in a

match (red) versus the expected frequency this amount of goals was scored by a team

in a match from the Poisson distribution with the mean of the number of goals scored

per match as rate parameter (blue).
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Performing the Kolmogorov-Smirnov test for the Poisson distribution with
unknown mean discussed earlier, we get that (see Table 3)

D = sup
y
|F0(y)− SN (y)| = 0.023

This D value does not exceed the critical value we found from [9]6, and therefore
we cannot reject that the data is indeed Poisson distributed.

Number Observed Empirical Sn(y) Theoretical
of Goals Frequencies Distribution Distribution |F0(y)− SN (y)|

y SN (y) F0(y)
0 1265 0.230 0.207 0.023 = D*
1 1767 0.550 0.532 0.018
2 1290 0.785 0.789 0.005
3 687 0.909 0.924 0.015
4 304 0.965 0.978 0.013
5 129 0.988 0.994 0.006
6 52 0.997 0.999 0.001
7 10 0.999 1.000 0.000
8 3 1.000 1.000 0.000
9 0 1.000 1.000 0.000
10 1 1 1.000 0.000

Table 3: Kolmogorov-Smirnov test values for our dataset. Every value is rounded to

three decimal places. *Highest value for the last column, this value is compared to the

critical value for the test.

Overdispersion is not a problem in our dataset. Performing the test as de-
scribed in Section 4.3, we get the estimate α = −0.026, with a p-value of 0.915
so that we cannot reject the null hypothesis that α = 0 and our data is equidis-
persed.

6.1.2 Generalized Linear Model: Explanatory Variables

Because the Poisson distribution is part of the exponential family, we can fit a
generalized linear model to the number of goals a team scores in a match. When
using such a generalized linear model, the goal is to estimate the parameter
vector β in

g(E[Yi]) = xTi β,

where xTi denote the values of the explanatory variables corresponding to ob-
servation i. β will then determine our estimate for E[Yi], the expected number
of goals that is scored.

6Using that the number of observations is equal to 5508, and the mean value of the data
is equal to 1.577
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When building our generalized linear model, it is necessary to know what
explanatory variables we need to be able to predict the number of goals that
teams score in a match.

For people who watch the game of football regularly, it will not come as a
surprise that the quality of different teams are not generally the same, and so
different teams will likely to be expected to score different amount of goals in
a match. However, there was a time that the question whether football was a
game of chance or skill was a difficult one to answer.

Benjamin and Reep(1968) [31] even thought they had proven that football
was more a game of chance than skill by looking at how passes effected the
number of goals scored by a team. But eventually, Hill(1971) [18] proved that
football is a game dominated by skill by performing significance tests on the
predictions of experts on league outcomes.

To make it explicit that the difference in quality between teams indeed exists,
we can look at Figure 3 which shows the average number of goals scored and
conceded per match over the time span of our dataset for every team that
participated in the 2018/2019 Eredivisie.
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Figure 3: Average number of goals scored (blue) and conceded (red) per match for

all teams that participated in the 2018/2019 Eredivisie , over the time span of our

dataset. FC Emmen and Fortuna Sittard have not played a match in the Eredivisie in

our dataset, so they have not scored or conceded any goals.

From this figure we can see that teams are not equally good. There are teams
that are clearly better than most other teams, they scored more goals than that
they conceded (for example Ajax, Psv and to a lesser degree Vitesse), and there
are also teams that are worse than most other teams (for example de Graafschap
and Ado den Haag). We can also see that, as noted before, Fortuna Sittard and
FC Emmen have not played any matches in the Eredivisie in the time span of our
dataset our dataset (average of goals scored and conceded is both equal to zero).
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Another important factor in sports is home advantage. In particular, it is
also significant in football. Courneya and Carron [10] give a summary of all
the work done on home advantage. They make the point that future research
should not be directed to the existence of home advantage, since it is proven
enough times that this indeed exists.

Without rigorously proving, but for the sake of clarity that home advantage
indeed exists, also in the Dutch Eredivisie, Figure 4 is added. We can see that
there were more wins by a home team than by an away team in every season
from 1993/1994 until 2017/2018. During these twenty-five consecutive seasons
there were 3660 wins by a home team and 2181 wins by an away team.
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Figure 4: The ratio of home wins to away wins for every Eredivisie season from the

1993/1994 (denoted 94) season until the 2017/2018 (denoted 18) season.

From the analysis above, we conclude that we have a theoretical basis to
include both the attacking and defensive strength of teams in our model, as
well as a home effect.

6.2 Selection of generalized linear model

6.2.1 Generalized Linear Model

In the paper by Maher, Modelling association football scores [23], an indepen-
dent Poisson model for scores was adopted using attacking strength and de-
fensive weakness of teams, including a home effect. In particular, if team i is
playing a match against team j, and the observed score is (xij , yij), it is as-
sumed that Xij is Poisson distributed with parameter αiβj , that Yij is Poisson
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distributed with parameter γjδi, and that Xij and Yij are independent.
Then, we can think of αi as the attacking strength of team i when playing at
home, βj as the defensive weakness of team j when playing away from home, γj
the offensive strength of team j away from home and δi the defensive weakness
of team i playing at home.

This means that the model has 4 parameters for every team included in
the dataset. To get a unique set of parameters, we impose the sum-to-zero
constraints

Σiαi = Σiβi = Σiγi = Σiδi = 0,

where the sum ranges over all teams included in the dataset.

In its generalized linear model form, using the logarithmic link function, the
model for the score of the match looks like

{
log(homegoals) = µ1 + αAjahomeAja + · · ·+ αZwohomeZwo + βAjaawayAja + · · ·+ βZwoawayZwo

log(awaygoals) = µ1 + γAjaawayAja + · · ·+ γZwoawayZwo + δAjahomeAja + · · ·+ δZwohomeZwo,

(15)

where homegoals and awaygoals denote the expected number of goals the home
team and the away team will score, respectively. µ1 denotes the intercept, homei
is the indicator variable indicating whether team i plays at home or not. awayi
is defined similarly, so

homei =

{
1, if team i plays at home

0, otherwise, so if team i plays away from home or is not included in the match

awayi =

{
1, if team i plays away from home

0, otherwise, so if team i plays at home or is not included in the match

Using that

α =

αAja...
αZwo

 ,β =

βAja...
βZwo

 ,γ =

γAja...
γZwo

 , δ =

δAja...
δZwo

 ,

home =

 homeAja...
homeZwo,

 ,away =

 awayAja...
awayZwo,


we can rewrite (15) more readable as

Model 1 :

{
log(homegoals) = µ1 + homeTα+ awayTβ

log(awaygoals) = µ1 + awayTγ + homeT δ
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The question arises whether all these parameters are necessary for an ade-
quate description of the match scores. We have noted that there must be real
differences between quality of teams, but are these indeed in both attack and
defense, and is it really necessary to have different parameters for the qualities
of teams at home and away?

6.2.2 Alternative models

Consideration of such questions leads to a possible hierarchy of models that
can be tested against each other. As most general model, we have Model 1,
as described above, in which all four types of parameters are allowed to take
different values for the different teams. Model 2 is the model in which only
the attacking parameters (called α, γ) are allowed to take different values for
the different teams. Likewise, Model 3 only includes the defensive weakness
parameters (called β, δ) for the different teams.

Model 4 then is the model that takes the home advantage to be constant,
whereas it was different for every team in our first models, where we included
the home advantage in the attack and defense parameters. In this case, there is
a constant home advantage parameter, and an attacking strength and defensive
weakness parameter per different team, called ζi and ωi respectively, for team
i. The last two models, Model 5 and Model 6 are the models that depend
only on a home advantage parameter and an attacking strength or defensive
weakness parameter per team, respectively.

Model 2 :

{
log(homegoals) = µ2 + homeTα

log(awaygoals) = µ2 + awayTγ,

Model 3 :

{
log(homegoals) = µ3 + awayTβ

log(awaygoals) = µ3 + homeT δ,

Model 4 : log(goals) = µ4 + h4atHome+ att.teamT ζ + def.teamTω,

Model 5 : log(goals) = µ5 + h5atHome+ att.teamT ζ,

Model 6 : log(goals) = µ6 + h6atHome+ def.teamTω

To get a unique set of parameters, the following sum-to-zero constraints are
used:

Model 2 :Σiαi = Σiγi = 0

Model 3 :Σiβi = Σiδi = 0

Model 4 :Σiζi = Σiωi = 0

Model 5 :Σiζi = 0

Model 6 :Σiωi = 0
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Starting from Model 4, we no longer differentiate in home advantage per team,
so we can use a single home effect parameter, and use the same model for the
number of goals the home team makes, as the number of goals the away team
makes.
atHome denotes an indicator variable indicating whether the attacking team
plays at home or not. att.teami, (def.teami) is defined as an indicator variable
indicating whether team i is the attacking team (defending team) or not:

att.team =

 att.teamAja

...
att.teamZwo,

 ,def.team =

 def.teamAja

...
def.teamZwo,


AIC R2

McF log-likelihood
Model 1 9238.0 .154 -8360.296
Model 2 9394.8 .103 -8542.283
Model 3 9431.2 .078 -8632.938
Model 4 9172.1 .150 -8374.949
Model 5 9309.5 .103 -8544.536
Model 6 9399.6 .077 -8634.951

Table 4: AIC, Mc Fadden’s pseudo R2 and the value of the log-likelihood for our

generalized linear models.

Comparing the models with each other, as in Table 4, we conclude that
Model 4 is our best model. Its R2

McF value indicates a good fit, but we pick
Model 4 based on the AIC value that is by far the lowest of the different models.

6.2.3 Dynamic Model

We now have a model that fits good on the dataset. However, our goal is to
predict future matches. A limitation to the model we have right now is that
every match in the dataset is weighted equally.

A teams’ performance is likely to be more closely related to recently played
matches than to earlier played matches. This should be incorporated into our
model. In principle, this behaviour can be modelled by formalizing a stochastic
development of the model parameters. However, taking the dimensionality of
the model into account, and since we shall always estimate the parameters at
fixed time points (right before a matchday), rather then forecasting ahead, we
take a more simplistic approach here.

Dixon and Coles [13] proposed to weigh matches k = 1, . . . , 2754 according
to the function

φ(t− tk) = exp(−ξ(t− tk)), ξ > 0,
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where t is the day that our match of interest is played, and tk is the day that
match k was played: (t − tk) is thus the number of days between the match
we want to estimate and match k. All previous results, downweighted exponen-
tially according to ξ, are included in the inference at day t. The static model
we had (Model 4), arises as the case ξ = 0, and increasingly large values of ξ
give relatively more weight to more recently played matches (see Figure 5).
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Figure 5: The weight φ(t) that is given to a match, where t denotes the number of days

ago this match was played, displayed for some different values of our rate parameter

ξ.

We need to choose an optimal ξ. We want this ξ to be such that the over-
all predictive capabilities, in terms of match outcomes of 2018/2019 Eredivisie
matches, of our model is maximized. We will pick this ξ based on which value
performed best on the 2017/2018 Eredivisie season.
First note that the probability that match k ends up as a home win is estimated
by our model as

pHk = Σl,m∈AH
P (Xk = l, Yk = m),

where AH = {(l,m)|l > m} and the score probabilities are determined from
maximizing the likelihood of the dynamic model at the day of match k. pAk is
similarly defined as the estimated probability that match k ends up as an away
win. We then want our ξ to maximize

S(ξ) = Σk(ρHk log(pHk ) + ρAk log(pAk )), (16)

over all matches k of the 2017/2018 Eredivise season, with ρHk = 1 if match k
was won by the home team and zero otherwise, while ρAk = 1 if match k was
won by the away team and zero otherwise. A plot of S(ξ) against ξ is given
in Figure 6. The subsequent results are given using ξ = 0.0017, the value that
maximizes S(ξ).
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Figure 6: (ξ) against ξ for the 2017/2018 Eredivisie season. The maximum occurs at

ξ = 0.0017, rounded to 4 decimal places.

Before looking at how well our model performed compared to the bookmak-
ers to see if we could have made money betting on ’Draw no Bet’ wagers, we will
look at how accurate our model was at predicting the goals scored per match
per team, the goal margin by which matches were won and the actual winning
team of the matches.

6.2.4 Model performance

Throughout the remainder of this paper, we will call our final model the dy-
namic model, and the model which does not weigh matches the static model
(corresponding to the case ξ = 0).

We will first look at how the dynamic model performed. Since we cannot
give a correct insight on how good the promoted teams are in the beginning of
the season, we use the models on all of the 2018/2019 Eredivisie matches except
for the first two matches played by the promoted teams. This means we predict
300 matches instead of 306.

Figure 7 shows us how accurate the dynamic model was at predicting the
goals a team scores in a match during the Eredivisie 2018/2019 season. It con-
sists of 600 observations (two for every match played). All observations that are
inside the two lines correspond to a ’correctly predicted’ number of goals by a
team in a match in the sense that for these observations the closest integer to
the expected number of goals found from the dynamic model was the number
of goals that was actually scored.
It is clear that the dynamic model almost never gives the highest probability to
a team scoring 0 goals in a match, whereas we observed that this happened a
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lot of times. It also shows that the expected number of goals a team scores in a
match, provided by the dynamic model, is not more than 4 goals (except for one
time). However, we can see that it happened quite a few times that a team actu-
ally managed to score 4 or more goals in a match. Lastly, we can see that when
a team scored 1,2 or 3 goals, that the dynamic model was ’correct’ a lot of times.
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Figure 7: The actual goals scored in a match by one team plotted against the ex-

pected goals scored in that match by that team. The plot shows all 600 observations

corresponding to the 2018/2019 Eredivisie. Points inside the lines correspond to ob-

servations for which the absolute difference between the expected goals and observed

goals is less than a half.

Table 5 then gives us the exact number of times the dynamic model gave
the highest probability to the correct number of goals a team scored.

frequency correctly predicted
0 144 1
1 165 99

goals 2 130 56
3 79 12
≥4 82 0

total 600 168

Table 5: Results on how well our model predicted the amount of goals scored by a team

in a match. The frequency column denotes the number of times a certain amount of

goals was scored in the 2018/2019 Eredivisie and the last column tells us how many of

these times our model gave the highest probability to this amount of goals.
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Figure 8 shows us how accurate the dynamic model was in predicting the
goal margin as seen from the home team for every match in the Eredivisie
2018/2019 season. We can see a clear positive correlation between the expected
goal margin and the observed goal margin.
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Figure 8: The expected goal margin of a match plotted against the observed goal

margin as seen from the home team. The plot shows all 300 matches corresponding

to the 2018/2019 Eredivisie. It is divided into 4 areas: (a) Dynamic model expected a

home win, but the away team won. (b) Dynamic model expected a home win, and the

home team won. (c) Dynamic model expected an away win, but the home team won.

(d) Dynamic model expected an away win, and the away team won.

Table 6 then shows us how many times the dynamic model was ’correct’
in the sense that it gave the highest probability to the observed goal margin
between two teams in a match. Since the model almost never gives the highest
probability to a team scoring more than 3 goals, it won’t give the highest prob-
ability to a big goal margin as well.
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frequency correctly predicted
≥3 58 1
2 34 7
1 60 23

goal margin 0 58 29
-1 35 7
-2 25 3
≤-3 30 1

total 300 71

Table 6: Results on how well the dynamic model predicted the correct goal margin

as seen from the home team for matches in the 2018/2019 Eredivisie. The frequency

column denotes how often a certain goal margin was observed, whereas the last column

tells us how often the dynamic model gave this goal margin the highest probability of

happening for these matches.

The scatter plot of Figure 8 is divided into four different areas, so that we
can see how well the dynamic model performed as predictor of the outcome of
a match. Observations in area (b) and (d) correspond to matches where the
expected goal margin actually pointed to the right winning team of a match. It
can be seen from this that the dynamic model pointed to the correct winning
team for most of the matches, since there are far more points in the areas (b)
and (d) combined, than there are in (a) and (c) combined.

Since the model gives the expected number of goals both teams will score
in a match as a rate parameter of the poisson distribution, we can calculate
the probability the dynamic model gives to both teams winning the match by
comparing those values.

Surprises happen in football and so we do not necessarily want the model
to point to the correct winning team every match, we want it to give correct
probabilities on how likely it is that a team wins a match. Table 7 gives us a
better view on how well the dynamic model actually did in predicting match
outcomes. Since the goal of the paper was to make money on ’Draw no Bet’
wagers, we do not care about draws. We want to know which team would win,
should one of the two win. The first column of the table states the probability
range that the dynamic model gives to the team that is most likely to win that
match, according to the model. The table shows us that for matches in which
the model gave the favourite a probability of winning between 50% and 60%, the
favourite only won in 47,9% of the matches. Optimally, this percentage would
be between 50% and 60% as that would mean that the model did well in giving
probabilities to which team wins a match. For the other ranges of percentages
the model actually did this.
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model probability number of matches won percentage of matches
for favourite matches* by favourite won by favourite
50% - 60% 48 23 47.9%
60% - 70% 58 36 62.1%
70% - 80% 46 34 73.9%
80% - 90% 56 47 83.9%
90% - 100% 34 32 94.1%

total 242 172 71.1%

Table 7: The performance of the dynamic model displayed as follows: The first column

shows the probability the model gave the favourite of the match to win, the second col-

umn tells how many matches of the 2018/2019 Eredivisie fell into this probability range,

the third column tells us how many of these were actually won by the favourite and

the last column denotes the corresponding percentage of matches won by the favourite.

*Excluding draws.

We did the same for the static model in Table 8. We see that the static
model also did well, since the percentage of matches won by the favourite is
in the correct percentage range in four of the five rows. It only did not as we
wanted in the 60% - 70% range.

model probability number of matches won percentage of matches
for favourite matches* by favourite won by favourite
50% - 60% 62 36 58.1%
60% - 70% 47 27 57.4%
70% - 80% 53 40 75.5%
80% - 90% 53 45 83,9%
90% - 100% 27 25 94,1%

total 242 173 71.5%

Table 8: The performance of the static model (ξ = 0) displayed as follows: The first

column shows the probability the static model gave the favourite of the match to win,

the second column tells how many matches of the 2018/2019 Eredivisie fell into this

probability range, the third column tells us how many of these were actually won by the

favourite and the last column denotes the corresponding percentage of matches won by

the favourite. *Excluding draws.

6.3 Betting Application

6.3.1 Betting strategy

By comparing the estimated result probabilities from our models with the book-
makers’ probabilities for the Eredivisie season 2018/2019 matches, we can de-
termine on which matches we should bet, assuming that our model is more
accurate than the bookmakers. We can thereafter calculate if we would have
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made money, or if we would have lost money betting on those matches.

To calculate the probabilities the bookmakers have on each result for a ”Draw
no Bet” wager, we need to use the odds they putted on the match. If we denote
by OddsH and OddsA the odds corresponding to a home team win and away
team win respectively, these transform to probabilities pH and pA for a home
team win and away team win as follows:

pH =
1

OddsH

( 1
OddsH

+ 1
OddsA

)

pA =
1

OddsA

( 1
OddsH

+ 1
OddsA

)

The probabilities of bookmakers usually add up to a sum that is more than
1. This is standard in betting markets. This surplus of probability is called ’the
bookmakers’ take’, which is equal to their expected profit if the bookmakers
are accurate in their probability specifications. We rescale the probabilities of
bookmakers so that they add up to one for every match. We define bHk as the
scaled bookmakers’ probability of a home win in match k and bAk as the scaled
bookmakers’ probability of an away win in match k. Similarly, we define p̂Hk
and p̂Ak as the corresponding probabilities our model estimates for match k.

For every match played in the Eredivisie season 2018/2019, Figure 9 shows
the comparisons of the probability estimates: each dot corresponds to one match
7. Overall, there is a lot of agreement between the probabilities, but the vari-
ability of these plots indicates the potential for positive profit, if our model is a
better predictor than the bookmakers.

If our model produces probabilities without any error, then the expected
profit from a e1 stake bet on a home win is

E(profit) = e(
p̂Hk
bHk
− 1) (17)

We will obtain a positive profit if our model probabilities are sufficiently more
accurate than the scaled bookmakers’ probabilities.
A natural betting strategy arising from (17) for match k is to bet on a home
win if

p̂Hk
bHk

> r (18)

and on an away win if
p̂Ak
bAk

> r, (19)

7Excluded are the first two matches played by promoted teams: they had not played any
matches before in our dataset, so we only included them starting from matchday 3.
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Figure 9: Model probability estimates for a home win (a) and away win (b) plotted

against bookmakers’ probabilities for the 2018/2019 Eredivisie matches. Also, the lines

r = p̂
b

are added for r = 1 and r = 1.25.

where r is a predetermined value greater than 1.

The higher we take r, the more difference there has to be in our models’
probabilities and the bookmakers’ probabilities for a bet to be placed. In Fig-
ure 9 the line p̂ = rb is plotted for r = 1 and r = 1.25. After choosing a value
for r, points above the line p̂ = rb correspond to matches we should place a bet
on.

6.3.2 Results

We can determine if our betting strategy would have been profitable by calcu-
lating the profit we would have obtained (using the results of the matches to
see if a bet was won or not) for different values of r in (18) and (19). The green
bars in Figure 10 show us the total profit we would have obtained using differ-
ent values of r for our dynamic model. The maximum total profit is obtained
for r = 1.5, where we stake e1 on 27 wagers to get a total profit of e34. For
r = 1.15 we would get a similar value for the total profit (e33,15), staking e1
on 129 wagers. We can also see that we would have made a positive profit,
no matter what value of r take, so that our dynamic model would have been
profitable if it were used on the 2018/2019 Eredivisie season.
The red bars in Figure 10 correspond to the total profit we would have obtained
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using the same betting strategy with the static model. For most values of r this
model gives us a lower profit than the dynamic model, and for r = 1 this model
even gives us a negative profit. However, for r = 1.35, the static model gives
us a total profit of e33,61 staking e1 on 88 wagers, which is very close to the
maximal profit we got from our dynamic model.
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Figure 10: Total profit for employing particular values of r, using the dynamic (green)

and static model (red). A stake of e1 was used for every bet.

Hence, we might believe that including the weighting of matches in our
model, did not make an impact on our betting results. However, Figure 11
shows us the average profit per bet for different values of r for both the dy-
namic and the static model. The average profit per bet mostly increases by
increasing r, but also lowers the numbers of wagers that are placed. We can see
that the profit per bet for our dynamic model is bigger than that of the static
model for every value of r that is used. We can also see that if we use r = 1.5
for the dynamic model, we have an astonishing return of e2,26 for every e1
that is staked.
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Figure 11: average profit per bet for employing particular values of r, using the dy-

namic (green) and static model (red). A stake of e1 was used for every bet.
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Table 9 gives the characteristics for wagers placed in different ranges of p̂
b

using the dynamic model. Interestingly, we lose money in most ranges of p̂b , but
we make enough in the last columns to have a positive profit for every value of
r. We can also see that most of the matches are actually predicted fairly close
to the bookmakers’ prediction, seeing that over 200 matches fall into the first
two rows of the table.

range of p̂
b total wagers total return total profit average profit per bet

1 < p̂
b < 1.1 128 e121,83 -e6,17 −4.8%

1.1 < p̂
b < 1.2 73 e63,90 -e9,10 −12.5%

1.2 < p̂
b < 1.3 40 e49,81 +e9,81 +24.5%

1.3 < p̂
b < 1.4 21 e9,25 - e11,75 −56.0%

1.4 < p̂
b < 1.5 11 e6,06 -e4,94 −44.9%

p̂
b > 1.5 27 e61,- +e34,- +125.9%

Table 9: characteristics of the wagers we placed on matches of the Eredivisie

2018/2019 season using the dynamic model, subdivided by range of p̂
b

. A stake of

e1 was used for every bet.

We gathered the same characteristics for the static model in Table 10. We
can see that there is only a positive return on the ranges 1.4 < p̂

b < 1.5 and
p̂
b > 1.5. For smaller values of p̂

b , money is lost. Also, we see that there are
bigger differences between the bookmakers’ probabilities and the model proba-
bilities now, as compared to when we used the dynamic model, because there
are less matches placed in the first two rows than in Table 9.

range of p̂
b total wagers total return total profit average profit per bet

1 < p̂
b < 1.1 100 e84,23 -e15,77 −15.8%

1.1 < p̂
b < 1.2 56 e52,66 -e3,34 −6.0%

1.2 < p̂
b < 1.3 43 e39,57 -e3,43 −8.0%

1.3 < p̂
b < 1.4 23 e12,98 - e10,02 −43.57%

1.4 < p̂
b < 1.5 14 e29,63 +e15,63 +111.6%

p̂
b > 1.5 64 e78,40 +e14,40 +22.5%

Table 10: characteristics of the wagers we placed on matches of the Eredivisie

2018/2019 season subdivided by range of p̂
b

, using the static model. A stake of e1

was used for every bet.

Table 11 shows us some more details when we are using the dynamic model
to bet on matches for certain values of r. An interesting fact from this table is
that the average odds of the wagers we place are quite large, which means that
a lot of wagers that we place are on the underdog of the match to win, especially

35



for high values of r. Also interesting is that although the average odds of bets
placed when using r = 1.5 are a lot bigger than the average odds when using
r = 1.3, we win relatively more wagers when using r = 1.5.

total number of average odds average odds
r wagers* of winning wagers of a winning wager of all wagers

(accuracy in %)
1 242 103(42.6%) 2.46 4.56

1.1 143 41(28.7%) 3.93 6.02
1.2 88 24(27.3%) 4.80 7.55
1.3 52 10(19.2%) 6.93 8.88
1.4 37 9(24.3%) 7.34 9.41
1.5 26 7(21.9%) 8.57 10.67

Table 11: More characteristics of the wagers placed using the dynamic model for

particular values of r, including the total bets placed, the accuracy and information on

the odds of the wagers. *Excluding the wagers on matches that ended up as a draw.

If we want to take a better look at when in the season we make the most
money, we can divide the season up into four periods: period 1 ranges from
matchday 1 up until matchday 9, period 2 ranges from matchday 10 up until
matchday 17, period 3 ranges from matchday 18 up until matchday 26 and pe-
riod 4 ranges from matchday 27 up until matchday 34.
Figure 12 now shows us the profits we made on every period using different
values of r, employing the dynamic model. We see immediately that a lot of
money was lost during the first period. A reason for this could be that our
model does not take the summer transfer market into account, in which teams
can strengthen or weaken their teams significantly by buying and selling players.
Once our model is through the first period, money gets made. While the profits
for r = 1 and r = 1.15 behave similarly (with r = 1.15 getting higher profits),
we lose a lot less money in the first period using r = 1.5.

The results we get from using our model on ’Draw no Bet’ wagers of the
2018/2019 Eredivisie season are promising. However, we could have been lucky
to have picked a season in which making money was easy. Therefore, Table 12
shows the result our dynamic model gave for r = 1, (g), against some other ba-
sic betting strategies that we could have used on the matches of the 2018/2019
Eredivisie season. While we would still have a positive profit for two of these
strategies, our model gives the best total return of all the strategies. Note that
using r = 1.5 would triple the profit, so that we conclude this section by saying
that our model was indeed highly profitable when using it on ’Draw no Bet’
wagers on the 2018/2019 Eredivisie season.
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Figure 12: profit of all four periods of the 2018/2019 Eredivisie for different values of

r using the dynamic model.

betting strategy total return total profit
(a) e306,77 + e6,77
(b) e284,57 - e15,43
(c) e292,29 - e7,71
(d) e305,06 + e5,06
(e) e285,03 - e14,97
(f) e297,47 - e2,53
(g) e311,85 + e11,85

Table 12: Total return and profit if a e1 bet was placed on every match (300) of

the 2018/2019 Eredivisie as follows: (a) hometeam always wins, (b) awayteam always

wins, (c) favourite (lowest odds) always wins, (d) underdog (highest odds) always wins,

(e) team that ranked higher last season always wins, (f) static model (ξ = 0) with r = 1

and (g) dynamic model (ξ = 0.0017) with r = 1.
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7 Discussion

The goal of this paper was to develop a model that would predict the outcome of
matches in the 2018/2019 Eredivisie season in such a way that we would make
profit by betting money on ’Draw no Bet’ wagers. As we have shown in the
preceding chapter, we managed to succeed: For a range of values for r in (18)
and (19), a positive return was found, if the model we created was used on the
2018/2019 Eredivisie.

7.1 Reliability of results

Although the results are thus satisfying on a first look, we should address cer-
tain limitations of the model.
First of all, we saw in Chapter 7 that our total profit would have been maxi-
mized by using r = 1.25 in our betting strategy. We could not have said this if
the matches had not been played yet. However, as we have seen in Figure 10,
we would have made profit for every value of r between 1 and 1.5.
Also, throughout this paper we have modelled the scores of the home team and
the away team in the same match independently from each other. Maher [23]
stated in his paper that there might be a correlation between the number of
goals scored by both teams, and later the existence of this correlation has been
proven as well (see Karlis and Ntzoufras (2000) [21]).
We could have accounted for this correlation by modelling the match score as a
bivariate Poisson distribution, with the number of goals the home team scores
as one variate, and the number of goals the away team scores as the other.
However, the distribution of the difference of the two variates in a bivariate
Poisson distribution, which is called a Skellam distribution, is invariant to the
correlation coefficient. Therefore, the outcome of a match does not depend on
the correlation between the number of goals scored by both teams. By that
reasoning we have not used the bivariate Poisson distribution in our paper: We
were only interested in the outcome of a match and not in the actual final score,
since we wanted to use our model for ’Draw no Bet’ wagering.
Finally, we should also note that the results are based on just one Eredivisie
season, using the model on 300 matches. We can see from Table 9 that the
results vary a lot for different ranges of p̂

b , so the model should be tested on
more seasons to say it is indeed a reliable profitable model.

7.2 Future improvements

The simplicity of the model presented is appealing. However, modifications to
the model might help getting even better results.
In Chapter 6, we eventually abandoned the idea that home advantage is dif-
ferent for different teams, and we went straight to a constant home advantage
parameter that is the same for every team. In the 2018/2019 Eredivisie season,
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six of the eighteen participating teams played their home matches on an arti-
ficial pitch. It is shown by Barnett and Hilditch [5] that the home advantage
of a team playing their home matches on artificial turf is relatively bigger than
the home advantage of a team that plays their matches on normal grass. Their
research was only based on English football results, so it will not necessarily im-
prove the model, but a different home advantage parameter for teams playing
their home matches on an artificial pitch could improve the model.

Another way to improve the model would be to add additional covariates.
Although our model does include the form of a team by weighting the matches
by date, we do not model the ’matchday situations’ of teams. By ’matchday
situations’ we mean for example the injuries of starting players and suspensions
due to an overload of cards.
Also, it should be looked at how one could implement transfers in the model.
When a team buys a very good new player, they will usually be better than
before. When they sell a very good player, they will usually be worse than
before. Our model does not account for this at the moment.

Lastly, we used a very basic betting strategy, in which we stake e1 on every
bet we place. There might be more complex betting strategies, with stake ad-
justed for probabilities that could help optimize the profit. However, this will
only theoretically improve the model. In practice, if an individual is betting
non-integer stakes on online betting sites, and wins more than he loses, he will
be removed from the betting sites.
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A R code

The complete R script that was used for this paper can be found here.
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