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“What is vital is to make anything about AI explainable, fair, secure and with lineage, mean-
ing that anyone could very simply see how any application of AI developed and why.”

Ginni Rometty—CEO of IBM during her opening address of CES 2019
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Can Prediction Explanations Be Trusted?
On the Evaluation of Interpretable Machine Learning Methods

by Denny DIEPGROND

The growing complexity and opaqueness of machine learning algorithms have raised
interest in methods that combine their good performance with some form of trans-
parency. Explanations of machine learning models try to help a user decide whether
to trust its predictions. While performance metrics for machine learning models
have been well established and are important to today’s AI successes, performance
metrics for explanations of model predictions are as yet less well investigated. The
question we want to answer in this work goes a step further than trusting predic-
tions: Can we trust the explanations of machine learning predictions?

The contribution of this work is twofold. First a theoretical framework to evaluate
methods for interpretable machine learning is established based on regulatory re-
quirements and social explanation theory. Post-hoc interpretation methods that use
feature importance indications have appeared as a promising approach to establish
interpretability while preserving model performance. Model-agnostic variants of
these post-hoc explanation methods accept any black box model as input, making a
general framework.

Secondly the framework is applied (in part quantitatively and in part qualitatively)
to evaluate two state-of-the-art explanation methods (LIME and Kernel SHAP) on
synthetic datasets with known explanatory structure. The predefined data distribu-
tions have served as a ground truth that made objective evaluation of the explana-
tions possible. Moreover, an intuitive assessment has been proposed that serves as
a first step towards a general evaluation of explanation models that are in produc-
tion. Our results suggest that evaluating explanations of model predictions should
become as integrated in the field of machine learning as evaluating performance of
the models themselves. The analysis and methods in this work are a step in that
direction.
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Chapter 1

Introduction

Artificial intelligence has been adopted by mass culture with the technology now
being deployed in numerous industries. Decision-making is being automated in
order to generalize, speed up and improve the effectiveness of processes. Person-
alized pricing, job recruitment tools and credit scoring models are applications of
artificial intelligence (AI) that demonstrate its omnipresence and influence on the
lives of many individuals. Now that banks and governmental organizations use
risk assessment- and automated decision-making tools, the challenges these systems
pose to their users in terms of fairness and transparency are in the spotlight of pub-
lic attention. Data-driven algorithms can be sensitive to discrimination and biases,
perhaps injected by human prejudice, which exemplifies that caution is warranted
when considering the output of such systems.

An example of an algorithm that sparked controversy is the judicial risk assess-
ment scoring method that is used in US courtrooms to predict recidivism in differ-
ent stages of the criminal justice system. A popularized investigation by ProPublica
(Angwin et al., 2016) concluded that the COMPAS 1 tool used by courts in the United
States (US) to inform judges during sentencing, was biased against African Amer-
ican defendants. Even though race was not a feature used for classification, em-
ployment status and zip codes could act as proxies for race due to high correlation
with minority groups. Despite these critics, the algorithm surpassed a major legal
challenge when it was ruled admissible by the Wisconsin Supreme Court in 2016
(Kirkpatrick, 2017). However, the court specified that an algorithmic risk score can-
not be the determinant factor in legal rulings. The analysis of ProPublica endured
criticism from scientists for the fairness criteria it had used (Chouldechova, 2017).
The debate this case caused is relevant and underlines the lack of transparency in
the decision-making process of certain AI models.

Controversial algorithmic decision-making is not limited to the US only. A network
of private investigators published a report in which they mapped out the chang-
ing landscape of automated-decision making in different countries in the European
Union (AlgorithmWatch, 2019). In the Netherlands, the Ministry of Social Affairs
and Employment uses the System Risk Indication system, a big data analysis system
intended to detect welfare fraud by linking government data sources. The indicators
in the risk model are unknown to the public and the Ministry refuses to make them
public in order to prevent the system from being manipulated by criminals. This
has led to questions by members of the Dutch House of Parliament to the Minister

1The Correctional Offender Management Profiling for Alternative Sanctions tool claims to predict
the risk of a defendant committing another crime. It is an algorithm that uses the answers to a 137-item
questionnaire.
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of Legal Protection. A group of civil right initiatives even started legal proceedings
against its use (Huisman, 2019).

A statement on the social process of black-boxing by philosopher Bruno Latour from
1999 reflects the achievements in the field of AI from the last decades. According to
him, black-boxing is "the way scientific and technical work is made invisible by its
own success. When a machine runs efficiently, when a matter of fact is settled, one
need focus only on its inputs and outputs and not on its internal complexity. Thus,
paradoxically, the more science and technology succeed, the more opaque and ob-
scure they become." (Latour, 1999). However, even though AI models can improve
the productivity and objectivity of consequential decisions dramatically, the opaque-
ness of the steps between input and output can limit the practical use of AI systems.
Their black-box nature prompts complex ethical and scientific questions that stand
in need of answering.

1.1 Artificial Intelligence

In the early days of AI, the picture of algorithmic problem solving that arose was
a general-purpose search procedure (McCorduck, 2004). In this paradigm, an AI
agent would usually follow the same basic algorithm to achieve its goals. Actions
would be produced step by step, backtracking whenever reaching a deadlock. Early
AI systems were mostly implemented in made-up micro worlds and the way they
strung together rudimentary reasoning steps to find solutions did hardly scale up to
complex environments. Besides that, the algorithms knew nothing about their envi-
ronments or the objects they dealt with. They reached their goals only by exploiting
basic syntactic manipulations.

In response to this first surge of AI, domain-specific knowledge and rules were in-
tegrated in AI systems. This injection of expert knowledge led to useful applica-
tions in specific real-world domains. Researchers started to believe that intelligence
might be grounded in how one deals with different types of knowledge. Knowl-
edge engineering and representation became major points of focus within the field
of AI. Knowledge-based AI systems—built on logic and taxonomic hierarchies—are
well-defined which facilitates understanding of their internal reasoning. The key
limitation of these rule-based systems however, is inflexibility regarding tasks that
involve uncertainty. Rules alone do not suffice for defining complex non-linear tasks
like visual object detection.

The limitations of this second surge of AI led to a paradigm shift towards data-
driven statistical AI models (Russell and Norvig, 2009). Methods from statistics
and probability theory facilitated the return of neural networks and the invention
of other data-driven methods like random forests (Breiman, 2001a). These systems
have become commercially successful as they have been applied to newly available
digitized information for applications like speech recognition and credit card de-
fault prediction. This caused a reorganization of machine learning as a separate
field within AI. With the availability of large datasets and increase of computa-
tional power came a more practical approach to AI. In this paradigm, given enough
data for learning methods to extract useful information, explicitly expressing all the
knowledge a system needs is no longer needed (Halevy, Norvig, and Pereira, 2009).
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The main drawback of the increased complexity of modern statistical AI methods is
the opacity of their reasoning. While the reasoning of classical rule-based AI meth-
ods is well-defined, statistical methods like deep neural networks and tree ensem-
bles (random forests) do not exhibit comparable transparency. This problem is dis-
closed in studies that use adversarial attacks in which minor perturbations of input
instances that are imperceptible to humans, lead to strong deviations in the output
of a model (Papernot et al., 2017). Accordingly, as AI systems have become more
complex and opaque, interest in methods that combine the performance of state-of-
the-art machine learning with some form of transparency has raised.

1.2 Right to Explanation

The interest in more transparent AI systems cannot be seen in isolation from in-
creased regulatory pressure. The spike in data breach complaints in the first months
after the introduction of the European General Data Protection Regulation (GDPR)2,
demonstrates the current public interest in the increased possibilities for contesting
data abuse (Hern, 2018). The scope is international and since the GDPR applies to
controllers and processors that use data of citizens in the European Union (EU), re-
gardless of whether the processing takes place in the EU or not, the regulatory pres-
sure pertains to the global majority of data processing organizations. Article 22 is the
key section of the GDPR when it comes to AI since it includes provisions on auto-
mated individual decision-making3. Decisions that fall under the protection of this
Article are based solely on automated processing and should produce legal effects
or similarly significantly affect an individual, as stated in Article 22(1). In Recital
71 of the GDPR 4, automatic refusal of an online credit application and e-recruiting
practices without any human intervention are given as examples of such decisions.

Although not undisputed, Goodman and Flaxman (2017) argue that the new legis-
lation tries to tackle the lack of transparency in automated decision-making with a
so called right to explanation as implicitly described in Article 22 of the GDPR. The
acknowledgement of a right to explanation received quite some academic backlash
as researchers claimed by means of restrictive interpretation, that the GDPR merely
implies a right to be informed (Wachter, Mittelstadt, and Floridi, 2017). This right to
be informed would only inquire insights into the functionality of the system before
a decision is being made, as opposed to an explanation of the specifics of an indi-
vidual decision after it has been made. Important to this discussion is Article 22(3),
as this provision refers to the requirement for the data controller to "implement suit-
able measures to safeguard the rights, freedoms and legitimate interests of the data
subject, at least the right to obtain human intervention on the part of the controller,
to express his or her point of view and to contest the decision". What these men-
tioned measures are and when they are deemed suitable is what sparks most legal
and academic debates. An added layer of understanding for the Article is provided
by GDPR Recital 71. This is the only place in the GDPR where a right to explanation

2 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on
the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free
Movement of Such Data, and Repealing Directive 95/46/EC [2016] OJ L 119

3 GDPR Article 22 on the official website of EU Law (visited on 16-05-2020):
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1532348683434&uri=CELEX:
02016R0679-20160504

4https://gdpr-info.eu/recitals/no-71/ (visited on 16-05-2020)

https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1532348683434&uri=CELEX:02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1532348683434&uri=CELEX:02016R0679-20160504
https://gdpr-info.eu/recitals/no-71/
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is mentioned. It declares that "in any case, such processing should be subject to suit-
able safeguards, which should include specific information to the data subject and
the right to obtain an explanation of the decision reached after such assessment and
to challenge the decision". Currently, the majority of academic researchers accept
the existence of a right to some form of explanation and the discussion has moved
on towards deciding what the form of these explanations should be.

Further guidelines for interpreting the right to an explanation are provided by the
Article 29 Data Protection Working Party (WP29), now known as the European Data
Protection Board (EDPB)5. This is an independent European advisory body with a
representative from the data protection authority of each EU Member State. Their
guidelines on automated individual decision-making and profiling provide a clari-
fication of the relevant provisions in the GDPR, which helps assessing the weight of
the alleged right to explanation. The WP29 recognizes the complexity of explaining
intricate model decisions in comprehensible terms, as pointed out by Edwards and
Veale (2017). Despite that, the WP29 guidelines assure that this complexity can never
be used as an excuse to provide information to the users that is inadequate for them
to invoke their rights. According to the WP29, a complete report of the algorithm
is not needed. An adequate explanation supplies the user with enough information
to understand the reasons behind the decision. Additionally, the WP29 states that
explanations should allow a user to act upon the decision—which is to say spot er-
rors and contest the decision. Goodman and Flaxman (2017) and the WP29 align in
their argumentation that these requirements are met by explanations that provide
information about the features that are taken into account for the decision and about
"their respective weight on an aggregate level".

The GDPR is not unique in enforcing this kind of transparency upon data-processors.
A practical example is given by a Dutch case in which a black box model for property
valuation was brought to court. In the Netherlands, the property value (WOZ-value
in Dutch) is essential for determining property tax and next to that, it also serves
as a basis for several other municipal taxes and charges. Even though the prop-
erty values are publicly available for perusal, the calculation of the value was—until
recently—based on an opaque model. After a seven-year procedure, The Dutch High
Council has stated that in case of valuation, municipalities should provide insights
into the relevant factors behind the procedure of property value determination6. In
a broader sense, the High Council has stated that under the Dutch General Admin-
istrative Law Act (Awb), algorithmic decisions should be accompanied by informa-
tion that makes it possible to verify them. This court decision aligns with the WP29
interpretation of the GDPR and the general trend in the regulatory landscape.

Although the ambiguity and lack of explicitness in some of its articles make the
legal existence and feasibility of some rights mentioned in the GDPR concerning
automated decision-making controversial (Wachter, Mittelstadt, and Floridi, 2017),
the perspective of (Goodman and Flaxman, 2017) will be taken in the remainder of
this thesis. They argue that even though the legislation poses big challenges to the
industry, it should first and foremost be perceived as an opportunity and motiva-
tion for computer scientists to take the lead in creating transparent and interpretable
systems that serve to prevent biases and discrimination by enabling interpretability.

5WP29 - Guidelines on Automated individual decision-making and Profiling for the purposes of
Regulation 2016/679 (As last revised and adopted on 6 February 2018)

6Hoge Raad 17 August 2018, ECLI:NL:HR:2018:1316
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1.3 Explainable Artificial Intelligence

As part of the AI strategy, the High-Level Expert Group on Artificial Intelligence—
an independent expert group set up by the European Commission— prepared a
document containing Ethics Guidelines for Trustworthy Artificial Intelligence (AI)7.
This document is intended to set out a common goal when it comes to the develop-
ment of trustworthy AI systems. The common goal of creating AI systems whose
actions and solutions can be understood by humans led to the development of a
complete sub-field of AI called Explainable Artificial Intelligence (XAI) (Gunning,
2017). XAI systems aim not only to optimize a task in terms of efficiency and ac-
curacy but additionally, provide explanations as to why it made a decision. Since
real-world deployment often differs from controlled training settings, current met-
rics that validate model function before deployment might not be indicative of the
final goal of a model. Users or in some cases human experts should be able to use
model explanations to grasp the rationale behind a model’s predictions.

With the ambition of creating explainable AI, came the advent of a popular class of
models that focuses on interpretability. Machine learning research on interpretabil-
ity is defined as the discipline of facilitating users with cues to comprehend what
a model did and why it did so. These cues can take many forms, depending on
the type of data and machine learning model one is working with. Examples of in-
terpretable models that have shown promising results include visual cues to reveal
what deep learning models are focusing on in an image and surrogate models that
simplify the internal process of opaque systems.

1.3.1 Merits of Explainability

Decision-making models based on data-driven learning methods are associated with
opaque internal reasoning processes. The problem associated with this paradigm
is that users are inclined to distrust predictions that are not accompanied by any
explanation (Edwards and Veale, 2017). When no insight is given into the internal
reasoning process, the possibility of the reasoning being biased cannot be ruled out.
With that being the case, the trust of users and model owners in these systems can
be restored by and built upon explanations accompanying predictions.

Throughout the history of computing science, the algorithm has been the key focus
of study. Recent work in AI however suggests that for a lot of problems, it makes
more sense to be concerned with the data that is fed to the algorithms instead of
which algorithm to use (Russell and Norvig, 2009). The main cause of this shift
is the increasing availability of very large datasets. The problem is also known as
’data fundamentalism’ (Crawford, 2013), which covers the notion that big datasets
are storehouses that yield valid and objective truths, if only we can draw them out
using machine learning algorithms.

Next to gaining user trust, explanations can help to give a more nuanced view on
this notion and act as a safeguard for algorithmic fairness and for identifying biases
in large datasets. Ethical and societal issues regarding data-driven decision-making
have been the ground for recent regulatory pressure that serves as an important

7Ethics Guidelines for Trustworthy AI on the website of the European Commission (visited on 15-
05-2020): https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines

https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines
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force behind the push for explainability. Regulatory pressure on its own is not al-
ways enough for ensuring fairness and an ethical foundation. The problem called
ethics washings demonstrates this. Companies establish ethics boards and have prin-
ciples in place, that actually mean nothing other than getting them out of regulatory
trouble (Sharkey, 2019). As Sharkey (2019) points out, it is a very high level thing
to ’be fair’ or ’be just’ so it needs to come down to the application. Without sys-
tems in place that allow us to evaluate the fairness of model decisions, it is hard to
move from these principles to practice. It is not the goal of interpretable models to
ensure fairness, as it is an ethical concept rather than a statistical one, but the move
towards increased interpretability does provide stakeholders with arguments that
can aid these societal discussions.

Most regulatory pressure aims to provide interpretability from the user perspective.
Important to note though, is that interpretable models also have great benefits for
model owners and designers. In automated processes like credit and insurance risk
assessments, instances of interest are flagged, after which a human controller has
to validate the assessment. Predictions that are accompanied by an explanation can
give insight into whether the model is functioning as intended, which would speed
up the validation process.

To summarize shortly, interpretability in the decision-making process of models has
four main motivations:

Trust It fosters trust of users and regulators and thereby promotes model
adoption;

Learning The rationale behind a decision allows us to discover new patterns in
the data and learn more about the problem domain;

Ethics It helps in making ethical assessments of models, also in terms of regu-
latory compliance; and

Validation It makes debugging and validating models easier.

1.3.2 Challenges for Explainable Artificial Intelligence

For black box machine learning models it is not always clear why they arrived at
a certain prediction or classification. The problem is not that model engineers do
not know what their model consists of. They should know exactly the amount of
layers their model comprises, parameters that are tuned, how the error is propagated
back through the model during training and what activation function it uses. The
problem here is that for simple models, it is evident how each input contributes to
the output. For more complex models, no matter from which model family, this
input contribution is less clear because of numerous re-combinations of the input
variables. Evidently, the bigger and more complex models get, the more challenging
it becomes to bring back these non-linear interactions to comprehensible terms.

Another problem is what Breiman (2001b) calls the multiplicity of data models. With
this he describes the phenomenon that given a particular dataset, there are multiple
good models with different internal architectures that map the input variables to
their corresponding predictions. If the error surface of a given problem does not
have an obvious global minimum, it is very possible that similar models with close
predictions would lead to different explanations because they both generalize from
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a somewhat different underlying model. From an interpretable model perspective,
this could lead to explanations of questionable quality and consistency. The influ-
ence this has on the robustness and causality of interpretable models should be made
clear for these methods to become widely accepted and trusted.

Interpretation involves a trade-off between being truthful to the underlying model
(fidelity) and the explanation being comprehensible to the user. This arises from
the fact that the complexity of model decisions is hard to capture in comprehensible
terms. If the goal is solely to gain user trust, problems of putting implicit human
cognitive bias in the interpretable model arise (Herman, 2017). This is something the
XAI community should account for by providing objective measures of interpretable
model requisites.

The explanations a forensic analyst needs in order to validate a fraud recognition
model are very different from the explanations that should accompany a model that
classifies CT-scans, for a physical therapist to make an informed decision. This kalei-
doscopic character of interpretable models fragments the field of XAI. Put differ-
ently, there might be as much approaches needed to interpretability as there are to
machine learning. The combination of the problems mentioned in this section re-
flects the approximate nature of interpretable models. Objectively measuring and
testing for interpretable model requisites would be the next step in the direction of
reaching the goals of XAI and interpretable models specifically.

1.4 Goal of this Study

While performance metrics for machine learning models have been established, the
same cannot be said for performance metrics for explanations of model predictions.
Explanations of machine learning models try to help a user decide whether to trust
their predictions. Before we start relying on the explanations accompanying auto-
mated decisions, the quality and trustworthiness of explanations have to be assessed
and established. The question we want to answer in this study therefore goes a step
further than trusting predictions: Can we trust the explanations of machine learning
predictions?

An important goal of this study is to give an overview of what has been done in
the field of XAI. We will establish basic terminology and use this to structure the
work that has been done along a number of key dimensions. This work sets out to
combine the requirements of automated decision-making models found in the reg-
ulatory landscape sketched in Section 1.2 with cognitive explanation theory and the
work that has been done in the field of XAI. We believe that this combination adds
a layer of practical applicability to the field. Important criteria for evaluating expla-
nations will be established using this framework. These criteria result in different
metrics that we will be used to evaluate state-of-the-art explanations methods. This
study will establish the first steps at querying and testing these methods with re-
spect to the most important criteria of the explanations to the original models. Since
human evaluation of explanations is not always feasible, the focus will be on compu-
tational methods for evaluating explanations, both quantitatively and qualitatively.
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1.5 Outline

In the introductory chapter of this thesis, it has been outlined that the problems in
AI have led to regulatory pressure to add a layer of transparency to machine learn-
ing models. The combination of these two factors resulted in the development of
the field of explainable AI. In Part I of this thesis, the machine learning methods that
will be used to make predictions in the remainder of the study will be introduced. In
the next chapter (3), interpretable machine learning attempts will be taxonomized to
give an overview of the field and to categorize the different approaches. That chap-
ter will be started of with establishing basic terminology and reviewing cognitive
theory of explanation. Additionally, the legislative requirements and possibilities
provided by state-of-the-art interpretable models will be combined to establish req-
uisites for the evaluation of explanations that will be used later on in the analysis.
Part II of the thesis provides details on how the evaluation of model explanations
will be addressed and which methods will be employed to answer the questions
posed in the introductory chapters. Chapter 4 describes in turn the details of the
state-of-the-art explanation methods that will be used in this study and how they
propose to solve interpretability problems in machine learning. The last chapter of
this part (5) will describe how the synthetic datasets with known explanatory struc-
ture have been generated and the methodology used to apply the evaluation frame-
work. In Part III, the results of the analyses will be described and structured before
we will discuss them in Part IV.

Summary Chapter 1

1.1 As AI systems have become more complex and opaque, interest in methods
that combine the performance of state-of-the-art machine learning with some
form of transparency has raised

1.2 Regulators have started to actively call for more transparency in automated
decision-making models. Key requirements that adequate decision explana-
tions should meet for GDPR compliance are that the user should be able to un-
derstand the reasons behind an automated decision and that the user should
be able to act upon the decision—which is to say spot errors or contest the
decision.

1.3 The problems in AI resulted in regulatory pressure to add a layer of trans-
parency to machine learning models. This has led to the development of the
field of explainable AI.

1.4 While performance metrics for machine learning models have been well es-
tablished and are important to today’s AI successes, performance metrics for
explanations of model predictions are as yet less well investigated.

1.4 An evaluation framework for prediction explanations will be drafted based on
a combination of regulatory requirements, explanation theory and research on
interpretable machine learning. This framework will be tested using datasets
with predefined distributions and a known explanatory structure.
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Part I

Theoretical Framework
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Chapter 2

Background

The lack of transparency in state-of-the-art AI applications and the ensuing call for
explainability, stem from multiple sources. The development of explainable artificial
intelligence (XAI) and the direction in which the field is moving, are guided by the
regulatory landscape that forces data processing instances to be compliant with leg-
islation on the one hand. On the other hand, practical constraints and limitations—
that sometimes conflict with regulatory requirements—are given by the mathemat-
ical framework upon with machine learning is built. The learning algorithms that
are the basis of machine learning will be discussed in this chapter as they provide
necessary background information for the remainder of the study.

2.1 Machine Learning and Statistical Premise

Machine learning is a subfield of AI that focuses on computer programs that use
statistical models to perform tasks without explicit specifying how (Samuel, 1959).
Fundamentally, machine learning models use example data or past experience to
optimize a specified performance criterion by using patterns and inference. One of
the problems that machine learning can solve is to perform a task for which there is
no human expertise or for which humans cannot explain how they solve the task—
like recognizing a particular word in speech. Automating such a task is challenging
partly because we can not explicitly provide the system with all the knowledge it
needs. By providing a model with many sample words however, it can learn to
recognize the patterns in the sounds that make up particular words.

The range of machine learning algorithms can broadly be dissected into three dif-
ferent approaches: Supervised learning, unsupervised learning and reinforcement
learning (Alpaydin, 2009). Supervised learning methods learn from a dataset with
instances consisting of features that describe its attributes. The goal of the system is
to learn a generalized mapping that can predict the correct output value for an un-
seen instance, given only the features of the instance as input. When the algorithms
learns this mapping, the target outputs acts as supervisors that guide the learning
of the mapping. When target output variables are not available in the dataset, unsu-
pervised learning methods can be used to find regularities in the input. This form
of self-organization can be very useful to discover patterns in an unlabeled dataset.
When the output of a system is a sequence of actions and a single action is not what
is most important, reinforcement learning algorithms can be used to assess the qual-
ity of an action sequence. They do this by learning—through trial and error—which
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sequences increase the chance of reaching the goal. This study focuses on super-
vised learning, since most problems related to the lack of transparency in machine
learning models stem from biases in collected labeled training data.

2.1.1 Supervised Learning

The learning algorithms in the supervised learning paradigm, use patterns in histor-
ical data to create a mapping from input to output. When the task of the model is to
estimate the relationship between the features and a continuous output variable, the
model will perform a regression analysis. For classification problems on the other
hand, the target output is a categorical label and the task consists of deciding to
which category the instance belongs based on its feature values. The latter will be the
focus of this study. More specifically, binary classification problems will be used in
which the task consists of classifying an instance as either one of two binary classes.
From the definition of supervised learning, it becomes apparent that the data that
is used for training a model is vital to its predictive capabilities. It is believed that
there are patterns in observed data, however we do not know the particular process
that generated these patterns and use the learning algorithms to extract them. Essen-
tially, the supervised learning algorithm is a computer program that optimizes the
parameters of a model using training data without using explicit knowledge. This
makes this family of methods very susceptible to having data biases encountered in
the learning phase, resonate through its decision-making process.

Computer science and statistics play a role in machine learning by providing ef-
ficient algorithms to solve the parameter optimization problem. A wide range of
models and training algorithms is available, varying in complexity. Algorithms can
be categorized along multiple axis, in accordance with different defining characteris-
tics. The first of which is the trade-off between bias and variance. The bias of a model
describes the simplifying assumptions it makes about the target function it is trying
to learn. Models with high bias generally learn faster and are more interpretable
than models with low bias. They are however, less flexible and the simplifying as-
sumptions hinder the learning of complex functions. Variance on the other hand
describes the degree to which a model is dependent on a specific set of training data.
Since models are trained on only a sample of the data, they should not be too de-
pendent on the specifics of the selected set of training data. Ideally, the model learns
the underlying distribution of the complete dataset independent of which part of
the data is used for training. The parameters of a model with high variance and the
function it learns are therefore influenced more strongly by the specific training set
than for a model with low variance. This sensitivity to overfitting of the mapping
function is especially harmful when the training data is not a representative sample
of the underlying distribution and when there is a lot of noise in the data. In machine
learning, there is always a trade-off between the bias and variance since increasing
the bias of a model will decrease the variance and vice versa.

The complexity of a dataset can be characterized by the amount of interactions and
non-linear relationships between features. Models that can accurately learn more
complex mapping functions tend to use a more opaque reasoning process. This is
what sparks the accuracy-explainability discussion in the field of AI. For this study,
comparisons will be made between models of different levels of complexity with re-
spect to the target functions they can estimate. One way to visualize the complexity
of a model is to look at the decision boundary it draws for a binary classification
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problem. Since a binary classifier has to always label an instance as either one of
the possible categories, there is a decision boundary that separates both classes. The
decision boundary is the part of the problem space where classification is an am-
biguous decision. In this study, four different supervised machine learning models
will be trained on datasets with different underlying distributions for a binary clas-
sification task. These models are: Logistic regression, decision trees, random forest
models and neural networks and they represent different levels of opacity and com-
plexity. In Figure 2.1, the decision boundaries of all four models for a binary classi-
fication task are visualized. The dataset contains instances drawn from a standard
normal distribution with µ = 0 and σ = 1 that are labeled using the following eval-
uation: y > x0

2 − x1. In this dataset, an instance is thus of class 1 (grey dots) when
x0

2− x1 > 0 and of class 0 (green dots) when x0
2− x1 <= 0 with 1% noise. The red

and blue contours make clear for which input values the model predictions are of
class 0 and 1 respectively. It is shown that the logistic regression model is not able to
learn this mapping whilst the other models do relatively well, with the remark that
the decision tree model seems more sensitive to noise in the training data.

2.2 Learning Algorithms

Most methods that are used in machine learning nowadays, have a statistical foun-
dation that transforms an algorithm into a prediction model, using data in a super-
vised learning context. This section serves as a general introduction of the range of
algorithms that are going to be used in the remainder of this thesis to develop pre-
diction models. The range of algorithms consists of varying complexity as well as a
broad array of possible decision boundaries.

2.2.1 Logistic Regression

Logistic regression is a machine learning model that uses a logistic function to model
the relation between one or more independent variables and a binary dependent
variable. It is a linear method, but the predictions are transformed using the logis-
tic function. In this function, the logarithm of the odds (log-odds) for the instance
belonging to one of the classes is a linear combination of the independent variables,
which can on their own both be binary or continuous variables. Even though the
log-odds is a linear combination of the input variables, logistic regression is differ-
ent from linear regression. Logistic regression is used over linear regression when
the output variable it is trying to predict is of categorical nature, which corresponds
to the classification problems used in this study. The probability of the instance be-
longing to one of the classes is a value between zero and one since the function that
converts the log-odds to a probability value is the logistic function:

f (x) =
1

1 + e−x (2.1)

Because a linear relationship is assumed between the input variables and the log-
odds of instances belonging to class 1 in logistic regression classification, the log-
odds of the instance being part of class y = 1 with two input variables x0 and x1 are
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FIGURE 2.1: The learned decision boundaries of the models trained
on a binary dataset labeled using the following function: y = x0

2 −
x1, where an instance is of class 1 (grey) when y > 0 and of class 0
(green) when y <= 0 with 1% noise. Red and blue contours denote
areas for which the model predictions are of class 0 and 1 respectively.

described by the following equation:

log
p

1− p
= αb + α0x0 + α1x1 (2.2)

Since the natural logarithm is used in the standard implementation of the model, the
odds can be described by:

p
1− p

= eαb+α0x0+α1x1 (2.3)

and the probability p of the instance belonging to class y = 1 is then:

p =
1

1 + e−(αb+α0x0+α1x1)
(2.4)
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The coefficients xi of the linear combination can be fitted by optimization methods
using the labeled training data. The solver used in this study is maximum likelihood
estimation using L2 regularization (Malouf, 2002), also known as ridge regression.
This learning algorithm tries to find values for the coefficients that minimize the er-
ror in the probabilities predicted by the model compared to those in the labeled data.
Because of the linear assumptions made by the logistic regression model, it has high
bias and low variance which makes it more sensitive to underfitting complex distri-
butions. In the bottom-left part of Figure 2.1, it is shown that the linear assumptions
hinder the logistic regression model from learning the non-linear relationship in the
y > x0

2 − x1 dataset. However, the resulting linear decision model is very compre-
hensible for human users. Roughly, users only need to evaluate whether the value
of x1 is above 0.9. In this synthetic situation this might not mean much but let us
assume the model is used for credit approval and x1 represents a gender-related at-
tribute. In that case, the fairness of the automated decision-making tool is highly
questionable and the comprehensible nature of the machine learning model led to
this realization.

2.2.2 Decision Trees

Decision tree learning comprises of generating a tree structure that can be used to
predict the class output of a presented instance (Breiman et al., 1984). The tree is con-
structed by using labeled training data for learning the supposed relations between
the input features and class labels. Classification trees are directed tree structures
much like flow-charts starting from a root node with branches representing the out-
come of a test on a feature of the instance. Leaf nodes at the bottom of the tree
represent class labels and internal nodes between the root node and the leaf nodes
represent further tests on features of the instance. Paths from the root node to a leaf
node thus can be seen as combinations of features that lead to an instance being clas-
sified as part of a specific binary class. The graph-like structure and the step-by-step
tests on the features makes the resulting model interpretable for most humans.

The algorithms for creating a decision tree usually work top-down, starting with the
root node using the whole dataset intended for training. The data is splitted into
subsets by the value of a feature that best splits the data. The best split is usually
defined as the split that leads to the maximum level of similarity in terms of classes
within the different subsets. The split will lead to two new nodes and both subsets
are then splitted in the same way. This splitting is done recursively until a node
contains only one class or until the level of similarity in class presence cannot be
increased. In both cases, the node becomes a leaf node. This greedy top-down in-
ference of decision trees is the most used method for generating decision trees from
a set of labeled training data. The level of similarity used for splitting is based on a
predefined metric. In this study, Gini impurity will be used to define the quality of a
split. The decision tree algorithm makes few assumptions about the target function
and can therefore be seen as a model with low bias and high variance. These quanti-
ties can be controlled with model options like a maximum tree depth but these will
not be used in this study. Because decision trees map all the instances of the train-
ing data to the tree structure, they are not always good at generalizing and therefore
prone to overfitting. This can be seen in the bottom-right part of Figure 2.1. The deci-
sion tree model is sensitive to the noise in the training data, which leads to problems
when new unseen instances will be presented to the model.
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Gini Impurity

When splitting a node, the Gini impurity metric provides information on how often
a random instance from the set of training data would be incorrectly classified if it
was randomly classified according to the distribution of labels in the subset. For a
binary classification problem it is calculated by the following formula:

G =
1

∑
i=0

p(i) ∗ (1− p(i)) (2.5)

where p(i) is the probability of randomly selecting an instance of class i in a set. Gini
impurity is weighted for the subsets, according to their size. This weighted impurity
is subtracted from the impurity of the node to be splitted which results in Gini gain
value for a specific split. Maximizing this gain value corresponds to choosing the
best split for a node.

2.2.3 Random Forest

Random forests are a more complex model type that is built on decision tree learn-
ing. Models of this type are meta-estimators that fit multiple decision tree classifiers
on subsets of the data over which it averages to increase predictive capabilities and
to control overfitting (Breiman, 2001a). The effectiveness of this approach is shown
in the top-right part of Figure 2.1 when compared to the bottom-right part. The
random forest model seems to be less sensitive to noise in the training data. Ran-
dom forests are based on the concept of bootstrap aggregated decision trees—better
known as bagging. Bagging is an ensemble method that repeatedly selects a ran-
dom sample of fixed size from the training data with replacement and fits decision
trees to these samples as described in Section 2.2.2. For classification, the individual
decision trees in the tree ensemble all vote for a class and the final classification is
based on the majority vote principle. The intuition behind bagging is to decrease the
variance of the model without increasing the bias too much. A single decision tree
can be very sensitive to noise and overfitting but the average of many trees, given
they are not correlated, should limit this. Sampling by bootstrapping is performed to
avoid too much correlation between multiple trees, as opposed to creating multiple
decision trees on the same training dataset.

Random forests consist of one additional characteristic compared to this general bag-
ging scheme. During the learning phase, every split is based on a random subset of
the features. The addition of feature bagging—which is a form of random subspace
method—to the standard sample bagging, further reduces correlation between the
different trees in the ensemble. After all, if a couple of features are strong predictors
for the output class, they will be present in many trees. Reducing this correlation
leads to stronger predictive capabilities under many circumstances (Ho, 2002). In
this study, random forest models consisting of 100 decision tree estimators will be
used for classification. These individual trees use Gini impurity metrics to fit the
training samples (see Section 2.2.2).
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2.2.4 Neural Networks

Neural networks make up a class of supervised learning algorithms that is loosely
based on the human brain. The analogy drawn, is of an information network that
consists of several nodes connected by weighted edges, similar to how signals are
transmitted from neuron to neuron via synapses in the brain. Over the years, the fo-
cus of the field of neural networks deviated from replicating biology to performing
specific machine learning tasks. Therefore, the directed and weighted graphs that
are called neural networks, should no longer be seen as an attempt to remain true
to their biological counterparts. Artificial neural networks are famously successful
at mapping complex non-linear relationships between features and are used in al-
most any type of task in machine learning (Alpaydin, 2009). In the top-left part of
Figure 2.1, the smooth decision boundary of a neural network model trained on a
dataset with a non-linear feature relation is visualized.

Artificial neurons

The basic unit of computation in neural networks is a single node or neuron. Such a
single node receives input information from another node or from an external source
and outputs a signal that can be picked up by other connected nodes. A visual
representation of a single node can be found in Figure 2.2. In implementations of
neural networks, each of the input signals xi that come from other nodes or external
sources are real numbers with an assigned weight wi, reflecting the importance with
respect to other inputs. The weighted inputs are summed and the activation of the
node is calculated based on feeding this weighted sum of inputs to an activation
function f , which will be explained later in this section. One of the inputs to the
node is a bias input xb with value one. This bias node allows for a trainable constant
value, permitting the activation function to be linearly shifted.

xb=1

x0

xm

wb

w0

wm

...

Inputs Weights Activation	function

Output

�(∑ )����

FIGURE 2.2: Visual representation of a single node, the basic unit of
computation in a neural network. The output is calculated by feeding

the weighted sum of inputs to an activation function.
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Multi-Layer Perceptron

The most basic binary classification algorithm that uses the concept of a single neu-
ron with a linear activation function is the perceptron (Rosenblatt, 1958). Single
nodes can however be linked together in different network configurations, leading
to various learning behaviors. In a neural network, multiple nodes are usually or-
dered in layers. The first layer is the input layer that consists of vectors providing
information to the network. In this study, the input information will consist of nu-
merical vectors with tabular data yet neural networks also accept encoded visual
and textual data as input. The last layer is an output layer that translates network
computations to real-life variables, actions or decisions. In between these two layers,
the network can consist of one or more hidden layers in multiple different configu-
rations that do computations based on the activation function.

A standard type of neural network with at least one hidden layer is the multi-layer
perceptron (MLP). A visual representation of this type of network can be found in
Figure 2.3. MLP networks are examples of feedforward neural network, in which
the information flows only in one direction—from the input- to the output layer.
Recurrent neural networks (RNN) on the other hand, have connections in both di-
rections making it possible for the signals to traverse the hidden layers multiple
times, allowing for temporal dynamic behavior. In this study however, a relatively
straightforward MLP with one hidden layer containing 100 nodes will be used for
the classification tasks. Even in this configuration with only hidden layer, MLP mod-
els are universal function approximators (Cybenko, 1989).

Input	layer Hidden	layer Output	layer

Y0

Y1

X0

X1

X2

Xm

Bias
1

Bias	
1

Bias	weights
Network	weights

FIGURE 2.3: Visual representation of a multi-layer perceptron with
one hidden layer in between the input layer and the output layer.
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Activation Functions

An important factor in the ability to approximate non-linear functions is the activa-
tion function that the nodes in the network use. The activation function of a node is
an abstraction of the action potential in the cell body of biological neurons. As can
be seen in Figure 2.2, the activation function f computes an activation values based
on the weighted sum u of all the inputs to a node:

u =
m

∑
i=1

wixi (2.6)

When initial attempts at creating neural networks used step functions to compute
node activation, it became clear that only linear classification problems could be
solved by networks of a reasonable size. Linear activation functions lead to similar
problems with the additional issue of unstable convergence caused by nodes that
are on a favorable path in the network, as the activation values in linear functions
are not bounded nor normalizable. These problems can be solved by using non-
linear activation functions, which allow networks to map non-linear problems using
a reasonable amounts of nodes. This ability to learn non-linear relationships is what
makes networks of these nodes useful for problems that involve complex relations
between features in the data.

Sigmoid A widely used activation function is the sigmoid logistic function. This
asymptotic function translates the weighted sum of inputs u to a value in the range
between zero and one. The function looks as follows:

f (u) =
1

1 + e−u (2.7)

This activation function represents a smooth transition between a neuron being rela-
tively inactive ( f (u) ≈ 0) and a neuron firing ( f (u) ≈ 1) with the additional property
of it being differentiable, which is a requirement for most popular neural network
learning methods. Because of its asymptotic character, the function always returns a
non-zero value. This results in dense representations of the activation, which can be
problematic especially for large networks of nodes. Additionally, it is not computa-
tionally efficient to depend on expensive exponential operations when learning the
optimal weight values.

ReLU An alternative is the Rectified Linear Unit function (ReLU), which is currently
the most popular activation function (Ramachandran, Zoph, and Le, 2017):

f (u) = max(0, u) (2.8)

This function leads to inactive nodes when the weighted sum u of inputs to a node
is lower than zero, which results in more sparse representation compared to net-
works using the sigmoid activation fuction. The derivative of the ReLU function
is a constant value, zero for u <= 0 and one for u > 0, which facilitates efficient
computation. The disadvantage of these inactive nodes in combination with a zero
gradient is that they can sometimes get stuck in this inactive state (a problem known
as dying ReLU) which prohibits these nodes from being involved in learning. It
has been shown though, that networks using the ReLU activation function, allow
for faster training and better convergence performance (Krizhevsky, Sutskever, and
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Hinton, 2012). In this study, all neural networks used for classification use the ReLU
activation function.

Training the Network

Another key element in the success of neural networks is the learning method that
optimizes the weight values for a specific task. The most popular supervised learn-
ing algorithm to train MLP models is gradient descent optimization using backprop-
agation. Gradient descent is an algorithm to find the minimum of a function that
reflects the error or loss of a model. For supervised learning, this function is an er-
ror measure between model predictions and target output from the labeled training
data. In this study, a log-loss function—the most popular loss function for classifica-
tion tasks (Janocha and Czarnecki, 2017)—will be used to represent the classification
error of the model:

L(q) = − 1
N

N

∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (2.9)

where y is the binary label of instance i and p(yi) is the predicted probability of
the model that the instance belongs to class one. The function adds the predicted
log probability that the instance is of class one to the loss when the correct label is
indeed one and it adds the predicted log probability of the instance being of class
zero (log(1− p(yi))) to the loss when the correct label yi is zero. This leads to low
loss values when the model predictions are accurate and higher loss values when
the predictions are worse.

Gradient descent is based on the idea of finding the minimum of this error function
by changing the weights of the network proportional to the negative of the gradi-
ent of the function at a given point. This is why it is important for the activation
function to be differentiable. Backpropagation is used to compute these gradients
(Rumelhart, Hinton, and Williams, 1985). Although the error is calculated for the
activation value of the output node, the other nodes in the network also influenced
the classification. Mathematically, backpropagation distributes the error over the
network with respect to all the different weights by computing partial derivatives of
the error function.

After the weights in the network are initialized randomly, the output can be com-
puted by a forward propagation step using the random weights and the activation
functions of the nodes. Following that, the loss of the model is calculated as the av-
erage error between the target output and the predicted output using equation 2.9.
This error is propagated back through the network using the backpropagation algo-
rithm and the weights are updated by adding the partial derivates to the weights,
controlled by a learning rate that defines the step size when minimizing the error.
Standard batch gradient descent goes through all the samples in the training set
before the weights are updated, which can be unfeasible computationally for large
datasets. Stochastic gradient descent tries to tackle this problem by updating the
weights after every input-output pair that is presented to the model. Mini-batch
gradient descent is a mix of both batch- and stochastic gradient descent as it updates
the weights using backpropagation after presenting a batch of training samples of a
predefined size somewhere between one and the size of the training set. This effec-
tively means changing the value of N in equation 2.9. In the learning phase, an epoch
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is defined as an iteration in which all samples from the training set have been pre-
sented to the model once. In this study, the Adam weight optimization algorithm
will be used with a batch size of 200 and an initial learning rate of 0.001. This is
a computationally efficient implementation of mini-batch gradient descent that uses
the average of previous gradients along with an adaptive learning rate. The learning
will stop when the loss has not significantly (∆0.0001) decreased for ten consecutive
iterations or when the maximum number of epochs (200) has been reached.

Summary Chapter 2

2.1 Practical constraints and limitations that sometimes conflict with regulatory
requirements are given by the mathematical framework upon with machine
learning is built.

2.1 This study focuses on supervised learning algorithms, since most problems re-
lated to the lack of transparency in machine learning models stem from biases
in collected labeled training data.

2.2 For the analyses of this study, algorithms with a varying degree of transparency
and complexity have been selected—Logistic Regression, Decision Trees, Random
Forests and Neural Networks. These learning algorithms will be used to create
predictive machine learning models.
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Chapter 3

Interpretable Machine Learning

In the preceding chapters of this thesis, the field of XAI has been introduced by pro-
viding background information about its origins, the factors that make it challenging
and the main drivers behind its recent developments. Interpretable machine learn-
ing, which is the focus of this study, has been introduced as a subfield of XAI sim-
ilar to how machine learning is a subfield of AI. The fundamental concept behind
interpretable machine learning is to understand how the models make decisions.
Understanding provides ground for assessing these models in terms of fairness and
accountability. This gives regulators and users confidence in case of real-world de-
ployment in situations that affect personal lives, businesses and society.

Now that we have established the upshots of interpretable models and have ex-
plored where the demand comes from, we will progress towards more formal defi-
nitions of what interpretability is and how it can be both achieved and evaluated. In
this chapter we will define what makes models interpretable, taxonomize the meth-
ods that have been devised to do so and outline how they can be evaluated.

3.1 Defining Interpretability by Explanations

There are many similar expressions that are used in the literature related to XAI. In
this section, terminology will be established in order to systematically position the
work. We accept interpretability as the denomination for comparing machine learn-
ing models on how transparent their internal reasoning is. Following that line of
thought, by providing interpretability, models become more transparent and com-
prehensible for users. Similar to other studies (Miller, 2018), interpretability and ex-
plainability are sometimes used interchangeably in this work. Interpretability will
be mostly used in the context of machine learning models while explainability will
be used more often when a broader AI perspective is taken. A key notion on which
the analysis in this chapter is built, is that explanations are the means to achieve
interpretability. These explanations can take multiple forms, depending on factors
such as the context in which a model is deployed and the type of data that is used by
the model. For an overview of the different interpretability methods that generate
explanations, please refer to Section 3.2.

The problem of making machine learning models interpretable has been approached
from many different angles by communities from different scientific fields. This
multitude of perspectives has led to different variations of even basic definitions for
interpretability and explanations. Therefore, in this section, the basic terminology
that will be used in the remainder of the thesis will be established.
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3.1.1 Interpreting Machine Learning Models

For assessing interpretable machine learning methods, a basic terminology that the
field can build upon is needed. One key term that lacks an agreed upon definition
is interpretability. In the dictionary one can find that interpreting means to explain
or tell the meaning of or present in understandable terms 1. Whether terms are
understandable, naturally depends on the context and on the intended user of an
interpretable model.

We want to use interpretability as a comparative measure and incomplete specifica-
tion of the problem prevents this. When evaluating models, one wants to be able to
say that a model or machine learning technique is more interpretable than another
(Lipton, 2018). A general definition will therefore be built on the two most domi-
nant specifications found in the literature. From a social science perspective, Miller
(2018) defines how people generate, present and evaluate explanations and uses this
research to establish that a model is interpretable if it provides explanations for its
predictions in a form humans can understand. He further describes interpretabil-
ity as "the degree to which an observer can understand the cause of a decision".
In the context of machine learning systems, Doshi-Velez and Kim (2017) define in-
terpretability as "the ability to explain or to present in understandable terms to a
human". From the combination of these two we can abstract two important insights
that will be used in this thesis:

1. Model interpretability is established by providing explanations for decisions.

2. The given explanations should be understandable for a human.

In this study, interpretability refers to the degree of interpretability of the model
itself and the decisions it facilitates. We stress that there is a distinction between
this notion and the interpretability of the learning algorithm or parts thereof (see
Section 2.1), on which the model is based. While the algorithm and mathematical
functions behind a random forest model for example, might be interpretable to some
users, these users might not be able to interpret the resulting model and decision-
making process of a large tree ensemble as it would be too much to comprehend at
once. It works the other way around as well. While the mathematical concepts and
model fitting algorithm behind a logistic regression model can be too complex to
grasp for some user without a mathematical background, the resulting model and
the decision-making process (e.g. feature x1 has a value higher than β) can still be
interpretable.

3.1.2 Elements of Explanations

According to the first insight in Section 3.1.1, explanations are the mode to estab-
lish interpretable models. It is important to make a distinction however, between
explanation and justification. The misapprehension that these words have identical
meanings in the context of automated decisions is understandable, as explanations
are often used to justify a decision. Yet in this study, explanations do not necessarily
justify a decision. Explanations are merely tools to make a decision model inter-
pretable, independent of the moral assessment of the decision being just or unjust.

1https://www.merriam-webster.com/dictionary/interpret - visited on 16-05-2020

https://www.merriam-webster.com/dictionary/interpret
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It also works the other way around since decisions can be justified, explaining why
they are right, without explaining the process that led to the decision.

In psychological theories about explanations, the difference is being made between
everyday explanations and scientific explanations (Miller, 2018). The former refers to
the explanations of why certain decisions occurred, as opposed to the latter, which
reflects the explanations of more general relationships. The focus of many studies
on everyday explanations is substantiated by research on human-machine interac-
tion which observes that users lose trust when they do not understand automated
decisions, instead of seeing it as an incentive to form more general theories about
the decision-making process (Stubbs, Hinds, and Wettergreen, 2007). For automated
decision-making in regulated industries, it is the balance between the two types of
explanations that is important. Instead of focusing on the understanding between
two humans in arguments, we are seeking explanations that hold generally in the
form of regulation.

In an influential book on software development, Cooper (2004) uses the metaphor of
inmates running the asylum to describe why computer programs are often poorly de-
signed, from the perspective of lay-users. Software developers that are in charge of
creating the technical aspects behind a program, are often also in charge of design-
ing the user interface. This results in computer programs that are very intuitive from
their perspective, but not so much for the target audience. Think of explanations as
the interface between machine learning models and users and it becomes clear that
looking at model interpretation only from an engineering perspective can lead to
the same fallacy. This is why the metaphor of Cooper is used by Miller, Howe,
and Sonenberg (2017) in the context of XAI. They emphasize that it is important
to integrate scientific knowledge and a strong understanding of how humans use
explanations into the field of interpretable machine learning because the engineers
that understand the models might not be the right people to assess the adequacy of
explanations for users that see their models as black boxes. Furthermore, De Graaf
and Malle (2017) argue that because people attribute human traits and intentions
to artificial agents—which is a known tendency in psychology—they expect model
explanations to use the same conceptual framework as humans do when explaining
their decisions. This strengthens the case for model explanations based on psycho-
logical and philosophical insights.

Causes

The traditional way of looking at explanations is to see them as the answer to a
why-question. The essential step in this causal framework of explanation is the at-
tribution of causes and events to ultimate decisions (Miller, Howe, and Sonenberg,
2017). In this study, the main goal of an explanation is to present the causal relation
between model variables and the decision in such a way that the user can under-
stand the causal relation between inputs and output. They should then be able to—
solely based on this explanation—decide whether they accept or want to contest this
causation. Explanations are thus presented as an assignment of causal responsibil-
ity, another well-known concept from psychology (Josephson and Josephson, 1996).
Theories of explanation-based decision-making describe how people make impor-
tant decisions in law, politics and everyday life from a psychological perspective
(Hastie and Pennington, 2000). The distinctive assumption these explanation-based
theories make, is that people construct an intermediate representation which is the
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basis of the final decision, instead of the complete set of evidence. This corresponds
with the idea of insufficient cognitive load in the human brain for processing com-
plete explanations (Miller, 2018). This is why we have become adept at appointing
a small number of causes from a list of many, to be the explanation. We use several
cognitive biases to do this. For automated decision-making, this selection should
be made by regulated and generalized procedures. Attempts at creating these pro-
cedures will be outlined in Section 3.2. Miller (2018) argues that the high levels of
abstraction on which machine learning models operate, make the chains of causes
smaller and less cognitively demanding, especially when they can be represented
visually. This has become a very common feature among the methods that aim to
make machine learning models interpretable, as will be outlined in the remainder of
this chapter.

Achieving an understanding of the causal relation that underlined the decision is not
the only determinant of a successful explanation. The coherence of the explanation
with prior beliefs and the strength of alternatives also seem to be major determinants
of perceptions of strength of explanations and of confidence in the decision, when it
comes to human decision-making (Pennington and Hastie, 1988). For the purpose of
this study, we do not see coherence with prior beliefs as a determinant of strength for
an explanation since the evaluation of explanations accompanying automated deci-
sions should be as objective as possible. Considering alternative explanations and
decision however, is a methodology that starts to receive more and more attention
in the field of XAI.

Contrasts

An alternative method to prevent the cognitive load of complete explanations is to
present an explanation in the form of a contrastive (or counterfactual) example. An
explanation of this form, stating why decision y0 was made instead of decision y1, is
similar to explanations that people use in everyday situations (Miller, 2018; Wachter,
Mittelstadt, and Russell, 2017). Setting the decision off to an alternative can act as a
shortcut for finding the most important causes among the set of possible explanatory
causes. Proponents of contrastive explanations argue that the method is warranted
by the contextual nature of explanations. Instead of depending on associations and
causal relations, a user might only care about a subset of the possible explanations
that is relevant in a specific context. We should also be careful though, with copying
human decision-making and evaluation as the objective nature of automated deci-
sions is perceived as one of its strengths.

3.2 Taxonomy of Interpretability Methods

Despite the attention interpretable machine learning models receive from different
scientific communities, the results are still quite scattered and unorganized. In this
section, a range of approaches, techniques and design paradigms will be taxono-
mized in order to provide some structure and to place the work performed in this
study within the broader perspective of XAI. Interpretability methods are defined as
algorithms or techniques that generate or provide explanations in order to increase
the interpretability of a machine learning model. These methods can be classified



3.2. Taxonomy of Interpretability Methods 27

along the following three main dimensions, delineating the structure of the remain-
der of this section:

1. Approach to interpretability - The technique that is used for the generation of
the explanation.

2. Type of explanation - The chosen interpretable representation of the decision-
making process.

3. Scope of explanation - Whether the explanation represents the decision-making
process behind a single decision or of the complete model.

3.2.1 Approaches to Interpretability

Machine learning methods were being deployed long before the term XAI was coined
and methods to get a better understanding of the models and the data they used,
have existed for an equivalent amount of time. Exploratory techniques like clus-
tering and visualization provide insights into the key features and relations in the
dataset before a model is built upon them. Traditional model performance metrics
on the other hand, enable model engineers to compare different models after they
have been built on the data. The problem with traditional performance metrics is
that there is often a mismatch between the formal objectives in supervised learning,
which is predictive performance on a test set, and real world costs. It is also still a
big step to go from classical visualization methods to rationale discovery. This can
be attributed to the fact that even though visualization helps with the understand-
ing of the data, it does not provide information about the causal chains that lead to
a decision.

Traditional performance metrics might be a method that machine learning engineers
are familiar with to obtain model information, but their theoretical and mathemat-
ical nature does not align with the goal of explanations to be understandable for
lay-users. This is why a lot of research has been done on approaches to generate
human-interpretable representations of model decisions. From the literature, we
can distinguish the three different methods that are outlined in Figure 3.1. When ap-
proaching model interpretability, the position of interpretability in the model design
process should be considered first. In essence, model engineers have two options.
On the one hand, they can create an inherently interpretable model that provides
transparency by design and on the other hand they can train a complex yet opaque
model and try to explain it afterwards, which is known as post-hoc interpretability.

Inherently Interpretable Models

Machine learning models that use interpretable representations, can serve as an ex-
planation on their own when they are used as the model behind an automated
decision-making tool (visualized on the left side of Figure 3.1). Information on
the interpretations that are usually considered interpretable can be found in Sec-
tion 3.2.2. The design choice of avoiding black box models in the first place, usually
means sacrificing predictive performance, especially when the data contains non-
linear patterns. This has been discussed extensively in Section 2.1 when we com-
pared different machine learning models and the decision boundaries they can learn
in the supervised learning paradigm.
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Black	Box	Model

Inherently	Interpretable	Model

Model-Specific Model-Agnostic

Post-Hoc	Interpretation

FIGURE 3.1: The different approaches for achieving model in-
terpretability. The transparent decision-making process of inher-
ently interpretable models can serve as an explanation on its own.
When models are more complex, post-hoc interpretation methods are
needed. Model-specific variants use parts of the model as an expla-
nation while model-agnostic methods treat the model as a black box,
querying the model to obtain information about the decision-making

process.

Lipton (2018) argues that there are three aspects to transparency. On the first aspect,
algorithmic transparency, decision trees and linear models score significantly better
than neural networks and tree ensembles because we understand better what hap-
pens at the level of the learning algorithm. When interpretable models are adapted
to reach high performance, they give up on another aspect of transparency, sim-
ulatability. For deep decision trees and high-dimensional linear models, it is not
possible to go through every calculation within a reasonable time using the input
data and the model parameters. The same holds for the third aspect, decompos-
ability. Not all parts of an interpretable model admit an intuitive explanation since
for more complex interpretable models, features are usually heavily engineered and
pre-processed while neural networks often operate on raw or slightly processed fea-
tures. For this reason, most techniques employ a form of post-hoc interpretation in
order to preserve performance.

Post-Hoc Interpretation

The advantage of post-hoc interpretation is that it does not sacrifice model perfor-
mance for the purpose of transparency. The disadvantage is that the explanation
is to some extent always of an approximate nature. It can be argued that post-hoc
interpretability is the approach to interpretability that is most similar to human ex-
planations as the effects are related to the causes after the event. Many post-hoc
interpretation techniques are designed to explain the decisions of a specific model
type. Another option is to treat the model as a black box and query it to obtain infor-
mation about the decision-making process. This model-agnostic approach works not
only for one specific model type but for a wide range of machine learning models.
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Model-Specific Interpretation Model-specific interpretation methods are tailored to
explain the predictions of a specific model or a group of models. In general they
possess decompositional characteristics (Guidotti et al., 2018) as they disintegrate a
model into separate parts. These separate parts can on their own provide an expla-
nation of the underlying decision-making process. This can be either on the param-
eter level or on a more granular level of aggregated inputs and outputs. Examples
include visualizing what neural networks learn by looking at the activation in differ-
ent layers of the network. A resulting explanation can then be represented in any of
the ways that will be mentioned in Section 3.2.2. In the example of neural networks,
the representation can be a mask over an input image but just as well a prototype
representing the average member of an object class. The variable importance values
that can be given for tree ensembles, based on an aggregated gain over all its individ-
ual trees, is also an example of a decompositional explanation. From these examples,
it becomes evident that different machine learning models require different ways of
decomposing them. This model-specific characteristic makes decompositional inter-
pretation less flexible than model-agnostic interpretability methods.

Although requiring access to the model makes decompositional methods sensitive
to disclosing trade secrets or intellectual property, it also gives them the advantage of
using interpretable parts of the model for the explanation instead of approximating
the complete model. The most popular branch of decompositional methods focuses
on neural networks with many layers. Understanding and visualizing what these
networks learn by decomposing the different layers and connections is also known
as AI neuroscience (Samek, Wiegand, and Müller, 2017). For explanations of the
complete model, decompositional methods often work with prototypes (Simonyan,
Vedaldi, and Zisserman, 2013). For individual predictions, decompositional model
inspection methods provide ways to visualize and inspect model internals without
needing to understand the decision-making process as a whole, which is mainly
helpful for validation purposes. Next to getting a better understanding of how a
black box model works, these decompositional methods for individual predictions
can also be used to reason about why the model made a certain prediction.

Model-Agnostic Interpretation Model-agnostic interpretability methods consider
the input and output of a model while using the black box model as an oracle. The
main benefit of this approach is that it works for any type of black box model. This
gives them the added potential of being generalizable and scalable to new model
types. In the literature, the approach of treating the model as an oracle is sometimes
referred to as pedagogical interpretation (Guidotti et al., 2018). Many pedagogical
methods employ a form of model extraction as they not only try to extract important
features but a complete interpretable model from the opaque original model. These
surrogate models usually require many queries to the black box model in order to
extract informative characteristics, which can be disadvantageous when this is an
expensive operation. Though usually, post-hoc interpretation will only be requested
in cases of unexpected model decisions, which prevents the need for multiple real-
time queries.

Model-agnostic interpretability methods come with a couple of important advan-
tages. Since pedagogical methods do not require access to the inner workings of
a model, they are resistant to the development of new model types. This lack of
access also gives them the edge over decompositional methods when it comes to
confidentiality. When the cognitive abilities of a user group are matched with a type
of explanation and interpretable representation, this same explanation framework
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can be used for different models, independent of the underlying machine learning
algorithms.

3.2.2 Types of Explanations

The main restriction that we have put on model explanations is given by the second
insight of Section 3.1.1, which states that the explanation should be understandable
for a human. This leaves room for different representations of explanations. In-
terpretability is a subjective phenomenon so the ability to be flexible regarding the
representation of an explanation can be perceived as an advantage. Three dominant
formats for explanations become apparent from the literature, all corresponding—to
a varying degree—with the ideas of what constitutes a good explanation (see Sec-
tion 3.1.2):

• Rule-based models and decision trees

• Feature importance and saliency maps

• Example-based explanations

Many representations are built on models that are acknowledged to be inherently
interpretable. In the literature these models are also referred to as comprehensi-
ble classification models (Freitas, 2014; Huysmans et al., 2011) and the model itself
or a slightly modified version of it can be used as an explanation. Decision trees,
rule-based models and linear models fall under this category of comprehensible
classification models. The other types of explanations are not classification models
themselves but rather clever representational formats that map the decision-making
process to a form that is easily comprehensible for a human user. In general, this
representation is closely related to the input space as this is the level of abstraction
human users are used to work with.

The permitted complexity of an explanation depends on the level of expertise of
the user for which the explanation is intended. A system analyst would most likely
understand intricate plots better than a lay user would. Thus, the explanation pro-
vided by an interpretability method should always consider the goal and intended
user. Even for representations we consider inherently interpretable, the complexity
of the representational format should be tailored to the specific user group.

Rule-Based Models and Decision Trees

Rule-based models and decision trees as a specific class of rule-based models, come
as a very natural representation of a decision-making process to human users (Rus-
sell and Norvig, 2009). A simple decision tree for example is comprehensible in the
sense that it provides logical explanations regarding the path that led to a single
decision. Decision trees also give insight into which variables provide the highest
information gain and are thus important in the decision making process in general
(Quinlan, 1986). Decision trees can be distilled into a set of decision rules following
an if-then structure. This structure closely relates to the causal structure humans
aim for when explaining a decision (see Section 3.1.2). Exploring alternative paths
downs the decision tree allows for the contrastive style explanations discussed in
that same section.
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An interpretable classification algorithm that uses the rule-based format is known as
classification rule mining (Agrawal, Imieliński, and Swami, 1993). Learning associ-
ation rules is a method intended to uncover relations between variables in a dataset.
These methods possess the benefit over decision trees in that they do not impose
mutually exclusive rules, leading to shorter explanations. The textual explanation
provided by rules however, does not show the hierarchical structure in the same
way the graphical explanation of decision trees does.

Feature Importance and Saliency Maps

Another array of models that provides inherent interpretability is the family of re-
gression models (Nelder and Wedderburn, 1972). The magnitude and sign of the
coefficients identify relevant features. Naturally, a coefficient with a positive sign
results in an increase in model output while a negative sign leads to a decrease in
model output. The magnitude of the attribute reflects the strength of this change
in model output. In essence, the interpretable representation of regression models
is a feature importance-based explanation. Feature importance explanations give
a ranked overview of which features are important or contribute most to either an
individual decision or the global model decision-making process.

In order to be understandable for users, the representation of the feature must be in
a cognitive format that people can work with. Examples include individual words
for classification with textual data, the name of a feature in tabular data or a group
of pixels in a visual classification task. The last example is often used in image clas-
sification task with neural networks. These so called saliency maps aim to visualize
which parts of the input image were most influential in the decision-making process
of the underlying model. Different methods exist for obtaining saliency maps but
they all have in common the representation of an overlay on the input image, which
is interpretable for users as it is defined in terms of parts of the image. In order for
the explanation to be useful, the highlighted parts of the input should have a strong
causal relation with the model output.

Example-Based Explanations

The last interpretable representation consists of actual model inputs. Depending on
the classification task, an instance of the dataset can be presented to the user as an
explanation. Prototype methods use an instance that is representative for a specific
class as an explanation either by contrasting it with the current input that needs
an explanation or by comparing it with the current input. In order to generate con-
trastive explanations, the representations of example-based explanations and feature
importance-based explanations can be combined. To establish an understanding of
why an input is being classified as belonging to a certain class instead of another
class, an instance of the other class can be provided in combination with a feature-
based explanation of how they are different. The advantage of an example-based
explanation is that they are very intuitive and give give a practical image of why or
why not a certain prediction was made. The biggest disadvantage of these methods
is that the input examples should be comprehensible themselves as they are used as
explanations.
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3.2.3 Scope of Explanation

The scope of interpretation is the third key feature of any interpretability method,
and it comes in two flavours. The distinction can be made between local explana-
tions and global explanations. A local explanation considers the outcome of only a
single prediction while a global explanation considers the complete logic and reason-
ing behind a model. A global explanation therefore enables following the reasoning
to all outcomes. Understandably, it is very challenging to translate the complete
logic of a complex classifier with all its non-linearities into something that is com-
prehensible for a human user. This is the trade-off that model engineers needs to
make when considering the scope of interpretability of their model.

Global Explanations

Global model explanations try to create a proxy model that represents in a simplified
way the complete logic and reasoning of a black box model. Especially for model
validation, it can be very useful to verify this logic in the format of an interpretable
model. Global surrogate models are trained on the predictions of a black box model
instead of on the original data. This surrogate model technique is often used in engi-
neering when modeling exact processes is too computationally expensive (Gorissen
et al., 2010). Even though global surrogate models for prediction explanations can
give an indication of the general decision flow within a model, they are generally
too sensitive to overfitting to be used in regulated industries where fidelity is a key
requirement.

Global feature contribution methods show the aggregated contribution of the input
features on the model decisions. This can give insights into the dataset but might
not be representative for every individual decision. Attempts have been made to
make a broad range of black box models more interpretable by providing the fea-
ture contributions along with their shape functions, which works only for tabular
data (Caruana et al., 2015). Even if it is possible to approximate an intricate black
box model with a recognized interpretable alternative, the simplification comes with
reduced predictive performance. This problem is much the same as the problems
associated with the approach of achieving interpretability by using inherently in-
terpretable models (see Section 3.2.1). The interpretability-accuracy trade-off that is
obeserved in these cases, is similar to the bias-variance trade-off discussed in Sec-
tion 2.1. In modern machine learning it is non-trivial to have an intelligible model
that does not have to give in with regards to functionality. Part of the XAI commu-
nity tries to solve this problem by trying to explain individual decisions rather than
the complete model.

Local Explanations

Local explanations concern only the causal chain that led to a specific prediction.
The idea of explaining individual predictions resonates with the requirements of the
GDPR. Every user that is subject to an automated decision, should in an ideal sce-
nario be able to request an explanation that provides an understanding of how the
model came to the specific decision. In this paradigm, it is not necessary to have a
full understanding of the global model. Mathematically, the neighborhood around
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TABLE 3.1: The three main dimensions along which methods to
achieve interpretability in machine learning can be classified. For all
three dimensions—the approach to interpretability, the type of expla-
nation and the scope of the explanation—the options as discussed in

Section 3.2 are listed.

Approach Type Scope

Rule-based models and decision trees
Inherent Local

Feature importance and saliency maps
Model-Agnostic

Post-Hoc1
Model-Specific Example-based explanations

Global

1 There are two variants of the post-hoc approach to interpretation. Model-specific variants
use parts of the model as an explanation while model-agnostic methods treat the model
as a black box, querying the model to obtain information about the decision-making pro-
cess.

the instance is being explained while the other parts of the model might be disre-
garded for the specific case. This simplifies the explanation process with the goal
of increasing interpretability without sacrificing predictive power. The combination
of multiple local explanations can give users or model engineers an idea of how
the model functions on a broader scale. This aligns also with the idea of interactive
exploration, which serves to give an understanding of the workings of the model
without disclosing trade secrets or intellectual property (Edwards and Veale, 2017).
The challenge for local explanation methods is to create a model on a local scale with
high fidelity to the original model.

In this section, methods for achieving interpretability have been outlined and tax-
onomized. An overview of the three dimensions along which this has been done
can be found in Table 3.1. The categories discussed in this section for each dimen-
sion are listed vertically under the corresponding dimension. In principal, there are
no restrictive dependencies between categories of the different dimensions. How-
ever, the overview literature does suggest a relatively uneven distribution over the
different categories (Guidotti et al., 2018). The biggest chunk of work has aimed
at providing global model explanations although focus has shifted more towards
providing local prediction explanations recently. An approach we see quite often is
the model-specific post-hoc explanation of (deep) neural networks. This might be
rooted in their omnipresence caused by their great practical achievements in the last
decades. The popularity of inherently interpretable appears to be persistent, as re-
search using this approach is being done constantly over the years. Model-agnostic
methods are on the rise, with many papers taking up this approach in the last three
years. Rule-based models and decision trees are used a lot as explanation, mainly
for their intuitive contrastive clarification of decisions. For models that work with
image data—often in the deep learning paradigm—example-based explanations are
common but for other models this explanation type is not often used. Feature im-
portance explanations are receiving more attention lately for their simplicity and
flexibility regarding the representation of the importance values.
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3.3 Evaluation of Interpretable Models

In the previous sections, the concepts and terminology behind interpretability and
explanations have been introduced. A broad range of methods that tries to incor-
porate these concepts in machine learning have been outlined subsequently. The
analysis of the literature led to a promising portrayal of what has been done in the
field of XAI already. Despite this groundwork, XAI is still very much a developing
field. Guidotti et al. (2018) defined two important open problems in the field that fol-
lowed from their literature review. One of them concerns the lack of agreement on
what an explanation is. This problem can be subdivided into an implicit and an ex-
plicit requirement. The implicit requirement is a general formalism that states what
an explanation should facilitate and what it should represent in an understandable
manner. This problem has been tackled in Section 3.1.2 along with a similar ap-
proach for the term interpretability in Section 3.1.1. The explicit requirement is the
definition of what exactly an explanation should look like. We believe the form in
which an explanation should be provided, is dependent on the context and user.
Therefore we consider the general formalism we have sketched out in Section 3.1.2
to be adequate as a definition of what an explanation should be. Irrespective of the
explanation taking the form of a decision tree, a set of rules or an input example.

The other problem defined by Guidotti et al. (2018) is the identification of the prop-
erties that an explanation should guarantee and the criteria that follow from those
properties. They argue that quantifying these properties is of fundamental impor-
tance but no work has seriously addressed this problem. Measuring these properties
can be difficult since for example comprehensibility is very subjective to a specific
user or specific circumstance in which an explanation is required. Still, the goal of
this study to assess the quality of explanations aligns with the notion of Guidotti
et al. (2018) that the definition of a formalism for measuring different properties of
explanations would improve the practical applicability of the methods discussed in
Section 3.2.

In this study, we focus on automated decision-making systems for two main reasons.
The demand for interpretability is high in this domain as the decisions can have great
effects on people and society. This is what distinguishes them from most other opti-
mization problems for which machine learning is used. Another motive for the focus
is the regulation around automated decision-making. Most regulation that has been
discussed in Section 1.2 is particularly aimed at those systems. Therefore the criteria
that line up with the requirements as discussed in that section provide a logical start-
ing point for the formalization of explanation evaluations. Since the relevant legal
texts refer to automated individual decision-making, we will further narrow down
the focus towards local interpretability (see Section 3.2.3). Meaning that explana-
tions in this study will describe individual predictions of machine learning models.

3.3.1 Evaluating Local Explanations

Before society starts relying on the explanations that come with automated decisions,
the quality and trustworthiness of explanations has to be assessed and established.
This will improve the practical applicability of interpretable models. In the remain-
der of this section, an overview of different types of evaluation will be provided. The
legislative requirements and possibilities provided by state-of-the-art interpretable
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models will be combined to formalize the requirements of explanations and corre-
sponding evaluation criteria for the analysis of this study.

Types of evaluation

The subjective nature of interpretability makes evaluating interpretable models chal-
lenging. Therefore, a form of benchmarking is needed to measure varying degrees
of interpretability. Some studies use evaluation by human participants to do this,
which emphasizes the social and psychological aspects of explanations. The ad-
vantage of this approach is that the evaluation is independent of the interpretable
model that is used. However, experiments involving human participants are rela-
tively expensive to conduct. Furthermore, human evaluation is easily affected by
cognitive biases which might hinder objectivity when assessing the quality of ex-
planations (Miller, 2018). One example is the focus of participants on explanatory
coherence (Read and Marcus-Newhall, 1993). The fact that participants are looking
for coherence with respect to prior beliefs is deemed undesirable when evaluating
an explanation objectively. Besides this, participants might not be able to detach the
performance of the machine learning model itself from the explanation quality of the
interpretability component. Which makes sense for real-life applications, but not for
an evaluation framework that focuses only on the quality of the explanations.

In the application domain of this thesis, objective evaluation is critical. Human ex-
planation, which has a large social aspect to it, focuses not only on a truthful transfer
of knowledge and understanding. It has a social context to it, which also holds for
human evaluation. The influence of this social context on the assessment of explana-
tions, is the main reason for excluding this type of evaluation from our framework.
Next to evaluation by human participants, the interpretability of explanations can
also be measured by quantitative proxies (Doshi-Velez and Kim, 2017). The objectiv-
ity and low cost of these proxies are regarded as advantages, especially within the
domain and context of this study. On the other hand, one can argue that evaluation
by predefined metrics is too oversimplified to measure an complicated abstraction
like interpretability. This is why we stress the importance of aligning the evaluation
criteria with the requirements of explanation that have been established in previous
chapters.

Requirements for Explanations

Key findings from the analysis of the regulatory landscape (Section 1.2) with regards
to automated individual decisions were the requirements that an adequate explana-
tion should meet. An explanation should supply the user with enough information
to understand the reasons behind the decision and it should allow a user to act upon
the decision—which is to say spot errors and contest the decision.

Explanations are not only products of these requirement but also a process that in-
cludes a cognitive and a social aspect. Apart from undesirable components of social
explanations like persuasion and bias, it is sensible to include elements of human
explanations in interpretable models. As discussed before, this drives humans to ac-
cept and adopt explanations more easily since they attribute human traits and inten-
tions to the explanatory agent (De Graaf and Malle, 2017). The cognitive elements of
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explanations we have discussed in Section 3.1.2 are causes and contrasts. Sociologi-
cal research on the principal components of human explanations identifies abductive
reasoning as an important factor behind explanation (Miller, Howe, and Sonenberg,
2017). A subset of causes is given as explanation instead of all the causes that can
be attributed to a decision. The fact that not all causes are used for explaining has
to do with cognitive load and efficiency. When it comes to regulatory compliance,
there is a thin line between completeness of the explanation and comprehensibility
for human users.

Both the insights from the regulatory landscape and social science ask for distinct
elements within an explanation. When considering the taxonomy of Section 3.2,
multiple options prevail within the domain and context of this study. As we are
seeking a general explanation framework that does not capitulate on model per-
formance, post-hoc interpretation methods—particularly model-agnostic variants
(Section 3.2.1)—are very suitable. The ideas of using causation to make a user un-
derstand the reasons behind a decision aligns with both rule-based explanations as
well as with feature importance-based explanations. Both these explanation types
visualize the root causes behind a decision. For the purpose of generality, feature-
importance based explanations are more convenient since the features can be in any
cognitive format that matches the input data.

Evaluation Criteria

The desired characteristics of explanations that allow users to exercise the rights de-
fined in the regulatory landscape in Section 1.2 are in general very common sense.
For understanding a decision, the explanation has to correctly and reliably repre-
sent the decision of the prediction model. Two aspects that are important to this can
be distilled. The first of which is faithfulness to the original model. In the case of
local explanations, this property is defined as fidelity of the local model to the orig-
inal model. The second is stability as we would like the explanation to always be
faithful to the original model, not only in some adventitious case. This is especially
important within the legal context of automated decision-making. Stability itself
has two aspects to it. We want every explanation to be reliable, the quality of the
explanation should be good enough for every individual prediction. Besides that
we would like explanations to adhere to the criterion of continuity, meaning that a
prediction should result in similar explanations when it is requested multiple times.
This is especially important considering the approximate nature of the generated ex-
planations in the post-hoc interpretation framework, influenced by factors of chance
caused by for example random sampling.

Desirable properties as defined in the literature for methods that generate local ex-
planations, correspond with the characteristics we described above. Lundberg and
Lee (2017) define local accuracy and missingness as essential properties to any lo-
cal explanation. Local accuracy is defined as the agreement between the output of
the original model and the output of the local model. Missingness is described as
features that are missing in the local model, to not have an impact in the original
model. The combination of these properties is covered by what we refer to as fi-
delity. Ribeiro, Singh, and Guestrin (2016) specifically refer to local fidelity as an
essential criterion. They underline that the explanation of a single prediction should
be faithful to the original model only locally. This means to say that an explanation
that is faithful to the original model on a local scale does not imply global fidelity.
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Besides the criteria that specifically explanations of automated decisions should fol-
low, there are also characteristics that we would like every explanation to possess.
The efficiency of the explanation method in terms of processing capacity and com-
putational performance can also be an important factor. Especially in most real-life
scenarios, methods for generating explanations should continuously perform well
for high numbers of features and data instances to make the method useful in prac-
tice. Naturally, we would like the explanation method to not hinder the accuracy of
the machine learning model. By design, the post-hoc interpretation methods used in
this study preserve model accuracy. We would also like explanations to be robust to
different input- and model types. The model-agnostic explanation methods that will
be used in this study, innately accept every type of model as input to the framework.

To summarize, the following evaluation criteria have been identified:

Fidelity The explanation should be truthful to the original model, at least
on a local scale.

Continuity Identical inputs should lead to identical explanations.

Reliability The quality of the explanation should be good enough for every
individual prediction.

Accuracy The additional layer of transparency should not hinder the per-
formance of the machine learning prediction model.

Robustness The explanation method should be robust with regards to the
machine learning model that is being used and the types of data that the
model using.

Efficiency The method for generating explanations should work well for
high numbers of features and input instances.

This study sets out to evaluate local explanations along the criterion of fidelity. For
local explanation methods it is essential that the local explanation correctly reflects
the original model that it is based on. The formalization of this evaluation is a first
step into the direction of a general framework of explanation evaluation on all the
criteria.

Summary Chapter 3

3.1.1 Our use of the term interpretability is composed of a combination of terminol-
ogy from social science and human-machine communication research. Model
interpretability is established by providing explanations for decisions where
the given explanations should be understandable for a human.

3.1.2 Explanations are the means to increase model interpretability. The main com-
ponents of an explanation are causes and contrasts, these follow from psycho-
logical and philosophical insights.

3.2 Research on interpretable machine learning can be classified along three di-
mensions: The scope of the explanations, the approach to interpretability and
the type of explanation.
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3.3 Automated decision-making models can best be explained on a local scale by
post-hoc explanation methods. The requirements that follow from the regula-
tory landscape and the explanation theory, are satisfied by explanations that
use feature importance indications. Therefore they will be employed in this
study. In order to create a general evaluation framework, we will focus on
model-agnostic explanation methods only.

3.3.1 The rights that users of automated decisions have—understanding and con-
testing decisions—have been combined with the components of a useful social
explanation—causes and contrasts. This resulted in the formulation of an eval-
uation framework that consists of several criteria; fidelity, continuity, reliabil-
ity, accuracy, robustness and efficiency.

3.3.1 This study sets out to evaluate local explanations along the criterion of fidelity.
For local explanation methods it is essential that the local explanation correctly
reflects the original model that it is based on.
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Part II

Methods
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Chapter 4

Generating Explanations

When black box models are put into practice to automate decision-making, expla-
nation methods can be applied to clarify the decision-making process after the fact.
This post-hoc form of interpretability preserves the accuracy of modern machine
learning methods while adding a layer of transparency. As explained in Section 3.3.1,
explanations in this study will be given on a local scale which is to say on the level
of individual predictions. By separating the explanation method from the machine
learning model, a flexible framework arises that allows for generalization and easy
comparison between models in terms of interpretability and operation. The meth-
ods we discuss in this chapter do this by treating the machine learning model as a
black-box, preventing the need to inspect internal model parameters.

A popular variant of these model-agnostic interpretability methods uses feature im-
portance indications as prediction explanations. The idea of attributing importance
values to individual features combines the requirements for automated decision-
making that have been outlined in Section 3.3.1. Feature importance-based expla-
nations give an indication of the influence of the different features in terms of the
statistical contribution to the prediction of the underlying model. Most traditional
machine learning model engineering processes involve feature engineering, which
transforms raw data into predictor variables that match the automated task at hand.
Engineered features generally posses a form of interpretability, which makes fea-
ture importance-based explanations intuitive and easy to integrate in most machine
learning pipelines.

Feature importance-based explanation methods essentially distill an explanation model
f̂ from the original model f . For data with interpretable features, a single prediction
f (x) based on a set of features x is approximated by f̂ (x′) where x′ is a simplified
subset of the original features containing features that are considered to be impor-
tant for the individual prediction by the explanation method. Algorithms that create
feature importance explanations thus try to establish a local model for which holds
that f (x) ≈ f̂ (x′). The local models follow the function:

f̂ (x′) = α0 +
N

∑
i=1

αFI
i x′i (4.1)

in which a feature importance value αFI
i represents the effect of feature x′i on the

prediction f̂ (x′). What differentiates feature importance explanation methods is the
approach they take for calculating the feature importance values αFI

i . Different meth-
ods with the goal of attributing importance values to individual features have been
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designed. The two most popular approaches in the literature, that both will be cen-
tral to the analysis in the remainder of this study, are local surrogate models and com-
puting feature attributions. Both methods for calculating feature importance explana-
tions will be outlined in the coming sections. One popular and well-documented
proponent of each will be evaluated within our evaluation framework; LIME for
local surrogate models and kernel SHAP for computing feature attributions. Both
algorithms and their implementations will be discussed in detail in this chapter.

4.1 Local Surrogate Models

The main intuition behind local surrogate models is that the non-linear decision
boundary of a complex model, and therefore the black-box decision, can be ap-
proximated by a more transparent model on a local scale. A visual representation
of this assumption can be found in Figure 4.1. In this figure, the binary decision
boundary of a random forest model trained on a numerical dataset representing the
parabolic function y = x0

2 − x1 is visualized. Instances of the test set are repre-
sented as colored dots with black borders. Except for a few instances close to the
decision boundary, the model is able to predict the labels—indicated by the color of
the dots—correctly. It would be hard to capture the complexity of the global decision
boundary of this model in terms of an interpretable model. Instead, local surrogate
models can be created for individual instances. These individual instances are de-
picted as white dots and the local surrogate models—in this case LASSO regression
models (Tibshirani, 1996)—are represented as white lines.

In order to construct a local surrogate model, access to the training data is not neces-
sary. Only oracle access to the model is needed, allowing it to be probed as much as
needed to get an understanding of the decision boundary around the instance that
requires explaining. The local dataset is labeled with the predictions given by the
probed original black box model. In Figure 4.1, this local dataset consists of colored
dots with white borders. Optionally, this local dataset can be weighted, for exam-
ple based on the distance of the generated points to the original data point that is
being explained. In the figure, this weight is visualized by the size of of the dots.
Instances of the local dataset that are closer to the white dot are larger, which repre-
sents a larger weight. An interpretable model of choice can then be trained on the
local dataset to fit the predictions of the original model. The characteristics of the
local interpretable model can then be used as an explanation. The most common
explanation model that is fitted on local datasets is the family of linear regression
models yet the type of explanation model is interchangeable.

4.1.1 LIME - Local Interpretable Model-Agnostic Explanations

The most popular proponent of the explanation methods that employ local surro-
gate models is LIME (Local Interpretable Model-Agnostic Explanations) (Ribeiro,
Singh, and Guestrin, 2016). Its concrete implementation of the local surrogate model
method involves the following steps:

• Select an instance x′ for which an explanation is needed.

• Generate samples around x′ by drawing nonzero elements of x′ uniformly at
random to create local dataset Z.
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FIGURE 4.1: Local surrogate models (white lines) that explain the
predictions of two instances of a random forest model (white dots).
Local datasets (colored dots with white borders) are created by ran-
dom sampling around the original instances. The local datasets are
weighted according to the distance of the points to the original input
(visualized by dots of varying size). The local model in this case is a
LASSO regression model fitted on the local dataset after labeling it by

querying the black box model.

• Compute labels for Z by evaluating the instances with the original model f .

• Give a weight to the instances in Z based on the distance to x′.

• Fit a weighted interpretable model f̂ to Z.

• Explain x′ based on components of the local model f̂ .

From this list, a few factors that define the quality of the local surrogate model can
be distilled. The selected method for weighing the instances of the local dataset, the
way perturbed data points are generated for the local dataset and the chosen family
and parameters of the interpretable model have a significant effect on the resulting
surrogate model f̂ and hence on the explanation of x′.

Formal Model Definition

The main goal of LIME is to optimize the trade-off between fidelity and interpretabil-
ity. This trade-off also becomes apparent from the formal definition of the LIME
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explanation (as defined by Ribeiro, Singh, and Guestrin, 2016):

ξ(x′) = argmin
f̂∈F

L( f , f̂ , πx) + Ω( f̂ ) (4.2)

The explanation ξ(x′) of instance x′ is obtained by selecting a local model that min-
imizes the combination of two terms. The first term L( f , f̂ , πx) is defined as the
locality-aware loss impacted by the original model f , the interpretable model f̂ and
the distance measure π(z). The second term Ω( f̂ ) represents the complexity of the
local model. In practice, the user defines the complexity measure Ω( f̂ ) by choosing
the number of coefficients in the local model and LIME only optimizes local fidelity
by minimizing the loss L( f , f̂ , πx). In the LIME implementation, the class of linear
regression models is used for training interpretable local models f̂ (z′) = α · z′ where
the coefficients α indicate the relative importance of the features. The default is ridge
regression (Hoerl and Kennard, 1970), but in theory, the explanation model f̂ can be
any model from a family of interpretable models F. For the default ridge regression
model, the chosen complexity measure Ω( f̂ ) is the number of non-zero weights in
the equation which is to say the number of features K in the local model.

To guarantee the interpretability of the explanation, LIME makes the distinction be-
tween an interpretable representation and the original feature space that the model
uses. The representation has to be understandable to humans, so its dimension is
not always the same as the dimension of the original feature space. It might be for
example, that an visual classification model represents the input as a pixel tensor.
In such cases, LIME always transfers the input from this feature space to an inter-
pretable representation (e.g. a pixel patch). The tabular data used in the analysis of
this study however, does not need mapping to another interpretable representation
as the model uses features in a format that is already understandable to users.

The main evaluation criterion for local post-hoc explanations as defined in Sec-
tion 3.3.1, is fidelity to the original model. In order to comply with this require-
ment, the interpretable surrogate model should represent the original model on a
local scale correctly. The two aspects of LIME that are important to this require-
ment are the locality of the generated dataset and the accuracy of the interpretable
model. Locality around the instance x′ is defined by the distance measure π(z) that
penalizes distance between x′ and the point z ∈ Z. The distance of the drawn data
points to the original instance is calculated using a Euclidean distance function. Be-
fore computing this distance function for tabular data, the LIME implementation
encodes categorical features as Boolean values, based on whether they are equal to
the particular variable of the original instance. Continuous variables are discretized
into quartiles by default in the LIME implementation, as the values might be in dif-
ferent ranges. In this study however, the feature values of the datasets we use are
all drawn from the same distribution (see Section 5.1), which makes discretization
of the values unnecessary. The distance value between x′ and z that follows from
the Euclidean distance function D is converted by an exponential kernel of a prede-
fined width σ and included in the loss calculation. The distance measure is therefore
formally expressed by:

πx(z) = exp(−D(x′, z)2/σ2) (4.3)

with the default value of kernel width being 3
4
√

n where n is the number of features
in the dataset.
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The local dataset is generated based on the training data, for which the LIME ex-
planation module computes statistics about the distribution of each variable during
initialization. For the generation of data points, the feature distributions are then
used to draw samples. A normal distribution with the same mean and standard
deviation as the features of the training data is used for this, independent of the in-
dividual instance x′ that is being explained. This means that the weighing of the
generated dataset is the only factor that defines locality of the interpretable model
for an individual prediction, making this a fairly important aspect of the explana-
tion. This distance measure is used by the locally weighted square loss function to
optimize the fidelity of the local model:

L( f , f̂ , πx) = ∑
z,z′∈Z

πx(z)( f (z)− f ′(z′))2 (4.4)

Training a local model with the predefined number of features K that minimizes
Equation 4.4 consists of two steps. The first step is selecting the K features that the
local model will consist of. In this study, Lasso regularization (Efron et al., 2004) is
used for selecting the features. The K features that are least prone to shrinkage based
on the regularization path of a Lasso fit of the original model prediction are chosen.
The second step consists of learning the weights, which is done via least squares.
In the original LIME paper, this method was named K-LASSO (Ribeiro, Singh, and
Guestrin, 2016).

4.2 Computing Feature Attributions

Similar to local surrogate models, methods that compute feature attributions define
an interpretable approximation of the original model for individual predictions. The
approximations of these methods are based on coalitional game theory and condi-
tional expectations and the resulting explanations are presented as relative contribu-
tions of individual features. A well-studied technique from game theory that lends
itself to assign a unique distribution of pay-off among contributors is the Shapley
value (Shapley, 1953). The original version considers coalitional games and strives
for fair division of the pay-off among players according to their marginal contribu-
tion within a coalition of players. For a specific player, the Shapley value is defined
as the average contribution over all possible permutations of coalitions.

Shapley values in a coalitional game with a set of players N and a function v(S)
denoting the pay-off for a certain coalition S are computed as follows:

φi(v) = ∑
S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|! (v(S ∪ {i})− v(S)) (4.5)

Here the sum extends over all possible subsets S of players N excluding player i.
The term (v(S ∪ {i})− v(S)) represents the marginal contribution of player i to the
coalition S since it is the pay-off of the coalition S subtracted from the pay-off of the
same coalition including i. The marginal contribution is computed over all possible
different permutations in which the coalition S can be formed. This is done by cal-
culating the product of the number of permutations of the players in S, which is |S|!,
with the number of permutations of the players without subsets that include player
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i, which is (|N| − |S| − 1)!. Ultimately, the average value of this marginal contribu-
tion over the possible permutations is computed by dividing by |N|!, which is the
number of different permutations of N.

The analogy with features as players, model predictions as pay-off and Shapley val-
ues as their calculated attribution was first drawn by Lipovetsky and Conklin, 2001.
They used Shapley value estimation to compute comparative importance of predic-
tors in regressor models in the presence of multicollinearity. The method requires
retraining the model on all possible subsets of all features. To compute the effect of
a feature, two models are trained—one including the feature and one excluding the
feature. The predictions of both models on the instance that needs explaining are
computed. The dependence on other features when withholding a feature, is com-
pensated for by computing the differences for all subsets of features. The Shapley
values are then calculated as weighted average of all possible differences and used
as feature importance values. Since retraining the model is computationally very ex-
pensive, different sampling approximations and integration over samples have been
proposed to make the calculation of Shapley values more efficient (Datta, Sen, and
Zick, 2016; Štrumbelj and Kononenko, 2014).

4.2.1 Kernel SHAP - Shapley Additive Explanations

The most prominent framework for calculating feature attributions based on Shap-
ley values is SHAP (SHapley Additive ExPlanations) (Lundberg and Lee, 2017). The
framework consists of multiple model-specific optimizations for calculating feature
attributions, such as for tree-based models (Lundberg, Erion, and Lee, 2018). In
this study however, only the model-agnostic local explanations provided by Kernel
SHAP will be used as we do not want to give in on model flexibility.

For practical datasets with more than just a few features, computing the exact Shap-
ley value of a feature xi in reasonable time becomes problematic. All possible subsets
of features have to be evaluated with and without feature xi. The number of possi-
ble subsets increases exponentially when more features are added to the data. If an
instance contains N features then the list of all possible subsets of features will have
2N elements. Therefore the Shapley values are approximated in the Kernel SHAP
implementation by the following steps:

• Select an instance x′ for which an explanation is needed

• Generate K random binary vectors k of the same length M as the instance to be
explained: k ∈ {0, 1}M.

• Create a dataset Z with samples by mapping the binary vectors to the instance
x′. A value ki in a binary vector represents whether feature i of the instance to
be explained will be present (1) or absent (0) in a sample z

• For every 1 in the binary vector, the corresponding value from the instance x′

is mapped to z. For every 0 in the binary vector, the value of the corresponding
feature of another instance that we sample from the data is mapped to z. This
essentially means that absent features are replaced by a random feature value
from the dataset

• Get prediction for each z by querying the original model f: f (z)

• Use the SHAP kernel to compute weights for the instances z of the dataset Z
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• Fit a weighted linear model f̂ to dataset Z, using the predictions of the original
model f

• Use the estimated Shapley values αi(z′), the coefficients from the weighted
linear model, as explanation for f (x′)

In this algorithm, the Shapley value approximations are used as an additive feature
attribution technique in a linear model, which connects the method to the LIME ap-
proach as described in Section 4.1.1. The main differences between both methods are
the sampling approach that is used for creating the local dataset and the kernel that
is used to give weights to the samples. Both concepts relate directly to the fidelity
criterion as they define the locality of the sample dataset.

Formal Model Definition

From the algorithm above it follows that when creating the sample dataset Z, the
kernel SHAP method ignores the dependence structure between present and absent
features in the samples z. Statistically, that entails sampling absent features from
the marginal distribution instead of the conditional distribution. This is needed in
order to guarantee that the resulting values will be Shapley values. The downside
is that instances that are unrealistic in practice, might end up in the sample dataset
as no conditions are enforced on the relation between the present and the replaced
features.

The most important aspect of the kernel SHAP algorithm is the kernel that is used for
enforcing locality. In Section 4.1.1, the instances in the local dataset were weighted
according to the proximity with respect to the instances that needs explaining. In
terms of the binary sample vectors in the SHAP algorithm, this means that the more
ones in the binary vector, the larger the weight of the resulting sample. For kernel
SHAP however, samples generated using binary vectors with many zeros would
also lead to large weights. The intuition behind this weighting scheme is that more
can be learned about features if their effects are evaluated in isolation. On the one
hand a sample that has many features in common with the instance to be explained,
can tell us more about the effect of omitting that feature from the instance. On the
other hand a sample with few features in common with the instance to be explained,
can tell us more about the effect of those few features on the prediction. A sample
that has around half of its features in common with the instance to be explained is
not very informative in terms of the effect of individual features as there are many
possible permutations with half of the features present. This effect of the number
of permutations is also visible in the original Shapley value estimation from Equa-
tion 4.5.

In the SHAP paper (Lundberg and Lee, 2017), these ideas are captured in the SHAP
kernel:

πx(z) =
(M− 1)

(M
|z|)|z|(M− |z|)

(4.6)

In this formula, M is the amount of features that the instance consists of and |z| is
the amount of features that are mapped from x onto the sample z. In the SHAP
library, if not specified otherwise by the user, the number of samples will be K =
2 ·M · 2048. Instead of creating completely random binary vectors, the SHAP library
uses a heuristic to tactically generate samples. Based on the value of K, as much
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samples as possible that would get a large weight are generated by starting with
all permutations that have 1 and M-1 features in common with the instance to be
explained. The next step would be to include all permutations having 2 and M-2
features in common with the instance to be explained and so on. The linear model
f̂ that is fitted on the sample dataset is then trained using the same locally weighted
square loss function we saw in the LIME implementation (Equation 4.4).

Summary Chapter 4

4 Feature importance-based explanations essentially distill an explanation model
from the original model to give an indication of the influence of the different
features in terms of the statistical contribution to individual predictions. The
idea of attributing importance values to individual features combines the re-
quirements for automated decision-making as posed in Section 3.3.1.

4 The two main methods for generating local feature importance explanations
are local surrogate models and computing feature attributions. The proponents of
both methods that will be used in this study are LIME for local surrogate mod-
els and kernel SHAP for computing feature attributions.

4.1 Local surrogate models randomly generate a weighted dataset around the in-
stance to be explained. Based on the predictions of the original model on this
local dataset, an interpretable model is fitted that can be used to explain the
original prediction.

4.1.1 LIME heuristically approximates the decision boundary of a machine learning
model on a local scale. Local dataset generation, the similarity metric that is
used for weighting and the chosen family and parameters of the interpretable
model have a significant effect on the result.

4.2 The approximation methods that compute feature attributions are based on
coalitional game theory and conditional expectations (e.g. Shapley values) and
the resulting explanations are presented as relative contributions of individual
features.

4.2.1 Kernel SHAP uses the intuition behind Shapley values and approximates them
by generating independent samples around the original instance and weight-
ing these samples using the SHAP kernel. The estimates are used to attribute a
contribution value to individual features with a linear model, which connects
the method to LIME.

4.2.1 The main differences between LIME and kernel SHAP are the sampling pro-
cedure they employ and the kernel they use for weighting the samples in the
local dataset when fitting the linear explanation model.
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Chapter 5

Methods

This chapter outlines how the explanation framework from previous chapters will
be applied. The goal is to perform a replicable study and align the methodology
with the objectives of this thesis as stated in Chapter 1. The data generation pro-
cess and the intuitions behind the synthetic datasets will be explained in Section 5.1.
The qualitative and quantitative methods to evaluate the explanation methods from
Chapter 4 on the criteria from Section 3.3.1 will be explained in Section 5.2.

5.1 Synthetic Datasets

Evaluating model predictions in the supervised learning paradigm is based on a
provided label which serves as a ground truth. This ground truth can be compared
to the actual prediction of the model to calculate an accuracy term. This term can
then be used to quantitatively compare different prediction models. The quantitative
evaluation of prediction explanations is more challenging since a ground truth is not
easily defined for real world data. An evident ground truth would imply knowing
beforehand what the decisive features should be for a decision. If this were to be the
case, the added value of using a complex and opaque model for learning would be
questionable.

The strength of complex and opaque models lies in the fact that they can map com-
plex relations between variables that are not immediately obvious to lay users. A
method for quantitative evaluation of the quality of explanations that is proposed in
this work, uses synthetic datasets with distributions known beforehand. With this
ground truth, explanations can be validated easily. Especially for evaluating the fi-
delity criterion, this is an essential step. The use of synthetic datasets also allows for
freedom in creating multiple types of distributions that can be compared.

The synthetic datasets are constructed with a predefined amount of features and
samples. The functions that define the distribution of the data are selected to cover a
wide range of possible feature relationships. More information on the composition
of the synthetic datasets can be found in Table 5.1. In line with the goals of this study,
we stick to the use of tabular data as it is the most used data type for automated
decision-making. Concurrently, working with tabular data is computationally more
efficient and it is straightforward to define informative features for this type of data.
Extensions towards other data types and different distributions are left for future
work.

Based on computational considerations, the standard size of the datasets is 2500 in-
stances. The models are trained on 80% partitions of the datasets, after which the
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TABLE 5.1: The synthetic datasets used in this study. The numerical
and Boolean functions that are used for the distributions can be found

in the leftmost column.

Features

Function Data Type Sa
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1

x0 + x1 Numerical

2500

2 8

10 500

x0
2 − x1 Numerical 2 8

x0 ∗ x1 Numerical 2 8
ds4

4 Numerical 6 4
x0 Boolean 1 9
x0 & x1 Boolean 2 8
(x0 | x1) & ¬(x0 & x1) Boolean 2 8
ds8

5 Boolean 6 4

1 Limited based on available computational power
2 Number of features that are used for evaluating and labeling the instances
3 Number of random features that are non-informative for computing instance labels
4 3 ∗ x0 + 2 ∗ x1 + x2 − 3 ∗ x3 − 2 ∗ x4 − x5
5 x0 | (x1 & x2) | (x3 & x4 & x5)

remaining 20% (500 samples) can be used for testing and generating explanations.
The explanation methods will be tested for models trained on both numerical and
Boolean data. Numerical datasets are labeled based on the evaluation of a polyno-
mial expression while the Boolean datasets use logical expressions. The different
functions are selected based on the diversity with respect to the decision boundaries
they generate. For both data types, this means that for the diversity of the deci-
sion boundaries, spatial differences are ignored. An example includes the decision
boundaries of the two polynomial functions x0 + x1 and x0− x1, which are mirrored
variants of each other (see Figure 5.1). The same holds for functions that lead to deci-
sion boundary solely divided by a rotational factor or a projection, as is common for
logical functions (e.g. x0 ∧ x1 and x0 ∨ x1). The visualizations of the distributions
in the dataset like in Figure 5.1 are two-dimensional for plotting purposes only, as
they are intended to demonstrate the relationship between the informative features.
In reality, the datasets are multidimensional as non-informative features that do not
play a role in the labeling process are also present in the data.

5.1.1 Numerical Data

All the data points in the numerical datasets are drawn randomly from a standard
normal distribution with µ = 0 and σ = 1 that is described by the following proba-
bility density function:

ϕ(x) =
1√
2π

e−
1
2 x2

(5.1)
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(A) x0 + x1 > 0 (B) x0 − x1 > 0

FIGURE 5.1: An example of spatial differences that are ignored for
synthetic data generation. Both functions (A) and (B) lead to decision

boundaries that are mirrored variants of each other.

The output label of a single instance is then calculated based on the generated val-
ues for specific features (in most cases x0 and x1) using a polynomial expression. In
general, the majority of features does not have any influence on the calculation of
the label. Only for ds4 and ds8, there are more than two informative features. The
datasets are created for a binary classification task so the labels can either have a
value of zero or a value of one. When the evaluation of the synthetic function (as
displayed in the first column of Table 5.1) using the generated values for the infor-
mative features, leads to a value greater than zero, the assigned binary label will be
one. If the evaluation leads to a value equal to or below zero, the binary label will be
zero.

Visualizations of the true decision boundaries of the numerical functions with two
informative features can be found in Figure 5.2. These plots demonstrate the dif-
ferences between the several functions and the decision boundaries they produce.
The filled contours of the plots represent the parts of the data with a binary label
one—there the value of the function evaluation surpasses the threshold of zero.

(A) x0
2 − x1 > 0 (B) x0 ∗ x1 > 0 (C) x0 + x1 > 0

FIGURE 5.2: Visualizations of the true decision boundaries of the nu-
merical datasets with two informative features.
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5.1.2 Boolean Data

The data points in the Boolean datasets are assigned a value of zero or one, both with
a probability of 50%. Logical expressions given in the function column of Table 5.1
are evaluated with the generated Boolean values of the informative features (in most
cases x0 and x1), leading to a binary value of one or zero if the expression is false or
true respectively. For three of the Boolean datasets, the function can be visualized
on a 2D-grid. These can be found in Figure 5.3. Similar to the numerical data, ro-
tations and other spatial variants are excluded. The logical relations that are used
and displayed in Figure 5.3 are logical projection (x0), conjunction (x0 & x1) and the
exclusive-or (XOR) relation ((x0 | x1) & ¬(x0 & x1)).

(A)

(B)

(C)

FIGURE 5.3: Visualizations of the decision boundaries in the boolean
datasets. (A): Logical projection with a possible decision boundary
(green line). (B): Logical conjunction with a possible decision bound-
ary (green line). (C): XOR classification problem. The (red) solid lines

demonstrate that the problem space is linearly inseparable.

The XOR-relation is notoriously unsolvable with linear classification models. This
is illustrated in Figure 5.3c where a single linear model can not separate the two
different classes. Note that the dataset based on the polynomial function x0 ∗ x1
represents the numerical variant of the XOR problem (Figure 5.2b).
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5.2 Evaluation Metrics

The synthetic datasets will be used to evaluate the local explanations generated by
LIME and kernel SHAP. A broad overview of the experimental set-up can be found
in Table 5.2. Before the LIME and SHAP implementations can be applied to the
model predictions, these models have to learn to accurately predict the label of any
instance by feeding them the training portion of the different datasets. Applying
the four different learning algorithms from Section 2.1 to 80% partitions of all the
different datasets, resulted in 32 different machine learning models trained to predict
the label of a given input instance. These models were used to predict the labels of
unseen instances that were in the remainder of the datasets (20% test partitions).
Two metrics for quantifying the quality of predictions are computed; accuracy and
F1-score. The F1-score is reported to prevent relying on only accuracy for datasets
with class imbalances as it represents the harmonic mean of the precision and the
recall of the models on the test set.

Datasets (n=8)
x0 + x1
x0 ∗ x1
x0

2 − x1
3 ∗ x0 + 2 ∗ x1 + x2 − 3 ∗ x3 − 2 ∗ x4 − x5

x0
x0 & x1

(x0 | x1) & ¬(x0 & x1)
x0 | (x1 & x2) | (x3 & x4 & x5)

Models (n=4)
Random Forest

Neural Network
Decision Tree

Logistic Regression

Explanation Methods (n=2)
LIME

Kernel SHAP

TABLE 5.2: Overview of variables in experimental set-up

LIME and Kernel SHAP have surfaced as the most popular model-agnostic feature
importance explanation methods. Part of their prevalence over other methods can
be attributed to the open-source libraries that are regularly updated for different pro-
gramming languages. For this study, we use the Python libraries1 2 of both methods.
We use the absolute values of the feature importance coefficients provided by LIME
and SHAP to simplify the explanation output.

Prediction explanations that use indications of feature importance make a simpli-
fied model on a local scale. The main criterion that will be evaluated, as outlined in
Section 3.3.1, is the fidelity of the local models to the original machine learning mod-
els on a local scale. The evaluation framework for this criterion has been designed
along two dimensions. The first is a ground truth assessment, both quantitatively
and qualitatively. We know from the predefined underlying distributions that the
influence of certain features should be significant. The other features, which are not

1 LIME: https://github.com/marcotcr/lime - visited on 18-05-2020
2 SHAP: https://github.com/slundberg/shap - visited on 18-05-2020

https://github.com/marcotcr/lime
https://github.com/slundberg/shap
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used for determining the label, should not be identified as being influential to the
prediction by the explanation methods.

For this ground truth assessment, the distribution of the dataset therefore has to be
known beforehand. Since this is not the case for almost any real-life dataset, another
dimension of evaluation is added to the framework. This step is based on the intu-
ition that altering the value of the most important feature for a particular decision,
should result in the highest probability of actually changing the decision. Ideally,
this probability should be higher than the probability of changing the decision by
altering the values of less important features. Evaluating explanation in this way,
serves as a first step towards objective evaluation of generated explanations for any
prediction model; a trademark that would greatly benefit the field of machine learn-
ing.

From a processing perspective, the performance of the explanation methods will
be evaluated by looking at the time differences for explanation generation between
both methods. The experiments were performed on a laptop with Intel Core i5
processor with 8GB RAM. This can be seen as a common day-to-day platform that
should be able to facilitate computations on datasets of this size within a reasonable
amount of time. Especially in domains where large datasets with many features
are common, the computational performance can be a decisive component of an ex-
planation method. The synthetic datasets and models that are used in this study
do not require state-of-the-art processing power. This does not hold for most auto-
mated decision-making models that are used in practice. As both explanation meth-
ods require querying (or partly retraining) the model, this might be problematic for
datasets containing hundreds of features of millions of users.

5.2.1 Comparison with Ground Truth

The main advantage of the synthetic datasets we have created, is that the we now
have a ground truth to which we can compare the generated explanations. This
will be done quantitatively, by comparing the rank correlation coefficients of the
generated explanations and the ground truth feature importance orders. Since we
use the absolute values of the LIME and SHAP explanations, the ground truth orders
can be expressed with only positive values. For all the synthetic datasets, the ranking
vectors that have been created can be found in Table 5.3.

There are four datasets for which x0 and x1 are the only important features with them
both having equal importance. Because of the dataset distributions, the importance
of x1 in the ground truth is slightly higher than the importance of x0 for x0

2− x1. For
that we refer back to the standard normal distribution from which the data points are
drawn (see Section 5.1). With most values being between zero and one, the quadratic
element of x0

2 makes the influence of that feature x0 smaller than the influence of
feature x1 when evaluating the equation x0

2 − x1 > 0. The datasets with cascading
influence (ds4 and ds8) are the only datasets with three levels of importance in the
ground truth ranking vectors. The ground truth vectors will be used in a quantitative
comparison for both explanation methods and they will also be used as reference
for the qualitative assessment of the generated feature importance values of both
methods.
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TABLE 5.3: The synthetic datasets (leftmost column) with their
ground truth feature importance vectors (n=10).

Ground truth
Dataset x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

x0 + x1

1 1 0 0 0 0 0 0 0 0
x0 ∗ x1
x0 & x1
XOR i

x0
2 − x1 1 2 0 0 0 0 0 0 0 0

ds4
ii 3 2 1 3 2 1 0 0 0 0

x0 1 0 0 0 0 0 0 0 0 0
ds8

iii 3 2 2 1 1 1 0 0 0 0
i (x0 | x1) & ¬(x0 & x1)
ii 3 ∗ x0 + 2 ∗ x1 + x2 − 3 ∗ x3 − 2 ∗ x4 − x5
iii x0 | (x1 & x2) | (x3 & x4 & x5)

Kendall’s Tau-b Rank Correlation Coefficient

For the different models and datasets, we will compute the Kendall’s Tau-b rank
correlation coefficients (Kendall, 1948). This coefficient reflects the correlation with
respect to the ranks within two non-parametric data samples. Values of Kendall’s
Tau-b rank correlation coefficients range from -1 (strongest negative correlation) to
1 (strongest positive correlation). A value of zero indicates the absence of rank cor-
relation. What distinguished tau-b from other variants of rank correlation metrics is
that it makes adjustments for ties. Since we use many features with similar (ground
truth) importance values, this is an important addition. Kendall’s Tau-b rank corre-
lation coefficient τb is computed as follows:

τb =
nc − nd√

( n(n−1)
2 − ng)(

n(n−1)
2 − ne)

(5.2)

where n is the amount of values in both samples (10 in our case), nc is the number of
concordant pairs, nd is the number of discordant pairs and ng and ne is the number
of possible pairings with a tie in the ground truth and explanation, respectively. The
denominator actually calculates the number of possible ways of selecting distinct
pairs, with a correction for the number of ties (Haasdijk and Heinerman, 2018). For
the 500 LIME and SHAP explanations of every model and dataset, the coefficient
will be computed. Per model and dataset, the mean correlation values of LIME
and SHAP with the ground truth will be tested for significant difference. As high
positive correlation values indicate strong correlation, they also indicate high quality
explanations that are very similar to the ground truth in terms of rank order.

Qualitative Assessment of Normalized Feature Values

The output of LIME and SHAP consists of an importance value for each feature. The
mean values will be visualized in a bar plot for every dataset and model. By nor-
malizing the feature importance values of both explanation methods, we can assess
the explanations on a common scale, without distorting differences in the ranges of
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the values. A common normalization method called the z-transformation, will be
used for this. For the z-transformation, the mean is subtracted from the sample and
then the sample is divided by the standard deviation. The result will have mean
µ = 0 and standard deviation σ = 1. Z-scores become comparable by measuring
the observations in multiples of the standard deviation of that sample. Formally, the
normalization follows the function:

zi =
xi − µ

σ

with zi the z-transformed sample observations, xi the original values of the sample,
µ the sample mean and σ the standard deviation of the sample

5.2.2 Intuitive Assessment

Next to comparing the feature importance values with the ground truth by means
of the synthetic datasets, we propose an intuitive method for evaluating an expla-
nation that is grounded in both elements of explanations that have been defined in
Section 3.1.2. For rank-based feature importance explanations, it is intuitive to think
that one might have the highest change of flipping a prediction to a desired out-
come by changing the most influential features according to the feature importance
explanation. This intuition will be used as a proxy for assessing the quality of an ex-
planation. Similar to ground truth evaluation, this method will also consist of both
a quantitative metric and a qualitative assessment.

By changing the most important features—according to an explanation method—for
multiple predictions , we calculate how big the chance is that the prediction flips. In
order to do this, the absolute feature importance values for both methods are ranked
based on their magnitude. The feature with the highest magnitude—and hence the
biggest influence on the prediction according to that explanation method—will be
changed first. If the prediction does not change when changing that one feature, the
next feature in the ranked explanation value list is changed. The value that will be
saved and reported is the rank of the feature that made the prediction change. We
define the rank of the feature that changes the model output as the recourse value,
as it symbolizes the recourse of a user that wants to change the prediction of an
automated decision-making system. A recourse value of zero is returned when the
prediction did not change at all. Feature values are not being changed back to their
original value when the next feature in the ranked list is changed.

For both data types, the recourse value for flipping the prediction is computed in a
slightly different way. For models trained an tested on Boolean data, flipping a fea-
ture value is done by just reversing the Boolean value—0 becomes 1 and 1 becomes
0. For numerical data, this is a bit harder since simply flipping the sign of a value
close to zero would not have the same impact on the instance compared to flipping
the sign of a value far away from zero. Inspection of the standard normal distribu-
tion revealed 99.8% of the data points to be less than 3 times the standard deviation
σ away from the mean µ. Therefore every numerical feature value is changed in
both directions by adding and subtracting 6σ and checking whether the prediction
changes because of either one of these operations.
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Skewness

For an effective explanation in terms of giving a user the ability to change an auto-
mated decision, the desired recourse value for an explanation should be low. The
quantitative metric we will use for evaluating this, is based on the skewness of a
distribution. Pearson’s coefficient of skewness (Joanes and Gill, 1998) is a metric
that defines symmetry. Negative skewness values indicate that the mean of the data
values is less than the median, meaning the data distribution is left-skewed. Posi-
tive values of skewness indicate that the mean of the data values is larger than the
median, meaning that the data distribution is right-skewed. As low recourse values
are related to effective explanations, it is desirable that the mass of the distribution is
concentrated on the left. This would indicate a mean that is larger than the median,
which makes large positive skewness values desirable in our analysis. The formula
for Pearson’s coefficient of skewness is:

g1 = µ3/µ3/2
2 (5.3)

where µ2 and µ3 are the second and third central moments. The r-th central moment
µr is defined as Σi(xi − µ)r/n where n is the number of values and µ is the mean
value.

Qualitative Assessment of Recourse Values

The qualitative assessment of recourse values is based on the frequency of recourse
value combinations. Since the high quality of the generated explanations and the
relative simplicity of the datasets makes the two explanations concur very often,
comparing the means is less useful. The recourse values for all the accurate models
(n=30) will be visualized on a 2D-grid with both explanation methods along the
different axes. In this way, we can create a heatmap that allows us to look at the
conditional distributions of the recourse values more closely.

Summary Chapter 5

5.1 Eight synthetic datasets containing Boolean and numerical data have been cre-
ated using polynomial and logical functions selected for the diversity in terms
of true decision boundaries they represent.

5.2 The methodology to assess the evaluation framework for the criterion of fi-
delity of the local models to the original machine learning models has been
designed along two dimensions. The first is a ground truth assessment that
uses the known distributions of the synthetic data for evaluation. The second
is a generalizable method that uses the intuition that altering the values of the
important features should give a user a high chance of changing the decision.
Both methods will be used quantitatively and qualitatively, as this combina-
tion yields the most complete evaluation of the framework.

5.2 The ground truth assessment will be performed quantitatively by looking at
the rank correlation coefficients of the explanation value vectors and a ground
truth vector. Because the data contains many tied ranks, Kendall’s Tau-b rank
coefficient will be used to compute correlation.
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5.2 The intuitive assessment based on recourse will be quantified by calculating
the Pearson’s coefficient of skewness for both recourse value distributions. The
intuition behind this is that low recourse values indicate effective explanations
and positively skewed distributions suggest low recourse.
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Part III

Results and Analysis
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Chapter 6

Evaluating Feature Importance
Explanations

Based on the learning algorithms discussed in Section 2.2, machine learning models
have been trained and tested on the synthetic datasets described in Section 5.1. In
the first section of this chapter, the classification performance of these models will
be reported. For the predictions of the models, explanations are generated using the
explanation methods from Chapter 4. The generated explanations will be visual-
ized and evaluated on the criteria from Section 3.3.1 using the metrics introduced in
Section 5.2.

6.1 Model Performance on the Datasets

Four different type of models have been trained on 80% partitions of eight synthetic
datasets containing 2500 instances with ten features and a corresponding binary la-
bel (see Table 5.1). In Table 6.1, performance of all 32 models on the 20% test parti-
tions of the datasets is reported. In the Prior column of Table 6.1, it is demonstrated
that some datasets are slightly imbalanced, as prior probabilities for the binary class
1 varies between 0.250 and 0.721. This is expected due to the evaluation functions
that are used for labeling the synthetic data. However, F1-score and accuracy corre-
spond very strongly for every combination of model and dataset so class imbalance
does not seem to be a problem. Next to the two performance metrics, the mean
time in seconds it took both explanation methods to generate the feature importance
values, is also reported.

We observe an accuracy on the test set of around 50% for two Logistic Regression
models (colored red in Table 6.1). One trained on the Boolean XOR-dataset and
the other on the numerical XOR-dataset (x0 ∗ x1). The XOR-problem is notoriously
unsolvable with linear classification (see Figure 5.3c), which explains the bad perfor-
mance of the logistic regression model on these datasets. The models have not been
able to learn the underlying distribution of the data.

Three other models have an accuracy on the test set under 95% (colored orange in
Table 6.1). The numerical dataset that is labeled using the x0

2 − x1 function is char-
acterized by a parabolic decision boundary. This explains why the logistic regres-
sion model that is trained on this dataset does not achieve competitive performance.
In Figure 6.1, this is visualized clearly. The other two models are both tree-based
models trained and tested on the numerical dataset with cascading influence (ds4).
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TABLE 6.1: Classification performance of the predictions of the dif-
ferent model types on 20% test partitions of all the datasets. The ac-
curacy of a model represents the percentage of correctly classified in-
stances in the test set. The F1-score represents the harmonic mean of

the precision and the recall of the model on the test set.

Model Performancei

Datasets Prior ii Metric RF NN LR DT

Synthetic numerical data

x0 + x1 0.515

Accuracy 97.0% 99.0% 100% 96.6%
F1-score 0.968 0.990 1 0.965
LIME time (s) 0.041 0.032 0.027 0.028
SHAP time (s) 18.92 18.71 16.25 16.43

x0
2 − x1 0.721

Accuracy 96.0% 98.6% 83.8% 98.0%
F1-score 0.971 0.990 0.885 0.986
LIME time (s) 0.040 0.032 0.027 0.027
SHAP time (s) 18.80 18.71 16.25 16.44

x0 ∗ x1 0.504

Accuracy 94.0% 98.4% 49.0% 99.6%
F1-score 0.938 0.984 0.569 0.996
LIME time (s) 0.043 0.033 0.027 0.028
SHAP time (s) 19.08 18.53 16.11 18.72

ds4
iii 0.517

Accuracy 90.2% 99.0% 99.6% 84.0%
F1-score 0.900 0.990 0.996 0.837
LIME time (s) 0.041 0.032 0.028 0.028
SHAP time (s) 19.00 18.60 16.18 16.38

Synthetic Boolean data

x0 0.494

Accuracy 100% 100% 100% 100%
F1-score 1 1 1 1
LIME time (s) 0.042 0.030 0.023 0.023
SHAP time (s) 12.18 10.04 7.743 7.700

x0 & x1 0.250

Accuracy 100% 100% 100% 100%
F1-score 1 1 1 1
LIME time (s) 0.031 0.031 0.023 0.023
SHAP time (s) 9.093 10.13 7.703 7.720

XOR iv 0.482

Accuracy 99.8% 100% 46.8% 100%
F1-score 0.998 1 0.502 1
LIME time (s) 0.035 0.031 0.023 0.023
SHAP time (s) 9.858 10.14 7.625 7.707

ds8
v 0.677

Accuracy 100% 100% 97.6% 100%
F1-score 1 1 0.983 1
LIME time (s) 0.035 0.035 0.026 0.026
SHAP time (s) 10.32 11.52 8.586 8.640

i Random Forest (RF); Neural Network (NN); Logistic Regression (LR); Deci-
sion Tree (DT)

ii Prior probability of the binary instance label being 1
iii 3 ∗ x0 + 2 ∗ x1 + x2 − 3 ∗ x3 − 2 ∗ x4 − x5
iv (x0 | x1) & ¬(x0 & x1)
v x0 | (x1 & x2) | (x3 & x4 & x5)
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Interestingly enough, the other two model types do perform well on this dataset
with features of varying importance.

FIGURE 6.1: Learned decision boundaries for different models on
x0

2− x1 data. The class of a data point is indicated by its color (green
for 0 and grey for 1). The classification of the model is indicated in
red (0) and blue (1). For the models that calculate probabilities, these

are visualized by colors ranging from red to blue.

The last trend that can be observed by looking at the accuracy scores, is that it seems
to be easier for the models to learn underlying distributions for Boolean data than
for numerical data. This can be explained by the variance of the distribution from
which the numerical data is drawn. When looking at Figure 6.2 (numerical XOR)
and 6.3 (logical XOR), this difference is visualized clearly. The sets in the vector
space are divided similarly but the distribution of the data points is not. For the
other datasets that have one or two informative features, the data distribution of the
first two features and the decision boundaries of the different models have also been
visualized. The remaining figures can all be found in Appendix A.

In Table 6.1, we observe significant differences between LIME and SHAP when it
comes to the time it takes to generate an explanation. This can be attributed to the
efficiency of the underlying method of feature importance calculation as discussed
in Chapter 4. There are some small differences between the explanation times for
the different model types. The general trend seems to be that explaining predictions
for the logistic regression and decision tree models takes slightly less time. Since the
only difference in generating explanations between the different models lies in the
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FIGURE 6.2: Learned decision boundaries for different models on
x0 ∗ x1 data. The class of a data point is indicated by its color (green
for 0 and grey for 1). The classification of the model is indicated in
red (0) and blue (1). For the models that calculate probabilities, these

are visualized by colors ranging from red to blue.

fact that a different model is queried, the two aforementioned models seem to be a
little more lightweight and efficient.

In line with the poor model performance that could be observed in Table 6.1, both ex-
planation methods could not distinguish between informative and non-informative
features for predictions of the logistic regression model trained and tested on both
XOR problems. In Table 6.1 we saw that the predictions of the logistic regression
models on the numerical XOR and the Boolean XOR data (colored red in the table)
were approximately random as there is a 50% chance of guessing the correct label.
These models will be excluded from the analyses. In Figures 6.2 and 6.3 we can see
that the logistic regression models have not been able to learn the underlying distri-
bution of the data and therefore the explanations will only add noise to the results
that follow from our analysis.

6.2 Evaluation by Ground Truth Comparison

Both Kernel SHAP and LIME have been applied to explain 500 predictions for every
of the 30 accurate models. The generated explanations of the different models have
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FIGURE 6.3: Learned decision boundaries for different models on
(x0 | x1) & ¬(x0 & x1) data. The class of a data point is indicated by
its color (green for 0 and grey for 1). The classification of the model is
indicated in red (0) and blue (1). For the models that calculate proba-

bilities, these are visualized by colors ranging from red to blue.

been compared to the ground truth ranks for the specific dataset they have been
trained on.

6.2.1 Kendall’s Tau-b Rank Correlation Coefficient

For the different models and datasets, we have computed the Kendall’s Tau-b rank
correlation coefficients (Kendall, 1948). This coefficient reflects the correlation with
respect to the ranks within the explanation and the ground truth rank. The mean
rank correlation coefficient (n=500) between the generated explanations and the ground
truth ranks are listed in Table 6.2. Whether the difference between the mean Kendall’s
tau correlation coefficients of LIME and SHAP is significant, has been tested using a
paired t-test. The p-value of this test is provided in the last column of the table.

In Table 6.2 we see that for all models and dataset, the correlation value is positive for
both explanation methods, indicating strong correlation and therefore explanations
that are similar to the ground truth in terms of rank order. A few interesting signifi-
cant differences between the correlation values of LIME and SHAP can be observed.
For the x0

2 − x1 and x0 ∗ x1 datasets, the correlation value for SHAP is larger than
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TABLE 6.2: The mean (n=500) Kendall’s tau-b rank correlation coeffi-
cient (and corresponding standard errors) between the generated ex-
planations and the ground truth orders. The ground truth vectors are
defined in Table 5.3. The p-value in the last column indicates whether
the mean correlation for LIME and for SHAP is statistically different.

P-values that indicate no significant difference are colored red.

LIME SHAP
Datasets Model Mean (se) Mean (se) p-value

Numerical data

x0 + x1

NN 0.393 (0.002) 0.396 (0.003) 0.295
LR 0.387 (0.002) 0.399 (0.002) < 0.001
DT 0.440 (0.001) 0.413 (0.002) < 0.001
RF 0.413 (0.002) 0.389 (0.004) < 0.001

x0
2 − x1

NN 0.550 (0.006) 0.590 (0.003) < 0.001
LR 0.200 (0.006) 0.224 (0.006) 0.004
DT 0.555 (0.006) 0.624 (0.002) < 0.001
RF 0.534 (0.007) 0.587 (0.004) < 0.001

x0 ∗ x1

NN 0.323 (0.009) 0.389 (0.003) < 0.001
DT 0.320 (0.009) 0.643 (0.004) < 0.001
RF 0.220 (0.012) 0.380 (0.004) < 0.001

ds4
i

NN 0.894 (0.000) 0.708 (0.005) < 0.001
LR 0.894 (0.000) 0.720 (0.005) < 0.001
DT 0.891 (0.001) 0.668 (0.006) < 0.001
RF 0.894 (0.000) 0.701 (0.006) < 0.001

Boolean data

x0

NN 0.308 (0.008) 0.315 (0.006) 0.454
LR 0.291 (0.008) 0.286 (0.004) 0.573
DT 0.294 (0.009) 0.667 (0.000) < 0.001
RF 0.293 (0.008) 0.317 (0.008) 0.039

x0 & x1

NN 0.407 (0.002) 0.394 (0.002) < 0.001
LR 0.402 (0.002) 0.400 (0.002) 0.447
DT 0.394 (0.002) 0.651 (0.004) < 0.001
RF 0.396 (0.002) 0.392 (0.002) 0.183

XOR ii
NN 0.395 (0.002) 0.399 (0.002) 0.230
DT 0.396 (0.002) 0.399 (0.002) 0.281
RF 0.400 (0.002) 0.398 (0.002) 0.613

ds8
iii

NN 0.882 (0.000) 0.825 (0.004) < 0.001
LR 0.882 (0.000) 0.876 (0.001) < 0.001
DT 0.882 (0.000) 0.885 (0.004) 0.497
RF 0.881 (0.000) 0.807 (0.004) < 0.001

i 3 ∗ x0 + 2 ∗ x1 + x2 − 3 ∗ x3 − 2 ∗ x4 − x5
ii (x0 | x1) & ¬(x0 & x1)
iii x0 | (x1 & x2) | (x3 & x4 & x5)
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the value for LIME for all model types. For the ds4 dataset however, the LIME expla-
nation is more strongly correlated with the ground truth. For the Boolean datasets,
we observe much less correlation values that are significantly different. For the de-
cision tree models trained on datasets x0 and x0 & x1, the difference between LIME
and SHAP is relatively large when compared to the other model types (in favor of
SHAP). For the dataset with cascading influence (ds8), the difference is in favor of
LIME, albeit not as strong as for the numerical dataset with cascading influence ds4.

6.2.2 Qualitative Assessment of Normalized Feature Values

To establish fair comparison between the values generated by both methods, we
applied a z-transform to the mean feature importance values grouped per model,
dataset and explanation method. The normalized FI plots can be found in Figure 6.4
for the numerical datasets and Figure 6.5 for the Boolean datasets respectively.

Numerical datasets

In Figure 6.4a, we see that both methods can quite clearly distinguish between the
informative (x0 and x1) and non-informative features for every model trained to
represent the linearly separable plane of the x0 + x1 function. In Figure 6.4b, the FI
values give an indication of why the performance of the Logistic Regression model
trained to learn the parabolic plane of function x0

2 − x1, is worse than for the other
model types. It makes sense that the importance value of x0

2 is smaller than for x1
when we refer back to the standard normal distribution from which the data points
have been drawn (see Section 5.1), with most values being between zero and one.
But the linear model seems not to be able to distinguish the quadratic feature x0
from the non-informative features. This makes the assessment of the explanation
methods that x0 is non-informative for that specific model type, compatible with
what we know of the model from the performance metrics.

The models trained on the dataset ds4 with cascading influence, seem to pick up
on the informative features (see Figure 6.4d). The slightly lower performance for
the tree-based models on this dataset that has been observed in Table 6.1, seems
to be reflected in the feature importance values as well. Both tree-based models
seem to have slightly lower feature importance values for the informative features,
especially for x2 and x5 which are the informative features that are supposed to have
the smallest influence on the prediction. Another interesting observation from the
plots is the difference between the LIME and SHAP values for some of the models.
For Figure 6.4b and to a lesser extent for Figure 6.4c, the SHAP value seems to be
larger than the value in the LIME explanations in the case where they differ. SHAP
seems to be unique in picking up on feature x0 being important to the decision-
making of the model. For the x0 ∗ x1 dataset (see Figure 6.4c), LIME seems to be less
stable when it comes to determining which features are non-informative for that
particular underlying distribution only for the Random Forest model.

Boolean datasets

In Figure 6.5a we see that according to the FI values given by the LIME and SHAP
explanations, the models are all able to learn that feature x0 is the only informative
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(A) x0 + x1 (B) x0
2 − x1

(C) x0 ∗ x1 (D) 3x0 + 2x1 + x2 − 3x3 − 2x4 − x5

FIGURE 6.4: Normalized mean (n=500) absolute feature importance
explanation values per model, dataset and explanation method for

the different models trained and tested on numerical data.
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(A) x0 (B) x0 & x1

(C) (x0 | x1) & ¬(x0 & x1) (D) x0 | (x1 & x2) | (x3 & x4 & x5)

FIGURE 6.5: Normalized mean (n=500) absolute feature importance
explanation values per model, dataset and explanation method for

the different models trained and tested on Boolean data.
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feature in the dataset labeled by the projection function. Figure 6.5b shows similar
results for the dataset based on the logical conjunction function. For the Boolean
XOR data (Figure 6.5c, LIME and SHAP also picked up on the two important fea-
tures for all three accurate models. Similar to the numerical equivalents, the models
trained on the cascading influence data with Boolean features seem to be able to
distinguish between informative and non-informative feature as well as between
varying magnitudes of influence (Figure 6.5d).

In general, for the models trained on Boolean data, we hardly see any differences
between the two explanation methods after normalization. This might be attributed
to the technique that is being used for normalization and setting a common scale
for both explanation methods. For the Boolean datasets, the variation in importance
among the different features in the Boolean datasets is not very large. Therefore, not
many explanation values are expected to end up somewhere in the middle of this
common scale. For the numerical features, this observation holds to a lesser extent.

For both the numerical and the Boolean datasets, plots of the mean absolute FI val-
ues before normalization αFI

n for every feature xn and every model as computed by
LIME and SHAP can be found in Appendix B for further reference, in Figure B.1 and
Figure B.2 respectively.

6.3 Intuitive Assessment

The frequencies of the recourse values in Table 6.3 demonstrate that in general, the
intuition that changing the most important feature will result in changing the pre-
diction, holds in most cases for both explanation methods. For LIME, this is true for
13130 (87.5%) of the predictions while for SHAP this number is a little higher, with
13568 (90.5%) of the predictions flipping after changing the most important feature.

Recourse value 0 1 2 3 4 5 6 7 8 9 10
LIME (n=15000) 1045 13130 646 66 85 9 2 7 7 3 0
SHAP (n=15000) 1045 13568 336 29 17 3 0 0 0 2 0

TABLE 6.3: Frequency table of the recourse values over all the differ-
ent models and datasets per explanation method. A recourse value
of zero means the prediction did not change at all and a value of one
means the prediction changed after changing the most important fea-

ture according to the explanation method.

For both explanation methods, the prediction of 1045 instances did not flip after
changing all the features. One possible cause for this is the inter-dependency of the
different features in the underlying distributions for some of the synthetic datasets.
This suspicion is supported by the fact that most of the predictions that did not
change, were predictions of instances of Boolean datasets that contain a conjunction
(&) in the underlying distribution. This was the case for 888 (85.0%) of the predic-
tions with recourse value zero.
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6.3.1 Skewness

From Table 6.3, we have seen that according to our intuitive assessment, LIME and
SHAP provide useful explanations in terms of recourse. As both explanations per-
form well, they also concur with respect to the explanation they provide very often.
This leads to the exact same recourse value for those instances in many cases. For
14019 (93.5%) of the predictions made by the accurate models, the recourse value for
the explanations generated by LIME and SHAP were the same. The 981 explanations
for which the recourse values of LIME and SHAP disagreed are therefore of particu-
lar interest for investigating the differences between the explanation methods in the
context of our intuitive assessment.

In order to quantitatively assess this difference, the skewness of this distribution of
recourse values for all instances where the values did not match has been evaluated
for both explanation methods. The Pearson’s coefficients of skewness (Joanes and
Gill, 1998) (see Equation 5.3) for the distributions were 3.63 for SHAP and 2.55 for
LIME respectively. This means that the distribution for the recourse values of SHAP
has a more extreme positive skew to the right, meaning that in general the recourse
value is lower when we change features according the rank provided by the SHAP
explanation.

6.3.2 Qualitative Assessment of Recourse Values

In order to qualitatively compare the recourse values of both explanation methods,
the frequency of combinations of recourse values for all instances has been visual-
ized on a grid in the categorical heatmap from Figure 6.6. Recourse value combina-
tions that occur more often are depicted by darker tiles in the grid. In this heatmap
we observe that for the majority of instances both recourse values are one, which
demonstrates the general high quality of the explanations. The second observation is
that relatively high recourse values occur more often for LIME explanations. A high
recourse value gives an indication of a strong predictive feature not being ranked as
(one of) the most important feature by an explanation method. This is depicted by
the vertical spread of the dark area, which in this case covers the LIME axis and not
so much the SHAP axis.

To visually verify the results that follow from the skewness metric, a histogram of
the recourse values for the 981 explanations for which the recourse values did not
match has been drawn up in Figure 6.7.

In this histogram, the recourse values of SHAP has a more extreme positive skew to
the right, meaning that in general the recourse value is lower when we change fea-
tures according the rank provided by the SHAP explanation. This aligns with our
observation of a more positive skew for the SHAP recourse values from the Pear-
son’s coefficients of skewness. In lign with the heatmap from Figure 6.6, it again
becomes clear that relatively high recourse values occur more often for LIME expla-
nations. Important to keep in mind though, is that high recourse values rarely occur
and that the histogram represents only a small portion of the explanations. It only
serves to zoom in on the rare cases in which the recourse values of the explanation
methods do not match.

Note that in contrast with previous chapters, this chapter does not contain a sum-
mary. The results from this chapter will be discussed and interpreted in Section 7.1.
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FIGURE 6.6: Categorical heatmap of the recourse value combinations
for all instances. The recourse value represents the rank of the fea-
ture that made the prediction flip when changing features in order
of importance—with this order provided by the explanation method.
Recourse value combinations that occur more often are depicted by

darker tiles in the grid.

An overview of the main findings from the analyses can be found at the beginning
of Section 7.3 as part of the conclusive section.
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FIGURE 6.7: Histogram of the recourse values per explanation
method for all instances of which the recourse values of LIME and
SHAP did not match. The recourse value represents the rank of the
feature that made the prediction change when changing features in

order of importance—with this order provided by an explanation.
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Part IV

Discussion and Conclusion
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Chapter 7

Discussion and Conclusion

An evaluation framework has been drafted based on the combination of the require-
ments that follow from the right to explanation (Section 1.2), the definitions of in-
terpretability and explanations from Section 3.1 and the taxonomy of interpretable
machine learning (Section 3.2). In this conclusive chapter of the thesis, the added
value and relevance of the design and implementation of our explanation frame-
work will be discussed and connected to the literature. Ultimately, possible future
work will be outlined, the main findings of the current work will be listed and a
conclusion will be drawn.

7.1 Discussion

The framework we built has been tested using datasets with predefined distribu-
tions. The evaluation of the explanations using this data with known explanatory
structure was twofold. The distributions have served as a ground truth that made
objective evaluation of the explanations possible. Moreover, an intuitive assessment
of explanations that does not rely on predefined distributions has been proposed and
tested. The results of the proposed methodology will be discussed in this section.

7.1.1 Interpretation of the Results

We have been able to match and even clarify regular performance metrics of the
different models with the feature importance indications given by both explanation
methods. This partly demonstrates the usefulness of the proposed evaluation frame-
work. The results of the ground truth assessment (Section 6.2) indicate that the cur-
rent methodology helps fulfill the evaluation of the first requirement of automated
decisions (see Section 1.2) which is to enable users to understand the reasons—in our
case indicated by feature importance—behind a decision. The results of the intuitive
assessment (Section 6.3) indicate the usefulness of the current method for evaluating
consent to the second requirement of automated decisions (see Section 1.2), which is
to enable users to act upon a decision.

For the models that were not able to learn the known explanatory structure, de-
noted by low accuracy scores in Table 6.1, this decline in model performance can be
explained by the explanation values as they align with decision boundary visualiza-
tion (see Section 6.1). The low performance of the linear Logistic Regression models
on the non-linear parabolic dataset and both XOR-datasets was not surprising. The
other two models that did not perform well were both tree-based models trained and
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tested on the numerical dataset with cascading influence (ds4). Interestingly enough,
the other two model types did perform well on this dataset with features of varying
importance (as can be seen in Table 6.1). Tree-based algorithms are known to not
fit as well on numerical data as they do on Boolean data because they fail to model
important information when segmenting the data into different regions needed for
the impurity method used for splitting the nodes (Ho, 2002) (see Section 2.2.2). That
this is reflected in the numerical dataset with cascading influence was to be expected
since this is the dataset with the most variation in terms of the different magnitudes
of influence.

Both LIME (Ribeiro, Singh, and Guestrin, 2016) and kernel SHAP (Lundberg and
Lee, 2017) are able to distinguish between informative and random features for the
models and datasets we used. The explanation values correspond with what we ex-
pect from the underlying distributions of the synthetic data. In terms of the ground
truth assessment, this is indicated by high rank correlation coefficients between the
explanations and the ground truth vectors in Section 6.2.1 (see Table 6.2). The cor-
relation value is positive for both explanation methods for all models, indicating
strong correlation and therefore explanations that are in general very similar to the
ground truth in terms of rank order. For the x0

2 − x1 and x0 ∗ x1 datasets, the cor-
relation value for SHAP is larger than the value for LIME for all model types.

The locality of the sampled datasets imposed by the weighting schemes (see Sec-
tions 4.1.1 and 4.2.1) has a great influence on the explanations (Laugel et al., 2018).
This is probably where the difference between LIME and kernel SHAP is largest,
both in terms of fidelity and in terms of the efficiency of the algorithm. The assump-
tion behind LIME that the decision boundary can be approximated by a linear model
holds for a infinitely small region around the instance. The user-defined value of the
kernel width (see Section 4.1.1) needs to be chosen as to find a balance between lo-
cality and efficiency (Ribeiro, Singh, and Guestrin, 2016; Laugel et al., 2018). To a
certain extent, the linear assumption of LIME is correct when considering a tiny re-
gion of the decision boundary around the instance to be explained. When increasing
the size of this region, a linear model might not be powerful enough to accurately
approximate the decision boundary of the original model in that region. The SHAP
kernel, even though a lot more expensive computationally, circumvents this problem
by generating unbiased approximations of the Shapley values.

The results from the rank correlation values are also reflected in the feature impor-
tance plots in Section 6.2.2. For the x0

2 − x1 dataset and to a lesser extent for the
x0 ∗ x1 dataset, the SHAP value seems to be more similar to the ground truth than
the value in the LIME explanations in the case where they differ. The relatively poor
results for LIME on exactly the non-linear datasets, might indicate limited applica-
bility of LIME in scenarios with complex data distributions and models.

For the ds4 and ds8 datasets however, the LIME explanation is more strongly cor-
related with the ground truth. It is however notable that the superior correlation
between LIME and the ground truth for the datasets with cascading influence is
not reflected in the normalized mean feature importance values. As this is the only
case in which both assessment types of the ground truth evaluation do not match,
we ought to be wary of interpreting this result, especially since the variance of the
LIME explanations is strikingly low (reflected by the standard errors in Table 6.2).
The better explanations of LIME for the datasets with cascading influence might be
caused by the multi-dimensional (yet still linear) decision boundaries generated by
this distribution and the problems we identified with tree-based models on this data.
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The results we have discussed above are all also supported by the results (Sec-
tion 6.3) of intuitive assessment method we proposed in Section 5.2.2. The frequen-
cies of the recourse values demonstrate that in general, the intuition that changing
the most important feature will result in changing the prediction, holds in most cases
for both explanation methods. For LIME, this is true for 13130 (87.5%) of the predic-
tions while for SHAP this number is a little higher, with 13568 (90.5%) of the predic-
tions flipping after changing the most important feature. The skewness coefficients
for the distributions were 3.63 for SHAP and 2.55 for LIME respectively (see Sec-
tion 6.3.1). This result is also reflected in the categorical heatmap of the conditional
distributions in Section 6.3.2. We observe that relatively high recourse values occur
more often for LIME explanations than they do for SHAP explanations.

Next to differences in terms of fidelity to the original model, we also observe signifi-
cant differences between LIME and SHAP when it comes to the time it takes to gen-
erate an explanation. For LIME, the mean explanation time is 0.030 seconds while
for SHAP the mean explanation time is 13.43 seconds. The difference in efficiency
can be attributed to the sampling techniques both methods employ, as explained in
Chapter 4.

7.1.2 Connection to the Literature

Automated decision-making models often model human behavior and life trajecto-
ries. Even with the use of rich datasets and state-of-the-art machine learning meth-
ods however, it has proven to be very difficult to accurately model social patterns
(Salganik et al., 2020). Next to suggesting practical limits to the predictability of hu-
man behavior in some settings, the work done by Salganik et al. (2020) also justifies
the work that has been done in the current study. State-of-the-art machine learning
models do not necessarily perform better than simple linear models in this domain.
As long as this is the case, it is certainly of importance to understand the reasoning
of any automated decision-making system and to be able to reliably evaluate the
interpretable machine learning methods that are intended to provide this layer of
understanding.

The application of the framework using LIME and kernel SHAP has highlighted
some key differences between both methods. As opposed to the current study, the
relation between hyper-parameter settings and possible problems with the instabil-
ity of explanations have been addressed extensively in other work (Zhang et al.,
2019; Gosiewska and Biecek, 2019). The general consensus however, matches the
patterns that we observed when implementing the framework. Laugel et al. (2018)
for example, have already shown that defining the right level of locality defines the
quality and relevance of an explanation. Their results have shown that the local
models of LIME sometimes approximate the global shape of the black-box decision
boundary instead of the local boundary close to the individual instance. Our results
tie in with this finding, considering that for linear (global) decision boundaries the
variation between the shape and direction of different local decision boundaries is
very small compared to complex non-linear decision boundaries. LIME performs
well for (partly) linear data distributions as the effect of the global feature influence
mitigating the local feature influence is insignificant for those datasets.

Both sampling methods have certain pitfalls when it comes to explaining instances.
Kernel SHAP uses the marginal contribution and thereby ignores the dependence
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between absent and present features in the binary vectors of the samples (see Sec-
tion 4.2.1), which is needed to ensure that the resulting coefficients are Shapley val-
ues (Lundberg and Lee, 2017). If the method was to sample from the conditional
distribution, the resulting values would violate the axiom defined by Lundberg and
Lee (2017), which says that a feature that does not contribute to the outcome should
have a Shapley value of zero. In our study, noise was limited in the synthetic data
generation process described in Section 5.1. Yet it has been proved by Gosiewska
and Biecek (2019) that this method can suffer from the same problems as other per-
mutation sampling-based approaches since too much weight might be attributed to
unlikely instances.

For LIME, the choice of the similarity metric also has an effect on the explanation
result. By choosing neighbourhoods of different sizes, the resulting explanations
might point in opposite directions. This characteristic threatens the criterion of con-
tinuity. For this criterion, Alvarez-Melis and Jaakkola (2018) have defined an assess-
ment method with a qualitative and a quantitative aspect, similar to the methodol-
ogy for the fidelity criterion used in this current study. The focus of their research
however, was to actively develop self-explanatory models for which explainability
already plays a role during the learning phase (Melis and Jaakkola, 2018). Zheng,
Fernandes, and Prakash (2019) have uncovered that these self-explanatory models
are for now still susceptible to adversarial attacks, just like opaque machine learning
methods (see Section 1.1).

In this study we were not concerned with developing an interpretable machine
learning method ourselves, but merely with establishing and testing a general eval-
uation framework. The distinctive idea is that evaluations should at least produce
expected results in a framework based on synthetic data on which a ground truth
assessment can be done. The intention of using synthetic datasets with known
explanatory structure was not to accurately represent real-world machine learning
problems. The demonstrated usefulness of this approach, is that applying this part
of the framework before explanation method deployment can already accurately
indicate the performance of the explanation method in terms of fidelity. Synthetic
data distributions can be chosen to reflect the expected data distribution in the actual
data domain. The intuitive assessment method can then be used after deployment of
the explanation model to monitor live evaluation performance, also for real-world
machine learning problems. This can be seen as the first step towards evaluating ex-
planations of deployed explanation systems using real-life datasets in an objective
manner and adds to the practical applicability of XAI.

7.2 Future Work

Not all of the criteria from the evaluation framework that we drafted in Chapter 3
have been evaluated within the scope of this study. Therefore setting up evalua-
tion procedures for the remaining criteria for local post-hoc explanations (continuity
and reliability) would form a natural extension to the current study. One possible
methodological starting point for assessing the reliability of explanations—a good
explanation should be given for every individual prediction—would be to evalu-
ate the quality of local explanations in relation to the distance of the instance to the
original decision boundary. For the criterion of continuity, which says that identical
inputs should lead to identical explanations, Alvarez-Melis and Jaakkola (2018) have
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already defined a quantitative metric—the local Lipschitz continuity value—which
can be added to the current methodology. The same holds for adding models from
a broader array of machine learning problems, for example based on different data
types (e.g. visual and textual) or regression.

The success of the intuitive assessment method, could serve as a stepping stone to-
wards more generic evaluation methods for which predefined distributions are no
longer necessary. This move from theoretical evaluation towards a more practical
approach would greatly benefit the ad-hoc evaluation of live models and online
learning systems. As the intuitive assessment was for a large part based on the con-
trastive component of an explanation, it is worthwhile to explore counterfactual and
example-based explanation methods (Dhurandhar et al., 2018) as a possible addition
to the framework of feature importance based explanations.

All the methods that have been used in this study, assume that the features in the
data are complete and known beforehand. In practice, systems sometimes also use
external reference data and links to other databases to come to accurate decisions.
This is not always explicitly communicated with the user. Ideally, models that use
these hidden features should also include them in the explanation process. The work
by Lakkaraju et al. (2017) uses hidden features in prediction models and can be used
as an inspiration for the explanation evaluation of models with hidden features. In
addition to the current methodology, the future directions proposed in this section
would add aspects to the framework that help increase the completeness of the eval-
uation of interpretable machine learning methods.

7.3 Conclusion

Automated decision-making models are being deployed in regulated industries such
as finance, the judiciary and the government. The use of these models is with good
intentions, to speed up and improve the effectiveness of seemingly simple decision-
making. However, in this study we have discussed various potentially unwanted
side-effects which are hard to monitor because of the opaqueness of the internal
reasoning of some machine learning models. Therefore it is important to develop
a framework able to not only evaluate the performance of machine learning mod-
els themselves but also the explanations that should be provided along with their
predictions.

Part I of this study comprised the justification and design of this evaluation frame-
work for automated decision-making models. In order to provide a formal way of
assessing interpretable machine learning methods, we combined the extensive re-
search in the social science domain with an analysis of the regulatory requirements
posed by the GDPR. Adequate decision explanations should meet the requirements
that the user of such a system should be able to understand the reasons behind an au-
tomated decision and that the user should be able to act upon the decision—which is
to say spot errors or contest the decision (Section 1.2). Interpretable machine learn-
ing methods can be used to facilitate this by giving an understanding of how the
models make decisions. For this, explanations have been defined as the means to
increase model interpretability (Section 3.1.2).
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As part of the formation of this framework we taxonomized the research on inter-
pretable machine learning methods along three dimensions: The scope of the expla-
nations, the approach to interpretability and the type of explanation. From this fol-
lowed a general evaluation framework for automated decision-making explanations
that consists of several criteria; fidelity, continuity, reliability, accuracy, robustness
and efficiency. The main criterion for local explanations and automated decision-
making—and hence the focus of the research done in this study—is fidelity. For
explanations of individual predictions, it is essential that the local explanation cor-
rectly reflects the original model that it is based on. In Part II, a methodology to
assess the framework has been proposed. The framework has been applied by eval-
uating the two most popular proponents of feature importance based explanations,
LIME (Section 4.1.1) and Kernel SHAP (Section 4.2.1), along the criterion of fidelity
using synthetic datasets and two complementary assessment types. The combina-
tion of both assessments serves as a foundation for evaluating explanations in a gen-
eral framework. Our results that can be found in Part III of the study, suggest that
kernel SHAP is slower but more precise, especially when it comes to non-linear de-
cision boundaries. In cases where the linearity of the decision boundary (also for
multi-dimensional data) is well-defined, LIME can be used as a heuristic approxi-
mation.

Ultimately, tackling unwanted side-effects of automated decisions calls for a com-
bined effort of machine learning engineers, legislators and psychologists. In the cur-
rent work, we have addressed a missing piece by creating an objective evaluation
framework for interpretable machine learning methods. The combination of legal
analysis, cognitive explanation theory and interpretable machine learning proved
to be successful for evaluating the explanations of relatively simple machine learn-
ing models. It is our hope that the framework and the methodology presented in
this study helps facilitate the sustainable integration of automated decision-making
models in society.
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Appendix A

Decision Boundaries for Datasets
with Two Informative Features

FIGURE A.1: Learned decision boundaries for different models on
x0 + x1 data. The class of a data point is indicated by its color (green
for 0 and grey for 1). The classification of the model is indicated in
red (0) and blue (1). For the models that calculate probabilities, these

are visualized by colors ranging from red to blue.
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FIGURE A.2: Learned decision boundaries for different models on x0
data. The class of a data point is indicated by its color (green for 0
and grey for 1). The classification of the model is indicated in red
(0) and blue (1). For the models that calculate probabilities, these are

visualized by colors ranging from red to blue.
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FIGURE A.3: Learned decision boundaries for different models on
x0 & x1 data. The class of a data point is indicated by its color (green
for 0 and grey for 1). The classification of the model is indicated in
red (0) and blue (1). For the models that calculate probabilities, these

are visualized by colors ranging from red to blue.
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Appendix B

Original Feature Importance Plots
for LIME and SHAP on the
Synthetic Datasets before
Normalization

A visualization of the mean absolute feature importance (FI) values αFI
n for every

feature xn and every model as computed by LIME and SHAP can be found in Fig-
ure B.1 and B.2. The vertical bars represent the FI values and error bars denote the
standard error of the mean:

σ−x =
σ√
n

(B.1)

where σ is the standard deviation of the absolute FI values and n is the amount of
explanations.
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Appendix B. Original Feature Importance Plots for LIME and SHAP on the

Synthetic Datasets before Normalization

(A) x0 + x1 (B) x0
2 − x1

(C) x0 ∗ x1 (D) 3 ∗ x0 + 2 ∗ x1 + x2− 3 ∗ x3− 2 ∗ x4− x5

FIGURE B.1: Mean absolute feature importance explanation values
(n=500) for the different models trained and tested on numerical data.



Appendix B. Original Feature Importance Plots for LIME and SHAP on the
Synthetic Datasets before Normalization
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(A) x0 (B) x0 & x1

(C) (x0 | x1) & ¬(x0 & x1) (D) x0 | (x1 & x2) | (x3 & x4 & x5)

FIGURE B.2: Mean absolute feature importance explanation values
(n=500) for the different models trained and tested on Boolean data.
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