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Abstract  
 

The novel coronavirus, a single-stranded positive-sense RNA, emerged from Wuhan has 

caused a global pandemic, causing surge of COVID-19 patients in hospital systems 

worldwide. Previous zoonotic coronaviruses outbreaks provided us knowledge on the 

immunopathology and the function of viral components, paving the way for the COVID-19 

therapeutics and vaccine development. This article provides insight into pharmaceutical 

interventions, identifying potential COVID-19 therapeutics and vaccines.  

As of May 23rd, 2020, there were 223 therapeutics and 141 vaccines in clinical trials. Some of 

the COVID-19 therapeutics and vaccines showed promising preliminary results and other 

negative results. However, it is difficult to determine whether they have an essential role in 

COVID-19 treatment in the future since most of the trials have their shortcomings. 

Remdesivir is the only drug approved for COVID-19. Lesson learned from this pandemic is 

that new clinical trial design needs to be designed to speed up therapeutic development for 

future pandemic   

Keywords: COVID-19, Drug development, vaccine, therapeutic, clinical trial.  
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Introduction: 

On March 11th, the WHO (World Health Organization) declared the COVID-19 outbreak a 

global pandemic.1 The pandemic that is caused by the novel coronavirus has affected many 

peoples' lives in so many ways. Since people do not have a natural immunity to this novel 

coronavirus, many people's health is, therefore, at risk, especially immunocompromised 

people and people with comorbidity. Thus, many countries are implementing social 

distancing measures to protect vulnerable people and minimize the spread of this virus, 

thereby "flattening the curve." However, social distancing measures harm the global 

economy and people's mental health, so it is not a permanent solution to eradicate COVID-

19.  

The outbreak is caused by a novel coronavirus and was first detected in Wuhan.2 In 

December 2019, hospitals in Wuhan were receiving several patients with an unknown 

pneumonia-like illness, which led doctors in Wuhan to believe that an infectious disease 

might cause this illness.3 Shortly after detecting this unknown pneumonia-like illness, they 

took CT scans and fluid samples from several patients. After analyzing the CT scan results 

from the patients and the laboratory results, they suggested that this unknown infectious 

disease has a noticeable similarity to the virus that caused the SARS outbreak back in 2003. 

They also indicated that most of the cases of unknown pneumonia-like illnesses are linked to 

a wet market named Huanan seafood wholesale market in Wuhan.4 Some critics claimed that 

the novel coronavirus might have originated from the Wuhan P4 lab.5 However, there is no 

real evidence that suggests that the novel coronavirus came from the lab in Wuhan. It is more 

likely that the virus is originated from wild animals and spread to humans.  

On December 29th, a doctor in Wuhan named Li Wenliang shared an RNA test results with 

his colleagues from other hospitals via WeChat, warning them about a SARS-like 

coronavirus circulating in Wuhan.6 However, the messages from Dr. Li gained significant 

attention on Chinese social media. For this reason, Chinese Officials reprimanded Dr. Li and 

other doctors for spreading rumors and misinformation. However, the World Health 

Organization (WHO) was notified about this unknown pneumonia-like disease and asked for 

more clarification from the Chinese authorities. 

On December 31st, the Chinese health official reported 44 cases of unknown pneumonia-like 

illness to the WHO.7 Subsequently, a Chinese laboratory based in Shanghai determined the 

genetic sequence of this respiratory pathogen and shared it to the rest of the world.8 Based on 

the determined genetic sequence, the respiratory pathogen was identified as a novel 

coronavirus, enabling scientists and researchers worldwide to develop vaccines and 

diagnostic screening tests for COVID-19 quickly. 

As of May 15th, there are 302,025 deaths and 4,437,442 cases reported worldwide. COVID-

19 poses not only a significant problem to the global economy but also global health 

systems.9 Since the outbreak has started, hospitals are receiving many more patients than they 

can handle. Therefore, the health systems around the world are at risk of collapsing since 

there is not enough capacity, medical equipment, and personnel available to treat those 

patients. As a result, fewer patients are being treated in hospitals, which can lead to more 

deaths. To prevent hospitals from being overwhelmed by COVID-19 patients, governments 

worldwide issued social distancing measures and other non-pharmaceutical public health 

measures. In response, medical biotech companies and pharmaceutical companies are trying 

to develop effective treatment strategies, preventative and diagnostic strategies intending to 
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decrease the number of infected people and deaths. Therefore, it is essential to understand the 

progress that is currently being made in the development of COVID-19 interventions. It is 

also important to know how such interventions can contribute to the fight against COVID-19. 

This article outlines different pharmaceutical interventions that are currently in development. 

It also provides insight into the drug and vaccine development and identifies potential 

therapeutics and vaccine candidates for COVID-19 infections. 

Characteristics of COVID 19 

Origin 

The novel coronavirus (COVID-19) that causes the current pandemic belongs to the Beta 

coronavirus family, a group of coronaviruses mostly found in mammals. To this day, there 

are four groups of coronaviruses identified, namely alpha, beta, gamma, and delta 

coronaviruses.10 Only the alpha and beta coronavirus groups are known to infect humans and 

other mammals. Gamma and delta coronavirus families are mainly found in birds. However, 

there are currently seven species of coronaviruses identified that can cause respiratory and 

gastrointestinal diseases in humans. Four of them (229E, OC43, NL63, and HKU1) are found 

in humans and are known to cause common cold symptoms in immunocompromised 

individuals.11 The other three viruses are zoonotic and are responsible for the outbreaks that 

started in 2003 (SARS), 2012 (MERS), and 2019 (COVID-19).12 These zoonotic viruses are 

known to cause severe acute respiratory syndrome, which can be life-threatening for 

immunocompromised patients. 

Zoonotic viruses are viruses that originated from non-human animals and may be transmitted 

to humans. Most of the zoonotic viruses require a second or intermediate host, which serves 

as a vector for viral transmission to humans. Previous studies reported that both SARS-CoV 

and MERS-CoV are closely related to bat coronaviruses CoV HKU3 and CoV HK4/5, 

respectively, which indicates that bats are the natural reservoir of these zoonotic 

coronaviruses.13 14 Previous studies have demonstrated that the intermediate hosts of SARS-

CoV and MERS-CoV are palm civets and dromedary camels, suggesting that intermediate 

hosts were responsible for the viral transmission to humans for both SARS and MERS.15 16 

Recently, a study has found that the genomic sequence of COVID-19 is 96% identical to the 

genomic sequence of RaTG13, a coronavirus previously found in bats, which indicates that 

bats could be the potential natural reservoir of COVID-19.17 However, other researchers 

claimed that the potential intermediate host for COVD-19 is a snake based on Ji et al. (2020) 

study.18 However, the study Ji et al. (2020) included a limited number of snake's CDS 

(coding regions of a gene) for the bioinformatics analysis, indicating that the results from the 

study Ji et al. are inconclusive.  

Therefore, there is no evidence that snakes are the potential intermediate host for COVID-19. 

On the other hand, several studies, Zhang et al. (2020) Lam et al. (2020), and Xiao et al. 

(2020) suggested that the pangolin is the potential intermediate host for COVDI-19.19 20 21 

According to these studies, the genome sequence of pangolin coronavirus shares 91% 

similarity to the genome sequence of COVID-19. On top of that, the spike protein of COVID-

19, which is a crucial viral component for the host cell entry, is found to be 92% identical to 

the spike protein of coronavirus found in pangolin.22 These results imply that pangolin is the 

intermediate host for COVID-19. Although these studies did provide strong evidence that 



7 
 

pangolin can be the potential intermediate host, more research on the origin of COVID-19 

needs to be done because identifying natural or intermediate hosts is crucial when it comes to 

the development of potential treatments for COVID-19. It is known that most virus hosts can 

carry the virus without generating immune responses, which indicates that these virus hosts 

must have exhibited a unique mechanism that suppresses the virus's pathogenicity. 

Structure of coronavirus 

It is essential to understand the structure of coronavirus and knowing the functions of 

different structural components, which can be served as potential drug targets for the 

development of novel COVID-19 therapeutics.  

All coronaviruses have the same structural components. However, the type of accessory 

proteins expressed, the mechanism of entry and replication vary depending on the 

coronavirus type. 

The coronavirus's genetic material is a positive-sense single-stranded RNA with a size of 

approximately 26 to 30 kilobases. Also, the RNA contains a 3'-poly-A tail and 5'cap 

structure.23 The genetic material is encapsulated in a helical nucleocapsid made of 

nucleocapsid (N) proteins, a phosphoprotein with two RNA-binding domains, which 

packages the viral RNA into a helical nucleocapsid by forming a complex with the viral RNA 

Nucleocapsid proteins are also involved in viral assembly and viral RNA replication of 

coronaviruses.24 25 

Furthermore, the viral helical nucleocapsid complex is encapsulated by a lipid bilayer 

membrane containing the spike (S) proteins, envelope (E) proteins, and membrane (M) 

proteins.26 The spike (S) protein on the surface of the viral envelope is a trimeric glycoprotein 

consisting of two domains, namely S1 and S2 domain. The spike protein mediates the viral-

cell fusion by interacting with the host ACE2 receptors. The membrane protein is a dimeric 

glycoprotein that spans three times across the viral membrane.27 A study has shown that M 

protein can facilitate the viral assembly by converting cellular membrane into a viral 

membrane and by incorporating 

different viral proteins into the viral 

membrane at the budding site of the 

endoplasmic reticulum Golgi 

intermediate compartment.28  

Moreover, the envelope (E) protein is a 

glycoprotein incorporated into the viral 

envelope, playing a role in viral 

assembly and the release of virus-like 

particles.29 The viral envelope and the 

viral helical nucleocapsid complex 

constitute the viral particle with a 

diameter of approximately 200 nm.30 

(figure 1). 

  Figure 1. Structure of coronavirus 
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SARS-CoV, MERS-CoV, and COVID-19 have similar structural viral components. 

However, the differences between these zoonotic coronaviruses lie in the genome sequences 

and the types of accessory proteins encoded in the genome. The genomic sequence 

organization of SARS-CoV, MERS-CoV, and COVID-19 is displayed in figure 2. As shown 

in figure 2, the RNA of both coronaviruses encodes for the same viral proteins, such as pp1a, 

pp1b, and four structural proteins such as N, M, S, E. It is also noticeable that all three viral 

RNAs express different accessory proteins. For instance, SARS-CoV express eight different 

accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b, and 9b).31 32 Whereas MERS-CoV only express 

five different accessory proteins (3, 4a, 4b, 5, and 8b).33 A study by Ren et al. (2020) was 

able to sequence and determine the genome of the novel coronavirus (COVID-19). The 

determined RNA sequence of COVID-19 shows that the COVID-19 genome encodes the 

same viral proteins (pp1a/1b, S, M, E, and N) as the other two coronaviruses.31 

 

Moreover, Ren et al. (2020) suggested that the genome sequence of COVID-19 shares 79.0% 

and 51.8% similarity to SARS-CoV and MERS-CoV, respectively. The study Ren et al. 

(2020) also showed that the RNA of COVID-19 only express six different accessory proteins, 

such as 3a, 6, 7a, 7b, 8, and 9b, which differ from the type of accessory proteins expressed in 

SARS-CoV and MERS-CoV. These findings show that COVID-19 shares some degree of 

similarity to the other two coronaviruses in terms of structural proteins. However, the 

infectivity and the severity of COVID-19 might be different compared to SARS-CoV and 

MERS-CoV since all three viruses express different kinds of accessory proteins.34 The 

function of different types of accessory protein is displayed in table 1.35 As shown in Table 1, 

most accessory proteins inhibit the production and signaling of type 1 IFN, which prevents 

the host immune system from eliminating virus infection.  

 

Figure 2. Genomic organization of SARS-CoV, MERS-CoV and COVID-19. 
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Table 1. The function of different accessory proteins 

Accessory 
proteins 

Functions 

1a Polyprotein 1a replicative enzyme components 

1b Polyprotein 1b replicative enzyme components  

2 Spike protein  

3a Increases NF-kB expression, stimulate the production of IL-8, induce cell apoptosis and 
necrosis  

3b Inhibits type 1 INF signaling and production, induces cell apoptosis 

4 Envelope protein 

5 Membrane protein 

6 Inhibits type 1 IFN signaling and production, stimulates viral RNA-replication.  

7a Stimulates NF-kB expression, MAP kinase activity and inhibits host translation 

7b Promotes Golgi localization 

8a Induces host cell apoptosis  

8b Stimulates host DNA replication  

9a Nucleocapsid protein 

9b Induces host cell apoptosis via caspase 

10 Unknown 

 

 Mechanism of entry 
It is known that most coronaviruses interact with the host cell receptor to get into the host 

cell. The mechanism of entry differs between species of coronaviruses. Previous study Ren et 

al. (2020) and Shang et al. (2020) have shown that SARS-CoV invades respiratory cells by 

interacting with the host angiotensin-converting type 2 (ACE2) receptors through its spike 

protein on the surface of the virus.30 36 The study Ren et al. has demonstrated that the spike 

protein of COVID-19 is 75.5% identical to the spike protein of SARS-CoV, which indicates 

that COVID-19 uses the same mechanism to enter the host cell.  

The spike protein facilitates the host cell-virus attachment by directly binding to the ACE2 

receptors on the host cell. As mention earlier, the spike protein consists of two subunits, 

namely, S1 and S2 subunits. The studies Babcock et al. (2004) and Wong et al. (2003) have 

demonstrated that the receptor-binding domain is located in the S1 subunit, which can 

specifically interact with the host ACE2 receptors.37 38 ACE2 receptors are highly expressed 

in lung epithelial cells and enterocytes in small intestines.39 It is believed that the receptor-

binding domain of the S1 subunit goes through conformational changes. The receptors 

binding domain of S1 subunit changes from down conformation to up conformation, which 

allows the spike protein to recognize the ACE2 receptors directly, thereby binding to the host 

receptors.40 Once the spike protein is attached to the receptor, the adjacent host protease such 

as TMPSS2, TMPRSS11D, and furin will cleave the spike protein at the S1/S2 or S2 sites, 

which allows the fusion peptide of S2 subunits to induce fusion between viral and cellular 

membrane.41 42 43  

However, some studies Burckard et al. (2014) and Wang et al. (2008) have demonstrated that 

coronaviruses such as SARS-CoV and COVID-19 can also enter the host cell through 

endocytosis mediated by clathrin. Clathrin is a protein responsible for shaping rounded 
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vesicles during endocytosis by forming a coat around the vesicle.44 The binding of spike 

protein to the ACE2 receptor activates the phosphatidylinositol binding clathrin assembly 

protein (PICALM), an adaptor protein. The activated adaptor proteins (PICALM) will 

recruits clathrins to the site of the membrane and initiate polymerization to form a coat 

around the vesicle. The formed vesicle containing the virus is then transported to the 

endosomes, where pH-dependent membrane fusion takes place. The fusion between viral and 

endosomal membrane is induced by cathepsin, a pH-dependent protease mainly found in 

endosomes and lysosomes. It is known that this protease can cleave the spike protein into S1 

and S2 subunits, thereby inducing the fusion between the viral membrane and the endosomal 

membrane.45 46 The two different pathways of entry mechanism are illustrated in figure 3.  

 

Figure 3. Endosomal and endosomal-independent entry pathways of coronavirus. 

Viral replication: 

Once the virus is released into the cytoplasm, the virus will undergo uncoating, a process in 

which the viral envelope dissembles, releasing the nucleocapsid containing the viral RNA. 

Subsequently, the viral positive-sense RNA is translated by the host ribosomes, producing 

polyprotein pp1a and pp1b and other structural proteins such as S, M, E, and N proteins.47 

The host and viral proteases such as papain-like protease (nsp 3) and 3C-like protease (nsp 5) 

will degrade these polyproteins into 16 different nonstructural proteins (NSP).44 Each NSP 

has its own functions. Nsp 7, 8, 9, 10, 12, 13, and 14 are replicative enzymes that jointly form 

the replication-transcription complex, which plays a role in the synthesis of viral mRNA. The 

replication-transcription complex is mainly located in a double membrane vesicle, a vesicle 

formed by nsp 4 and nsp 6. It is believed that this membrane vesicle protects the replication-

transcription complex from the host immune response.48 49 

Moreover, several nonstructural proteins (nsp 1, 2,3,5, and 16) involved in the viral evasion 

mechanisms (see table 1).50 These proteins inhibit the IFN signaling in host cells, counteract 

the innate immune response and prevent the viral RNA from getting recognized by the host 

immune system.40   
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Table 2. The function of different nonstructural proteins 

 

The formed replication-transcription complex binds to the positive-sense viral RNA and 

reads the RNA, which produces a negative-sense RNA template. Subsequently, the newly 

formed N nucleocapsid proteins interact with the negative-sense RNA, forming a helical  

nucleocapsid around the negative-

sense RNA. The helical 

nucleocapsid containing the RNA 

is then transported to the 

Endoplasmic reticulum Golgi 

intermediate compartment 

(ERGIC).21 22 The M membrane 

proteins and other structural 

proteins are assembled at ERGIC. 

The M membrane protein converts 

the Golgi membrane into a 

rounded shape viral membrane, 

which allows other structural 

proteins to come together. 

Subsequently, the membrane 

proteins interact with other 

structural proteins and the 

nucleocapsid to incorporate them 

into the viral membrane.25  

Nonstructural 

proteins 

Function  

Nsp1 Inhibits gene expression by inducing endonuclease cleavage on host RNA, 

thereby preventing IFN signaling in the host cell 

Nsp 2 Disrupts intracellular signaling (cell growth, cell division, and apoptosis) in 

the host cell by interacting with host proteins such as PHB1 and PHB2 

Nsp 3 The papain-like protease cleaves polyprotein into nonstructural proteins and 

counteracts innate immune systems 

Nsp 4 Induce the formation of the double-membrane vesicle. 

Nsp 5 3C like- protease; cleaves polyprotein into nonstructural proteins and 

counteracts IFN signaling in the host cell. 

NSp 6 Stimulates double-membrane vesicle formation 

Nsp 7 Serves as a cofactor for nsp 8 and nsp 12 

Nsp 8 Primase; forms complex with nsp seven and nsp12 

Nsp 9 Is an RNA-binding protein that interacts with nsp 8 

Nsp 10  Is cofactor; regulates the activity of replicase enzymes 

Nsp 11 Unknown  

Nsp 12 RNA directed RNA polymerase 

Nsp 13 Helicase 

Nsp 14 Exhibits exonuclease activity and is responsible for proofreading 

Nsp 15 Exhibits endonuclease activity, which prevents the activation of the dsRNA 

sensor, thereby inhibiting the IFN signaling 

Nsp 16 2'-O-MTase; is responsible for RNA capping, which prevents the viral RNA 

from getting recognized by the host innate immune system. 

Figure 4. Replication process of coronavirus. 
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The envelope proteins and the membrane protein are involved in budding, a process by which 

the virion splits from the Golgi membrane compartment, forming a viral a particle.24 25 This 

viral a particle is then transported to the plasma membrane by a vesicle. Finally, the viral 

envelope fuses with the plasma membrane, releasing the newly formed virus particle outside 

the cell. The viral replication process is illustrated in figure 4. 

Clinical characteristics of COVID-19 

It is known that coronaviruses such as SARS-Cov, MERS-CoV, and COVID-19 can actively 

replicate in lung cells, causing respiratory inflammation. Patients infected with this novel 

coronavirus will start developing symptoms after 2 to 14 days 51. According to several 

studies, the average incubation period of SARS-CoV and MERS-CoV is 4.0 days and 4.5-5.2 

days, respectively, which means that COVID-19 has a more extended incubation period 

compared to SARS-CoV and MERS-COV.52 53 During this incubation period, patients who 

are carrying this virus are capable of infecting other people before developing symptoms, and 

this phenomenon is called pre-symptomatic viral transmission. This finding is supported by 

several studies (Wei et al., 2020 and Furukawa et al., 2020) suggesting that people infected 

with COVID-19 can still be contagious before showing any sign of symptoms.54 55 For this 

reason, COVID-19 can spread rapidly from person to person, making it challenging to trace 

and contain this novel coronavirus. 

Recent data have shown that COVID-19 has an average R0 is between 2.2-2.6.42 R0 stands for 

basic reproductive number, and it says something about the transmission rate of the 

virus.56 Viruses with an R0 greater than 1 are capable of spreading in the population, whereas 

viruses with R0 lower than 0 cannot spread in the population.57 In this case, an individual 

infected with COVID-19 is capable of spreading the virus to 2.2-2.6 other people. The 

COVID-19's R0 is higher compared to SARS-CoV and MERS-CoV. According to the data 

from previous studies, the average R0 of SARS-CoV and MERS-CoV is 0.67-1.23 and 0.29-

0.80, respectively.58 59 This suggests that COVID-19 spreads faster compared to SARS-CoV 

and MERS-CoV. 

Moreover, a study with 41 COVID-19 patients has determined the clinical characteristics of 

COVID-19.60 The primary symptoms of COVID-19 observed in these patients are fever (98% 

of patients), cough (76% of patients), dyspnea (55% of patients), fatigue (44% of patients), 

and sputum production (28% of patients). The minor symptoms observed are headache (8% 

of patients), hemoptysis (5% of patients), and diarrhea (3% of patients). In addition, 32% of 

the patients were in critical condition and needed ventilation support in the ICU.48 The 

observed symptoms of COVID-19 are similar to the symptoms of both SARS and MERS. A 

study with 47 MERS patients showed that the most common symptoms observed were fever 

(98%), cough (83%), dyspnea (72%), and fatigue (32%). In this study, 89% of the patients 

infected with MERS were admitted to the ICU for ventilation support, which indicates that 

MERS infection is more severe than COVID-19.61 The mortality rate of MERS is 34.4%, 

according to WHO, which is higher than the mortality rate of COVID-19 (2%).62 63 On the 

other hand, the most common symptoms observed in SARS patients are also fever (100%), 

cough (56%-72%), dyspnea (40%-42%), and fatigue (45%-61%).64 According to a study, 

20% and 36% of the patients infected with SARS were admitted to ICU for ventilation 

support.65 The SARS mortality rate was 9.6%, which is higher than COVID-19 (1.4%), but 

lower than MERS (34.4%).50 51 66 
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The severity of viral infections and the fatality rate vary between person to person. It is 

believed that the severity of COVID-19 infection depends on factors such as gender, age, and 

comorbidity 

A recent descriptive, explanatory study from the Chinese health official has found that 80,9% 

of the patients showed mild symptoms (without pneumonia or mild pneumonia) while 13.8% 

and 4.7% of the patients are in severe (severe pneumonia and hypoxemia) and critical 

condition (sepsis, multiple organs failures), respectively.67 This study showed that the fatality 

rate for men is 2.8%, whereas the fatality rate for women is 1.7%, indicating that there is a 

correlation between gender and the severity of the infection. The gender differences in 

patients are still unknown, and more research needs to be done. However, several studies 

suggested that men express a higher level of circulating ACE2 compared to women.68 69 It is 

known that ACE2 facilitates viral entry to the host cells. This means that a higher level of 

ACE2 can increase viral entry, which leads to increased viral infection. Hence, Men are more 

susceptible to develop severe or critical complications, which can lead to hospitalization and 

death. 

Furthermore, this study also showed that 

the fatality rate for the age between 0 and 

39 is 0.2%, and it is noticeable that the 

fatality rate started to increase at the age of 

40 (see figure 5). This finding indicates 

that the elderly are more likely to be at 

risk. 

In addition, this study shows that patients 

with underlying conditions are more likely 

to die compared to patients without 

comorbid conditions. The fatality rate for 

different comorbid conditions is illustrated 

in figure 6. As shown in figure 6, the 

fatality rate for hypertension is the highest, 

followed by cardiovascular diseases and diabetes. This is because people with cardiovascular 

diseases or diabetes express a high level of ACE2.57 70 Therefore, there is an increased viral 

infection in these patients, leading to more severe complications. For this reason, these 
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patients are more likely to die from severe COVID-19 infection compared to patients with 

comorbidity.  

Immunopathology of COVID-19 

Innate immune response 
There are still not enough information and knowledge on how COVID-19 affects our 

immunes systems. However, we can utilize previous data of SARS and MERS to predict the 

immunopathology of COVID-19 since this novel coronavirus is closely related to SARS-CoV 

and MERS-CoV. 

Infected cells and damaged cells release chemokines and IFN type 1 to recruit local innate 

immune cells such as dendritic cells, natural killer cells, and macrophages to the site of 

inflammation. Subsequently, these innate cells are activated by recognition of viral particle or 

intracellular components released from the damaged cells via pattern recognition receptors 

such as NOD-like receptors Toll-like receptors and RIG-like receptors.71 72 

A previous study on SARS immunopathology has suggested that the activated innate immune 

cells in SARS patients can release high levels of cytokines and chemokines such as Il-1B, IL-

6, IL-12, IFN-γ, IP10, and MCP1.73 On the other hand, high levels of IFN-γ, TNF-α, Il-17, 

and Il-15 were observed in patients with MERS.74 Elevated levels of cytokines can attract a 

vast number of immune cells, such as neutrophils and macrophages to the lungs. The 

recruited neutrophils and macrophages are capable of producing cytokines and chemokines to 

activate and attract other immune cells, creating a positive feedback loop. As a consequence, 

more and more immune cells will infiltrate the lungs.75 

The activated macrophages and neutrophils produce a massive number of proteolytic 

enzymes and ROS, which damages the alveolar epithelium and endothelium, thereby causing 

vascular leakage and liquid build-ups in lung alveoli.76 Furthermore, activated local mast 

cells can release inflammatory mediators such as histamine, leukotriene, and prostaglandin, 

which increase the blood flow and vascular permeability, thereby causing exudation of 

complement proteins and plasma leakage to the tissues.77 The complement proteins also play 

an essential role when it comes to inflammation. They stimulate the phagocyte activity of 

macrophages and neutrophils and attract immune cells such as macrophages, T-cells, and 

neutrophils. Moreover, complements proteins can form a membrane attack complex, which 

perforates infected cells, thereby causing cell lysis.78 

The combination of continuous production of cytokines, activation, and infiltration of 

different immune cells to the lungs can cause significant damage to the lung, causing lung 

edema and lung fibrosis, resulting in severe pneumonia. These clinical characteristics are, 

therefore, indicative of acute respiratory syndrome. Acute respiratory distress syndrome 

(ARDS) is a form of lung injury and is characterized by local alveolar damage and liquid 

build-ups.79 Alveolar scarring can occur when the local tissue is continuously damaged by 

activated neutrophils and macrophages, leading to arterial hypoxemia and multiple organs 

failure.80 

Besides, the overproduction of cytokines can lead to cytokines storm syndrome. Cytokine 

storm syndrome is one of the pathophysiological characteristics of SARS and MERS 

infection. It is triggered when the host immune system overreacts and activates a large 
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number of immune cells, which can overproduce cytokines.60 Cytokine storm syndromes can 

cause septic shock and multiple organ failures such as lung injury, cardiac arrest, and renal 

failure, leading to death.  

Recent studies Huang et al.(2020) and Chen et al. (2020) observed high levels of IL-6, 

MIP1α, MIP1β, IP-10, G-CSF, MCP1, and increased amount of neutrophil and macrophages 

were also observed in the lungs of patients with COVID-19.48 81 These findings are in 

accordance with previous studies on SARS and MERS immunopathology, which indicates 

that COVID-19 might exhibit similar immune responses as SARS-CoV and MERS-CoV. The 

recruited immune cells in most individuals, especially younger people, eliminate the viral 

infection in the lungs. After the viral infection is cleared, the immune response will diminish, 

and fewer immune cells will infiltrate the lungs. Consequently, the local alveolar tissues are 

no longer damaged by the recruited immune cells, which allows the patients to recover. 

However, some patients, especially older people, can develop dysfunction T-cell response, 

which causes cytokine storm syndrome. As a result, the immune cells are recruited 

continuously to the lungs, producing cytokines and chemokines consistently, which induces 

widespread inflammation in the lung. It is not known how this defective immune response in 

older people is triggered. It is believed that older people have different lung 

microenvironment than young people. The study Zhao et al. (2011) has demonstrated that 

aging can change the lung microenvironment, thereby altering the T-cell immune response. 

This study observed a high level of PDG2 in the lungs of aged mice infected with SARS-CoV. 

PDG2 is both anti-inflammatory and pro-inflammatory mediators produced by different cells, 

such as mast cells, epithelial cells, and macrophages. The study Zhao et al. (2011) suggested 

that PGD2 exhibits anti-inflammatory activity, inhibiting the maturation and migration of 

dendritic cells to the lymph node, thereby interfering with the activation and the priming of 

T-cells. 

Consequently, T-regulatory cells are not recruited to the site of inflammation to control and 

eliminate viral infection, which causes continuous production of cytokines. Besides, an 

increased level of PGD2 in the lung can also induce neutrophils and macrophages infiltration 

to the lungs, causing cytokine storm and widespread inflammation.82 Hence, older patients 

are more susceptible to develop cytokine storm syndrome than younger patients. 

Adaptive immune response  
The dendritic cell plays an essential role in the activation of the adaptive immune system to 

fight off the virus. When the dendric cell gets activated after engulfing the viral particles, it 

migrates to the lymph node to prime. It activates the naïve T-cells by presenting the antigen 

via an antigen-presenting receptor (MHC II). The activated naïve T-cell will differentiate into 

CD4+ T-helper cells or CD8+ cytotoxic T lymphocytes. CD8+ cytotoxic T lymphocytes and 

natural killer cells target and eliminate infected cells, whereas CD4+ T-helper cells are 

responsible for the activation of macrophages, cytotoxic T-cells, and B cells.83 Several 

studies Oh et al. (2012) and Shin et al. (2018) have demonstrated that the T-helper cells in 

SARS and MERS patients are able to produce high levels of IL-2, IFNγ, and TNF, which 

indicates that the T-cell response is mediated by T helper 1 cells.84 85 Since COVID-19 is 

closely related to SARS-COV, COVID-19 might induce T-cell response mediated by Th1-

cells. The activated T-helper cells can prime and activate B-cells in the bone marrow. 

Subsequently, the activated B cells will differentiate into B memory cells and plasma cells 

that produce antibodies specifically against SARS-CoV or COVID-19. One recent report has 
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demonstrated that patients who were infected with COVID-19 produced IgM in the first nine 

days after developing symptoms. However, after the second week, the patients started 

producing IgG, a long-lasting immunoglobin circulating in the blood after the infection.86 

Overall, all three coronaviruses trigger both innate and adaptive immune responses. 

Typically, immune cells in most patients are able to eliminate the viral infections but some 

patients, especially elderly, have deficit T-cell mediated immune responses, which causes the  

overproduction of cytokine and excessive influx of immune cells to the lungs, leading to 

cytokine storm syndrome, which causes acute respiratory distress syndrome and, eventually, 

hypoxia in vulnerable patients (see figure 7). 

The incidence of acute respiratory distress syndrome in COVID-19 patients is 14.8%.87. Early 

studies on the clinical course of COVID-19 patients in China have shown that between 23%-

32% of the patients who developed hypoxia and ARDS required ICU.48 68 88 Different 

respiratory support strategies, including a nasal cannula, non-invasive ventilation, invasive 

mechanical ventilation, and ECMO (extracorporeal membrane oxygenation), were used to 

treat patients who had ARDS and hypoxia. Since there are no drugs available to treat 

critically ill patients, oxygenation therapy is currently the only treatment strategy to treat 

those patients. It is, therefore, essential to understanding how different types of oxygenation 

therapies work. 

Oxygenation therapies: 

Early studies in China have shown that between 66-76.8% of the patients admitted to the ICU 

received oxygenation therapy.48 68 75 

Oxygenation therapy is mainly used as a supportive treatment for patients with hypoxia due 

to respiratory insufficiency. During this therapy, oxygenated air is delivered to the patient's 

lungs through a nasal cannula, prongs, or mask with a maximum flow rate of 15 L/ min.89 

According to the guidelines of Critical Care Medicine, oxygen therapy is used in COVID-19 

patients if the peripheral oxygen saturation level is lower than 90%.90  

Figure 7. Immunopathology of COVID-19.   

Deficit T-cell 

response 
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Other oxygenation therapies used in these studies were HFNC and non-invasive mechanical 

ventilation. These studies have shown that between 24%-56% of the ICU patients with 

COVID-19 received HFNC and non-invasive mechanical ventilation.48 68 75 

HFNC stands for high flow nasal cannula and is one of the oxygenation therapies used for 

patients with hypoxia and ARDS. During HFNC, increased oxygenated airflow is delivered 

to the patients' lungs via a nasal cannula. The maximum flow rate used in HFNC is 60 L/min. 

In addition, humified and heated gas is utilized in HFNC, which allows the patients to use 

less energy to heat inhaled air.76 Non-invasive mechanical ventilation is also an oxygenation 

therapy, which supports the patient's respiration without using invasive techniques such as 

intubation. This therapy delivers oxygenated air into the patient's lungs via face mask, 

thereby enhancing and maintaining the patient's oxygen blood level.91 The guidelines of 

Critical Care Medicine suggested that the peripheral oxygen saturation level in patients 

receiving oxygenation therapy needs to be maintained between 91% and 96%.77 

Moreover, the guidelines of Critical Care Medicine recommend the use of HFNC over 

conventional oxygenation therapy and non-invasive mechanical ventilation.77 According to 

the data of several randomized controlled trials, HFNC has a lower intubation rate compared 

to traditional oxygenation therapy and non-invasive mechanical ventilation, indicating that 

patients who received HFNC have a lower risk of requiring invasive mechanical ventilation 

to support their respiration.92 93 These data also suggest that HFNC did not have a significant 

impact on the mortality rate of the patients who received HFNC. In addition, HFNC is found 

to be more comfortable according to the patients, and the use of HFNC is more comfortable 

compared to non-invasive ventilation.94 95 Other studies have shown that non-invasive 

ventilation is linked to a high risk of nosocomial infections in healthcare workers due to the 

exhaled air dispersion produced by the patients.96 97 Thus, the use of HFNC is more preferred 

for patients with COVID-19 compared to non-invasive ventilation according to Critical Care 

Medicine's guidelines.77 

Invasive mechanical ventilation is used when patients have severe ARDS and are unable to 

breathe. Invasive mechanical ventilation is an oxygenation therapy used to assist the patient's 

respiration by delivering oxygenated air into the patient's lungs via an endotracheal tube.98 

There are two types of invasive mechanical ventilation: positive pressure ventilation (PPV) 

and negative pressure ventilation (NPV).99 

During PPV, a positive pressure is applied to the patient's lungs using an endotracheal tube, 

which creates a pressure difference between the atmosphere and the lungs, thereby causing 

air to flow into the patient's lungs.100 NPV, on the other hand, assists the patient's respiration 

by applying negative pressure to the patient's body using a mechanical ventilator, which 

allows the patient's chest to expand, enabling oxygenated air to flow into the patient's lungs.86 

Currently, there are no studies concerning the use of mechanical ventilation for COVID-19 

patients. 

Even though the use of mechanical ventilation for COVID-19 patients is still recommended 

by the guidelines of Critical Care Medicine and WHO, invasive mechanical ventilation can 

induce lung injury by overstretching the lung alveoli and rupturing the alveolar tissues. As a 

consequence, inflammatory mediators are released from the damaged alveolar cells, which 

causes an influx of immune cells and, ultimately, inflammation.101 A previous study with 34 

critically ill SARS patients has demonstrated that 25% of intubated SARS patients showed 

lung injury associated with mechanical ventilation.102 In addition, a recent study with 52 
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critically ill COVID-19 patients has been demonstrated that only 2% of the ventilated patients 

developed ventilation-induced lung injury.103 

ECMO (extracorporeal membrane oxygenation) is an oxygenation therapy and is used to 

supply oxygen to patients with heart and lung failure. Several studies from China have shown 

that between 3% and 15% of ICU patients infected with COVID-19 received ECMO.48 68 75 

This type of oxygenation therapy is only used when other mechanical ventilation fails to 

support and enhance the oxygen blood level in patients with hypoxia. During this 

oxygenation therapy, blood is temporality drained from the patient's vascular system.100 

Subsequently, the drained blood circulates outside the patient's and passes through an 

oxygenator, replenishing red blood cells with oxygens and removing carbon dioxide from the 

red blood cells. After the blood is oxygenated, the blood will recirculate back to the patient's 

vascular system.104 

According to a previous study with 35 MERS patients, ECMO is found to be effective in 

reducing the mortality of patients.105 In addition, a meta-analysis suggests that ECMO 

lowered the mortality in patients with ARDS.  However, a recent study with 52 COVID-19 

patients showed that 5 out of 6 patients who received ECMO died.89 The finding of a recent 

study is not in line with the results of previous studies. The guidelines of Critical Care 

Medicine recommend the use of ECMO for COVID-19 patients with hypoxia, and only 

selected patients can receive ECMO. This is because ECMO is not widely available in all 

hospitals and it requires specialized personnel who have experience with this type of 

oxygenation therapy.77 

Overall, the mortality rate of patients who received mechanical ventilation is between 45%-

94%, suggesting that supportive care alone is not sufficient to improve COVID-19 patients' 

outcomes.77 106 107 Most of the patients who died in the ICU had severe ARDS, multiple 

organs failure, and septic shock. Since there are no drugs for COVID-19 available, more 

patients with mild complications will develop severe complications and eventually be 

admitted to the ICU. As a consequence, a surge of COVID-19 patients will occur in the ICU 

of most hospitals. Most hospitals around the world have limited ICU capacity, medical 

equipment, and medical staff to handle many critically ill patients in the ICU. This will be the 

most concerning issue for most of the low-income countries with underdeveloped healthcare 

systems. Underdeveloped healthcare systems are at risk of collapsing since there are enough 

ICU capacity and medical equipment available in the hospitals to treat such a large number of 

COVID-19 patients. 

According to a study, the average ICU bed per 100,000 population in low-income Asian 

countries and high-income Asian countries is 2.56 and 14.4.108 Moreover, Italy and the USA, 

both are high-income countries with 12.5 and 29.4 ICU beds per 100,000 population, 

respectively, still had a difficult time managing large numbers of critically ill COVID-19 

patients in hospitals.109 110 Therefore, it is important to develop safe and effective treatment 

and vaccines for this novel coronavirus to prevent and reduce exacerbation of COVID-19 

complications in patients. So, in that way, less COVID-19 patients will be admitted to the 

ICU, thereby reducing the number of patients in the ICU. 
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Viral components 
Since the SARS and MERS outbreak, viral components of coronavirus have been extensively 

studied and researched, providing knowledge on coronavirus entry mechanism and 

replication, which paves the way for the development of COVID-19 therapeutics and 

vaccines. 

Viral entry 
As mentioned earlier, Zhou et al. (2020) have demonstrated that COVID-19 uses its spike 

glycoprotein to enter the host cell by interacting with the angiotensin-converting enzyme 2.111 

The receptor-binding domain is located in the S1 subunits, which directly binds to ACE2.112  

S2 subunit, on the other hand, contains a fusion peptide responsible for the virus-cell 

fusion.113 Previous research has demonstrated that people who were infected with SARS-CoV 

contained circulating immunoglobin that can specifically bind to the receptor-binding 

domain, preventing the virus from attaching to host ACE2.114 115 This finding enables drug 

developers to identify and generate a monoclonal antibody that can neutralize the spike 

proteins of the virus by blocking the receptor binding proteins in the S1 domain.116 Other 

monoclonal antibodies targeting the S2 domain were also identified in the study Coughllin et 

al. (2012).117 In this study, several monoclonal antibodies were identified that could target 

different epitopes of the spike protein, which suggests that different monoclonal antibodies 

can potentially be used as a cocktail to increase the inhibition effect on the virus-cell fusion. 

Synthetic antivirals peptides analogs were also designed to mimic different domain regions of 

S1 and S2 subunits to prevent viral entry. It is hypothesized that both HR1 and HR2 domains 

bind to each other to form a fusion core, allowing the viral envelope and the host cell 

membrane to be at close approximate for the virus-cell fusion.118 119  Previous studies 

identified and designed synthetic peptides (CP-1 and HP2P-M2) that are analog to HR2 

domains of S2 subunits. These peptides exert anti-SARS and anti-MERS activity by binding 

to HR1, interrupting the formation of fusion core.120  

Moreover, spike protein is shown to be a perfect viral antigen for the COVID-19 vaccine. 

Previous studies have demonstrated that vaccine containing spike proteins elicited a strong 

immune response, producing high titer of IgG that specifically target the spike protein.121 122  

Host components such as ACE2, cathepsin, clathrin, and TMPRSS2 are also involved in viral 

entry, potentially serving as a drug target. A previous study has demonstrated that 

coronaviruses enter the cell through different pathways, including endosomal pathway and 

non-endosomal pathway.123 Both ACE2 and TMPRSS2 are involved in the non-endosomal 

pathways. During the non-endosomal pathway, the spike protein binds to the ACE2 forming 

a receptor complex. Subsequently, the bound spike protein is recognized and cleaved by 

surface serine proteases (TMPRSS2), thereby inducing viral fusion and allowing the viral 

nucleocapsid to enter the cell.124 NAAE is a small molecule and was previously identified as 

a novel ACE2 inhibitor, which inhibits the binding between spike protein and ACE2.125 

However, recent studies suggest that ACE2 inhibitors upregulate the expression of ACE2, 

causing more viral entry. For this reason, some physicians do not recommend the use of 

ACE2 inhibitors during COVID-19 infections.126  

One of the drugs that target TMPRSS2 and are proven to be effective against SARS-CoV and 

MERS-CoV infections in vivo is camostat mesylate. Camostat mesylate is a small molecule 
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and is currently marketed as a drug for chronic pancreatitis.127 Several studies have 

demonstrated that Camostat mesylate blocks the entry of coronavirus by inhibiting the serine 

protease activity.128 129  

Both cathepsin and clathrin are involved in the endosomal pathways. The spike-ACE2 

complex activates numerous adaptor proteins, which in turn activate and recruit clathrin to 

initiate endocytosis by forming vesicles around the viral particle at the cell surface. 

Subsequently, the vesicle containing the viral particle is transported to the endosome. The 

virus particle is then released into the endosome, which contains cathepsin, an endosomal 

protease. Cathepsin recognizes the spike protein and exerts pH-dependent proteolytic activity, 

which cleaves the spike protein into S1 and S2, inducing the fusion between viral envelop 

and the endosomal membrane, which leads to viral entry.130 131 

There are several drugs identified that exert anti-SARS-CoV and MERS-CoV activity by 

inhibiting clathrin and cathepsin. Chlorpromazine is an FDA-approved drug for 

schizophrenia and was previously identified as a potential antiviral drug for MERS-CoV in a 

study. According to this study, chlorpromazine inhibits the viral entry of MERS-CoV by 

directly targeting the clathrin proteins, which prevents the formation of the rounded vesicle, 

thereby inhibiting the endocytosis of the virus.132 133 Moreover, Chloroquine and 

Oxocarbazate can hinder the cathepsin activity, thus preventing virus entry. According to 

several studies, chloroquine inhibits viral replication of SARS-CoV in vivo.134 135 

Oxocarbazate was previously was found to exert anti-SARS-CoV activity by inhibiting 

cathepsin L reversibly, preventing viral fusion.136 

On the other hand, chloroquine accumulates in the endosome and gets protonated due to the 

acidic environment in the endosome.137 Consequently, the pH-level in the endosome 

increases, which impairs the low pH-dependent proteolytic activity of cathepsin. A recent 

study has shown that chloroquine exerts an inhibitory effect on the COVID-19 infection in 

vivo.138  

 

 Papain- like protease and 3C- like- protease 
Papain -like protease and 3C-like protease are both responsible for the formation of the 

Replication-transcription complex and the production of immune evasion components by 

cleaving the polyprotein pp1a and pp1b into 16 different nonstructural proteins with each 

their functions (see table 1).41 Drugs that target these proteases can inhibit viral replication 

and remove the virus's ability to evade the host immune system. Since the SARS and MERS 

outbreak, many compounds and previously approved drugs were screened against these 

proteases to determine whether these compounds can be the potential inhibitors for papain-

like protease or 3C like protease. CE-5, 6-thioguanine, 6-mercaptopurine, TL-3, JMF 1586 

were previously identified and proved to exert anti-SARS and anti-MERS activity by 

inhibiting 3C like protease and papain-like protease in vivo.139 140 141 142  In addition, 

lopinavir and ritonavir were both already approved by the FDA for the treatment of 

HIV/AIDS and were shown to exert anti-3C like protease activity in several studies.143 144 145 
146 147  

Recently, research led by Zihe Rao has determined the crystal structure of 3C like protease 

using X-ray crystallography. In addition, a covalent inhibitor (N3) targeting 3C like protease 



21 
 

was also identified using computer-aided drug design.148 The identification of the 3C like 

protease crystal structure of this novel coronavirus enables other scientists to design novel 

compounds that target the active site of this protease. A research group (Frank von Delft, 

Dave Stuart, and Martin Walsch) from Diamond Light Source performed a large crystal-base 

fragment screening against the 3C like protease at the XChem facility of UK's diamond light 

source, yielding 78 fragments in total that can bind to the active site. 48 of which inhibit to 

the active site covalently, and 23 binds non-covalently to the active site.149 150  

Transcription-replication complex 
The replication-transcription complex (RTC) is an essential component for the viral 

replication and is formed by the assembly of seven different nonstructural proteins (Nsp 

7,8,9,10,12,13 and 14).151 Drugs targeting the replicative components of RTC can inhibit the 

synthesis of negative-sensed viral RNA, blocking the expression of structural proteins. Most 

of the drug and experimental compounds are targeting helicase (nsp 13) or RNA-dependent 

RNA polymerase (nsp 12). This is because both components are directly involved in the 

synthesis of viral RNA. Helicase unwinds double-stranded RNA into single-stranded RNA in 

an ATP-dependent manner, allowing RNA dependent RNA polymerase (RdRp) to directly 

read the single-stranded RNA, which synthesizes negative sensed RNA.152 The catalytic site 

of helicase and RdRp are highly conserved in all groups of coronaviruses, making it easier for 

the scientists to design novel compounds that specifically target the helicase and RdRp.153 

After the SARS and MERS outbreak, many compounds targeting helicase or RdRp were 

developed or repurposed. Several helicase inhibitors were identified in the previous studies. 

There are two types of helicase inhibitors, one that inhibits both ATPase and unwinding 

activity of helicase, and the other inhibits only the unwinding activity. Idobananin and 

Vanillinbananin are both baninin derivates and exert anti-SARS activity by inhibiting the 

unwinding and ATPase activities of helicase in vivo. However, these compounds are shown 

to cause cytotoxicity due to the inhibition of ATPase.154 155 For this reason, the development 

of bananin derivates for SARS-CoV is put on hold. On the other hand, SSYA10-001, a 

triazole derivate, can only inhibit the unwinding activity of helicase, which does not cause 

cytotoxicity.156 

Most of the drugs targeting the RNA dependent RNA polymerase are nucleoside analog. 

Nucleoside analogs share similar structural similarities with the natural nucleotides, which 

can be incorporated into the growing RNA strand by the RNA dependent RNA polymerase. 

Consequently, the RNA-dependent RNA polymerase is blocked by the nucleoside analog, 

terminating the elongation of RNA strands.157 All nucleoside analogs are activated 

intracellularly by viral kinases and host kinases.158 

Nucleoside analogs that were previously proven to exhibit anti-SARS and anti-MERS 

activity in vivo were ribavirin, galidesivir, acyclovir fleximer, and GS-5733, currently known 

as remdesivir.159 160 161 162 

Envelope glycoproteins, membrane glycoproteins, and nucleocapsid phosphoprotein 

proteins 
E proteins and M proteins are glycoproteins responsible for the formation and the release of 

virus-like particles. E proteins pinch of the virion from the endoplasmic membrane, thereby 

facilitating the budding viral process at the ERGIC.163 Most of the E proteins reside within 

the ERGIC. However, only a small fraction of the E proteins are incorporated into the viral 
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envelope and serves as viroporins.164 Viroporins are membrane protein channels responsible 

for the transport of different ions such as Ca2+ and Na+ across the membrane, maintaining the 

viral membrane potential.165 M proteins are responsible for shaping the viral envelope and 

incorporating different structural proteins such as S and E proteins into the viral membrane. 

They also interact with the nucleocapsid proteins, thereby stabilizing the nucleocapsid 

complex and incorporating it into the viral particle.166 N proteins interact with the viral RNA, 

forming a helical coat around the RNA, which serves as a protective coat for the viral RNA. 

Also, N proteins are involved in viral assembly, viral budding viral replication, and 

translation.167  

 All three proteins are capable of eliciting an immune response, indicating that these 

structural proteins can be the perfect base for vaccine development. The study has 

demonstrated that E proteins can elect host immune response by activating the inflammasome 

complex (NLRP3), producing IL-1B.168 In addition, M and N proteins are also able to elicit 

an immune response. In the study (Jin et al.,2005), mice were immunized with vaccines 

containing genes that encode for N, M, and E proteins of SARS-CoV. This study's results 

suggested that N protein induced the highest immune response, followed by M protein and E 

protein.154 

On the other hand, the E protein induced the lowest immune response. These findings 

indicate that both N protein and M protein are stronger immunogens compared to E 

protein.169 The strength of the immune response induced by these structural proteins depends 

on the number of the epitopes present on the protein. E proteins contain the least amount of 

epitope compared to the other two proteins since it only contains 76 amino acid residues. On 

the other hand, M and N proteins contain 220 and 420 amino acid residues, respectively. 

These proteins contain more epitopes than E proteins and therefore induce higher immune 

response compared to E protein.154  

Host components 
The continuous overproduction of 

cytokines and chemokines large numbers 

of immune cells recruits and activates 

large numbers of immune cells at the site 

of inflammation. Chemokines and 

cytokines attract and activate immune 

cells, respectively, by binding to the 

inflammatory receptors. All immune cells 

express cytokine and chemokine receptors 

responsible for the activation of immune 

cells through different signaling pathways. 

Activated cytokine receptors promote cell 

survival, production of cytokines, and cell 

proliferation. Most of the interleukin 

receptors such as IL-1R, IL-6R, IL-10R, 

IL-2R, and IL-7 R activate the adaptor 

protein JAK through phosphorylation, which in turn propagates downstream signaling via 

three different pathways; JAK-STAT pathway, PI3K-AKT pathway, and MAPK pathway 

Figure 8. Three different intracellular signaling pathways with their corresponding 
kinases. All three pathways lead to upregulation of inflammatory genes. 
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(see figure 8).170 171 Drugs that target the JAK kinases might block the downstream signaling 

initiated by interleukin receptors, preventing overproduction of cytokines during COVID-19 

infection.  

JAK inhibitors are generally used to treat 

tumors and inflammatory diseases such as 

rheumatoid arthritis.172 173 174 Recently, 

baricitinib, a JAK inhibitor, is identified as 

a potential drug for COVID-19 through 

BenevolentAI.175 Currently, barcitinib and 

other JAK inhibitors such as tofacitinib, 

ruxolitinib, and pacritinib are in the 

clinical trial.176  

The chemokine receptors and cytokine 

receptors are continuously activated 

during cytokine storm syndrome, causing 

more production of inflammatory 

mediators. Drugs targeting the 

inflammatory components, inflammatory 

receptors can potentially inhibit the 

production of cytokines, preventing 

cytokine storm syndrome in COVID-19 

patients (see figure 9).  

Several monoclonal antibodies targeting these immune components are currently in the 

clinical trial as of May 23rd, 2020 (see table 3).161  

 

 

 

 

 
 

 

 

Drug Mechanism 

Leronlizumab CC5R antagonist 

Siltuximab Anti-interleukin 6 

Tocilizumab IL-6 receptor antagonist 

Sarilumab IL-6 receptor antagonist 

Canakinumab Anti-Interleukin 1B 

Eculizumab Complement C5 inhibitor 

Ravulizumab Complement C5 inhibitor 

IFX-1 Complement C5 inhibitor 

Nivolumab PD-1 inhibitor 

Camrelizumab PD-1 inhibitor 

Otilizumab Anti- colony macrophage stimulating 

factor 

Lenzilumab Anti- colony macrophage stimulating 

factor 

Gimsilumab Anti- colony macrophage stimulating 

factor 

Figure 9. Drugs targeting different inflammatory receptors on T-lymphocytes 

Table 3. Drugs identified in Milken institute's database that target the inflammatory receptors and cytokines 
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COVID 19 therapeutics in the clinical trial 
During the COVID-19 pandemic, many patients and healthcare workers are desperately in 

need of effective and safe COVID-19 treatments and vaccines. 

Drug developers and scientists are trying to accelerate drug and vaccine and development 

using supercomputers and artificial intelligence. Most of the pharmaceutical companies are 

using cloud-based technologies to speed up this process of collecting and integrating different 

types of data.177 Most of the pharmaceutical companies are using cloud-based technologies 

provided by several companies such as IBM and google cloud platforms to speed up this 

process of collecting and integrating different types of data. Cloud-based artificial 

intelligence technologies provide researchers with relevant datasets containing data of 

different chemical substances, drug targets, and pharmacology that are extracted from 

numerous research papers. In addition, it can rapidly analyze and perform a large number of 

calculations in order to filter and select the right chemical substances from the databases. 

These compounds are selected based on their target affinity. The interactions between the 

drugs chosen and target are examined using 3D virtual screening, such as molecular docking. 

Once a chemical substance has been identified as a potential drug for a particular target, a 

high throughput screening method is used to determine the side effects. With this approach, 

researchers can also identify and screen previously approved drugs (drug repurposing).178 

CAS (chemical abstracts services) registry is a collection of drugs and chemical compounds 

that are extracted from numerous scientific papers.179 The registered drugs and chemical 

substances are assigned with a unique numerical code, which can be identified in the CAS 

database. The CAS registry recently identified numerous patented drugs and potential 

compounds that target SARS-COV and MERS-CoV viral compounds, which can be used as a 

potential treatment for COVID-19.180 The number of patents and potential compounds with 

their corresponding targets are illustrated in figure 10. As shown in this figure, most of the 

drugs and experimental compounds target 3C like protease and RNA dependent polymerase 

due to the fact that the catalytic sites of these enzymes are highly conserved and well-studied 

compared to the other viral components. 

 

Figure 10. Different viral components of coronavirus with their corresponding number of patents and potential compounds 
identified in the CAS registry. 
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In addition, several existing drugs that can be the potential COVID-19 treatment are also 

identified in the CAS data (see table 4), and most of these existing drugs are already in the 

clinical trial for COVID-19.163 

Table 4. Existing drugs identified in the CAS registry that target coronavirus components. 

Existing drugs  Target 

Baricitinib JAK kinase 

Darunavir  3CLpro/ PLpro 

Remdesivr  RdRp 

Ribavirin RdRp 

Galidesivir RdRp 

Favipiravir RdRp 

Ritonavir 3CLpro/Plpro 

BCX-4430 RdRp 

Arbidol Spike protein, 

ACE2 

Chloroquine Endosome  

Nitazoxanide N/A 

Lopinavir 3CLpro/PLpro 

 

As of May 23rd, 2020, there were 223 COVID-19 therapeutics in preclinical and clinical trials 

identified in the database provided by Milken institute. Moreover, 47 of which were 

previously approved by the FDA.  COVID-19 therapeutics currently in the clinical trial are 

divided into five categories: antibodies, antivirals, immunomodulators, RNA, and stem cell 

therapy based on their mode of action.161 Therapeutics that do not fall into these categories 

are classified as "other." The chart below illustrates different therapeutic types as a 

percentage of the total COVID-19 therapeutics that are currently in the clinical trial (figure 

11). Looking at the chart, immunomodulators, antibodies, and antivirals account for 18.8% 

(42), 19.3% (43), and 10.3% (23) of the 223 COVID-19 therapeutics in the clinical trial, 

respectively. Furthermore, only 2.69% (6) and 6.72% (15) of the 223 COVID-19 therapeutics 

in the clinical trial are RNA based therapies and cell-based therapies, respectively.  

 

 

 

 

 

 

 

 

 

Antibodies
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Anti-virals
10.3%

Cell-based 
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6.72%
RNA based
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Others
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ors, 18.8%

Antibodies Anti-virals Cell-based therapy

RNA based Others Immunomodulators

Figure 11. Six drug categories as percentage of 223 COVID-19 therapeutics in clinical trial. Note: the data 
was published on May 23rd,2020.  
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As of May 23rd, 2020, 14 treatments received the authorization of emergency use, which 

allows critically ill COVID-19 patients to have access to these experimental treatments 

(Table 4).161 

 

Moreover, as of May 23rd, there were 1133 ongoing trials worldwide, and 63 countries are 

actively developing treatments and vaccines for COVID-19 (figure 12).181 

 

Drug Type Sponsor, partners  

Hydroxychloroquine Antimalarial  Sanofi, Novartis, Bayer, Teva ,and Mylan 

Chloroquine Antimalarial Bayer, Teva, Zydus, Prasco Labs, Sun, Rising 

Nitric oxide Vasodilation  Bellerophon Therapeutics, Vero Biotech 

Lopinavir + ritonavir Antiviral AbbVie 

Atlizumab  IL-6R antagonist Roche, Chugai, Cipla 

Remdesivir Antiviral Gilead, NIH, USAMRIID, CDC 

Giapreza Vasodilator La Jolla Pharmaceutical Company, HealthCare 

Royalty Partners 

Eculizumab  Complement 

inhibitor 

Alexion 

Convalescent plasma 

therapy  

Antibodies  Multiple global research 

IC14 Anti-CD14 Implicit bioscience 

ADMCs Cell-based therapy Celltex 

Ryoncil Cell-based therapy Mesoblast, cardiac surgical trial network 

CAP-1002 Cell-based therapy Caprior Inc. 

Ruxolitinib  JAK inhibitor  Novartis, Incyte. 

Figure 12. 63 countries actively developing COVID-19 therapeutics and vaccines as of 23rd, 2020 are highlighted in blue. 

Table 5. 14 drugs that received emergency use authorization. Note: the data was collected on May 23rd ,2020 
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The chart below illustrates the ten countries with the most ongoing trials for COVID 19 

treatments and vaccines (figure 13). Looking at the chart, the number of trials in China, the 

USA and Iran are 343, 215, and 138, respectively. China has the most ongoing trials for 

COVID-19 since China was the first country affected by this novel coronavirus. Besides, 

China also previously experienced a similar outbreak back in 2003 with SARS-CoV.  

 

Clinical trials of COVID-19 therapeutics with results  

Favipiravir 

Favipiravir (Avigan) is an antiviral drug and was first developed by Toyama Chemical Co. to 

treat influenza virus.182 Favipiravir exhibits antiviral activity by inhibiting the RNA-

dependent RNA polymerase. Favipiravir is activated through phosphorylation by cellular 

kinase, which forms an active metabolite called favipiravir-ribofuranosyl-5'-triphosphate that 

acts as a pyrimidine nucleoside, which directly inhibits the RdRp.183 Recently, a study of 

favipiravir showed promising results in terms of effectiveness in treating COVID-19 patients. 

The study (Cai et al., 2020) is an open-label non-randomized controlled trial with 80 COVID-

19 patients. This study compared favipiravir with lopinavir/ritonavir (control group). This 

study's results suggested that patients who were treated with favipiravir showed shorter viral 

clearance time compared to the control group. The median viral clearance time for the 

favipiravir group and control group was four days and 11 days, respectively.  Besides, the 

improvement rate of favipiravir group (91.45%, P=0.004) was found to be higher compared 

to the control group (62.22%, P=0.004). However, a more gastrointestinal complication such 

as diarrhea was observed in the favipiravir group (2,9%, P=0.44) compared to the control 

group (0%, P= 0.44).184 This study has its limits, which can negatively affect the validity of 

the results. For instance, the trial was not randomized and the sample size was not sufficient 

to provide a significant evidence supporting the effectivity of favipiravir in the treatment of 

COVID-19 infection.  

Remdesivir 

Remdesivir is an antiviral drug and was initially developed by Gilead Sciences, Inc. to treat 

hepatitis C infections. Remdesivir exerts antiviral activity by inhibiting the activity of viral 

RNA dependent RNA polymerase. In addition, remdesivir is activated intracellularly by 
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Figure 13. Top ten countries with their corresponding number of ongoing trials. Note: 
the data was collected on May 23rd ,2020 
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kinases, which converts it into an activate metabolite that acts as adenosine analog, which 

binds to RNA dependent RNA polymerase, terminating the elongation of the RNA strand.185 

Gilead recently announced that the two trials of remdesivir, SIMPLE trial, and NIAID trial, 

showed positive results. The SIMPLE trial is an open-label randomized multicenter phase 3 

trial containing 397 patients, in which 200 patients received the five- day dose regimen of 

remdesivir, and 197 patients received the ten-days dose regimen. This trial showed that the 

discharge rate of 5 days dose regimen group and ten days dose regimen group was 60% and 

53.2%, respectively, suggesting that both treatment regimens showed similar clinical 

improvement (OR: 0.75, CI: 0.51-1.12). Moreover, 1.5% and 2.0% of the patients in 5 days 

dose regimen and ten days dose regimen developed drug-related severe adverse reactions.186 

The second trial was conducted by the US National Institute of Allergy and Infectious 

Diseases and is double-blinded randomized controlled trials with 1063 participants, in which 

538 patients were assigned to remdesivir and 521 patients to placebo.184 The preliminary 

result of this study suggested that patients who were treated with remdesivir had a shorter 

recovery time (11 days,95% CI: 9-12) compared to the placebo group (15 days, 95% CI:13-

19) with an odds ratio of 1.32, 95% CI: 1.12-1.55. In addition, the remdesivir group had a 

lower mortality rate than the placebo group. The remdesivir group and placebo group's 

mortality rate was 7.4% and 11.9%, respectively, with an odds ratio of 0.70, 95% CI: 0.47-

1.04. Besides, 21.1% of patients in the remdesivir group with adverse reaction was observed, 

whereas 27% were observed in the placebo group.187 The results from both studies 

demonstrated that remdesivir is effective in improving the clinical outcome of COVID-19 

patients. Moreover, fewer drug-related severe adverse reactions were observed in patients 

who were treated with remdesivir. Because of both trials' promising results, the Japanese 

health official approved the use of remdesivir on COVID-19 patients on May 7th, 2020.188 

However, remdesivir is not approved yet in other countries, and as of May 24th, there are nine 

ongoing trials of remdesivir to further assess the safety and efficacy.189 

 

Tocilizumab 

The FDA previously approved tocilizumab for the treatment of rheumatoid arthritis.190 It is a 

humanized monoclonal antibody that targets the interleukin receptors, which dampens the 

host immune responses, thereby reducing the production of cytokines and infiltration of 

immune cells.191 A retrospective study with 21 critically ill patients, suggested that patients 

showed clinical improvement after five days of tocilizumab treatment. 75% of the patients 

who received tocilizumab required lower oxygen intake. Moreover, a decrease in peripheral 

Il-6 level was observed in 85% of the patients, and 84.2% showed a significant reduction of 

C-reactive protein. As for the adverse effect of tocilizumab, no drug-related adverse effects 

were observed in patients within the five days treatment of tocilizumab. Although this study 

did show promising results regarding the efficacy and safety of tocilizumab, the sample size 

of this study is limited, which means that the evidence found in this study is not significant 

enough to support the conclusion that tocilizumab is indeed safe and effective for COVID-19 

patients.192 

Stem cell therapy 

Stem -cell therapy utilizes mesenchymal cell-derived from the placenta, umbilical cord, 

adipose tissue, and bone marrow to regulate host immune responses by modulating the 
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activity of immune cells, thereby decreasing the production of cytokines and the influx of 

immune cells. A pilot trial with ten patients showed that mesenchymal cell therapy was 

effective and safe in treating critically ill COVID-19 patients.189 Patients infused with 

mesenchymal cells showed clinical improvement after stem cell therapy. Symptoms such as 

fever, cough, and dyspnea were cleared after two days of stem cell therapy. 

In addition, patients who received stem cell therapy showed a decreased level of pro-

inflammatory cytokine (TNF-α), and an increased level of anti-inflammatory cytokine (IL-

10) compared to the placebo group.193 

In the beginning, all critically ill patients had high levels of peripheral T-lymphocytes and 

natural killer cells, which cause cytokine storm syndrome. However, after six days of cell 

therapy, an increase in regulatory lymphocytes, and a decrease in effector lymphocytes were 

observed in severe critically ill patients. This pilot trial's preliminary result showed positive 

results regarding the efficacy of mesenchymal cell therapy in treating COVID-19. Recently, 

Mesoblast, an Australian-based regenerative medicine company, reported that its 

mesenchymal stem cell therapy, remestemcel-L showed promising results. In this report, 12 

critically ill patients in New York City's Mt Sinai hospital were treated with remestemcel-L. 

According to Mesoblast's report, 81% (10/12) of the patients who received two shots of 

remestemcel-L in the first five days survived and 75% (9/12) of the intubated patients were 

able to recover without ventilator support. 

On the contrary, only 9% (38/445) of the patients who did not receive remestemcel-L were 

able to recover without ventilation support. Besides, the survival rate of these patients was 

12%, which is lower than the patients who received remestemcel-L.194 Results from both 

studies suggested that stem cell therapy did show benefits in treating critically ill COVID-19 

patients. However, both studies' sample size is not sufficient to show strong evidence, and 

extensive trials are therefore needed.  

Lopinavir /ritonavir 

Lopinavir and ritonavir are both inhibitors of HIV-1 protease and were first developed by 

AbbVie as a treatment for HIV-aids.195 As mention earlier, a study demonstrated that 

ritonavir and lopinavir exhibited anti-SARS-CoV activity by inhibiting the 3C like protease 

in vitro. 196197 This encourages researchers and pharmaceutical companies to initiate a trial of 

lopinavir/ritonavir to treat COVID-19 infections. A randomized controlled trial with 199 

hospitalized patients, in which 99 patients received lopinavir/ritonavir treatment and 100 

received standard-care, suggested that lopinavir/ritonavir did not show benefit in treating 

COVID-19 infections. No significant difference in clinical improvement observed between 

the patients who received lopinavir/ritonavir and standard-care treatments with a hazard ratio 

of 1.31 and 95% confidence interval between 0.95 and1.80.193 Besides, no significant 

difference in mortality rate was observed between these two groups. The mortality rate of the 

lopinavir/ritonavir group and standard-care group was 19.2% and 25.0%, respectively, with a 

percentage difference of 5.8%.193 Gastrointestinal complications such as diarrhea, vomiting, 

and nausea were more observed in the lopinavir/ritonavir treatment patients compared to the 

standard-care treatment patients.198  

The main problem of this study is that it is not blinded, which might negatively affect the 

validity of the results. Therefore, it is not possible to confirm the role of lopinavir/ritonavir in 

the treatment of COVID-19 infections based on this study.  
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Hydroxychloroquine/chloroquine 

Hydroxychloroquine and chloroquine are both prescribed as a treatment for malaria, lupus, 

and rheumatoid arthritis.199 As mention earlier, several studies have shown that both drugs 

exert antivirals activity by increasing the endosomal pH level, thereby inhibiting the viral 

entry through the endosomal-dependent pathway.200 201 Previous studies have demonstrated 

that chloroquine showed an inhibitory effect on SARS-CoV in vitro, which encourages 

researchers to conduct a study on chloroquine and hydroxychloroquine to determine whether 

these drugs are effective in treating COVID-19 infections.202 203  

A recent study from France has suggested that the combination treatment 

hydroxychloroquine/azithromycin showed benefit in treating COVID-19 infection in 

patients.204 The study Gautret et al. (2020) is an open-label non-randomized controlled trial 

with 36 patients, in which 20 patients were assigned with hydroxychloroquine/azithromycin 

and 16 with a placebo.  According to this study, a significant decrease in viral load was 

observed in patients who received the combination treatment 

hydroxychloroquine/azithromycin compared to the placebo group. The finding of this French 

study had attracted attention from both the media and politicians, creating hypes around these 

antimalarial drugs. However, some critics claimed that the preliminary result from this study 

is not valid since it is not randomized, meaning that biases might occur in this study. Besides, 

the sample size of this study was also not sufficient enough to provide strong evidence to 

support the effectivity of hydroxychloroquine/azithromycin in treating COVID-19 infection. 

Recently, a study showed contradicting results regarding the effectivity of 

hydroxychloroquine.  

The observational study with 1446 patients showed that hydroxychloroquine did significantly 

associate with the mortality rate of patients with COVID-19 (HR: 1.04, 95% CI: 0.82-

1.32).205 In addition, hydroxychloroquine as monotherapy and the combination therapy 

hydroxychloroquine/azithromycin were shown to be associated with a high risk of QT 

prolongation. A cohort study with 143 patients, of which 90 received monotherapy 

hydroxychloroquine and 53 received combination therapy 

hydroxychloroquine/azithromycin.202 According to this study, 19% of the monotherapy 

patients developed QT- prolongation, whereas QT-prolongation was observed in 21% of the 

combination therapy patients.206 The result of Zimetbaum et al., (2020) suggested that the 

combination therapy (hydroxychloroquine/azithromycin) was associated with a higher risk of 

QT-prolongation compared to the monotherapy and that both hydroxychloroquine and 

azithromycin can induce QT-prolongation.  

Based on the results of all three studies, it is still difficult to determine whether 

hydroxychloroquine is safe and effective in treating patients with COVID-19 infection. This 

is because the first study was non-randomized and had a small sample size. Moreover, the 

other two studies are observational studies, which are not suitable for determining the safety 

and effectivity of drugs since confounding and biases are more likely to occur in this type of 

study, and, therefore, cannot provide strong evidence. More results from large size 

randomized controlled trials are therefore needed to truly confirm the effectiveness and safety 

of hydroxychloroquine for the treatment of COVID-19.  
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Vaccine candidates in clinical trials 
It is known that this novel coronavirus has a high transmission rate with an R0 of 2.2, which 

means that the virus can spread rapidly in a population, increasing the number of infected 

people. On top of that, our body does not exhibit protective immunity against COVID-19 

since our immune system is naïve to this novel coronavirus. As a consequence, more waves 

of infection will occur in the population, causing more infected people and deaths. It is, 

therefore, important to develop COVID-19 vaccines to prevent the spread of this novel 

coronavirus.  In normal circumstances, it takes years to develop vaccines for infectious 

diseases. In this pandemic, many biopharmaceutical companies are aiming to fully develop 

safe and efficient vaccines for this novel coronavirus within 12-18 months.   

Recently, researchers have proposed a new approach called human challenge trials that can 

speed up vaccine development in clinical trials. Typically, vaccines spend a large portion of 

their time in phase II/III clinical trials, which is 2 to 4 years to confirm the efficacy and safety 

in humans.207 In this human challenge trial, the vaccines candidates are first tested on animals 

and healthy volunteers to determine the ideal dose. In phase II/II, large numbers of young and 

healthy participants are recruited, which can be divided into a placebo group and intervention 

group. Both groups are then injected with the effective vaccine dose. Subsequently, these 

groups are purposely infected with the virus in order to determine the effectiveness and safety 

of the vaccine.208 

Multiple vaccine platforms are currently being developed for COVID-19 vaccines. Each 

vaccine platforms have their characteristics, which are listed in table 6.209 210 Two vaccine 

platforms are ideal for the development of COVID-19, namely nucleic acids (DNA and 

RNA) and recombinant viral vectors.  The production of both vaccine platforms can adapt 

platform manufacturing technologies, which enable large-scale manufacturing, thereby 

speeding up the production process.211  
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Table 6.Different vaccine platforms with their characteristics, advantages, and disadvantages 

Vaccine platforms Immunity  Advantages Disadvantages 

Live attenuated 

vaccines 

Humoral and 

Cell-

mediated 

• Small dose  

• Long-lasting 

immunity 

• Incorporation into 

host's gnome 

• The attenuated virus 

can revert to a virulent 

form 

Inactivated virus  Humoral  • The inactivated 

virus cannot return 

to its virulent form 

• Booster shots are 

needed due. 

• Induce weak immune 

response 

Protein-based, 

liposaccharide and 

virus-like particle 

vaccine 

Humoral • Induce strong 

immune response 

• Low immunogenicity 

• Booster shots are 

needed 

Viral vector Humoral and 

cell-mediated 
• Induce a strong 

cell-mediated and 

humoral response. 

• Large-scale 

production is 

possible. 

• The production 

processes are complex 

and expensive. 

• Pre-existing host 

immunity can 

neutralize the viral 

vector. 

 

Nucleic acid (DNA 

and RNA)  

Humoral and 

cell-mediated 
• Production is faster 

and inexpensive. 

• Induce long-lasting 

immune response. 

• Induce the production 

of antibodies that target 

DNA. 

• DNA can incorporate 

into the host's genome. 

 

 

As of May 23rd, 2020, there were 141 vaccine candidates in the preclinical and clinical trial 

identified in the database provided by Milken Institute.161 Vaccine candidates are divided into 

ten different categories based on their vaccine platform.  

The pie chart below illustrates nine different types of vaccines that are under development as 

a percentage of the total vaccine candidates in the clinical trial (figure 14). The chart 

illustrates the number of vaccine candidates from each vaccine platform that is currently in 

the clinical trial. Looking at figure 14, Protein subunits, RNA-based, and non-replicating viral 

vector account for 31% (44), 13% (19), and 11% (16) of the 141 COVID-19 vaccine 

candidates in the clinical trial. In addition, figure 15 illustrates the number of vaccine 

candidates of different vaccine platforms in clinical trials. Both figures show that most of the 

vaccine candidates in clinical trials are protein subunits based. 

This is because most of the subunit vaccines use COVID-19's spike protein and receptor 

binding domain as a base to elicit immune responses against COVID-19. It is shown that the 

spike protein and the receptor-binding region can induce a robust immune response, which is 

why most pharmaceutical companies are developing vaccines based on these viral 

components. 
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As of May 27th, 2020, there were 13 most advanced vaccine candidates in the clinical trial 

(table 7). 161   
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1%

DNA based

Inactivated virus

Non-replicating viral vector
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Figure 14. 10 different vaccine platforms as percentage of 141 vaccine candidates in clinical trial. Note: the 
data was collected on May 23rd ,2020 

Figure 15. Ten vaccine platforms with their corresponding number of vaccine candidates in clinical trial. 
Note: the data was collected on May 23rd ,2020 

 



34 
 

Table 7. 13 most advanced vaccines in clinical trials as of May 23rd ,2020. 

  

Clinical trials of COVID-19 vaccines with results 
Recently, an open-label non-randomized phase I trial with 195 individuals (Zhu et al.,2020) 

has demonstrated that Ad5-nCoV, a non- replicating viral vector vaccine developed by 

CanSino, was well-tolerated and was able to induce high humoral and cell-mediated 

responses in vaccinated participants effectively. In this trial, a low dose, medium dose, and 

high dose of Ad5-nCoV vaccine were tested on participants. All vaccine recipients were able 

to produce high specific T-cell-mediated and humoral antibodies at days 14 and 28, 

respectively. Also, no serious adverse effects were reported in these participants. However, 

the most common side effects observed in vaccinated participants were muscle pain (17%), 

fever (46%), headaches (39%), and fatigue (44%).212  This study did not include a 

randomized controlled group. In addition, this study had a short follow-up time and an 

insufficient sample size, which is why it is not possible to measure the efficacy and safety 

outcome of this vaccine. The tolerability and the immunogenicity of the vaccine were only 

determined in this study. Hence, the efficacy and safety of this vaccine need to be further 

investigated in phase II.  

Other vaccine candidates such as INO-4800 and PicCoVacc showed positive results from 

their preclinical trial.  

The preclinical study of INO-4800, a DNA-based vaccine developed by Sanofi, has shown 

that the elicited specific T-cell mediated and humoral antibodies responses in immunized 

mice and guinea pig were able to prevent COVID-19's spike protein from binding to host 

ACE2, thereby blocking viral entry, which provides protective immunity against COVID-19 

Vaccines 

candidates 

Phase  Type  Sponsors, partners 

BCG vaccine Phase III Live attenuated  Multiple 

PreP-001 Phase II RNA-based PreP Biopharm 

Ad5-nCoV vaccine Phase II Viral vector CanSino Biologics 

NVX-CoV2373 Phase I/II Protein subunit Novavax 

PiCoVacc Phase I/II Inactivated  Sinopharm 

LV-SMENP-DC 

vaccine 

Phase I/II Viral vector Shenzhen 

Genoimmune 

Medical institute 

BNT 162 mRNA 

vaccine 

Phase I/II RNA-based Pfizer, BioNTech 

AG 

RUTI Vaccine Phase I Subunit  Archivel Farma SL. 

Pathogen-specific 

aAPC vaccine 

Phase I Viral vector Shenzhen 

Genoimmune 

Medical institute 

mRNA-1273 Phase I RNA-based Moderna, NIH, 

Lonza 

INO-4800 DNA 

vaccine 

Phase I DNA-based Inovio 

ChAdOxl nCov-19 Phase I Viral vector AstraZeneca 

bacTLR-Spike Phase I DNA-based Symvivi Corporation 
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infection. This finding suggests that the INO-4800 vaccine is immunogenic and is able to 

induce potent immune responses against COVID-19 in multiple animal models.213 Currently, 

INO-4800 is in phase I study, testing 40 participants for its safety and immunogenicity in 

humans.214 

According to a preclinical study, PiCoVacc, an inactivated virus vaccine developed by 

Sinopharm, was able to induce specific T-cell mediated and humoral responses in macaques, 

mice, and rats that were immunized with three different doses (1.5µg,3µg, and 6µg). 

Macaques that were vaccinated two times with different doses (3µg and 6µg) were able to 

exhibit partial and complete protective immunity against COVID-19. It was also reported that 

the produced COVID-19 specific antibodies could neutralize ten other coronaviruses, which 

suggests that this vaccine can induce broad-spectrum humoral responses against 

coronaviruses. As for the safety of this vaccine, no severe adverse reactions were observed in 

immunized macaques. This finding suggests that PiCoVacc is immunogenic and tolerable in 

non-human macaques.215 

Both INO-4800 and PiCoVacc is shown to be immunogenic and tolerable in animal models. 

However, the results from animal models cannot be translated to humans due to the 

immunophysiological differences between non-human animals and humans. Therefore, it is 

not yet possible to determine whether these vaccine candidates currently have a role in the 

prevention of COVID-19 infections.  

Discussion  
Overall, some of the drug candidates show positive preliminary results, while others showed 

negative results. It is difficult to determine which drugs are safe and effective for the 

treatment of COVID-19 patients based on these studies. This is because most of the studies 

described above included a small number of patients, and some studies were not blinded or 

randomized. These limitations can affect the validity of the results and the strength of 

evidence. Also, clinical trials of these drugs are still ongoing to further assess safety and 

effectiveness. Therefore, we can only know which drugs are safer and more effective in 

treating COVID-19 infections, once these trials are completed. 

Nevertheless, the preliminary results of these studies can give us an early indication of 

whether these drug candidates can have a role in COVID-19 treatment in the future. So far, 

remdesivir is the only drug that is approved for the treatment of COVID-19 infections in 

Japan, which suggests that remdesivir could be the potential COVID-19. Usually, the anti-

infectious drugs' approval rate in phase I, II, and III is 16%, 27%, and 71%, respectively, 

which means that COVID-19 therapeutics currently in phase III trial are more likely to be 

approved.216  

As for the experimental vaccine candidates that showed promising results in preclinical and 

phase I/II trial, it is still too soon to determine whether they can be approved for human use to 

prevent COVID-19 in the future. Typically, the approval rate for infectious disease vaccines 

that are undergoing preclinical and clinical trials is 6%, according to the study. Also, the 

average development duration of vaccines is 10.71 years.217 The traditional vaccine 

development usually takes years, mainly because experimental vaccines spend a large portion 

of their time (2 to 6 years) in phase II and III trial, testing on healthy participants for their 
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safety and efficacy. Therefore, it is unrealistic to develop safe and effective COVID-19 

vaccines in a short amount of time. 

For this reason, new approach such as "human challenge trial," is being proposed with the 

aim to speed up the process in phase II/III trial, which involves rapid vaccine testing on a 

large number of participants and deliberately injecting the participants with the novel 

coronavirus after the vaccination. However, such approach is not ethical and dangerous since 

we have limited knowledge of the immunopathology of COVID-19, which can potentially 

put participant's lives at risk. Furthermore, there are limited data and insight on the mutation 

rate of this novel coronavirus, which can affect the performance of approved vaccines.  

There are currently no approved vaccines and therapies available worldwide to treat and 

prevent COVID-19 infection. The majority of critically ill patients are provided with 

supportive care in the ICU, which potentially overwhelms the hospital system in countries 

with an underdeveloped health system since the number of cases keeps increasing. As for 

now, social measures are the only solution, but certainly not a permanent solution, to slow 

down the spread of this virus. Our technologies and knowledge of infectious diseases have 

advanced dramatically in the last two decades, but yet it takes, on average, 10 years to fully 

develop safe and effective therapeutics and vaccines. In the setting of a pandemic, where 

drugs and vaccines are urgently needed to prevent the number of infected and death from 

rising, the traditional approach of drug/vaccine development is, therefore, not ideal since it is 

slow. What we can learn from this pandemic is that more efforts and research should be put 

into designing a new clinical trial design that can accelerate the process of 

therapeutic/vaccine development during a pandemic in the future. 

Conclusion  
The novel coronavirus (COVID-19) that caused the current global pandemic was found to 

share sequence similarities with SARS-CoV, MERS-CoV, and RaTG13, suggesting that 

COVID-19 might come from bats. It was also found that pangolin could be the intermediate 

host since COVID-19 shares 91% sequence similarities with coronavirus found in pangolins. 

Studies have demonstrated that COVID-19 invade host cells by interacting with the host 

ACE2 via its surface spike protein. 

Moreover, the novel coronavirus is shown to exhibit similar immunopathology and clinical 

characteristics to SARS-CoV and MERS-CoV. 80% of infected people develop mild 

complications. Some people, especially elderly, who develop severe complications caused by 

cytokine storm syndrome, are admitted to ICU for ventilation support. There are several 

oxygenation therapies currently used to treat patients with severe ARDS, including nasal 

cannula, non-invasive ventilation, invasive mechanical ventilation, and ECMO. However, 

due to the increasing number of patients who require ICU admission, hospital systems around 

the world are at risk of collapsing. Therefore, therapeutics and vaccines for COVID-19 are 

urgently needed. Researchers and scientists are using different approaches and methods such 

as artificial intelligence services and human challenge studies to speed up the drug/ vaccine 

development for COVID-19.  

Since the SARS and MERS outbreak, several drugs have been identified that exhibit anti-

CoV activity by targeting the viral components and the host components, which can be the 

potential therapeutics for COVID-19 infections. As of May 23rd, 2020, there were 223 
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COVID-19 therapeutics and 141 vaccines in preclinical/clinical trials. The majority of 

therapeutics and vaccines under development were antibodies and protein subunits, 

respectively. Several therapeutics and vaccine candidates showed promising results in 

preclinical/clinical trials such as favipiravir, remdesivir, tocilizumab and Ad5-nCoV but only 

remdesivir was approved in Japan. Most of the studies included small numbers of patients 

and were not blinded or randomized, which negatively affect the validity of the results, which 

is why it is hard to determine whether these therapeutics and vaccine candidates will have a 

role in the treatment of COVID-19 in the future. What we can learn from the current 

pandemic is that more efforts and research should be put into designing a novel clinical trial 

design that can be used in the setting of a pandemic, where drugs and vaccines are urgently 

needed. 
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