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Abstract

Lattice quantum chromodynamics (LQCD) has been used to de-
termine the mass of glueball particles since the 1970s. Since then a
number of techniques have been developed to reduce the variance of the
measured operators. This thesis discusses QCD and LQCD, then shows
how the euclidean two-point correlators of the linear combinations of
closed Wilson loops on the lattice may be used to determine glueball
masses. The algorithms for updating the lattice (psuedo-heatbath),
decorrelating configurations (overrelaxation), and reducing variance;
multihit, multilevel, variational method are described. Using software
in part written by the author the 0++ glueball mass is determined on
SU(2) using the variance reducing algorithms. The algorithms are
compared in terms of accuracy and computational time complexity.
This thesis also serves as a validation for the software, so that it may
be used for SU(8) glueball mass calculations in the future research to
examine the validity of QCD solutions in the large N ’t Hooft limit.
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1 Introduction
Quantum chromodynamics (QCD) in its modern form began with the re-
framing of color as the source of the strong force by Fritzsch, Leutwyler, and
Gell-Man[1]. Their principal contribution was to express the strong force
as an instance of a Yang-Mills field theory [2], invariant under the special
unitary group of order 3. Contrary to previously existing theories such as
Quantum Electrodynamics, QCD displayed a number of odd properties most
notably what later became known as asymptotic freedom [3, 4]; the interac-
tion strength between particles decreases as the energy scale increases (and
correspondingly the length scale decreases). One interesting consequence of
this effect is that perturbation theory is only effective for QCD at at UV
scales (high energy/short distance), contrary to theories such as QED where
it is effective in the IR regime (low energy/high distance).

In response to the difficulties of studying QCD at low energie scales a
nonpertubative solution of QCD was found to be lattice QCD (LQCD) [5]
(for an overview of early developments see [6]). The theory is placed on a
4-dimensional space-time lattice, with lattice spacing a, with finite volume
(given in integer multiples of a). Frequently, such as in this thesis, periodic
boundary conditions are also applied. The continuum QCD theory may be
described by having lattice spacing a = 0 and infinite volume. As such
working on the lattice introduces corrections that must be removed through
appropriate methods. The lattice itself is a collection of points representing
points in space-time separated by a lattice spacing a. Each point is connected
to its neighbors by "links", parallel transporters of the gauge field from one
point to another. The links are represented by matrices, members of the
SU(N) group. In practice these links are stored and updated in simulations.
Many developments were formulated on the lattice, including the first evidence
of color confinement [5], but also covers such as the strong coupling expansion.
The introduction of the lattice did pose problems for the theory as it became
discrete. Spherical symmetry was broken and replaced by the much more
limited cubic symmetry, resulting in problems of the representation of spin
(see chapter 4). Furthermore, at a more basic level the discretization of the
derivatives and integrals requires the introduction of a new action, the Wilson
action, that recovers the Yang-Mills action in the a→ 0 limit (see chapter 3).

Glueballs are massive particles that are predicted by the QCD theory due
to the self-interactions of gluons [5]. As pertubative expansions are usually
completed around points of the theory in which the interaction strength is
near zero, it results in glueballs being difficult to study through such methods.
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The lattice offered an effective strategy for the determination of glueball
properties, including their masses, glueball to vacuum matrix elements [7,
8], and branching ratios for decays [9]. Knowledge of these properties may
be used in experimental conditions to support or oppose particular glueball
particle candidates (see for instance [9] or [10]), as well as offer insight into
detection ranges for measurement. It may be shown (see chapter 4) that linear
combinations of closed loops consisting of links on the lattice are isomorphic
to glueball states. By measuring these loops over a large number of lattice
configurations, estimates of the glueball mass and other physical properties
may be determined.

The lattice represents only a single configuration of the field at any
time, and it not representative of the entire theory. As such multiple lattices
needed, such that accurate measurements may be produced. This is completed
through a Markov Chain Monte Carlo (MCMC) method in which the links
of the lattice are updated so that the distribution of lattice configurations
accurately reflects the theory. This updating procedure results in correlations
between configurations that must accounted for in measurement. A number
of updating steps and overrelaxation methods (see chapter 5) are employed
to limit these autocorrelations.

In this thesis we focus on measuring the mass of the lowest energy 0++

glueball in SU(2). The mass of the glueball may be determined by the
correlation of the loops operators described above separated by a time t, along
the time axis of the lattice. By varying the time t and of the correlators
the glueball mass may be estimate from the logarithm of the correlation
function. A number of techniques were used improve the accuracy of the
determined masses and to reduce the variance. These methods include the
Multihit, Multilevel, and Variational method described in detail in chapter
5. These methods have been compared in terms of accuracy, variance, and
computational time required for the gathering of statistics.

The code that was used in the simulations was written by Jelle Bor, Piter
Annema and the author. The secondary purpose of this thesis is to test the
validity of this code such that it may be used for larger scale simulations.
The end goal of which is to determine the glueball masses in SU(8). Marco
Bochicchio [11] has proposed a solution for QCD in the large N ’t Hooft
limit. Simulations of glueballs in at larger N could be used to determine the
accuracy of this solution. In previous literature glueball masses have been
determine up to SU(8) [12, 13] (see also [14]) however the two independent
results contradict one another. The long term hope of this project it to rectify
these results and determine an accurate value of glueball masses in SU(8).

5



The structure of this thesis is as follows. In chapter 2 we briefly describe
Yang-Mills theory and how the pure gauge field may be derived from the
parallel transport of vectors along a field that is invariant under SU(N). In
chapter 3 we translate Yang-Mills theory to the lattice, and describe the
Wilson action. In chapter 4 we describe the glueball operator states on the
lattice and their relationship to their continuum counterparts. In chapter 5
we describe the numerical simulation, including the updating of the lattice
through the pseudo-heatbath and the overrelaxation methods, as well as
the measurement and statistical techniques implemented, including Multihit,
Multilevel, Variational Method, and the Jackknife estimators. In chapter 6
we describe the numerical results of the simulations. Finally in chapter 7 we
summarize and conclude the thesis.

2 Yang Mills Theory
We first discuss Yang Mills theory in the continuum setting, before translating
it to a four dimensional lattice. The majority of the fields in the standard
model of particle physics are examples of Yang Mills fields, including quantum
chromodynamics (QCD). Yang Mills theory concerns itself with Lagrangians
consisting of various operators of complex vector fields that are invariant
under local group transformations. In this thesis we will focus exclusively on
the special unitary group, SU(N).

To discuss this in more detail we examine a complex vector field φ(x),
such that at every point x the vector φ(x) is an element of a vector space V
that is isomorphic to the field CN . We let the components of φ(x) be labeled
by φi(x) such that i runs from 1 to N. Now we consider a generic Lagrangian:

L = φ(x) · (�+m2)φ(x) + U(φ(x) · φ(x)) (2.1)

in which "·" is scalar product on the vector space V defined as x · y =∑
i x

i∗yi, x, y ∈ V , � = ∂µ∂µ the d’Alembert operator, m is a mass and U
is a generic potential function of the scalar product of φ(x) with itself. We
note that this Lagrangian is invariant under global SU(N) transformations
of the form

φ(x)→ φ′(x) = Λφ(x) Λ ∈ SU(N)

In fact, all Λ areN ×N unitary matrices with unit determinant, i.e. det(Λ) =
1 and Λ†Λ = 1 where "†" is the hermitian conjugate and 1 is the N ×N unit
matrix.
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A larger class of symmetry transformations is that of local, as opposed to
global, gauge transformations defined by:

φ(x)→ φ′(x) = Λ(x)φ(x) (2.2)

such that Λ now varies as a function of the spacetime position x. Yang-
Mills theory requires that the Lagrangian above be invariant under this
local gauge symmetry. As it is not currently, it requires a modification of
the Lagrangian with the introduction of a covariant derivative. Covariant
derivatives themselves are defined in terms of the transformations of a vector
(in the present case φ) transported along a curve. As such we first define a
curve Lyx to be a directed space-time curve from position x to y. With each
possible curve we identify a SU(N) matrix U such that

U(Lyx) : Vx → Vy (2.3)

φ(x) ∈ Vx, U(Lyx)φ(x) = φ′(y) ∈ Vy (2.4)

U is a map from a vector space Vx at position x to a vector space Vy defined
at point y. The vector φ′(y) = U(Lyx)φ(x) is then defined to be the vector,
φ(x), that was parallel transported along the curve Lyx to the point y, while
U(Lyx) is defined to be the parallel transporter. We require that every curve
in space-time is associated with a parallel transporter in a manner that is
both continuous and differentiable. This requires all parallel transporters to
adhere to the following conditions.

1. U(∅) = 1, i.e. a curve of length 0, denoted by ∅, must be represented
by the unit matrix.

2. U(L2 ◦L1) = U(L2)U(L1), in which the composition "L2 ◦L1" de-
fines a path L1 followed by L2, such that the endpoint of L1 is the
initial point of L2

3. U(−L ) = U(L )−1, such that for a path travelled in the opposite
direction, denoted by −L , the parallel transporter is the inverse of the
parallel transporter for the initial orientation.

These conditions ensure that under a local gauge transformation, as defined
in eq. 2.2, the parallel transporter transforms as:

U(Lyx)→ U ′(Lyx) = Λ(y)U(Lyx)Λ−1(x) (2.5)
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The definition of the derivative requires the subtraction of two vectors located
at points infinitesimally close to each other. We thus consider a straight curve
from the point x to x+ dx. The parallel transporter that corresponds to this
curve must deviate from the unit matrix by only an infinitesimal amount. We
define it to be equal to

U(Lx+dx,x) = 1−Aµ(x)dxµ (2.6)

in which Aµ is an element of su(N), the Lie algebra corresponding to the
group SU(N), a vector space that consists of traceless, hermitian N ×N
matrices. We may now define the covariant differential of the vector φ(x) as

Dφ(x) = U−1(Lx+dx,x)φ(x+ dx)− φ(x) (2.7)

By noting that Dφ(x) = Dµφ(x)dxµ we obtain the covariant derivative

Dµφ(x) = (∂µ +Aµ(x))φ(x) (2.8)

The field Aµ(x) is now defined to be the gauge field and its transformation
law may be derived from the transformation law of the parallel transporters:

A′µ(x) =Λ(x)Aµ(x)Λ−1(x)− (∂µΛ(x))Λ−1(x) (2.9)
=Λ(x)(∂µ +Aµ(x))Λ−1(x) (2.10)

Therefore the gauge field Aµ has been introduced as a connection. Finally
the covariant derivative, under a local gauge transformation, transforms as

D′µφ
′(x) = Λ(x)Dµφ(x) (2.11)

From the covariant derivative we may define the field strength Fµν . From a
single point x we define a curve tracing an infinitesimal parallelogram with
side lengths dx and dy. The parallel transporter is then defined to be

U(L) = 1− Fµν(x)dxµdyν (2.12)

It may be shown that this corresponds to the following definition for the field
strength

Fµν(x) = [Dµ,Dν ] = ∂µAν(x)− ∂νAµ(x) + [Aµ(x),Aν(x)] (2.13)

where the square brackets denote the commutator of the lie algebra su(N).
With this definition the field strength transforms under a local gauge trans-
formation as

F ′µν(x) = Λ(x)FµνΛ−1(x) (2.14)
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As the Lie algebra su(N) is by definition a vector space, all of its elements
may be written as a linear combination of a set of basis vectors denoted by
iTa. Hence all elements X of the lie algebra may be written as:

X =
N∑
a=1

iωaTa ωa ∈ R

The matrices Ta are referred to as the generators of the lie algebra. The
generators are embedded into matrices of a particular type which is dependent
upon the representation of the algebra that is chosen, the most common of
these being the fundamental and the adjoint representations. Regardless of
the form of the embedding the algebra is defined by the relation

[Ta,Tb] = ifabcTc (2.15)

in which fabc are the structure constants of the lie algebra. It may be shown
that they are both antisymmetric and real. By definition the generators are
traceless and hermitian, furthermore, they are usually normalized such that

Tr{TaTb} =
1
2δab (2.16)

Using these definitions we rewrite the gauge field and the field strength in
terms of component fields

Aµ(x) = −igAaµ(x)Ta (2.17)

Fµν(x) = −igF aµν(x)Ta
The relationship between the gauge field and the field strength’s component
fields may be shown to be

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (2.18)

where g is referred to as the coupling constant. With the introduction of the
covariant derivative we may now define a Lagrangian that is gauge invariant
under a local SU(N) gauge transformation:

L = φ(x) · (DµDµ +m2)φ(x) + U(φ(x) · φ(x)) (2.19)
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This Lagrangian has introduced a new field, the gauge field Aµ. The dynamics
of this field are giving by the Yang-Mills Lagrangian:

LYM = −1
2 Tr{FµνFµν} = −

1
4F

a
µνF

a
µν (2.20)

Quantum chromodynamics, and related theories, are the special cases in
which the complex vector field is replaced with the Dirac spinor field that
describes fermions of spin 1

2 , the complete Lagrangian of QCD like theories is
thus given by

L = −1
4F

a
µνF

a
µν + ψ̄i(i(γ

µDµ)ij −mδij)ψj (2.21)

The fundamental microscopic degrees of freedom of QCD are quarks and
gluons. The spectrum at low energy consists of meson, baryons, and glueballs.
Glueballs themselves have hardly been determined experimentally because
they mix with meson states. We are interested in determining the glueball
states for large N Yang mills theories. As such we are not inerested in fermions
and instead use the lagrangian given by equation 2.20.

The theory is then described by the partition function, the path integral
over all field configurations:

Z =
∫
DA eiS[Aµ] =

∫
DA ei

∫
dx4L[Aµ] (2.22)

while the expectation value of an operator O is given by

〈O〉 = 1
Z

∫
DA O e−S[Aµ] (2.23)

3 Yang Mills Theory on a Lattice
By placing a Yang-Mills theory on a lattice effects certain features of the
theories may be studied that are difficult to determine in the continuum
case. One of the most prominent of these being the asymptotic freedom
of QCD-like theories, which cannot be studied at low energy (IR) scales
through pertubative techniques. A secondary benefit of using a lattice is that
is may be easily represented and simulated on a computer. By discretizing
the derivatives into finite differences, and the integrals into finite sums the
problem is cast into the type of discrete mathematics that the binary nature
of computers is particularly suited for.

When transferring a Yang-Mills theory onto a lattice several things need
to occur. Firstly the lattice must be introduced, as such all points on the
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lattice are separated by integer multiples of some lattice spacing a. This
has the effect of producing a minimum distance (a) as well as a maximum
momentum (πa ) on the lattice, discussed in more detail below. Secondarily,
the path integral that describes the theory must undergo a Wick rotation
such that is of a Boltzman form:∫

DA eiS[Aµ] →
∫
DA e−S[Aµ] (3.1)

This is necessary as computer simulations are exceedingly difficult to compute
with complex valued integrals. The Boltzman term (e−S) term in the path
integral allows for the application of standard statistical techniques such as
Markov Chain Monte Carlo simulations (see chapter 5).

Thirdly the derivatives and integrals must be discretized. As there exists
a minimum distance between points, derivatives must be replaced with finite
differences and integrals with finite sums. This requirement results in the
introduction of a new action called the Wilson action that is discrete. It will
be shown that the Wilson action coincides with the continuum Yang-Mills
action described above in the limit of a→ 0.

Finally, the theory is placed in a finite volume. As computer simulations
are not infinite only a finite number of points may be computed in any given
simulation. As such lattices must be chosen to have a finite size usually
represented with R3 × T in which R is the number of lattice points along
spacial axes and T the number of lattice points in the temporal axis. The
finite volume demands that boundary conditions are to be placed upon the
fields that act upon the lattice. The one used in this thesis is that of periodic
boundary conditions, such that φ(x+R) = φ(x) and φ(x+ T ) = φ(x), in
which φ is an arbitrary field and x is a space-time point.

3.1 Lattice and Discretization
We discretize space into a four dimensional hypercubical lattice. Of the four
axes we let the three spatial axes has length R with a spacing between lattice
elements as and the time axis have a length of T with a lattice spacing of at.
In most cases we will also impose periodic boundary conditions on the lattice
for bosonic fields. In the case of fermionic fields (not considered in this thesis)
anti-periodic boundary conditions are applied. In the following we assume an
isotropic lattice in which as = at = a.

The discrete nature of space requires redefinition of basic operators such
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as the derivative and the integral. The forward derivative is defined to be

∆fµf(x) =
1
a
(f(x+ aµ̂)− f(x)) (3.2)

while the backwards derivative is defined to be

∆bµf(x) =
1
a
(f(x)− f(x− aµ̂)) (3.3)

We may note that both of these derivatives will converge to the continuous
derivative ∂µ in the limit of a → 0. The two derivatives may be related to
each other by

(∆fµ)
† = −∆bµ (3.4)

The integral over four dimensional space is redefined to be∫
dx4f(x)→

∑
x
a4f(x) (3.5)

where the sum is over all spacetime points on the lattice. We may note
specifically that ∑

x
a4 ∆fµf(x) g(x) = −

∑
x
a4f(x) ∆bµg(x) (3.6)

and further that∑
x
a4 ∆fµf(x) ∆fµf(x) = −

∑
x
a4f(x) ∆bµ∆fµf(x) =

∑
x
a4f �f (3.7)

in which the Laplacian operator is defined as � = −∆bµ∆fµ. A more precise
definition of how this operator acts on functions is given by the relation

�f(x) =
4∑

µ=1

1
a2 (f(x)− f(x+ aµ̂)− f(x− aµ̂)) (3.8)

Due to the fact that the lattice creates a UV cutoff for the theory this
results in the Fourier transforms of functions defined on the lattice to be
periodic with period 2π

a in momentum space. To see this let f̂(p) be a
periodic function with period T , as f̂(p) is periodic it has a Fourier series
representation

f̂(p) =
∞∑

n=−∞
f̂ne

2πinp/T (3.9)
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Computing the Fourier transform of this function

f(x) =
∫ ∞
−∞

f̂(p)e−ixpdp (3.10)

=
∞∑

n=−∞
f̂n

∫ ∞
−∞

ei(2πn/T−x)pdp =
∞∑

n=−∞
2πf̂nδ(x− 2πn/T ) (3.11)

Provided that we choose the period T = 2π
a the function f(x) becomes a sum

of delta functions evaluated at integer multiples of the lattice spacing a, i.e.
discrete points on a lattice. Therefore, the momentum function f̂(p) must be
periodic with period 2π

a .
In addition, for all lattice points x, exp{2πixµ/a} = 1, therefore all

momenta may be restricted to a limited region of momentum space, the first
Brillouin zone, defined as

B =
{
p| − π

a
< p <

π

a

}
(3.12)

As such the Fourier transform on the lattice takes the form∫ dp4

(2π)4 →
∫ π/a

−π/a

dp4

(2π)4

after the discretization of space-time. One of the consequences is that in
that many of the integrations in loops, that in continuous space were zero,
become finite on the lattice. All corrections that are dependent upon the
lattice spacing a are called lattice artifacts, and must vanish in the continuum
limit of a→ 0.

3.2 The Wilson Action
To derive a suitable action that is invariant under a local gauge transformation
after the discretization of spacetime we take a set of similar steps as those in
section 2. We once again begin by considering a matter field φ(x), which is
now defined only for lattice points x. With corresponding generic action:

S =
∑
x
a4φ(x) · (�+m2)φ(x) + U(φ(x) · φ(x)) (3.13)

Similarly we define local gauge transformations Λ(x) to be defined at
points x only such that the transformation rule

φ(x)→ φ′(x) = Λ(x)φ(x) (3.14)
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continues to hold true on lattice points. Examining the kinetic part of the
action we may notice that using the definitions of the forward derivative it
may be rewritten in the form [15]

1
2
∑
x
a4∆fµφ · ∆fµφ = −

∑
<xy>

a2φ(x) · φ(y) + 4
∑
x
a4φ(x) · φ(x) (3.15)

in which < xy > represents the set of all nearest neighbor points. Examining
equation 3.15 we may note that while the second term on the right hand side
is gauge invariant, the nearest neighbor term is not. As such we must once
again introduce a covariant derivative and corresponding gauge field. In the
continuum case, a parallel transporter is defined through the infinitesimal
difference between neighboring points. On the lattice all distances must have
a minimum distance equal to the lattice spacing a, as such the corresponding
parallel transporters are based on the links b between neighboring lattice
sites. If we let x represent some point on the lattice, and let x+ aµ̂ be a
neighboring point in the direction of µ̂ (where µ̂ = 1, 2, 3, 4, representing the
four lattice axes), we define a link b to be the directed straight line (or path)
between these two points represented by

b =< x+ aµ̂,x >≡ (x,µ) (3.16)

As in the continuous case we define the parallel transporter, which is an
element of the local gauge group G, as a matrix associated to an individual
link denoted as

U(b) ≡ U(x+ aµ̂,x) ≡ Uxµ (3.17)
By convention this is usually referred to as a link variable. When considering
an arbitrary path on the lattice consisting of a number of links

L = bn ◦ · · · ◦ b2 ◦ b1 (3.18)

the parallel transporter is defined to be

U(L ) = U(bn) . . . U(b1) =
∏
b∈L

U(b) (3.19)

By the properties of a parallel transporter, for a path connecting points x
and y, U must satisfy.

U(y,x) = U−1(x, y) (3.20)
We now define the set of all link variables {U(b)} to be the gauge field on
the lattice. These link variables transform, under a gauge transformation, as
continuum parallel transporters

U ′(x, y) = Λ(x)U(x, y)Λ−1(y) (3.21)
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which implies that the nearest neighbor coupling term in the action will be
locally gauge invariant in the form∑

<xy>

φ(x) ·U(x, y)φ(y) (3.22)

Equivalently, a covariant forwards derivative may also be defined as

Dµφ =
1
a

(
U−1(x,µ)φ(x+ aµ̂)− φ(x)

)
(3.23)

such that the kinetic field term takes the form
1
2
∑
x
a4Dµφ ·Dµφ = −

∑
<xy>

a2φ(x) ·U(x, y)φ(y) + 4
∑
x
a4φ2(x) (3.24)

In either case it becomes apparent that gauge invariant quantities may be
constructed from elements of the form

φ(x) ·U(Lx,y)φ(y) (3.25)

In order to determine the gauge invariant Wilson action we use operators
of this type, with the various paths chosen to be plaquettes. Plaquettes are
the smallest closed curves on the lattice consisting of the links between four
nearest neighbor lattice points forming a square. For a lattice point x an
example plaquette would contain the points

x x+ aµ̂ x+ aµ̂+ aν̂ x+ aν̂ (3.26)

in which both a µ̂ and ν̂ are unit vectors pointing along one of the 4 lattice axes
with µ̂ 6= ν̂. Plaquettes also have orientations, and maybe traversed in two
different ways, with the convention being that counterclockwise traversal is
positive. A plaquette is denoted by p = (x; µ̂, ν̂), with the parallel transporter
of the plaquette defined as

Up ≡ Ux;µν ≡
U(x,x+ aµ̂)U(x+ aµ̂,x+ aµ̂+ aν̂)U(x+ aµ̂+ aν̂,x+ aν̂)U(x+ aν̂,x)

(3.27)

and is called the plaquette variable. The plaquette variable corresponding
to the opposite orientation of the plaquette is simply the inverse U−1

p . The
Wilson action is defined in terms of plaquette variables to be

S[U ] =
∑
p
Sp(Up)
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where the sum is defined to be over all plaquettes, with only one of the two
orientations, ie. ∑

p
≡
∑
x

∑
1≤µ̂<ν̂≤4

And the plaquette term Sp (in the case of SU(N)) is given by

Sp(U) = −β
{ 1

2 Tr 1
(
TrU + TrU−1

)
− 1

}
= β

{
1− 1

N
Re TrU

}
(3.28)

where β is a parameter related to the inverse of the coupling constant, to
be defined later. The constant term of is often left out as it is physically
insignificant [15]. Furthermore the Wilson action is real and gauge invariant
due to the fact that

TrU ′p = TrUp (3.29)

It is now necessary to show that the Wilson action will coincide with the
continuum Yang-Mills action in the limit of a→ 0, with corrections of order
O(a). We first define a gauge field Aµ as in the continuum case, as a vector
field of the Lie algebra corresponding to the Lie group. We let

Aµ(x) = −igAbµ(x)Tb (3.30)

and then let

U(x,µ) ≡ e−aAµ(x) = 1− aAµ(x) +
a2

2 A
2
µ(x) + . . . (3.31)

As we are considering the a→ 0 limit higher order a terms may be ignored.
Using the Campbell-Baker-Hausdorff formula, which states that

exey = ex+y+(1/2)[x,y]+··· (3.32)

and the fact that on the lattice

Aν(x+ aµ̂) = Aν(x) + a∆fµAν(x) (3.33)

we may determine that

Up = Ux;µν = exp−a2Gµν(x) (3.34)

in which
Gµν(x) = Fµν(x) +O(a) (3.35)
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with Fµν the field strength on the lattice defined as

Fµν(x) = ∆fµAν(x)− ∆fνAµ(x) + [Aµ(x),Aν(x)] (3.36)

Since by the properties of an su(n) Lie algebra

Tr(Gµν(x)) = 0 (3.37)

this results in the fact that

Tr
(
Up + U−1

p

)
= 2 Tr 1 + a4 Tr(Fµν)2 +O(a5) (3.38)

Finally using the definition of the plaquette sum
∑
p

Tr(Fµν)2 =
1
2
∑
x,µ,ν

Tr(Fµν)2 (3.39)

The Wilson action may equivalently be represented as

S = − β

4N
∑
x
a4 TrFµν(x)Fµν +O(a5) (3.40)

showing that in the limit of a→ 0, the Wilson action will converge on to the
Yang-Mills action provided that we select

β =
2N
g2 (3.41)

in which g is the bare coupling constant.
Similarly to the continuum case the theory is now describe the the path

integral:

Z =
∫
DU e−S[U ] (3.42)

in which U ≡ {U(b)}, the configuration of all link variables on the lattice.
The measure DU is the Haar measure on the gauge group which guarantees
invariance and normalization. Observables on the lattice are functions of the
configuration of link variable, U ,

O({U(b)}) ≡ O(U) (3.43)

with the expectation value of an observable being given by

〈O〉 = 1
Z

∫
DU Oe−S[U ] (3.44)
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4 Glueball Operator States
The existence of glueballs were first proposed as theoretical particles in the
early in 1970s by H. Fritzsch and M. Gell-Mann [16]. These particles were
proposed to consist of gluons, the force carrying particles of the strong force,
created throught the field’s interaction with itself. The physical existence of
glueballs has not yet been confirmed through particle accelerator experiments
although a large number of candidates exist (see for example [9, 8]).

The purpose of this thesis is to determine the mass spectrum of glueball
particles. The massive particles are denoted primarily by their spin J as well
as their parity P and charge parity C, denoted as JPC . To determine the
mass of any of these glueballs the euclidean correlator must be determined,
defined as

〈ψ(t)ψ(0)〉T =
1∫

DU e−S

∫
DU e−Sψ(t)ψ(0) (4.1)

In which ψ is a glueball operator given by a function with the parameter
t denoting the time-plane of the lattice on which it is evaluated, T is the size
of the lattice in the time direction. Alternatively we may express this relation
with

〈ψ(t)ψ(0)〉T =
1
Z

Tr
[
e−(T−t)Ĥ ψ̂e−tĤ ψ̂

]
(4.2)

In which ψ̂ are creation and destruction operators of glueballs, Ĥ is the
Hamiltonian of the system. The operator e−tĤ is called the transfer matrix,
connects spacelike planes separated by a distance of t. In this formalism Z is
represented by:

Z = Tr
[
e−TĤ

]
(4.3)

In order to relate this equation to the mass gap of the operator ψ we evaluate
the trace on a basis of the eigenstates of the Hamiltonian |n〉, on which
Ĥ |n〉 = En |n〉, in which En is the energy, which is real and ordered such
that E0 is the lowest and represents the energy of the vacuum.

Z =
∑
n
〈n| e−TĤ |n〉 =

∑
n
e−TEn (4.4)
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The correlator itself may be similarly expressed as

〈ψ(t)ψ(0)〉T =
1
Z

∑
m,n
〈m| e−(T−t)Ĥ ψ̂ |n〉 〈n| e−tĤ ψ̂ |m〉 (4.5)

=
1
Z

∑
m,n

e−(T−t)Em 〈m| ψ̂ |n〉 e−tEn 〈n| ψ̂ |m〉 (4.6)

=

∑
m,n 〈m| ψ̂ |n〉 〈n| ψ̂ |m〉 e−t∆Ene−(T−t)∆Em

1 + e−T∆E1 + e−T∆E2 + · · ·
(4.7)

in which we have defined ∆En = En −E0 in the final step. We now examine
the correlator in the limit of T → ∞. In this limit it is obvious that the
denominator reduces to 1, while in the numerator all terms in which ∆Em 6= 0
become 0. As such we end up with the relation

〈ψ(t)ψ(0)〉 =
∑
n
〈0| ψ̂ |n〉 〈n| ψ̂ |n〉 e−t∆En (4.8)

When t is large all terms of ∆En except for ∆E0 may be ignored. As this
value ∆E0 is the difference in energy between the vacuum and the lowest
glueball state it is equivalent to the mass m that we wish to determine, as
such

〈ψ(t)ψ(0)〉 ' Ce−tm (4.9)

In which C is a constant. However, in the case of periodic boundary conditions
on the Yang-Mills field the term with e−(T−t)m also survives resulting in

〈ψ(t)ψ(0)〉 ' C(e−tm + e−(T−t)m) (4.10)

As such in order to determine the glueball masses we need a method
to measure the correlators on the lattice. This first requires a means of
expressing a glueball wavefunction |ψ〉 on the lattice. We require that the
glueball wavefunctions are orthogonal to the vacuum, 〈0|ψ〉 = 0. In this case,
we may note that if we have a complete set of gauge-invariant operators,
denoted by Fi where i is an integer, that satisfy the relation 〈0|Fi |0〉 = 0 we
may represent a generic wave function as a linear combination of the operators

|ψ〉 =
∑
i

ciFi |0〉 (4.11)

in which ci are complex constants. A Wilson loop is an ordered collection of
links on the lattice that form a closed group. By choosing the set Fi to be
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products of sets of spacelike Wilson loops in the various representations of
the SU(N) group,

Oi,v(x, t) = χv(
∏
Ci

U)− 〈0|χv(
∏
Ci

U)|0〉 (4.12)

a suitable basis for expressing glueball wavefunctions may be obtained [17].
In this equation i represents the the ith closed curve Wilson loop Ci and
v gives the representation of the SU(N) group. χv is the character of the
representation v. For the coordinates of the loop we take x to be the
mathematical center and t to be the time slice on which the operator resides.
This thesis seeks to find the lowest energy states of the glueball spectrum, as
such we ignore states with momentum p 6= 0. Our set of operators Fi, which
we now denote by Oi,v, is chosen to be

Oi,v(t) =
∑
x
Oi,v(x, t) (4.13)

To obtain the glueball mass spectrum we must determine the operators,
or linear combinations of operators, Oi,v which correspond to the glueball
particles states of particular spin, parity, and charge parity.

Particles with a given spin are embedded in representations of the n-
dimensional rotational group. One the lattice however, rotational symmetry
is broken, and only restored in the continuum limit. The lattice has cubic
symmetry. The cubic symmetry is discrete in the number of elements and
has only 5 representations. Hence all rotational symmetry representations
subduced onto the lattice must be constructed from linear combination of
cubic symmetry representations, such that in the continuum limit, the correct
rotational symmetry representation is restored [18].

4.1 The Cubic symmetry group
The symmetry group of the cube, O, consists of 24 elements divided into 5
conjugacy classes. Each of these elements represents a transformation of the
cube in which the cube is rotated around an axis. The first element of the
group is the identity in which nothing is changed denoted by 1.

There are three axes that may be drawn perpendicular to the faces of the
cube. Around each of these axes 4 rotations might occur in increments of
90 degrees. These are denoted by C(i)

4 , (i = 1, 2, 3). The index i represents
which of the three axes is chosen, the 90 degree rotations are represented by
C

(i)
4 , (C(i)

4 )2, (C(i)
4 )3, (C(i)

4 )4 = 1). See figure 4.1a.
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There are 4 axes connecting two of vertices of the cube such the axis
passes through the center of the cube. Around these axes the cube may be
rotated 3 times in increments of 120 degrees. These elements are denoted by
C

(i)
3 , (i = 1, 2, 3, 4). See figure 4.1b.
There are 6 axes connecting the center of two edges of the cube such that

the axis passes through the center of the cube. Around each of these axis
two rotations may occur, in increments of 180 degrees. These elements are
denoted by C(i)

2 , (i = 1, . . . , 6). See figure 4.1c (note that only 3 of the axes
are shown in the image for clarity).

(a) C4 (b) C3 (c) C2

Figure 4.1: The axes of rotation for the C4, C3, and C2 element classes of
the cubic symmetry group. For C2 only 3 of the total of 6 rotational axes are
shown for clarity

These 24 elements are given in coordinate form in table 4.1.
The 5 conjugacy classes1 are represented by E, C4, C2

4 , C3, and C2. Their
elements are

E = {1} C4 = {C(i)
4 } C2

4 = {(C(i)
4 )2} (4.14)

C3 = {,C(i)
3 , (C(i)

3 )2} C2 = {C(i)
2 } (4.15)

These 5 classes correspond to the fact that there exist five irreducible
representations of the group. The Burnside theorem states that the square
of the dimensions of the representations must sum to the number of group
elements, in the present case this gives dimensions of 1, 1, 2, 3, 3. These

1Two elements a, b ∈ G of a group G are conjugate if b = g−1ag for some g ∈ G. The
conjugacy class of an element a is defined to be Cl(a) = {g−1ag|g ∈ G}
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Index Operation Index Operation
1 (x, y, z)→ (x, y, z) 13 (x, y, z)→ (−z, y,x)
2 (x, y, z)→ (−z,−y,−x) 14 (x, y, z)→ (−x,−y, z)
3 (x, y, z)→ (z,x, y) 15 (x, y, z)→ (−y,x, z)
4 (x, y, z)→ (−y,−x,−z) 16 (x, y, z)→ (−z,−x, y)
5 (x, y, z)→ (y, z,x) 17 (x, y, z)→ (−x, z, y)
6 (x, y, z)→ (−x,−z,−y) 18 (x, y, z)→ (−y,−z,x)
7 (x, y, z)→ (−x,−z, y) 19 (x, y, z)→ (−x, y,−z)
8 (x, y, z)→ (x,−y,−z) 20 (x, y, z)→ (z,−y,x)
9 (x, y, z)→ (y,x,−z) 21 (x, y, z)→ (−z,x,−y)
10 (x, y, z)→ (z,−x,−y) 22 (x, y, z)→ (y,−x, z)
11 (x, y, z)→ (x, z,−y) 23 (x, y, z)→ (−y, z,−x)
12 (x, y, z)→ (y,−z,−x) 24 (x, y, z)→ (x,−z, y)

Table 4.1: The set of 24 operations that define the O symmetry group of the
cube as represented in coordinate transformations

E 6C2 8C3 6C4 3C2
4

A1 1 1 1 1 1
A2 1 -1 1 -1 1
E 2 0 -1 0 2
T1 3 -1 0 1 -1
T2 3 1 1 -1 -1

Table 4.2: Character table for the conjugacy groups of the cubic group.
Each column gives the character of that columns conjugacy class in the rows
representation of the group.

5 irreducible representations are denoted as A1,A2,E,T1,T2. Of these A1
is the trivial representation and T1 is the standard vector representation.
The representations have equivalent character for all elements within one
conjugacy group, these characters are listed in table 4.2

The parity is group P is a simple group consisting of two elements P =
{1,−1}. The direct product of the cubic group O together with the parity
group P is called Oh and includes the rotations of the O group but also
reflections and inversions through the cubes center. All elements of the Oh
group are of the form gh = g× 1 or gh = g×−1 for all g ∈ O. This doubles
the number of conjugacy groups to 10, represented by A±1 ,A±2 ,E±,T±1 ,T±2 .
The + symbol corresponds to the fact that the characters of group elements
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under the representation follow χ(1× g) = χ(−1× g), while representations
denoted with the − sign follow the rule χ(1× g) = −χ(−1× g).

The charge conjugacy operator operates similarly to the parity operator
increasing the total size of the group in question to 96 elements, with 20
conjugacy classes. These 20 representations will be denoted by RPC , in which
R = A1,A2,E,T1,T2, and P = ±, C = ±.

4.2 Spin states with respect to the cubic group
In the continuum limit of the lattice gauge theory rotational invariance is
restored. Selection rules for particles must therefore be dependent on the
irreducible representations of the rotation group. The wave functions that
describe states of spin J that belong to the irreducible representation DJ will
be represented by |ψ〉J . We focus only on integer spins during this discussion
and ignore parity and charge parity, for the sake of clarity.

On the lattice, for all values of β, an exact cubic symmetry is present. This
implies that selection rules must follow from the 5 irreducible representations
of the cubic group O. We denote these states as |ψ〉R, in which R is one of
the representations discussed above (see table 4.2).

This implies that in the continuum limit of β →∞ all cubic states should
be expressed in terms of states with spin J . More explicitly

|ψ〉R =
∑
J ,m

cRJ ,m |ψ〉J ,m (4.16)

In which m is the quantum number that corresponds to the z component of
the spin vector, that may take values from −J ,−J + 1, . . . , J − 1, J . From
this we may note that a wavefunction of spin J may only contribute to the
wavefuntion of a cubic representation R if

D0
J ⊃ R (4.17)

In which D0
J is the subduced representation of the representation DJ which

is obtained by embedding the cubic group into the rotation group. This
subduced representation of the rotational group has been computed by many
authors previously [19]. Table 4.3 which gives the multiplicities of the cubic
representations R which are found within each subduced representation D0

J

up until a spin of J = 6.
From this we may note that for spins J > 1 the subduced representations

are reducible and all representations of the cubic group have appeared by
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R | J 0 1 2 3 4 5 6
A1 1 0 0 0 1 0 1
A2 0 0 0 1 0 0 1
E 0 0 1 0 1 1 1
T1 0 1 0 1 1 2 1
T2 0 0 1 1 1 1 2

Table 4.3: Multiplicities of cubic representations in the subduced representa-
tion D0

J of spin J

spin J = 3. Extensions of this analysis to half-integer spin also exist and may
be found in [20].

Now we consider the definition of the mass given by equation 4.10 and
restrict ourselves to states |ψ〉R with the condition 〈0|ψ〉R = 0. We let the
eigenvalues be denoted by m(R). Now provided that we operate under the
assumption: that the eigenvalue m(R) corresponds to the lowest allowed spin
in the sector |ψ〉R [17]; we may then read from table 4.3 that in the continuum
limit:

m(0PC) = m(APC1 ) (4.18)

m(1PC) = m(TPC1 ) (4.19)

m(2PC) = m(EPC) = m(TPC2 ) (4.20)

m(3PC) = m(APC2 ) = m(TPC1 ) = m(TPC2 ) (4.21)

It is important to note that these relations only hold true in the continuum
limit, specifically when β = ∞. During the simulations we must choose a
value of β for which the relationship is approximately true. Due to the fact
that we are estimating the lowest energy eigenvaluem(R) of the wavefunctions
|ψ〉R we are limited to determining the properties of particles with spin J ≤ 3.

4.3 Irreducible cubic group representations and corre-
sponding Wilson loops

We now wish to construct a set of Wilson loops that correspond to irreducible
representations of the cubic symmetry group Oh. By constructing these
irreducible representations onto closed Wilson loops, we may use the linear
combinations of Wilson loop operators as glueball states with representation
RPC . As seen in the previous section the mass of these operators will be
equivalent to continuum glueballs with spin JPC . As such on the lattice
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we can measure the correlations between closed Wilson loops to determine
glueball mass.

It will be shown that all representations may be constructed with Wilson
loops of length 8 or less, in which the length is the number of links which the
loops consists of. All spacelike Wilson loops up till and including length 8
may be seen in figure 4.2. Note that all of these loops have various spatial
orientations under transformations of the cubic symmetry group. For example,
the plaquette may be in the XY, XZ, or YZ plane.

Figure 4.2: All closed Wilson loops up to length 8. The first row are common
enough loops that they are named. All loops of length 8 are designated a
number from 1 to 18. All loops have a number of spatial orientations under
transformation of the cubic symmetry group.

Due to the fact that for N ≥ 3 the SU(N) links have a character that is
complex, the Wilson loops will have an orientation of traversal depending
on the order of the multiplication of the links. By convention, we choose
counterclockwise to be the positive orientation. We note that in the continuum,
the gauge field in the lagrangian transforms under charge parity in the
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following manner:
Aµ

C−→ −ATµ (4.22)

provided that the gauge field is hermitian. This allows us to determine an
important rule of the Wilson loop operators: the real part of the character of
a Wilson loop has charge parity C = 1 while the imaginary part has charge
parity C = −1. As SU(2) has no orientation, in S(2) all C = −1 results
may be ignored entirely.

We now consider Wilson loop operators Oi,v of length L. In the con-
struction of these operators only the shape of the loop and its orientation is
important, as such we denote the loop as a tuple of length L:

(f̂1, . . . , f̂L)
L∑
i=1

f̂i = 0 (4.23)

In this representation the f̂i are vectors drawn from the set of positive and
negative spatial unit vectors, f̂i ∈ {±êj |j = 1, 2, 3}. Under this notation,
the simplest Wilson loop, the spatial plaquette in the XY plane in positive
orientations would be represented by (ê1, ê2,−ê1,−ê2) while the opposite
orientation is given by (ê2, ê1,−ê2,−ê1). Note that because the loops are
closed, two cyclic permutations of the tuples are identical. As such the tuples
form an equivalence class. The equivalence class of the tuple (f̂1, . . . , f̂L) is
denoted by [f̂1, . . . , f̂L]. We now consider the effect of charge conjugation on
these equivalence classes noting that

C[f̂1, . . . , f̂L] = [−f̂L,−f̂L−1, . . . ,−f̂1] (4.24)

We may construct a set of operators that have positive or negative C-parity
by considering operators O±i,v constructred from the combinations:

[f̂1, . . . , f̂L]± = [f̂1, . . . , f̂L]± [−f̂L, . . . ,−f̂1] (4.25)

It is clear that C[f̂1, . . . , f̂L]± = ±[f̂1, . . . , f̂L]±.
We now generate a representationM of the cubic group Oh. For each

element g ∈ Oh we applyMg on the fixed shape operators O±i,v by:

Mg[f̂1, . . . , f̂L]± = [Mgf̂1, . . . ,Mgf̂L] (4.26)

here Mg is defined to be the matrix that corresponds to g in the vector
representation on the basis (ê1, ê2, ê3). The collection of all Mg form the
representationM.This generated representationM will have dimension of
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OP d A++
1 A++

2 E++ T++
1 T++

2 A+−
1 A+−

2 E+− T+−
1 T+−

2
p∗ 6 1 0 1 0 0 0 0 0 1 0
dp 12 1 1 2 0 0 0 0 0 1 1
bp 24 1 0 1 0 1 0 0 0 1 1
tp 8 1 0 0 0 1 0 1 0 1 0

A−+1 A−+2 E−+ T−+1 T−+2 A−−1 A−−2 E−− T−−1 T−−2
bp 24 0 0 0 1 1 1 0 1 0 1

Table 4.4: Multiplicities of irreducible representations of the cubic group
Oh ×C in the representationM or various operators of length 6 or below.
* p = plaquette, dp= double plaquette, bp = bent plaquette, tp = twisted
plaquette, see figure 4.2

less than or equal to 96. This number comes from the number of elements
in Oh (48) with the direct produce with charge parity C (2). As previously
mentioned, in SU(2) the C = 1 and C = −1 results are equivalent, as such
the dimension of the representationM has a maximum size of 48.

The representation matrices of individual group elements g,Mg are d× d
matrices where all entries are either 1, 0, or -1. The lowest dimension is
for the plaquette in which d = 6, which corresponds to the three spacial
orientations, XY plane, YZ plane, and XZ plane, and the two traversal
orientations (clockwise and counterclockwise).

We will determine the multiplicity of irreducible representations of the
cubic group in the representation M constructed upon the closed Wilson
loop. This may be completed by means of the character relation. For a fixed
charge parity, C either +1 or −1, the multiplicity mRP of the representation
RP in the irreducible representation decomposition of the representationM
is given by:

mRP =
1
48
∑
K

nKχ
M
K χR

P

K (4.27)

in which K are the conjugacy classes of the group Oh. Each conjugacy class
has a number of elements nK . χMK is the character of M for any element
of the conjugacy class K, similarly χRPK is the character of any element of
the conjugacy class K of the representation RP . The multiplicities for the
representation for all Wilson operators up to length 6 may be seen in table
4.4, a table with multiplicities for operators up to length 8 may be found
in the appendix (see tables A.1, A.2). As may be seen from these tables all
irreducible representations are present in Wilson loops up to a length of 8.
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O1 O2 O3
A++

1 1 1 1
E++ 0 1 -1

-2 1 1
T+−

1 1 0 0
0 1 0
0 0 1

Table 4.5: Wavefunctions for various glueball states that may be constructed
from the plaquette operator. For definition of Oi see figure B.1

The final step in this process is to use the information about the irreducible
content of each representation inM to produce orthonormal basis for each
representation RP explicitly. The method used in this thesis is one used by
Berg and Billiore[17]. We let C equal to a matrix that commutes with allMg

of the representationM. We then let A equal to the matrix that diagonalizes
C, in the sense that ACA−1 is a diagonal matrix, then the matrix A will
also reduce the representation M although not necessarily completely. In
subsequent steps one may then use the representation

AMA−1 = {AMgA
−1|Mg ∈M} (4.28)

The matrices C that commute with all elements ofM may be constructed by
summing all of the matrices of a single conjugacy class ofM. The orthonormal
bases may be read off from the columns of the matrices A. Using this method,
the representations may be fully reduced with only a few conjugacy classes.
In tables 4.5 and 4.6 we represent the orthonormal bases for representations
constructed from the plaquette operator and the double plaquette operator,
additional operators may be found in the appendix (see appendix B). The
columns in the table represent the various spacial orientations of the operator,
three in the case of the plaquette, 6 for the double plaquette, figures showing
these spatial orientations may be found in appendix B. As such from table
4.5 we see that the A++

1 glueball may be represented with the real part of
the operator O1 +O2 +O3, or the sum of the three spatial orientations of
the plaquette. Furthermore the case of C = ± the real or imaginary part of
the operator has to be taken to correspond to the C-parity. Normalization
factors are also not included.
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O1 O2 O3 O4 O5 O6
A++

1 1 1 1 1 1 1
A++

2 1 1 1 -1 -1 -1
E++ 0 1 -1 0 1 -1

-2 1 1 -2 1 1
E++ -2 1 1 2 -1 -1

0 -1 1 0 1 -1
T+−

1 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

T+−
2 1 0 0 -1 0 0

0 1 0 0 -1 0
0 0 1 0 0 -1

Table 4.6: Wavefunctions for various glueball states that may be constructed
from the double plaquette operator. For definition of Oi see figure B.2
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5 Numerical Simulation Details
To measure the value of an observable O on the lattices requires the evaluation
of the euclidian path integral

〈O〉 = 1
Z

∫
DU O[U ]e−S[U ] (5.1)

We have introduced the lattice to find a non perturbative solution and
aim to solve it using a computer simulation. However, it may not be solved
numerically because the number of states that would have to be calculated
would be infinite. For example, in the simplest possible case of the Ising
model, in which each link can take a binary value of either 1 or −1, with N
links this would require the computation of 2N states. In the present case
in which the link U are of the type SU(N) this number is far greater. As
such an alternative method is required to approximate the integral, for this
problem we make use of a Monte-Carlo method. We approach the problem
statistically. Instead of generating all possible configurations we draw individ-
ual configurations [U ] from a probability distribution to form a representative
sample of configurations, measurements upon which approximate the true
values of 〈O〉.

The Boltzman factor, exp{−S[U ]} is of particular importance. We may
note that the action S includes a term which sums over the entire lattice.
Considering the total number of lattice points to be Ω, for illustrative purposes
we may rewrite the action as S[U ] = Ωs[U ], in which s[U ] is the density
of the action. As the value of Ω is large in any reasonable lattice used for
measurement this exponential factor is small except for in a small range
around the minimum energy density. For the sake of efficiency, an effective
Monte-Carlo algorithm must consider this factor and draw random field
configurations with a similar weight of exp{−S[U ]}.

To derive the method in more detail we define an ensemble of configura-
tions as an infinite collection of configuration states of the field U , with a
density W [U ] defined on the measure dU [15]. Furthermore, the canonical
ensemble (also referred to as the equilibrium ensemble, not related to the
grandcanonincal or the microcanonical ensemble from statistical physics) is
required to have a density Wc proportional to the Boltzman term:

Wc[U ] ∝ e−S[U ] (5.2)

In numerical simulations we generate a finite number of configurations
{[Un], n = 1, 2, . . . ,N} such that the samples approximate in their dis-
tribution the distribution of the canonical ensemble. By noting that the
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ensemble average of a given operator O is equivalent to the expectation value
of the operator 〈O〉, and further noting that the sample average defined as:

O =
1
N

N∑
n=1
O[Un] (5.3)

is an estimator of the ensemble average, we may approximate the expectation
value by computing a finite number of states.

The question remains however; how to generate a sequence of valid configu-
rations [Un] such that the desired properties hold? What is used in practice is
an updating procedure, defined as an algorithm that uses a currently existing
configuration state [Un] to generate a new state [Un+1]. Such an updating step
is a stochastic random process in which each transition from state [U ]→ [U ′]
is accompanied with a corresponding transition probability P ([U ′]← [U ]).2
As a matter of notation, the updating of a single link is usually referred to as
a step, and updating the entire lattice is referred to as a sweep. This is due
to the fact that the majority of updating algorithms update link by link. In
practice such systems are usually parallelized, on either the CPU, or more
recently the GPU[21], allowing for concurrent updating of multiple links on
the lattice.

We may also examine the effect of the transition probability on the
ensemble of configurations defined earlier by noting that the ensemble density
is changed after an updating step according to

W ′[U ′] =
∑
[U ]

P ([U ′]← [U ])W [U ] ≡
∫
dUP ([U ′]← [U ])W [U ] (5.4)

By considering the transition probability as a square matrix and the
densities as vectors, we may rewrite this relation more succinctly in matrix
notation as W ′ = PW . For the transition probability to be effective at
updating some additional requirements must be placed upon it. Firstly, the
transition probability must be normalized

∑
[U ′]

P ([U ′]← [U ]) ≡
∫
dU ′P ([U ′]← [U ])W [U ] = 1 (5.5)

Secondarily, strong ergodicity is required, defined as:

P ([U ′]← [U ]) > 0 (5.6)
2Computers are generally not capable of producing purely random numbers. Instead

pseudo-random numbers generators are used to simulate stochastic processes. This pseudo-
random process produces a deterministic sequence of numbers based on a given seed. This
deterministic property can be useful when attempting to replicate results.
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for all pairs of configurations (U , U ′). This allows every configuration to be
reached from any other configuration with finite probability. Furthermore, it
is assumed that a normalization condition is placed upon the density W,

∑
[U ]

W [U ] ≡
∫
[dU ]W [U ] = 1 (5.7)

Any stochastic process that satisfies the conditions specified in equations 5.4,
5.5, and 5.6 is referred to as a Markov process. The sequence of configurations
is defined to be a Markov chain, and the entire process Markov Chain Monte
Carlo (MCMC).

Now considering a "reasonable" (defined below) initial ensemble of config-
urations with corresponding density W0, a condition must be placed on the
updating process, such that through repeated applications of the updating
procedure the resulting ensemble must be canonical ensemble

lim
k→∞

P kW0 = Wc (5.8)

As such one can begin the simulation from any reasonable initial configuration
and obtain accurate results. Reasonable in this case requires that the initial
ensemble density must have nonzero overlap with the canonical ensemble,
however due to the requirement of strong ergodicity this is always true for all
initial configurations. This property of the canonical ensemble results in it
being a fixed point of the transition probability, in effect

PWc = Wc (5.9)

We further require that this fixed point is unique, otherwise the numerical
simulation would produce non-unique results.

An alternative condition maybe placed upon the transition probability
that is sufficient (but not necessary) to establish the result of equation 5.9,
and is referred to as detailed balance

P ([U ′]← [U ])Wc[U ] = P ([U ]← [U ′])Wc[U
′] (5.10)

Noting that this (eq. 5.10) in conjunction with equation 5.4 imply that∑
[U ]

P ([U ′]← [U ])Wc[U ] =
∑
[U ]

P ([U ]← [U ′])Wc[U
′] = Wc[U

′] (5.11)

Which is equivalent to equation 5.9. The requirement given by equation 5.5
is also satisfied by detailed balance and may be proved through use of the
theorem of Perron.
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As discussed in the previous section, the operators that describe the
glueball states consist of closed loops on the lattice, with periodic boundary
conditions in place. Every spatial lattice point is considered as a starting
point of such a loop, the sum over all of these loops in computed and divided
by the total number of lattice points to obtain a single measure of the operator
on the configuration. However, to determine the masses of glueballs we are
also required to measure the 2-point correlation functions between various
glueball states. The correlation between two lattice operators, A and B is
defined as:

(AB) ≡ 〈ÂB̂〉 = 1
Z

∫
DUÂ[U ]B̂[U ]e−S[U ] (5.12)

in which an operator with a caret is defined to be the vacuum subtracted
operator, Ô = O− 〈O〉. By exploiting the linear properties of integrals, we
may note that

〈ÂB̂〉 = 〈(A− 〈A〉)(B − 〈B〉)〉
= 〈AB〉 − 〈A〈B〉〉 − 〈B〈A〉〉+ 〈〈A〉〈B〉〉 = 〈AB〉 − 〈A〉〈B〉 (5.13)

Which is the alternative, and often more conventional definition of the cor-
relation. The masses of glueballs are determined by examining correlations
between glueball states on different time slices. If we define one of the glueball
states as a function of the time coordinate on the lattice as

Ot =
1
V

∑
x
Oxt (5.14)

in which V is the number of spatial lattice points and Oxt are the Wilson
loop operators described in the previous section with starting location (x, t).
Then the correlation between various time states of the operators has, as
shown in chapter 4, asymptotic behaviour of

〈Ôt+t0Ôt0〉 ' C(e−mt + e−m(T−t)) (5.15)

In which C is a constant, T is the time dimension of the lattice, and m is the
desired mass. The asymptotic relation holds only in the case of t,T → ∞,
implying that larger lattices give more accurate results. By taking the value
of correlations for all values of t on the lattice and then fitting the curve a
value of m may be determined.

It must be noted that the introduction of a finite number of lattice points
will also affect the mass spectrum. It has been shown repeatedly that if a
quantum field is enclosed in a box of a certain size L that mass spectrum will
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obtain a dependence upon L, this is also true on the lattice [22]. These effects
are referred to as finite size effects and must be taken into account when
attempting to extrapolate results determined on the lattice to the continuum
with infinite volume. Usually this is completed by measuring the same values
on lattices of multiple sizes and then determining the change due to the varied
volume.

The accuracy of the measured operators must still be considered. If
the operators, O, measured on the lattices configurations were statistically
independent the sample average would simply be normally distributed around
a mean of the ensemble average O with a variance of

σ2
O =

1
N − 1(O

2 −O2
) =

1
N − 1(O−O)

2 (5.16)

This result is easily established by the central limit theorem. In this case
the value of the average operator could simply be reported as O = O± σO.
Unfortunately, the updating procedure produces states that are dependent
upon and often similar to each other. As such a more sophisticated measure
of variance is required. The autocorrelation is defined to be the correlation
between various configurations of the generated sequence. For values that are
computed by means of averages on the lattice it is defined to be

(OnOn+τ ) ≡ 〈OnOn+τ 〉 − 〈On〉〈On+τ 〉
= 〈OnOn+τ 〉 − 〈O〉2 = 〈(On −O)(On+τ −O)〉 (5.17)

Note that in this case the coordinate τ does not refer to a time coordinate on
the lattice, but instead to the τth lattice configuration. The true variance of
O may be computed with respect to the autocorrelation to be

σ2
O =

〈 1
N

N∑
n=1

(On − 〈O〉)

2〉
=

N∑
τ=−N

N − |τ |
N2 (OnOn+τ )

N→∞−−−−→ (OO)2τint,O
N

' (O2 −O2
)
2τint,O
N

(5.18)

In limit of N → ∞ we have introduced the term (OO) which is the true
correlation which is only available in this limit. The approximation in the
final term is used in practice.

The integrated autocorrelation time τint,O is given by:

τint,O ≡
1
2

+∞∑
τ=−∞

(OnOn+τ )
(OO)

(5.19)
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As a direct result of the autocorrelation between various configuration states
the number of statistically independent measurements is reduced to N/2τint,O.
To ensure accurate results, when generating configurations at least 2τint,O
updating sweeps are completed between measurements of the operators. This
allows for the definition of variance given by equation 5.16 to be used in the
measurement of operators.

In order to reduce the variance further a number of statistical techniques
were implemented when measuring on the lattice. These techniques include,
overrelaxation when generating new configurations to reduce auto-correlation,
the multihit algorithm to reduce the variance in the measurement of opera-
tors, the multilevel algorithm to reduce the variance in correlations between
operators, the variational method to produce composite operators that more
accurately reflect the glueball states, and jacknife analysis for more reliable
estimates of the error of measured quantities. All of these methods are
discussed in more detail below.

5.1 Pseudo-Heatbath
A natural choice for the canonical distribution of configuration states, that was
discussed in the previous section, would be to choose a transition probability
matrix that is independent of the initial states,

P ([U ′]← [U ]) = Wc[U
′] = Z−1e−S[U

′] (5.20)

It can easily be shown that this transition probability satisifies the required
properties, including strong ergodicity and detailed balance. The direct
implementation of such transition probability is in practice impossible due to
the large number of potential configurations. A heatbath algorithm, applies
5.20 locally; updating a single link while keeping all other field variables
constant. The name "heatbath" is in reference to thermodynamics thought
experiments, as the process of updating is similar to bringing a single link in
contact with an infinite heatbath.

To define the transition probability for heatbath algorithms in more detail
we define Ux to be the single link at space-time position x that will be
updated. We further define Ǔx as the set of all field variables, excluding the
link Ux, that will remain fixed during the updating procedure. We may then
define the conditional probability distribution of Ux in the canonical ensemble
Wc(Ux|Ǔx) as

Wc[U ] ≡ Wc(Ux, Ǔx) ≡ Wc(Ux|Ǔx)W̌c(Ǔx) (5.21)
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The conditional transition probability function for the update is similarly
expressed as Px(U ′x ← Ux|Ǔx), with the total transition matrix defined as

Px([U
′]← [U ]) = Px(U

′
x ← Ux|Ǔx)δ(Ǔ ′x − Ǔx) (5.22)

We assume that the probability matrix satisfies the conditions of 5.4 and
5.6. With reference to 5.6 another sufficient (but not necessary) condition
that satisfies this requirement is local detailed balance:

Px(U
′
x ← Ux|Ǔx)Wc(Ux|Ǔx) = Px(Ux ← U ′x|Ǔx)Wc(U

′
x|Ǔx) (5.23)

Because of the fact that the local updating step only acts on a single link
the process is naturally not ergodic. An alternative condition is therefore is
therefore required, local ergodicity defined as

Px(U
′
x ← Ux|Ǔx) > 0 (5.24)

Ergodicity maybe achieved on the entire system by performing a "sweep", or
locally updating all of the links on the lattice, resulting in a total probability
matrix

P ([U ′]← [U ]) =
∏
x
Px([U

′]← [U ]) (5.25)

The equations 5.21 - 5.25 are generic and describe any local updating
procedure on the lattice, including, for example, the metropolis algorithm. The
local heat bath algorithm corresponds specifically to the choice of conditional
transition probability matrix of

Px(U
′
x ← Ux|Ǔx) = Wc(U

′
x|Ǔx) (5.26)

We may note that this is the local equivalent to equation 5.20. As such
the task required of any heatbath algorithm is to produce the conditional
distribution Wc(U ′x|Ǔx) numerically. We may note specifically that if the
integral of the distribution is known:

dEǓx(Ux) ≡ Wc(U
′
x|Ǔx)dUx (5.27)

in which dEǓx(Ux) is the measure of this known integral, then due to the
translational invariance of the measure, a random number r ∈ [0, 1] may be
used to generate a distribution U ′x by

U ′x = E−1
Ǔx

[
EǓx(a) + r[EǓx(b)−EǓx(a)]

]
(5.28)
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in which [a, b] is the range that the field variables can take and E−1
Ǔx

is the
inverse of the function EǓx .

Unfortunately in practice the exact value of the integral and its inverse
is often still too difficult to use or calculate. Accordingly, an approximation
of the distribution W0(U ′x|Ǔx) with corresponding integral E0Ǔx(Ux) may
be used instead. However, the introduction of the approximation requires
an additional "accept-reject" step to correct the distribution. When a new
configuration U ′x is obtained, a second random number r′ ∈ [0, 1] must be
chosen. The new configuration U ′x is accepted only if

r′ ≤ Wc(U ′x|Ǔx)
W0(U ′x|Ǔx)

min
a≤Ux≤b

W0(Ux|Ǔx)
Wc(Ux|Ǔx)

≤ 1 (5.29)

5.1.1 SU(2) Heatbath

In the case of SU(2) the heatbath algorithm was first developed by Creutz
[23, 24]. We begin by noting that the action may be decomposed with respect
to a single link Ux as

S[U ] = − β
N

Re Tr{UxSx}+ Š(Ǔx) (5.30)

in which Sx is an N ×N matrix which is the sum of the 6 "staples" of the
link, and the check ˇmark refers to variables independent of Ux. Each link is
part of 6 plaquettes, see figure 5.1, if the link Ux is in the direction µ̂, denoted
Ux;µ̂ the staple refers to a product

Ux+µ̂;ν̂Ux+µ̂+ν̂;−µ̂Ux+ν̂;−ν̂ (5.31)

in which ν 6= µ and ν can be negative as well as positive. As such the term
Sx is given by

Sx =
3∑

ν=−3,±ν 6=µ
Ux+µ̂;ν̂Ux+µ̂+ν̂;−µ̂Ux+ν̂;−ν̂ (5.32)

In which ν ranges over the dimensions x, y, z, and t denoted by the index
0, 1, 2, 3, respectively, see figure 5.1.

This decomposition of the action is possible in the case of the Wilson
action as well as in many more complicated actions, provided that the action
is build up linearly from loop variables. As we are in SU(2) all links may be
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Figure 5.1: A link Ux with four of the staples shown. On a 4 dimensional
space-time lattice each link has 6 total staples, only 4 are shown in this image.
The arrows represent direction of traversal over the link in the multiplication
step, using U−1

x;µ = Ux;−µ

decomposed into sums over the identity and Pauli matrices, as such we define
the link Ux and its adjoint U †x as

Ux ≡ ax01 +
3∑
r=1

iσraxr U †x = U−1
x = ax01−

3∑
r=1

iσraxr (5.33)

where 1 is the 2× 2 identity matrix and σr are the Pauli matrices. The
unitarity of the link implies that

U †xUx =
4∑
r=0

a2
xr = 1 (5.34)

which implies that ax0 = zx(1− |ax|2)1/2, in which zx = ±1 and is a member
of the Z2 group and |ax| is defined as

|ax| ≡

 3∑
r=1

a2
xr

1/2

(5.35)
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Similarly, the sum of the staples term Sx and its adjoint may similarly be
represented as

Sx ≡ sx01 +
3∑
r=1

iσrsxr S†x = sx01−
3∑
r=1

iσrsxr (5.36)

This implies that given the product SxS†x, S−1
x maybe obtained by

SxS
†
x = S†xSx =

3∑
r=0

s2
xr, S−1

x = S†x[det
(
SxS

†
x

)
]1/2 = k−2S†x (5.37)

in which

k−1 ≡ [det
(
SxS

†
x

)
]1/4 =

 4∑
r=0

s2
xr

1/2

= (det(Sx))1/2 (5.38)

From these relations we may note that the projection of Sx onto the SU(2)
group is given by U0 ≡ kS−1

x . Furthermore, letting the variables ar ≡ axr, we
note that on SU(2) the invariant Haar measure, which is normalized to 1, is
given by the equation

∫
dU = π−2

∫
d4aδ

 3∑
r=0

a2
r − 1


=

1
2π2

∫ da4

(1− |a|2)1/2

[
δ(a0 − (1− |a|2)1/2) + δ(a0 + (1− |a|2)1/2)

]
θ(1−|a|2)

(5.39)

In which θ(x) is given by

θ(x) =

0 x < 0
1 x ≥ 0

(5.40)

The integral over the three dimensional vector ~a = {a1, a2, a3} may equiva-
lently be represented as

d3~a

(1− |a|2)1/2 = d3~a exp


∞∑
j=1

1
2j |a|

2j


= d|a| |a|2

(1− |a|2)1/2 d2Ωa = da0(1− a2
0)

1/2d2Ωa (5.41)
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In which Ωa is the solid angle with respect to the vector ~a.
We may now use these equations to determine the conditional probability

distribution of the link Ux, which may be written as

Wc(Ux|Ǔx)dUx ∝ exp
{
β

2 Tr(UxSx)
}

dUx = exp

β
3∑
r=0

axrsxr

dUx (5.42)

noting that

UxSx = kUxU
−1
0 ≡ kU0x ≡ k

a01 +
3∑
r=1

iσrar

 (5.43)

This variable U0x is referred to as the transformed link. The transformed link
allows for the simplification of the distribution. Due to the invariance of the
Haar measure: ∫

dUxWc(Ux|Ǔx) =
∫

dU0xWc(U0x|Ǔ0x)

→
∫ 1

−1
da0(1− a2

0)
1/2eβka0

∫
d2Ωa (5.44)

This equation 5.44 is the distribution for the heatbath for single link on the
lattice.

A single SU(2) link on the lattice can be updated by means of the heatbath
algorithm through the following sequence:

1. First generate a random number a0 from a uniform distribution with
range [−1, 1]. This uniform distribution serves as the approximate
distribution W0 in equation 5.29.

2. Correct the distribution by accounting for the factor (1− a2
0)

1/2eβka0

by means of the accept-reject step discussed in equation 5.29. This
accept-reject step may have to be repeated n times until acceptance is
reached.

3. Generate the vector ~a randomly. The simplest manner is to use the fact
that dΩa = dφd(cos(θ)).

4. Finally, one may obtain the new link U ′x from the transformed link U0x
by means of U ′x ≡ U0xU0

More detailed implementations of the heatbath algorithm, including pseudo-
code, may be found in other sources such as [15, 25].

40



5.1.2 The Pseudo-Heatbath for N>2

While the distribution for the one-link heatbath may be determined exactly
for SU(2), difficulty arises with SU(N) with N > 2. A heatbath algorithm for
SU(3) exists and was developed by Pietarinen [26]. For larger N algorithms
have not been developed due to their complexity. Instead, for arbitrary N,
Cabibbo and Marinari [27] developed an algorithm that applies the SU(2)
heatbath algorithm on carefully chosen SU(2) subgroups of the SU(N) links.
This algorithm is referred to as the pseudo-heatbath and is both efficient and
effective at generating new configurations states even when N is large. Multiple
improvements to the Cabibbo and Marinari psuedo-heatbath exist, such as
increased computation efficiency [28], or the introduction of overrelaxation to
decrease autocorrelation time [29] (see also section 5.2).

The algorithm first requires a selection of SU(2) subgroups. This subset
of SU(2) subgroups, denoted by {SU(2)k|k = 1, 2, . . . ,m}, must be chosen
in such a way that no subset of SU(N) is left invariant with respect to all
selected subgroups. The collection proposed by Cabibbo and Marinari [27] is
a collection of m = N − 1 subgroups, in which each subgroup is given by:

ak =



1
. . .

1
(αk)

1
. . .

1


∈ SU(2)k (5.45)

in which αk is a 2× 2 matrix of the SU(2) group located at the k and
k+ 1th rows and columns.

An alternative collection also proposed by Cabibbo and Marinari [27] is
to use the m = (N(N − 1)/2) subgroups whose significant values are placed
at the intersections of the i and kth rows and collumns, in which i and k are
not necessarily contiguous.

The updated link variable is subsequently determined by the repeated
multiplication

U ′x = amam−1 · · · a1Ux (5.46)

The definition may also be phrased recursively, defining U (0)
x ≡ Ux and

U (m) ≡ U ′x, we define each multiplicative step as

U (k)
x = akU

(k−1)
x (5.47)
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Using this definition we may write that each of the subgroups ak is drawn
from the distribution

dPx(ak) = dkak exp
{
−S(akU (k−1)

x , Ǔx)
}
Z−1
k (U (k−1)

x ) (5.48)

in which the measure dkak is the Haar measure on the SU(2)k subgroup.
The factor Zk is given by

Zk(Ux) ≡
∫
SU(2)k

da exp
{
−S(aUx, Ǔx)

}
= Zk(bUx) (5.49)

where b is a constant. The validity of the final equality is due to the invariance
of the Haar measure.

To show the usefullness of this approach we first show that the canonical
distribution is left invariant under this series of steps. We shall show this
inductively, first assuming that, following equation 5.20, U (k−1)

x has the
following distribution

Wc(U
(k−1)
x , Ǔx)dU (k−1)

x = exp
{
−S(U (k−1)

x , Ǔx)
}
Z−1dU (k−1)

x (5.50)

Then the U (k)
x = aU

(k−1)
x must be distributed according to:

Wc(U
(k)
x , Ǔx)dU (k)

x =

∫
SU(2)k

dka
exp

{
−S(U (k)

x , Ǔx)
}

exp
{
−S(a−1U

(k)
x , Ǔx)

}
Zk(a−1U

(k)
x )Z

d(a−1U (k)
x )

= exp
{
−S(U (k)

x , Ǔx)
}
Z−1dU (k)

x (5.51)

showing that if the initial U (0)
x has a canonical distribution, all subsequent

U
(k)
x will also have a canonical distribution, including U (m)

x = U ′x. Finally
the nature of the distribution needs to be determined. Using the definition of
the decomposition of the action we note that:

S(akUx, Ǔx) = −
β

N
Re Tr(akUxSx) + Š(Ǔx)

= − β
N

Re Tr(αkρk) + · · · (5.52)

where the terms contained in the "· · · " are all independent of αk and
the terms ρk represents the significant values of UxSx that coincide with the
positions of the significant values of ak. Furthermore Sx is once again the
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sum of the staples. As previously, by expanding the values of αk and ρk as
sums of Pauli matrices

αk ≡ αk01 +
3∑
r=1

iσrαkr ρk ≡ ρk01−
3∑
r=1

iσrρkr (5.53)

the term of the action dependent on αk may be equivalently represented as

β

N
Re Tr(αkρk) =

2β
N

3∑
r=0

αkrRe(ρkr) (5.54)

Therefore the probability distribution in equation 5.48 is given by

dP (αk) ∝ d4αkδ

 3∑
r=0

αkr − 1
 exp

2β
N

3∑
r=0

αkrRe(ρkr)

 (5.55)

This distribution is equivalent to the distribution in equation 5.42 for the
SU(2) heatbath. As such all values of αk may be drawn using the same
algorithm discussed in the previous section.

5.2 Overrelaxation
Overrelaxation algorithms for use in lattice field theory were first developed
by Stephen Adler in the early 1980’s [30]. These algorithms have consistently
shown to decorrelate configurations significantly faster than pure heatbath
methods. An overrelaxation algorithm transforms the configuration state of a
single link by geometrically flipping its value around some global minimum.
The overrelaxation algorithms are defined by a single parameter ω known as
the overrelaxation parameter, which may take values in a range ω ∈ [0, 2]. A
parameter ω = 0 results in no change to the system, while a parameter of
ω = 1 maps the configuration state directly to the global minimum, which is
functionally identical to the heatbath algorithm. Pure overrelaxation schemes
for updating links are not used commonly. In practice overrelaxation is used
in conjunction with the heatbath algorithm to decorrelate configurations. In
these cases a parameter of ω = 2 is most commonly used and is referred to
as the microcanonical limit. At this limit the ultraviolet modes of the system
no longer evolve and the local action remains constant, but the individual
links are changed. This allows for more rapid decorrelation of heatbath
configurations.

The overrelaxation traditionally relied on actions that were multiquadratic,
which by definition requires the action of a single link Ux to be able to be
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decomposed into the form

S[Ux, Ǔx] = a(Ux −U0x)
2 + c (5.56)

in which a, U0x, and c are all functions of Ǔx. The overrelaxed update
step is then given by

U ′x = ωU0x + (1− ω)Ux + ω(2− ω)a−1/2η (5.57)

which may be shown to satisfy the condition of detailed balance, and therefore
functions as an extension to the heatbath algorithm. In the equation above
η is a real number drawn from unit Gaussian noise, and is optional. As
previously mentioned, setting ω = 1 returns the system to the heatbath
algorithm in which U0x is the new link parameter discussed in the previous
section. Note that setting ω = 2 the new action for a single link becomes

S[Ux, Ǔx] = a(−Ux + U0x)
2 + c (5.58)

In effect the links have changed but the local action remains constant.
In the case of SU(2) a simple overrelaxation algorithm was developed by

Brown and Woch [29] in which the relaxation parameter is set equal to ω = 2.
The authors noted that the following new update to a link Ux satisfies the
requirements

Ux → U ′x = V †U †xV
† (5.59)

provided that that the gauge group element V is chosen to ensure that the
action remains invariant. Let Sx be the sum of the staples of the link Ux
(for a definition see the section 5.1). In the case of SU(2), the matrix Sx
is proportional to the a group matrix. By defining V = Sx/a in which
a =

√
det{Sx} the matrix V is then normalized and unitary. As such the

new action which is proportional to the term tr[U ′xSx] may be shown to be
invariant:

Tr
[
U ′xSx

]
= Tr

[
V †U †xV

†Sx
]
= aTr

[
V †U †x

]
= Tr

[
S†xU

†
x

]
= Tr[USx] (5.60)

where the last step depends upon the reality of the trace of SU(2) matrices.
This algorithm may be implemented in SU(N) by applying this mi-

crocanonical overrelaxation to all of the SU(2) subgroups updated by the
psuedo-heatbath algorithm.

Other overrelaxation algorithms exist that are specific to SU(3) such as
the one by Pater [31], or one by Petronzio and Vicari [32]. Furthermore,
several SU(N) heatbath algorithms have been proposed such as the ones by
Creutz [33] and one by de Forcrand and Jahn [34].
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5.3 Multihit
The multihit algorithm was developed by Parisi, Petronzio, and Rapuanso in
1983 [35], in response to the often large statistical errors in lattice measure-
ments. The fundamental question that was asked was whether it was possible,
when measuring the expected value of an operator A, to instead measure
another operator B, such that 〈A〉 = 〈B〉, however such that the 〈B2〉 � 〈A2〉.
A measurement of this alternative operator would have a significantly smaller
variance, and subsquently smaller statistical error in its measurement.

It was determined that in measuring the value of a single link Ux it was
possible to replace the link with its multihit equivalent link Ux defined as by

Ux =

∫
DU exp{(β/N)Re Tr(UxSx)}Ux∫
DU exp{(β/N)Re Tr(UxSx)}

(5.61)

In which Sx is once again the sum of the staples corresponding to the link Ux.
The multihit link Ux is an improved estimator of the measured value. It may
be noted that this equation is very similar in form to the single link integral
with an external source which has been studied extensively, especially in the
large N limit [36, 37, 38, 39, 40]. In the case of SU(2) the value of Ux can
be calculated in a close analytical form and may be shown to be

Ux =
I2(2βK)

I1(2βK)
KS−1

x (5.62)

In which K = | detSx|1/2 and I2, I1 are modified Bessel functions of the
second and first kind, respectively. In the case that the links are in the adjoint,
as opposed to the fundamental representation, alternative expressions exist
[41]. In SU(3) the integral may be computed numerically through a method
developed by de Forcrand and Roiesnel [42], and requires the measure of a
contour integral. For SU(N) where N > 3 no convenient methods exists
to determine a multihit link and instead the average must be computed be
taking the average of M heatbath updates of the link. Note that the heatbath
algorithm depends on the Sx of the link, all links will be drawn from the
same statistical distribution.

Operators that consist of a number of links may have a subset of their
links replaced by their corresponding multihit equivalents while ensuring that

〈A(U1,U2, . . . Un)〉 = 〈A(U1,U2, . . . ,U l,Ul+1, . . . Un)〉 (5.63)

However a condition must be placed that no two links that share a plaquette
may both be replaced by their multihit counterpart. For the standard pla-
quette this implies that only a single link may be replaced by its multihit
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Figure 5.2: The various options for replacing links in the 2x2 Wilson loop
with multihit links. Dashed lines represent links replaced by multihit links.

counterpart [43]. For 2× 2 plaquettes a number of configuration states exist,
see figure 5.2. For the measurement of a operator with multiple multihit
configurations a single option may be chosen or an average options may be
chosen. The average will most likely produce better results but requires more
computational time.

5.4 Multilevel
The multilevel algorithm was first developed by Lüscher and Weisz [44] as a
technique for variance reduction on the lattice. It was first tested on Polyakov
loops (see of example [45]) but then expanded to two-point functions, for
results see [46]. Similarly to the multi-hit algorithm it involves taking the
average to reduce the variance, however the multilevel algorithm operates on
time-slices and not individual operators.

The multilevel algorithm is based on locality. To describe this we follow
an argument given by Meyer [13]. We denote a particular configuration with
C. On this configuration we define a number of mutually disjoint subsets
denoted A,X , and Y, with supports ΩA, ΩX and ΩY , respectively on the
space-time manifoldM. We further suppose that for any continuous path
γ : I →M which joins Ωx to ΩY the path passes through ΩA.

Then if we have a theory with a probability distribution p(C) it is defined
to be local if functionals pA and p̃A exist such that:

p(X ,Y) =
∑
A
p(A)pA(X )p̃A(Y) (5.64)

Equivalently, this may be stated as the fact that X and Y only affect each other
through A. Meyer [13] points out that this condition is true for continuum
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Euclidean field theories, provided that Lagrangian only contains a finite
number of derivatives. Furthermore, this notion may be extended onto the
lattice, however a suitable defintion of continuity must be defined. The Wilson
action, used in this thesis, is local however the regions ΩX and ΩY must be
separated by more than one single lattice spacing.

The correlator of operators that are functionals of the subsets X and Y,
denoted by Ox and Oy respectively, may therefore be expressed as

〈OxOy〉 =
∑
C
OxOyp(C) =

∑
A
〈Ox〉A〈Oy〉A (5.65)

in which

〈Ox〉A =
∑
X
pA(X )Ox(X ) (5.66)

〈Oy〉A =
∑
Y
p̃A(Y)Oy(Y) (5.67)

in essence, they are the averages of the operator Oi with A being fixed.
This decomposition may be applied in an iterative manner. By decom-

posing 〈Oi〉A into the averages of smaller subspaces, the correlation function
becomes recursively nested. For the three-levels equation 5.65 takes the form

〈OxOy〉 =
∑
A
×
∑
A1

pA(A1)
∑
A2

pA1(A2)〈Ox〉A2× (5.68)
∑
Ã1

p̃A(Ã1)
∑
Ã2

p̃Ã1
(Ã2)〈Oy〉Ã2

(5.69)

As such the multilevel algorithm involves the choosing of regions A, fixing
them in place and then updating and measuring on the regions X and Y . In
practice this is completed by choosing a set of time slices to be A and then
to measure the operators in the regions of the lattice separated by these time
slices. These measured time-slices are given a width of ∆ and are updated a
total of n times. If we update the boundary condition Nb times and measure
the operators n times between each update we perform Nbcn measurements.
However due to the fact that the sums in equation 5.65 are factorized, this is
equivalent to having performing Nbcn2 measurements.

To obtain the result of Nbcn2 some conditions must be met. First the
measurements must be independent. Secondly, the fluctuation inside of Ωx

and Ωy must have significantly more influence than the fluctuations on the
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boundary Ωa. And thirdly, the small volume and boundary conditions must
not result in a phase transition. Provided that these conditions we are able to
half the variance by doubling n, unlike ordinary variance reduction through
Monte Carlo simulations which variance decreases as 1√

n
.

5.5 Variational Method
The variational method is used to find glueball state operators that better
overlap with physical glueball states. It completes this task by constructing
linear combinations of Wilson loop operators that measure the same glueball.
The variational method may also be used to measure the excited states of
glueballs, such as for example the 0++∗ glueball. Consider a set of operators
that all measure the same glueball state, represented by O1,O2, . . . ,On. We
then measure the cross correlations and store the values in a correlation
matrix

Cij(t) = 〈Ôi(t)Ôj(0)〉 =
T−1∑
τ=0
〈Ôi(t+ τ )Ôj(τ )〉 (5.70)

In which the ˆ symbol is used to represent a vacuum subtracted operator
Ô = O− 〈O〉. For any value of t ≥ 0 the general form of Cij is given by [47]

Cij(t) =
∞∑
α=1

vα∗i vαj e
−tEα (5.71)

in which
vαj = 〈α| Oj(0) |0〉 Ĥ |α〉 = Eα |α〉 (5.72)

Where Ĥ is the Hamiltonian of the theory, (see also section 4). Lüscher
and Wolff [47] were able to prove that for every t ≥ 0, and letting λα(t)
be the eigenvalue of the correlation matrix C(t) with ordering such that
λ1 ≥ λ2 ≥ . . . ≥ λr, then for all α = 1, 2, . . . ,A we have

λα(t) =
t→∞

cαe
−tEα

[
1 +O(e−t∆Eα)

]
(5.73)

In which cα > 0 is a constant and ∆Eα is the difference between Eα and
another Eβ . The mass, equivalent to the lowest lying energy state, could then
be extracted by taking the ratio of the eigenvalues. Unfortunately, in this
case the value of C(t) at large t cannot be determined with a high degree
of accuracy. This results in that the error term in equation 5.73 cannot be
guaranteed to be negligible.

48



Instead of directly attempting to determine the eigenvalues Lüscher and
Wolff proposed casting the problem into a generalized eigenvalue problem:

Cij(t)v = λ(t)Cij(t0)v (5.74)

in which v is the eigenvector, and λ(t) is the corresponding eigenvalue, t0 is
fixed, small and usually taken to be 0. The authors similarly showed that
in this case all λ still satisfy equation 5.73. However in this formulation
the constant terms cα are different and are expected to take a value around
cα ' et0Eα , while other terms are suppressed. As such this allows for accurate
determination of the λ values even at large t. In the majority of cases the
value of t used in 5.74 t = 1.

The generalized eigenvalue decomposition also allows the creation of a
composite operator that more closely overlaps with the physical glueball
states. By noting that the smallest eigenvalue, λ0 corresponds to the lowest
mass state, the corresponding eigenvector v(0) may be used to construct a
new operator P =

∑
i v

(0)
i Oi such that the correlator

〈P̂(t)P̂(0)〉 (5.75)

may be used to more accurately determine the mass of the glueball state. The
second lowest eigenvalue may be used to determine the first exited state of the
corresponding glueball. Subsequent eigenvalues may be used to approximate
more excited states, however the signal to noise ratio rapidly deteriorates.

5.6 Jackknife
Jackknife analysis is a method of producing estimators for secondary quantities
that more reliably give estimates of the error [15]. Secondary quantities are
distinct from primary quantities which may be directly computed as averages,
secondary quantities are functions of averages. The correlator is a common
secondary quantity.

Jackknife resampling functions similarly to statistical bootstrapping tech-
niques which are generally used for small sized samples. Jackknife resampling
is more computationally efficient at large scales due to being a linear approxi-
mation of bootstrap.

Consider a set of measured values A1,A2, . . . ,An and the primary quantity
the average of this collection.

A =
1
N

N∑
n=1

An (5.76)
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Then a the secondary quantity y is best estimated by y = y(A). The jacknife
average and variance of the sample gives a more stable estimator of y. The
jacknife average is computed by creating a set of averages of the total set of
{An} with a single element removed.

A(J)s ≡
1

N − 1
∑
r 6=s

Ar (5.77)

The values of the secondary quantity y(J)s = y(A(J)s) are referred to as
jacknife estimators with a corresponding average

y(J) ≡
1
N

N∑
s=1

y(J)s (5.78)

with jacknife variance

σ2
(J)y ≡

N − 1
N

N∑
s

(
y(J)s − y(J)

)2
(5.79)

One may note that for primary quantities the jacknife variance and the
simple variance are equivalent. However for secondary quantities the variance
is often more reliable, the error may then be reported as y = y± σ(J)y.

5.7 Code Architecture
The simulation code was first produced by Jelle Bor and Piter Annema.
It was written in python 3.7 using of the numpy libraries for the required
matrix manipulations. Due to problems of efficiency and paralellization the
code was reimplemented into C and additional features were added by the
author. For parallelization OpenMP3 was used. Additional routines for matrix
manipulations were adapted from the BLAS4, LAPACK5, and EISPACK6

fortran routines.
The code architecture is as follows. The lattice itself is stored as an

R×R×R× T × 4×N2 complex double array. In which R and T are the
number of spatial and temporal points along a particular axes, each point
has 4 associated links, and each link is a complex N ×N matrix. The lattice
may be either randomly initialized, a hot start, or initialized with all matrices

3https://www.openmp.org/
4http://www.netlib.org/blas/
5http://www.netlib.org/lapack/
6http://www.netlib.org/eispack/
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being the identity, a cold start. Furthermore when initializing the lattice a
value for β must be given as well as a number of booleans that determine,
what method for updating links is used (in this thesis only the heatbath),
whether or not overrelaxation is used, and whether or not the code should
be run in parallel. Furthermore additional parameters are used to determine
the number of thermalization steps ntherm, the number of configurations
that should be computed nconf and the number of sweeps that should be
completed between each configuration ncorr.

The lattice is then updated using the specified updating procedure. First
the ntherm thermalization steps are completed, and then nconf configurations
are generated with ncorr sweeps in between. Each newly generated configu-
ration is saved as a binary file to be read at later for analysis. Additionally,
such a saved lattice may be read again at any point and more updates can be
generated by using it as a seed. This allows the program to be cancelled and
restarted from same point later.

Once the lattices have been generated the desired properties may be
measured. First the operators to be measured must be specified by the user
by means of a prototype Wilson loop. In this context prototype will mean any
one of the spatial configurations of the Wilsoon loop. Secondarily the user
must specify how the various spatial orientation must be summed together
as this linear combination will determine which operator is measured (see
section 4.3). Finally the desired T and C parity of the operator must be
specified.

One the operators have been determined the measurement may begin.
The user specifies which directory holds the saved lattices and over what range
they wish to measure (i.e. from lattice 10 to 99). The method of analysis must
be chosen, for example, measuring the correlator (with or without multihit),
measuring the correlator using the multilevel algorithm, using the variational
method, measuring the lattice spacing, etc. The operators are provided to
the function as well as any other parameters that the measurement technique
requires (e.g. n and ∆ parameters in multilevel). The results are saved in a
text file specified by the user.

Final processing of the measured data, including jackknife analysis, was
completed using python. The numpy7 library was used for matrix manipula-
tion, scipy8 was used for curve fitting, and matplotlib9 was used for generating
the graphs.

7https://numpy.org/
8https://www.scipy.org/
9https://matplotlib.org/
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6 Results and Discussion
A number of simulations were run to compare various methods of error
reduction. The focus of these simulations was on SU(2), with variety of β
values to allow for continuum extrapolation. For this purpose simulations
were run on 123 × 18 lattices for β values of 1.8, 2.0,and 2.2. The Psuedo-
Heatbath method was used to generate individual configuration states with
10 sweeps and overrelaxation steps between each measurement. Furthermore
all configurations were began from a cold initial state (ie. all links are set
equal to identity matrices) and were thermalized with 300 sweeps, to allow
the value of the average plaquette to settle.

6.1 Setting the scale
Before the values of operators can be measured we must first set the scale
of the lattice. This allows us to convert glueball masses as measured on the
lattice into physical units. We do this by determining the value of the lattice
spacing a. The phsyical value of a is depended upon the β value of the lattice.
We will set the scale by measuring the static quark potential and relating it
to the hadronic scale parameter r0.

r0 is defined by the force between static quarks. It is given by:

r2dV (~r)

d~r

∣∣∣∣∣
r=r0

= 1.65 (6.1)

in which r is the distance between quarks and V (r) is the static quark
potential. The value of r0 has been previously determined to be approximately
r0 ≈ 0.5fm [48]. As such if we measure the static quark potential on the
lattice we may use the hardronic scale parameter to determine a.

The expectation value of rectangular Wilson loops W (~r, t), with lengths
r and t on the lattice is well known to have the form

W (~r, t) = Z(~r) exp{−tV (~r)}+ · · · (6.2)

In which Z(~r) is some function and the · · · represent excited-state contribu-
tions. We measured the value of the Wilson loops from r = 2− 10 and with
t = 2− 10 and extracted V (r) using a χ2 least squares fitting technique.

The static quark potential was fitted with the model

V (~r) = V0 + σr+
ec
r

(6.3)
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β a/r0 a(fm)
1.8 0.387(4) 0.194(2)
2.0 0.353(3) 0.176(2)
2.2 0.304(2) 0.152(1)

Table 6.1: The lattice spacing at different values of β determine by r0 ≈ 0.5

All three parameters V0, σ and ec were determined using another χ2 least
squares fitting method. Finally to determine the lattice spacing we make use
of the relation (determined from equation 6.1):

a

r0
=

√
σ

1.65 + ec
(6.4)

The values of the lattice spacing at the values of β measured may be found
in table 6.1.

6.2 Glueball mass estimates
As noted in the previous section, once the configurations states have been
generated, operators must be measured on the lattice to determine glueball
masses. In this thesis we focus on the A++

1 glueball (0++ in the continuum)
as it possess the lowest lying energy state. For multihit and multilevel two
different operators for the A+

1 + operator were measured. The first was the
plaquette, the 1x1 planar rectangular Wilson loop. The A++

1 operator is
the linear combination of the three spatial configurations of the plaquette,
(xy-plane, xz-plane, yz-plane). The second operator measured is the 2x2
rectangular spatial Wilson loop. Similarly to the plaquette the A++

1 operator
is measured by the linear combination of the values of this loops 3 spatial
configurations. With respect to the multihit, in the plaquette only one link
may be replaced by its multihit counterpart, in the 2x2 loop 4 of the 8 links
may be replaced, as shown in figure 5.2. The multilevel was run with the
time slice thickness parameter ∆ set equal to 4, and the number of sublattice
updates n equal to 10.

The variational method generates an operator with greater overlap with
a physical glueball state by a linear combination of other operators. As
such when measuring the A++

1 state using the variational method we choose
3 operators to be combined: the plaquette (discussed above), the double
plaquette, and the twisted plaquette (see figure 4.2, or B.4 for spatial orien-
tations). Both the double and twisted plaquette are Wilson loops of length
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6, the double plaquette has 6 spatial orientations, and the twisted plaquette
has 4. While it is possible to combine the multihit and multilevel methods
with the variational method, this was not completed by the author. As the
variational method for n operators requires the computation of n2 correlators,
the addition of multihit and multilevel in the measurement of these operators
was deemed too computationally expensive.

The mass was determined from the values of the correlators by means of
the relation:

〈Ôt+t0Ôt0〉 ' C(e−mt + e−m(T−t)) (6.5)

as discussed in the previous section. We may not that by taking the logarithm
of the correlator and fitting a linear relationship for the first few values of t
we may approximate the mass by the slope of the line. Furthermore when
taking the logarithm, jacknife averages were used for more stable estimates of
error.

It must be noted that in the following results there are some problem
with the vacuum expectation value (VEV) subtraction. In the case of the
multihit results, multihit techniques were not applied to the calculation of
the VEV. In the case of the multilevel the VEV must be calculated on each
individual subset of the lattice that is updated. In the present case the
vacuum expectation value for the operator is calculated at the beginning of
the measurement before the multilevel is applied. For the multihit, multilevel,
and variational method this has resulted in the bottom of the parabola of the
correlator measurement to be flattened. This further implies that the results
for the glueball masses should be treated with scepticism. Despite this the
results are still useful for determining the relative efficiency of the variance
reduction algorithms. For an example of how this parabola should appear see
image C.9 of some early results for the 2++ glueball. The 2++ glueball does
not have the same quantum numbers as the vacuum and as such the vacuum
expectation value does not have to be subtracted in this case. Note that in
this case only 20 measurements were collected and due to noise some of the
points are negative and not shown in the graph. Despite the lack of statistics
it is still illustrative.

We first report the results for the multihit tests. The correlator for the
plaquette may be seen in figure 6.1. The correlator value is displayed on a
logarithmic axis and is the average of 840 measurements. It may be noted
that the correlator takes the expected shape, that of a paraboloid with an
expected minimum value around t = 9 (half of the maximum value of T = 18).
The corresponding mass plot may be seen in figure 6.2, in which the first 3,
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4, and 5 points have been used to determine the mass. Not that the mass is
given by the negative of the slope. The value of the mass that is chosen is
the one with the smallest percentage error.

In figure 6.3 we see the correlator measure of the 2x2 Wilson loop operator
on the same 123 × 18 lattice at the same β value with 703 measurements. Its
mass plot may be found in figure 6.4. We then show the results on the same
lattice for the multihit + multilevel for the plaquette in figures 6.5 and 6.6
consisting of 824 measurements, and for the multihit + multilevel for the 2x2
Wilson loop in figures 6.7 and 6.8 consisting of 671 measurements.

Figure 6.1: The correlation for the plaquette as a function of time, in SU(2)
with lattice size 18× 123, β = 2.0, 840 measurements, with multihit applied

Similar results for β = 1.8, 2.2 may be found in appendix C. What may
be noted is that the values of the mass predicted by the 2x2 Wilson loops
is much closer to the value of A++

1 operator found in previous studies such
as 0.93± 0.3 [49] (at the continuum limit). This results may be explained
by the fact that the plaquette has high ultra-violet divergences which could
affect the measurement significantly. Despite this fact for both the plaquette
as well as the 2x2 Wilson loop the multihit + multilevel combination resulted
in smaller uncertainties than just the multihit.

The variational method was completed with the parameters specified
above and the results for the correlator and the mass plot may be found in
figures 6.9 and 6.10. The total number of measurements that was completed
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Figure 6.2: The mass plot for the A++
1 glueball as determined from the

plaquette operator. Lattice size is 123× 18, β = 2.0, 840 measurements, with
mulithit. The three lines correspond to determining the mass from the first 3,
4, and 5 data points. mass = −slope

was 190. The reason for the significantly smaller sample size is due to
the time complexity of the variational method. As the variational method
with three operators, as in the present case, requires the computation of 9
correlators, the 190 measurements produced here is the equivalent of roughly
1700 ordinary correlator (without multihit or multilevel) measurements. The
masses determined by the mass plot are accurate with respect to previous
literature however the precision is lower than that of the mulithit + multilevel
method, although this might simply be due to the limited statistics. As the
variational method is more computationally expensive than the other methods
the author recommends the use of those methods. This is further supported
by the fact that the multilevel and multihit methods may be improved in
precision by increasing the number of sublattice or one link updates. Every
increase in sublattice or one link update scales the computational time linearly,
ie if the number of updades is given by a, the computational time scales
O(a). In contrast increasing the precision of the variational method requires
an increase in the number of opertators n which scales computational time
by O(n2). Provided that the multihit + multilevel methods measure the
correlators of operators that are not highly subject to ultraviolet divergences
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Figure 6.3: The correlation for the 2x2 Wilson loop as a function of time, in
SU(2) with lattice size 18× 123, β = 2.0, 703 measurements, with multihit
applied

(such as the plaquette) their accuracy and precision are greater than the
variational method, given a similar amount of computational time.

In large N measurements, such as those of SU(8), for which this thesis
is a prelimenary, the situation might be different. The multihit in SU(N)
with N > 2 requires a single link to be updated a number nhit times to
create a multihit link as an average. Furthermore, the multilevel requires the
update of entire time slices of the lattice to produce averages. As both of
these updating steps scale O(N2). The variational method might be more
computationally efficient at larger N values. Other techniques not discussed
in this thesis, such as smearing and blocking of links, might also be more
effective in large-N contexts.

A continuum extrapolation was completed to approximate the value of
the A++

1 or equivalently the 0++ glueball at a lattice spacing of 0, using the
multihit and multihit+multilevel results. The results for the multihit only
may be found in figure 6.11,and for both multihit and multilevel in figure 6.12.
Both graphs show the masses extrapolated to the continuum for the masses
calculated with the first 3, 4, and 5 data points. The results for the glueball
masses at the continuum may be found in table 6.2. May be seen from the
figures the multihit method more accurately predicted the contiuum mass
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Figure 6.4: The mass plot for the A++
1 glueball as determined from the 2x2

Wilson loop operator. Lattice size is 123 × 18, β = 2.0, 703 measurements,
with mulithit. The three lines correspond to determining the mass from the
first 3, 4, and 5 data points. mass = −slope

of the 0++ glueball which has been previously estimated in the literature
to be 0.93± 0.3 [49]. The multhit+multilevel method was more accurate
in determining the glueball mass at any particular value of β, however the
continuum extrapolation resulted in incorrect results. This inconsistency is
most likely due to limited statistics. If glueball masses were determined using
the multihit+multilevel method on more values of β with more measurements
this error would most likely correct itself.

This thesis only performed measurements on 123 × 18 lattices. As such
it is difficult to determine the scope of the finite size effects of the lattice
on the measurements. Previous papers such as those by Langfeld [50] have
shown that finite size effects are still present on lattices of 164, and therefore
are most likely present in these results. However due to the relatively small
statistics that were measured in this thesis it is possible that the remaining
statistical noise is larger than the finite size effects. More measurements,
including more measurements on lattices of different sizes, would have to be
completed.
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Figure 6.5: The correlation for the plaquette as a function of time, in SU(2)
with lattice size 18× 123, β = 2.0, 824 measurements with multihit and
multilevel applied

Figure 6.6: The mass plot for the A++
1 glueball as determined from the

plaquette operator. Lattice size is 123× 18, β = 2.0, 824 measurements, with
mulithit and multilevel. The three lines correspond to determining the mass
from the first 3, 4, and 5 data points. mass = −slope
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Figure 6.7: The correlation for the 2x2 Wilson loop as a function of time, in
SU(2) with lattice size 18× 123, β = 2.0, 671 measurements, with multihit
and multilevel applied

Figure 6.8: The mass plot for the A++
1 glueball as determined from the 2x2

Wilson loop operator. Lattice size is 123 × 18, β = 2.0, 671 measurements,
with mulithit and multilevel. The three lines correspond to determining the
mass from the first 3, 4, and 5 data points. mass = −slope
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Figure 6.9: The correlation of the combined operator of the plaquette, double
plaquette, and twisted plaquette (see figure 4.2) through the variational
method as a function of time to measure the A++

1 glueball. Lattice size
123 × 18, with β = 2.0

Multihit 3 points 1.12
Multihit 4 points 1.26
Multihit 5 points 1.09
Multihit average 1.2± 0.1

Multihit + Multilevel 3 points 0.55
Multihit + Multilevel 4 points 0.78
Multihit + Multilevel 5 points 0.68
Multihit + Multilevel average 0.7± 0.2

Table 6.2: Value of the 0++ glueball mass at lattice spacing a = 0 determined
via continuum extrapolation. Values determined from the first 3, 4, and 5
data points, and averaged.
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Figure 6.10: The mass plot for the A++
1 glueball as determined from the com-

bined operator of the plaquette, double plaquette, and the twisted plaquette
(see figure 4.2) as completed through the variational method. Lattice size is
123 × 18, β = 2.0. The three lines correspond to determining the mass from
the first 3, 4, and 5 data points. mass = −slope

Figure 6.11: A continuum extrapolation for the glueball mass based on the
the multihit results for beta 1.8, 2.0 and 2.2. The mass determined from the
first three, four, and five data points in the their respective colors.
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Figure 6.12: A continuum extrapolation for the glueball mass based on the the
multihit+multilevel results for beta 1.8, 2.0 and 2.2. The mass determined
from the first three, four, and five data points in the their respective colors.
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7 Conclusion
Quantum chromodynamics as a theory to describe the strong force has
existed since the early 1970’s. The formulation of this theory on a Euclidean
spacetime lattice, has allowed the study a host of properties predicted by
QCD, including the hadron spectrum, decay constants, quark masses, form
factors, and of course the glueball spectrum. Glueballs themselves being
the resultant particles due to the self interactions of gluons. The rise of
computing power, exemplified most prominently by Moore’s law, but also by
the continuous improvements in parallelization techniques, has meant that
the study of lattice-QCD, which is uniquely representable in programmatic
structures, has never been more accessible. The determination of glueball
properties, including their masses, that are currently being completed on
supercomputers are producing statistics previously unheard of. During this
period of activity a number of new and old techniques for the generation of
lattice states, and the reduction of error, have been brought to the forefront,
some of which were discussed in this thesis.

We compared the effects of the multihit method, the multilevel method,
and the variational method, for their ability to produce accurate glueball
mass data. The multihit method involves replacing operators with alternative
operators with identical mean but lower variance. The mulitilevel method
similarly replaces correlators with alternative operators with similar means and
lower variance. Finally the variational method produces a linear combination
of operators with greater overlap with glueball base states. The variational
method was traditionally used, often in conjunction with smearing and
blocking of operators. However, in recent years the multihit and multilevel
methods have grown in prominence.

Our results show that, in the particular cases tested, the multihit and
multilevel methods in separate and in conjunction produce more accurate
and more precise statistics for glueball masses than that of the variational
method. We compared the multihit + multilevel in conjunction for both 1× 1
plaquette, and 2× 2 Wilson loops, against the variational method applied
to three operators, the plaquette, double plaquette, and twisted plaquette.
All tests were completed in SU(2). The multihit and mulithit + multilevel
techniques did not produce accurate results for the plaqutte. It has been
observed in other papers [46], that the plaquette is susceptible to ultraviolet
divergences, and therefore limits the effectivness of methods such as the
multilevel. The use of the 2× 2 Wilson loops gave more accurate results for
both the multihit and the multihit+multilevel, with the latter being more
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precise. The variational method did give accurate predictions for the lowest
lying glueball mass but was less precise than other methods and required
greater computing time.

Many possibilities were not tested in this thesis. The multihit technique
is different in the special case of SU(2) as it directly solvable. For other
SU(N) with N > 2, the multihit operator must instead be approximated
by the average of m links generated through the psuedo-heatbath method.
How the accuracy scales with m has not been determined. With regards to
the multilevel, the algorithm efficacy is determined by two parameters. The
number of sublattice updates, and the size of the time slice. The parameters
were chosen to be 10 and 4 in this thesis by testing and comparing results
and considering the available computational time. Previous works have had
the number of sublattice updates as high as 25, requiring significantly more
computing time for additional accuracy. For both the multihit and the
multilevel accuracy may be improved by choosing alternative operators. In
the present case we tested the plaquette and the 2× 2 Wilson loop as both
are simple operators with only 3 spatial orientations. The double plaquette
of length 6 has 8 spatial orientations. While more complicated Wilson loops,
even those of only length 8, may have well over 20 spatial orientations. For
states such as the 0++ state all of these configurations must be measured.
As such alternative choice of operator may be effective but could require
significantly more computational time.

With regards to the variational method, many potential improvements
exist. Firstly the introduction of more operators, unfortunately computational
time scales quadratically with the number of operators. Secondarily would
be the choice of operators with higher overlap with the physical ground state
of the glueball. As previously mentioned this might be effective but must be
compared to the increase in computational time resultant of more complicated
operators. Furthermore, the variational method was not compared to the
multihit and multilevel at larger N . The multihit and multilevel algorithms
both require the updating of links to produce resutls. As the updating of links
scales quadratically with N in a large N situation the variational method may
become more computationally efficient compared. Finally the usage of the
smearing and blocking of operators was note examined in this thesis. These
technique replace links with the linear combination of itself and its neighbors,
potentially offering greater improvement.

Besides serving as an evaluation of various statistical techniques to reduce
the variance of operators measured on the lattice, this thesis also serves as a
validation of lattice QCD simulation software written in part by the author.
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In the long term the information gathered concerning the effectiveness of
these various techniques will be used to produce large scale SU(8) lattice
simulations to measure the mass of the 0++ and 2++ glueballs. This research
is being completed firstly, to test the accuracy of the large N solution of QCD
given by Bochicchio[11]. As N increases the difference in the values of glueball
properties between N and N − 1 becomes smaller, SU(8) is a reasonable
approximation of the limit N →∞. Secondly the previous results for SU(8)
simulations produced by Lucini [12] and Meyer [13] contradict one another,
this research will attempt to resolve this contradiction, and determine the
true glueball spectrum for SU(8).
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A Multiplicity of Irreducible Representations
of the Cubic Group in Wilson Loop Oper-
ators up to Length 8

OP d A++
1 A++

2 E++ T++
1 T++

2 A−+1 A−+2 E−+ T−+1 T−+2
1 6 1 0 1 0 0 0 0 0 0 0
2 24 1 0 1 0 1 0 0 0 1 1
3 24 1 0 1 0 1 0 0 0 1 1
4 96 1 1 2 3 3 1 1 2 3 3
5 48 1 0 1 1 2 1 0 1 1 2
6 12 1 1 2 0 0 0 0 0 0 0
7 48 1 1 2 1 1 0 0 0 2 2
8 24 1 1 2 1 1 0 0 0 0 0
9 12 1 0 1 0 0 0 0 0 0 1
10 24 1 0 1 1 2 0 0 0 0 0
11 6 1 0 1 0 0 0 0 0 0 0
12 12 1 1 2 0 0 0 0 0 0 0
13 12 1 0 1 0 1 0 0 0 0 0
14 48 1 0 1 1 2 1 0 1 1 2
15 12 1 0 1 0 1 0 0 0 0 0
16 48 1 0 1 1 2 1 0 1 1 2
17 24 1 0 1 0 1 0 0 0 1 1
18 96 1 1 2 3 3 1 1 2 3 3

Table A.1: Multiplicities of irreducible representations of the cubic group Oh
with C = 1 charge parity in the representationM or various operators of
length 8. Number of the operator corresponds to figure 4.2
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OP d A+−
1 A+−

2 E+− T+−
1 T+−

2 A−−1 A−−2 E−− T−−1 T−−2
1 6 0 0 0 1 0 0 0 0 0 0
2 24 0 0 0 1 1 1 0 1 0 1
3 24 0 1 1 1 0 0 0 0 1 1
4 96 1 1 2 3 3 1 1 2 3 3
5 48 0 1 1 2 1 0 1 1 2 1
6 12 0 0 0 1 2 0 0 0 0 0
7 48 0 0 0 2 2 1 1 2 1 1
8 24 0 0 0 2 0 0 0 0 0 0
9 12 0 0 0 1 0 0 1 1 0 0
10 24 0 1 1 2 1 0 0 0 0 0
11 6 0 0 0 1 0 0 0 0 0 0
12 12 0 0 0 0 0 0 0 0 1 1
13 12 0 0 0 0 0 0 0 0 1 1
14 48 0 1 1 2 1 0 1 1 2 1
15 12 0 1 1 1 0 0 0 0 0 0
16 48 1 0 1 1 2 1 0 1 1 2
17 24 0 0 0 1 1 0 1 1 1 0
18 96 1 1 2 3 3 1 1 2 3 3

Table A.2: Multiplicities of irreducible representations of the cubic group Oh
with C = 1 charge parity in the representationM or various operators of
length 8. Number of the operator corresponds to figure 4.2
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B Spatial Orientations and Constructable Wave-
functions of Additional Operators

Plaquette spatial orientations:

Figure B.1: The three spatial orientations of the plaquette.

Double plaqutte spatial orientations:

Figure B.2: The spatial orientations of the double plaquette.
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Bent plaquettes:
Spatial orientation:

Figure B.3: The spatial orientations of the bent plaquette.

Wavefunction composition table:

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12
A++

1 , A−−1 1 1 1 1 1 1 1 1 1 1 1 1
E++, E−− -1 1 0 -1 1 0 -1 1 0 -1 1 0

-1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2
T−+1 , T+−

1 -1 1 0 1 1 0 -1 -1 0 0 1 -1
0 -1 1 0 1 1 0 -1 -1 0 1 -1
1 0 -1 1 0 1 -1 0 -1 -1 0 1

T−+2 , T+−
2 1 1 0 -1 1 0 1 -1 0 -1 -1 0

0 1 1 0 -1 1 0 1 -1 0 -1 -1
1 0 1 1 0 -1 -1 0 1 -1 0 -1

T++
2 , T−−2 0 0 1 0 0 -1 0 0 -1 0 0 1

1 0 0 -1 0 0 -1 0 0 1 0 0
0 1 0 0 -1 0 0 -1 0 0 1 0

Table B.1: Wavefunctions for various glueball states that may be constructed
from the bent plaquette operator
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Twisted Plaquette:
Spatial orientations:

Figure B.4: The spatial orientations of the twisted plaquette.

Wavefunction composition table:

O1 O2 O3 O4
A++

1 , A+−
2 1 1 1 1

T++
2 , T+−

1 1 -1 1 -1
-1 1 1 -1
1 1 -1 -1

Table B.2: Wavefunctions for various glueball states that may be constructed
from the Twisted plaquette operator. For definition of Oi see figure X

C Glueball Correlators and Mass Estimates
for β = 1.8 and 2.2
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Multihit 2x2 loop β = 1.8

Figure C.1: The correlation for the 2x2 Wilson loop as a function of time, in
SU(2) with lattice size 18× 123, β = 1.8 with multihit applied

Figure C.2: The mass plot for the A++
1 glueball as determined from the 2x2

Wilson loop operator. Lattice size is 123 × 18, β = 1.8, with mulithit. The
three lines correspond to determining the mass from the first 3, 4, and 5 data
points. mass = −slope
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Multihit 2x2 loop β = 2.2

Figure C.3: The correlation for the 2x2 Wilson loop as a function of time, in
SU(2) with lattice size 18× 123, β = 2.2 with multihit applied

Figure C.4: The mass plot for the A++
1 glueball as determined from the 2x2

Wilson loop operator. Lattice size is 123 × 18, β = 2.2, with mulithit. The
three lines correspond to determining the mass from the first 3, 4, and 5 data
points. mass = −slope
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Multihit + Multilevel 2x2 loop β = 1.8

Figure C.5: The correlation for the 2x2 Wilson loop as a function of time, in
SU(2) with lattice size 18× 123, β = 1.8 with multihit and multilevel applied

Figure C.6: The mass plot for the A++
1 glueball as determined from the 2x2

Wilson loop operator. Lattice size is 123 × 18, β = 1.8, with mulithit and
multilevel. The three lines correspond to determining the mass from the first
3, 4, and 5 data points. mass = −slope
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Multihit + Multilevel 2x2 loop β = 2.2

Figure C.7: The correlation for the 2x2 Wilson loop as a function of time, in
SU(2) with lattice size 18× 123, β = 2.2 with multihit and multilevel applied

Figure C.8: The mass plot for the A++
1 glueball as determined from the 2x2

Wilson loop operator. Lattice size is 123 × 18, β = 2.2, with mulithit and
multilevel. The three lines correspond to determining the mass from the first
3, 4, and 5 data points. mass = −slope
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Figure C.9: The correlation for the E++ glueball as a function of time,
measured by the double plaquette see B.2 and 4.6, in SU(2) with lattice size
18× 123, β = 2.0, 20 measurements, with multihit and multilevel applied.
Missing points are negative due to lack of statistics and not shown.
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