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Due to the electrification of the transport sector, electric travel appears to become dom-

inant. Alongside this, the penetration of renewable energy sources (RESs) increases.

Smart charging addresses challenges resulting from both these trends. It reduces the

peak load demand of EVs and brings flexible stabilizing capacity to the grid. For smart

charging to be successful the participation of EV owners is required. However, the be-

havior of EV owners related to smart charging is neither well analyzed nor effectively

quantified. This work’s contributions include: (1) an analysis of survey results regarding

EV owners’ social behavior related to smart charging, (2) a proposal of a novice hier-

archic and dynamic smart charging framework in which social behavior is embedded,

(3) an expansion of this framework with wind power generation, and, (4) the simulation

results of the proposed model. The simulation results confirm that smart charging is

beneficial to the stability of the power grid. Furthermore, it shows that the willingness

of EV owners to follow a smart charging contract should be increased, in order to in-

crease the stabilizing capacity of EVs. Moreover, the survey results show that a financial

incentive is not necessarily a strong motivator to convince EV owners to participate in

smart charging. However, there is a correlation between the willingness of EV owners

to smart charge and their environmental self-identity. With this in mind it is proposed

that putting emphasis on the environmental benefits of smart charging will increase their

willingness to smart charge.
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Chapter 1

Introduction

In this chapter the optimality control and social behavior of electric vehicles with vehicle-

to-grid options is introduced. Furthermore, previous work on smart charging and behav-

ioral aspects of EV owners are reviewed. It will be shown that social factors for smart

charging are neglected. Moreover, the problem is analyzed in detail, where the smart

charging system and its stakeholders are determined.

This chapter consists out of 8 sections. First, the background of the problem is in-

troduced. Secondly, the problem context is given. Thirdly, the system containing the

problem is provided. In section 4 the stakeholders and their stakes in the system and

problem are discussed. Next, the problem is defined. In section 6 the research goal is

given. In section 7 the research questions are provided. Finally, the further outline of

the thesis is given.

1.1 Background

Worldwide governments aim at reducing greenhouse gas (GHG) emissions in order to

slow down the global climate change. The Paris Agreement signed by 196 countries in

2016 is evidence for this. This agreement aims at controlling the global temperature

increase below 2◦C. Each country must plan a long term program to lessen the global

warming.

As a result, governments plan to increase the penetration of renewable energy produc-

tion, such as wind power, solar power and hydropower. These Renewable Energy Sources

(RES) produce energy from sources that consistently replenish, without carbon dioxide

emission. The major drawback for most of these energy sources, in particular wind and

solar power, is their uncontrolled energy production. The power production of RES are

1
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dependent on weather conditions, such as wind and solar radiation. Which create a sur-

plus or shortage of power at different times. In contrast, energy generation from nuclear

plants or fossil fuel can be adjusted to provide the demand of the energy consumers.

Furthermore, the current power system is demand driven, i.e. energy is produced to

provide for the demand of consumers. The increasing penetration of RES challenges the

stability of the current energy grid. Thus, new control strategies are required to address

the problem of uncertain RES in power networks.

In Europe the transportation system is accounted for 28% of the total greenhouse gas

emissions. A solution for reducing these emissions is electrifying transportation system.

Thus, governments aim at increasing the number of plug-in electric vehicles (EVs) on the

road. These cars are fully electric powered and produce no CO2 emissions and are future

alternatives for internal combustion engine vehicles (ICEVs). Governments encourage

people to buy EVs via paying subsidies. For example the German government plans to

have 10 million EVs on the road by 2030 (The Local, 2020). Also, the Dutch government

plans to have 200,000 EVs on the road by 2020 and 1 million by 2025, where the first

target already has been met (Netherlands Enterprise Agency, 2020). Consequently, such

a fleet of EVs will have to be powered by the power grid. Electrifying the transportation

system will increase the power demand dramatically. Thus, the current uncontrolled

charging of EVs is untenable, as it would require the power capacity of the grid to

dramatically increase.

1.2 Problem context

The increase of the energy production from RES and the electrification of road transport

are methods that reduce greenhouse gas emissions. However, they bring some challenges

with them. RESs disrupt the stability of the power grid. Additionally, the increase of

EVs results in an increase in power demand. Consequently, this requires an increase

in power generation, which requires an increase of the capacity of the power grid. A

potential solution to these challenges is the smart charging of EVs. In contrast to the

regular uncontrolled charging, smart charging is a controlled way of charging an EV.

The power is not only provided to the vehicle, grid-to-vehicle (G2V), but also provided

back to the grid, vehicle-to-grid (V2G). This creates a demand-side flexibility. Ideally,

the EV’s battery is charged when load demand is low, while power generation is high

and the EV’s battery is discharged when load demand is high, while power generation is

low. Therefore, the smart charging of EVs can aid in stabilizing the system and lessen

the need for an increase of the maximum capacity of the power grid.
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Although smart charging can bring many benefits to the energy grid, EV owners should

give permission that their EV is used for smart charging. Smart charging has some

disadvantages for EV owners, such as a reduction of flexibility and degradation of the

EV’s battery. The participation of EV owners is crucial to the success of smart charging.

Thus, it is required to motivate the EV owners to participate in smart charging. EV

owners will be more willing to lend their car for smart charging if there is compensation

for their costs and incentives to participate. It can be expected that the more EVs are

available for smart charging, the more the grid can benefit and the less individual EVs

are burdened. So the availability of many EV’s for smart charging will be an important

factor for the success of smart charging.

As smart charging gained interested from 2002 onward quite some papers have done

research on smart charging (Mwasilu, Justo, Kim, Do, & Jung, 2014). The relevance of

deploying this technology started to appear from 2012, when the market of renewables

and EV batteries started to accelerate (Waldron, Rodrigues, Gillott, Naylor, & Shipman,

2019). Most of these works focus on the technical feasibility and the profitability of

smart charging (Sovacool & Hirsh, 2009). What has not been taken into account is the

willingness of EV owners to participate in smart charging, a determining factor for the

success of the smart charging contract.

Although this problem is global and relevant for many energy markets, this thesis con-

siders the Dutch power grid, since different countries have different electricity systems,

where stakeholders and dynamics between them, regulations and loads are different.

However, the results from this thesis can be generalized to other energy markets.

1.3 Literature Review

In this section the body of work related to smart charging and social factors of EV

owners is reviewed. Firstly, the EV penetration and it’s implications are discussed.

Then, a literature review of smart charging or V2G is introduced. Next, recent works

on the behavior of EV owners are introduced. Finally, the contributions of this work is

explained.

1.3.1 EV penetration and its implications

An EV is defined by the US department of energy as a vehicle that draws electricity

from a battery with a capacity of at least four kilowatt-hours and is capable of being

charged from an external source (U.S. Department of Energy, n.d.). The review of
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EVs components and technological challenges associated with its energy storage system

and power electronic devices are discussed in (Amjad, Neelakrishnan, & Rudramoorthy,

2010). Many challenges emerge when EVs plug into the electric power system since EV

charging imposes a significant load to the grid. A conceptual framework to successfully

integrate EVs into electric power systems is proposed by (Lopes, Soares, & Almeida,

2010). EV driving data is used to investigate the integration into the Danish power net-

work in (Wu et al., 2010). (Garcia-Valle & Lopes, 2012) investigates the EV integration

into modern power network extensively. Grid, economic and environmental impacts of

EV penetration are reviewed in (Richardson, 2013). A survey on grid impact and charg-

ing strategies is presented in (Green II, Wang, & Alam, 2011). A detailed review of the

Dutch electricity grid and its market is provided by (Van Tilborgh, 2018) and (Verbong

& Geels, 2007).

With an increasing penetration of EVs in the transport sector, a charging integration

strategy should be implemented. Keeping the current uncontrolled or passive charging

strategies can be detrimental to the electricity grid, since it the peak load is not con-

trolled. In order to control a large fleet of EVs, an intermediate organisation might be

needed. An aggregator can perform this function such that economical, and techno-

logical aspect of the EVs are taken into account. An investigation of the profitably of

vehicle-to-grid charging for an aggregator in the Dutch electricity market is performed

by (Van Tilborgh, 2018). A literature review on aggregators is presented in (Bessa &

Matos, 2012). In (Peng, Liu, & Jiang, 2012), economic dispatch strategies and risk

management of EVs are discussed. An analysis of pilot projects on smart grids and

aggregators is performed by (Niesten & Alkemade, 2016). Different approaches for inte-

gration of EVs in the power systems and smart grids are given in (Galus, Vayá, Krause,

& Andersson, 2013).

In (Garćıa-Villalobos et al., 2014) a comparison between different smart charging ap-

proaches is presented. Four different EV integration approaches or charging strategies

are given and their advantages and drawbacks are discussed. Firstly, Figure 1.1 shows

that the current uncontrolled approach would result in a peak power increase, associ-

ated with the penetration of EVs. Secondly, off-peak charging does not increase the peak

load and is easy to implement. However, we observe from Figure 1.1 that peak charging

may result in supply-demand imbalance because of the rapid power demand increased

by EV charging. Finally, Figure 1.1 gives two smart charging approaches; valley filling

and peak shaving. Peak shaving is considered more complex as it requires bi-directional

charging. For both approaches implementation is considered complex. The willingness

of EV owners is required in order to integrate the charging strategy. In Figure 1.1,

the peak shaving graph shows a reduction in peak load by using bi-directional charging

for EVs. Indeed, this could be achieved by charging EVs during off peak hours, at
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Figure 1.1: Advantages and drawbacks of the different EV integration approaches.
Adopted from (Garćıa-Villalobos et al., 2014)

night, providing electricity back to the grid and minimizing charging during peak hours,

when the electricity demand is high. Relating to this, RESs can charge the EVs when

uncontrolled electricity production is high and the demand is low.

1.3.2 Vehicle-to-grid

EVs can be plugged into the grid where the power flow can be bidirectional, i.e., the EV’s

battery can be charged and discharged. Indeed, the vehicle-to-grid (V2G) concept can

be a possibility, to provide power back to the grid. Also, V2G can be used for the control

and management of EV loads by the power system coordinator or the power aggregators

via the communication between the vehicles and power grid (Tan et al., 2016). In

contrast, in the literature unidirectional smart charging refers to smart charging without

V2G. Which already provides benefits compared to uncontrolled charging and is less

complex than bidirectional smart charging (Sortomme & El-Sharkawi, 2010). However,

we use the smart charging as the controlled bi-directional (V2G and G2V) charging

of an EV. In (Kempton & Tomić, 2005a) and (Kempton & Tomić, 2005b) the V2G

concept was introduced with its main objectives, stabilizing the grid and exploiting the

large-scale RESs. Further research on V2G relates to the following: the power system

(Ma, Houghton, Cruden, & Infield, 2012), emissions (Sioshansi & Denholm, 2009) and

related social issues (Sovacool & Hirsh, 2009). In (Sovacool & Hirsh, 2009), the benefits
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Benefits Drawbacks

Reducing power grid losses Battery degradation
Preventing power grid overloading Complex hardware infrastructure

Improving load profile High investment cost
Maintaining voltage level Social barriers

Renewable energy intermittent
Failure recovery

Maximization profit
Minimization emission

Table 1.1: The benefits and drawbacks of bidirectional V2G (Tan et al., 2016),
(Yilmaz & Krein, 2012), (Mullan et al., 2012)

and barriers for V2G transition are presented. The latter disputes the idea that the

only important challenges for the greater use of EVs and V2G systems are technical.

The paper assesses the social barriers facing this transition. Moreover, (Sioshansi &

Denholm, 2009) shows the potential of V2G for a significant reduction in GHG emissions

in comparison with internal combustion engine vehicles (ICEV). Moreover, (Ma et al.,

2012) shows the benefits of vehicle to grid for load balancing the energy and cost savings

through a model for an EV storage system integrated with a standardized power system.

The case study shows the vehicle owner’s cost is halved in the latter approach.

The benefits and drawbacks of the bidirectional smart charging concept are shown in

table 1.1. A drawback to V2G methods is battery degradation, which occurs due to the

frequent charging and discharging cycles (Dogger, Roossien, & Nieuwenhout, 2010). A

study conducted by (Peterson, Apt, & Whitacre, 2010) concluded that several thousand

days of driving and bi-directional charging causes less than 10% capacity loss regardless

of the amount of V2G support used. However, intermittent modes of V2G could lead

to rapid capacity fade. Also, for smart charging, certain technologies and hardware are

required. The complexity of V2G requires additional hardware, which needs extra in-

vestments (Tan et al., 2016). For example, a bidirectional EV charger typically consists

of a AC/DC and DC/DC converter (Verma, Singh, & Shahani, 2011). Furthermore,

smart charging is often coupled with dynamic energy pricing, this requires technolo-

gies that enable customers to react to price signals quickly and without much effort.

In (Hildermeier et al., 2019), among others, a review of existing practises and policies

regarding such technologies is presented. Moreover, the significance of solutions that

seek to track user behaviors and routines is underlined in (Waldron et al., 2019). A

main challenge for tracking software is safeguarding the privacy of users. Additionally,

the profitability of V2G for aggregators and EV owners and the influence of govern-

mental subsidy policies are discussed in (Mullan et al., 2012), (Yilmaz & Krein, 2012),

(Van Tilborgh, 2018) , (Bhandari, Sun, & Homans, 2018), (Hong, Koo, Jeong, & Lee,
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2012) and (White & Zhang, 2011).

A summary of the main optimization techniques to achieve different vehicle to grid ob-

jectives while satisfying multiple constraints is presented in (Tan et al., 2016). According

to (Tan et al., 2016) there are five main optimization methods for smart charging EVs

with different possible objectives and their associated constraints, shown in Table 1.2.

1.3.3 Social factors

In the literature there exists few works about the behavior of EV owners. For many

V2G studies only the technical challenges are addressed. According to (Sovacool, Noel,

Axsen, & Kempton, 2018) only 2.1% in the field of V2G addressed user behaviors and

routines, with 1.1% addressing range anxiety adoption issues. In 2010 the unpredictabil-

ity brought by users’ behavior to V2G was identified . Furthermore, (Waldron et al.,

2019) identified some user-centered challenges in V2G that can be divided in social

(attitudes, socioeconomic) and practical issues (vehicle availability, user predictability,

behavioural incentives). According to Waldron et al. to implement smart charging suc-

cessfully some social challenges must be overcome. Amongst these are: user anxiety

related to implementation, the integrating of behavior analysis algorithms and acquir-

ing real world data regarding economic, social and environmental benefits. For instance,

range anxiety results in EV owners acquiring a high battery state-of-charge (SOC) in

order to keep their flexibility high (Fasugba & Krein, 2011). This might prevent EV

owners from actively participating in smart charging. Furthermore, it has been shown

by (Kuang, Chen, Hu, & Yang, 2017) that patterns of vehicle use, SOC on arrival and

desired SOC on departure can significantly affect the impact that V2G services could

have on load management in different building types.

In (X. Wang, Nie, & Cheng, 2019), a cost analysis to obtain an optimal planning scheme

for V2G is performed, in which EV penetration is varied according to charging preference

and customer damage cost. It indicates that the stochastic behavior of EV users poses a

challenge to policy makers. It uses an optimization method for real-world travel records

and cost statistics to show the efficiency of the optimization algorithm. According to

(X. Wang et al., 2019), there are two ways to mitigate the impact of EV penetration

on power systems: controlling the users’ charging behavior directly and upgrading the

power system ahead. Charging behavior is considered in (Shen, Fang, Ye, & Kadoch,

2020) for V2G in a smart grid . It is determined how to identify EVs which can be

scheduled for V2G charging. They found that grouping EVs on the basis of charging

behavior is an effective method for the purpose of EVs for V2G.
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Optimization method Objective

a. Particle swarm optimization a. Minimize operation cost
b. Genetic algorithm b. Maximize renewable energy generation
c. Linear programming c. Minimize error of load curve
d. Quadratic programming —-from target load curve
e. Ant colony optimization d. Minimize power losses

e. Minimize emission
f. Maximize profit

Constraint

a. Power Balance
b. Voltage limit
c. Generation limit
d. Line thermal limit
e. Forecast load
f. Upstream supplier limit
System loading limit

Table 1.2: The optimization methods, objectives and constraints for V2G optimiza-
tion adopted from (Tan et al., 2016)

Moreover, there are many EV related subjects for which user behavior is studied. Such

as electric vehicle penetration in transportation. In (Energy Element, 2013), among

others, market barriers to EV adoption are discussed. Some of its findings are, firstly, the

five attitudinal factors which differentiate the EV purchase segments most strongly are:

identity, anxiety, parking difficulty, willingness to pay and symbolic motives. Secondly,

key factors affecting purchase of EVs are: vehicle price and running cost, brand and

segment supply, access to charging, driving range and charging time, and the consumers’

receptiveness to EVs. Thirdly, countries with the highest rates of EV penetration have

taken significant cost measures. Smart charging can aid in reducing the total cost of

ownership of an EV, thus help with addressing cost barriers for EV adoption (Waldron et

al., 2019). Furthermore, non-cost barriers are also strongly addressed by these countries,

such as vehicle supply, consumer receptiveness to EVs and extending access to public

charging infrastructure. Fourthly, EV owners prefer overnight charging at home or

workplace. Lastly, recharging time is consistently reported as a barrier. All though

smart charging will mostly take place during long idle times of EVs, smart charging

influences the recharging time.

Additionally, in (Ashkrof, de Almeida Correia, & van Arem, 2020) the route choice

behavior of EV drivers in the Netherlands was investigated where the classic route

measures (travel time and travel cost), vehicle-related variables (SOC at the origin and

destination) and charging characteristics (availability of a fast charging point at the

destination, fast charging duration, waiting time in the queue of a fast-charging station)

can significantly influence the EV drivers route choice and charging behavior. Other
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papers discuss the behavior and demographics of EV adoption (Wee, Coffman, & Allen,

2020), (Mukherjee & Ryan, 2020) and (Shalender & Sharma, 2020).

The greenhouse gas emissions of EVs depends on the electricity mix of the electricity

source and the driving behavior, discussed in (Faria et al., 2013) and (Karabasoglu &

Michalek, 2013). An EV driving model with a data driven approach was introduced by

(Lee & Wu, 2016). (G. Wang, Makino, Harmandayan, & Wu, 2020) investigates EV

drivers’ eco-driving behaviors and motivations through a questionnaire and statistical

analysis of those results. Firstly, the paper shows that EV drivers possess significantly

calmer driving maneuvers and more fuel-efficient driving habits. Secondly, EV drivers

have much more more willingness to save energy in compensation of travel time. Thirdly,

they have more willingness to adopt eco-friendly in-vehicle display technologies. These

results underlines the unique behavior found in EV drivers in comparison with internal

combustion engine vehicle drivers. A review of EV penetration rate studies and their

methods is presented in (Al-Alawi & Bradley, 2013). They found that the market

penetration of EVs is a key factor in predicting the effects of EVs on the grid, the

environment and transportation.

Increasing EV penetration can be beneficial for governments, willing to reduce CO2

emissions. Countries with high EV penetration put significant measures in place to

tackle cost and non-cost barriers (Energy Element, 2013). Furthermore, research on

EV adoption and the behavior associated with it is presented in (Wee et al., 2020),

(Mukherjee & Ryan, 2020), (Shalender & Sharma, 2020). (Wee et al., 2020) analyzed

EV registration numbers in Hawaii through demographic and transportation behavior.

They found that a higher income and higher education result in more registered EVs.

All public charging has a significant impact on EV registration, with a larger magnitude

for fast charging. However, trip distance is not linearly related to EV adoption. A

commute shorter than 20 min or longer than 45 minutes is associated with fewer EV

registration. This can possibly be explained by range anxiety for longer drivers and the

upfront investment might not be merited for shorter drivers. In (Mukherjee & Ryan,

2020), different factors influencing the early EV adoption in Ireland are investigated. It

was found that a university degree, a charge point near and long-distance commuters

(at least one hour) are positive determinants for EV adoption. Rented accommodation

and a younger age are negative determinants. (Shalender & Sharma, 2020) uses an

extended theory of planned behavior model to predict EV adoption intention in India.

It was found that attitude, subjective norm, perceived behavior control, moral norm, and

environmental concern have a positive relation with adoption intention of EV buyers.

An analysis on consumer’s attitudes and perceptions on EVs is shown in (Egbue & Long,

2012). A comparison of attitude towards EVs between consumers who experienced EVs

and consumers without EV experience was performed in (Jensen, Cherchi, & Mabit,
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2013) and (Bühler, Cocron, Neumann, Franke, & Krems, 2014). It was shown that

attitudes towards EVs already were mainly positive. The high acquisition cost might be

the major barrier for EV adoption.

Some other concepts, such as the behavior of EV owners, are investigated in (Zhao,

Zhang, Yang, Chai, & Li, 2020), where the pricing of private charging pile sharing is

considered. Furthermore, the charging behavior is relevant to car sharing concepts in

order to find an optimal charging and re-positioning model (Folkestad, Hansen, Fager-

holt, Andersson, & Pantuso, 2020). Route choice and waiting time are of determining

factors for the optimal location and capacity of charging stations (Chen, Qian, Miao,

& Ukkusuri, 2020). In (Schmidt, Staudt, & Weinhardt, 2020), the importance of the

user’s behavior is highlighted by showing its impact on the economic evaluation of public

destination charging stations.

In current literature, there is still a focus on the technical aspects of smart charging

(Sovacool & Hirsh, 2009) (Hildermeier et al., 2019), while social issues can be a major

barrier against successful implementation of smart charging. Moreover, an important

factor in EV owners behavior is their willingness to lend their car for smart charging.

V2G deteriorates the car’s battery and reduces the flexibility of users. Thus, potential

methods to increase the willingness of EV owners to smart charge should be determined.

The effect of financial participation should be investigated, as it is a factor that can

influence this willingness and can aid in lowering the total cost of ownership (Bühler et

al., 2014). Furthermore, certain policies can influence EV owners to lend their car to an

aggregator.

1.3.4 Contributions

Smart charging can be very beneficial for the power grid, renewable energy penetra-

tion and different stakeholders. However, there exist some barriers which have to be

addressed, of which many are of a social nature. The simulating of smart charging is of-

ten accomplished through designing an optimization problem with different constraints,

such that an objective has to be minimized. Previous works on creating optimization

models have neglected the behavior of EV owners and their willingness to lend their car

for smart charging. While social barriers are a significant challenge for the implementa-

tion of V2G (Tan et al., 2016). This paper will address the social factors of EV owners’

behavior and their willingness to follow smart charging. These social factors will be

included in simulations of a smart charging optimization problem in the Dutch power

grid.
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1.4 Problem analysis

1.4.1 System description

Figure 1.2 depicts the Dutch electricity system with smart charging where the RES

and non-RES are the sources of power. The Transmission System Operator (TSO)

transports the electricity through the country at high voltage to minimize energy loss

from transportation. Then the energy is converted and the Distribution System Operator

(DSO) distributes the energy to the consumer. Currently, the energy consumption is

demand driven. However, in the future new control strategies are required for not only

EV charging, but other energy consumption as well. A building or home will consume

the energy for its needs and EVs are smartly charged for transport. Also, an aggregator

will control the charging and discharging of the EVs. Indeed, an aggregator will have

smart charging contracts with EV owners that makes their EV available. An aggregator

can use the EV fleet as a stabilizing factor to the grid. In this thesis, smart charging

in smart parking lots at office buildings is considered. Smart charging should provide

benefits during the day as there is more energy consumption, more RES generation and

a big supply-demand mismatch between them. From this starting point the system is

expanded to include a smart building, a DSO grid, a TSO grid and energy generation.

It can be expanded further to include the EVs smart charging at home, smart homes

with photovoltaic (PV) systems, renewable energy generation and an aggregator.

For success of smart charging, the cooperation of EV owners is required. Therefor we

need to understand the behavior of EV owners. In Figure 1.3 a flow chart is given for

when an EV arrives at a smart parking lot. These are the factors that are directly

relevant for the charging of an EV in a smart parking lot. An EV arrives at a certain

time, with a certain state-of-charge (SOC), with or without a smart charging contract.

The EV owner gives his departure time and its desired SOC. The EV is charged and

then leaves with a certain SOC at a certain time. In order to model the smart charging

of EVs these behavioral factors should be considered unknown.

1.4.2 Stakeholder Analyses

In this section, different units involved in smart charging are introduced. Firstly consider

the Electricity suppliers which can also be the energy generators, for instance in the

Netherlands these are Nuon and Essent. They want to supply energy at a minimum

cost and sell it in order to make a profit, where the energy price is regulated by the

government.
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Figure 1.2: The system shown with power and communication lines between the
relevant aspect. The initial system is indicated with red

The TSO is responsible for stabilizing the energy grid and controlling the supply and

demand, for instance, in the Netherlands this is TenneT. The TSO transports energy

over the low-voltage transmission grid. When in microgrids the load demand is less

than its supply, the excess of energy is sold to other microgrids and for a shortage of

electricity the microgrid buys energy from other microgrids. A high penetration of RESs

will make the control of the supply-demand mismatch more difficult. Smart charging is

a concept that aids in stabilizing the grid.

There are multiple DSOs in the Netherlands responsible for the construction, devel-

opment, maintenance and management of the electricity grids associated with their

geographical area. A DSO should provide electricity for consumers through the high

voltage distribution grid.
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Figure 1.3: The relevant behavior of EV owners presented as a flow chart

An aggregator provides regulating services in order to make a profit. It combines the

EVs information with a smart charging contract to provide stabilization to the grid,

in return an aggregator will receive payment. An aggregator is required to meet the

desired charge at the desired departure time for its EV owners. Furthermore, they

should provide EV owners with some profits for lending their EV’s battery for smart

charging.

EV owners might be the most important stakeholder for smart charging. When an

EV owner agrees to follow the smart charging contract, he gives an aggregator control

over the (dis)charging of the battery of his EV. Smart charging degrades the battery

life of EVs and reduces the EV owner’s flexibility and autonomy. However, they could

be convinced to participate in smart charging with a (financial) incentive outweighing

the disadvantages. Many EV owners acquired EVs in order to reduce their carbon

footprint (Shalender & Sharma, 2020); therefore, their environmental concerns can be

an important factor for them to participate in a smart charging contract.

The load demand of electricity consumers must be provided. They have a contract with

an energy supplier and they want to receive energy whenever they desire. Indeed, they

see the energy grid as a black box. Some electricity consumers are also generating energy

via PV or solar panels, who are often called a prosumer.
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Stakeholder Goal

Electricity suppliers
TSO
DSO
Aggregator
EV owner
Consumer
Companies with a -
smart parking lot
Government

Provide electricity
Stable grid and controlled supple and demand
Reliable distribution of electricity
Profitable smart charging
Transportation and incentives for smart charging
Reliable power supply
Extra revenue stream, extra services for employees
Electricity for its citizens and meet emission goals

Table 1.3: The stakeholders and their main goals

Companies that might adopt a smart parking lot are a stakeholder, as in this thesis

parking lots at offices are considered. They can benefit from smart buildings and smart

charging of EVs as they provide value to the power grid, which can provide the com-

pany with a financial compensation in return. Smart charging at their facility would

provide a company with an extra revenue source. While charging facilities and electric

transportation can be offered to employees. The companies owning EVs become more

attractive if they can compensate for their costs via smart charging.

The Dutch government plan to provide people with electricity for an affordable price.

In addition, they plan to reduce the greenhouse gas emissions by using RES instead of

conventional generation resources and by electrifying the transportation system.

1.4.3 Problem Definition

As described in extend in previous sections, smart charging is a concept with great

potential. It should be determined whether smart charging will truly be beneficial, and

more specifically beneficial in the Dutch electricity system. There exists no research

on the willingness of EV owners to participate in smart charging, while smart charging

depends mainly on the willingness of EV owners to lend their EV. Thus, this lack of

knowledge is problematic. In order to guarantee that smart charging is a feasible concept,

the public’s willingness should be known. Additionally, the behavior of EV owners

relating to this subject should be determined such that the effect of smart charging on

the grid can truly be determined. For an EV owner there will be several disadvantages

and advantages to follow smart charging. Thus, there is a lack of knowledge on, firstly,

the willingness of EV owners to follow smart charging. Secondly, the barriers of smart

charging for EV owners. Thirdly, how the willingness will influence the success of smart

charging.



Chapter 1: Introduction 15

1.5 Research Goal

The main goal of smart charging is preserving the stability of the power network by con-

trolling the supply-demand mismatch in power grids and minimizing the peak load. The

supply-demand mismatch will become a bigger issue as the RES penetration increases.

The peak load will increase as power demand from uncontrolled EV charging increases.

In order to address the smart charging for EVs, the behavior of the EV owners should

be considered. Since the behavior can greatly influence the potential benefits and the

feasibility of smart charging and it can create some practical issues for smart charging of

EVs. The main objectives of this study are summarized in the following research goal:

To propose a V2G-MPC frequency control model in which social behavior is

embedded and to determine the effects of these social aspects on the system.

1.6 Research Questions

In this section research questions are determined with the purpose of achieving the

research goal in a structured manner. Research questions can either be a knowledge

question or a design question (Wieringa, 2010). The research questions that will be

answered in this thesis are given as follows:

1. Are EV owners willing to smart charge?

2. What obstructs and aids the EV owner’s willingness to follow smart charging?

3. How should a V2G-MPC model be designed, such that simulations can be done?

4. How does the willingness to follow smart charging affect the stability of the power

grid?

5. What other factors influence the success of smart charging?

6. Can the smart charging of EVs aid in reducing a supply-demand mismatch result-

ing from uncontrolled renewable energy production?

1.7 Thesis outline

The research questions outlined in the previous section will be answered in the rest of

the thesis. In Chapter 2 the results of a survey performed by the EV charging company

NewMotion is provided. The results will be analyzed and answer research questions
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1 and 2. In chapter 3 background information on model predictive control (MPC) is

discussed. Then, in chapter 4 the V2G-MPC model is provided, with it research question

3 will be answered. In chapter 5 the simulation setup and the simulation results are

presented and discussed. In this chapter research questions 4 and 5 will be answered. In

chapter 6 research question 6 is answered, as the framework for integrating wind power

generation into the system is proposed and the simulation results of the W-V2G-MPC

model are presented. Finally, in chapter 7 the findings will be shortly discussed in the

conclusion. Additionally, limitations to this work and opportunities for future research

will be discussed.



Chapter 2

Survey Results

In this chapter relevant results of a survey are discussed and analyzed. The survey was

distributed to its customers by New Motion, which is a company which provides EV

charging solutions. These survey results aid in answering research questions 1 and 2.

It will be determined that most EV owners are very willing to follow a smart charging

contract. Furthermore, the survey results will show that EV owners are barely motivated

by financial incentives in order to smart charge. The environmental contribution that

smart charging provides seems to be an important motivator.

The outline of this chapter is as follows: First, in section 1 the participants and proce-

dures are discussed. Second, in section 2 the relevant measures and results are discussed.

Finally, in section 3 the most important results in the chapter are shortly discussed in

the chapter’s conclusion.

2.1 Participants and procedures

The customers of New Motion received an invitation email to participate in an online

questionnaire on electric driving. The link to the questionnaire was included in the

newsletter of New Motion. In total 5493 participants started to fill out the question-

naire of which 4492 met the criterion and filled out of at least 80% of the questionnaire,

which is a response rate of 82%. Additionally, for the simulations we only selected par-

ticipants from the Netherlands, those who own a full EV and those who are employed.

This left us with a sample of 1201 participants. In Figure 2.1 the percentage of par-

ticipants from different countries is shown. The choice of including only participants

from the Netherlands was mad for the reason that the model is based on the Dutch

energy system and charging stations are geographically fixed. The smart charging of a

full EV, in contrast to plug-in hybrid cars, is very beneficial, due to its relative large

17
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Figure 2.1: The percentage of participants from different countries

battery capacity. In (Van Tilborgh, 2018) it was found that plug in hybrid cars are not

suitable for V2G. Furthermore, people who work have more motivation to participate in

smart charging contract since our optimization will focus on EV owners that arrive and

leave charging stations at smart parking lots at an office space at predictable hours. Of

the sample 91% was male, 8% was female and 1% other or preferred not to say. Most

participants had an age range of 51-60 years, namely 47%. The average high age of

participants could be explained by the high acquisition cost of EVs, as (Mukherjee &

Ryan, 2020) found that young age was a negative determinant for EV adoption. Most

participants adopted their car through their employer or through their own company.

Most participants drive 25,000 - 50,000 km per year (42%) or 15,000 - 25,000 km per

year (41%). Most participants have a charge point available at work (81%) and at home

(75%). The majority of the participants own a Tesla EV (43%), 13% own a Hyundai,

10% own a Nissan. Tesla’s cars have more capacity than other EVs on the market. A

more detailed overview of the surveys statistics can be found in Appendix B.

2.2 Measures

The survey consisted out of approximately 50 questions. As this thesis considers smart

charging of EVs the following measures from the survey are relevant;

• range anxiety,

• environmental self-identity (ESI),

• battery charge when arriving at work,

• minimal battery charge when leaving work,

• willingness to smart charge,
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• willingness to have their battery used to power offices.

User-centered challenges regarding smart charging are divided into social and practical

issues by (Waldron et al., 2019). Indeed, range anxiety, ESI and willingness measures

are of a social nature, the battery charge is of a practical nature. The questions from

this survey related to these measures are given in Appendix A. All questions, except the

measures on battery charge, could be answered on a scale from 1 strongly disagree to 5

strongly agree. For the results in this chapter only the participants from the Netherlands,

with a full electric EV are considered, unless indicated differently.

The range anxiety was measured with one item, i.e., the range of my electric vehicle

is sufficient for my everyday use. Most of the participants indicated that the range of

their electric vehicle is sufficient for their everyday use, with a mean of M = 4.41 and a

standard deviation of SD = 0.99. This is promising, as (Fasugba & Krein, 2011) found

that range anxiety hinders smart charging participation. Furthermore,the ESI was mea-

sured via two items (I see myself as a pro-environmental person; acting environmentally-

friendly is an important part of who I am). The items formed a reliable scale, α = .87.

On average, participants scored relatively high (M = 4.26, SD = .82). This should be no

surprise as multiple studies found that EV owners have a unique behavior, for example,

EV owners drive very eco-friendly (G. Wang et al., 2020).

Participants were asked about how full their battery usually is when they arrive at work

and what the charge should at least be when they leave work. Participants could answer

from 0-100% with steps of 10%. The results are given in Figure 2.2. On average the

battery is 64% (SD = 18.79%) full on arrival and 49% (SD = 28.03%) full on departure.

Thus as averages, the departure charge is lower than the arrival charge. These results

show that when an EV follows the smart charging contract, it can potentially provide

more V2G power than G2V power.

In order to determine the willingness of participants to use smart charging they were

asked if they are willing to use smart charging on a scale of 1 to 5. Overall participants

Method of car adoption Frequency
Average smart
charging willingness

SD

Private 165 4.11 1.15

Own company 446 3.95 1.33

Lease through employer 481 3.87 1.15

Company vehicle 60 3.75 1.14

Private lease 30 3.63 1.18

Table 2.1: The average willingness of participants to smart charge dependent on car
adoption method
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Figure 2.2: The amount of charge when arriving at work and the desired charge when
leaving for survey participants

were willing to use smart charging with average of M = 3.92 and variance of SD =

1.16. Then they were asked whether they are willing to use smart charging when smart

charging contract financially compensates for customers. Interestingly the participants

have less willingness if they are financially compensated (M = 3.83, SD = 1.17). Both

results are given in Figure 2.3 as a histogram. This shows that financial incentives are

not necessarily the main motivator for EV owners.

Furthermore, the car adoption method has influence on the willingness of the EV owners

to follow the smart charging contract, i.e., participants who bought their car privately

or via their own company have more willingness to follow a smart charging contract than

participants who lease their car or drive a company vehicle. Thus, when an EV is owned

privately the owner is more likely willing to make their EV available for smart charging.

Also, the willingness to smart charge differs between different countries. In Figure 2.2

it can be seen that participants from Germany and the UK have significantly more will-

ingness to follow smart charging contracts than participants from the Netherlands and

Belgium. In (Energy Element, 2013) it was shown that countries with high penetration

of EVs had introduced measures to promote EV adoption, such as consumer receptive-

ness to EVs. It is possible that the UK and Germany put more effort in promoting

receptiveness to concepts addressing environmental issues, and by doing so increased

the willingness to smart charge. Further research is required to substantiate this idea.

Additionally, participants were asked how willing they are to share the power of the

EV battery with the power grid of their office (M = 2.84, SD = 1.51), when they gain

financially (M = 3.11, SD = 1.50), or when they have sufficient energy to commute
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Country Percentage of total
Average smart
charging willingness

SD

Netherlands 45% 3.92 1.16

Germany 37% 4.20 1.11

Belgium 6% 3.88 1.22

UK 5% 4.18 1.20

Other 7% 3.84 1.39

Table 2.2: The average willingness of participants to smart charge dependent on their
country

home (M = 3.53, SD = 1.51). The willingness to provide power to the office is lower

than the willingness to smart charge. This can be explained by the framing of the

questions. Participants have a high ESI as shown earlier, and are therefor motivated to

have more environmentally-friendly contributions in society. Participants might have less

willingness to share power of their EV with their office, as the benefits to the environment

are not sufficiently clear. While the explanation on smart charging mentions the benefits

to solar and wind energy, and to the public as well as to the private power grid. The

only disadvantage mentioned in the question on providing power back to the office is

the degeneration of the EV’s battery, while the question on smart charging mentions as

disadvantages that the car might not immediately charge after plugging into the charge

point or that charging may take longer. Degeneration of an EV’s battery might be

considered a bigger disadvantage than longer charging times by the participants.

Generally for correlations with a value of r ∈ [0.00, 0.20) the correlation is considered

very weak and for r ∈ [0.20, 0.40) the correlation is considered weak. In Table 2.3

the correlations between different question subjects and the ESI and range anxiety and

Figure 2.3: Frequencies of answers on willingness to use smart charging with and
without financial compensation
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Question subject
Environmental
self-identity (ESI)

Range Anxiety

Willingness to
smart charge

r = 0.29, p < 0.001) r = 0.15, p < 0.001

W to SC with
financial incentive

r = 0.13, p < 0.001 r = 0.09, p < 0.01

Willingness to
power office

r = 0.15, p < 0.001 r = 0.08, p < 0.01

W to p o with
financial incentive

r = 0.11, p < 0.001 r = 0.09, p < 0.01

W to p o with
sufficient charge

r = 0.13, p < 0.001 r = 0.01, p = 0.84

Table 2.3: Correlation

its p-value are given. It was found that people have more willingness to follow smart

charging contracts the stronger their ESI is. However, ESI is less strongly related to

willingness to smart charge when financial compensation is received. This lower cor-

relation with ESI could explain the reason for a lower willingness to follow the smart

charging contract when financially compensated while participants with high ESI might

find it more important to contribute to environmental issues than receiving financial

compensation. Furthermore, the correlation between ESI and the question on partici-

pants having their EV’s battery used to power offices has a weak correlation, also when

they gain financially, and when they have enough energy to commute home.

Furthermore, the more people think their range is sufficient for their daily use, the more

willingness they have to follow a smart charging contract. As range anxiety is correlated

to willingness to the smart charging without financial compensation and with financial

compensation. Also, people with low range anxiety have more willingness to provide the

office with power without financial compensation, and with financial compensation, but

it is not related to participants’ willingness when they have enough energy to commute

home.

2.3 Conclusion

From the survey results it can be inferred that most of the participants are willing to

participate in smart charging. The mean value for whether participants are willing to

participate in smart charging is 3.92 on a scale from 1 strongly disagree to 5 strongly

agree, i.e., answering research question 1 (’Are EV owners willing to smart charge?’).

Also, there exists a positive correlation between ESI and the willingness to smart charge.

EV owners with high environmental self-identity are more likely to lend their EVs for
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smart charging. However, range anxiety has a weak correlation with the willingness to

smart charge, i.e., EV owners are less likely to participate in smart charging if they have

anxiety about the range of their EV. Moreover, if an EV is privately owned, EV owners

have more willingness to follow the smart charging. Additionally, from the survey it

can be inferred that the arrival charge is higher than the desired minimum departure

charge, i.e., EVs can therefor deliver power to smart parking lots. With this an answer

to research question 2 is provided (’What obstructs and aids the EV owner’s willingness

to follow smart charging?’). Furthermore, the results from the survey will be used in

the smart charging optimization model, which is presented in Chapter 4.



Chapter 3

Preliminaries

In this chapter a theoretical background of the main methodology of this thesis is intro-

duced, i.e., model predictive control (MPC). Also, its main benefits and drawbacks are

discussed and the reasons for using MPC are elaborated.

3.1 Model Predictive Control

Model Predictive Control (MPC) is a control methodology that is an effective means

of dealing with large multi-variable constrained control problems. It is widely used

in different research areas, such as the process industry (Qin & Badgwell, 2003) (Jin,

Kumar, & Elia, 2009), building heating, ventilation and air conditioning (HVAC) studies

(Pavlak, Henze, & Cushing, 2014) and power systems (Ernst, Glavic, Capitanescu, &

Wehenkel, 2008) (Taha et al., 2017). MPC based methods started to gain interest in

the late 1970s. These preceding methods took advantage of the increasing potential of

digital computers (Camacho & Alba, 2013).

All MPC approaches posses common elements, but different options for each element

can be chosen. These elements are as follows; prediction model, objective function

and control law. In MPC, an optimal control sequence is calculated by repeatedly

optimizing a cost or objective function over a time horizon, while the model of the

system is simulated. The model’s behavior is determined over the time horizon. The

results of the first time step in the time horizon of the model is applied to the controller of

the system, the rest is discarded. Then, the state of the system is updated and the time

horizon is shifted one step. This new state is used to calculate a new optimal control

sequence and the process is repeated. This approach results in lower computational

times and accurate results, as each time step a relative small finite horizon is simulated

instead of calculating the results for all the time steps at once.

24
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A MPC approach is utilized in power systems to control the frequency of the grid. In

the optimization problem the operational objectives are taken into account, such as

the frequency control, supply-demand balance, minimization of cost, maximization of

utilities and satisfaction of operational constraints. In this thesis a model representing

the Dutch power grid will be proposed. For the utilization of MPC we are primarily

interested in finite-horizon MPC for discretized linear systems. A general formulation

of this is as follows:

minimizeX
∑
k∈K

J(x, u) (3.1)

subject to x(k0) = x0 (3.2)

x(k + 1) = Ax(k) +Bu(k) (3.3)

x(k + 1) ∈ Z, u(k) ∈ U, (3.4)

∀k ∈ K (3.5)

where it assumed that the feasible sets Z and U are convex (Simon, 2017). The decision

variables in X should be chosen over a horizon of time steps K such that the sum of the

cost function J(x, u) is minimized. The system state is bounded by the initial state 3.2,

is subject to the dynamics 3.3, and both the state and input must belong to the feasible

sets Z and U . Commonly, the cost function is formulated as

J(x, u) = x(k)TQx(k) + u(k)TRu(k), (3.6)

where the penalties of deviations in x(k) and u(k) are represented in the cost matrices

Q and R. As the cost function steers the state and input to zero, the cost function can

be modified when a different state and/or input is desired:

J(x, u) = (x(k)− x̄)TQ(x(k)− x̄) + (u(k)− ū)TR(u(k)− ū). (3.7)

The linear equivalent of 3.6 is

J(x, u) = qTx(k) + rTu(k), (3.8)

where q and r are cost vectors. Linear cost functions minimizes the corresponding

elements, while quadratic cost functions steer the elements to a desired value.

The successful deployment of MPC requires “getting right” multiple aspects of the con-

trol problem. Thus MPC requires an accurate model of the system, which can be a large

drawback, as it can be costly to generate (Darby & Nikolaou, 2012). However, if the

mathematical model of the system is accurate, MPC has many advantages. Furthermore,
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centralized MPC with many constraints and control inputs can result in computational

complexity and can become excessive (Ilic, Xie, & Joo, 2011). Nonetheless, MPC van

be easily implemented and improved, thus the underlying optimization model can be

modified if the accuracy of the systems mathematical description is improved or if the

system is changed.

MPC is widely used for power systems and its open methodology results in accurate

descriptions of the physical power network. Also, MPC provides the possibility to mod-

ify the system model and to simulate a largely different system. The aforementioned

benefits outweigh this potential disadvantage. Furthermore, this thesis continuous on

previous work, namely (Badings, Rostampour, & Scherpen, 2019b). In (Badings et al.,

2019b) building-to-grid is integrated in power systems to create demand-side flexibility.

However, we focus on the smart charging of EVs and behavioral factors of EV owners.



Chapter 4

MPC based Frequency Control

Model with Social Behavior and

Vehicle-to-Grid Options

In this chapter research questions 3 is addressed, as a dynamical framework of a power

system with (bi-)directional charging of EVs is proposed, i.e., the V2G MPC model. The

hierarchical structure between TSO, DSO, Bld and EV are introduced, representing the

interactions between different stakeholders in the power system. Indeed, multiple DSOs

can be connected to a centralized TSO, multiple Blds to a DSO and multiple EVs to

a Bld. Then, a centralized MPC based method is proposed to optimize the control

variables simultaneously over a common time horizon.

The system model is proposed in the 4.1 in an hierarchical manner. Then, the TSO

model is discussed in section 4.1.2, the DSO model in section 4.1.3. Next, the building

model with its HVAC dynamics and the EV model are introduced in section 4.1.4.

Finally, the optimization problem is given in section 4.2.

4.1 System Model

In this section, the system model is described. This model integrates the Transmission

System Operator (TSO), Distribution System Operator (DSO), Building units (BLD)

and Electric Vehicle (EV) models. These models are hierarchically connected. Then,

their cost and utility functions are introduced for the formulation of an optimization

problem.

27
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4.1.1 System Description

Consider the system consists of the set of TSO and DSO buses. Let T = {1, . . . , nt}
denote the set of TSO buses, D = {1, . . . , nd} denotes the set of DSO networks, G =

{1, . . . , ng} denotes the set of generators connected to TSO buses, B = {1, . . . , nb}
denotes the set of all building in the network. Let Tf be the prediction time horizon

of the MPC and h be the time step of the simulation, then we define τ := {t + h, t +

2h, . . . , t+ Tf} as the set of prediction time steps and Γ := {0, 1, . . . , Tfh − 1} the set of

iteration time steps.

4.1.2 TSO model

In this subsection, we introduce the dynamic model of TSO buses. Let T nj be the set

of neighboring buses of TSO bus j. Now we define the incidence matrix Π ∈ Rnt×ng ,

representing the connection of generators to TSO buses, as

πj,k =

{
1, if generator k is connected to bus j

0, else.
(4.1)

The dynamics of TSO, called swing dynamics, for bus j ∈ T is given by

δ̇j(t) =fj

Mj ḟj(t) =− (dj + d̂j)ωj(t) +

ng∑
k=1

πj,kPgk(t)

− Pblj (t)− Pldj (t)

−
∑
i∈T n

j

bji sin(δj(t)− δi(t)),

(4.2)

where fj is the frequency deviation from its nominal value, δj is the rotor angle, Pblj is

uncontrollable load, Pldj is the controllable external load, Mj is the moment of inertia,

dj is the damping coefficients, d̂j is the frequency-sensitive portion of the uncontrollable

load at bus j, Pgk is the generated power by generator k, and bji is the susceptance

coefficient of the transmission line j and i. We can write (4.2) compactly as

Ftsoẋtso(t) =Atsoxtso(t) +BgPg(t)

−B
(
Pbl(t) + Pld(t) + Φ(δ(t))

)
,

(4.3)
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where xtso(t) = [δ1, . . . , δnt , f1, . . . , fnt ]
T , Φ(δ(t)) = [φ1, . . . , φnt ]

T with

φj =
∑

i∈T n
j
bji sin(δj(t)− δi(t)), and

Ftso =

[
Int 0nt×nt

0nt×nt M

]
, Atso =

[
0nt×nt Int

0nt×nt −D

]
,

B =

[
0nt×nt

Int

]
, Bg =

[
0nt×ng

Γ

]
,

with M =diag(m1, . . . ,mnt) and D =diag(d1 + d̂1, . . . , dnt + d̂nt).

Then, we can discretize (4.3) by the virtue of first-order Gear’s method as (Sincovec,

Erisman, Yip, & Epton, 1981).

xtso(t+ h) = ftso
(
xtso(t), Pg(t), Pld(t), Pbl(t)

)
(4.4)

where h is the discretization time step. Now the following constraints can be considered

as ∀k ∈ G and ∀t ∈ Γ

Pmingk
≤ Pgk(t+ qh) ≤ Pmaxgk

, (4.5)

P downgk
≤ Pgk(t+ qh+ 1)− Pgk(t+ qh) ≤ P upgk , (4.6)

1Tnt

(
ΠPg(t+ qh)− Pld(t+ qh)

)
= 0, (4.7)

4.1.3 DSO Model

In this subsection, we introduce the dynamic model of DSO. The set of DSO networks

is given by D = {1, . . . , nd}. Let Di = {1, . . . , nid} denote the set of buses (nodes) of

DSO i. Let each TSO network be connected to nd DSO networks and let Dn,mi denote

the neighborhood set of bus i of DSO network m. Each TSO can be connected to one

or multiple DSO networks which is modeled by the incidence matrix Λm ∈ Rnt×nm
d

λmj,i =

{
1, if bus i of DSO m is connected to TSO bus j

0, else.
(4.8)

Now let Pmj,i denote the active power transmitted between DSO bus i ∈ Di of DSO

m ∈ D and TSO bus j ∈ T . Then, the transmission matrix of DSO m can be given

by PmIMP composed of Pmj,i. This transmitted power can be considered as load for the

TSO and generator for the DSO if the transmission matrix is positive. Since the DSO

buses are not connected to generators, we can consider M = 0, D = 0; thus, the swing
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dynamics for the bus i of DSO m ∈ D can be given by

Nm
i δ̇

m
i (t) =− Pmbdi(t) +

nt∑
j=1

λmj,iP
m
j,i(t)−

∑
j∈Dn,m

i

(
gmji cos(δmi (t)− δmj (t))

+ bmij sin(δmi (t)− δmj (t))
) (4.9)

where Pmbdi(t) is the total load at bus i of DSO m and g is the line transmission conduc-

tance. Then, Pld(t) in (4.2) (TSO networks) can be given by

Pld(t) =

nd∑
m=1

(
Λm ◦ PmIMP (t)

)
1nm

d
. (4.10)

and the transmitted power from TSO to DSO m in DSO network can be given by

Pmld =
(
Λm ◦ PmIMP (t)

)T
1nt

(4.11)

Now we can rewrite (4.9) compactly for DSO m ∈ D as

Fmdsoẋ
m
dso(t) = Amdsox

m
dso(t) +Bm

d

(
Pmld (t)− Pmbd (t)− Pmbl (t)− Φm(δm(t))

)
, (4.12)

where xmdso(t) = [δm1 , . . . , δnm
d
, fm1 , . . . , f

m
nm
d

]T , Pmbl (t) is the uncontrollable load, Pmbd (t) is

the controllable load of DSO m buses, Φm = [φm1 , . . . , φ
m
nm
d

]T with

φmi =
∑

j∈Dn,m
i

bmij sin(δmi (t)− δmj (t)), and

Fmtso =

[
Inm

d
0nm

d ×n
m
d

0nm
d ×n

m
d

0nm
d ×n

m
d

]
,

Atso =

[
0nm

d ×n
m
d

Inm
d

0nm
d ×n

m
d
−Nm

]
, Bm

d =

[
0nm

d ×n
m
d

Inm
d

]
,

with Nm = diag(Nm
1 , . . . , N

m
nt

).

Again we can discretize (4.12) by the virtue of first-order Gear’s method as (Sincovec et

al., 1981),

xmdso(t+ h) = fmdso
(
xmdso(t), P

m
IMP (t), Pmbd (t), Pmbl (t)

)
, (4.13)

where h is the discretization time step. Now the following constraints can be considered

for DSO m ∈ D in DSO network ∀t ∈ Γ

1Tnm
d

(
Pld(t+ qh)− ΛmPbd(t+ qh)

)
= 0. (4.14)
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4.1.4 Building Model

In this subsection, the model of the building thermal comfort level, the model of EVs

per building model and the building’s load model are introduced. The building units

are connected to DSO buses through the incidence matrix Σm ∈ Rnd×nb for DSO m ∈ D
as given as

σmi,n =

{
1, if building n is connected to bus i of DSO m

0, else.
(4.15)

4.1.4.1 Building thermal comfort model

Based on the models proposed in (Taha et al., 2017), (Pavlak et al., 2014) and (Badings et

al., 2019b), consider the following first-order continuous-time equations as the building’s

thermal dynamics:

Ṫwall =
Tamb − Twall
CwallR2

+
Tzone − Twall
CwallR1

+
Q̇sol
Cwall

(4.16)

Ṫzone =
Twall − Tzone
CzoneR1

+
Tamb − Tzone
CzoneRwin

+
Q̇int − Q̇hvac

Czone
(4.17)

where Tzone(t) and Twall(t) are the building interior (zone) and wall temperatures.

Tamb(t) is the ambient temperature, and Czone and Cwall are, respectively, the lumped

thermal capacities of the zone and the walls plus roof. The parameters R1, R2 and Rwin

are, respectively, resistance parameters of the external wall, internal wall and windows.

Q̇sol is the sum of the absorbed solar radiation on the external wall. Q̇hvac is the cooling

and heating load, where HVAC stands for Heating, Ventilation and Air Conditioning.

The consumed HVAC power is proportional to the load via Q̇hvac(t) = µhvacPhvac(t).

The building dynamics of (4.16) and (4.17) for the building nb are described with the

following state space model:

ẋnb
b (t) = Anb

b x
nb
b (t) +Bnb

p P
nb
hvac(t) +Bnb

wb
wnb
b (t), (4.18)

where xnb
b (t) =

[
Tnb
wall Tnb

zone

]T
, wnb

b =
[
Tnb
amb Q̇nb

sol Q̇nb
int

]T
, and the system matrices

are defined as

Anb
b =

[
− 1
Cwall

1
R1

+ 1
R2

1CwallR1

1
CzoneR1

− 1
Czone

( 1
R1

+ 1
Rwin

]nb

, (4.19)
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Bnb
p =

[
0

− µhvac
Czone

]nb

, Bnb
Wb

=

[
1

CwallR2
1Cwall 0

1
CwallRwin

0 1Cwall

]nb

(4.20)

The complete building dynamics for the full set B of buildings are described by the state

space model

ẋb(t) = Abxb(t) +BpPhvac(t) +Bwb
wb(t) (4.21)

where block diagonal system matrices are defined as Ab = diag(Anb
b )nb∈B,

Bp = diag(Bnb
p )nb∈B and Bwb

= diag(Bnb
wb

)nb∈B. The state variable of the model are

denoted as xb =
[
x1
b , ...., x

nb
b

]T
∈ R2nb where xlb denotes the state variables of the

building nb. The input Phvac ∈ Rnb is the the cooling load set points of individual

buildings. Additionally, we define wb =
[
Tamb Q̇sol Q̇int

]T
∈ R3nb where Tamb, Qsol

and Qint denotes the ambient temperature, solar radiation and internal heat gain of

buildings, respectively.

4.1.4.2 Electric Vehicle Model

We consider EVs in parking lots of a building waiting for charging. Let the active power

of EV i be denoted by pevi(t) for all i ∈ B.

The parameters for each EV are determined as follows. The survey results are used as

inputs for each EV. It provides the model with the car type, the battery’s capacity, the

willingness to smart charge, the arrival charge and the desired departure charge. For

each participant from the selected survey population an entry into a matrix is created

with all the aforementioned parameters. For each EV a random row from the matrix is

selected.

Now, we consider that there exist a smart charging contract and each EV can follow or

unfollow the smart charging contract. In case the EV follows this contract, the charging

of an EV is bi-directional. However, if the EV does not follow the contract, then an

EV is only charged (G2V) and not discharged (V2G). There are three approaches for

determining whether an EV has the smart charging mode either ON or OFF. First, the

choice is based on the willingness of EV owners to smart charge, where for willingness

1−2 smart charging is OFF, for 4−5 it’s ON and for 3 there is a 50% of smart charging

being ON or OFF. Second, there is an alternative approach possible, as the survey

question on the willingness to smart charge was answered on a 1 to 5 scale, not with

a yes or a no. EVs with a smart charging contract will not always activate the smart

charging mode. This creates a second question for EVs that follow the smart charging

contract, whether they activate smart charging. This depends on how enthusiasm an

EV owner has for smart charging. In this case it is first determined whether an EV
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has a smart charging contract in the same manner as the first approach. Then, based

on their willingness there is a probability for EVs to actually activate smart charging.

For a willingness of 3 this is ρacti = 60%, for a willingness of 4 this is ρacti = 80% and

for a willingness of 5 this is ρacti = 100%. Third, the mode smart charging mode can

be determined with a general probability ρev ∈ [0, 1] for which smart charging is ON.

Smart charging is OFF for 1− ρev.

Now let EVs arrive at the parking lots at Tarr and departure from the parking lots

at Tdep. Then, the state of charge of EV in the ON mode is given by ∀i ∈ B and

t ∈ [Tdep, Tarr]

xevi(t+ qh+ 1) = δevixevi(t+ qh) + beviPevi(t+ qh) (4.22)

where Pevi is the (dis)charging input power, and xevi depicts the energy stored in battery

of EV i. Also, δevi ≤ 1andbevi are the self-discharging energy loss, charging efficiency

coefficient, respectively. The state of charge of an EV with smart charging mode OFF

is given by ∀i ∈ B, t ∈ [Tdep, Tarr]

xevi(t+ qh+ 1) ={
δevixevi(t+ qh) + beviPevi(t+ qh), if xevi ≤ x∗evi
δevixevi(t+ qh), else.

(4.23)

where uevi(t) ≥ 0, and x∗evi is the desired the state of charge indicated by the EV owner.

Now we consider the associated constraints of Evs as ∀i ∈ B and t ∈ [Tdep, Tarr]

Pminevi ≤Pevi(t+ qh+ 1) ≤ Pmaxevi , (4.24)

xminevi ≤xevi(t+ qh) ≤ xmaxevi , (4.25)

where umaxevi , uminevi are the maximum and minimum active power ratings, qmaxevi , qminevi are

the maximum and minimum reactive power, and xmaxevi , xminevi are maximum and minimum

of the energy stored in battery of Ev i.

Now a cost function for battery degradation of EVs is considered as ∀i ∈ B, t ∈
[Tdep, Tarr]

Cbevi(t) =
1

2
β0
evi

∑
t∈Γ

(
Pevi(t+ 1)− pevi(t)

)2
, (4.26)

where β0
evi is a positive constant. EV owners give the desired charging level at a specific

time slot, the departure time, which is modelled as a cost function given by ∀i ∈ B,
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t ∈ [Tdep, Tarr]

CTevi(t) =
1

2
β1
evi

(
xevi(Tdep)− x∗evi

)2
, (4.27)

where β1
evi is a positive constant and x∗evi is the desired state of charge of EVs. Depending

on whether an EV leaves with more or less charge than when it arrived, EV owners

will pay for charge they received or receive payment for charge they provided. This is

modelled as a cost function given by ∀i ∈ B, t ∈ [Tdep, Tarr]

CPevi(t) =
1

2
β2
evi

(
xevi(Tdep)− xevi(Tarr)

)
(4.28)

Therefore, the cost of EVs can be given by ∀i ∈ B and t ∈ [Tdep, Tarr]

Cevi(t) = Cbevi + CTevi + CPevi , (4.29)

Now we can formulate the total active power of building at bus i of DSO m as

Pmbd = [Pmbd1 , . . . , P
m
bdnm

d

]T

= Σm
(
Phvac + Pev + Pmisc

)
,

(4.30)

where Phvac, Pmisc and Pev are the column vectors for the HVAC power demand, the

uncontrollable miscellaneous power consumption and the EV power demand.

Now the following constraints can be considered as ∀i ∈ B, ∀t ∈ Γ

nd∑
m=1

Pmbd (t+ qh) = Phvac(t+ qh) + Pev(t+ qh) + Pmisc(t+ qh). (4.31)

4.2 MPC Based Optimal Frequency Control

In this section, we formulate the optimal frequency control problem as an optimization

problem, MPC can be used to solve the problem. We consider the discretized model of

TSO, DSO, BLD and EV. Let x(t) =
(
Pg(t), PIMP (t), Pbd(t), Phvac(t), Pev(t)

)T
be the

decision variable vector. Where t ∈ Γ indicates the time steps. Then, the finite-horizon

optimization problem can be given by

min
x

∑
t∈T

((
ftso(t)

)T
ftso(t) +

nd∑
m=1

(
fmdso(t)

)T
fmdso(t)

)
+

nb∑
i=1

Cevi(t)

s.t. (4.4)− (4.7), (4.13)− (4.14), (4.29)

(4.32)
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Subject to, ∀t ∈ Γ

1. TSO, DSO, BLD, EV Dynamics:

xtso(t+ 1) =ftso
(
xtso(t+ 1), Pg(t+ 1), Pld(t+ 1), Pbl(t+ 1)

)
, (4.33)

xmdso(t+ 1) =fmdso
(
xmdso(t+ 1), PmIMP (t+ 1), Pmbd (t+ 1), Pmbl (t+ 1)

)
, (4.34)

xbd(t+ 1) =fbd
(
xbd(t+ 1), Phvac(t+ 1), Pev(t+ 1)

)
, (4.35)

For smart charging ON (4.36)

xevi(t+ 1) =δevixevi(t+ 1) + beviPevi(t+ 1), (4.37)

For smart charging OFF (4.38)

xevi(t+ 1) = (4.39){
δevixevi(t+ 1) + beviPevi(t+ 1), if xevi ≤ x∗evi
δevixevi(t+ 1), else.

(4.40)

2. Generation power and ramp limits.

Pmingt ≤ Pgt(t+ 1) ≤ Pmaxgt (4.41)

3. TSO network balance

1Tnt

(
ΠPg(t+ 1)− Pld(t+ 1)

)
= 0 (4.42)

4. DSO network balance

1Tnm
d

(
Pld(t+ 1)− ΛmPbd(t+ 1)

)
= 0 (4.43)

5. Building power balance

nd∑
m=1

Pmbd (t+ 1) = Phvac(t+ 1) + Pev(t+ 1) + Pmisc(t+ 1) (4.44)

6. Building comfort limits

xminbd (t+ 1) ≤ xb(t+ 1) ≤ xmaxb (t+ 1) (4.45)

7. HVAC power and ramp limits

Pminhvac ≤ Phvac(t+ 1) ≤ Pmaxhvac (4.46)

P downhvac ≤ Phvac(t+ 1)− Phvac(t) ≤ P uphvac (4.47)
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8. EV capacity limit and (dis)charge limits

xminev ≤ xiev(t+ 1) ≤ xmaxev (4.48)

For smart charging mode ON

0 ≤ P iev ≤ Pmaxev (4.49)

For smart charging mode OFF

Pminev ≤ P iev(t+ 1) ≤ Pmaxev (4.50)

Furthermore, let the optimal solution of the proposed V2G-MPC framework be the

following:

x∗(t) =
(
P ∗g (t), P ∗IMP (t), P ∗bd(t), Phvac(t), P

∗
ev(t)

)
(4.51)

At each time step t ∈ Γ the solution is solved for a set prediction horizon Tp. Then the

state variables are initialized for the next time step t+ 1.



Chapter 5

Simulation Setup and Results

In this chapter the simulation results from the V2G MPC model proposed in the pre-

vious chapter are discussed. Furthermore, in this chapter research question 3 and 4 are

answered, as the effect of the EV owner’s willingness to smart charge is determined and

the effect of other parameters is discussed.

In section 5.1 the simulation setup is discussed. In section 5.2 the simulation results are

presented, where different scenarios are compared.

5.1 Simulation setup

In Chapter 4 the V2G-MPC model is formulated in an iterative manner. However,

to improve the computational performance of the code, a stacked formulation was im-

plemented. The state of the system is not calculated attractively over time, but the

trajectory is calculated over the complete prediction horizon. Stacked MPC is achieved

by creating stacked dynamics. Where time steps are combined into the system’s state.

This approach was also used in (Badings et al., 2019b) for their BtG-MPC model.

The optimization is implemented in MATLAB, where Yalmip is used as interface and

Gurobi is used as solver. The building parameters and the non-controlable loads (Pmisc)

were adopted from (Taha et al., 2017). Grid parameters were obtained from MatPower

IEEE 5-bus power system (Zimmerman, Murillo-Sánchez, & Thomas, 2010). The net-

work used for the simulations is given in Figure 5.1 where there are 13 buildings, 2 DSOs,

1 TSO and 3 non-renewable power generator sources in the network. In Appendix C all

the simulation parameters are given. All simulations are simulated for 24 hours, with a

prediction time horizon of 1 hour and a step width of 5 minutes.

37
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Figure 5.1: The network topology of the TSO, DSO, BLD system

In order to simulate the charging of EVs correctly, input parameters for each EV are

required. In the flow chart in chapter 1 Figure 1.3 these parameters are shown. Specifi-

cally, an EV arrives at a certain time, with an initial SOC and a maximum and minimum

capacity. The EV owner gives the departure time and the desired minimal SOC. Next,

smart charging mode is either ON or OFF. Finally, when the EV leaves at the departure

time, it has a certain SOC. However, the arrival and departure times are not given in

the NewMotion survey. We consider the smart parking lots are part of office buildings.

Thus, EV owners travel to the buildings to go to their jobs. Since the working hours are

predictable, it is possible to use a normal distribution to determine the working hours

of EV owners. The mean for arrival time used is 8:30 AM and the mean for departure

time used is 5:00 PM, the standard deviation used is 45 minutes.

Furthermore, the NewMotion survey results give us the arrival charge, the minimal

departure charge, the willingness to smart charge and the car type. The car type can

be used to determine the car’s capacity, which is shown in Appendix B in Table B.3.

The arrival and departure charge are given in percentage of the car’s capacity. The

willingness to smart charge is given on a scale from 1 to 5. This is converted to ON or

OFF by considering EV owners with a willingness of 1 or 2 to have smart charging OFF,

and EV owners with a willingness of 4 and 5 to have smart charging ON. Moreover, for

a willingness of 3, EV owners have a 50% change of following a smart charging contract.

For every survey participant an entry with his determined EV parameters is created. All

these entries are combined in a matrix. To determine the parameters for each EV, a row

is selected via uniformly distributed randomization. This is a more accurate approach

than determining every EV parameter separately, as EV owners with different EV types

have different values for these parameters. Furthermore, there is also a possibility to

determine the status of the smart charging mode based on a probability, ρev ∈ [0, 1].

If this approach is used, from the survey results it can be determined that ρev = 78%.

Additionally, in subsection 5.2.2 another alternative approach is discussed.
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5.2 Simulation results

In this section the simulation results are presented. For every section two scenarios are

compared. At the end of this section a general conclusion on these simulation results is

provided.

For most simulations the computational time is considered 40 minutes which depends

on the number of EVs used in the simulation, at least 5 EVs and at most 50 EVs. Each

EV requires an ”individual” cost function that changes each iteration, ensuring that the

EVs meet their desired SOC at the departure time.

The stability of the grid is expressed in the frequency deviation of the TSO and DSO

busses. For determining the total grid frequency deviation only the voltage angle is

considered. Generally, deviations are caused by sudden changes in power loads and

flows. In this V2G-MPC model the ramp up/down of the building grid load, VAC

power or miscellaneous loads, is the main cause for frequency deviations. Additionally,

the EVs power demand causes frequency deviations when EVs are required to meet the

desired state of charge at the departure time. The EVs arrive around 8:30 AM and leave

around 5:00 PM, thus the EVs only affect the grid within this time frame.

5.2.1 Willingness levels

The main objective of smart charging is stabilizing the grid. The V2G-MPC model can

be used to show this beneficial effect. Therefore, the smart charging of EVs should result

in a more stable grid. Scenario 1: 0% of the EVs are smart charging, thus every EV can

only be charged G2V. Scenario 2: 100% of the EVs are smart charging. It is expected

that the grid is more stable for scenario 2.

The resulting network frequency deviations of the TSO and DSO for scenario 1 and

2 over 24 hours are given in Figure 5.2 and Figure 5.3, respectively. The figures give

the maximum and minimum value of the frequency deviation in order to provide a

representation of the frequency deviation over time. Furthermore, the combined SOC of

EVs per building and the combined power flow of EVs per building are given for both

scenarios in Figure 5.5 and Figure 5.6, respectively. When comparing both scenarios it

can be observed from the figures that there is a reduction in grid frequency deviation. In

Scenario 2, when EVs are smart charging, the EVs smart charging results in a smoother

building load to the grid. The EVs are used to compensate for variations in building-side

loads and for variations in EV loads, i.e., building loads power can often get this power

from other EVs parked at the same building. Consequently, the total grid frequency

deviation is reduced by 13% in the full network, and by 22% in the DSO network.
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Furthermore, as EVs are only smart charging for on average 8 hours and 30 minutes, their

stabilizing factor is limited to this time frame. Thus, when the total grid frequency over

the time period of 7:45 AM to 17:45 PM (mean plus standard deviation) is considered,

then the total grid frequency deviation is reduced by 33% and for the DSO network by

54%. It can be concluded that smart charging results in a more stable grid.

Moreover, in Figure 5.4 the power flow of all buildings combined is shown for both

scenarios. It shows the total, the EV, the HVAC and the miscellaneous power flow over

time. Additionally, in Figures 5.5 and 5.6 the SOC and the power flow over time of

all EVs combined per building can be observed, respectively. Logically, the SOC of

combined EVs only increases for scenario 1 and the combined EV’s power flow is never

negative, as V2G is not enabled. Thus, for scenario 2 it can be seen that the SOC

decreases and the combined power flow per building is mostly negative. The survey

provided results for the arrival and the minimum departure charge. In chapter 2 it was

shown that the average departure charge was 15% lower than the average arrival charge.

Thus EVs are able to provide power back to the grid. Which can be seen in Figure 5.6.

Figure 5.2: Scenario 1: the TSO bus frequency deviation for 0% and 100% of EVs
smart charging
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Figure 5.3: Scenario 1: the DSO bus frequency deviation for 0% and 100% of EVs
smart charging

Figure 5.4: The total building, EV, miscellaneous and HVAC power flow over time
for 0% and 100% of EVs smart charging
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Figure 5.5: Scenario 2: the combined SOC and power flow of EVs per building for
0% of EVs smart charging

Figure 5.6: Scenario 2: the combined SOC and power flow of EVs per building for
100% of EVs smart charging
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5.2.2 Asking participants if they activate smart charging

A two-step approach to determining whether an EV has smart charging ON or OFF

was introduced in Chapter 4. More precisely, based on EV owners’ willingness to smart

charge it is determined whether they have a smart charging contract. Then, based

on this willingness it will be determined whether they activate smart charging. For

willingness 5, this activation probability is ρ2
evi = 100%, for willingness 4 ρ2

evi = 80%,

and for willingness 3 ρ2
evi = 60%. Figure 5.7 shows the probabilities for each option

based on the survey results. Figure 5.8 show the percentage of EVs will eventually

smart charge with this approach.

The difference between the introduced two-step approach and the approach from the

previous section, where ρevi = 78%, is fewer EVs with smart charging mode ON. The

higher the number of EVs that smart charge, the less frequency deviation is experienced

in the grid. Consequently, the total grid frequency deviation increases by 5% in the full

network, and by 2% in the DSO network.

Figure 5.7: Based on the willing-
ness to smart charge, the distribution
in percentage for each different option

of the two-step approach is given

Figure 5.8: The percentages of EVs
that have smart charging ON and OFF

for the two-step approach

5.2.3 Number of Electric vehicles

In this section two scenarios are compared. Scenario 1: we have on average 5 EVs per

building. Scenario 2: we have on average 50 EVs per building. Thus, a simulation with

few and with many EVs are compared. It is expected that increasing the number of

EVs per building results in: Firstly, a more stable grid, since more EVs are available

to provide flexibility to anticipate power fluctuations. Secondly, the power load of each

individual EV are reduced, since the load required for stabilizing can be spread among

more EVs.
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In Figure 5.9 the average power load of all the EVs is shown over time for both scenarios.

It can be observed that the power load for scenario 2 is less than for scenario 1. Also,

scenario 1 has more and bigger fluctuations. For scenario 1 the average G2V power load

for an EV is 15.3 kWh and for V2G this is −14.2 kWh. For scenario 2 the average

G2V power load is 11.3 kWh and the average V2G power load is −12.4 kWh. This is a

reduction of 26% G2V power and 13% V2G power. Thus, as expected the power load

of each individual EV are reduced if the number of EVs is increased. Additionally, EVs

provide power to the system as on average their SOC decreases. So an increase of the

number of EVs also results in decrease in power generation, in this case a decrease of

7%. This is not ideal, as it is not realistic for an EV to charge over night to then provide

power to the office during the day. This issue is addressed in Section 5.2.5.

Furthermore, for scenario 2 the number of EVs is increased by ten fold. Thus, the the

total power demand of the EVs is much larger for the second scenario. This increase can

increase the frequency deviation as more power is required. However, there are also more

EVs available to provide power V2G. Moreover, it was found that the total frequency

deviation is reduced by only 1%, and for the DSO network only the reduction is 6%.

The corresponding figures of the frequency deviation for TSO and DSO can be found in

Appendix D. If instead of 24 hours, we look at the time frame from 7:45 to 17:45, then

total frequency deviation is reduced by 8%, and for the DSO network the reduction is

26%. Hence, more EVs provide a more stable grid. However, the difference is not big, as

the number of EVs is increased, the total power demand is increased, which can results

in more instability.

Figure 5.9: Comparing the average power flow of all EVs for simulations with on
average 5 and 50 EVs per building

5.2.4 Charging speed

In this section, two scenarios with different charging speeds are compared. Scenario

1: the maximum (dis)charging speed is set at 7.2 kW, which is the charge rate of a
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level 2 charging pile according to (Office of Energy Efficiency & RE, 2017). Scenario

2: the maximum (dis)charging speed is increased by ten fold to 72 kW. As a result the

charging rate is not a limiting factor anymore. Scenario 2 should result in a reduction

in frequency deviation. Indeed, a higher charging speed the dampening effect of an EV

should increase. Furthermore, in order to provide the dampening effect the load per EV

will increase. Moreover, according to (Energy Element, 2013) the recharging time of

an EV can be a barrier to EV adoption. So a higher charging rate can aid consumers’

receptiveness to EVs and EV owners’ receptiveness to smart charging.

The Figure 5.10 and Figure 5.11 show the TSO and DSO frequency deviation. Sur-

prisingly, the results show that the total frequency deviation increased by 2% for faster

charging. Moreover, the frequency deviation for the DSO network decreased by 12% and

the frequency deviation for the TSO network increased by 7%. For the 7:45 AM to 17:45

PM time interval these values increase by 15%, decrease by 22% and increase by 27%

for the frequency deviation of the total system, the DSO network and the TSO network,

respectively. The higher charging speed brings stability to the TSO grid, however, it

destabilizes the TSO grid.

In Figure 5.12 the total SOC of all EVs is shown for both scenarios. It can be seen that

the total SOC develops differently over time. For scenario 1 the total SOC decreases

Figure 5.10: The TSO bus frequency deviation for a maximum (dis)charging speed
of 7.2 kW and 72 kW
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Figure 5.11: The DSO bus frequency deviation for a maximum (dis)charging speed
of 7.2 kW and 72 kW

gradually over time and close to the departure time it increases again. While scenario 2

has two peaks in SOC, one right after the arrival of most EVs and one right before the

departure of most EVs, the SOC remains relatively constant between the peaks. EVs

should departure with at least their desired SOC and EVs departure at different times

around 17:00, which explains the peaks before the departure time for both scenarios. In

Figure 5.13 the total power flow of all EVs is shown for both scenarios. The power flow

for scenario 1 is much smaller than scenario 2, since the charging is limited by its slower

charging speed. In fact, the total G2V power load increased by 120% and the total V2G

power load increased by 49% for a charging speed of 72 kW. The total power generation

decreased by 6%.

It can be concluded that a faster charging speed for smart charging EVS does not

necessarily result in more benefits to the power grid than a slower charging speed. It

is possible that for the faster charging speed the simulation study parameters are not

accurate. Moreover, the more a battery is used, the more it degrades. There is a

cost function such that the EV’s battery is only used when it is beneficial. However,

for scenario 2 the batteries of EVs are used extensively without a clear benefit to the

stability of the grid. It is also seen that the higher power flow of scenario 2 increases

the stability of the DSO network, while the stability of the TSO network decreases. It
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is possible that due to the hierarchical nature of the model the increase in activity on

the lower level has a negative effect on the stability of the upper TSO level.

Figure 5.12: Comparing the total SOC of all EVs for simulations with a slow (7.2
kW) and fast (72 kW) maximum charging speed

Figure 5.13: Comparing the total power flow of all EVs for simulations with a slow
(7.2 kW) and fast (72 kW) maximum charging speed

5.2.5 The departure state of charge

For subsection 5.2.4 the average desired departure SOC of EVs is lower than the average

arrival SOC. This is because they all use the survey results as input. However, in the

survey it was asked how much participants want their battery to be charged at least

when they leave work. Thus, the desired departure SOC of EV owners will very likely be

higher than the values collected by the survey. In this section the desired departure state

of charge is varied. For all scenario’s the desired state of charge is normally distributed

with a standard deviation of 10%. For scenario 1 the mean is 50%, for scenario 2 it

is 70% and for scenario 3 it is 100%. With an increase of departure SOC it can be

expected that; firstly, the total power load from G2V will increase. Secondly, the total

V2G power load will decrease. Thirdly, the stabilizing benefits to the grid will decrease.

Lastly, the power generated will increase.
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Total frequency
deviation

TSO frequency
deviation

DSO frequency
deviation

Scenario 1 100% 100% 100%

Scenario 2 103% 103% 101%

Scenario 3 115% 114% 119%

Total G2V
power load

Total V2G
power load

Power
generation

Scenario 1 100% 100% 100%

Scenario 2 121% 49% 102%

Scenario 3 198% 4% 108%

Table 5.1: Tables that provide an overview of simulation results which can be used
to compare the three scenarios

Table 5.1 gives the relevant simulation results where scenario 1 is the base case. From

Table 5.1 it can be seen that the frequency deviation increases when the desired departure

SOC increases. Furthermore, it shows that the total G2V load increases and the total

V2G load decreases. Finally, it shows that the power generation increases, in order to

provide the EVs with their desired SOC. In figure 5.14 it is shown that the average SOC

of all the EVs approaches to the desired departure SOC over time. Thus, the simulation

results are as expected. When the desired departure SOC is lowered, smart charging

becomes beneficial to the stability of the grid.

Figure 5.14: Comparing the average SOC of all EVs for three simulations with a
different desired state of charge
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5.2.6 Conclusion

In this chapter research questions 4 and 5 are addressed: ’How does the willingness to

follow smart charging affect the stability of the power grid?’ ’What other factors influ-

ence the success of smart charging?’ The dynamical V2G framework with hierarchical

interactions between TSO, DSO, Buildings and EVs was implemented into Yalmip, by

using MATLAB, and it was optimized with Gurobi. The V2G MPC model is very flex-

ible and can easily be extended, e.g., by introducing smart homes to the system. The

simulation results were discussed in this chapter.

First, it was shown that the increase of the willingness to smart charge significantly

increases the regulative capacity for the grid, because for the scenarios, where 0% and

100% of EVs have smart charging mode ON, the total frequency deviation during which

EVs are smart charging is reduced by 33%. Second, increasing the number of EVs for

smart parking lots has a stabilizing effect. However, the power demand from EVs also

increases, which also has a destabilizing effect on the grid. Third, a faster charging speed

does not clearly provide stabilizing benefits to the grid. Due to the hierarchical nature of

the grid the faster charging speed stabilizes the DSO grid, but destabilizes the TSO grid.

The total power load for EVs also increases, which intensifies the battery degradation

for the EVs. The current simulation study parameters might have to be adjusted to

discourage this further. Lastly, An increase of the desired departure SOC results in a

decrease of regulative capacity for the grid, an increase in G2V load, a reduction in

V2G load and an increase in power generation. Indeed, EVs have to be charged, as its

primary use is transportation, for which electricity is consumed. However, for smart

charging it is preferable to minimize the desired departure charge.



Chapter 6

Vehicle-to-Grid Integration with

High Wind Penetration

Smart charging aids in stabilizing the grid. Furthermore, the integration of RESs into

the energy system can be aided by smart EV charging. The V2G MPC model developed

in Chapter 4 can be applied for optimal frequency control in deterministic systems, in

which power generation and loads are both known beforehand. However, for uncertain

power generation a different approach is required. In this chapter the V2G framework is

extended to include uncertain high wind power penetration. A largely similar approach

as (Badings et al., 2019a) is used to integrate wind power generation into the V2G

framework. In this extended model two ancillary services are considered: reserve power

deployment and demand-side flexibility. Ancillary services compensate for the uncertain

power generation by RESs. In this chapter it will be shown that wind power generation

causes instability in the power system. Furthermore, in (Badings et al., 2019a) demand-

side flexibility was proposed as an alternative form of short-term operating reserve, with

potential long term benefits ,e.g., less environmental impact (Hao, Lin, Kowli, Barooah,

& Meyn, 2014) and lower cost (Lymperopoulos, Qureshi, Nghiem, Khatir, & Jones, 2015)

than traditional reserve. We will show that the smart charging of EVs can significantly

contribute to the demand-side flexibility method of compensating for uncertain power

generation.

In section 6.1 the extension of the V2G framework will be proposed. As most of the

framework was introduced in (Badings et al., 2019a) the discussion of the model will be

limited and will mostly address its extension with V2G. In section 6.2 the simulation

results of three scenarios are presented. The chapter is concluded in section 6.3.

50



Chapter 6: Vehicle-to-Grid Integration with High Wind Penetration 51

6.1 framework/model

In this section the V2G model that was proposed in Chapter 4 is extended with uncertain

wind power generation. Also, reserve power deployment and demand-side flexibility is

integrated in order to compensate for the uncertain nature of wind power generation.

6.1.1 Wind-integrated TSO dynamics

Wind generation is typically connected to the sub-transmission grid, or to the distri-

bution network (Stock, Sala, Berizzi, & Hofmann, 2018). In this thesis wind power

generation is limited to one wind farm, in one location, connected to the TSO network.

The model can easily be extended to include more wind farms.

We define F = {1, . . . , nw} as the set of windfarms. Let the power generated be denoted

by the vector Pw(t) ∈ Rnw . It is assumed that Pw is a realization of an unknown

stochastic process defined on some probability space. Wind farms are connected to TSO

nodes through incidence matrix Υ ∈ Rnt×nw , with entries

vl,n =

{
1, if wind farm n is attached to TSO nodel,

0, otherwise.
(6.1)

A separate variable for the forecast value of the wind power is denoted by P fw(t) ∈ Rnw .

The error between the two is denoted by

∆Pw(t) = Pw(t)− P fw(t) (6.2)

For the scheduling process only the wind forecast value, P fw(t), is available. The TSO

dynamics in 4.4 and the TSO balance constraint in 4.7 are extended such that

xtsof (t+ h) = ftso
(
xtso(t), Pg(t), P

f
w(t), Pld(t), Pbl(t)

)
(6.3)

1Tnt

(
ΠPg(t+ qh)−ΥP fw(t+ qh)− Pld(t+ qh)

)
= 0 (6.4)

where the forecast wind power, ΥP fw(t + qh), is inserted. The TSO state variable is

renamed to xtsof , to indicate that it is the expected trajectory.

When the wind power forecast is perfect, ∆Pw(t) = 0, no intervention is needed to

compensate for any wind cast error. However, if ∆Pw(t) 6= 0, intervention is required

to compensate for errors in the power dispatch. In this case, compensation by ancillary

services is required.
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6.1.2 Ancillary service deployment

Operators strive for the following general power balance, such that the stability is max-

imized and the frequency deviations minimized.

∑
i∈G

Pgi(t) +
∑
f∈F

Pwf
(t) =

∑
i∈G

Pgi(t) +
∑
f∈F

(
P fwf

(t) + ∆Pwm(t)
)

=
∑
b∈B

PBDb
(t), (6.5)

where PGR(k), Pw(k) and PBD(k) are the power generation from generators, generation

from wind power and power demand, respectively at time step t. If there is any wind

power forecast error the balance is no longer satisfied. Ancillary service is needed.

6.1.2.1 Reserve scheduling

Common practice to restore the power balance is to deploy reserve power. Deviations

from the predicted wind generation are compensated by adjusting the generator power

output. We follow an approach similar to (Rostampour, Ter Haar, & Keviczky, 2018).

The reserve power required is determined with the following equation

−
∑
i∈G

Ri(t) = max
(∑
f∈F

∆Pwm(t), 0
)

+ min
(∑
f∈F

∆Pwm(t), 0
)

(6.6)

Where R ∈ Rng is the reserve power dispatch. The generator output can either be

increased or decreased, i.e., up-spinning reserve Rus or down-spinning reserve Rds is

used. The reserve scheduling bounds, Rds(t) and Rus(t), at each time step are

−Rds(t) ≤ R(t) ≤ Rus(t). (6.7)

The scheduled power should also satisfy the generation limits, i.e.,

PminGR ≤ PGR(t) +R(t) ≤ PmaxGR (6.8)

The reserve scheduling revers to the back-up plan that is made to schedule an appropriate

buffer. While the actual reserve dispatch (R) is the actual power that is injected into

the grid to compensate for the wind power error.

6.1.2.2 Demand-side Flexibility

Demand-side flexibility is the capability to shift the production of consumption of energy

in time, while user requirements are still met, and without changing the total energy

production or consumption (Roossien, 2012). An EV could provide flexibility by delaying
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charging for a period, but eventually still meeting the desired departure charge. The

wind power error can be compensated by adjusting power demand. Similar to 6.6 the

scheduled demand-side flexibility is defined as

−
∑
n∈B

Sn(t) = max
(∑
f∈F

∆Pwm(t), 0
)

+ min
(∑
f∈F

∆Pwm(t), 0
)

(6.9)

while the increased demand flexibility (Sdd(t) > 0) and decreased-demand flexibility

(Sid(t) > 0) are determined at each time step

− Sdd(t) ≤ S(k) ≤ Sid(t) (6.10)

In (Badings et al., 2019a) for the flexibility contribution of individual buildings two

sources are considered: (1) building storage system and (2) building HVAC loads. We

add a third source: (3) EVs. EVs can provide a flexibility dispatch when smart charging

mode is ON. This yields the following bounds at time step t

− Sddev (t)− Sddstor(t)− Sddhvac(t) ≤ S(k) ≤ Sidev(t) + Sidstor(t) + Sidhvac(t) (6.11)

where Sddev (t), Sddstor(t), S
dd
hvac(t), S

id
ev(t), S

id
stor(t) and Sidhvac(t) are the increased- and

decreased-demand flexibility using EVs, storage and HVAC loads, respectively. In this

chapter, building energy storage is also integrated in the model. Which dynamics are

given as

xnb
stor(t+ qh+ 1) = ζnbxnb

stor(k) + ηnbPnb
stor(t+ qh+ 1) (6.12)

where xnb
stor is the storage SOC, h is the simulation time resolution, and ζnb and ηnb are

efficiency coefficients of the storage unit. Physical limitations on the storage rate and

SOC level are given as

xminstor ≤ x
nb
stor ≤ xmaxstor (6.13)

Pminstor ≤ P
nb
stor ≤ Pmaxstor (6.14)

6.1.2.3 Reserve and flexibility dispatch dynamics

Reserve and flexibility dispatch can be included in the TSO power balance as

∑
i∈G

(
Pgi(t) +Ri(t)

)
+
∑
f∈F

(
P fwf

(t) + ∆Pwm(t)
)

=
∑
b∈B

(
PBDb

(t) + Snb
(t)
)
, (6.15)
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Figure 6.1: The forecast and actual wind power, and 300 wind power trajectories,
generated by the Markov Chain-based wind power model (Badings et al., 2019a)

where the sum of the reserve and the flexibility dispatch compensate for the total wind

power mismatch:

∑
i∈G

Ri(t)−
∑
n∈B

Sn(t) = max
(∑
f∈F

∆Pwm(t), 0
)

+ min
(∑
f∈F

∆Pwm(t), 0
)

(6.16)

When equation 6.7 and 6.11 are taken into consideration we can give the following

constraint to ensure compensation for wind power error is provided:

−
∑
i∈G

Rusi (t)−
∑
n∈B

Sddn (t) ≤max
(∑
f∈F

(Pwm(t)− P fwm
(t)), 0

)
+

min
(∑
f∈F

(Pwm(t)− P fwm
(t)), 0

)
≤
∑
i∈G

Rdsi (t)−
∑
n∈B

Sidn (t)

(6.17)

6.1.3 Wind power model

For the wind power model only the power generated is considered, instead of considering

the wind speed. The wind power model from (Rostampour, 2012) is considered. The

model generates scenarios of the wind power and the corresponding error, while taking

its temporal correlation into account. The wind power forecast, actual wind power and
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Figure 6.2: Network topology of the w-V2G MPC simulation, the grid structure,
generators (GR), building (BLD) and wind farm (WF) are indicated.

error between the two were discretized, to construct a Markov Chain model capable of

generating realistic wind power trajectories based on different error realizations, which

is depicted in Figure 6.1. The model was successfully integrated into a power system

in (Margellos et al., 2012). Furthermore, (Badings et al., 2019a) integrated the model

in a w-BtG-MPC model. The formulation of the wind power model and the further

integration can be found in (Rostampour, 2012) and (Badings et al., 2019a), respectively.

6.2 Simulation results

In this section the simulation results of three scenarios are discussed. The unique aspect

of each scenario is as follows:

• Scenario 1: Simulation without wind power generation

• Scenario 2: Simulation with wind power generation, EVs are not used as flexibility

dispatch

• Scenario 3: Simulation with wind power generation, EVs are part of the flexibility

dispatch

The simulation parameters can be found in Appendix C. For each simulation the TSO,

DSO, BLD, HVAC, storage and EV dynamics are included, its formulations can be

found in Chapter 4 and section 6.1. For these scenarios every EV has smart charging

mode ON. Furthermore, every EV has exactly the same capacity for these results, as

it reduces the computational time significantly. If the capacity for every EV is varied,

then EVs need individual constraints. Moreover, The EVs’ and storages’ (dis)charging

speed bounds are increased to Pminevi = Pminstor = −25 kW and Pmaxevi = Pmaxstor = 25 kW.

for each scenario the simulation time is 24 hours.
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Figure 6.3: The TSO and DSO frequency deviation for scenario 1
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Figure 6.4: The TSO and DSO frequency deviation for scenario 2
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Figure 6.5: The TSO and DSO frequency deviation for scenario 3
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For scenario 1; wind power generation is excluded. For scenario 2; wind power genera-

tion is enabled. Further, reserve and flexibility scheduling are both enabled, but smart

charging EVs are excluded from flexibility scheduling. For scenario 3; EVs are included

in the flexibility scheduling, and thus wind power generation is also enabled. The main

purpose of the simulation of these scenarios is to show that: first, uncertain and un-

controlled wind power generation results in instability in the grid. Second, the smart

charging of EVs can be used as flexibility dispatch to compensate for the error between

the wind power prediction and the actual wind power load.

The frequency deviations for the TSO and DSO grid over time for all three scenarios

are given in Figure 6.3, Figure 6.4 and Figure 6.5. It can be clearly seen that the grid is

relatively stable for scenario 1. The introduction of energy storage units in the buildings

provides an extra stabilizing factor, as storage was not included in the model of Chapter

5. The introduction of wind power in scenario 2 clearly increases the frequency deviation,

in fact the total frequency deviation increases by 125%. This shows that even though

reserve and flexibility dispatch are enabled the introduction of an uncontrollable form

of energy production into a power system increases the instability of the system’s grid.

Furthermore, the frequency deviation for scenario 2 and 3 are mostly similar, as can be

seen in Figure 6.4 and Figure 6.5. The total frequency deviation is increased by only

2% for scenario 3.
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Figure 6.9: The wind power forecast and the real wind power for scenario 2 and 3

Now, we will look at the power production for all three scenarios. In Figure 6.6 the

average power production per hour for scenario 1 is shown, where the three colours

indicate generator 1, 2 and 3. Figure 6.9 shows the wind forecast and the actual wind

power production for scenarios 2 and 3, which is the same for both scenarios, such that

they can be compared. It shows that the forecast and real power have some similarities,

but there is an wind power error during almost the entire simulation.

In figure 6.7 and Figure 6.8 the original power dispatch, the power mismatch and the

ancillary service deployment for scenario 2 and 3 are shown, respectively. The original

power dispatch is based on the wind power forecast and the power mismatch is based

on the actual wind power. The power mismatch shows clearly the mismatch that is

caused by the incorrect forecast of the wind power generated. This mismatch should

be compensated by ancillary service deployment. This deployment can be be seen in

the third figure. As the power generation for scenario 2 and 3 are identical there is no

difference between the first two graphs of Figure 6.7 and Figure 6.8. However the third

graph shows how reserve and flexibility dispatch are deployed to compensate for the

power mismatch.

Furthermore, we look in detail to ancillary service scheduling and dispatch of scenario

2 and 3. In Appendix D Figures are presented that show the flexibility and reserve

scheduling and dispatch for both scenarios. It indicates that the ancillary services have

the capacity to deal with a significantly bigger wind error than the wind error in these

simulations. Moreover, in Figure 6.10 and Figure 6.11, respectively. The figures give
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the total ancillary service dispatch per hour over time. When we compare both figures

it becomes clear that the share of flexibility dispatch is higher for scenario 3 during the

hours 8 through 17. Reserve dispatch is 47% and reserve dispatch is 53% of the total

ancillary service dispatch for scenario 2. Reserve dispatch is 34% and reserve dispatch

is 66% of the total ancillary service dispatch for scenario 3. The difference between

these scenarios is the introduction of EV smart charging flexibility dispatch in scenario

3. Thus, the flexibility dispatch of EVs is used during the hours that EVs are available

on the smart parking lot, instead of reserve dispatch.

Now, consider the Figures 6.12 and 6.13, which show the flexibility dispatch composition

for scenarios 2 and 3, respectively. For Figure 6.12 EV flexibility dispatch is not included,

while in Figure 6.13 it is. This shows the contribution of the smart charging of EVs

to the compensating for the wind power error via demand-side flexibility. For scenario

2 storage is 45% and HVAC is 55% of the total flexibility dispatch. For scenario 3

storage is 32%, HVAC is 41% and EVs are 27% of the total flexibility dispatch. The EV

deployment is limited by the arrival and departure time of the EVs. During the hours

that EVs are available for smart charging the flexibility dispatch comes almost entirely

from EVs.
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Figure 6.10: The wind power error and flexibility and reserve dispatch for scenario 2
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Figure 6.11: The wind power error and flexibility and reserve dispatch for scenario 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hours)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

P
o
w

er
 (

M
W

)

Flexibility dispatch composition (scenario 2)

Total flexibility dispatch

Storage

HVAC

Figure 6.12: The composition of the flexibility dispatch for scenario 2
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Figure 6.13: The composition of the flexibility dispatch for scenario 3
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6.3 Conclusion

In this chapter the model for the integration of wind power generation was proposed,

thus a W-V2G MPC model with social behavior was designed. Then, simulation results

of this model were presented. It was shown that uncontrolled and hard to predict RESs

have a destabilizing effect on the power grid. Moreover, in contrast to the traditional

reserve scheduling method, flexibility scheduling can provide long-term benefits, i.e.,

less environmental impact and lower cost. Furthermore, it was shown that the smart

charging of EVs can contribute to the flexibility dispatch to compensate for the wind

power error between the forecasted and the actual power load.



Chapter 7

Conclusion, Limitations and

Further Work

7.1 Conclusion

This thesis has been undertaken in order to embed social behavioral factors in a smart

charging framework, and to explore the social factor’s role in this hierarchical smart

charging framework. Some existing research work of EV owner’s behavior is based

around car adoption driving behavior, and attitudes towards EVs. However, it was found

that social aspects are currently neglected in the field of smart charging. While, the

participation of EV owners is essential. Hence, without many EVs participating in smart

charging the concept will be unsuccessful. Similar to EV car adoption, we investigate

the influence of the willingness of EV owners to smart charge. With this knowledge it

becomes possible to propose policies to increase smart charging participation.

The main social factor is the willingness of an EV owner to follow a smart charging

contract. This willingness is determined for a population of employed Dutch EV owners.

It was found that EV owners are very willing to smart charge. The willingness to

smart charge is positively correlated to the environmental self-identity and more weakly

correlated to range anxiety. A financial incentive did not motivate survey participants

to participate in smart charging.

Furthermore, a V2G-MPC model is proposed in which social behavior is embedded. The

model is a holistic power system framework with an hierarchical integration of respec-

tively, TSO, DSO and BLD with EV and HVAC. Later this model is expanded with

wind power generation, for which the wind power prediction error can be compensated

with reserve and flexibility scheduling. The smart charging of EVs can contribute to

63
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the flexibility dispatch. Due to the nature of MPC the model is very flexible and can

be extended with relative ease. Granted that MPC models have to be mathematically

accurate to provide good results and an expansion of the model will increase the com-

putational time.

Moreover, it was found that increasing the willingness of EV owners to participate in

smart charging, increases the beneficial effects of smart charging on the power grid.

In other words, when more EVs are available for smart charging, then we have more

regulative capacity for the grid. It was also shown that uncertain wind power generation

has a destabilizing effect on the system. Lastly, it was shown that the smart charging

of EVs can contribute to the penetration of renewable energy sources.

Concluding, as the penetration of RESs in energy production and the penetration of

EVs in transportation increases, smart charging will become increasingly important. It

provides a solution for the unstable nature of RESs, and it can provide a solution for the

increase in peak power demand. The cooperation of EV owners is essential for the success

of smart charging. In this thesis it was shown that EV owners are willing to participate in

smart charging. Additionally, it was shown that environmental self-identity is possibly

a more important motivational factor than financial incentives, indicating a behavior

unique to EV owners.

7.2 Limitations & Furter work

The survey results used for this thesis was limited, as smart charging was only a small

part of the survey. In order to establish a broader understanding of the social behavior of

EV owners a more thorough survey can be done. Questions can be improved to further

investigate the willingness of EV owners to smart charge and its relating measures.

The framework proposed in this thesis can be easily adjusted to different network and

parameter settings, thus many different scenarios an be simulated. Furthermore, the

framework can be easily extended. For example, smart homes, smart charging at the

homes of EV owners, aggregators and solar power generation can be included in this

model.

Moreover, the model for battery degradation was limited, as the depth of discharge and

intermittent charging were not included in the model. In order to provide more accurate

dynamics for battery degradation a model similar to (Koller, Borsche, Ulbig, & Ander-

sson, 2013) can be integrated. Furthermore, the peak power demand was addressed as

a problem for when the penetration of EVs in transportation increases and the smart
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charging model reduced the peak load. However, this dynamic was not specifically in-

cluded in the model. The model can be further expanded with dynamics that reduce

the peak load of EVs.

This thesis provides a starting point for further research on the social behavior of EV

owners. As the results indicate a unique behavior that should be further investigated.

Many studies exist on social factors related EV adoption. Further research on social

factors related to smart charging should be done to create a good understanding. Then,

policies and solutions can be proposed to aid in user receptiveness to smart charging.



Appendix A

Survey questions

In this appendix questions from the NewMotion customer survey are presented in order

to give insight in how measures were determined. The results from these questions are

discussed in chapter 4.

Figure A.1: Questions that are used to determine range anxiety and environmental
self-identity

66
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Figure A.2: Question on smart charging willingness

Figure A.3: Questions on arrival and departure charge

Figure A.4: Question on providing power to the office, answers are given on a 1 to 5
scale



Appendix B

Survey results extension

Here some additional results from the NewMotion survey are given. First, tables on car

brands, car types and age ranges and smart charging willingness are presented. Then,

figures on EVs used to power the office, range anxiety, ESI and the range of EVs are

shown. Finally, the composition of the survey participants in terms of gender, age,

chargepoint locations, home location and car adoption method are presented.

Car Brand Frequency
Average SC
willingness

Tesla 516 4.00

Nissan 117 3.86

Hyundai 160 3.89

Renault 72 4.04

Opel 68 3.79

Jaguar 60 3.48

Other 46 3.80

BMW 46 4.17

Volkswagen 65 3.82

Kia 13 3.46

Fiat 7 3.57

Mercedes 12 4.33

Citroën 5 4.20

Peugeot 3 3.33

Smart 3 4.00

Mitsubishi 2 5.00

Audi 2 3.00

Think 1 3.00

Zero 2 3.00

Volvo 1 5.00

Total 1201 3.92

Table B.1: The frequency and average willingness to smart charge of participants
with an EV of the specified brand

68
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Age Frequency Willingness to SC SD

21-30 8 4.75 0.43

31-40 77 4.00 1.14

41-50 315 3.95 1.14

51-60 548 3.87 1.18

61-70 217 3.93 1.13

71 and older 31 3.97 1.31

Table B.2: The frequency of participants in age group, the willingness to smart charge
per age group and its standard deviation

Car Number
Capacity

[kWh]
Avg range

[km]
Avg SC
willingness

Tesla Model S 245 85.0 369 3.91

Tesla Model 3 181 72.5 403 4.13

Nissan Leaf 111 36.0 202 3.83

Hyundai KONA Electric 97 64.0 399 3.78

Tesla Model X 88 86.8 362 3.95

Renault Zoe 64 52.0 201 4.06

Hyundai IONIQ Electric 63 38.3 201 4.06

Opel Ampera-E 63 58.0 329 3.78

Jaguar I-PACE 60 84.7 343 3.48

Other 46 60.7 360 3.80

BMW i3 44 37.9 191 4.16

Volkswagen e-Golf 33 32.0 202 3.64

Volkswagen e-Golf 2017 27 32.0 197 4.07

Fiat 500e 7 42.0 124 -

Mercedes B250e 7 28.0 146 -

Renault Kangoo Z.E. 7 31.0 113 -

Nissan e-NV200 Evalia 6 38.0 124 -

Mercedes B-class 5 28.0 154 -

Citroën C-Zero 5 14.5 88 -

Opel Ampera 5 58.0 231 -

Volkswagen e-up! 5 32.3 112 -

Kia Soul EV -39kWh 3 39.2 155 -

Kia Soul EV -64kWh 1 64.0 430 -

Peugeot ION 3 14.5 97 -

Smart Fortwo 3 16.7 113 -

Mitsubishi iMiEV 2 14.5 105 -

Tesla Roadster 2 53.0 300 -

Renault Fluence Z.E. 1 70.0 95 -

Think City 1 24.0 100 -

Volvo C30 EV 1 24.0 250 -

Table B.3: The frequency that participants own a car type, the battery capacity per
car (EV Database, n.d.) and the average range given by survey participants
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Figure B.1: Frequencies of answers on willingness to have battery used to power an
office

Figure B.2: Frequencies on whether a participant their EV has sufficient range

Figure B.3: Frequencies of answers on environmental self-identity questions combined
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Figure B.4: Range of EVs in kms given by participants

Figure B.5: Percentage of participants per gender

Figure B.6: Percentage of participants per age groups
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Figure B.7: Percentage of participants with a chargepoint at home, work, both or
neither

Figure B.8: Percentage of participants per home location area

Figure B.9: Percentage of participants per car adoption type



Appendix C

Simulation study parameters

This appendix provides a full list of parameters used in the dynamics and constraints of

the simulation studies in this thesis.

Parameter Value Units Description of source

Tend 24 h End time of simulation
Tp 3600 s MPC receding horizon time
h 300 s Simulation time resolution

Table C.1: Simulation time parameters

Parameter Value Units Description of source

M 0.06 MW s2 Inertia coefficient (Rodriguez, Rodŕıguez, & Payán, 2007)
D 4.50 MW s Damping coefficient (Rodriguez et al., 2007)

D̂ 0.00 MW s Frequency sensitive load
PBL 0.01 MW Base load
PminGR 0 MW Minimum power generation
PmaxGR 100 MW Maximum power generation

P ramp,dwGR -1 MW Maximum generator ramp down
P ramp,upGR 1 MW Maximum generator ramp up ’

Table C.2: TSO network parameters

Parameter Value Units Description of source

M i 0.06 MW s−2 Inertia coefficient, interface (Rodriguez et al., 2007)
Di 4.50 MW s−1 Inertia coefficient, interface (Rodriguez et al., 2007)

D̂i 0.00 MW s−1 Frequency sensitive load
P iBL 0.01 MW Base load

Table C.3: DSO network parameters
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Parameter Value Units Description of source

R1 5.8 ◦C MW−1 Outer wall resistance
R2 11..6 ◦C MW−1 Inner wall resistance
Rwin 655 ◦C MW−1 Window resistance
Czone 21.1 × 103 MJ ◦C−1 Zone thermal capacity
Cwall 11.3 × 102 MJ ◦C−1 Wall thermal capacity
µhvac 3 - HVAC coefficient of performance
Tminday 21.5 ◦C Minimum temperature during day

Tmaxday 23 ◦C Maximum temperature during day

Tminnight 21.5 ◦C Minimum temperature during night

Tmaxnight 25 ◦C Maximum temperature during night

tstartday 8 h Start time of day

tendday 20 h End time of day

Pminhvac 0 MW Minimum HVAC power
Pmaxhvac 1 MW Maximum HVAC power

P ramp,dwhvac -0.1 MW Minimum HVAC ramp down
P ramp,uphvac 0.1 MW Maximum HVAC ramp up

Table C.4: Building parameters, mostly adopted from (Taha et al., 2017)

Parameter Value Units Description of source

xminevi Differs per EV kWh The minimum SOC of an EV
xmaxevi Differs per EV kWh The maximum SOC of an EV
x0
evi Differs per EV kWh The arrival SOC of an EV

Pminev -10 kW
The maximum discharging rate, V2G
(Office of Energy Efficiency & RE, 2017)
(Renault, 2020)

Pmaxev 10 kW
The maximum charging rate, V2G
(Office of Energy Efficiency & RE, 2017)
(Renault, 2020)

Tarri
Normal distributed
µ =08:30 σ =00:45

hh:mm The arrival time of an EV

Tdepi
Normal distributed
µ =17:00 σ =00:45

hh:mm The departure time of an EV

δevi 1 - The state efficiency parameter
bevi 1 - The charging efficiency parameter

Table C.5: Electric vehicle parameters

Parameter Value Units Description of source

xmins 10 kWh Minimum buffer level
xmaxs 63 kWh Maximum buffer level
x0
s 25 kWh Initial buffer level
Pminstor -25 kW Minimum storage rate
Pmaxstor 25 kW Maximum storage rate
ζ 1 - State efficiency parameter
η 1 - Input efficiency parameter

Table C.6: Storage parameters for Chapter 6
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Parameter Value Units Description of source

qTSO 103 $/MW2 Cost of TSO frequency deviation
qDSO 103 $/MW2 Cost of DSO frequency deviation
qbatdeg 0.012 $/MW2 Cost of battery degradation (Koller et al., 2013)
qPGR .05 $/MW2 Cost of generator production
qPBLD .05 $/MW2 Cost of grid power

Table C.7: The cost parameters for Chapter 5

Parameter Value Units Description of source

qTSO 103 $/MW2 Cost of TSO frequency deviation
qDSO 103 $/MW2 Cost of DSO frequency deviation
qbatdeg 0.012 $/MW2 Cost of battery degradation
qRus 103 $/MW Up-spinning reserve cost
qRds 103 $/MW Down-spinning reserve cost
qSBD 103 $/MW Cost of building flexibility

Table C.8: The cost parameters for Chapter 6



Appendix D

Simulation results extension

In this appendix some additional figures of the simulation results of Chapter 5 and

Chapter 6 are presented. Firstly, the TSO and DSO frequency deviation for scenarios

with averages of 5 and 50 EVs per building. Secondly, the TSO and DSO frequency

deviation for scenarios with maximum (dis)charging speed of 7.2 kW and 72 kW, re-

spectively. Lastly, the reserve scheduling and dispatch and the flexibility scheduling and

dispatch are given for scenario 2 and scenario 3. For scenario 3 the smart charging of

EVs is included in the demand-side flexibility composition for wind power errors. While

for scenario 2 smart charging is not included, the flexibility scheduling only includes,

storage and HVAC.
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Figure D.1: The TSO bus frequency deviation for 5 and 50 EVs on average per
building

Figure D.2: The DSO bus frequency deviation for 5 and 50 EVs on average per
building
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Figure D.3: The reserve scheduling and dispatch for scenario 2 from chapter 6
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Figure D.4: The flexibility scheduling and dispatch for scenario 2 from chapter 6
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Figure D.5: The reserve scheduling and dispatch for scenario 3 from chapter 6
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Figure D.6: The flexibility scheduling and dispatch for scenario 3 from chapter 6
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Mullan, J., Harries, D., Bräunl, T., & Whitely, S. (2012). The technical, economic and

commercial viability of the vehicle-to-grid concept. Energy Policy , 48 , 394–406.

Mwasilu, F., Justo, J. J., Kim, E.-K., Do, T. D., & Jung, J.-W. (2014). Electric vehicles

and smart grid interaction: A review on vehicle to grid and renewable energy

sources integration. Renewable and sustainable energy reviews, 34 , 501–516.

Netherlands Enterprise Agency. (2020). Statistics electric vehicles and charging in

the netherlands. Retrieved from https://www.rvo.nl/sites/default/files/

2020/04/Statistics%20Electric%20Vehicles%20and%20Charging%20in%

20The%20Netherlands%20up%20to%20and%20including%20March%202020.pdf

(Accessed: 2020-04-28)

Niesten, E., & Alkemade, F. (2016). How is value created and captured in smart

grids? a review of the literature and an analysis of pilot projects. Renewable and

Sustainable Energy Reviews, 53 , 629–638.

Office of Energy Efficiency & RE. (2017). Electric vehicle charging at home typ-

ically draws less than half the power of an electric furnace. Retrieved from

https://www.energy.gov/eere/vehicles/articles/fact-995-september

-18-2017-electric-vehicle-charging-home-typically-draws (Accessed:

2020-05-22)

Pavlak, G. S., Henze, G. P., & Cushing, V. J. (2014). Optimizing commercial building

participation in energy and ancillary service markets. Energy and Buildings, 81 ,

115–126.

Peng, M., Liu, L., & Jiang, C. (2012). A review on the economic dispatch and risk

management of the large-scale plug-in electric vehicles (phevs)-penetrated power

systems. Renewable and Sustainable Energy Reviews, 16 (3), 1508–1515.

Peterson, S. B., Apt, J., & Whitacre, J. (2010). Lithium-ion battery cell degradation

resulting from realistic vehicle and vehicle-to-grid utilization. Journal of Power

Sources, 195 (8), 2385–2392.

Qin, S. J., & Badgwell, T. A. (2003). A survey of industrial model predictive control

technology. Control engineering practice, 11 (7), 733–764.

https://www.rvo.nl/sites/default/files/2020/04/Statistics%20Electric%20Vehicles%20and%20Charging%20in%20The%20Netherlands%20up%20to%20and%20including%20March%202020.pdf
https://www.rvo.nl/sites/default/files/2020/04/Statistics%20Electric%20Vehicles%20and%20Charging%20in%20The%20Netherlands%20up%20to%20and%20including%20March%202020.pdf
https://www.rvo.nl/sites/default/files/2020/04/Statistics%20Electric%20Vehicles%20and%20Charging%20in%20The%20Netherlands%20up%20to%20and%20including%20March%202020.pdf
https://www.energy.gov/eere/vehicles/articles/fact-995-september-18-2017-electric-vehicle-charging-home-typically-draws
https://www.energy.gov/eere/vehicles/articles/fact-995-september-18-2017-electric-vehicle-charging-home-typically-draws


Bibliography 84

Renault. (2020). Calculate the charging time for your new zoe. Retrieved from https://

www.renault.co.uk/electric-vehicles/zoe/battery.html (Accessed: 2020-

05-29)

Richardson, D. B. (2013). Electric vehicles and the electric grid: A review of modeling

approaches, impacts, and renewable energy integration. Renewable and Sustainable

Energy Reviews, 19 , 247–254.
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