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Abstract

Many governing systems struggle when dealing with social dilemmas as people are reluctant
to cooperate for the benefit of the greater good. Research has shown that zero-determinant
strategies are effective in allowing an autocrat to have significant control over the group
payoff, irrespective of their opponents’ strategies. This study aims to take real-life factors
such as discounting future payoffs or non-linearity into account to determine how enforceable
the strategies are in the context of the public goods game. Building on existing findings
regarding infinitely repeated, multiplayer social dilemma games with an arbitrary action
space, it asks: how much control do autocrats really have over the population as a whole?

Analysis of existing research on zero-determinant strategies derived minimum threshold
requirements on several game parameters. Sensitivity analysis then details the effect of
varying multiple parameters on the derived thresholds. The results deduce necessary
conditions that must be met, which limits the enforceability of each strategy. On this basis,
autocrats can control the population if and only if they take notice of those conditions.
Further research is needed to test the outcomes of this research in similar social dilemma
games to determine the generality of the derived results.
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1 INTRODUCTION

1 Introduction

Many of the world’s most severe problems arise in areas such as economics, political science
and evolutionary biology, ranging from climate change to world wars (Dyke 2020). Issues
surface due to conflict of interest between individuals and groups, which occurs when
collective interests are at odds with private interests, also referred to as social dilemmas
(Mcavoy & Hauert 2016).

In social dilemmas, mutual cooperation is the most successful way to prevent free-riding.
However, reciprocal cooperation becomes extremely restrictive as group size increases
(Boyd & Richerson 1988). Press and Dyson discovered a new set of strategies that prove
successful in such social dilemmas, known as zero-determinant (ZD) strategies. They
enforce a linear relationship between the players’ payoffs in an infinitely repeated game
irrespective of the co-player’s actual strategy (Hilbe et al. 2018), allowing an autocrat to
have significant control over the outcome of the game (Press & Dyson 2012).

Martirosyan et al. (2020) extended on existing research by exploring the new set of
probabilistic memory-one strategies; ZD strategies, when applied to multiplayer, infinitely
repeated games with an arbitrary action space in the context of the public goods game
(PGG). It was then deduced that there are restrictive conditions that must be met in
order to successfully enforce the various ZD strategies (Pan et al. 2015), as well as bounds
on the value that the autocrat can assign to its opponents in the equaliser strategy case.
Considering this, the strategies are further explored in this work in order to investigate
the effect of discounting future payoffs as well as non-linearity on the enforceability of
the ZD strategies. This is done by exploring constraints on the discount factor and the
introduction of a minimum entry threshold requirement in the PGG. Sensitivity analysis
is then conducted on the derived restrictive conditions to investigate the enforceability of
each strategy under diverse parameter values.
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2 PROBLEM ANALYSIS

2 Problem Analysis

In this section, the background of the problem is thoroughly analysed. Firstly, existing
findings regarding autocratic zero determinant strategies are analysed, and an overview of
the social dilemma game focused on throughout this research is provided as a base for the
body of knowledge. This preliminary research then deduces the research project’s main
objective.

2.1 Problem Context

2.1.1 Existing Findings

Past research deduced that cooperation strategies based on trust were found to improve
players’ performance and overall payoffs. Therefore, systems rely on individuals setting
aside their interests for the benefit of the greater good (Martirosyan et al. 2020). However,
Press and Dyson’s recent discovery of the new class of strategies: Zero-Determinant (ZD)
strategies, now allows an autocrat to exert unilateral control over iterated interactions or
pin the expected payoff of opponents (Pan et al. 2015). A player can use an autocratic
strategy to extort an unfair share of the payoffs by enforcing a linear relationship between
their payoff and that of the opponent (Martirosyan et al. 2020). Therefore, one player
can have a considerably significant effect on the outcomes of a large population in social
dilemma games. This research aims to delve into ZD strategies and explore how one player
can control the outcome of a large population in social dilemma games.

In the context of the public goods game, research shows that there are certain restrictive
conditions that must be met in order to successfully implement in the game each strategy
since different ZD strategies evolve under various evolutionary conditions (Govaert &
Cao 2019a). Martirosyan et al. (2020) have already given a kick-start to this research by
extending existing findings about autocratic strategies in standard infinitely repeated and
discounted multiplayer games from only having two action spaces to being arbitrary. Their
simulations were then applied in the context of the public goods game (PGG) to explore
the required conditions on specific parameters, that allow each sub-strategy to enforce a
linear payoff relationship.

2.1.2 Body of Knowledge

Although the discovery of ZD strategies was derived from iterated prisoner’s dilemma
(IPD), further research shows that ZD strategies are not confined to pairwise games (Hilbe
et al. 2018). The two-player, two-strategy (2x2) IPD does not give a realistic representation
of how real-world issues are; therefore, other symmetric social dilemma games are more
useful for research. Firstly, the PGG is a good reflection as it involves a large number
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2.2 Problem Owner and Stakeholder Analysis 2 PROBLEM ANALYSIS

of players with an arbitrary action space. In this game, public goods are considered
any resource which benefits everybody regardless of whether they have helped provide it.
Here, every player i ∈ {1, ..., N} contributes an amount xi ∈ [0, 1] to a common pool, at a
contribution cost (c). Total contributions are then multiplied by a known factor (r), which
represents the players’ productivity level and evenly shared among all group members (N),
regardless of whether or not they contributed (Pan et al. 2015). The utility function for
player i is given by

ui(xi, x−i) =
rc

∑k=N
k=1 xk
N

− cxi (1)

with 1 < r < N and c > 0.

Here, defection is favoured when the other player cooperates, which occurs at the cost of
the overall payoff (Kümmerli et al. 2007). Even if, in the short run, it pays off to be selfish,
mutual cooperation can be favoured when the individuals encounter each other repeatedly
(Govaert & Cao 2019a).

2.1.3 Problem Statement

In Martirosyan et al. (2020), necessary conditions on specific parameters for the existence
of autocratic strategies in multiplayer games have been derived, mainly in the context of
the public goods game. It is still unclear how the element of discounting future rewards
or the introduction of a non-linear payoff function influences the enforceability of the ZD
strategies and how varying game parameters affect the derived conditions.

2.2 Problem Owner and Stakeholder Analysis

As problem owners and the sole key players in this research project, Cao and Martirosyan are
interested in making their research more applicable to real-life scenarios. They have shown
interest in exploring further necessary conditions for the existence of autocratic strategies
as well as applying their developed theory to games with non-linear payoff functions.
Once this is achieved, the findings can then be generalised by being applied to different
social dilemma games. This, in turn, allows the application to a vast range of domains,
giving rise to crowd stakeholders such as economists, mathematicians, philosophers, and
biologists, who would be interested in the possible implementation of those strategies in
their governing systems (Bhuiyan 2018).

In the context of the public goods game, the government could be considered a key provider
of public goods such as police protection or public health funding. Therefore, governments
are also considered stakeholders, as this research would give insight into how they can
overcome the free-rider problem, where citizens attempt to use the public good without
paying for it (OpenStax 2016).
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3 RESEARCH GOAL

3 Research Goal

3.1 System Description and Scope

The research will commence by delving into the public goods game to explore the element
of discounting future rewards, represented by a discount factor (λ). From this, minimum
threshold constraints on λ are derived for each ZD strategy. Then, to prevent the tragedy
of the commons in the public goods game, a conditional minimum total donation amount
is set to enforce mutual cooperation and compensate for the lack of individual control,
making the game return non-linear payoff functions (Hilbe et al. 2014). For each of the
conditions derived, the influence of different parameter values such as group sizes and
multiplication factors on the derived necessary conditions will be explored.

In-depth analysis and mathematical simulations of games with the following characteristics
will be focused on throughout this research;

Most game theory researchers apply their findings in the context of the classic iterated
prisoner’s dilemma (IPD), limiting research to two-player games with two possible moves:
cooperate or defect (Mcavoy & Hauert 2016). This research aims to extend further by
investigating multi-player games that are infinitely repeated with an arbitrary action space
rather than only having two possible actions. However, the autocrat will only play two
actions throughout the repeated game, while others have a continuous action space to
choose from. This two-point autocratic strategy is focused on for simplification since a
complex integral for the payoff function is used (Mcavoy & Hauert 2016). In addition, a
discount factor will be used to essentially assign lower values to future payoffs, changing
the relative weights of payoff functions of different players (Petrosyan & Zenkovic 1996).

According to previous research findings, a symmetric game with a rich action space makes
only considering the last previous round of the game enough to support all equilibrium
payoffs (Barlo et al. 2009). Also, Press and Dyson explored that a longer memory does
not give an advantage if a game is indefinitely repeated (Press & Dyson 2012). This
research focuses on infinitely repeated games with an arbitrary action space; therefore, the
scope of this research will be limited to memory-one strategies, only taking the previous
round into account. Finally, the four main ZD sub-strategies: fair, generous, equaliser and
extortionate, will be explored in this research as they are the most prominent (Ichinosea
& Masuda 2018) (Hilbe et al. 2014).
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3.2 Research Objective 3 RESEARCH GOAL

3.2 Research Objective

This research aims to determine the effect of changing a social dilemma game’s rules and
parameters on the necessary conditions required to enforce autocratic strategies in the
context of the public goods game. This can be done by acquiring inexhaustible knowledge
regarding different ZD strategies to mathematically model and simulate each sub-strategy’s
outcomes under varying states.

3.3 Deliverable

This project requires extensive research due to the recent discovery of ZD strategies and
scarcity of information regarding their implementation in social dilemma games other
than the iterated prisoner’s dilemma. The first aim of this research project is to apply
developed theories on ZD strategies to discount future payoffs and introduce non-linearity
to a modified PGG and provide an overview of the limitations on certain parameters for
ZD strategies to be enforced in the context of PGG.

3.4 Research Questions

The following research questions will be answered during the research to gain the required
knowledge to steer research and achieve the final objective.

1. What are the necessary conditions that allow autocratic strategies to enforce the linear
payoff function successfully?

• How does the element of discounting future payoffs, represented by the discount
factor, affect the existence of autocratic strategies?

• How does changing the PGG game parameters influence the necessary conditions?

2. How does a non-linear payoff function influence the enforceability of the strategies?

3.5 Quick Risk Analysis

After careful analysis of how this research project is structured, a few factors impose a
risk on the feasibility and applicability of the results in a vast range of domains. Firstly,
due to the time constraint, the research is only conducted in the context of the public
goods game and therefore, the applicability of the findings for similar games are assumed
but not tested. Also, MATLAB is used to conduct sensitivity analysis and determine how
some parameters are affected based on changes in other parameters. Due to the range
of parameters involved with social dilemma games, some parameters must be fixed to a
specific value, limiting the variation of the outcomes.

5



4 PRELIMINARIES

4 Preliminaries

In this section, the preliminary definitions, notations, and assumptions are formally
outlined.

R Set of real numbers

N Total number of players in a game

S Action space

Si Action space for player i

x Action profile

π Combined payoff function

ε Infinitesimal number

λ Discount factor

p0 Initial probability to cooperate

χ Slope of zero-determinant strategy

l Baseline of zero-determinant strategy

Table 1: Basic symbols and notations used throughout this research project

For each player i ∈ {1, ..., N}, the available action space is a measurable space, denoted
by Si. In this research project, the autocrat has a discrete action space with two possible
actions; cooperate or defect and is denoted by s1 = 0 and s2 = 1. However, the all the
opponents employ continuous action spaces in the unit interval [0,1].

In addition, the action profile generated by N players is denoted by x = (xi, x−i), where
xi is the autocrat’s action and x−i represents the action profile chosen by the opponents
with x−i ∈ S−i =

∏
j 6=i Sj. Finally, let ui and uj denote the payoff utility function of the

autocrat and of an opponent, respectively.

Note that the normalised cumulative payoff after t rounds to player i is denoted by πi and
defined as

πi = (1− λ)
t=∞∑
t=0

λtui(x
t
i, x

t
−i).

Four main sub-classes of ZD strategies have been distinguished; fair strategies ensure that
the own payoff (πi) matches the average payoff of the group (π−i); generous strategies let

6



4.1 Assumptions 4 PRELIMINARIES

a player perform below average; extortionate strategies allow a player to perform above
average and equaliser strategies allow a player to determine the payoff of the opponent
unilaterally (Hilbe et al. 2014) (Ichinosea & Masuda 2018). The basic property for each
strategy is mathematically shown in Table 2 below.

ZD strategy Property

Fair πi = π−i

Generous πi ≤ π−i

Extortionate πi ≥ π−i

Equaliser π−i = l

Table 2: Properties of the four main ZD strategies; πi represents the autocrats own payoff,
while π−i matches the average payoff of the group.

4.1 Assumptions

The research focuses on symmetric N-player games, which means that the game’s outcome
depends only on one’s own decision and the number of cooperating co-players, and hence,
it does not depend on which of the co-players have cooperated (Govaert & Cao 2019b).
The following assumptions are consistent throughout the research as they establish the
definition of a social dilemma where conflict of interest arises;

Assumption 1. If a player fixes their action, but co-players cooperate more in total, the
player receives a higher payoff. Therefore, irrespective of their own strategy, a player
always prefers others to contribute more.

if x−i > x′−i

then ui(xi, x−i) > ui(xi, x
′
−i)

Assumption 2. If all co-players fix their strategies, a player will receive less if they contribute
more.

if xi > x′i

then ui(xi, x−i) > ui(x
′
i, x−i)

Assumption 3. Mutual cooperation is always favoured above mutual defection.
if (xi, x−i) = (1, ..., 1) and (x′i, x

′
−i) = (0, ..., 0)

then ui(xi, x−i) > ui(x
′
i, x
′
−i)

The aforementioned assumptions are analogous to those made in (Martirosyan et al. 2020).
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5 Public Goods Game

In this section, each of the ZD strategies will be thoroughly analysed and simulated in
order to deduce new restrictive conditions and determine the effect, if any, on altering
the game’s parameters such as the number of players (N), multiplication factor (r) and
contribution cost (c) on the derived conditions.

Firstly, the parameters used in the derivations are defined.

Generally, repeating rounds in a social dilemma game influences how agents react in
successive rounds, and in many cases, cooperation may prevail in infinitely repeated games
(Dal et al. 2009). Repeated interactions may be relevant since reputation, trust, reward,
and punishment can then play a role (Pan et al. 2015). Therefore, the average payoff for
the repeated game is defined as the average payoff that players obtain over all rounds.
The autocrat’s (player i) average cumulative is represented by πi, while π−i represents the
weighted cumulative payoff of all opponents.

In order to successfully enforce the linear payoff relationship

απi +
∑
j 6=i

βjπj + γ = 0 (2)

for a bounded function ϕ(.) and fixed α, γ ∈ R, β = {βj ∈ R|j 6= i}, the following equation
must be satisfied

αui(x) +
∑
j 6=i

βjuj(x) + γ = ϕ(xi)− λ
∫
s∈Si

ϕ(s)dσi[x](s)− (1− λ)
∫
s∈Si

ϕ(s)dσ0
i (s) (3)

given an action profile x = (xi, x−i) ∈ Si × S−i, for any strategies of the autocrat’s N-1
opponents, where σi[x] is player i’s strategy, and σ0

i is their initial strategy. Here, σi[x](s)
gives the probability that player i plays an action s after the action profile x was played,
while σ0

i (s) gives the probability to apply action s in the first round of the game.

Due to the complexity of the integrals in (3), Martirosyan et al. (2020) developed a corollary
to achieve simplification by limiting the autocrat’s action space to two actions throughout
the game (cooperate or defect), while co-players have a continuous action space to choose
from.

Since an autocrat (player i) is limited to two actions (s1, s2) their payoff functions are
given by

ui(x1) =
rc(

∑
j 6=i xj + 1)

N
− c, ui(x2) =

rc
∑

j 6=i xj

N
(4)

with 1 < r < N and c > 0.

8



5 PUBLIC GOODS GAME

The first function in (4) portrays the utility function in the case where the autocrat
cooperates and the opponents are free to choose any action from the continuous action
space x1 = (1, x−i). However, the second function applies when the autocrat chooses to
defect, given a specific action profile x2 = (0, x−i). Here, it is clear that the autocrat
prefers others to contribute but not himself, as this yields a higher payoff function.

Re-parameterisation

For the public goods game, it is more convenient to proceed with a slightly different
representation of ZD strategies. As done in Hilbe et al. (2014), the parameter transformation
is as follows

ρ = −
∑
j 6=i

βj, χ =
α

ρ
,

ωj 6=i = −
βj
ρ
, l = − γ

α− ρ
. (5)

where χ, l ∈ R.

This re-parametrisation then shifts the enforceable payoff relationship in (2) to take the
form

π−i = χπi + (1− χ)l (6)

with π−i =
∑

j 6=iwjπj.

For simplicity, the autocrat puts an equal weight on each co-player in the game and
therefore, all wj = 1

N−1 , j 6= i.

PGG among unequals

Generally, social dilemmas occur when individuals are more or less equal, such that they
all face similar consequences when they cooperate or defect (Hauser et al. 2019). However,
this is not the case for a large population in the context of the PGG as different individuals
have different levels of income and motivation, which affects their willingness to cooperate.
Hauser et al. (2019) deduced that an unequal distribution of income levels makes it easier
for full cooperation to be an equilibrium. They found that cooperation prevails when the
two sources of inequality are aligned, that is when more productive individuals receive
a higher income. Since this is a likely case in a normal situation, where more motivated
members of the population work harder and therefore receive more in return, cooperation
can still be achieved. Therefore, for simplicity, it is assumed that all players are equal and
that contributions to the public goods are multiplied by a common productivity factor, r.
Heterogeneous cases are not considered throughout this research as the main goal is to

9



5.1 Pre-derived Necessary Conditions for Each ZD Strategy5 PUBLIC GOODS GAME

focus on the necessary conditions to enforce the ZD strategies. The derived PGG model
can also be adjusted and perfectly applied to accommodate for heterogeneity between
individuals by setting different parameters for each player, such as the multiplication factor
(r) or contribution cost (c). If heterogeneity was to be taken into account, the updated
utility function deduced by Hauser et al. (2019) could be applied, where each player’s
income is denoted by mj and each player would then choose to donate a fraction of their
income, xj . Next, the multiplication factor would reflect each individual’s motivation level;
therefore, each player would have their own factor, rj. The updated payoff function for
the autocrat would then be as follows

ui(x) =

∑N
j=1 rjmjxj

N
+ (1− xj)mj.

5.1 Pre-derived Necessary Conditions for Each ZD Strategy

Martirosyan et al. (2020) have already derived a set of necessary conditions in order to
enforce ZD strategies. First and foremost, a necessary condition for a ZD strategy to
be enforced is to set χ less than the value 1. However, from (6) it is clear that in order
to enforce the definition of fair strategies (πi = π−i), it is a requirement that χ = 1,
meaning that applying a fair strategy in a discounted continuous PGG is not possible. This
conclusion then shifts the focus of this research on the other 3 strategies. The requirements
and definitions related to each ZD strategy deduced in Martirosyan et al. (2020) are
summarised in Table 3 below.

Autocratic Strategy Parameters Value Initial Action Requirement

Extortionate l = 0, 0 < χ < 1 p0 = 0

Generous l = rc− c, 0 < χ < 1 p0 = 1

Equaliser χ = 0 No requirement

Table 3: Different parameter values for each of the three ZD strategies.

Note that the equaliser strategy requires χ = 0 so that the payoff relation (6) then becomes
π−i = l, where l is bounded by a range of payoffs.

This research will begin by deriving the necessary constraints on the required discount
factor, followed by exploring the effect of changing the PGG parameters on the minimum
threshold requirement on λ to enforce each ZD strategy. Next, sensitivity analysis will
be conducted on the bounds on the value of l that a player i can unilaterally enforce in
the equaliser strategy, in order to realise how altering parameters of the game influences
the range of payoffs. Finally, non-linearity in the PGG will be explored to discover how
it affects the enforceability of ZD strategies. The proofs for each derivation as well as
MATLAB code for simulations and sensitivity analysis can be found in the Appendix.

10



5.2 Minimum Thresholds for the Discount Factor 5 PUBLIC GOODS GAME

5.2 Minimum Thresholds for the Discount Factor

Govaert & Cao (2019b) deduced that certain thresholds exist for the discount factor (λ)
above which generous, extortionate, and equaliser payoff relations can be enforced in
the infinitely repeated social dilemma games with a finite action space. In this section,
thresholds for infinitely repeated games are derived for an arbitrary action space in order
to find the minimum λ ∈ [0, 1] under which the autocrat can enforce the linear relation
with equal weights (wj) for each ZD strategy. For each strategy, the constraint on λ is
tested for a vast range of parameters (r, c,N) to explore how the minimum threshold is
influenced.

Note that the autocratic strategist (i) only has possible two actions; cooperating or
defecting (s1 = 1 and s2 = 0). After re-parametrisation of the PGG, the following
probability functions were derived in Martirosyan et al. (2020)

p(x1) =
1

λ
(φρ(χui(x1)−

∑
j 6=i

ωjuj(x1) + (1− χ)l)− (1− λ)p0 + 1) (7)

p(x2) =
1

λ
(φρ(χui(x2)−

∑
j 6=i

ωjuj(x2) + (1− χ)l)− (1− λ)p0) (8)

where p(xi) is the probability of a player playing an action xi in the next round.

Using the fact that the probability of each action must be within the unit interval and
plugging in the utility functions of the PGG, the following minimum thresholds on the
discount factor were derived for each of the three ZD strategies.

(1− λ)(1− p0) ≤ (φρ(−χui(x1) +
∑
j 6=i

ωjuj(x1)− (1− χ)l) ≤ 1− (1− λ)p0 (9)

(1− λ)p0 ≤ (φρ(χui(x2)−
∑
j 6=i

ωjuj(x2) + (1− χ)l) ≤ λ+ (1− λ)p0 (10)

For calculation simplicity, set

(−χui(x1) +
∑
j 6=i

ωjuj(x1)− (1− χ)l) = δ1,

(χui(x2)−
∑
j 6=i

ωjuj(x2) + (1− χ)l) = δ2

with ui,j being modified versions the utility function (1) from Section 2.1.2.

It must be noted that δ1,2 are different for each ZD strategy, as each strategy has different
necessary conditions on the parameters (l, χ, and p0). The definitions and pre-derived
conditions mentioned and summarised in Section 5.1.

11



5.2 Minimum Thresholds for the Discount Factor 5 PUBLIC GOODS GAME

5.2.1 Extortionate Strategy

Proposition 1. In the N-player infinitely repeated PGG, the existence of the enforceable
extortionate payoff relation requires λ to satisfy the following necessary conditions

1− min(δ1)

max(δ1)
≤ λ, (11)

max(δ2)

max(δ2) + min(δ1)
≤ λ. (12)

The proof can be found in Appendix A.

Since the discount factor must always satisfy both inequalities (11) and (12) for all δ1,2,
then the minimum threshold on λ would then be

λ ≥ max{1− min(δ1)

max(δ1)
,

max(δ2)

max(δ2) + min(δ1)
} (13)

Firstly, in order to realise how the parameters r, c and N influence the minimum threshold
requirement, (13) was plotted and shown in figure 1 below, fixing χ = 0.5.

(a) Influence of r and c on minimum
λ for a 10-player game

(b) Influence of r and N on
minimum λ with fixed c = 2

Figure 1: The effect of parameters (r, c and N) on the minimum threshold requirement of
λ above which extortionate payoff relations can be enforced.

From Figure 1a, it is clear that the contribution cost does not influence the constraint.
This makes sense as c is a common factor of all the terms in (13). In addition, higher
values of the multiplication factor (r) yield a higher minimum threshold for λ, making the
strategy more difficult to enforce and suppressing the influences of the autocrat. Since the
multiplication factor represents the players’ productivity level, this observation is plausible
as it becomes more challenging to be extortionate when players are more productive. Since
the discount factor must be ∈ (0, 1), Figure 2a shows that when the game involves 15
players, the extortionate strategy cannot be enforced for values of r less than 7.5, while
Figure 2b shows that for N = 10, r must be greater than 5 in order for the strategy to be
enforced.
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5.2 Minimum Thresholds for the Discount Factor 5 PUBLIC GOODS GAME

Remark 1. For an extortionate payoff, Proposition 1 sets the following necessary condition

1 < r < N
2

for values of χ > 0.1.
Figure 1b then confirms this conditions by portraying that lower values of N cause the
threshold to increase and give a smaller feasible region for r for the strategy to be enforced.

(a) Minimum threshold requirement
on λ for a fixed N = 15

(b) Minimum threshold requirement
on λ for a fixed N = 10.

Figure 2: Plot of r against the minimum threshold requirement on λ for a fixed c = 2.

The aforementioned relation was tested and deduced for a fixed χ = 0.5. The influence of
varying χ on the minimum threshold requirement was then explored, it is shown in Figure
3a. From the figure, it is clear that for higher values of χ, there is no significant influence
on the threshold on λ. However, for values of χ very close to zero, the influence becomes
more noteworthy. This makes sense as a very low value of χ in turn gives opponents a very
small fraction of the total payoff, making the strategy harder to enforce. Figure 3b shows
that for χ = 0.1 and N = 10, the aforementioned necessary condition on r is reversed to
N
2
< r < N . From this, it is concluded that Remark 1 applies to values of χ > 0.1.

(a) Minimum threshold requirement
on λ with varying χ and r

(b) Minimum threshold requirement
on λ for a fixed χ = 0.1

Figure 3: Influence of χ and the multiplication factor (r) on the minimum threshold
requirement for the discount factor (λ) for a fixed N = 10

13
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5.2.2 Generous Strategy

Proposition 2. In the N -player infinitely repeated PGG, the existence of the enforceable
generous payoff relation requires λ to satisfy the following necessary conditions

max{1− min(δ2)

max(δ2)
,

max(δ1)

max(δ1) + min(δ2)
} ≤ λ. (14)

The proof can be found in Appendix A.

Again, the constraint was plotted in order to find the varying minimum threshold on λ for
a range of values of r, and it is shown in Figure 4 below.

Figure 4: Influence of r on the minimum threshold on λ for 1 < r < N above which
extortionate payoff relations can be enforced with fixed c = 3 and χ = 0.5.

Firstly, it was deduced that the first function in (14) is always greater than the second one
and is, therefore, the only function plotted in Figure 4. Next, since c is a common term
in the first function, the contribution cost has no influence on the minimum threshold
on λ. Therefore, the parameter c is not included in the plot. The plot shows that the
generous strategy can be enforced easily for a higher multiplication factor, as the minimum
threshold on λ increases as r decreases. Again, this is plausible as an autocrat can be
generous and give more to co-players when they have higher productivity levels. However,
since the minimum threshold remains significantly low, a generous payoff relation can
easily be enforced for a wide range of parameter values.

The effect of N and χ on the minimum threshold of the discount factor are portrayed in
Figure 5 below. Considering a range of values of N in Figure 5a, it can be deduced that
the minimum threshold increases for higher N values, although the influence of N remains
relatively small. This is realistic as it is difficult to be generous to a larger group of people.

The observations mentioned above were made from plots where the parameter χ was fixed
to a value of 0.5. Through varying the value of χ, Figure 5b shows that it has a notable
effect on the enforceability of the generous strategy, as larger values of χ significantly
tighten the constraint on the discount factor. The highest minimum threshold on λ is when

14



5.2 Minimum Thresholds for the Discount Factor 5 PUBLIC GOODS GAME

the multiplication factor is minimum, and χ is maximum, which limits the enforceability
of the strategy. Since higher values of χ denote that the autocrat wants to extort a larger
share of the total payoffs, this observation is reasonable as the autocrat cannot enforce the
generous strategy when they want to get a large share of the payoff. Therefore, it can be
concluded that the generous strategy can be easily enforced for a range of values of the
aforementioned parameters, but becomes more difficult once χ values approach 1.

(a) Influence of r and N on minimum
λ with fixed χ = 0.5.

(b) Influence of r and χ on
minimum λ for a 10-player game.

Figure 5: The effect of parameters (r, N and χ) on the minimum threshold requirement
of λ above which generous payoff relations can be enforced with fixed c = 2.
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5.2.3 Equaliser Strategy

Corollary 1. In the N -player discounted PGG with a continuous action space, the existence
of the equalisers strategy requires the necessary conditions

p0 6= 0 and p0 6= 1.

The proof can be found in Appendix B.

Since the equaliser strategy does not impose a specific requirement on the value of the
baseline payoff (l), Martirosyan et al. (2020) have deduced that there is a range of values
of l for which the strategy can be enforced. Before the constraints on the discount factor
can be explored, the restrictions on the range of values of l must first be studied.

Restrictions on the Range of Values of l

For the equaliser strategy, an autocrat can unilaterally set their opponents’ total payoff
(π−i) to a fixed value, denoted by l. The bounds on the value that the autocrat can assign
to their opponents derived in Martirosyan et al. (2020) for finite games were found to be
analogous to the case when a game is infinite. In this section, the pre-derived bounds on l
are further explored to realise the influence of changing PGG parameters on the region
where the equaliser strategy exists.

According to Martirosyan et al. (2020), there are upper and lower bounds on l, which are
the payoffs to a single player if no one cooperates (xk = 0) and if everyone cooperates
xk = N , respectively, for all k ∈ [1, ..., N ]. They deduced that the equaliser strategy only
exists for the baseline payoff (l) satisfying the following condition

max{0, c
∑
j 6=i

(wj −
r

N
)1(wj −

r

N
)} ≤ l ≤ min{rc− c, c

∑
j 6=i

(
r

N
− wj)1(wj −

r

N
) +

rc

N
}

(15)

Note that the indicator function is used in this section and is defined as

1(y) =

1 y ≥ 0,

0 y < 0.

Equation (15) was then plotted into MATLAB in order to explore the influence of varying
the parameters N and r on the bounds on l and the existence of the strategy. The
parameter c was not studied since it is clearly a common term in (15).
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(a) Lower bound on l for a range of
values of r and N .

(b) Upper bound on l for a range of
values of r and N .

Figure 6: Lower and upper bound on the baseline payoff, l. By setting all wj = 1
N−1 and

fixing c = 5, the influence of the parameters r and N on the bounds can be observed.

Logically, l does not exist when the lower bound is strictly greater than the upper bound.
From the plots in Figure 6, there is a region where the upper bound on l is lower than
the lower bound. The red shaded area in Figure 6a shows the values of r for which the
equaliser strategy cannot be enforced. However, this infeasibility only occurs for values of
r in the range (1, 10

9
]. Generally, it is for values of r where the indicator function in (15) is

positive (r < wj ×N), as the lower bound maximises, limiting the feasibility region. This
in turn deduces the following remark

Remark 2. For an equaliser payoff, if all co-players are given weights i.e. wj = 1
N−1 , the

strategy requires the following necessary condition

r ≥ N
N−1 .

Through varying the parameters r and N , it was deduced that smaller values of r yield
a higher lower bound and therefore decrease the feasible region. The lower bound is at
its absolute minimum when the indicator function is negative (r ≥ N

N−1), as this sets the
indicator function on the RHS of the inequality to zero. On the other hand, the upper
bound is at its maximum when the multiplication factor increases, and fewer players
join the game. This, in turn, widens the range of l that an autocrat can assign to their
opponents, giving plenty of space where the equaliser strategy exists.

17
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Minimum Thresholds for the Discount Factor to Enforce the Equaliser Strat-
egy

Proposition 3. For a multitude of p0 regions in within the unit interval, the following
constraints set the minimum threshold discount factor to enforce the equaliser strategy

λ ≥ max(δ1)(1− p0) + min(δ1)(p0 − 1)

min(δ1)p0 −max(δ1)(p0 − 1)
, λ ≥ p0(max(δ2)−min(δ2))

min(δ2) + p0(max(δ2)−min(δ2))

with p0 6= 0, 1.
The proof can be found in Appendix B.

The parameter l has upper and lower bounds that are also influenced by the parameters of
the PGG. Therefore, the minimum threshold on λ is calculated twice, using the minimum
and maximum possible values of l, respectively.

Since the lower bound is set to 0 while c is a common term in the upper bound of l in (15),
the contribution cost, therefore, does not influence the constraint. Next, Figure 7 shows
that when the autocrat is somewhat generous and attempts to give opponents a cumulative
payoff equal to the upper bound of l, the strategy is easy to enforce as the minimum
threshold on the discount factor remains low for a range of values of the parameters.

From Figure 7a, it is clear that the constraint on λ tightens as the number of players
increases, meaning that enforceability of the strategy is more difficult as more players are
involved in the game. This agrees with Pan et al. (2015), where it was found that the
capacity of a ZD player to either pin or extort other opponents is more strictly limited
compared with the two-player games. Figure 7b shows that it becomes easier to give
opponents a high payoff for increasing r values, whereas higher p0 values increase the
minimum threshold. Since r represents the players’ motivation level, this is plausible since
higher motivation makes it easier for the autocrat to assign a large payoff to the opponents.

(a) Influence of r and N on minimum
λ with fixed p0 = 0.5

(b) Influence of r and p0 on
minimum λ for a 10-player game

Figure 7: The effect of parameters on the minimum threshold requirement of λ above
which equaliser payoff relations can be enforced for the maximum possible values of l.
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On the other hand, Figure 8 below shows that the enforceability of the strategy becomes
more difficult when the autocrat attempts to set the opponents’ payoff to lower values of l.
When the autocrat attempts to accumulate their co-players payoff to the lower bound of l
i.e., l = 0, the minimum threshold for λ is always greater than 1, which means that an
equaliser payoff relation becomes unenforceable.

Figure 8: Influence of r and N on the minimum threshold on λ for above which equaliser
payoff relations can be enforced with fixed c = 3 and p0 = 0.1.

The aforementioned observation can also be deduced analytically. Firstly, the inequality
that sets the bounds on l for all ZD strategies (derived from the probability functions) is
as follows

max{ui(x2)−
∑
j 6=i

wj
ui(x2)− uj(x2)

1− χ
} ≤ l ≤ min{ui(x1) +

∑
j 6=i

wj
uj(x1)− ui(x1)

1− χ
}. (16)

Through substituting the definition of χ for the equaliser strategy (χ = 0) into (16), setting
the accumulated co-players payoff (l) to 0 in turn yields the following constraint on r

r ≤ N

N − 1
. (17)

The proof for (16) and (17) can be found in Appendix C.

However, it has already been deduced in Remark 2 that the equaliser strategy is not
enforceable for those values of r, which analytically proves that the equaliser payoff relation
cannot be enforced if the autocrat attempts make the co-players receive nothing.
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6 Non-linear Payoff Functions in the PGG

In this section, the PGG is modified to generate a non-linear payoff function by introducing
a minimum entry threshold requirement to motivate more players to cooperate. Here, a
public good is provided if and only if the sum of all contributions (

∑N
j=k xk) is less than the

minimum donation amount (z). Players who did not contribute lose and receive nothing,
while players who did contribute will lose their money.

Firstly, the utility functions in Section 5 are updated. If
∑N

j=k xk ≤ z, the utility functions
become

ui(x1) = −c, uj(x1) = −cxj,

ui(x2) = 0, uj(x2) = −cxj. (18)

However, if
∑N

j=k xk ≥ z, the standard utility functions can be applied to all players.

Using the bounds on l in (16) and substituting the definitions of l for each strategy (listed
in Table 1) into the functions, minimum thresholds for χ for which each strategy can be
enforced were derived. Through substitution of the utility functions into (16) for cases
when the minimum cooperator threshold is met or not met, minimum thresholds on χ are
derived for each of the ZD strategies and listed in Table 4 below. The proof can be found
in Appendix D.

ZD strategy Minimum threshold on χ

Extortionate χ ≥ max{ z−1−ε
N−1 + ε, 1− N

r(N−1)}

Generous χ ≥ 1− N−z+ε
r(N−1)

Equaliser Not enforceable

Table 4: Different minimum threshold requirements on χ for each of the ZD strategies to
be enforced when the PGG is non-linear. Note that ε denotes an infinitesimal number

greater than 0.

Since the inequality (16) is analogous to the one derived in Govaert & Cao (2019b) but
modified to apply to infinite rather than finite games, the requirement that at least one
inequality must be strict also applies in this situation. For the extortionate strategy, two
minimum thresholds for χ were derived, therefore, in order to ensure one is strict, an
infinitesimal number, denoted by ε, is added to the first inequality. Furthermore, equaliser
strategies set a requirement that χ = 0, which in turn generates an unrealistic condition
on l to be a negative value. In addition, the deduced upper and lower bounds on l do not
intersect. Therefore, equalising ZD strategies do not exist when the PGG is non-linear.

20



6 NON-LINEAR PAYOFF FUNCTIONS IN THE PGG

The thresholds listed in Table 4 were plotted in order to deduce the effects of varying r
and z on the enforceability of each of the two enforceable ZD strategies. The plots are
shown in Figure 9 below.

(a) Minimum threshold for χ to enforce
the extortionate strategy

(b) Minimum threshold for χ to enforce
the generous strategy

Figure 9: The influence of varying r and z values on the minimum threshold for χ to
enforce the extortionate and generous ZD strategies for a fixed 10-player game.

It is clear that there is limited freedom to choose the parameter χ when enforcing both
strategies and that the minimum threshold increases as r and z increase. This was expected
as the enforceability of the strategies becomes more difficult as the minimum contribution
threshold increases. For example, when the minimum contribution is equal to 10 (all
players must contribute), the minimum χ approaches the value 1, making the strategies
almost unenforceable.

Next, the necessary conditions on χ when the PGG is linear were compared to the case
where the PGG is non-linear in order to realise how a non-linear payoff function influences
the enforceability of the strategies. Plugging in the linear utility functions into (16) yields
the same minimum threshold on χ for both the extortionate and generous strategies; they
are shown in Table 5 below. The proof can be found in Appendix D.

ZD strategy Minimum threshold on χ

Extortionate χ ≥ 1− N
r(N−1)

Generous χ ≥ 1− N
r(N−1)

Equaliser χ = 0

Table 5: Minimum threshold requirement on χ when the PGG is linear for the
extortionate and generous ZD strategies.

For the extortionate and generous strategies, the constraint on χ is overall looser and
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6 NON-LINEAR PAYOFF FUNCTIONS IN THE PGG

reaches a lower minimum threshold value than the non-linear case. Figure 5a below
shows that the minimum threshold increases with higher values of r and N , although the
multiplication factor has a more significant influence, further explored in Figure 5b for a
10-player game.

(a) Minimum threshold for χ to enforce
the strategies with varying r and N

values

(b) Minimum threshold for χ to enforce
the strategies for a 10-player game

Figure 10: The influence of varying parameter values on the minimum threshold for χ to
enforce the extortionate and generous ZD strategies.

Regarding the equaliser case, it was found to be unenforceable when the PGG is non-linear
since it requires the value of χ to be set to 0. However, this can be achieved when the
linear PGG utility functions are used, meaning that the equaliser strategy can also be
enforced for the linear case. This shows that non-linearity hinders the enforceability of all
three ZD strategies. They can be enforced more easily when the PGG is linear, meaning
that there is no required minimum donation amount.
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7 Discussion and Conclusions

This research project explores zero-determinant strategies to extend on pre-existing research
and apply it to multiplayer, infinitely repeated games with an arbitrary action space. It
focuses on ZD strategies to determine the influence of discounting future rewards and
non-linearity on the enforceability of each of the three main strategies in the context of
the public goods game.

Firstly, the discount factor is used to discount future rewards to deduce a minimum
threshold on λ for each strategy. For all three strategies, it was found that for the public
goods game, when all players have the same cost of contribution, the said parameter does
not influence on the enforceability of the strategies as it is a common term in the derived
inequalities.

Regarding the extortionate strategy, the derived constraints on the discount factor deduce
that the productivity level (represented by the multiplication ratio), number of players
and the slope of the strategy influence the minimum threshold requirement. Firstly, higher
productivity levels of the co-players make it harder to extortionate goods. Next, through
sensitivity analysis, it was deduced that there is a restrictive condition on the multiplication
factor, which is dependant on the number of players. Here, if more players are involved in
the game, the range of productivity level values can be greater, and in turn, there are more
possibilities to extortionate the players’ payoffs. In addition, the slope of the extortionate
strategy was found to have a minor influence on the enforceability of the strategy, which
becomes more significant as the slope gets closer to 0. When the slope is minimal, the
autocrat attempts to get everything, so it becomes difficult to enforce the strategy.

On the contrary, the generous strategy was found to have the opposite characteristics.
Here, the strategy becomes harder to enforce as more players join the game, or when
players have a lower motivation level. Furthermore, the slope of the generous strategy has
a significant impact on the enforceability compared to the other parameters.

Regarding the equaliser strategy, the influence of the parameters on the upper and lower
bounds of the baseline payoff that an autocrat can assign to the co-players was initially
explored. From this, it was deduced that an equaliser payoff relation is unenforceable for
relatively low productivity levels. Enforceability can only be achieved for values of the
multiplication factor above a particular value, which is solely dependant on the number of
players involved in the game, assuming that all players are given equal weight. Once this
is achieved, the enforceability of the strategy is then dependant on the minimum threshold
on the discount factor. Similarly to the generous strategy, the strategy is more difficult to
enforce as more players join the game or productivity levels of the co-players decreases.
Furthermore, it was deduced that if the autocrat wants to equalise the co-players to a
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large payoff and their productivity level is high, there is no need to contribute much in
the beginning. However, the autocrat would need to contribute more if they want to
equalise the opponents’ payoff to the lower bound of the baseline payoff. Finally, for lower
productivity levels, there is more chance that an autocrat would need to initially contribute
to compensate for the players’ lack of productivity.

Finally, the non-linear PGG is studied through the introduction of a minimum donation
amount that must be met so the players can receive a share of the total donation. Results
show that it is impossible to enforce the equaliser relationship between players’ payoffs
when the PGG is non-linear. In addition, the enforceability of the remaining two strategies
is compared to the case in which the PGG is linear. The enforceability of non-linear games
is more limited due to a relatively high minimum threshold requirement for the slope of
both strategies, which depends on the minimum donation amount, the productivity level,
and the number of players involved in the game.

Validation

The outcome of this research deduces how much control an autocrat has on their opponents
in social dilemmas. It explores the effect of common influences on real-life dilemmas such
as discounting and non-linearity, on the enforceability of ZD strategies, and finds that
these factors introduce new necessary conditions on the game parameters. In turn, the
extent to which an autocrat can still enforce the ZD strategies then depends on the values
that are assigned to each of the parameters.

Once background knowledge and pre-derived conditions to enforce ZD strategies are
thoroughly analysed, the deliverable is achieved by first delving into the three different
ZD strategies, deducing the minimum thresholds on different game parameters in order
enforce each strategy successfully. Next, sensitivity analysis explores the influence of the
remaining parameters on the enforceability of each strategy to find the range of values
that can be assigned to each parameter and ensure that the autocrat remains in control.
This results in new necessary conditions and restrictions on the range of parameters in
order to enforce the ZD strategies.

Further Research and Application

This research explores the enforceability of the ZD strategies in the context of the multi-
player public goods game with an arbitrary action space. One direction of future work
would be to explore how a broader set of available actions to the autocrat (rather than
limiting it only to two actions) would influence the amount of control they have over their
opponents through different methods of discretisation of the autocrat’s action space.

Also, the conclusions made in this research could be further validated in another similar
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social dilemma game, such as the iterated snowdrift game, where a group of drivers are
trapped in a snowdrift and have the option of staying in the car or removing the snowdrift
(Doebeli 2004). This would allow the generalisation of results to assess compatibility with
other dilemmas and, in turn, facilitate applicability in a broader range of domains. Once
the findings are generalised, governments, economists, and other autocratic bodies could
use these requirements to remain in control and prevent free-riding.
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8 APPENDIX

8 Appendix

8.1 Appendix A

Extortionate Strategies
It is known that for the existence of extortionate strategies, it is necessary that p0 = 0.
Furthermore, l = 0 in δ1,2 since this is an extortionate strategy. The first inequality (9)
then simplifies to

1− λ
δ1
≤ φρ ≤ 1

δ1
(A.1)

However, the inequality (A.1) must be satisfied for all possible values of δ1. Therefore, the
minima and maxima of the bounds are as follows

1− λ
min(δ1)

≤ φρ ≤ 1

max(δ1)

In order for such a φρδ1 to exist, it needs to hold that

1− λ
min(δ1)

≤ 1

max(δ1)
(A.2)

By extracting λ, the first condition is therefore

1− min(δ1)

max(δ1)
≤ λ

The same procedure is done for the second inequality (10), obtaining

0 ≤ φρ ≤ λ

max(δ2)
(A.3)

Combining the RHS of (A.3) with the LHS of (A.2) and finding the maximum and minimum
bounds gives

1− λ
min(δ1)

≤ φρδ2 ≤
λ

max(δ2)

Therefore
1− λ
min(δ1)

≤ λ

max(δ2)
,

Giving the second constraint

max(δ2)

max(δ2) +min(δ1)
≤ λ

The procedure to find constraints on λ for the other two strategies are analogous to the
aforementioned one.
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Generous Strategies
Considering generous strategies with p0 = 1 and l = rc − c in δ1,2, the two following
inequalities are derived

1− λ
min(δ2)

≤ φρ ≤ 1

max(δ2)
, (A.4)

0 ≤ φρ ≤ λ

max(δ1)
(A.5)

By combining the LHS of (A.4) with the RHS (A.5) and finding the inequalities in order
for such a φρδ1 to exist and , we obtain the two minimum thresholds for λ in (14).

8.2 Appendix B

Equaliser Strategies

Plugging δ1 into (9) with χ = 0 and p0 = [0, 1] and rearranging yields

(1− λ)(1− p0) ≤ φρδ1 ≤ 1− (1− λ)p0 (B.1)

Focusing on the RHS and LHS respectively and rearranging to extract λ yields the following
constraints

φρδ1 − 1 + p0
p0

≤ λ,

1− φρδ1
1− p0

≤ λ (B.2)

This in turn shows that for p0 = 0 or p0 = 1, λ must be greater than ∞, therefore an
equaliser payoff relation cannot be enforced.

Next, considering equaliser strategies with χ = 0 in δ1,2 and p0 = [0, 1], (9) gives

(1− λ)(1− p0)
min(δ1)

≤ φρ ≤ 1− (1− λ)p0
max(δ1)

,

(1− λ)(1− p0)
min(δ1)

≤ 1− (1− λ)p0
max(δ1)

(B.3)

Similarly, (10) gives
(1− λ)p0
min(δ2)

≤ λ+ (1− λ)p0
max(δ2)

(B.4)

The discount factor, λ is then extracted from (B.3) and (B.4) in order to find the functions
for the minimum threshold.
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8.3 Appendix C

Bounds on l for All ZD Strategies
Rearranging the inequalities (9) and (10), the following is deduced

(1− λ)(1− p0) ≤ (φρ(
∑
j 6=i

ωj(uj(x1)− ui(x1))− (1− χ)(l − ui(x1)) ≤ 1− (1− λ)p0

(1− λ)p0 ≤ (φρ((1− χ)(l − ui(x2))−
∑
j 6=i

ωj(uj(x2)− ui(x2)) ≤ λ+ (1− λ)p0

(C.1)

Since 0 < λ < 1 and 0 ≤ p0 ≤ 1, it is clear that the LHS of both inequalities in (C.1) are
greater than or equal to zero. This in turn yields

0 ≤ (φρ(
∑
j 6=i

ωj(uj(x1)− ui(x1))− (1− χ)(l − ui(x1))

0 ≤ (φρ((1− χ)(l − ui(x2))−
∑
j 6=i

ωj(uj(x2)− ui(x2)) (C.2)

Rearranging both inequalities to extract l then deduces the upper and lower bounds

ui(x2)−
∑
j 6=i

wj
ui(x2)− uj(x2)

1− χ
≤ l ≤ ui(x1) +

∑
j 6=i

wj
uj(x1)− ui(x1)

1− χ
(C.3)

Since this must be valid for all possible utility functions, l must be greater or equal to the
maximum of the LHS and less than or equal to the minimum possible value of the RHS,
deducing the final inequality in (16).

Equaliser Strategy Case
Plugging the utility functions into the RHS of (16) and setting χ = 0 with ωj = 1

N−1 yields

l ≥ max{
rc
∑

j 6=ixj

N
−
c
∑

j 6=i xj

N − 1
}, (C.4)

where the maximum value occurs when
∑

j 6=i xj is maximum i.e.
∑

j 6=i xj = N − 1.
Therefore, (C.4) becomes

l ≥ rc(N − 1)

N
− c. (C.5)

Setting l = 0 to set the co-players’ payoff to the minimum possible value in turn yields the
condition on r in (17).
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8.4 Appendix D

Enforceability with Non-linear Payoff Functions
Assuming that the minimum cooperator threshold is not met, substituting the payoff
functions into the RHS of (18) yields

l ≤ min{−c+
−c

∑
j 6=i xj

N−1 + c

1− χ
} (D.1)

minimum value when
∑

j 6=i xj is maximum, i.e.
∑

j 6=i xj = z − 1− ε. Using the definitions
of l for the extortionate and generous strategies in turn yields the constraints on χ to
enforce the strategies when the PGG is non-linear.

Enforceability with Linear Payoff Functions
Assuming that the minimum cooperator threshold is met, the LHS of (18) then becomes

l ≥ max{
rc

∑
j 6=i xj

N
+
∑
j 6=i

ωj

rc
∑

j 6=i xj

N
− rc

∑
j 6=i xj

N
+ cxj

1− χ
}. (D.2)

After cancelling out terms, rearranging and using the definition ωj = 1
N−1

l ≥ max{
rc

∑
j 6=i xj

N
+

c
N−1

∑
j 6=i xj

1− χ
}, (D.3)

l ≥ max{
c(
∑

j 6=i xj(r(1− χ)(N − 1)−N)

N(N − 1)(1− χ)
}, (D.4)

where the maximum value is when
∑

j 6=i xj is maximum, i.e.
∑

j 6=i xj = z − 1 − ε.
Substituting this value into (D.4) and using the definitions of l in turn yields the constraint
for the extortionate strategy when the PGG is linear.

Next, the RHS of (18) becomes

l ≥ min{
rc(

∑
j 6=i xj + 1)

N
− c+

∑
j 6=i

ωj

rc(
∑

j 6=i xj+1)

N
− c

∑
j 6=i xj −

rc(
∑

j 6=i xj+1)

N
+ c

1− χ
}.

(D.5)

Again, rearranging and using the definition ωj = 1
N−1 yields
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l ≥ min{
rc(

∑
j 6=i xj + 1)

N
− c+

c− c
∑

j 6=i xj

N−1

1− χ
}, (D.6)

where the minimum value is when
∑

j 6=i xj is minimum, i.e.
∑

j 6=i xj = 0. Substituting
this value into (D.6) and using the definitions of l in turn yields the constraint for the
generous strategy when the PGG is linear.

8.5 Appendix E

1 %FIX N and Chi, VARY r and c

2 %l = 0

3
4 N=10;

5 r=linspace(1.01,9.9,100);

6 c =linspace(0,5,100);

7 chi=0.5; % 0 < chi < 1

8 [rr,cc] = meshgrid(r,c);

9
10 Term1= (chi.*rr.* cc)/N;

11 Term2= (rr.*cc)/(N*(N-1));

12 Term3= cc./(N-1);

13
14 xj = ones(1,100);

15 [xjj] = meshgrid(xj);

16
17 mindelta1 = (-Term1 + Term2 - Term3).*xjj - Term1 + chi.*cc + Term2;

18 maxdelta1 = - Term1 + chi.*cc + Term2;

19 maxdelta2 = (Term1 - Term2 + Term3).*xjj;

20
21 Constraint1 = ones(100,100) - (mindelta1./maxdelta1);

22 Constraint2 = maxdelta2./(maxdelta2 + mindelta1);

23
24 A = max(Constraint1, Constraint2);

25
26 figure

27 mesh(rr,cc,A)

28 xlabel('multiplication factor (r)')

29 ylabel('contribution cost (c)')

30 zlabel('constraint')

31 title('Extortionate - constraint on DF')

Listing 1: MATLAB code to derive and plot the minimum threshold for λ in the
extortionate strategy when varying r and c. The code is modified to fix and vary the

other parameters and altered to work with the other two strategies.
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1 %FIX c, VARY N and r

2 n = linspace(5,10,100); %number of players

3 r = linspace(1.05,4.9,100); %multiplication ratio

4 wj = 1./(n-1); %weighting factor

5 c = 5; %contribution cost

6 l=rr.*c-c;

7
8 [rr,N] = meshgrid(r,n);

9
10 xj=1./(N-1)-rr./N;

11 xj(xj>=0)=1;

12 xj(xj<0)=0;

13
14 s=0;

15 for i = 1:N-1

16 s = s + (r./N - wj(i));

17 end

18 s1=0;

19 for i = 1:N-1

20 s1 = s1 + (wj(i) -r./N);

21 end

22
23 lowerbound = c.*s1.*xj;

24 upperbound = c.*s.*xj + (rr.*c)./N;

25 ub = min(upperbound, l);

26
27 figure

28 mesh(rr,N,lowerbound)

29 xlabel('multiplication factor (r)')

30 ylabel('Number of players (N)')

31 zlabel('lower bound')

32 title('lower bound')

33 hold on %highlight points where the lower bound is > upper bound (equaliser strategy is

invalid)

34 idx = lowerbound>=ub ;

35 plot3(rr(idx),N(idx),lowerbound(idx),'.r','markersize',10)

36
37 figure

38 mesh(rr,N,ub)

39 xlabel('multiplication factor (r)')

40 ylabel('number of players (N)')

41 zlabel('upper bound')

42 title('upper bound')

Listing 2: MATLAB code to derive and plot the upper and lower bounds on l in the
equaliser strategy.
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1 %FIX N, VARY r and z

2
3 N=10;

4 r=1.01:0.1:4.9;

5 z=1.01:0.1:9.9;

6 e = 0.0001;

7
8 [rr,zz] = meshgrid(r,z);

9
10 term1 = zz - 1 - e;

11 term2 = N - 1;

12 term3 = rr.*(N-1);

13
14 chi1 = term1./term2 ;

15 chi2 = 1 - N./term3 ;

16 chi = max(chi1,chi2);

17
18 figure

19 mesh(rr,zz,chi)

20 % set(gca, 'XDir','reverse')

21 xlabel('multiplication factor (r)')

22 ylabel('minimum contribution')

23 zlabel('minimum {\chi}')

24 title('Extortionate - threshold on {\chi}')

Listing 3: MATLAB code to derive and plot the minimum threshold for χ in the
non-linear extortionate strategy when varying r and z. The code is modified to work for

the generous strategy as well as for the linear case.
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