
Artificial Intelligence

Master’s Thesis

Investigating Overestimation Bias
in Reinforcement Learning

Author
Andreas Pentaliotis

s3667537

Internal Supervisor
Dr. Marco Wiering

Artificial Intelligence
University of Groningen

External Supervisor
Matthia Sabatelli

Electrical Engineering and
Computer Science

University of Liège

June 20, 2020

Contents

Abstract iii

Acknowledgements iv

Note on Notation v

1 Introduction 1
1.1 Research Questions . 2
1.2 Significance of the Study . 2
1.3 Thesis Layout . 3

2 Theoretical Background 4
2.1 Reinforcement Learning . 4
2.2 Finite Markov Decision Processes . 5

2.2.1 Basic Structure . 5
2.2.2 Episodes, Rewards, and Returns 6
2.2.3 Policies and Value Functions 7
2.2.4 Optimal Policies and Optimal Value Functions 8

2.3 Solution Methods . 9
2.3.1 Tabular Solution Methods . 9
2.3.2 Function Approximation Solution Methods 10

2.4 Multilayer Perceptrons . 10
2.4.1 The Perceptron . 10
2.4.2 Multilayer Perceptrons and Rectified Linear Units 11
2.4.3 Backpropagation and Stochastic Gradient Descent 12

2.5 Overestimation Bias . 13
2.5.1 The Single Estimator Approach 13
2.5.2 The Double Estimator Approach 14

2.6 Q-learning . 15
2.6.1 Tabular Q-learning . 15
2.6.2 Q-learning with Function Approximation 16
2.6.3 The Overestimation Bias of Q-learning 16

2.7 Double Q-learning . 18
2.7.1 Tabular Double Q-learning . 19
2.7.2 Double Q-learning with Function Approximation 19
2.7.3 The Underestimation Bias of Double Q-learning 21

2.8 Other Q-learning Variants . 22
2.9 Conclusion . 23

i

3 Variation-resistant Q-learning 24
3.1 Tabular Variation-resistant Q-learning 25
3.2 Variation-resistant Q-learning with Function Approximation 26
3.3 Discussion . 28

4 Experiments 31
4.1 Grid World . 31

4.1.1 World Structure . 31
4.1.2 Optimal Values . 32
4.1.3 Normalized Entropy of State Visits 32
4.1.4 Hyperparameters . 33
4.1.5 Evaluation . 34

4.2 Grid World with Function Approximation 34
4.2.1 World Structure . 34
4.2.2 State Representation . 34
4.2.3 Optimal Values . 35
4.2.4 Hyperparameters . 35
4.2.5 Evaluation . 36

4.3 Package Grid World . 36
4.3.1 World Structure . 36
4.3.2 State Representation . 37
4.3.3 Optimal Values . 37
4.3.4 Hyperparameters . 38
4.3.5 Evaluation . 38

4.4 Implementation Details . 38

5 Results 40
5.1 Grid World . 40
5.2 Grid World with Function Approximation 44
5.3 Package Grid World . 48

6 Discussion 51
6.1 Answers to Research Questions . 51
6.2 Future Work . 52
6.3 Conclusion . 53

A Convergence of Tabular Variation-resistant Q-learning 57
A.1 Preliminaries . 57
A.2 Convergence Theorem . 57

ii

Abstract

Overestimation bias is an inherent property of reinforcement learning algorithms
that approximate maximum expected values by maximizing uncertain estimates.
Since overestimation bias was identified in the literature, it has been generally con-
sidered to have a negative effect on reinforcement learning algorithms. In this the-
sis we investigate overestimation bias by examining Q-learning and conclude that
overestimation bias may have either a negative or positive effect on reinforcement
learning algorithms depending on the reinforcement learning problem. Based on
this conclusion, we propose a new variant of Q-learning, called Variation-resistant
Q-learning, to control and utilize estimation bias for better performance. We present
the tabular version of Variation-resistant Q-learning, prove a convergence theorem
for the algorithm in the tabular case, and extend the algorithm to a function ap-
proximation solution method. Additionally, we present empirical results from three
different experiments, in which we compared the performance of Variation-resistant
Q-learning, Q-learning, and Double Q-learning. The empirical results verify that
Variation-resistant Q-learning can control and utilize estimation bias for better per-
formance in the experimental tasks.

Keywords— Overestimation Bias; Reinforcement Learning; Machine Learning

iii

Acknowledgements

Firstly, I would like to thank my internal supervisor, Marco, and my external su-
pervisor, Matthia, for always having an insightful answer to my questions and for
guiding me throughout this research project. I want to especially thank Marco,
because through his courses he helped me discover my interest in machine learning.

Secondly, I would like to thank the Center for Information Technology of the
University of Groningen for their support and for providing access to the Peregrine
high performance computing cluster.

Thirdly, I would like to thank my parents, Pampos and Mary, for always sup-
porting me in every possible way in my long journey until this moment.

Fourthly, I am very grateful to my cousin, Panayiotis, for introducing me to the
field of mathematics and for all the invaluable information.

Fifthly, I am very grateful to my friend, Nicolas, for guiding me in the field
of computer science and for the many insightful conversations that enhanced my
critical thinking.

Finally, special thanks to my brother, Panayiotis, and my extended family and
friends, for all the experiences that shaped my personality in a meaningful way.

iv

Note on Notation

In this thesis we mainly follow the notation used in the book by Sutton and Barto
[36]. We use uppercase letters for sets, matrices, random vectors, random variables,
and approximate value functions, whereas we use lowercase letters for vectors, values
of random variables, and value functions. Additionally, matrices, random vectors,
and vectors are denoted by bold letters. Scalar functions other than the value
functions are denoted either by uppercase or lowercase letters.

v

Chapter 1

Introduction

Reinforcement learning is the subfield of machine learning that studies intelligent
agents that learn how to act optimally by interacting with an environment with-
out explicit instructions. Ideas from reinforcement learning were used in computer
programs that achieved human-level performance in the game of checkers [31] and
grandmaster-level performance in the game of backgammon [38]. Although these
computer programs are considered to be great achievements for reinforcement learn-
ing and artificial intelligence, even greater achievements were accomplished when
reinforcement learning was combined with deep learning.

Deep learning is a set of machine learning methods that use artificial neural
networks with many layers to perform automatic feature extraction from data. These
methods can learn useful representations of their input data and perform tasks that
are considered difficult for computers. Some application areas for deep learning are
speech recognition, computer vision, and natural language processing.

Deep reinforcement learning is a term that describes algorithms that combine
ideas from reinforcement learning and deep learning. Recently, deep reinforcement
learning algorithms were used in computer programs that have been shown to per-
form successful control in tasks that were previously considered impossible for com-
puters. Specifically, these programs achieved human-level control in video games
[24] and managed to master the game of Go [33]. After these breakthroughs, there
has been an increasing interest in deep reinforcement learning and many improve-
ments were suggested for deep reinforcement learning algorithms [32, 44, 24, 41,
11, 4, 9, 30, 29]. Furthermore, many of these improvements have been shown to be
independent of each other and to increase performance dramatically when combined
together [17].

Reinforcement learning problems are mathematically formalized in a way that
involves maximization. Moreover, many reinforcement learning algorithms try to
estimate expected values from a number of observed samples. Therefore, there are
reinforcement learning algorithms that approximate maximum expected values by
maximizing uncertain estimates. Consequently, these algorithms tend to overesti-
mate the maximum expected values. This overestimation bias is more extreme in
the beginning of learning, when the amount of observed samples is still limited.
Furthermore, artificial neural networks have been shown to cause instability and to
increase overestimation bias when combined with such algorithms [15].

Overestimation bias is generally considered to have a negative effect on reinforce-
ment learning algorithms [39, 40, 16, 41, 42, 12], and many methods were proposed

1

to reduce or remove overestimation bias [40, 16, 20, 8, 41, 3, 21]. In fact, the most
well-tested and successful method to overcome the problems caused by overestima-
tion bias replaces overestimation bias with underestimation bias [40, 16]. However,
a recent study suggests that the effect of overestimation bias on reinforcement learn-
ing algorithms depends on the reinforcement learning problem, and that it may be
positive under certain conditions [19].

In this thesis we investigate overestimation bias by examining Q-learning [46],
which is a reinforcement learning algorithm that approximates maximum expected
values by maximizing uncertain estimates. In the remainder of this chapter we first
present the research questions that we aim to answer in this thesis and then discuss
the significance of this study. Finally, we conclude this chapter by presenting the
thesis layout.

1.1 Research Questions

In this thesis we aim to answer the following research questions:

1. Under which conditions is overestimation bias harmful for reinforcement learn-
ing algorithms?

2. How can overestimation bias be reduced or removed when it is harmful for
reinforcement learning algorithms?

3. Are there any conditions under which overestimation bias is desirable for re-
inforcement learning algorithms?

4. Assuming that there are conditions under which overestimation bias is desir-
able for reinforcement learning algorithms, how can overestimation bias be
controlled and utilized for better performance?

1.2 Significance of the Study

Firstly, this study may benefit the reinforcement learning community by improving
the state-of-the-art methods. Since deep reinforcement learning has been shown
to be very successful, many state-of-the-art methods use artificial neural networks.
However, artificial neural networks have been shown to increase overestimation bias,
and overestimation bias has been shown to have a negative effect on reinforcement
learning algorithms. Therefore, understanding the effect of overestimation bias on
reinforcement learning algorithms may increase the performance of many state-of-
the-art methods or lead to the development of better methods.

Secondly, this study may bring the artificial intelligence community one step
closer to achieving artificial general intelligence. One of the long-term goals of
reinforcement learning is to deliver intelligent agents that can learn and act in real
time. However, all the successful computer programs that implement reinforcement
learning algorithms and that are in our knowledge have partly used offline techniques
to perform well. The reason is that reinforcement learning algorithms that are
applied to complex problems do not perform well in real time because of their
relatively high computational requirements. Overestimation bias seems to be one

2

of the causes of this problem, and understanding its effect on these algorithms may
reduce their computational requirements.

Finally, this study may benefit society as well by advancing automation. There
are optimization problems in the industry that can be solved automatically when
they are modeled as reinforcement learning problems. Some examples are maxi-
mizing the performance of an automated manufacturing system and minimizing the
energy consumption of an energy system. However, existing reinforcement learning
algorithms are not able to solve these problems efficiently. Understanding the ef-
fect of overestimation bias on reinforcement learning algorithms may increase their
efficiency.

1.3 Thesis Layout

This thesis is structured as follows. In the first chapter we introduced the research
topic of this study, presented the research questions that we aim to answer in this
thesis, and discussed the significance of this study. In the second chapter we present
the theoretical background that guided this study. In the third chapter we propose
a new method that is derived from the main conclusion of the second chapter. In the
fourth chapter we describe the experiments that we conducted in order to evaluate
the new method. In the fifth chapter we present the results obtained from the
experiments and discuss our findings. Finally, in the sixth chapter we conclude this
thesis with a discussion and the answers to the research questions.

3

Chapter 2

Theoretical Background

In this chapter we present the theoretical background that guided this study. In
the first section we give a brief overview of reinforcement learning. In the second
section we describe finite Markov decision processes, which can be used to model
reinforcement learning problems. In the third section we describe the two main
categories of solution methods that are applied to reinforcement learning problems.
In the fourth section we describe multilayer perceptrons, which can be used as a
tool in some solution methods. In the fifth section we define overestimation bias
and show how it can be replaced with underestimation bias. In the sixth section we
present Q-learning, show that it has overestimation bias,1 and examine a case where
overestimation bias could have a negative effect on the algorithm. In the seventh
section we present Double Q-learning, which is the most well-tested and successful
method to overcome the negative effect of overestimation bias on Q-learning. We
show that Double Q-learning has underestimation bias,2 and examine a case where
underestimation bias could have a negative effect on the algorithm. In the eighth
section we give a summary of all the other Q-learning variants that were proposed
to overcome the negative effect of overestimation bias on Q-learning and that are in
our knowledge. Finally, in the last section we discuss the conclusions of this chapter.

2.1 Reinforcement Learning

Reinforcement learning is one of the three main subfields of machine learning along
with supervised learning and unsupervised learning. Whereas in supervised learning
we study learning algorithms that are applied on training examples that have targets,
and in unsupervised learning our goal is to understand the structure of training
examples that do not have targets, in reinforcement learning we focus on intelligent
agents that interact with an environment and try to achieve a goal.

Fundamentally, reinforcement learning problems are problems of optimal con-
trol. The agent is a decision maker that interacts with an environment. At each
point in time the environment is in a certain state that the agent observes. Ev-
ery time the agent acts on the environment, the environment changes its state and
provides a reward signal to the agent. The goal of the agent is to act optimally in

1We refer to overestimation bias as an inherent property of Q-learning. This does not imply
that the algorithm shows overestimation in every reinforcement learning problem.

2We refer to underestimation bias as an inherent property of Double Q-learning. This does not
imply that the algorithm shows underestimation in every reinforcement learning problem.

4

order to maximize its total reward. In most cases the agent’s actions may influence
not only its immediate rewards but also its future rewards and the environment’s
future states. Moreover, there is an inherent uncertainty in reinforcement learning
problems, as the agent’s actions and the environment’s reactions to those actions
can be highly stochastic. Therefore, the problems that are studied in reinforcement
learning can become very complex.

One main challenge in reinforcement learning is the exploration–exploitation
dilemma. On the one hand, the agent should exploit (i.e. repeatedly take actions
that provide high rewards) in order to achieve the goal of maximizing its total
reward. On the other hand, the agent should explore (i.e. take actions for which it
has no prior experience) in order to discover actions that are more rewarding than
the ones it already knows. For the agent to perform well and achieve its goal, a
balance must be found between exploration and exploitation.

A widely used method to achieve this balance is the ε-greedy method. We did
not yet discuss how actions can be evaluated, but imagine that the agent has an
idea of which the optimal action is in a certain state. Perhaps it estimated the
expected rewards for all the actions in that state and determined the action that
maximizes the estimates with ties broken arbitrarily. Note that the agent could be
wrong because it did not yet take all the actions in that state enough times. When
using the ε-greedy method, the agent acts randomly and takes any action that is
permitted in a certain state with probability ε. Otherwise, it takes the greedy (i.e.
most highly valued) action. The amount of exploration can be adjusted by changing
the value of ε.

We described the main ideas of reinforcement learning in a qualitative way. To
quantify these ideas, we mathematically formalize reinforcement learning problems
as finite Markov decision processes. We describe these processes in the next section.

2.2 Finite Markov Decision Processes

A finite Markov decision process is a discrete-time, stochastic, sequential, decision-
making process that can be used to mathematically formalize reinforcement learning
problems. This process involves a controlling entity, called the agent, that contin-
uously interacts with an external entity, called the environment, by selecting and
taking actions. The environment reacts to the agent’s actions by changing its con-
dition, called state, and providing the agent with numerical signals, called rewards,
that the agent should learn to maximize over time.

2.2.1 Basic Structure

Formally, a finite Markov decision process is a tuple (S,A,R, p, γ, t) where:

1. S = {s1, s2, . . . , sn} is a finite set of states

2. A = {a1, a2, . . . , am} is a finite set of actions

3. R = {r1, r2, . . . , rκ} is a finite set of rewards

4. p : S× R× S×A 7→ [0, 1] is the dynamics function

5. γ ∈ [0, 1] is the discount factor

5

6. t = 0, 1, 2, 3, . . . is the time counter

The time counter t encodes the passage of time in the form of discrete time steps.
At each time step t the environment is in a certain state St ∈ S. The agent receives
an observation from the environment, which is a representation of St, and decides
to take an action At ∈ A.3 The environment reacts to At by transitioning to a next
state St+1 ∈ S and providing a reward Rt+1 ∈ R ⊂ R to the agent. The probability
of the next state and reward is determined by the dynamics function p as follows,

p(s′, r | s, a) = Pr{St+1 = s′, Rt+1 = r |St = s, At = a} (2.1)

for all s′, s ∈ S, r ∈ R, and a ∈ A. In other words, p defines a probability dis-
tribution over state-reward pairs for each state-action pair and therefore satisfies,

∑
s′∈S

∑
r∈R

p(s′, r | s, a) = 1, for all s ∈ S and a ∈ A (2.2)

We graphically show the agent–environment interaction in a finite Markov decision
process in figure 2.1.

Environment

Agent

Rt+1St St+1 At

Figure 2.1: The agent–environment interaction in a finite Markov decision process.

One important element of a finite Markov decision process is that its dynamics
follow the Markov property. This means that the next state and reward depend
only on the current state and action and not on any past states and actions. In
other words, each state contains sufficient information about the past interactions
between the agent and the environment in order to determine the future.

2.2.2 Episodes, Rewards, and Returns

In this thesis we concentrate on episodic problems. In this family of problems,
the agent begins an episode in a state S0 ∈ S, which is called the starting state.
Additionally, there exists a state ST ∈ S+, which is called the terminal state.4 If
the agent reaches ST , the episode ends, the environment is reset to S0, and a new
episode begins. The random variable T is the final time step of the episode.

As we stated in the previous section, the agent’s goal is to maximize the total
reward it receives from the environment. However, the agent’s actions can influence

3In this thesis we examine the case where all actions are available in each state. In general,
there may be actions that are not available in St.

4In this thesis we assume that ST /∈ S and denote the set S ∪ {ST } by S+.

6

the environment’s future reactions. This implies that maximizing only immediate
rewards may result in a relatively low total reward in the long run. Therefore, when
the agent selects actions, it should take future rewards into account as well.

Specifically, during an episode, the agent should learn to maximize the total
expected discounted return. The discounted return at time step t is defined as,

Gt =
T∑

k=t+1

γk−t−1Rk = Rt+1 + γRt+2 + . . .+ γT−t−1RT (2.3)

The discount factor γ controls how much weight the agent assigns to future rewards.
As γ → 1 the agent takes future rewards more into account, and as γ → 0 the agent
takes future rewards less into account. In the extreme cases, when γ = 1 the agent
assigns the same weight to all rewards until the end of the episode, and when γ = 0
the agent only cares for Rt+1. Note that the definition of the discounted return in
2.3 can be extended to non-episodic problems by replacing T with ∞.

2.2.3 Policies and Value Functions

The essence of mathematically formalizing a reinforcement learning problem as a
finite Markov decision process is for the agent to learn a behavioral rule, which is
called a policy. A policy π is defined as,

π(a | s) = Pr{At = a |St = s}, for all s ∈ S and a ∈ A (2.4)

In other words, π defines a probability distribution over all actions for each state
and therefore satisfies,∑

a∈A

π(a | s) = 1, for all s ∈ S (2.5)

Note that π can be deterministic, which means that it can map each state to only
one action.

We can evaluate a policy with value functions. The state-value function for
policy π is the expected discounted return for being in state s ∈ S at time step t
and then following π, and it is defined as,

vπ(s) = Eπ [Gt |St = s]

= Eπ

[
T∑

k=t+1

γk−t−1Rk

∣∣∣∣∣St = s

]
, for all s ∈ S (2.6)

The action-value function for policy π is the expected discounted return for taking
action a ∈ A in state s ∈ S at time step t and then following π, and it is defined as,

qπ(s, a) = Eπ [Gt |St = s, At = a]

= Eπ

[
T∑

k=t+1

γk−t−1Rk

∣∣∣∣∣St = s, At = a

]
, for all s ∈ S and a ∈ A (2.7)

Note that both value functions are always zero in the case of the terminal state.
From the definitions of the two value functions, it follows that,

vπ(s) =
∑
a∈A

π(a | s)qπ(s, a) (2.8)

7

The two value functions satisfy recursive relationships, which are called the Bell-
man equations [5]. For the state-value function vπ the Bellman equation is,

vπ(s) = Eπ [Gt |St = s]

= Eπ [Rt+1 + γGt+1 |St = s]

=
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a) [r + γEπ [Gt+1 |St+1 = s′]]

=
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a) [r + γvπ(s′)] (2.9)

and for the action-value function qπ the Bellman equation is,

qπ(s, a) = Eπ [Gt |St = s, At = a]

= Eπ [Rt+1 + γGt+1 |St = s, At = a]

=
∑
s′∈S

∑
r∈R

p(s′, r | s, a)

[
r + γ

∑
a′∈A

π(a′ | s′)Eπ [Gt+1 |St+1 = s′, At+1 = a′]

]

=
∑
s′∈S

∑
r∈R

p(s′, r | s, a)

[
r + γ

∑
a′∈A

π(a′ | s′)qπ(s′, a′)

]
(2.10)

The Bellman equations in 2.9 and 2.10 have as unique solutions vπ and qπ respec-
tively, and they are used in many reinforcement learning algorithms in order to learn
the two value functions for a policy π.

2.2.4 Optimal Policies and Optimal Value Functions

In reinforcement learning we are more interested in the optimal value functions be-
cause they are maximized by a policy π. Specifically, an optimal policy π∗ maximizes
the state-value function and defines the optimal state-value function as follows,

v∗(s) = vπ∗(s) = max
π

vπ(s), for all s ∈ S (2.11)

Similarly, the optimal action-value function is defined as,

q∗(s, a) = qπ∗(s, a) = max
π

qπ(s, a), for all s ∈ S and a ∈ A (2.12)

Note that there may be more than one optimal policy, but v∗ and q∗ are unique.
Since q∗ is the expected discounted return for taking action a ∈ A in state s ∈ S

and then following π∗, it is possible to uncover π∗ from q∗ by choosing a in s that
maximizes q∗ with ties broken arbitrarily. Therefore, the following equality holds,

v∗(s) = max
a∈A

q∗(s, a) (2.13)

The Bellman equations for the optimal value functions are called Bellman opti-
mality equations [5]. For the optimal state-value function v∗ this equation is,

v∗(s) = max
a∈A

∑
s′∈S

∑
r∈R

p(s′, r | s, a) [r + γv∗(s
′)] (2.14)

8

and for the optimal action-value function q∗ this equation is,

q∗(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r | s, a)

[
r + γmax

a′∈A
q∗(s

′, a′)

]
(2.15)

The Bellman optimality equations in 2.14 and 2.15 have as unique solutions the
optimal value functions. Knowing the optimal value functions is very powerful, be-
cause the agent can use this information to determine an action that ensures the
optimal expected discounted return from each state. In the case of the optimal state-
value function the agent must perform a one-step lookahead to determine an optimal
action, whereas in the case of the optimal action-value function the agent can deter-
mine an optimal action without considering the possible next states. Nevertheless,
both value functions are useful and are widely used in reinforcement learning.

The reinforcement learning algorithms that are used to learn the optimal value
functions can be divided into two main categories. We describe these categories in
the next section.

2.3 Solution Methods

In reinforcement learning problems we often seek to compute the optimal value
functions in order to uncover an optimal policy. In certain problems we can also
compute an optimal policy directly, although we do not discuss this approach in this
thesis. Whatever our goal is, the reinforcement learning algorithms that are used to
achieve this goal can be divided into two main categories. The first one is tabular
solution methods, and the second one is function approximation solution methods.

2.3.1 Tabular Solution Methods

The key idea of tabular solution methods is that the reinforcement learning problems
we would like to solve can be formally represented by state and action spaces that
are relatively small. If this is the case, it is possible to represent the approximate
value functions as lookup tables that store all the values. The values in such a table
are then updated as the reinforcement learning algorithm progresses.

The main advantage of tabular solution methods is that they can usually con-
verge to the optimal value functions and learn an optimal policy. In fact, most of
the theoretical guarantees we have in reinforcement learning are for tabular solution
methods [6, 36].

On the other hand, these methods are computationally infeasible for reinforce-
ment learning problems that are formally represented by large state and/or action
spaces. The reasons are that a large amount of memory is required to store the
values in the lookup table and that a large amount of time is required for gathering
enough samples to sufficiently update all the stored values [36]. Unfortunately, the
most interesting problems are usually very complex and cannot be solved with tab-
ular solution methods. Therefore, we have to resort to solution methods that use
function approximation.

9

2.3.2 Function Approximation Solution Methods

We use function approximation solution methods to tackle reinforcement learning
problems that are formally represented by large state and/or action spaces. In
these problems it is not possible to represent the optimal value functions exactly.
Therefore, our goal is to find approximate solutions that are good enough to allow
the agent to act in an optimal, or close to optimal, way.

The key idea of function approximation solution methods is that there exist
states that are similar to each other. Therefore, the agent could learn how to act
well in such states without visiting all of them. In other words, in these methods
we try to generalize over the state space from a limited amount of samples using
function approximators.

Although function approximation solution methods can help us deal with re-
inforcement learning problems that are intractable with tabular solution methods,
there are limited theoretical guarantees when function approximation is used. In
fact, function approximators have been shown to be unstable and to not always
converge to the optimal value functions [15].

In supervised learning, we study algorithms that learn from training examples
for which the regression or classification targets are provided. Many methods that
have been developed in supervised learning can be used in reinforcement learning,
acting as function approximators that try to learn the optimal value functions. In
the next section we describe one of them, the multilayer perceptron.

2.4 Multilayer Perceptrons

The perceptron was introduced by Rosenblatt in 1958 [26] but was shown to have
severe limitations [23] and did not become popular until after some decades. The
interest of the artificial intelligence community in the perceptron increased when a
multilayer version of the perceptron was introduced [27]. The reason is that the mul-
tilayer perceptron overcomes the perceptron’s limitations and can train efficiently.
Multilayer perceptrons can be used in reinforcement learning as function approxi-
mators.

2.4.1 The Perceptron

The perceptron is the basic information unit that is used to construct multilayer
perceptrons. It receives information from the input units xj ∈ R, j = 1, 2, . . . ,m,
and computes a weighted sum of those inputs to produce an output ŷ as follows,

ŷ =
m∑
j=1

wjxj + w0 (2.16)

where w0 is a bias weight associated with a bias unit x0 = +1. The output ŷ can
be used to approximate a solution to a linear regression problem or to discriminate
between two classes. Classification can be achieved by using a threshold function g
that is defined as,

g(ŷ) =

{
1, if ŷ ≥ 0

0, otherwise
(2.17)

10

and subsequently mapping the output of g to the two different classes. We graphi-
cally show a perceptron with two input units and one bias unit in figure 2.2.

x0

x1

x2

ŷ

w0

w1

w2

Figure 2.2: A perceptron with two input units and one bias unit.

Since our end goal is to approximate the optimal value functions, we assume
a regression problem. To evaluate the quality of the perceptron on one training
example, we define an objective function J as follows,

J(y, ŷ) =
1

2
(y − ŷ)2 (2.18)

that quantifies how far the output ŷ is from the target y. Note that there are
many objective functions that can be used, but here we only discuss the one in
equation 2.18. After defining an objective function, we initialize all the weights of
the perceptron randomly and provide the perceptron with training examples along
with their targets. To train the perceptron on one training example, we compute
the partial derivative of J with respect to each weight wj,

∂J(y, ŷ)

∂wj
= −(y − ŷ)xj (2.19)

and we adjust the weights to minimize the error. We update wj as follows,

wj ← wj − α
∂J(y, ŷ)

∂wj
(2.20)

where α is the learning rate.

2.4.2 Multilayer Perceptrons and Rectified Linear Units

Perceptrons are limited because they cannot solve problems that are not linearly
separable, such as the XOR problem [14, 2]. One way to overcome this limitation
is to construct a multilayer perceptron, which is a network of perceptron layers (see
figure 2.3 for an example). The first layer of the multilayer perceptron is called the
input layer, the final layer is called the output layer, and all the layers between the
input and output layers are called hidden layers. Note that the basic theory we
discussed for the perceptron can be extended to the multilayer perceptron.

One important aspect of multilayer perceptrons is that the output of each unit in
a hidden layer is given as an argument to a nonlinear activation function before it is
provided as an input to the next layer. This is essential for the multilayer perceptron
to function correctly and solve problems that are not linearly separable. If there

11

Figure 2.3: A multilayer perceptron with an input layer of four units, three hidden
layers of five units, an output layer of two units, and no bias units. Constructed
with the software described in [22].

were no nonlinear activation functions in the hidden layers, the multilayer perceptron
would be equivalent to a perceptron, because the sum of linear combinations is again
a linear combination [2].

In this thesis we describe the rectifier, which is a nonlinear activation function
that is widely used in multilayer perceptrons and was also used in our experiments.
The units in a multilayer perceptron that use the rectifier activation function are
called rectified linear units. The rectifier activation function is defined as,

g(x) = max(0, x) (2.21)

This activation function behaves similarly to a linear function and therefore makes
the optimization of models that use it easier [14]. The derivative of g is defined as,

dg(x)

dx
=

{
1, if x > 0

0, if x < 0
(2.22)

Although the derivative of g is undefined for x = 0, in computational problems
we can overcome this issue by adopting a convention for the value of the derivative
when x = 0. Furthermore, the fact that the derivative of g is equal to zero or one
for every x 6= 0 is very convenient. The reason is that it facilitates the most widely
used algorithm for training the multilayer perceptron, especially when the multilayer
perceptron has many layers.

2.4.3 Backpropagation and Stochastic Gradient Descent

Multilayer perceptrons are usually trained using the backpropagation algorithm
combined with stochastic gradient descent [27]. As in the case of the perceptron, we
assume the objective function J defined in equation 2.18, initialize all the weights of
the multilayer perceptron randomly, provide the multilayer perceptron with train-
ing examples and their targets, and the multilayer perceptron computes an output
for each training example. This procedure is called forward propagation because

12

the information for each training example is transmitted through the multilayer
perceptron in the forward direction.

The first part of the training algorithm of the multilayer perceptron is called
backpropagation because the error information for each training example is trans-
mitted through the multilayer perceptron in the backward direction. This is done
to compute the gradient of J with respect to the weight vector w ∈ Rm, which is
defined as,

∇wJ(y, ŷ) =
[
∂J(y,ŷ)
∂w1

∂J(y,ŷ)
∂w2

. . . ∂J(y,ŷ)
∂wm

]T
(2.23)

where m is the number of all the weights of the multilayer perceptron.

Backpropagation computes the partial derivatives in equation 2.23 using the
chain rule of calculus. The algorithm operates in the backward direction to avoid
computing intermediate terms in the chain rule more than once. Although this is
an efficient way to compute the gradient, the partial derivatives that correspond to
weights in the earlier layers require the chain rule to be applied many times. This
can cause the gradient to vanish or explode due to repeated multiplication with
numbers that are less than or greater than one in magnitude respectively [14]. The
rectifier activation function partially overcomes this problem because its derivative
is either zero or one, assuming that the critical point x = 0 is handled.

After computing the gradient in equation 2.23, we update each weight of the
multilayer perceptron using the update rule in equation 2.20. This part of the train-
ing algorithm is called stochastic gradient descent. It is called stochastic because the
gradient is computed on only one training example and is therefore an expectation
of the true gradient that would be computed on all training examples. It is called
gradient descent because we are moving in the direction opposite to the gradient of
the objective function in order to minimize the error.

2.5 Overestimation Bias

Overestimation bias is an inherent property of reinforcement learning algorithms
that approximate maximum expected values by maximizing uncertain estimates.
Some examples of such algorithms are Q-Learning [46] and Sarsa [28].

The effect of overestimation bias on reinforcement learning algorithms is gener-
ally considered to be negative [39, 40, 16, 41, 42, 12], and there have been many
attempts to reduce or remove overestimation bias [40, 16, 20, 8, 41, 3, 21]. Moreover,
the combination of overestimation bias and function approximation has been shown
to cause learning failure under certain conditions [39]. However, a recent study
suggests that overestimation bias may have either a negative or positive effect on
reinforcement learning algorithms depending on the reinforcement learning problem
[19].

2.5.1 The Single Estimator Approach

As shown by Van Hasselt [40, 16], overestimation bias can be formally presented as
follows. Let X = {X1, X2, . . . , Xn} be a set of n random variables. Assume that we
seek to estimate maxi∈{1,2,...,n} E [Xi].

13

However, the underlying distributions of the variables Xi ∈ X are unknown.
Therefore, we gather a set of samples D =

⋃n
i=1Di, where each Di contains samples

of Xi, and construct estimators for the expected values by computing the sample
mean for each variable,

E [Xi] = E [µi] ≈ µi :=
1

|Di|
∑
xi∈Di

xi (2.24)

where µi is the estimator corresponding to Xi. Assuming that the samples in each
Di are independent and identically distributed, µi is an unbiased estimator of E [Xi].

One way to approximate the maximum expected value is to use the max operator
on µi as follows,

max
i∈{1,2,...,n}

E [Xi] = max
i∈{1,2,...,n}

E [µi] ≈ max
i∈{1,2,...,n}

µi (2.25)

This approach is called the single estimator approach because only one estimator
is used for each variable. However, it does not provide an unbiased estimate of
the maximum expected value. The reason is that maxi∈{1,2,...,n} µi is an unbiased
estimator of E

[
maxi∈{1,2,...,n} µi

]
but a biased estimator of maxi∈{1,2,...,n} E [µi] [35].

Van Hasselt showed that this bias is strictly positive when any random variable
that corresponds to the maximum expected value has a non-zero probability of not
corresponding to the maximum estimator [40, 16]. In general, it holds that,

E
[

max
i∈{1,2,...,n}

µi

]
≥ max

i∈{1,2,...,n}
E [µi] (2.26)

which means that the maximum expected value can be overestimated.

2.5.2 The Double Estimator Approach

As we stated above, the single estimator approach can cause overestimation of the
maximum expected value. There is another approach, called the double estimator
approach, that can be used to replace overestimation bias with underestimation bias.

As shown by Van Hasselt [40, 16], in the double estimator approach we use two
estimators for each random variable. We gather again a set of samples D =

⋃n
i=1Di,

where each Di contains samples of the random variable Xi, and randomly split it
into two sets, D1 and D2, such that D = D1 ∪ D2 and D1 ∩ D2 = ∅. We can now
define two sets of estimators, M1 = {µ11, µ12, . . . , µ1n} and M2 = {µ21, µ22, . . . , µ2n}.
The two estimators for E [Xi] are defined as,

µ1i :=
1

|D1i|
∑
xi∈D1i

xi and µ2i :=
1

|D2i|
∑
xi∈D2i

xi (2.27)

SinceD is split randomly, both estimators in 2.27 are unbiased under the assumption
that the samples in D1i and D2i are independent and identically distributed.

In this approach, we first consider the estimators in the set M1 and determine
∗ = arg maxi∈{1,2,...,n} µ1i with ties broken arbitrarily, and we then approximate the
maximum expected value as follows,

max
i∈{1,2,...,n}

E [Xi] = max
i∈{1,2,...,n}

E [µ2i] ≈ µ2∗ (2.28)

14

where µ2∗ is the estimator for E [X∗] in the set M2. Note that in the limit all the
estimators converge to the expected values and the approximation in 2.28 becomes
an equality. Note also that we can repeat the same procedure by swapping the roles
of M1 and M2.

This approach removes overestimation bias but does not necessarily provide an
unbiased estimate of the maximum expected value. Van Hasselt showed that this
bias is strictly negative when µ1∗ has a non-zero probability of not corresponding to
any random variable that corresponds to the maximum expected value [40, 16]. In
general, it holds that,

E [µ2∗] ≤ max
i∈{1,2,...,n}

E [µ2i] (2.29)

which means that the maximum expected value can be underestimated.

2.6 Q-learning

Q-learning was introduced by Watkins [46] and is one of the most widely used rein-
forcement learning algorithms. It was recently combined with deep neural networks
and has been shown to perform successful control in the video game domain [24].

This algorithm tries to compute the optimal action-value function q∗ by repeat-
edly sampling experience tuples of the form (St, At, Rt+1, St+1) and using them to
perform updates on action-value estimates.

Q-learning is a model-free algorithm as it does not require a model of the en-
vironment. Furthermore, it is an off-policy algorithm because it learns an optimal
policy π∗ irrespective of the policy π that is followed at each time step t. It is also
relatively easy to implement and has a relatively simple update rule.

2.6.1 Tabular Q-learning

In tabular Q-learning we first initialize an approximate action-value function Q
arbitrarily and then use a policy based on Q to sample (St, At, Rt+1, St+1) tuples.
At each time step t we perform the update,

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a′∈A

Q(St+1, a
′)−Q(St, At)] (2.30)

where α is the step size and γ is the discount factor. Note that this update depends
on the value of maxa′∈AQ(St+1, a

′) at time step t.
This version of Q-learning converges to the optimal action-value function q∗ with

probability one [45, 6]. There are two main convergence conditions. The first one
is that each state-action pair is sampled infinitely many times in the limit, and the
second one is that the step size sequence for each state-action pair satisfies,

∞∑
t=0

αt(s, a) =∞ and
∞∑
t=0

α2
t (s, a) <∞, for all s ∈ S and a ∈ A (2.31)

In algorithm 1 we show the pseudocode for tabular Q-learning. Note that the
step size α is usually annealed in each step to satisfy the convergence condition
in 2.31. Similarly, the exploration parameter ε is usually annealed in each step
to gradually reduce exploration. This ensures that the policy used for the action
selection asymptotically approaches the greedy policy.

15

Algorithm 1: Tabular Q-learning

Input: step size α ∈ (0, 1], exploration parameter ε > 0
Initialize Q(s, a) arbitrarily for all s ∈ S and a ∈ A

Observe initial state s
while Agent is interacting with the Environment do

Choose action a in s using policy based on Q (e.g. ε-greedy)
Take action a, observe r and s′

Q(s, a)← Q(s, a) + α [r + γmaxa′∈AQ(s′, a′)−Q(s, a)]
s← s′

end

2.6.2 Q-learning with Function Approximation

Q-learning can be extended to a function approximation solution method. We
present the case where a differentiable nonlinear function approximator is used,
because we used multilayer perceptrons as function approximators in our experi-
ments.

Assume a differentiable nonlinear function approximator with a weight vector
w ∈ Rm. At each time step t the function approximator takes as input a represen-
tation of a state St ∈ S and outputs a set of action-value estimates for St. In other
words, the approximate action-value function Q is now parametrized by w and is
denoted by Q(·, ·;w).

We define the target Yt at time step t as follows,

Yt = Rt+1 + γmax
a′∈A

Q(St+1, a
′;w) (2.32)

where γ is the discount factor. The objective function J can now be defined as,

J(Yt, Q(St, At;w)) =
1

2
[Yt −Q(St, At;w)]2 (2.33)

Notice that the target Yt depends on the weight vector w. In fact, this is called
bootstrapping in reinforcement learning and can cause problems when combined
with gradient descent methods [36]. However, it is beyond the scope of this thesis
and we do not discuss it further.

Having in mind that the next derivation is not a true gradient descent method,
we assume that Yt is independent of w and compute the gradient of J with respect
to w. We then perform the update,

w ← w + α [Yt −Q(St, At;w)]∇wQ(St, At;w) (2.34)

where α is the learning rate.
The pseudocode for Q-learning with function approximation is shown in algo-

rithm 2. Note that the exploration parameter ε is usually annealed in each step for
the same reason as in tabular Q-learning. On the other hand, the learning rate α
is usually set to a relatively low value before the algorithm is executed and remains
fixed during learning.

2.6.3 The Overestimation Bias of Q-learning

As we mentioned before, Q-learning is model-free, off-policy, and relatively easy to
implement. Furthermore, it has a relatively simple update rule and a convergence

16

Algorithm 2: Q-learning with Function Approximation
Input: learning rate α > 0, exploration parameter ε > 0
Initialize weight vector w ∈ Rm arbitrarily
Observe initial state s
while Agent is interacting with the Environment do

Choose action a in s using policy based on Q (e.g. ε-greedy)
Take action a, observe r and s′

y ← r + γmaxa′∈AQ(s′, a′;w)
w ← w + α [y −Q(s, a;w)] ∇wQ(s, a;w)
s← s′

end

proof for its tabular version. However, Q-learning has overestimation bias [39, 40,
16], and this has been repeatedly shown to influence the learning procedure [39, 40,
16, 41].

Q-learning was mathematically proven to overestimate the optimal action values
under mild assumptions by Thrun and Schwartz [39]. A less limiting proof followed
by Van Hasselt [40, 16], and it was also proven in actor-critic methods by Fujimoto
et al. [12].

To understand why Q-learning can overestimate, assume that the tabular version
of the algorithm updates Q(St, At) at a certain time step t by estimating the optimal
value of the next state St+1 ∈ S as follows,

V (St+1) = max
a′∈A

Q(St+1, a
′) (2.35)

However, the action values of St+1 are not the optimal action values because the
algorithm is still in the process of learning. Assume that a noise term e(St+1, ·) is
associated with Q(St+1, ·) as follows,

Q(St+1, a) = q∗(St+1, a) + e(St+1, a), for all a ∈ A (2.36)

The noise term e can be there for many reasons, such as stochastic transitions,
stochastic rewards, function approximation, non-stationary environment, or a com-
bination of these. The core idea is that there is some source of random approximation
error that can be either positive or negative. Since the algorithm uses the max op-
erator over all the actions in state St+1 as shown in equation 2.35, the optimal value
of St+1 can be overestimated due to positive noise.

Another way to analyze the overestimation bias of Q-learning is to think of
the algorithm as using the single estimator approach to determine the maximum
optimal action value of the next state. In other words, maxa′∈AQ(St+1, a

′) tries to
approximate maxa′∈A E [Q(St+1, a

′)]. However, we know that maxa′∈AQ(St+1, a
′) is

an unbiased estimator of E [maxa′∈AQ(St+1, a
′)]. From the analysis of the single

estimator approach we know that,

E
[
max
a′∈A

Q(St+1, a
′)

]
≥ max

a′∈A
E [Q(St+1, a

′)] (2.37)

In figure 2.4 we show an episodic finite Markov decision process that was inspired
by [36] to examine the negative effect of overestimation bias on Q-learning. In

17

this process there are two non-terminal states, s0 and s1, and the terminal state is
depicted by gray squares. The starting state is s0 and there are two possible actions
the agent can take in s0. If the agent takes the action a2, it causes a deterministic
transition to the terminal state with a deterministic reward of zero and the episode
ends. If the agent takes the action a1, it causes a deterministic transition to s1
with a deterministic reward of zero and the episode continues. In s1 there are four
possible actions that cause a deterministic transition to the terminal state. The
rewards received for those actions are drawn from a Normal distribution with mean
µ = −0.1 and standard deviation σ = 0.5. If the discount factor γ is set to one,
the expected return for any possible trajectory that begins with a1 is -0.1, whereas
the expected return for taking a2 is zero. Therefore, the optimal policy π∗ is to
always choose a2 in s0 and end the episode in one time step. However, a Q-learning
agent following an ε-greedy policy could choose a1 many times in the beginning of
learning, because it would potentially overestimate the optimal value of s1.

Figure 2.4: An episodic finite Markov decision process to highlight the problems
caused by overestimation bias. The starting state is s0 and the terminal state is
depicted by gray squares. All the transitions are deterministic and the rewards are
shown above the actions.

2.7 Double Q-learning

Double Q-learning was proposed by Van Hasselt [40, 16] to remove the overesti-
mation bias of Q-learning. Similarly to Q-learning, it has been recently shown to
perform successful control in the video game domain when combined with deep
neural networks [41].

The main idea of this algorithm is to simultaneously update two approximate
action-value functions on two disjoint sets of samples of the form (St, At, Rt+1, St+1).
When one of the two action-value functions is updated, it is also used to determine
the action the maximizes the action values of the next state. However, the maxi-
mizing action is evaluated by the other action-value function. This ensures that the
optimal value of the next state is not overestimated, although it may be underesti-
mated.

Double Q-learning shares all the advantages of Q-learning that we have already
discussed. Furthermore, it replaces overestimation bias with underestimation bias
by doubling the memory requirements. The reason is that two approximate action-
value functions must be stored instead of one.

18

2.7.1 Tabular Double Q-learning

In tabular Double Q-learning, we initialize two approximate action-value functions,
Q1 and Q2, arbitrarily and use a policy based on both of them to sample experience
tuples of the form (St, At, Rt+1, St+1). At each time step t we choose to update one
of the two action-value functions with equal probability. The update rule for Q1 at
time step t is defined as,

Q1(St, At)← Q1(St, At) + α[Rt+1 + γQ2(St+1, A∗)−Q1(St, At)] (2.38)

where α is the step size, γ is the discount factor, and A∗ = arg maxa′∈AQ1(St+1, a
′).

Note that Q2, which is not updated at time step t, is used to evaluate A∗. The
update rule for Q2 at time step t is similar to the one in 2.38 but with the two
action-value functions swapped.

Tabular Double Q-learning converges to the optimal action-value function q∗
with probability one [40, 16]. The main convergence conditions are similar to those
of tabular Q-learning.

We show the pseudocode for tabular Double Q-learning in algorithm 3. Note that
the step size α is usually annealed in each step to satisfy the convergence condition
in 2.31, and the exploration parameter ε is usually annealed in each step to gradually
reduce exploration. Note also that to choose an action in each state we use a policy
based on the mean of the two approximate action-value functions. This ensures that
all the information acquired in the past steps is used for the action selection [40,
16].

Algorithm 3: Tabular Double Q-learning

Input: step size α ∈ (0, 1], exploration parameter ε > 0
Initialize Q1(s, a) and Q2(s, a) arbitrarily for all s ∈ S and a ∈ A

Observe initial state s
while Agent is interacting with the Environment do

Choose action a in s using policy based on Q1 + Q2

2 (e.g. ε-greedy)
Take action a, observe r and s′

With probability 0.5:
a∗ ← arg maxa′∈AQ1(s

′, a′)
Q1(s, a)← Q1(s, a) + α [r + γQ2(s

′, a∗)−Q1(s, a)]
else:
a∗ ← arg maxa′∈AQ2(s

′, a′)
Q2(s, a)← Q2(s, a) + α [r + γQ1(s

′, a∗)−Q2(s, a)]
s← s′

end

2.7.2 Double Q-learning with Function Approximation

Double Q-learning can be extended to a function approximation solution method in
a similar way to Q-learning. As we mentioned before, we used multilayer perceptrons
as function approximators in our experiments. Therefore, we again present the case
where a differentiable nonlinear function approximator is used.

Assume two differentiable nonlinear function approximators with two different
weight vectors that are denoted by w1 ∈ Rm and w2 ∈ Rm. At each time step

19

t each function approximator can take as input a representation of a state St ∈ S

and output a set of action-value estimates for St. Therefore, the two weight vectors
are used to parametrize two different approximate action-value functions that are
denoted by Q1(·, ·;w1) and Q2(·, ·;w2).

Similarly to tabular Double Q-learning, at each time step t we choose to update
one of the two weight vectors with equal probability. The target Yt for w1 at time
step t is defined as,

Yt = Rt+1 + γQ2(St+1, A∗;w2) (2.39)

where γ is the discount factor and A∗ = arg maxa′∈AQ1(St+1, a
′;w1).

Assuming the same objective function J as in equation 2.33, we update w1 as
follows,

w1 ← w1 + α [Yt −Q1(St, At;w1)]∇w1Q1(St, At;w1) (2.40)

where α is the learning rate. Note that the update rule in 2.40 is not a true gradient
descent method because the target Yt depends on the weight vector w1. The target
and update rule for w2 at time step t are similar to the ones in 2.39 and 2.40
respectively but with the two weight vectors swapped.

In algorithm 4 we show the pseudocode for Double Q-learning with function
approximation. Note that to choose an action in each state we use a policy based
on one of the two function approximators with equal probability. The weight vector
of the function approximator that is used to choose the action is updated in the
same step. Note also that the learning rate α is usually set to a relatively low
value before the algorithm is executed and does not change during learning, whereas
the exploration parameter ε is usually annealed in each step to gradually reduce
exploration.

Algorithm 4: Double Q-learning with Function Approximation
Input: learning rate α > 0, exploration parameter ε > 0
Initialize weight vectors w1 ∈ Rm and w2 ∈ Rm arbitrarily
Observe initial state s
while Agent is interacting with the Environment do

With probability 0.5:
Choose action a in s using policy based on Q1 (e.g. ε-greedy)
Take action a, observe r and s′

a∗ ← arg maxa′∈AQ1(s
′, a′;w1)

y ← r + γQ2(s
′, a∗;w2)

w1 ← w1 + α [y −Q1(s, a;w1)] ∇w1Q1(s, a;w1)
else:

Choose action a in s using policy based on Q2 (e.g. ε-greedy)
Take action a, observe r and s′

a∗ ← arg maxa′∈AQ2(s
′, a′;w2)

y ← r + γQ1(s
′, a∗;w1)

w2 ← w2 + α [y −Q2(s, a;w2)] ∇w2Q2(s, a;w2)
s← s′

end

20

2.7.3 The Underestimation Bias of Double Q-learning

Although Double Q-learning removes overestimation bias, it is not a complete so-
lution to the problem of estimating the maximum optimal action values because it
has underestimation bias [40, 16].

To understand why Double Q-learning can underestimate, assume that the tab-
ular version of the algorithm updates the approximate action-value function Q1 at
time step t. Therefore, the optimal value of the next state St+1 ∈ S is estimated as
follows,

V (St+1) = Q2(St+1, A∗) (2.41)

where A∗ = arg maxa′∈AQ1(St+1, a
′). As in the case of Q-Learning, assume that

there is some source of random approximation error, and therefore a positive or
negative noise term e1(St+1, ·) is associated with Q1(St+1, ·) as follows,

Q1(St+1, a) = q∗(St+1, a) + e1(St+1, a), for all a ∈ A (2.42)

Since the algorithm uses the argmax operator over all the actions in state St+1,
it may be the case that A∗ is not the action that maximizes the optimal action
values of St+1 due to positive noise. Therefore, the optimal value of St+1 can be
underestimated.

Another way to analyze the underestimation bias of Double Q-learning is to think
of the algorithm as using the double estimator approach to determine the maximum
optimal action value of St+1. From the analysis of the double estimator approach
we know that Q2(St+1, A∗) is an unbiased estimator of E [Q2(St+1, A∗)]. However,
we also know that,

E [Q2(St+1, A∗)] ≤ max
a′∈A

E [Q2(St+1, a
′)] (2.43)

The episodic finite Markov decision process shown in figure 2.5 was inspired
by [16] to examine a case where the underestimation bias of Double Q-learning
could be harmful for the algorithm. This process is similar to the one shown in
figure 2.4 and we only highlight their differences. Notice that there are now only
two possible actions in state s1. The reward received by the agent for taking the
action a3 is drawn from a Normal distribution with mean µ = +0.2 and standard
deviation σ = 0.2, whereas the reward received by the agent for taking the action a4

is drawn from a Normal distribution with mean µ = −0.2 and standard deviation
σ = 0.2. If the discount factor γ is set to one, the expected return for taking a1 and
then a3 is 0.2, which is greater than the expected return for taking the action a2.
Consequently, the optimal action in state s0 is a1. However, a Double Q-learning
agent following an ε-greedy policy could choose a2 many times in the beginning of
learning, because it could underestimate the optimal value of s1. The reason is that
Double Q-learning could use one of the two approximate action-value functions to
determine that the suboptimal action a4 maximizes the optimal action values of
s1 and then evaluate a4 with the other approximate action-value function. On the
other hand, the overestimation bias of Q-learning could be beneficial, because it
would potentially allow the agent to visit s1 many times in the beginning of learning
and learn the optimal policy fast.

21

Figure 2.5: An episodic finite Markov decision process to highlight the problems
caused by underestimation bias. The starting state is s0 and the terminal state is
depicted by gray squares. All the transitions are deterministic and the rewards are
shown above the actions.

2.8 Other Q-learning Variants

After the negative effect of overestimation bias on Q-learning was identified, there
have been a number of approaches in the literature to address this issue. The
most well-tested and successful method is Double Q-learning, which we have already
discussed.

One proposed method that is different from Double Q-learning is Bias-corrected
Q-learning [20, 21], in which a bias correction term is subtracted from the update
target in each step to remove overestimation bias. However, this bias correction
term is computed by taking into account only stochastic transitions and stochastic
rewards. There are other sources of approximation error, such as function approxi-
mation and non-stationary environment, that cannot be addressed by this method.
Furthermore, overestimation bias can facilitate the learning algorithm under cer-
tain conditions (see figure 2.5 and relevant discussion), and therefore it would be
preferable to control it than remove it.

Another proposed method is Weighted Q-learning [8], which computes the value
of the next state in the update target in each step as a weighted average of all
its action-value estimates. The weight for each action-value estimate approximates
the probability that the corresponding action maximizes the optimal action values.
However, this method did not outperform Double Q-learning in all the tasks it was
tested on. Moreover, similarly to Bias-corrected Q-learning, this algorithm does not
provide a way to control its estimation bias.

The next approach proposed two methods, Averaged Q-learning and Ensemble
Q-learning, that were directly applied in a deep reinforcement learning setting [3].
In this approach, past action-value estimates of a model, or action-value estimates
of different models, are averaged and used in the update target in each step as the
value of the next state. Consequently, the overestimation bias and estimation vari-
ance of the algorithms are lower than those of Q-learning. However, overestimation
bias is never reduced to zero because the average operator is applied to a finite
number of approximate action-value functions. Moreover, similarly to the methods
we discussed above, Averaged Q-learning and Ensemble Q-learning do not provide
a way to control estimation bias.

One proposed method that attempts to find a balance between overestimation
and underestimation is Weighted Double Q-learning [48], which uses a weighted
version of Q-learning and Double Q-learning to compute the maximum action value
of the next state in the update target in each step. This method was also extended

22

to a multi-agent deep reinforcement learning algorithm [49]. Although this method
provides functionality to control its estimation bias, it cannot underestimate more
than Double Q-learning or overestimate more than Q-learning.

A more recent proposed method is Maxmin Q-learning [19], in which an ensemble
of agents is used to learn the optimal action values. Specifically, in this algorithm
a number of past experience tuples of the form (St, At, Rt+1, St+1) are stored in a
replay buffer. In each step a minibatch of past experiences is randomly sampled from
the replay buffer and is used to update the action-value estimates of one or more
agents. For each experience in the minibatch, all the agents compute an estimate
for the maximum optimal action value of the next state, and the minimum of those
estimates is used in the corresponding update target. The update procedure starts
after all the update targets are determined for all experiences. The authors proposed
this method because they identified that underestimation bias may be preferable to
overestimation bias and vice versa depending on the reinforcement learning problem,
and they showed that the estimation bias of the algorithm can be controlled by
tweaking the number of agents. However, although the algorithm can underestimate
more than Double Q-learning, there is a limit to its underestimation. Moreover, the
algorithm cannot overestimate more than Q-learning. Furthermore, this method
requires more computational resources than any other method we discussed above.
The reasons are that a number of past experience tuples must be stored in memory,
that more than one updates is performed in each step, and that the number of
approximate action-value functions increases as the number of agents increases.

Although some of the methods we discussed above outperformed Double Q-
learning in some tasks, this difference in performance seems to be task-specific.
Therefore, we need more empirical results to conclude that they are useful alterna-
tives to Double Q-learning.

2.9 Conclusion

In this chapter we presented the theoretical background that guided this study. First
we described the relevant concepts and tools, and then we defined overestimation
bias and showed how it can be replaced with underestimation bias. Subsequently,
we presented Q-learning, showed that it has overestimation bias, and examined the
negative effect that overestimation bias can have on this algorithm. After that,
we presented Double Q-learning, showed how it replaces overestimation bias with
underestimation bias, and examined the negative effect that underestimation bias
can have on this algorithm. Finally, we presented a number of Q-learning variants
other than Double Q-learning that were proposed to overcome the negative effect of
overestimation bias on Q-learning.

The main conclusion of this chapter is that overestimation bias may have either
a negative or positive effect on reinforcement learning algorithms depending on the
reinforcement learning problem. We examined a case in which underestimation
bias is preferable to overestimation bias and vice versa. Although most of the
methods that were proposed to overcome the negative effect of overestimation bias
on Q-learning reduce or remove overestimation bias, there are some methods that
control estimation bias. However, the methods that control estimation bias still
have disadvantages and are not the majority.

23

Chapter 3

Variation-resistant Q-learning

In this chapter we propose a new method to control and utilize estimation bias
for better performance. The algorithm we propose is called Variation-resistant Q-
learning. Similarly to Q-learning, this new algorithm tries to compute the opti-
mal action-value function q∗ by repeatedly sampling experience tuples of the form
(St, At, Rt+1, St+1) and using them to update an approximate action-value function.
However, in this algorithm a number of past action-value estimates are stored in
memory. The capacity of this memory is a hyperparameter that is determined be-
fore the algorithm is executed. In each step the algorithm uses an update rule similar
to the one of Q-learning, but the maximum action value of the next state in the up-
date target is translated by a positive or negative quantity. This quantity is called
the variation quantity and is proportional to the mean absolute deviation of the
stored past estimates of the maximum action value of the next state. The constant
of proportionality in the variation quantity is called the variation resistance param-
eter and is also a hyperparameter that is determined before the algorithm starts
learning. The variation resistance parameter affects the magnitude and determines
the sign of the variation quantity.

Variation-resistant Q-learning is based on the principle that applying the max
operator on uncertain action-value estimates can cause overestimation. Specifically,
the probability and amount of overestimation are expected to increase as the number
of actions that correspond to uncertain action-value estimates in each state increases
[16, 42]. When there exists any possibility of overestimation, the algorithm increases
or decreases the values of uncertain action-value estimates in the update targets
in order to introduce systematic overestimation or underestimation respectively.
Therefore, the variation resistance parameter can control the estimation bias of the
algorithm by affecting the magnitudes and determining the signs of the variation
quantities.

Variation-resistant Q-learning controls estimation bias in a qualitatively differ-
ent way than the other methods that control estimation bias (see section 2.8). The
algorithm does not merely increase the probability of overestimation or underestima-
tion, but ensures estimation bias of a certain magnitude and direction by translating
the values of uncertain action-value estimates in the update targets. Consequently,
Variation-resistant Q-learning influences the agent’s exploration behavior in a more
direct way than the other methods that control estimation bias. Specifically, since
overestimation bias encourages exploration of overestimated actions and underesti-

24

mation bias discourages exploration of underestimated actions,1 the magnitudes and
signs of the variation quantities determine whether the agent is encouraged or dis-
couraged from exploring states that correspond to uncertain action-value estimates
and by how much. Therefore, the variation resistance parameter can influence the
agent’s exploration behavior.

In the remainder of this chapter we first present the tabular version of the algo-
rithm and then present the function approximation version of the algorithm. Finally,
we conclude this chapter with a discussion about the new method.

3.1 Tabular Variation-resistant Q-learning

In tabular Variation-resistant Q-learning we initialize an approximate action-value
function Q arbitrarily, and we also initialize a memory with capacity n > 1 for each
action value. We then use a policy based on Q to sample experience tuples of the
form (St, At, Rt+1, St+1). At each time step t we first compute the value of the next
state as follows,

V (St+1) = Q(St+1, A∗) + λσκ(St+1, A∗) (3.1)

where A∗ = arg maxa′∈AQ(St+1, a
′), λ 6= 0 is the variation resistance parameter,

0 ≤ κ ≤ n is the number of past values of Q(St+1, A∗) that are in memory at time
step t, and σκ(St+1, A∗) is the mean absolute deviation of those κ past values. The
mean absolute deviation σκ is defined as,

σκ(s, a) =

0, if κ = 0∑κ
i=1

∣∣Qi(s, a)−Qκ(s, a)
∣∣

κ
, otherwise

(3.2)

for all s ∈ S and a ∈ A. The mean of the κ past values of Q(s, a) is denoted by
Qκ(s, a) and is defined as,

Qκ(s, a) =

∑κ
i=1Qi(s, a)

κ
(3.3)

Having computed the value of the next state, we perform the update,

Q(St, At)← Q(St, At) + α[Rt+1 + γV (St+1)−Q(St, At)] (3.4)

where α is the step size and γ is the discount factor. After performing the update,
the new value of Q(St, At) is stored in memory. If there are already n past values
of Q(St, At) stored in memory, the oldest of those values is discarded.

Note that the action-value memory capacity n should be set to an appropriate
value in order to allow the algorithm to discard information about past action-value
estimates that are outdated. The reason is that the variation quantities should
start decreasing when the action-value estimates start becoming better. Note also

1A necessary condition for overestimation bias to encourage exploration of overestimated actions
and underestimation bias to discourage exploration of underestimated actions is that the algorithm
uses a partially greedy policy for action selection (e.g. ε-greedy). In this thesis we assume that
this condition is satisfied.

25

that the variation resistance parameter λ can be set to a value greater than one in
magnitude if required by the reinforcement learning problem.

In appendix A we present and prove a convergence theorem for tabular Variation-
resistant Q-learning. The main convergence conditions are similar to those of tabular
Q-learning.

We show the pseudocode for tabular Variation-resistant Q-learning in algorithm
5. In our experiments with this version of the algorithm the step size α was an-
nealed in each step to satisfy the step size sequence convergence condition and the
exploration parameter ε was annealed in each step to gradually reduce exploration.

Algorithm 5: Tabular Variation-resistant Q-learning

Input: step size α ∈ (0, 1], exploration parameter ε > 0, action-value memory
capacity n > 1, variation resistance parameter λ 6= 0

Initialize Q(s, a) arbitrarily for all s ∈ S and a ∈ A

Initialize memory with capacity n for each Q(s, a)
Observe initial state s
while Agent is interacting with the Environment do

Choose action a in s using policy based on Q (e.g. ε-greedy)
Take action a, observe r and s′

a∗ ← arg maxa′∈AQ(s′, a′)
V (s′)← Q(s′, a∗) + λσκ(s′, a∗)
Q(s, a)← Q(s, a) + α [r + γV (s′)−Q(s, a)]
Store Q(s, a) in memory
s← s′

end

3.2 Variation-resistant Q-learning with Function

Approximation

Variation-resistant Q-learning can be extended to a function approximation solution
method. As we mentioned in the previous chapter, we used multilayer perceptrons
as function approximators in our experiments. For this reason, we again present the
case where a differentiable nonlinear function approximator is used.

Assume a differentiable nonlinear function approximator with a weight vector
w ∈ Rm that is used to parametrize the approximate action-value function Q(·, ·;w)
and the absolute deviations of the action-value estimates σ(·, ·;w). In other words,
at each time step t the function approximator takes as input a representation of
a state St ∈ S and outputs a set of action-value estimates for St along with their
absolute deviations.

Since the function appoximator is not only trained to predict the action-value
estimates but is also trained to predict their absolute deviations, we define two
targets at each time step t. The first target Yt at time step t is defined as,

Yt = Rt+1 + γ [Q(St+1, A∗;w) + λσ(St+1, A∗;w)] (3.5)

where γ is the discount factor, A∗ = arg maxa′∈AQ(St+1, a
′;w), and λ 6= 0 is the

variation resistance parameter. The second target Yt
′ at time step t is defined as,

Yt
′ = |Yt −Q(St, At;w)| (3.6)

26

We define the objective function J as follows,

J(Y t, Ŷ t) =
1

2
[Yt −Q(St, At;w)]2 +

1

2
[Yt
′ − σ(St, At;w)]

2
(3.7)

where the random vectors Y t and Ŷ t are defined as,

Y t =
[
Yt Yt

′]T and Ŷ t =
[
Q(St, At;w) σ(St, At;w)

]T
(3.8)

To perform an update at time step t, we assume that the target vector Y t does
not depend on the weight vector w and compute the gradient of J with respect to
w as follows,

∇wJ(Y t, Ŷ t) = − [Yt −Q(St, At;w)]∇wQ(St, At;w)

− [Yt
′ − σ(St, At;w)]∇wσ(St, At;w)

(3.9)

and we update w with the following update rule,

w ← w − α∇wJ(Y t, Ŷ t) (3.10)

where α is the learning rate. Note that the update rule in 3.10 is not a true gradient
descent method because the target vector Y t depends on the weight vector w.

Although this version of Variation-resistant Q-learning does not have an action-
value memory, the algorithm can still start decreasing the variation quantities when
the action-value estimates start becoming better. The reason is that the function
approximator adjusts its predictions for the absolute deviations of the action-value
estimates as new information is provided. From our experience, this version of
the algorithm seems to be more sensitive to the value of the variation resistance
parameter λ, and selecting |λ| < 1 may provide better empirical results.

In algorithm 6 we show Variation-resistant Q-learning with function approxi-
mation in pseudocode. In our experiments with this version of the algorithm, the
learning rate α was set to a relatively low value before the algorithm was executed
and remained fixed during learning, whereas the exploration parameter ε was an-
nealed in each step to gradually reduce exploration.

Algorithm 6: Variation-resistant Q-learning with Function Approximation
Input: learning rate α > 0, exploration parameter ε > 0, variation resistance

parameter λ 6= 0
Initialize weight vector w ∈ Rm arbitrarily
Observe initial state s
while Agent is interacting with the Environment do

Choose action a in s using policy based on Q (e.g. ε-greedy)
Take action a, observe r and s′

a∗ ← arg maxa′∈AQ(s′, a′;w)
y ← r + γ [Q(s′, a∗;w) + λσ(s′, a∗;w)]
y′ ← |y −Q(s, a;w)|
w ← w − α∇wJ(y, ŷ)
s← s′

end

27

3.3 Discussion

We first discuss why Variation-resistant Q-learning uses mean absolute deviation
as a measure of statistical dispersion. Note that the algorithm can be seen as
applying a translation operator on the maximum action value of the next state in
the update target in each step. The variation quantity is used for the translation and
depends on the measure of dispersion used by the algorithm. Therefore, variance
would not be a suitable measure of dispersion, because its magnitude would result
in unrealistically high variation quantities. Moreover, standard deviation would also
not be a suitable measure of dispersion, because it would assign more weight to past
action-value estimates that are statistical outliers. To understand why this could
be a problem, think of a case where an action-value estimate is close to the optimal
value in general, but an extremely rare transition causes an extreme change in its
value. In this case, standard deviation would be affected by the outlier and the
variation quantity would be higher than desired. On the other hand, mean absolute
deviation is less sensitive to outliers and therefore makes the variation quantity more
robust.

We now examine how the variation resistance parameter can control the estima-
tion bias of Variation-resistant Q-learning. Assume that the tabular version of the
algorithm is used to solve a reinforcement learning problem. Notice that at a certain
time step t we have that,

V (St+1) = Q(St+1, A∗) + λσκ(St+1, A∗) (3.11)

where A∗, λ, κ, and σκ are defined in the same way as in equation 3.1. Notice
that σκ(St+1, A∗) ≥ 0 by definition. Assume now that κ > 0 in 3.11, which means
that there are past values of Q(St+1, A∗) in memory. If κ is sufficiently large and
σκ(St+1, A∗) ≈ 0, the algorithm should compute an estimate close to q∗(St+1, A∗)
and its estimation bias should be close to zero. On the other hand, if the κ past
values of Q(St+1, A∗) are noisy, the estimation bias of the algorithm depends on the
value of λ. Specifically, if λ < 0 and σκ(St+1, A∗) > 0, the following inequality holds,

V (St+1) < Q(St+1, A∗) (3.12)

which means that the algorithm should overestimate less than Q-learning. Symmet-
rically, if λ > 0 and σκ(St+1, A∗) > 0, the following inequality holds,

V (St+1) > Q(St+1, A∗) (3.13)

which means that the algorithm should overestimate more than Q-learning. Notice
that the magnitude and direction of the estimation bias of the algorithm depend on
λ. Specifically, as λ→∞ Variation-resistant Q-learning can arbitrarily overestimate
more than Q-learning, and as λ→ −∞ Variation-resistant Q-learning can arbitrarily
underestimate more than Double Q-learning. Note that this discussion also holds
for the function approximation version of the algorithm.

The main advantage of Variation-resistant Q-learning is that it utilizes estimation
bias to influence the agent’s exploration behavior for better performance. Consider
the following thought experiment that is mentioned in [19] to understand why. As-
sume an environment with highly stochastic states, which means that the actions in

28

those states provide highly stochastic rewards and/or cause highly stochastic tran-
sitions. If the highly stochastic states are of high value, overestimation bias would
encourage the agent to explore those states and learn their optimal values faster.
On the other hand, if the highly stochastic states are of low value, underestimation
bias would encourage the agent to ignore those states and move faster to the highly
valued states. Taking this thought experiment one step further, think of an environ-
ment where highly valued states are blocked by highly stochastic states. The only
way for the agent to reach the highly valued states would be through the highly
stochastic states, and overestimation bias could speed up this process. Symmetri-
cally, if an environment has lowly valued states that are blocked by highly stochastic
states, we would prefer the agent to ignore those regions of the state space and move
on. In this case, underestimation bias would be preferable to overestimation bias.

We now consider what happens when there are other sources of approxima-
tion error in the reinforcement learning problem, such as function approximation
and non-stationary environment. Variation-resistant Q-learning can deal with these
sources of approximation error because it operates directly on the action-value es-
timates. However, it is more difficult to analyze how estimation bias affects the
performance of the algorithm in these cases. For example, think of a problem where
the function approximation version of the algorithm is used. Because function ap-
proximation is a technique that tries to generalize over the state space, updating
the weight vector of the function approximator can change several action-value es-
timates simultaneously. This makes the variation quantity less reliable and may be
the reason that the function approximation version of the algorithm seems to be
more sensitive to the value of the variation resistance parameter. Another example
would be a problem with a non-stationary environment that changes its rules after
the action-value estimates become accurate. In this case, the tabular version of the
algorithm would have in memory past action-value estimates that would become
unreliable, whereas the function approximation version of the algorithm would pre-
dict the absolute deviations of the action-value estimates incorrectly. This would
prevent the algorithm from adapting quickly to the change in the environment.

One disadvantage of Variation-resistant Q-learning is that its tabular version
requires sufficient memory to store a number of past action-value estimates. More-
over, the function approximation version of the algorithm must allocate part of
the capacity of its function approximator to predict the absolute deviations of the
action-value estimates. Consequently, a function approximator with more capacity
may be needed for the algorithm to perform well, and this requires more memory.
Therefore, Variation-resistant Q-learning has relatively high memory requirements.

Another disadvantage of Variation-resistant Q-learning is that it cannot arbi-
trarily change its estimation bias during learning. Specifically, the algorithm starts
learning with an estimation bias of a certain magnitude and direction, which de-
pends on the variation resistance parameter. As the action-value estimates become
better, the estimation bias of the algorithm is gradually reduced. To understand
why this could be harmful for the algorithm, think of a problem where the environ-
ment is non-stationary and has many highly stochastic states of high value. In this
case, overestimation bias could speed up learning. Now assume that at a certain
time step t the rules of the environment change, and the highly stochastic states
suddenly become lowly valued. We would want the algorithm to detect this change
automatically and start underestimating the optimal values, but our method cannot

29

arbitrarily switch between underestimation and overestimation during learning.
Our main purpose in this chapter was to explain a new method that is based

on the principle that estimation bias should be controlled and utilized for better
performance. Variation-resistant Q-learning provides functionality to control and
utilize its estimation bias in order to influence the agent’s exploration behavior for
better performance. Furthermore, the algorithm can arbitrarily overestimate more
than Q-learning and can arbitrarily underestimate more than Double-Q-learning.

30

Chapter 4

Experiments

In this chapter we describe the experiments that we conducted in order to com-
pare the performance of Q-learning, Double Q-learning, and Variation-resistant Q-
learning. In each experiment we simulated the interaction of three different agents
with an environment. Each agent used one of the three algorithms. In the first
section we describe the first experiment, in which we used a grid world environment
and the tabular versions of the algorithms. In the second section we describe the
second experiment, in which we used a similar grid world environment to the one of
the first experiment and the function approximation versions of the algorithms. In
the third section we describe the third experiment, in which we used a more complex
grid world environment than the ones of the other two experiments and the function
approximation versions of the algorithms. Finally, in the fourth section we give the
implementation details of the three experiments.

4.1 Grid World

4.1.1 World Structure

In figure 4.1 we show the environment used in our first experiment, which is a 3× 3
grid world. In this world each cell is a different state, and therefore each state can
be uniquely represented by the tuple (i, j), where i, j ∈ {1, 2, 3} are the row number
and column number of the corresponding cell respectively. In other words, the set
of possible states is defined as,

S = {(i, j) | i, j ∈ {1, 2, 3}} (4.1)

The agent’s starting cell is the bottom left cell and the goal cell is the top right
cell. Moreover, the set of possible actions is defined as,

A = {“left”, “up”, “right”, “down”} (4.2)

and the four actions in A match the directions in which the agent can move. At
each time step t the agent can choose to take one of the four actions in its current
cell and cause a deterministic transition to a neighboring cell. Note that an attempt
to move beyond the world’s boundaries results in no movement. The agent must
move to the goal cell and take any of the four actions in order to end the episode.

Inspired by [40, 16, 8, 48], we used four different reward functions in this exper-
iment, which are described as follows:

31

Figure 4.1: A 3× 3 grid world. The agent’s starting cell is the bottom left cell and
the goal cell is the top right cell.

1. Bernoulli: The agent receives a reward of +50 or -40 with equal probability
for taking an action in the goal cell, and a reward of -12 or +10 with equal
probability for taking an action in any other cell.

2. High-variance Gaussian: The agent receives a reward of +5 for taking an
action in the goal cell, and a reward drawn from a Normal distribution with
mean µ = −1 and standard deviation σ = 5 for taking an action in any other
cell.

3. Low-variance Gaussian: The agent receives a reward of +5 for taking an
action in the goal cell, and a reward drawn from a Normal distribution with
mean µ = −1 and standard deviation σ = 1 for taking an action in any other
cell.

4. Non-terminal Bernoulli: The agent receives a reward of +5 for taking an
action in the goal cell, and a reward of -12 or +10 with equal probability for
taking an action in any other cell.

4.1.2 Optimal Values

For all the reward functions described above, the expected reward at time step t is,

E [Rt+1 |St = s] =

{
+5, if s = (1, 3)

−1, otherwise
(4.3)

Since an optimal policy π∗ ends the episode in five actions, the optimal expected
reward per time step is,∑4

t=0 Eπ∗ [Rt+1]

5
=

5 + 4(−1)

5
= 0.2 (4.4)

Assuming that the discount factor γ is set to 0.95, the maximum optimal action
value of the starting state is,

max
a∈A

q∗((3, 1), a) = 5γ4 −
3∑

k=0

γk ≈ 0.36 (4.5)

4.1.3 Normalized Entropy of State Visits

Given a set of state visit counts N = {n1, n2, . . . , n9}, where ni is the state visit
count for the state si ∈ S, the empirical probability of si is defined as,

p̂i =
ni∑9
j=1 nj

(4.6)

32

The normalized entropy of the state visits can then be defined as,

H(p̂) = −
9∑
i=1

p̂i log2(p̂i)

log2(9)
(4.7)

where the vector p̂ is defined as,

p̂ =
[
p̂1 p̂2 . . . p̂9

]T
(4.8)

Therefore, when H(p̂) ≈ 1 the state visit counts are approximately equal to each
other, and when H(p̂) ≈ 0 some state visit counts are greater than others.

4.1.4 Hyperparameters

In this experiment we set the discount factor γ to 0.95 and used the tabular versions
of the three algorithms. The step size αt at time step t was defined as,

αt(s, a) =
1

nt(s, a)0.8
, for all s ∈ S and a ∈ A (4.9)

where nt(s, a) is the update count for the action-value estimate of the state-action
pair (s, a) at time step t. For Double Q-learning we used one step size for each
action-value table at time step t, and the two step sizes were defined in the same
way as in equation 4.9. This definition of the step size α satisfies the step size
sequence convergence condition for tabular Q-learning [45, 6, 47] and tabular Double
Q-learning [40, 16, 47] and has been shown to provide better performance in theory
and practice [10].

For the action selection we used an ε-greedy policy, in which the exploration
parameter εt at time step t was defined as,

εt(s) =
1√
nt(s)

, for all s ∈ S (4.10)

where nt(s) is the state visit count for state s at time step t. This definition of the
exploration parameter ε satisfies the infinite exploration in the limit convergence
condition for tabular Q-learning [45, 6] and tabular Double Q-learning [40, 16].

The hyperparameters described above were used in all three algorithms and
their choice was guided by previous work [40, 16, 8, 48]. In table 4.1 we provide the
algorithm-specific hyperparameters for Variation-resistant Q-learning, which were
determined after a manual search in the hyperparameter space. Note that the
variation resistance parameter was varied, whereas all other hyperparameters were
fixed.

Hyperparameter Value(s)

action-value memory capacity 150

variation resistance parameter -3, -1.5, -1, -0.5, -0.2, +0.3

Table 4.1: Hyperparameters used in Variation-resistant Q-learning in the grid world
experiment.

33

4.1.5 Evaluation

To evaluate the algorithms, we let each agent interact with the environment and
update its action-value estimates for 10,000 time steps. We measured the reward
per time step, the maximum action value of the starting state, and the normalized
entropy of the state visits. The quantities were averaged over 10,000 simulations.

4.2 Grid World with Function Approximation

4.2.1 World Structure

In figure 4.2 we show the environment used in our second experiment, which is a
similar grid world to the one used in our first experiment. The agent’s starting cell is
the bottom left cell, the goal cell is the top right cell, the transitions are deterministic,
an attempt to move beyond the world’s boundaries results in no movement, and the
action space and reward functions remain the same. However, in this world each
cell is not a different state (see section 4.2.2 for an explanation). Moreover, the size
of the world is 10 × 10 instead of 3 × 3, which makes the task of the agent more
difficult because more exploration is needed to discover the goal cell.

Figure 4.2: A 10 × 10 grid world. The agent’s starting cell is the bottom left cell
and the goal cell is the top right cell.

4.2.2 State Representation

In this experiment we used the function approximation versions of the three al-
gorithms and implemented the function approximators as multilayer perceptrons.
Therefore, we used a state representation that is a suitable input for multilayer per-
ceptrons. Specifically, at each time step t the current state was represented by a
2× 100 matrix M . To achieve this, we first defined a mapping f as follows,

f(i, j) = i+ 10(j − 1) (4.11)

34

that maps a cell tuple (i, j) to a unique integer. The first row of M was then
defined by the mapping,

g(c) =

{
1, if c = f(k, l)

0, otherwise
(4.12)

where c ∈ {1, 2, . . . , 100} is the column number of M and (k, l) is the agent’s cell
at time step t. Therefore, the first row of M represented the agent’s position in the
grid. The second row of M was defined by the mapping,

h(c) =

{
1, if c = f(1, 10)

0, otherwise
(4.13)

where c ∈ {1, 2, . . . , 100} is the column number of M . Therefore the second row
of M represented the position of the goal cell in the grid. Note that in principle
representing the position of the goal cell is not necessary to increase performance,
since it remains the same across episodes. However, this is a representation that is
easily generalized to an arbitrary position of the goal cell.

4.2.3 Optimal Values

Note that equation 4.3 still holds, because the reward functions used in this experi-
ment are identical to the ones used in the first experiment. Since an optimal policy
π∗ ends the episode in 19 actions, the optimal expected reward per time step is,∑18

t=0 Eπ∗ [Rt+1]

19
=

5 + 18(−1)

19
≈ −0.68 (4.14)

Assuming that the discount factor γ is set to 0.99, the maximum optimal action
value of all visited states per time step is,∑18

t=0 maxa∈A q∗(St, a)

19
=

∑18
t=0 Eπ∗ [Gt]

19
≈ −3.94 (4.15)

Under the same assumption, the maximum optimal action value of the starting state
s0 is,

max
a∈A

q∗(s0, a) = 5γ18 −
17∑
k=0

γk ≈ −12.38 (4.16)

4.2.4 Hyperparameters

In table 4.2 we report the hyperparameters used in this experiment, which were
determined after a manual search in the hyperparameter space. Similarly to the first
experiment, all hyperparameters other than the variation resistance parameter were
fixed and used in all three algorithms, whereas the variation resistance parameter
was varied. Note that in this experiment the policy used for the action selection was
again ε-greedy, but ε was linearly annealed from the initial exploration value to the
final exploration value based on the exploration decay steps value. Moreover, we
used rectified linear units in the hidden layers of the multilayer perceptrons, and all
the weights of the multilayer perceptrons were randomly initialized using the Glorot
uniform initializer [13].

35

Hyperparameter Value(s)

discount factor 0.99

initial exploration 0.5

final exploration 0.01

exploration decay steps 150,000

learning rate 0.0025

number of hidden layers 1

number of hidden layer nodes 512

variation resistance parameter -0.5, -0.3, -0.1, -0.05, +0.05, +0.1

Table 4.2: Hyperparameters used in the grid world with function approximation
experiment.

4.2.5 Evaluation

To evaluate the algorithms, we let each agent interact with the environment and
update the weights of its function approximator(s) for 250,000 time steps. We
measured the reward per time step, the maximum action value of all visited states
per time step, and the maximum action value of the starting state per time step. We
repeated this procedure five times with five different random seeds and computed
the median of each quantity over the seeds. As a measure of uncertainty for each
quantity, we computed the interval between the mean of the two greatest values and
the mean of the two least values.

4.3 Package Grid World

4.3.1 World Structure

In figure 4.3 we show the environment used in our third experiment, which is a more
complex grid world than the ones used in our other two experiments. As in the
worlds used in the other two experiments, the agent’s starting cell is the bottom left
cell, the transitions are deterministic, and an attempt to move beyond the world’s
boundaries results in no movement. As in the world used in the second experiment,
the size of the world is 10 × 10 and each cell is not a different state (see section
4.3.2 for an explanation). However, this world has no goal cell and has five cells
that contain packages. Furthermore, the set of possible actions is now defined as,

A = {“left”, “up”, “right”, “down”, “collect”} (4.17)

In addition to the four actions that cause transitions to neighboring cells, at each
time step t the agent can also choose to take the action “collect”. This action results
in no movement, and if the agent’s cell contains a package which is active (i.e. exists
in the world), the package is collected (i.e. removed from the world). The agent must
collect all five packages in order to end the episode. This can be seen as a variation
of the travelling salesman problem, as the agent must determine the shortest path
that begins from its starting cell and visits all the cells that contain packages.

We used a deterministic reward function in this experiment, in which the agent
receives a reward of +100 for collecting all the packages, and a reward of -1 per time
step otherwise.

36

Figure 4.3: A 10 × 10 package grid world. The agent’s starting cell is the bottom
left cell and there are five cells that contain packages along the walls of the grid.

4.3.2 State Representation

In this experiment we again used the function approximation versions of the three
algorithms and implemented the function approximators as multilayer perceptrons.
Therefore, at each time step t the current state was again represented by a 2× 100
matrix M . As in the second experiment, the first row of M was defined by the
same mapping g as in equation 4.12 and represented the agent’s position in the grid.
However, the second row of M was defined by the mapping,

h(c) =

{
1, if c ∈ P
0, otherwise

(4.18)

where c ∈ {1, 2, . . . , 100} is the column number of M and the set P is defined as,

P = {f(i, j) | cell (i, j) contains an active package} (4.19)

where the mapping f is defined in the same way as in equation 4.11. Therefore, the
second row of M represented the position(s) of the active package(s) in the world.
Note that this kind of representation is essential for the agent to perform well. Since
the episode does not end when one package is collected, it is crucial for the agent to
understand that a package is not active anymore in a certain cell after it has taken
the action “collect” in that cell once. This allows the agent to visit other cells in
order to collect the remaining packages and end the episode.

4.3.3 Optimal Values

Since the reward function is deterministic and the optimal policy π∗ ends the episode
in 32 actions, it follows that the optimal expected reward per time step is,∑31

t=0 Eπ∗ [Rt+1]

32
=

100 + 31(−1)

32
≈ 2.16 (4.20)

37

Assuming that the discount factor γ is set to 0.95, the maximum optimal action
value of all visited states per time step is,∑31

t=0 maxa∈A q∗(St, a)

32
=

∑31
t=0 Eπ∗ [Gt]

32
≈ 40.47 (4.21)

Under the same assumption, the maximum optimal action value of the starting state
s0 is,

max
a∈A

q∗(s0, a) = 100γ31 −
30∑
k=0

γk ≈ 4.47 (4.22)

4.3.4 Hyperparameters

In table 4.3 we show the hyperparameters that were used to run the experiment
with this world. As in the second experiment, we determined the hyperparameters
manually, all hyperparameters other than the variation resistance parameter were
fixed and used in all three algorithms, and the variation resistance parameter was
varied. Furthermore, the policy used for the action selection, the linear annealing
procedure of the exploration parameter ε, the activation functions in the hidden
layers of the multilayer perceptrons, and the initialization of the weights of the
multilayer perceptrons were identical to the ones used in the second experiment.

Hyperparameter Value(s)

discount factor 0.95

initial exploration 1

final exploration 0.05

exploration decay steps 750,000

learning rate 0.005

number of hidden layers 1

number of hidden layer nodes 256

variation resistance parameter -0.5, -0.3, -0.1, +0.2, +0.4, +0.6

Table 4.3: Hyperparameters used in the package grid world experiment.

4.3.5 Evaluation

To evaluate the algorithms, we let each agent interact with the environment and
update the weights of its function approximator(s) for 1,000,000 time steps. As
in the second experiment, we measured the reward per time step, the maximum
action value of all visited states per time step, and the maximum action value of the
starting state per time step. We again repeated this procedure five times with five
different random seeds and computed the median of each quantity over the seeds.
We also computed uncertainty intervals for each quantity in the same way as in the
second experiment.

4.4 Implementation Details

The simulation software for our experiments was implemented using Python 3 [43].
For numerical computing we used Numpy [25], and the multilayer perceptrons were

38

implemented using Keras [7] running on top of Tensorflow [1]. To carry out the
experiments we used Peregrine, the high performance computing cluster of the Uni-
versity of Groningen, and ran all the simulations on CPU. To control the randomness
in the simulations of the second and third experiments, we set a random seed in any
part of the program that involved random operations and ran the tensorflow oper-
ations on a single CPU thread.

The source code of the simulation software can be found at https://github.

com/anpenta/overestimation-bias-reinforcement-learning-simulation-code

39

https://github.com/anpenta/overestimation-bias-reinforcement-learning-simulation-code
https://github.com/anpenta/overestimation-bias-reinforcement-learning-simulation-code

Chapter 5

Results

In this chapter we present the results of our experiments and discuss our findings. In
the first section we present and discuss the results of the grid world experiment. In
the second section we present and discuss the results of the grid world with function
approximation experiment. In the third and final section we present and discuss
the results of the package grid world experiment. Note that in the figures of this
chapter we use the abbreviations shown in table 5.1.

Algorithm Abbreviation

Double Q-learning DQL

Q-learning QL

Variation-resistant Q-learning VRQL

Table 5.1: Abbreviations used in the figures of this chapter.

5.1 Grid World

In figure 5.1 we show the results obtained when the variation resistance parameter
was set to -3. The reward per time step is shown in the top row, the maximum
action value of the starting state is shown in the middle row, and the normalized
entropy of the state visits is shown in the bottom row. The plots in each column
correspond to a different reward function, and the optimal value is marked with a
black horizontal line in the plots of the top and middle rows. The quantities were
averaged over 10,000 simulations.

When the Bernoulli reward function was used, Q-learning performed poorly, be-
cause the highly stochastic rewards received for all actions in the non-goal states
caused the algorithm to often overestimate the optimal action values of the non-goal
states that correspond to suboptimal actions. Double Q-learning did not perform
much better than Q-learning, because the highly stochastic rewards received for all
actions in the goal state caused the algorithm to often select suboptimal actions
in the non-goal states. The reason is that there was no incentive for the algo-
rithm to explore the goal state and learn its optimal action values. Consequently,
both algorithms ignored the goal state and followed bad policies for many steps.
On the other hand, Variation-resistant Q-learning performed well, because in the
beginning of learning the action-value estimates of the algorithm for the non-goal
states were updated with targets that contained uncertain action-value estimates.

40

Figure 5.1: Results obtained from the grid world experiment when the variation
resistance parameter was set to -3. The reward per time step is shown in the top
row, the maximum action value of the starting state is shown in the middle row,
and the normalized entropy of the state visits is shown in the bottom row. Each
column corresponds to a different reward function. The optimal values are marked
with black horizontal lines in the plots of the top and middle rows. The quantities
were averaged over 10,000 simulations.

The algorithm translated the uncertain action-value estimates in the update targets
using negative variation quantities that were relatively high in magnitude. Conse-
quently, the algorithm visited the goal state many times, learned its optimal action
values, and followed good policies for many steps. Notice that Variation-resistant
Q-learning underestimated the maximum optimal action value of the starting state
extremely in the beginning of learning but computed estimates close to the optimal
value near the end of learning. Moreover, the normalized entropy of the state visits
indicates that the algorithm did not overexplore any non-goal state in the beginning
of learning.

When the High-variance Gaussian reward function was used, Q-learning per-
formed worse than the other two algorithms for the same reason as in the case of
the Bernoulli reward function. On the other hand, Double Q-learning performed
well because the rewards received for all actions in the goal state were deterministic.
Since the algorithm could not overestimate the optimal action values of the non-goal
states that correspond to suboptimal actions, it often selected the optimal actions
in the non-goal states and followed good policies for many steps. Variation-resistant
Q-learning performed slightly better than Double Q-learning for the same reason as
in the case of the Bernoulli reward function.

The Low-variance Gaussian reward function was the most favorable for all three
algorithms. Although the rewards received for all actions in the non-goal states were
stochastic, their variance was not high enough to confuse the algorithms. Therefore,
all three algorithms followed good policies for many steps and performed well.

When the Non-terminal Bernoulli reward function was used, Q-learning per-
formed poorly for the same reason as in the case of the Bernoulli reward function,
whereas Double Q-learning performed well for the same reason as in the case of the

41

High-variance Gaussian reward function. Variation-resistant Q-learning performed
moderately better than Double Q-learning for the same reason as in the case of the
Bernoulli reward function.

In the following figures we show the results obtained when the variation resistance
parameter λ was set to the other five values mentioned in table 4.1. Notice that the
estimates of Variation-resistant Q-learning for the maximum optimal action value
of the starting state gradually move from underestimation to overestimation as λ
increases. Notice also that the performance of the algorithm gradually becomes
worse as λ increases. Additionally, notice that the normalized entropy of the state
visits that corresponds to Variation-resistant Q-learning gradually decreases as λ
increases. This indicates that the algorithm computed higher estimates for the
optimal action values of the non-goal states and explored the non-goal states for
more steps when λ was set to higher values. Therefore, the results of the first
experiment support the claim that λ can control and utilize the estimation bias
of the algorithm in order to influence the agent’s exploration behavior for better
performance.

(a) λ = -1.5

(b) λ = -1

42

(c) λ = -0.5

(d) λ = -0.2

(e) λ = +0.3

43

5.2 Grid World with Function Approximation

In figure 5.2 we show the results obtained when the variation resistance parameter
was set to -0.5. The reward per time step is shown in the top row, the maximum
action value of all visited states per time step is shown in the middle row, and the
maximum action value of the starting state per time step is shown in the bottom
row. The plots in each column correspond to a different reward function, and the
optimal value is marked with a black horizontal line in each plot. The quantities
are median values over five simulations with five different random seeds, and the
uncertainty intervals for each quantity are represented by shaded areas.

Figure 5.2: Results obtained from the grid world with function approximation ex-
periment when the variation resistance parameter was set to -0.5. The reward per
time step is shown in the top row, the maximum action value of all visited states
per time step is shown in the middle row, and the maximum action value of the
starting state per time step is shown in the bottom row. Each column corresponds
to a different reward function. The optimal values are marked with black horizon-
tal lines. The quantities are median values over five simulations with five different
random seeds, and the shaded areas represent the uncertainty intervals.

Notice that the performance of all three algorithms fluctuated greatly in the
beginning of learning. The reasons are that the reward per time step was computed
with a limited amount of reward samples in the beginning of learning and that the
median values were computed over only five simulations.

Note that in the second experiment Variation-resistant Q-learning and Double
Q-learning were at a disadvantage compared to Q-learning. In the case of Variation-
resistant Q-learning the reason is that the algorithm had to allocate part of the
capacity of its multilayer perceptron to predict the absolute deviations of the action-
value estimates, whereas in the case of Double Q-learning the reason is that the

44

algorithm updated the weight vector of only one of its two multilayer perceptrons
in each step. Nevertheless, Variation-resistant Q-learning performed better than
Double Q-learning, and Double Q-learning performed better than Q-learning. Note
that this difference in performance was more extreme when the Bernoulli and Non-
terminal Bernoulli reward functions were used. This happened for the same reasons
we discussed in the previous section (see figure 5.1 and relevant discussion).

Notice that Double Q-learning performed better than in the first experiment
when the Bernoulli reward function was used. Similarly, Q-learning performed better
than in the first experiment when the Bernoulli, Non-terminal Bernoulli, and High-
variance Gaussian reward functions were used. Note that this happened despite the
fact that the task of the second experiment was more difficult than the task of the
first experiment. The reason is that the multilayer perceptrons generalized over the
state space and tried to learn the mean value of the update targets for each action
irrespective of the state.

Because of the behavior of the multilayer perceptrons, all three algorithms un-
derestimated the maximum optimal action values. Nevertheless, Variation-resistant
Q-learning underestimated the optimal values more than Double Q-learning, and
Double Q-learning underestimated the optimal values more than Q-learning. Notice
that the estimates of Variation-resistant Q-learning did not get close to the optimal
values within the 250,000 time steps. Underestimation was positively correlated
with performance as expected.

In the following figures we show the results obtained when the variation resistance
parameter λ was set to the other five values mentioned in table 4.2. The results of
the second experiment are similar to the results of the first experiment and support
the claim that λ can control and utilize the estimation bias of Variation-resistant
Q-learning for better performance.

(a) λ = -0.3

45

(b) λ = -0.1

(c) λ = -0.05

46

(d) λ = +0.05

(e) λ = +0.1

Note that in the second experiment the variation resistance parameter λ was
set to lower values in magnitude than in the first experiment. The reason is that
preliminary experiments showed that setting λ to a value greater than one in magni-
tude causes the function approximation version of Variation-resistant Q-learning to
diverge. Notice that the estimates of the algorithm for the maximum optimal action

47

values change more extremely as a function of λ in the results of the second exper-
iment than in the results of the first experiment. This suggests that the algorithm
is more sensitive to the value of λ when function approximation is used.

5.3 Package Grid World

In figure 5.3 we show the results obtained when the variation resistance parameter
was set to +0.6. The reward per time step is shown in the left plot, the maximum
action value of all visited states per time step is shown in the center plot, and the
maximum action value of the starting state per time step is shown in the right
plot. The optimal value is marked with a black horizontal line in each plot. The
quantities are median values over five simulations with five different random seeds,
and the uncertainty intervals for each quantity are represented by shaded areas.

Figure 5.3: Results obtained from the package grid world experiment when the
variation resistance parameter was set to +0.6. The reward per time step is shown
in the left plot, the maximum action value of all visited states per time step is
shown in the center plot, and the maximum action value of the starting state per
time step is shown in the right plot. The optimal values are marked with black
horizontal lines. The quantities are median values over five simulations with five
different random seeds, and the shaded areas represent the uncertainty intervals.

Note that in the third experiment Variation-resistant Q-learning and Double Q-
learning were at a disadvantage compared to Q-learning for the same reasons as in
the second experiment. This allowed Q-learning to achieve superior performance
in the task of the third experiment. The reason is that in this task it is relatively
difficult to discover the terminal state, and therefore experiences with the terminal
state are relatively difficult to sample. Q-learning utilized those experiences better
and therefore followed good policies for more steps that the other two algorithms.

Notice that Double Q-learning performed worse than the other two algorithms.
The reason is that the task of the third experiment does not favor underestimation.
As we mentioned above, in this task it is relatively difficult to sample experiences
with the terminal state. Furthermore, the initial states are relatively far from the
terminal state, and therefore the optimal action values of the initial states that corre-
spond to optimal and suboptimal actions do not differ extremely. Double Q-learning
computed lower estimates for the optimal action values that correspond to optimal
actions than the other two algorithms in the beginning of learning. This indicates
that Double Q-learning explored suboptimal actions and followed bad policies for
more steps than the other two algorithms, and that Double Q-learning needed more

48

experiences with the terminal state to determine the optimal actions than the other
two algorithms.

In the following figures we show the results obtained when the variation resistance
parameter λ was set to the other five values mentioned in table 4.3. Notice that the
estimates of Variation-resistant Q-learning for the maximum optimal action values
gradually decrease as λ decreases. Notice also that the performance of the algorithm
gradually becomes worse as λ decreases. This indicates that the algorithm behaved
similarly to Double Q-Learning when λ was set to lower values. Therefore, the
results of the third experiment support the claim that λ can control and utilize the
estimation bias of Variation-resistant Q-learning for better performance.

(a) λ = +0.4

(b) λ = +0.2

(c) λ = -0.1

49

(d) λ = -0.3

(e) λ = -0.5

Notice that the uncertainty intervals for the quantities that correspond to Variation-
resistant Q-learning are wider in the results obtained when λ was set to +0.6 and
-0.5. This behavior is similar to the one we observed in the preliminary experiments
that we mentioned in the previous section and suggests that the algorithm is more
sensitive to the value of λ when function approximation is used.

50

Chapter 6

Discussion

In this chapter we conclude this thesis with a discussion and the answers to the
research questions that were presented in section 1.1. In the first section we answer
the research questions. In the second section we outline some possible directions for
future work. Finally, in the third section we conclude this chapter and this thesis.

6.1 Answers to Research Questions

Under which conditions is overestimation bias harmful for reinforcement
learning algorithms?

Based on our investigation, we concluded that overestimation bias is harmful for
reinforcement learning algorithms when it encourages exploration of suboptimal ac-
tions. In the second chapter we presented an episodic finite Markov decision process
where an algorithm that has overestimation bias and follows an ε-greedy policy would
potentially not perform well, because it would be encouraged to explore suboptimal
actions in the beginning of learning (see figure 2.4 and relevant discussion). More-
over, overestimation bias was harmful for Q-learning in the tasks of our first and
second experiments. We explained that this happened because Q-learning overesti-
mated the optimal action values that correspond to suboptimal actions and followed
bad policies for more steps than the other two algorithms.

How can overestimation bias be reduced or removed when it is harm-
ful for reinforcement learning algorithms?

During our investigation, we identified methods that reduce or remove overestima-
tion bias and methods that control estimation bias. In principle, all these methods
can be used to reduce or remove overestimation bias when it is harmful for reinforce-
ment learning algorithms. However, Double Q-learning is the most well-tested and
successful method to overcome the problems caused by overestimation bias. This
does not mean that the other methods do not have appropriate use cases, but we
need more empirical results to conclude that they are useful alternatives to Double
Q-learning. In this thesis we proposed Variation-resistant Q-learning as a method
to control and utilize estimation bias for better performance. We claimed that the
method can either reduce or remove overestimation bias depending on the value of
the variation resistance parameter and provided empirical results that support this

51

claim. Moreover, Variation-resistant Q-learning achieved superior performance in
the tasks of our first and second experiments, in which overestimation bias is harm-
ful. Nevertheless, we need more empirical results to conclude that the algorithm is
a useful alternative to Double Q-learning.

Are there any conditions under which overestimation bias is desirable
for reinforcement learning algorithms?

Based on our investigation, we concluded that overestimation bias is desirable for
reinforcement learning algorithms when it encourages exploration of optimal actions.
In the second chapter we presented an episodic finite Markov decision process where
an algorithm that has overestimation bias and follows an ε-greedy policy would po-
tentially perform well, because it would be encouraged to explore optimal actions
in the beginning of learning (see figure 2.5 and relevant discussion). Furthermore,
Q-learning and Variation-resistant Q-learning outperformed Double Q-learning in
the task of our third experiment when the variation resistance parameter was set to
higher values. Since Q-learning and Variation-resistant Q-learning computed higher
estimates for the optimal action values that correspond to optimal actions, it seems
that the two algorithms repeated the optimal actions more frequently and followed
good policies for more steps than Double Q-learning. Moreover, when the variation
resistance parameter was set to lower values in the same task, Variation-resistant
Q-learning performed similarly to Double Q-learning, and the estimates of the two
algorithms for the maximum optimal action values were approximately the same.

Assuming that there are conditions under which overestimation bias is
desirable for reinforcement learning algorithms, how can overestimation
bias be controlled and utilized for better performance?

During our investigation, we identified methods that control not only overestima-
tion bias but also underestimation bias. We mentioned the limitations of these
methods and proposed Variation-resistant Q-learning as an alternative. We claimed
that the new method can control and utilize estimation bias for better performance
and provided empirical results that support this claim. Unlike the other methods
that control estimation bias, Variation-resistant Q-learning translates the values of
uncertain action-value estimates in the update targets to influence the agent’s ex-
ploration behavior in a more direct way. Moreover, the algorithm can arbitrarily
overestimate more than Q-learning and can arbitrarily underestimate more than
Double Q-learning. However, more empirical results are needed to determine the
usefulness of Variation-resistant Q-learning compared to the other methods.

6.2 Future Work

One direction for future work would be to provide a better theoretical framework
for Variation-resistant Q-learning. Although the algorithm seems to have behaved
as expected in practice, there are limited theoretical guarantees for this method.
Specifically, we think that it would be desirable to prove that the variation resis-
tance parameter can control the estimation bias of the algorithm. Moreover, we
think that the properties of the method should be analyzed further to determine

52

its advantages, limitations, and appropriate use cases. Additionally, we think that
it is worth analyzing how function approximation affects the method, because it
seems that the function approximation version of the algorithm is not as stable as
its tabular version.

Another direction for future work would be to conduct more experiments in
order to evaluate Variation-resistant Q-learning further. It would be interesting to
test the performance of the algorithm on large-scale tasks (e.g. in the video game
domain) or tasks that involve non-stationary environments. Moreover, we think
that it is necessary to conduct experiments in which the tabular version of the
algorithm would be tested on tasks that favor overestimation. This would remove
the approximation error that is generated from function approximation and would
allow for better conclusions to be made.

An additional direction for future work would be to improve Variation-resistant
Q-learning. We think that it is worth investigating how the algorithm behaves when
measures of statistical dispersion other than mean absolute deviation are used (e.g.
median absolute deviation). Furthermore, it would be desirable to determine the
variation resistance parameter automatically during learning without the need to
set a value before the algorithm is executed.

One more direction for future work would be to develop an entirely new method
that is based on the idea of controlling and utilizing estimation bias for better
performance. An example would be to develop a method that can arbitrarily switch
between overestimation and underestimation during learning. We think that such a
method would be applicable to more use cases than Variation-resistant Q-learning.

6.3 Conclusion

In this thesis we investigated overestimation bias in reinforcement learning. The
main conclusion of our investigation is that overestimation bias can have either a
negative or positive effect on reinforcement learning algorithms depending on the re-
inforcement learning problem. Based on this conclusion, we proposed a new method
to control and utilize estimation bias for better performance. Furthermore, we
proved a convergence theorem for the tabular version of the new method and pre-
sented empirical results that indicate that the new method behaves as expected in
practice.

Our purpose was to provide a better understanding of the effect of overestimation
bias on reinforcement learning algorithms. Since overestimation bias was identified
in the literature, it has been generally considered to have only a negative effect
on reinforcement learning algorithms. We hope that this thesis will inspire the
reinforcement learning community to reconsider the role of overestimation bias in
reinforcement learning problems and investigate this topic further.

53

Bibliography

[1] Martın Abadi et al. “Tensorflow: A system for large-scale machine learning”.
In: 12th {USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 16). 2016, pp. 265–283.

[2] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[3] Oron Anschel, Nir Baram, and Nahum Shimkin. “Averaged-DQN: Variance
reduction and stabilization for deep reinforcement learning”. In: Proceedings
of the 34th International Conference on Machine Learning-Volume 70. JMLR.
org. 2017, pp. 176–185.

[4] Marc G Bellemare, Will Dabney, and Rémi Munos. “A distributional per-
spective on reinforcement learning”. In: Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org. 2017, pp. 449–458.

[5] Richard Bellman. “Dynamic programming and stochastic control processes”.
In: Information and control 1.3 (1958), pp. 228–239.

[6] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena
Scientific, 1996.

[7] François Chollet et al. Keras. https://keras.io. 2015.

[8] Carlo D’Eramo, Marcello Restelli, and Alessandro Nuara. “Estimating maxi-
mum expected value through gaussian approximation”. In: International Con-
ference on Machine Learning. 2016, pp. 1032–1040.

[9] Will Dabney et al. “Distributional reinforcement learning with quantile re-
gression”. In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[10] Eyal Even-Dar and Yishay Mansour. “Learning rates for Q-learning”. In: Jour-
nal of machine learning Research 5.Dec (2003), pp. 1–25.

[11] Meire Fortunato et al. “Noisy networks for exploration”. In: arXiv preprint
arXiv:1706.10295 (2017).

[12] Scott Fujimoto, Herke van Hoof, and David Meger. “Addressing function ap-
proximation error in actor-critic methods”. In: arXiv preprint arXiv:1802.09477
(2018).

[13] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statistics. 2010, pp. 249–256.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[15] Geoffrey J Gordon. “Stable function approximation in dynamic program-
ming”. In: Machine Learning Proceedings 1995. Elsevier, 1995, pp. 261–268.

54

https://keras.io

[16] Hado Philip van Hasselt. “Insights in reinforcement learning”. PhD thesis.
Utrecht University, 2011.

[17] Matteo Hessel et al. “Rainbow: Combining improvements in deep reinforce-
ment learning”. In: Thirty-Second AAAI Conference on Artificial Intelligence.
2018.

[18] Tommi Jaakkola, Michael I Jordan, and Satinder P Singh. “Convergence of
stochastic iterative dynamic programming algorithms”. In: Advances in neural
information processing systems. 1994, pp. 703–710.

[19] Qingfeng Lan et al. “Maxmin Q-learning: Controlling the Estimation Bias of
Q-learning”. In: arXiv preprint arXiv:2002.06487 (2020).

[20] Donghun Lee, Boris Defourny, and Warren B Powell. “Bias-corrected Q-learning
to control max-operator bias in Q-learning”. In: 2013 IEEE Symposium on
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE.
2013, pp. 93–99.

[21] Donghun Lee and Warren B Powell. “Bias-corrected Q-learning with multi-
state extension”. In: IEEE Transactions on Automatic Control 64.10 (2019),
pp. 4011–4023.

[22] A. LeNail. “NN-SVG: Publication-Ready Neural Network Architecture Schemat-
ics.” In: The Journal of Open Source Software 4 (2019), p. 747.

[23] Marvin Minsky and Seymour Papert. “An introduction to computational ge-
ometry”. In: Cambridge tiass., HIT (1969).

[24] Volodymyr Mnih et al. “Human-level control through deep reinforcement learn-
ing”. In: Nature 518.7540 (2015), p. 529.

[25] Travis E Oliphant. A guide to NumPy. Vol. 1. Trelgol Publishing USA, 2006.

[26] Frank Rosenblatt. “The perceptron: a probabilistic model for information stor-
age and organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[27] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Tech. rep. California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

[28] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connec-
tionist systems. Vol. 37. University of Cambridge, Department of Engineering
Cambridge, England, 1994.

[29] Matthia Sabatelli et al. “Approximating two value functions instead of one:
towards characterizing a new family of Deep Reinforcement Learning algo-
rithms”. In: arXiv preprint arXiv:1909.01779 (2019).

[30] Matthia Sabatelli et al. “Deep quality-value (DQV) learning”. In: arXiv preprint
arXiv:1810.00368 (2018).

[31] Arthur L Samuel. “Some studies in machine learning using the game of check-
ers. II—Recent progress”. In: IBM Journal of research and development 11.6
(1967), pp. 601–617.

[32] Tom Schaul et al. “Prioritized experience replay”. In: arXiv preprint arXiv:1511.05952
(2015).

55

[33] David Silver et al. “Mastering the game of Go with deep neural networks and
tree search”. In: nature 529.7587 (2016), p. 484.

[34] Satinder Singh et al. “Convergence results for single-step on-policy reinforcement-
learning algorithms”. In: Machine learning 38.3 (2000), pp. 287–308.

[35] James E Smith and Robert L Winkler. “The optimizer’s curse: Skepticism
and postdecision surprise in decision analysis”. In: Management Science 52.3
(2006), pp. 311–322.

[36] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[37] Csaba Szepesvári and Michael L Littman. “Generalized Markov decision pro-
cesses: Dynamic-programming and reinforcement-learning algorithms”. In: Pro-
ceedings of International Conference of Machine Learning. Vol. 96. 1996.

[38] Gerald Tesauro. “TD-Gammon, a self-teaching backgammon program, achieves
master-level play”. In: Neural computation 6.2 (1994), pp. 215–219.

[39] Sebastian Thrun and Anton Schwartz. “Issues in using function approximation
for reinforcement learning”. In: Proceedings of the 1993 Connectionist Models
Summer School Hillsdale, NJ. Lawrence Erlbaum. 1993.

[40] Hado Van Hasselt. “Double Q-learning”. In: Advances in Neural Information
Processing Systems. 2010, pp. 2613–2621.

[41] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learn-
ing with Double Q-learning”. In: Thirtieth AAAI conference on artificial in-
telligence. 2016.

[42] Hado Van Hasselt et al. “Deep reinforcement learning and the deadly triad”.
In: arXiv preprint arXiv:1812.02648 (2018).

[43] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009. isbn: 1441412697.

[44] Ziyu Wang et al. “Dueling network architectures for deep reinforcement learn-
ing”. In: arXiv preprint arXiv:1511.06581 (2015).

[45] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learn-
ing 8.3-4 (1992), pp. 279–292.

[46] Christopher John Cornish Hellaby Watkins. “Learning from delayed rewards”.
PhD thesis. King’s College, Cambridge, 1989.

[47] Marco A Wiering. “Explorations in efficient reinforcement learning”. PhD the-
sis. University of Amsterdam, 1999.

[48] Zongzhang Zhang, Zhiyuan Pan, and Mykel J Kochenderfer. “Weighted Dou-
ble Q-learning.” In: IJCAI. 2017, pp. 3455–3461.

[49] Yan Zheng et al. “Weighted double deep multiagent reinforcement learning in
stochastic cooperative environments”. In: Pacific Rim International Confer-
ence on Artificial Intelligence. Springer. 2018, pp. 421–429.

56

Appendix A

Convergence of Tabular
Variation-resistant Q-learning

In this appendix we present and prove a convergence theorem for tabular Variation-
resistant Q-learning. We first present the necessary preliminaries and then present
and prove the theorem.

A.1 Preliminaries

Definition A.1.1. An ergodic Markov decision process is a Markov decision process
in which each state can be reached from any other state in a finite number of steps.

Lemma A.1.1. Let (βt,∆t, Ft) be a stochastic process, where βt,∆t, Ft : X 7→ R
satisfy,

∆t+1(xt) = (1− βt(xt))∆t(xt) + βt(xt)Ft(xt)

where xt ∈ X and t = 0, 1, 2, Let Pt be a sequence of increasing σ-fields such
that β0 and ∆0 are P0-measurable and βt,∆t, and Ft−1 are Pt-measurable, with t ≥ 1.
Assume that the following conditions are satisfied:

1. The set X is finite (i.e. |X| <∞).

2. βt(xt) ∈ [0, 1],
∑

t βt(xt) =∞,
∑

t β
2
t (xt) <∞ w.p.1, and ∀x 6= xt : βt(x) = 0.

3. ‖E{Ft |Pt}‖ ≤ κ ‖∆t‖+ ct, where κ ∈ [0, 1) and ct −→ 0 w.p.1.

4. V{Ft(xt) |Pt} ≤ C(1 + κ ‖∆t‖)2, where C is some constant.

where V{·} denotes the variance and ‖·‖ denotes the maximum norm. Then ∆t

converges to zero with probability one.

Proof. See [18, 37, 34].

A.2 Convergence Theorem

Theorem A.2.1. In an ergodic Markov decision process, the approximate action-
value function Q as updated by tabular Variation-resistant Q-learning in algorithm

57

5 converges to the optimal action-value function q∗ with probability one if an infinite
number of experience tuples of the form (St, At, Rt+1, St+1) are sampled by a learning
policy for each state-action pair and if the following conditions are satisfied:

1. The Markov decision process is finite (i.e. |S×A× R| <∞).

2. γ ∈ [0, 1).

3. αt(s, a) ∈ [0, 1],
∑

t αt(s, a) =∞,
∑

t α
2
t (s, a) <∞ w.p.1, and ∀s, a 6= St, At :

αt(s, a) = 0.

Proof. We apply lemma A.1.1 with X = S × A, ∆t = Qt − q∗, βt = αt, Pt =
{Q0, σ0, S0, A0, α0, R1, S1, . . . , St, At}, and

Ft(St, At) = Rt+1 + γ [Qt(St+1, A∗) + λσt(St+1, A∗)]− q∗(St, At)

where A∗ = arg maxa′ Qt(St+1, a
′). The first condition of the lemma is satisfied

because |S × A| < ∞. The second condition of the lemma is satisfied by the third
condition of the theorem.

For the fourth condition of the lemma we have that,

E {Ft(St, At) |Pt}

=
∑
s′

∑
r

p(s′, r |St, At) [r + γ [Qt(s
′, a∗) + λσt(s

′, a∗)]− q∗(St, At)]

=
∑
s′

∑
r

p(s′, r |St, At) [r + γ [Qt(s
′, a∗) + λσt(s

′, a∗)]]− q∗(St, At)

where a∗ = arg maxa′ Qt(s
′, a′). Therefore, we have that,

Ft(St, At)− E {Ft(St, At) |Pt}
= Rt+1 + γ [Qt(St+1, A∗) + λσt(St+1, A∗)]

−
∑
s′

∑
r

p(s′, r |St, At) [r + γ [Qt(s
′, a∗) + λσt(s

′, a∗)]]

= Rt+1 + γ [Qt(St+1, A∗) + λσt(St+1, A∗)]

− E {Rt+1 + γ [Qt(St+1, A∗) + λσt(St+1, A∗)] |Pt}

Therefore, it follows that,

V {Ft(St, At) |Pt} = E
{

[Ft(St, At)− E {Ft(St, At) |Pt}]2
∣∣Pt}

= V {Rt+1 + γ [Qt(St+1, A∗) + λσt(St+1, A∗)] |Pt}
≤ C(1 + γ ‖∆t‖)2

for some constant C, because |R| < ∞ =⇒ ∀t : V {Rt+1 |Pt} < ∞ =⇒ ∀t :
V {Rt+1 + γ [Qt(St+1, A∗) + λσt(St+1, A∗)] |Pt} <∞.

For the third condition of the lemma we have that,

Ft(St, At) = Rt+1 + γ [Qt(St+1, A∗) + λσt(St+1, A∗)]− q∗(St, At)
= Ft

′(St, At) + γλσt(St+1, A∗)

58

where Ft
′(St, At) is the value of Ft(St, At) in the case of Q-learning. Since it is well

known that ∀t : ‖E{Ft′ |Pt}‖ ≤ γ ‖∆t‖, it follows that,

‖E{Ft |Pt}‖ = ‖E{Ft′ |Pt}‖+ γλ ‖E {σt |Pt}‖ ≤ γ ‖∆t‖+ γλ ‖E {σt |Pt}‖

Therefore, it suffices to show that ct = γλ ‖E {σt |Pt}‖ → 0 w.p.1.
Since ∀t, s, a : σt(s, a) ∈ [0,∞), it suffices to show that,

lim
t→∞

σt(St, At) = 0 ⇐⇒ ∀ε > 0 ∃t0 : ∀t ≥ t0 =⇒ σt(St, At) < ε

Assume that time step t is such that the memory for each action value is full. We
have that,

σt(St, At) =

∑n
i=1

∣∣Qti(St, At)−Qt(St, At)
∣∣

n

where ti < t, ∀i = 1, 2, . . . , n. After the update at time step t we have that,

σt+1(St, At) =

∑n+1
i=2

∣∣Qti(St, At)−Qt+1(St, At)
∣∣

n

where t(n+1) = t+ 1. Because of the third condition of the theorem, the differences
between the Qti(St, At) values approach zero as t → ∞. Therefore, given ε > 0,
∃t0 : ∀t ≥ t0 =⇒ σt(St, At) < ε =⇒ limt→∞ σt(St, At) = 0.

Since all the conditions of lemma A.1.1 are satisfied, it holds that, ∀s, a :
Qt(s, a)→ q∗(s, a) w.p.1.

59

	Abstract
	Acknowledgements
	Note on Notation
	1 Introduction
	1.1 Research Questions
	1.2 Significance of the Study
	1.3 Thesis Layout

	2 Theoretical Background
	2.1 Reinforcement Learning
	2.2 Finite Markov Decision Processes
	2.2.1 Basic Structure
	2.2.2 Episodes, Rewards, and Returns
	2.2.3 Policies and Value Functions
	2.2.4 Optimal Policies and Optimal Value Functions

	2.3 Solution Methods
	2.3.1 Tabular Solution Methods
	2.3.2 Function Approximation Solution Methods

	2.4 Multilayer Perceptrons
	2.4.1 The Perceptron
	2.4.2 Multilayer Perceptrons and Rectified Linear Units
	2.4.3 Backpropagation and Stochastic Gradient Descent

	2.5 Overestimation Bias
	2.5.1 The Single Estimator Approach
	2.5.2 The Double Estimator Approach

	2.6 Q-learning
	2.6.1 Tabular Q-learning
	2.6.2 Q-learning with Function Approximation
	2.6.3 The Overestimation Bias of Q-learning

	2.7 Double Q-learning
	2.7.1 Tabular Double Q-learning
	2.7.2 Double Q-learning with Function Approximation
	2.7.3 The Underestimation Bias of Double Q-learning

	2.8 Other Q-learning Variants
	2.9 Conclusion

	3 Variation-resistant Q-learning
	3.1 Tabular Variation-resistant Q-learning
	3.2 Variation-resistant Q-learning with Function Approximation
	3.3 Discussion

	4 Experiments
	4.1 Grid World
	4.1.1 World Structure
	4.1.2 Optimal Values
	4.1.3 Normalized Entropy of State Visits
	4.1.4 Hyperparameters
	4.1.5 Evaluation

	4.2 Grid World with Function Approximation
	4.2.1 World Structure
	4.2.2 State Representation
	4.2.3 Optimal Values
	4.2.4 Hyperparameters
	4.2.5 Evaluation

	4.3 Package Grid World
	4.3.1 World Structure
	4.3.2 State Representation
	4.3.3 Optimal Values
	4.3.4 Hyperparameters
	4.3.5 Evaluation

	4.4 Implementation Details

	5 Results
	5.1 Grid World
	5.2 Grid World with Function Approximation
	5.3 Package Grid World

	6 Discussion
	6.1 Answers to Research Questions
	6.2 Future Work
	6.3 Conclusion

	A Convergence of Tabular Variation-resistant Q-learning
	A.1 Preliminaries
	A.2 Convergence Theorem

