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Abstract
In this paper the α-tree (alpha tree) is tested on recognition of traffic signs while maintaining decent speed. α-trees
clusters pixels based on the difference in color of the selected tree depth, resulting in a tree of segmentation’s. By
grouping clusters based on alpha level, eventually a node with traffic sign might be found (if it is present in the
image). Every step the segmentation’s are checked using a decision tree whether they contain a traffic sign. When
looking at the results, the speed of the given implementation is O(nlogn) which is expected from the alpha tree.
However the program could be further optimized such that it does not require more time of calculation than a
car actually passing the traffic sign. 1024*768 images can be calculated within a few seconds, however for bigger
images the implementation is not fast enough when looking for traffic signs. When looking at the recognition it is
clear that leakage is a big problem. Leakage is a problem where a chain of pixels causes a merge of clusters that
should not and does not merge clusters that should. Using the decision tree a correct segmentation rate of 15% is
achieved due to this leakage problem. However when using a Gabor filter this correct segmentation rate is drastically
increased to 55%. The segmentation makes use of a simple decision tree, using a different technique would easily
increase the correct segmentation. Nevertheless it can be concluded that using a Gabor filter will increase the correct
segmentation of an α-tree. The α-tree has the potential to recognize traffic signs but requires more research into
preventing leakage (besides Gabor filtering), better efficiency such as parallelization and preventing unfortunate
coloring.
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1. Introduction

Traffic signs are an important source of information for
drivers to drive save. They generally give us warnings, regu-
lations or other information, which are essential to recognize
for drivers. However, since drivers are humans, they tend to
sometimes forget or miss a traffic sign. Therefore, develop-
ing software which is able to recognize traffic signs on the
go, can increase the safety of drivers and its surroundings.
Most automated traffic sign recognition systems have the
problem that they either contain some serious flaws, or are
not capable of recognizing real life scenario’s.

Usually the recognition systems are very slow, where they
make use of for example: the binary partition tree, minimum
spanning tree or shortest spanning tree in [Jas11] [WCT]
[VV08]. Although these do solve the problem, a driver has
usually already passed the traffic sign before recognition.
This means that the system is still building a tree and classi-
fying while the traffic law should have been enforced already.
Most researches into traffic sign recognition show examples
of decent classifiers. However, they only classify the traffic
sign itself or only classify a part of the image, where the

traffic sign is assumed to be found [YX]. This paper only
focuses on the α-tree (alpha tree), neural networks will not
be discussed.

In 2011 Jasper Smit [Jas11] did research into traffic sign
recognition using various trees, such as: the binary partition
tree, shortest spanning tree and salience tree. In his paper
the classification rate was decent, but not good enough, for
real-time use (around 60%-70% correct classification). Fur-
thermore, the speed of recognition was not quick enough to
classify a real-time traffic sign system, assuming images big-
ger than 1024*768 pixels. The bigger the size of an image
the better the quality and thus better classifying results.
These problems were a big issue then, nowadays better hier-
archical trees are developed and the hardware has improved
significantly.

In 2012 Soille. P. developed the alpha tree (usually de-
noted as α-tree) [OG12], which showed that it was much
faster than other hierarchical trees for image segmentation.
The α-tree creates a hierarchical structure of an image by
merging pixels that have a value that does not differ by
more than α. The α value represents the depth of the tree.
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When comparing the α-tree to other trees it is visible that
the α-trees give much better results [Jas11]. As already men-
tioned α-trees are an alternative to neural networks [SL] and
Adaboost [XB] which are the most common techniques for
recognition nowadays.

This document describes Soille. P’s α-tree applied to traf-
fic sign recognition. Testing the speed, quality and recogni-
tion capabilities of the α-tree itself when applied to traf-
fic signs. Furthermore it explains how Gabor filtering can
solve the leakage problem that often occurs when using an
α-tree [ZXb].

2. Theory

This section covers the theory that is used within this pa-
per. Understanding the α-tree is key for this research since
it is the main theory that is used for traffic sign recogni-
tion. The other chapters within this section elaborate on
certain parts of the α-tree, such as: optimization, car speed,
4-connectivity, union-find, CIE Lab coloring and decision
trees. But furthermore it explains a big issue within alpha
trees, namely leakage and how it can be improved using Ga-
bor filtering. But first the binary partition tree is explained,
since this gives a better insight into understanding the α-tree
capabilities.

2.1. Binary Partition Tree

The binary partition tree is an algorithm that partitions an
image into different representations. Creating a tree of seg-
mentation’s, where each leave represents a pixel and each
node represents a region of pixels. When following the path
to the root, eventually the entire image is found. This tech-
nique can be used to slice the tree at a certain level of coarse-
ness to find interesting information (Depending on where
you are looking for). The binary partition tree in general
gives better segmentation than the α-tree [Jas11] however it
is much much slower. This makes it inconvenient to use for
traffic sign recognition since it has a limited time of calcu-
lation.

2.2. Alpha Tree

The α-tree [OG12] can be seen as a dendrogram which cre-
ates a hierarchical tree that is mostly used for segmentation
of images. It is based upon a measure of dissimilarity be-
tween adjacent elements of for example the image intensity.
This distance can be used to construct a hierarchy of par-
titions. The goal is to segment the image into partitions
based on certain criteria to find useful information within
an image. As the α-tree states it is a tree structure that
has the advantage that it creates multiple fine coarse lev-
els instead of a single output. The root of the tree is the
entire image, and the leaves are finer levels of the image.
Each alpha level the tree segments are merged together to
form a higher level root in the tree. As mentioned earlier
the α-tree calculates the dissimilarity between adjacent el-
ements such as intensity. Intensity is an absolute measure

that is easy to implement when merging because differences
between connected-component values is easy to determine.
Colored images however have three different values namely:
red, green, blue and cannot be compared easily as humans
can not distinguish a distance in color using RGB [Pas01].
Chapter 2.3 will go into detail about this problem.

Determining the connected components and thus merging
a leave to a node is done using a so called α connected com-
ponent. Where α represents the difference in intensity value,
0-CC represents the original image, 1-CC connects compo-
nents that differ in intensity by no more than 1. Figure 1
shows the results of connecting components by a certain α
value. The alpha tree is build by allowing a higher difference
in α each layer, where 0-CC represents the entire image and
the highest value CC are all the segmented areas combined
(root of the entire tree).

Figure 1: α connected component alpha tree

A big advantage of the α-tree is that it is very fast when
comparing it to other hierarchical segmentation techniques.
This can be seen in the research by Jasper [Jas11] where
the α-tree outperforms the binary partition tree signif-
icantly. However the segmentation results are a bit less
in comparison to the binary partition tree. In Jasper’s
research different hierarchical tree structures are tested on
various examples and resolutions. In his research the binary
partition tree, the fast recursive shortest spanning tree and
the salience tree (= α-tree) are tested. When looking at his
results one can conclude that it is too slow for traffic sign
recognition. Recall, for traffic sign recognition speed is also
an important factor, the chapter Car Speed goes into detail
about this.

The goal of the α-tree is segmentation of groups of pixels,
once the tree is build the next step is to find the ground
truths equal to the traffic signs. These ground truths can
then be tested to see if they contain a traffic sign. The perfect
result would be a cluster that contains exactly the entire
traffic sign which can be put in the recognizer. A good result
would be 11 which contains a perfect yield warning sign.

2.2.1. 4-Connectivity

The standard α-tree has 4 connectivity, meaning that when
looking for dissimilarity only the vertical and horizontal an-
gles of distance will be calculated. Another connectivity type
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can be diagonally which results into 8 Connectivity. Where
the distance is measured for each pixel around the currently
selected pixel.

2.3. Car speed

For traffic sign recognition only a limited time is available
before an action needs to be performed. Some traffic signs
require an instant reaction, such as: a yield warning sign
or a stop sign. Others do not require an instant reaction,
such as: a sign that is applicable in x amount of meters. The
distance to a traffic sign determines the quality. Assuming
a standard image of 1920*1080 pixels at a distance of 1km
will result into a few pixel that is impossible to recognize.
Thus a few assumptions about speed vs pixels are made in
this project (based upon example images provided in the ap-
pendix). Traffic signs that are further away than 200 meters
will be considered low quality. Traffic signs between 200-50
meters are considered decent quality. Traffic signs that are
less than 50 meters away are considered high quality. Ta-
ble 1 shows an overview of the time to recognize a traffic
sign. As visible the speed and distance determine the time
for recognition. If the distance to the traffic sign is higher,
more time is available to recognize a traffic sign. In general
the amount of time available to classify a traffic sign is fairly
low (between 1 - 10 seconds).

2.4. Union Find based search

A huge part of the α-tree is the union find based search
[Tar75]. Each level the α-tree searches for potential clusters
that can be merged, where each individual pixel that belongs
to that cluster should be updated. Union based find gives
each individual pixel a link to a parent, when following this
parent a new parent might be found and then again a new
parent might be found etc. This chain of parents can be
seen as a path, when following this path eventually the root
parent is found. Lets say there are two clusters A and B, if
the root parent of A is found the parent of root A can be
changed to the root parent of B. Resulting in all pixels of
cluster A pointing to root parent of B and thus being able
to merge two clusters. Figure 2 gives a visualization of the
union find algorithm. Where a union is created between A
and B, instead of A pointing to itself it will point to the root
of B.

2.4.1. Path compression

In order to improve union find based search, path compres-
sion can be used. Path compression [THCon] shortens the
path of a pixel from parent to parent to parent etc. If there
are a lot of clusters that are merged a pixel might point to a
parent that is 100 parents deep. With path compression each
α level step, the path is shortened by immediately pointing
the pixel to the highest root parent of the cluster. This pre-
vents the system to get stuck in long paths, which drastically
increases the speed of the algorithm. Figure 3 shows an ex-
ample of path compression, the black arrows represent the

Figure 2: Union Find

link to the next parent before path compression and red rep-
resents the link after path compression. As visible it makes
the linking shorter which leads to a much faster system.

Figure 3: Path compression

2.4.2. Ranked based search

Another method that can be used is ranked based cluster-
ing [RET84]. Where the clusters are clustered based on the
distance of the path of parents. If pixel A for example has a
path of 10 parents and cluster B has a path of 100 parents.
The root parent of B will point to cluster A instead of the
other way around. This will result in a lower depth of the
parent path and thus faster speed. Figure 4 shows this prin-
ciple, as visible Cluster B has a shorter path, when cluster
A and B are merged A will point to B instead of B to A.

Figure 4: Rank based search



4 Siebert Elhorst / traffic sign recognition alpha tree

Distance to traffic sign
(m)

Speed (km/h) Speed (m/s) Time for recognition (s)

100 100 27.78 3.6s
200 100 27.78 7.2s
100 100 27.78 3.6s
200 50 13.89 13.8s
10 50 13.89 0.72s
10 20 5.56 1.80s

Table 1: Time to recognize

2.5. CIE Lab coloring

The standard coloring for computers is RGB (Red, Green
and Blue) values. However humans are not capable of eas-
ily recognizing this color space [Sch07] for that reason CIE
L*a*b* is used. CIE Lab is a coloring space that is designed
for humans in order to determine perceptual difference in
color. This color is used for the distance measure within the
α-tree, since each level of the α-tree the clusters are merged
based on this distance. CIE L*a*b* is a 3d color space that
is equal in all directions allowing for the usage of Euclidean
distance.

2.6. Leakage

One of the issues with the α-tree is the leakage prob-
lem [ZXa], [ZXb]. Leakage is a problem where connected
components near edges are merged that should not and does
merge certain edges which should not. This primarily occurs
near a transition usually an edge with a decreasing pixel
value which separates the two groups or serrated edges.
This causes the α-tree to be relatively small (Low amount
of nodes) giving worse results when looking at segmentation.

Figure 5 and 6 shows an example of a segmentation prob-
lem that occurs within the α-tree. Figure 5 is a high reso-
lution image of an ordinary road. When zoomed in figure 6
it is visible that there is a problem, the red from the traffic
sign overlaps with a balcony of a building behind it. Fur-
thermore in figure 6 the edge between the red traffic sign
and white traffic sign is a serrated edge where the top right
of the traffic sign slowly decays into white on the left. This
ultimately merges these two traffic signs too early while it
should not. This is an example of a segmentation problem
that often occurs within the α-tree.

Figure 7 shows the problem in a simple form with 1-CC
(connected component with a difference less than 1). Lets
assume that 0 represents white and 5 represents grey. The
bottom part of the image is very grey and the top part is
white. When using 1-CC these two area’s will be grouped
since there is a ladder from right to left which adds these
area’s together when using an α value of 1. This is the main
issue with the α-tree, which also occurs in figure 6. It is
difficult to see but when looking closer there is a ladder
going from right to left between the two traffic signs. Where

Figure 5: Example image of traffic sign recognition prob-
lems

Figure 6: Traffic sign of figure 5 zoomed

the red color slowly turns into white as seen in figure 8.
This leads to bad segmentation since these two traffic signs
are merged too early while they are separate traffic signs.
When iterating through all the nodes in the α-tree to find the
traffic signs, at no point will these traffic signs be recognised
because there is no node which only shows the traffic sign
itself because these traffic signs are merged too early.
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Figure 7: The leakage problem in simple form, 0 and 5 gets
merged at 1-CC while actually these two should be merged
at 5-CC

Figure 8: The leakage problem on figure 6

When zooming in figure 5 even further this issue gets vis-
ible even more. Figure 9 shows the pix-elation of the image
and the ladder that is talked about in figure 8. Furthermore
the balcony on the background also gets merged with the
traffic sign resulting in one big merge of all these elements.
Usually these problems occur on a 1 pixel width that have a
huge impact on the segmentation result. Giving a tree that
is first of all too small (since less area’s are created) and
furthermore has wrong segmentation leads to a bad classifi-
cation rate.

2.7. Gabor Filter

Gabor filtering is a linear filter which filters specific fre-
quency in a given direction [gab]. It does this using a Gaus-
sian kernel function. The Gaussian is calculated using the
following formula:

g(x, y;λ, θ, ψ, σ, γ) = exp

(
−
x′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ ψ

)

where

{
x′ = xcosθ + ysinθ

y′ = −xsinθ + ycosθ

Figure 10 shows the Gaussian using Gabor filtering. Since
Leakage is a problem that involves a small chain of pixels
of usually 1 pixel width. A Gabor filter should be able to
remove this effect. In the Gabor filtering λ determines the
wavelength of the sinusoidal function, θ determines the ori-
entation, σ is the standard deviation of the Gaussian distri-
bution, γ represents the spatial aspect ratio and last ψ which
determines the phase offset. The settings used are based on
P.Kruizinga and N.Petkov [KP99] that were used for [ZXb]
where [ZXb] only focused on the orientation and wavelength.
Since we are only looking for direction and wavelength we
do not have to change any of the other parameters. There-

Figure 9: Figure 6 zoomed in even further, the red marked
area shows the leakage problem as in figure 8

fore we primarily use angles of 90, 30, -30, 60 or -60 degrees.
In some cases a different settings might be useful since the
images are sometimes a bit tilted to the right or left.

2.8. Decision tree

A decision tree is an easy classifier that classifies based on
a tree of decisions. It can be seen as a tree structure where
each decision determines a different path until the nodes are
reached. Since this project is primarily about testing the α-
tree, a simple recognizer is required. The decision tree should
be able to recognize warning signs / yield signs based on a
few variables such as: Color, shape and size. This determines
whether the given cluster from the α-tree is a traffic sign.
This paper only focuses on recognizing the yield sign and
warning signs as in figure 11. The decisions will be based
on the shape, in this case a triangle with red and white.
Furthermore the system will only look at traffic signs that
are bigger than 200 pixels too speed up the recognition since
a lot of clusters have to be checked and also increases the
accuracy because the input images are of better quality.
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Figure 10: Gabor Filtering [gab]

Figure 11: Dutch yield warning sign

2.9. OpenCV 2

OpenCV2 [ope] is an open source library that is special-
ized in computer vision and recognition. For recognition pur-
poses this library is very useful to find the α-tree solutions.
OpenCV2 provides build in functions to recognize shapes in
combination with a decision tree it can determine whether
a traffic sign is apparent in an image. The α-tree provides
an image for each cluster in an image each level, where a
decision tree in combination with OpenCV2 determines if a
traffic sign is found. Furthermore it is used to calculate the
Gabor filtering, again OpenCV 2 has a build in function to
calculate this.

3. Experiments

This section covers the experiments, where the experiments
are split into speed of the α-tree, recognition and segmenta-
tion results using a Gabor filter vs not using a Gabor filter.
The main goal of the paper is to test the result difference of
Gabor filtering vs not using Gabor filtering. Furthermore, it
looks at the speed of the α-tree. Last but not least it tests
the recognition on real life examples as well as non real life
examples. The recognition part of this project is a lower
priority than the Gabor filtering and speed of the α-tree.

Therefore the recognizer is a simple decision tree. Below de-
scribes the program flow during the process.

3.1. Program flow

Figure 12 shows the flow of the α-tree building process.
The source code for this program is provided with a link in
the appendix. The program starts of by reading the image
selected and initializing the α-tree. Here the dissimilarity
vectors are created which calculates all the dissimilarities
between each pixel using the euclidean distance applied
to the CIE L*a*b* colors. After all the dissimilarities
are determined a 0-CC alpha step is done, grouping all
the pixels that have the exact same color resulting in an
initialized α-tree.

The second step is to finish the α-tree. Each step all
the dissimilarities, which have the same value as alpha, are
looped through. This results into the merging of clusters of
that alpha level. After the clusters are merged, which can
be considered a new cluster, the recognition process starts.
First, all clusters are separated and the amount of pixels for
each cluster is calculated. For each cluster it is checked if it is
a triangle, based on this decision the flow either continuous
to the next decision or selects the next cluster. If the cluster
is a triangle the size is checked. If the cluster is smaller than
200 pixels it is skipped to the next cluster. If the cluster is
bigger than 200 pixels the last checkpoint is reached which
determines if there is enough red and white. During the ex-
periments a percentage will be used to determine whether
it is a yield warning sign. This percentage is calculated the
following way:

% white pixels in cluster =
# of white pixels in cluster

# of pixels in cluster

% red pixels in cluster =
# of red pixels in cluster

# of pixels in cluster

Once all checkpoints / decisions are positive it will be con-
sidered a yield or warning sign. The program will continue
to find more traffic signs or continue on with the next step
in the α-tree until the bottom is reached. The bottom of the
α-tree is reached once the dissimilarities matrix is empty.
When this threshold is reached the program will terminate
and show the total expired time.

3.2. Experiment goals

This section describes the main goals of the experiments,
namely: finding the speed of the α-tree, the recognition and
furthermore the segmentation results.

3.2.1. Speed

The first test is based on the speed, how fast does the system
build the α-tree? The result is separated in initialization of
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Figure 12: Program flow α-tree

the dissimilarities and finishing the α-tree steps. It is impor-
tant to notice that the current α-tree used for this research
makes use of one single core and is not yet optimized for
multi core. Meaning that the program is not paralleled to
run over multiple cores. However an estimation is given by
dividing the total amount of time by the amount of cores.
This does give a general idea, but is still an estimation of us-
ing multi-core calculation. For the experiment two different
CPUs are used, namely: Intel core I7-3770 3.4Ghz and
Intel core i5-9600K 3.7Ghz. Using one core significantly
decreases the speed of the α-tree, the estimation speed is
divided by 8 (the amount of cores within the Intel core I7-
3770 processor) and 6 (the amount of cores within the Intel
core i5-9600K).

3.2.2. Gabor Filtering vs No Gabor Filtering

The second test determines the segmentation results, does
the α-tree give better results when using a Gabor Filter?
According to [ZXb] it should give better segmentation
results. Furthermore the decision tree is tested to get

the classification rate, does the program recognize ac-
tual traffic signs? In the recognition phase the program
tests real-life examples, extreme cases as well as easier cases.

4. Results

Below describes the results found during the experiments.
It is separated between speed and recognition, furthermore
the result of the Gabor filter is given.

4.1. Speed

One of the elements that is important for the α-tree is
testing the speed. Table 2 and Table 3 shows the result
of the tests where the example figures are provided in the
appendix. The code written for the α-tree is written as
small as possible to lower the amount of calculations and
increase the speed. Furthermore rank based search and
path compression are applied every step within the α-tree
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to lower the size of the paths. The algorithm itself is only a
few lines to decrease the amount of I/O calls etc. Only one
thing is not optimized for the α-tree namely parallelization.
It is not possible to use multiple cores since this requires
more research, it is important to keep this in mind when
looking at the table.

The results are tested using the Intel Core i7 3770 3rd
generation and the i5 9600K 9th generation CPU. The
i5 9600K was released on Quarter 4 2018 and is one of
the newest commercial CPUs. As visible the I5 9600K is
about 5x times faster than the I7 3770 which was released
on Quarter 1 of 2012. This difference is really important
since it shows that the speed of CPUs are increasing which
speeds up the α-tree building process significantly. It would
be unfair to base the results on this older i7 3770 CPU
since much faster CPUs have been released since then. This
means that all conclusions and results will be based on the
result of the i5 9600K CPU. There are still possibilities
to improve the speed by using an I9 9900K processor
with 8 cores (newest CPU Intel has released), but that
will at best improve the speed by 8% according to CPU
benchmark [cpu]. When looking at the results this 8% gain
does not make a difference. The only big difference might
be the increase in amount of cores (8 cores vs 6).

When looking at the performance it is visible that the
newest generation can handle smaller images (1024*768)
at a decent speed, meaning that the recognition can be
done before surpassing a traffic sign. This is of course
dependent on the implementation speed, it is assumed
that the implementation used is not the most efficient
one. First of all parallelization could be used to improve
the speed significantly. It took the i5 processor around 32
seconds to build (would be 5.37s using 6 cores) the α-tree
for an 1024*768 image. That is acceptable, however for
bigger images such as 2048*1536 it is not possible since
it would take around 1 minute. The car has most likely
already passed the traffic sign and furthermore during
a car drive multiple traffic signs must be analyzed, thus
the system cannot be stuck with one traffic sign for 1 minute.

As already mentioned this execution time is based on an
implementation that is not build for the best optimization.
The implementation is O(nlogn) which is expected from the
Alpha tree and thus far there are no solutions to prevent
O(nlogn).

4.2. Recognition

After an alpha step is done the clusters will be checked
whether they contain a traffic sign or not. Each alpha step
an image is created for each cluster and it is checked if that
image contains a traffic sign. This is done using OpenCV2
library which can automatically detect shapes, colors and
size. First the size of the traffic sign is checked, recognition

of traffic signs that are a few pixels is pretty much impossi-
ble. To speed up the program and not waste time on these
small clusters, all clusters that are smaller than 200 pixels
will not be checked by the recognition program. This means
that all clusters that are less than approximately 14*14
pixels will not be taken into consideration.

The second step is to check if the cluster is a triangle.
If this is the case the last part that gets checked are the
colors. Does it contain primarily red and white coloring.
Once this is checked and the results are all true. The cluster
is considered a traffic yield / warning sign.

The first test is done on figure 11. The system was
successfully able to recognize this traffic sign. Figure 13
shows the result of finding the traffic sign using binarization
of OpenCV2. As visible the system is able to find the traffic
sign using this standard image.

Figure 13: Recognition using OpenCV2 binarization

However this image is ideal, meaning that it has the same
color everywhere and no background noise. The goal is to
see if real life examples can be examined in order to apply
the α-tree to real life examples. Figure 14 shows an example
of a real life example traffic sign that could possibly be
recognized. This example is extracted from a bigger image
to see the results of the recognition. When using the α-tree
applied to this image a big problem occurs as visible in
figure 15. The middle part of the traffic sign is removed
which is strange since these should be combined. Looking
closer to the image it is visible that the α-tree combines
the red part of the traffic sign with the background. This
should not happen since we only want the traffic sign as
result. When taking a look at the α-tree’s principle this
does make sense since the distance between red and white
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Image size (pixels) Initialization time α-tree time Total time Estimated time 8 cores Figure

100*100 = 10.000 0.16s 0.29s 0.45s 0.06s 20
200*200 = 40.000 0.62s 1.64s 2.26s 0.28s 21
300*300 = 90.000 1.43s 4.35s 5.78s 0.72s 22
400*400 = 160.000 2.68s 16.93s 19.61s 2.45s 23
1024*768 = 786.432 12.58s 119.04s 131.62s 16.45s 24

2048*1536 = 3.145.728 49.19s 1438.78s 1487.97s 186.00s 25

Table 2: Speed of α-tree based on image size using Intel Core I7 3770 one single core

Image size (pixels) Initialization time α-tree time Total time Estimated time 6 cores Figure

100*100 = 10.000 0.06s 0.11s 0.17s 0.03s 20
200*200 = 40.000 0.25s 0.59s 0.84s 0.14s 21
300*300 = 90.000 0.54s 1.37s 1.91s 0.32s 22
400*400 = 160.000 0.97s 4.9s 5.87s 0.98s 23
1024*768 = 786.432 4.76s 27.43s 32.19s 5.37s 24

2048*1536 = 3.145.728 19.3s 435.13s 454.43s 75.74s 25

Table 3: Speed of α-tree based on image size using Intel Core I5 9600K one single core

is less than the background, at least that is what it seems.
Because when looking closer at the image we can see a
chain of pixels that form a ladder between red and the
background. When the α-tree gets build the color distance
between red and background are actually less than the
white coloring, meaning that the α-tree combines the red
with the background, before adding the middle white part.
This is a problem since it is not possible to recognize a
traffic sign if it is combined with the background. This
problem is brought up earlier by [ZXb] as Leakage and has
been explained earlier.

Figure 14: Real life example of traffic sign

4.3. Gabor Filter

A proposed solution to the leakage problem is Gabor filter-
ing, as X.Zhang and M.Wilkinson [ZXb] stated. A Gabor
filter changes the pixel intensity using a Gaussian, by fil-
tering the pixel intensity by the surrounding pixels using
a certain direction. Since we are looking for yield/warning

Figure 15: Recognition using α-tree

signs these directions are 30, 60 and 90 degrees. This might
increase correct segmentation and classification.

The next part describes the segmentation results using
the alpha tree with and without a Gabor filter applied to
the image. Figure 17 shows the result of recognition using
no Gabor filter vs using a Gabor filter. 30 degree Image on
the top left represents warning signs (which have a 30 degree
angle) and 60 degrees represent the yield sign (Which is the
inverted warning sign, meaning 60 degrees). An x means
that there is no traffic sign found in the image using alpha
tree, this is usually due to leakage or the segmented area
shows other objects as well. Figure 16 shows two examples of
wrongly segmented traffic signs, even though they do contain
the traffic signs the cluster is wrong since it contains some
pixels that do not belong to the traffic sign. The - represents
partly correct segmented, this means that the outside of
the traffic sign is found, if we would favor everything inside
this object the traffic sign can be considered found. The v
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represents a correctly segmented traffic sign, which is self
explanatory.

Figure 16: Wrongly segmented traffic signs

Figure 17 shows the result of segmentation, as visible the
Gabor filter performs much better than without a Gabor
filter. If we consider partly correct segmented as correctly
segmented we have a 15% correct segmentation vs 55% cor-
rect segmentation. That seems like a low score but it has
to be considered that the images used are extreme cases.
For example number 1 from 60 degree images has the red
balcony behind it as seen in Figure 9, which is almost im-
possible to find using an α-tree.

Figure 18 and Figure 19 shows how effective the Gabor
filtering is. As visible in Figure 18 the leakage problem is
almost completely gone which results into perfect segmen-
tation of the traffic sign.

4.4. Unfortunate coloring

Another problem that occurred is unfortunate coloring. This
sounds a bit vague but is pretty straightforward. The dis-
tance between color is an absolute measure that forms a
problem for specific scenario’s. The Yield warning sign is
a good example, in general the absolute distance between
white and red using CIE lab coloring is very high. While
the distance between red and any other color than white
is smaller in most cases. This causes the α-tree to always
merge with the background before merging with the inside
part of the traffic sign. This can happen to a variety of colors
and can cause wrong segmentation results.

5. Conclusion

Using α-trees to breakdown images is an easy technique
that has a lot of potential. When looking at traffic sign
recognition for simple examples the α-tree is easily able to
find traffic signs and can quickly find results. In general the
segmentation results of the α-tree is acceptable (depending
on where you are looking for). But Leakage is a problem
that often occurs within it, which leads to wrong segmen-
tation. Gabor filters are a very good technique to solve this
issue and increase the segmentation results significantly.
However when an extreme case occurs where we want to
separate two parts with almost identical color even the
Gabor filter cannot solve this issue.

When looking at the speed using the code provided the
α-tree performs decently. Currently the α-tree calculations
grows with O(nlogn) for each pixel. Meaning that the
bigger the image, the slower the α-tree becomes. Small
imagery(1024*786 pixels) are not a problem and could be
done within 6 seconds. However for bigger images greater
than 1000*1000 pixels, the used implementation becomes
too slow for traffic sign recognition. As explained this
speed is not acceptable since a car passes a traffic sign
much quicker. Even though parallelization could be used
to increase the speed significantly it is still not fast enough
to comprehend this issue. It must be noted that the code
used in this paper is not optimized on speed, thus it might
be possible that other implementations give better results.
So it cannot be concluded that the α-tree is responsible for
this speed issue.

For this project a simple decision tree classifier is used
to determine shape, color and size. The decision tree has a
decent classification rate when using standard images where
the traffic signs are perfectly aligned. However when looking
at real life examples the classifier has around 55% correct
(Using a Gabor filter), which is decent for a simple classi-
fier. A good classifier would most likely have a much higher
correct classification rate. But since we are comparing no
Gabor filter vs Gabor filter, the Gabor filter outperforms
the α-tree without gabor filter (15% vs 55%). It can thus be
concluded that the leakage problem (or chaining) within α-
trees can be solved to a certain extend using a Gabor filter.
Gabor filtering will give better segmentation results when
using an α-tree.

6. Future research

There is a lot of research that can still be done for the α-
tree, such as: parallelization, solving leakage problem fur-
ther (besides using a Gabor filter), but also preventing the
wrong merging of certain connected components. Further-
more decreasing the calculation time [PKA] is something
that should be considered, since it grows O(nlogn). As visi-
ble in the results the bigger the image the slower the α-tree.
A possibility would be to seperate certain parts of the im-
age and only focus on a small part of the image to increase
the speed. Other examples of increasing the speed would be
to down sample the image but that might result into worse
classification.

Another implementation could be to improve the use of
α-tree steps, it could for example be possible to skip certain
steps when there is a small amount of change. Furthermore
the first few steps usually change a few pixels of the con-
nected components. In general we are looking for bigger ob-
jects where it might be possible to skip certain steps. Last
but not least the direction of connecting components can be
influential, traffic signs are a good example of that. When
we take the red pixels of the traffic sign it would be weird
to merge it with another color outside of the red part. Since
everything of that traffic sign should be inside of it. But the
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Figure 17: Gabor filter result
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Figure 18: Applying a Gabor filter in 3 directions: 90, 30,
-30

Figure 19: Segmentation after applying a Gabor filter

the distance between red and background is smaller than
red and white on the inside it will always merge with the
outside.

[JS]
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7. Appendix

Below shows the code that is used for testing and results.
Furthermore the images which are primarily used are shown
in the used images section of the appendix.

7.1. Open-source Code

Below shows a link to the open-source code that is used for
the α-tree and traffic sign recognition. It is freely available
and requires the installation of OpenCV2, the α-tree can
be used without the use of OpenCV2 for testing purposes.

https://github.com/thegendolz/

In-company-research

https://github.com/thegendolz/In-company-research
https://github.com/thegendolz/In-company-research
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7.2. Used Images

Figure 20: 100x100 image α-tree build test

Figure 21: 200x200 image α-tree build test

Figure 22: 300x300 image α-tree build test

Figure 23: 400x400 image α-tree build test

Figure 24: 1024x768 image α-tree build test
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Figure 25: 2048x1536 image α-tree build test


