


Abstract

The ENSO model by Timmerman and Jin (2002) models the El Niño-Southern Oscillation using 3
prognostic differential equations. In this thesis, we use one of the trajectories of this ENSO model and
consider a Poincaré section given by the local maxima of eastern Pacific sea surface temperatures. The
relation of the resulting sequence of values can be approximated with 1 dimensional maps, with which
we will examine bifurcations, snap-back repellers and predictability of extreme events. Lastly, we
conclude that employing a toy model can be useful since it reduces, for example, time and calculation
capacity while we still obtain similar results for the chosen variable.
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Figure 1: An example of El Niño in December 1997. A tongue of warm water is visible in red at the
left of South-America [WMO14].

1 Introduction

In this thesis, we will derive and analyse a toy model for the El Niño-Southern Oscillation. The models
that will be discussed analyze the El Niño phenomenon using dynamical systems theory.

The toy model we will construct will be based on data obtained from a model by Timmerman
and Jin. This is a continuous dynamical system governed by 3 prognostic differential equations that
we will refer to as the ENSO model throughout the thesis. The toy model we will create will be a 1
dimensional discrete dynamical system.

Before we focus on the toy model, we will first give a short introduction to the El Niño phenomenon
and the ENSO model.

A short introduction to El Niño

El Niño is a weather phenomenon occurring in the central Pacific ocean and it is due to a circulation
of sea surface temperatures called the El Niño-Southern Oscillation. This oscillation takes 2 to 7 years
to circulate. El Niño got its name by Peruvian fishermen who named it “boy child” because the high
temperatures in that region appear just before Christmas.

An example shown in Figure 1 is the El Niño of 1997 to 1998. In the red area, sea surface
temperatures rose to 5 degrees above average. This powerful case of El Niño led to extreme rainfall in
Kenya, Somalia and California, severe drought in Indonesia and lead to the warmest year in recorded
history up until then.

El Niño events start with a warming of the surface water by the sun near the equator, which causes
more clouds and rain as shown in Figure 2. Normally, trade winds blow warm water to the west,
like with La Niña. With El Niño, these trade winds weaken and even reverse on the west side of the
ocean. Warm water stays on the surface of the east side and is not replaced by cool water from a cold
upwelling. Therefore the thermocline, the transition layer of water with different temperatures and
density, on the east side is deeper than in usual circumstances.

The outlines of the ENSO model

The model we referred to is the low-order model for the El Niño-Southern Oscillation discussed by A.
Timmermann and F.-F. Jin [TJ02, p.3-1]. For our studies we do not require to understand this model
and therefore we only will briefly state the equations of the model. In fact, we will not use this model
in its entire, only its results and occasionally we refer to its equations.
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Figure 2: The physical process of extreme cases in the El Niño-Southern Oscillation [WMO14].

The ENSO model is a continuous dynamical system that consists of three prognostic equations
which determine the rate of change of the western T1 and eastern equatorial Pacific sea surface tem-
peratures T2 and the anomalous western equatorial thermocline depth h1.

dT1
dt

= −α(T1 − Tr)−
2u(T2 − T1)

L
,

dT2
dt

= −α(T2 − Tr)−
w(T2 − Tsub)

Hm
, (1)

dh1
dt

= r

(
− h1 −

bLτ

2

)
.

Wind stress anomalies τ , zonal advection u and equatorial upwelling w in the eastern equatorial
Pacific, the eastern equatorial termocline depth h2 are governed and subsurface temperature Tsub by
equations (2).

u =
εLβτ

2
, w = −Hmβτ,

τ = µ(T1 − T2)
σζt − 1

β
, h2 = h1 + bLτ, (2)

Tsub = Tr −
Tr − Tr0

2

(
1− tanh(H + h2 − z0)

h∗

)
,

where σηt represents Gaussian white noise of variance σ2. The values we are about to use are of
an experiment where noise is neglected, hence σ = 0. Variable values used for the experiment are
given in Table 1. The initial values Timmermann and Jin used for their study [TJ02, p.3-2] result
in the spiraling orbit shown in Figure 3. Note that this orbit lives in a 3-dimensional space with the
dimensions T1, T2 and h1.
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α = 1/180 day−1 r = 1/400 day −1

Tr0 = 16◦ C Tr = 29.5
◦

C
Hm = 50 m H = 100 m
z0 = 75 m h∗ = 62 m
µ = 0.0026 K−1 day −1 µbL/β = 22 m k−1

L = 15 · 106 m ε = 0.086

Table 1: Variable values used for the experiment of Timmermann and Jin.

Figure 3: The resulting strange attractor, here T1 and T2 are the western and eastern equatorial Pacific
sea surface temperatures.

Hypothesis and sub-questions

After creating and analyzing the toy model, we will discuss its usefulness with respect to the ENSO
model. Ultimately, we will answer the following main question:

Can it be useful to employ a toy model over the ENSO model?

To be able to answer this question, we will consider the following sub-questions:

• Can we simplify the ENSO model into a toy model that is able to simulate one variable accurately?
• How can we determine the difference in quality of results between the toy model and the ENSO

model?
• What are the possible benefits of using such a toy model instead of the ENSO model?
• Aside from quality of results, are there other possible downsides on using a toy model instead of

the ENSO model?

After this introduction, we will proceed this first section with a short discussion on the El Niño
phenomenon and a brief explanation on the ENSO model. In the second section, we will discuss all
the preliminary theory on dynamical systems.

The third chapter is dedicated to deriving a toy model from the extreme values of the ENSO model.
We also give methods to create similar models and state the models we will use for our analyses.

The analyses on the toy models will be in chapters four and five. In chapter four we will discuss
basic properties of some of the models and in chapter five we will be focusing on a model with shifting
top point. This analysis will show the differences in a continuous set of models.
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2 Preparatory dynamical systems theory

As stated in the introduction, we will be considering models from dynamical systems theory. Therefore
we start with providing some preliminary knowledge on this topic. Readers who are familiar with this
discipline of mathematics can omit this chapter.

Notions described in this chapter are mostly adopted from the book of Devaney [D89]. Other
references that are made use of are [HSD04] and [S94]. Backward asymptotic points for non-invertible
maps are discussed in [R99].

2.1 General terminology

We start out with some general terminology used to distinguish different kinds of dynamical systems.
Firstly, a dynamical system in general describes a point through time with a system of functions.
The space in which the point is described is called the phase space. Let us discuss a more precise
definition on dynamical systems.

Definition 1. A dynamical system consists of a phase space X, a time set T and a function Φ. The
function Φ is such that it maps a point in phase space x0 ∈ X and a point of time in the time set
t ∈ T to another (possibly the same) point in phase space x ∈ X. Hence Φ : X × T → X such that
Φ(x0, t) = x.

A dynamical system also follows the property that time can be added by repeating this function for
that amount of time. That is,

Φ(x0, 0) = x & Φ(Φ(x0, t1), t2) = Φ(x0, t1 + t2), (3)

for all x0 ∈ X and t1, t2 ∈ T .

The value x0 is called the initial condition. Most dynamical systems only state their prognostic
equations, since most dynamical systems are too involved to write down in one function depending on
an initial condition and a point of time. We can distinguish two different types of dynamical systems,
depending on their type of prognostic equations, namely discrete and continuous dynamical systems.

A discrete dynamical system has a prognostic equation that determines the next point using
the current point. Time will progress in steps and hence the time set is a discrete sequence. A general
example of a prognostic equation for a discrete dynamical system is

f(x) = Φ(x, 1), x ∈ X,

where x = Φ(x0, t) for some x0 ∈ X and t ∈ T ⊆ Z.
Continuous dynamical systems have differential equations as prognostic equations. Therefore

time will be continuous for these systems. A general example of a prognostic equation for a continuous
dynamical system is

f(x) =
d

dt
x, x ∈ X,

where x = Φ(x0, t) is its solution for some x0 ∈ X and t ∈ T ⊆ R.
Solving this differential equation will directly result in the function of system (3). We also can plot

the solutions of this system for some time interval [tstart, tend] ⊆ T . The resulting curve is called a
trajectory or a solution curve.

The dimension of a dynamical system denotes the number of variables that characterize the points
in phase space. The ENSO model, for instance, is a 3-dimensional continuous dynamical system and
its phase space has dimensions T1, T2 and h1. System (3) is only 1-dimensional and its phase space
only has dimension X.
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2.2 Basic concepts on mappings

The toy model will be a 1-dimensional discrete model and therefore discrete dynamical systems will be
our primary focus. Recall that their prognostic equations determine the next point using the current
point. These kind of equations are called mappings, or maps for short. The set of points used as
input for the map is called the domain and the set of points used as output is called the co-domain.
Because our maps will map points from one set back to the same set, its domain and co-domain will
be the same. A map with this property, for a set X, can be denoted as f : X → X.

Now consider a set X ⊆ R and a function f : X → X. Also consider the subset A ⊂ X. The
image of A is the set where all elements of A are mapped to by f and the pre-image of A is the set
of elements that are mapped to A by f .

Image of A is f(A) = {f(a), a ∈ A}.
Pre-image of A is f−1(A) = {x ∈ X : f(x) ∈ A}.

It is important to stress that maps, by definition, map every point to another single point. Hence
a point cannot be mapped to two different points, but it is possible that two points from the domain
are mapped to the same point. However, when a map does map every single point to another unique
point, then the map is called one-to-one. It is also not necessary for a map to map towards every
single point of the co-domain. Maps that do map their domain towards every point of the co-domain
are called onto. When maps are both one-to-one and onto, then they map every point of the domain
to an unique point in the co-domain. These maps are called bijective maps.

In the latter case, the inverse of such a map is also a map and hence those maps are called
invertible. We remark that the inverse of an invertible map is also bijective.

Inverse of f : A→ B is f−1 : B → A, if f is bijective.

For non-invertible maps, it is possible to make them invertible. An non-onto map can be made
bijective and hence invertible by shrinking its co-domain to the image of its domain. For non-one-to-
one maps it is possible to consider partial inverses by cutting out a piece of the domain for which
the map is one-to-one and by setting the co-domain as the image of that domain. Note that domains
and co-domains differ for every different partial inverse of the same map.

Since we will use maps in a sequential manner, for example map f : X → X, we occasionally
we want to apply that map n times to some value x ∈ X like f(. . . f(x) . . .) or f ◦ . . . ◦ f(x). For
convenience, we can denote this operation as fn(x) and call it the n-fold composition of the map
f . Furthermore, fn(x) is called the nth iterate of f from x.

2.3 Time series and Poincaré maps

For our toy model specifically, we point out that it will only consider closed intervals [a, b] ⊂ R and
hence maps of our toy model will be of the form f : [a, b] → [a, b]. Therefore we do not need to be
more general than just generic closed intervals for all coming statements.

With that said, we will advance with the notion of time series. Like a continuous dynamical system
has solution curves, a discrete dynamical system has time series. By gathering all iterates of a certain
map, we create a sequence of iterates to which we can refer conform this definition.

Definition 2. Consider an interval [a, b] ⊆ R and a map f : [a, b]→ [a, b].
The time series or forward orbit of the map f is the sequence we get from iterating an initial

value x0 ∈ [a, b] with f . This will result in the sequence (x0, f(x0), f2(x0), . . .) and we express this
sequence as O+(x0).

If f is invertible, it also has a backward orbit defined as (x0, f
−1(x0), f−2(x0), . . .) and expressed

as O−(x0).
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Another concept we explain, now that we have defined time series, are graphical analyses. A
graphical analysis shows the progression of time series with the following procedure. Let us consider
an interval [a, b] ⊆ R, a map f : [a, b]→ [a, b] and a point x0 ∈ [a, b] with time series O+(x0).

1. We start by plotting the map in question f and the identity map.
2. We draw a vertical line or arrow from the identity map at the current iterate or initial value

towards the map f .
3. Subsequently, we draw a horizontal line from the end of the previous line to the identity map.

The value we end is the value of the next iterate.
4. Repeat the previous two step as much as desired.

Graphical analyses can depict the way dynamics of a map acts well and makes it more comprehen-
sible. Examples of graphical analyses are shown in Figure 4. A concept that can comprehensibly show
the dynamics of continuous dynamical systems is the Poincaré map.

Definition 3. Consider a continuous dynamical system Φ describing points γ in phase space X ∈ Rk
through time interval T ⊆ R with initial condition x0 ∈ X such that

Φ : (x0, t)→ γ(t) ∈ X, ∀t ∈ T.

Also consider a section S ⊂ X chosen in such a way that γ intersects S after every orbit of γ. Let
(t0, t1, . . .) ⊂ T be the sequence of time points where γ intersects with S.

The function P that maps the point γ(tn) to the next point of intersection γ(tn+1) is called the
Poincaré map. The section S used for this Poincaré map is called a Poincaré section.

P : γ ∩ S → γ ∩ S such that p
(
γ(tn)

)
= γ(tn+1), n ∈ N.

Note that in the previous process, a continuous dynamical system is shaped into a discrete dy-
namical system. A Poincaré section selects a sequence of points from the solution curve for which its
respective Poincaré map acts as the prognostic equation for the sequence (γ(t0), γ(t1), . . .).

2.4 Fixed points, periodic points and their stability

From this section on, we will deal with concepts that actually analyse the dynamics of a discrete
dynamical system. We start with some very basic yet important notions on dynamics of points with
respect to the used map.

Definition 4. Consider an interval [a, b] ⊆ R and a map f : [a, b]→ [a, b].
A fixed point of the map f is a point x ∈ [a, b] such that f maps that point to itself, that is

f(x) = x.
A periodic point of the map f is a point x ∈ [a, b] such that there exists an n ∈ N for which fn

maps that point to itself, that is fn(x) = x. That point is a periodic point of period n. The smallest
k ∈ N for which fk(x) = x still holds is called the prime period of x.

Examples of fixed points can be found in Figure 7 & 9. Aside from a blue plot of a map, the
identity function is also plotted in black. Points of the map that intersect with the identity line have
the property that those values will remain the same after applying the map, which is exactly the
definition of a fixed point. We remark that fixed points are periodic points with period 1.

Asymptoticity of points

Let us proceed with a notion relating dynamical characteristics to these fixed and periodic points.

Definition 5. Consider an interval [a, b] ⊆ R and a map f : [a, b] → [a, b] with a periodic point
p ∈ [a, b] of period n.
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Figure 4: The iterations of two maps with 0.5 as stable fixed point and two maps with 0.5 as unstable
fixed point. The initial value is at the start of the green line and is plotted vertically towards the map.
The value after one iteration is made visual by plotting a horizontal line from that point towards the
diagonal identity line. Repeating this process (from the green to the red lines) gives the trajectory of
the iterations and thus shows the stability of the fixed point 0.5.

A point x0 ∈ [a, b], with time series O+(x0) = {x0, x1, . . .} where f(xk) = xk+1, is forward
asymptotic to p if xi·n tends to p as i goes to infinity. That is f i·n(x0) = xi·n → p as i→∞.

The stable set of p consists of all the points x ∈ [a, b] that are forward asymptotic to p and is
denoted as W s(p). Also, p is called an attracting periodic point in this case.

A point x0 ∈ [a, b] is backward asymptotic to p, even for a non-invertible map f , provided that
there exists a time series O+(x−j·n) = (x−j·n, x1−j·n, x2−j·n, . . .) with f(xk) = xk+1 such that x−j·n
tends to p as j goes to infinity. That is x−j·n → p as j →∞.

The unstable set of p consists of all the points x ∈ [a, b] that are backward asymptotic to p and is
denoted as Wu(p). Also, p is called a repelling periodic point in this case.

Note that, although we could not define the backward orbit for non-invertible map, we could define
how a map can be backward asymptotic to a periodic point. One does need to be careful, since it
requires that we always can find a predecessor that is closer to the periodic point than the current point.

To improve our understanding of stable and unstable sets, we will illustrate them with a graphical
analysis on four maps with a fixed point at 0.5 shown in Figure 4. The lines of the graphical analysis
are drawn from green to red. The two upper graphs show the graphical analysis of two maps from the
point 0.2. As we work through the process, we see that the iterates of the initial point tend towards the
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fixed point 0.5. That means that its time series are within the stable set, which is O+(0.2) ⊂W s(0.5).
The two lower graphs show the same for two different maps from the point 0.47. As the process

resolves, the iterates move from the fixed point 0.5. This indicates repelling behaviour, but does
not prove that x0 is backwards asymptotic to p. Therefore, we need to look at the pre-images. For
invertible maps, like in Figure 5, we can determine the backward orbit and say O−(0.47) ⊂Wu(0.5).

For non-invertible maps, on the other hand, we need to define a procedure that finds a point in every
pre-image that is provably closer to the periodic point than the previous one. After this we can say that
the resulting sequence lies within the unstable set, that is O+(f−j(0.47))j→∞\O+(f(0.47)) ⊂Wu(0.5).

We will advance with more notions on periodic points. Before we introduce these concepts, we
remark that the absolute value of the slope of the maps at 0.5 in the upper two graphs of Figure 4 is
lower than 1 and the lower two have an absolute slope higher than 1. As one might point out, concepts
concerning slopes of maps require that those maps are at least locally differentiable in the first place.
A map is differentiable if its slope is well-defined for every point of its domain.

Definition 6. Consider an interval [a, b] ⊆ R and a differentiable map f : [a, b]→ [a, b] with a periodic
point p ∈ [a, b] of period n.

The multiplier of the periodic point p is given by the slope of the n-fold composition of the map f
at point p, that is (fn)′(p).

The periodic point p is hyperbolic periodic point if the absolute value of its multiplier is not
equal to 1.

Stable and unstable sets

We saw that the maps of Figure 4 with a fixed point that has a multiplier with an absolute value lower
than 1 had time series within the stable set and the maps with a fixed point with absolute multiplier
higher than 1 had time series within the unstable set. And indeed, this is no coincidence, as the
upcoming proposition will show.

Proposition 1. Consider an interval [a, b] ⊆ R and a differentiable map f : X → X with a periodic
point p ∈ X of period n such that its multiplier has |(fn)′(p)| < 1. Then there exists an open interval
S about p that is within its stable set W s(p).

Proof of this theorem is mostly based on the proof in the book of Devaney [D89, p.25].

Proof. Since the map f has |(fn)′(p)| < 1, we have that fn is at least once differentiable at p. Thus
there exists ε > 0 such that there exists a number A with |(fn)′(x)| < A < 1 for all x ∈ [p−ε, p+ε]∩X.

According to the mean value theorem, there exists an a, with a ∈ [x, p] if x < p or a ∈ [p, x] if
x > p, such that fn(x)− fn(p) = (fn)′(a)(x− p). This theorem can be found in [D89, p.10].

Since a is in between x and p, we know that a ∈ [p − ε, p + ε] ∩ X and thus |(fn)′(a)| < A < 1.
Therefore |fn(x)− fn(p)| < A|x− p|. From this follows that

|fn(x)− p| = |fn(x)− fn(p)| < A|x− p| < |x− p|.

Note that fn(x) is lying closer to p than x did. Now let us consider f i·n(x) for i ∈ N.

|f i·n(x)− p| = |f i·n(x)− fn(p)| < A|f (i−1)n(x)− p| < . . . < Ai|x− p|.

And therefore, since A < 1, we have that f i·n(x)→ p as i→∞. Together with Definition 5, we know
there exists ε > 0 such that all x ∈ [p − ε, p + ε] are forward asymptotic to p and thus are contained
within the stable set. And therefore there exists an open interval S about p such that S ⊂W s(p).

With this proposition, we can directly show the existence of a stable set around a periodic point
only by showing that the absolute value of its multiplier is lower than 1. An opposite proposition
concerning periodic points can also be proven.
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Proposition 2. Consider an interval [a, b] ⊆ R and a differentiable map f : [a, b] → [a, b] with a
periodic point p ∈ [a, b] of period n such that its multiplier has |(fn)′(p)| > 1. Then there exists an
open interval U about p that is within its unstable set Wu(p).

Proof. The proof is mostly the same as the previous proof and therefore we will use shorter notation.
∃ε > 0 such that |(fn)′(x)| > A > 1,∀x ∈ [p− ε, p+ ε] ∩ [a, b].

Then, with the mean value theorem , ∃a ∈ [p− ε, p+ ε] ∩ [a, b] such that

|fn(x)− p| = |(fn)′(a)| · |x− p| > A|x− p| > |x− p|.

Now let us fix x for a moment and try to find the wanted predecessor and call it x1. Assume x1
exists within [p− ε, p+ ε] ∩ [a, b], then ∃b ∈ [p− ε, p+ ε] ∩ [a, b] between x1 and p such that

x− p = fn(x1)− p = (fn)′(b)(x1 − p) > A(x1 − p),

according to the mean value theorem. Next, ε > |x− p| > A|x1− p| results in x1 ∈ [p− ε/A, p+ ε/A]∩
[a, b], proving that x1 indeed exists in [p− ε, p + ε] ∩ [a, b]. Repeating this process for the prior point
of x1, say x2, we get x2 ∈ [p− ε/A2, p+ ε/A2] ∩ [a, b].

Let xi be the ith point prior to x we choose by repeating the previous process. This point has
xi ∈ [p− ε/Ai, p+ ε/Ai] ∩ [a, b] and has existing time series O+(xi). Hence x is backward asymptotic
since xi → p as i→∞ by Definition 5.

This holds ∀x ∈ [p − ε, p + ε] ∩ [a, b] and thus there exists an open interval U about p such that
U ⊂Wu(p).

Now that we have proven their existence, let us name these open intervals which are described in
the previous two propositions.

Definition 7. The open interval S described by Proposition 1 is called the local stable set and is
denoted as W s

loc.
The open interval U described by Proposition 2 is called the local unstable set and is denoted as

Wu
loc.

Lyapunov exponents

After we have defined stable and unstable sets for periodic points, we introduce another notion on
stability using slopes. This time, we are looking at the average slope of points in time series. The idea
is that points attract each other if their absolute slope is smaller than 1 and repel if its larger than
1. Therefore, an average slope would indicate if points of time series attract or repel each other in
general.

Definition 8. Consider an interval [a, b] ⊆ R, a map f : [a, b] → [a, b] and time series O+(x0) =
{x0, x1, . . .} where xn ∈ [a, b] for all n ∈ N.

We define the time-n Lyapunov exponent λn of x0 as the average of the logarithm of the slope
of the first n iterates. Note that by the chain rule, this is equivalent to the logarithm of the slope of the
n-fold composition of the map at x0.

λn(x0) =
1

n

n−1∑
i=0

log |f ′(xi)| =
1

n
log

∣∣∣∣∣
n−1∏
i=0

f ′(xi)

∣∣∣∣∣ =
1

n
log |fn′(x0)|.

We define the Lyapunov exponent λ as the average of the logarithm of the slope of each iterate
of the time series O+(x0). This corresponds to the time-n Lyapunov exponent λn of x0 in the case
that n goes to infinity.

λ = lim
n→∞

1

n

n−1∑
i=0

log |f ′(xi)|.
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Note that the logarithm of the slope of an attracting point will be negative and that of a repelling
point positive. Hence a negative Lyapunov exponent will indicate time series with stable behaviour
while a positive Lyapunov exponent indicates one with unstable behaviour.

Most of the time, a Lyapunov exponent cannot be calculated analytically and requires numerical
computation. As a consequence, it is not possible to determine the true Lyapunov exponent. Instead, a
time-n Lyapunov exponent has to do. One can imagine that the results of a time-n Lyapunov exponents
depends greatly on the chosen initial value x0. Indeed, every bounded time series has different iterates
and all iterates have different slopes. Of course, the significance of this issue decreases to the extent
of which the number of iterates to evaluate increases. Still, one has to take note of this fact when
computing Lyapunov exponent numerically.

2.5 Snap-back repellers

In the previous section, we discussed notions on local stable and unstable sets. However, it can be
proven that a dynamical systems can be unstable everywhere. These systems are called chaotic systems.

Before we dive in, we discuss two notions we will use in this section. Firstly, we will use the notion of
a neighbourhood. A neighbourhood is typically an open set, ball or interval of any positive diameter
r > 0 around some point x0. This is often denoted as Br(x0). When we consider points inside a
neighbourhood around x0 when r is not already defined, then for every r > 0, these points x that is
inside the neighbourhood around x0 the distance between x and x0 is smaller then any positive , then
there exists a diameter r > 0 such that the distance between x and x0 is less than r. A continuously
differentiable map is a function with a continuous derivative.

Proving that a dynamical system is chaotic, or proving chaos in general, is very difficult. The
first problem that arises is the question what chaos or a chaotic system actually is. This fundamental
question gave rise to different definitions for chaos. The most popular definition is given by Devaney
[D89, p.50].

Definition 9. Consider a set X and a map f : X → X. The map f is said to be chaotic in the
sense of Devaney on X if

1. f has sensitive dependence on initial conditions;
2. f is topologically transitive. i.e. ∀U, V ⊆ X,∃k > 0 such that fk(U) ∩ V 6= ∅;
3. periodic points are dense in X.

Although we now have a widely accepted definition for chaos, it is still a lot of work to prove chaos
for dynamical systems. Marotto came up with an easy way to prove chaos in 1978. This is done
by finding a snap-back repeller. This method, however, was not presented without flaws. This was
pointed out by Chen, Hsu and Zhou in 1998. In the paper of Shi and Chen from 2004, an improvement
was made on the needed definition of an expanding point [SC04, p.557].

Definition 10. Consider the set X and a map f : X → X and a fixed point p ∈ X. The fixed point
p is an expanding fixed point of f in the closed interval B̄r(p) ⊆ X for some r > 0 if ∃λ > 1 such
that |f(x)− f(y)| ≥ λ|x− y|,∀x, y ∈ B̄r(p).

If p is an interior point of f(Br(p)), then p is called a regular expanding fixed point

We remark that this condition is met for 1-dimensional systems if the absolute value of the slope
of f(x) for points x inside the closed interval B̄r(p) is higher than 1. We proceed with the definition
of a snap-back repeller given in the article of Marotto [M78, p.203].

Definition 11. Consider the set X, a map f : X → X and a fixed point p ∈ X. The fixed point p is
a snap-back repeller if

1. p is an expanding point of f in Br(p) ⊆ X.
2. ∃x0 ∈ Br(p) with x0 6= p such that ∃k ≥ 2 with fk(x0) = p.
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Furthermore, p is called a non-degenerate snap-back repeller of f if

3. f(Br(p)) is open;
4. ∃δ0 > 0 such that Bδ0(x0) ⊂ Br(p);
5. p is an interior point of fk(Bδ(x0)) for each positive δ ≤ δ0.

To prove that snap-back repellers indeed prove chaos, Marotto first made his own definition of
chaos, which can be found in the same article we just mentioned.

Definition 12. Consider a set X and a map f : X → X. The map f is said to be chaotic in the
sense of Marotto on X if it possesses a snap-back repeller. That is, there exists

1. a positive integer N such that, ∀n ≥ N , ∃p ∈ X that is a periodic point of f of period n;
2. an uncountable set S containing no periodic points of f such that

(a) f(S) ⊂ S;
(b) ∀x, y ∈ S with x 6= y we have lim supk→∞ |fk(x)− fk(y)| > 0;
(c) ∀x ∈ S and any periodic point p of f we have lim supk→∞ |fk(x)− fk(p)| > 0;

3. an uncountable set S0 ⊂ S such that ∀x, y ∈ S0 we have lim infk→∞ |fk(x)− fk(y)| = 0.

This list of criteria turned out to be not sufficient for results Marotto claimed. Therefore, two
additional criteria were given such that the results of Definition 12 hold [SC05, p.234].

Definition 12 (continued). Furthermore, we assume that

4. ∀ε > 0 the map f is continuously differentiable inside a neighbourhood of p and all eigenvalues of
Df(p) have absolute values higher than 1. This implies that there exists a neighbourhood around
p which is an unstable set of p.

5. p is a snap-back repeller of f with fk(x0) = p such that f is continuously differentiable in the
neighbourhoods of xj and have detDf(xj) 6= 0,∀j ∈ {0, 1, . . . , k − 1} where xj = f(xj−1).

The fourth criterion was initially put in the definition of a expanding point. The fifth criterion takes
into account that the map f at all the points of the forward orbit of x0 until p need to be continuously
differentiable. This means that the map f does not need to be entirely continuously differentiable,
which we will need for our toy model.

The same theorem we referred to for the previous two criteria also shows us in which case f is also
proven to be chaotic in the sense of Devaney.

Theorem 1. If f satisfies all five conditions of Definition 12, then, for each neighbourhood U of p,
there exist a positive integer l > k and a Cantor set Λ ⊂ U such that f l : Λ → Λ is chaotic on Λ in
the sense of Devaney.

In 2005, the following theorem is shown as a remark in an article writen by Shi and Yu [SY05]. For
our research, this theorem will be the one of importance to prove chaos.

Theorem 2. A regular non-degenerate snap-back repeller implies chaos in the sense of Devaney.

2.6 Bifurcation theory

This section will be devoted to bifurcation theory. Our main source for this section will be again
the book of Devaney, specifically starting at [D89, p.80]. We will also use material from [BT09].
This theory focuses on families of 1-dimensional systems that depend smoothly on the parameter
µ. Smooth functions are functions that are infinitely differentiable with respect to a given variable.
The family of 1-dimensional systems can be described by a two dimensional function with domain
X ×M ⊆ R2,

G(x, µ) = fµ(x),

where fµ is a 1-dimensional dynamical system if µ ∈ M is fixed. Devaney only considers smooth
1-dimensional systems. We, on the other hand, start with systems which are not necessarily smooth,
but only continuous.
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Bifurcation theory on families of smooth and non-smooth maps

Actual bifurcation theory can only be applied on smooth functions. This does not withhold us from
evaluating families of non-smooth maps. Families of maps, smooth or not, can be evaluated with the
use of a bifurcation diagram.

A bifurcation diagram is a product of a numerical experiment in which we determine the set of
values Xµ ⊆ X that occur after k ∈ {m + 1, . . . , n} ⊆ N iterations of the map for some initial value
x0 ∈ X. This is repeated for each value of µ ∈M .

Xµ = {x ∈ X | fkµ(x0) = x, ∀k ∈ {m+ 1, . . . , n} ⊂ N}

Note that the values of the set Xµ depend on the initial value x0 ∈ X. Ideally, we want to reduce
the dependence of the initial value to get a good representation of the values we can expect in general.
This dependence can be reduced in two ways.

Firstly, we can ignore the first m iterations of f on the initial value x0 ∈ X, for each µ ∈M . These
ignored values are called the transient. By eliminating the transient, we ignore the values that are
highly dependent on the initial condition. The larger the transient, the lesser Xµ depends on x0. The
second way is to let Xµ be a large set. This increases the variation of possible values of Xµ and thus
they become less dependent on the initial value.
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3 The toy model and its map approximations

The dynamics of the ENSO model correspond well with El Niño phenomenon. But getting specific
information requires to solve a system of 3 differential equations, which takes a lot of computing
capacity. If one is only interested in one specific variable, then a 1 dimensional model would be more
efficient. This leads to the first sub-question of our research:

Can we simplify the ENSO model into a toy model that is able to simulate one variable accurately?

3.1 Derivation of the toy model

Now that we have a clear goal, we need a way to achieve this. For this purpose, we will roughly pursue
the following steps:

• Find ’an easy to model’ pattern within the results of the ENSO model;
• Pick a smaller set of variables that could be predicted separately form the other variables;
• Use these results to create functions which are only dependent on the chosen set of variables.

Evaluating the results of the ENSO model

The results of the ENSO model, i.e. its solution curve with respect to the used initial conditions, is
shown in the graphs of Figure 3. The first graph shows the solution curve projected onto the (T1, T2)-
plane orbiting with rotations of varying length. Its progression through time goes clock-wise. The
second graph shows T2 as a function of time. These orbits of the solution curve in the left graph of
Figure 3 appear here as oscillations. From this graph, a notable pattern is visible. The temperature
shows a repeating pattern of an oscillation with an increasing amplitude.

As mentioned in the previous chapter, the phase space of the ENSO model has 3 dimensions,
namely T1, T2 and h1. But one might expect, due to the seemingly predictable value of T2 with respect
to time, that it potentially can be modeled with only its previous values and thus by neglecting T1
and h1.

Choosing restrictions that lead to the toy model

To support our expectations on this pattern of T2 over time, we take a look at the behaviour of the
local maxima of T2 with respect to time. Hence, with respect to the solution curve of the ENSO model,
we consider the times tn, such that

dT2
dt

(tn) = 0 &
d2T2
dt2

(tn) > 0. (4)

These criteria with respect to the solution curve of the ENSO model are marked with a blue line
in Figure 5. This line embodies a 2-dimensional surface within the 3-dimensional phase space of the
ENSO model. We can use this surface as a Poincaré section to create a Poincaré map (Definition 3),
with which we can create a function to determine every subsequent local maximum. Hopefully, this
will strongly depend on T2 values of previous local maxima.

As said after the definition of a Poincaré map, we can reduce this continuous model to a discrete
model. Hence, we are able to create a sequence of time points from a continuous time interval that
relates to the time series of the Poincaré map. This produces a less involved dynamical system which
has the Poincaré section as its phase space.
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Figure 5: The strange attractor of the ENSO model. The restrictions of equations (4) result in the
blue line, which embodies a surface within the 3 dimensions of the ENSO model (T1, T2, h1). To point
out that intersections with the solution curve are indeed local maxima with respect to T2, some points
highlighted with a red tangent line.

Explicitly describing the Poincaré section

The solution curve of the ENSO model passes the surface of equations (4) once after every orbit and
thus these equations meet the criteria for a Poincaré section. Using the differential equations of the
ENSO model (1) and equations (4), we can express this Poincaré section explicitly.

0 =
dT2
dt

(tn) = −α
(
T2(tn)− Tr(tn)

)
−
w
(
T2(tn)− Tsub(tn)

)
Hm

,

0 <
d2T2
dt2

(tn) = −α
(
dT2
dt

(tn)− dTr
dt

(tn)

)
− w

Hm

(
dT2
dt

(tn)− dTsub
dt

(tn)

)
= α

dTr
dt

(tn) +
w

Hm

dTsub
dt

(tn).

A discrete function with only 1 dimension

Recall that we can relate any local maximum on the solution curve of the ENSO model to the next
with the previously mentioned Poincaré map. Let us denote this map as P . Furthermore, let Mn

be the value of T2 at the n-th local maximum after the initial value M0. The Poincaré map P is a
function from the Poincaré section S ⊂ R3 to itself, that is P : S → S. Therefore we have

P
(
Mn, T1(tn), h1(tn)

)
=
(
Mn+1, T1(tn+1), h1(tn+1)

)
, ∀n ∈ N.

Our goal, however, is to only focus on the values Mn and see if those values relate to each other.

f : S → S, such that f(Mn) = Mn+1, ∀n ∈ N. (5)

The question is whether this function makes sense. Is the pattern so strong that can we say
something about Mn+1 by knowing Mn? To answer that question, we make a plot of each local
maxima against the next one. The result of that plot is given in the first graph of Figure 6.
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Figure 6: The sequence of local maxima (Mn)n∈(1,1000). Here, Mn+1 is plotted versus Mn.

We see that the idea of a function f , as given in equation (5), indeed makes sense. The pattern
we have seen in the oscillation of T2 in Figure 3 induces a strong relation between Mn and Mn+1 that
seems to lie on a single smooth curve, which is shown with a red curve in the second graph. Therefore,
it seems that we indeed can simulate a variable of the ENSO model accurately. To be able to properly
answer this question, we need to see if the toy model also has a corresponding behaviour to the ENSO
model. Hence we first look further into the map f by creating approximations and evaluating their
dynamics.

Before we proceed with these approximations, we first rescale and rename the variables Mn. We
rescale them in such a way that the lowest temperature has value 0, the highest temperature has
value 1 and hence they all are within unit interval [0, 1]. Furthermore, we are naming the values xn
in stead of Mn after re-scaling. In the next sections we will be discussing approximations of this map
f : [0, 1]→ [0, 1].

3.2 A piece-wise linear approximation

The easiest way to approximate map f is with a piece-wise linear approximation. Therefore the
first approximation will be of that kind. Such an approximation can be made by choosing k points
(a1, b1), . . . , (ak, bk) on the graph of f , where f(an) = bn and

0 = a1 < . . . < ak = 1.

The k − 1 lines between these points define the map fk−1 : [0, 1]→ [0, 1].

fk−1(x) = bi +
bi+1 − bi
ai+1 − ai

(x− ai) with x ∈ [ai, ai+1], ∀i ∈ [1, . . . k − 1]. (6)

The 7-piece linear approximation

The first approximation we will consider is a 7-piece linear map with the following set of points:

(a1, b1) = (0, 0.03), (a2, b2) = (0.1, 0.2), (a3, b3) = (0.15, 0.94), (a4, b4) = (0.27, 1),

(a5, b5) = (0.41, 0.94), (a6, b6) = (0.46, 0.32), (a7, b7) = (0.6, 0.12), (a8, b8) = (1, 0).

The graph of rescaled local maximum temperatures versus the next one (xn, xn+1) and the piece-wise
linear approximation f7 is shown in Figure 7.
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Figure 7: The rescaled local maximum temperatures (xn), the linear approximation f7 and the linear
approximation with shifting point f7µ with µ = 0.151, 0.28, 0.409.

Figure 8: The rescaled local maximum tempera-
tures and its 50-piece linear approximation f50.

Figure 9: The rescaled local maximum tempera-
tures and its piece-wise third degree polynomial
approximation fp.

The 50-piece linear approximation

For the sake of creating a map which is able to replicate data of the ENSO model more accurately, a
second linear approximation is made. This version uses 50 lines and is partly designed using reverse
engineering, by comparing prospective results with real life El Niño phenomenon occurrences. This
resulted in the map f50, shown in Figure 8.

3.3 A piece-wise linear approximation with a shifting point

A variation on the piece-wise linear approximation is one with a shifting point. With this, we consider
a continuous set of linear maps where a component of one point varies, hence an = µ or bn = µ. We
let its value vary such that an−1 < µ < an+1. Such a set is an example of a family of map as described
in the beginning of Section 2.6.

By evaluating a set of map approximations with a shifting point, we can see if the dynamics of a
map change when we shift this point. This enables us to investigate to what extend small differences
in maps can change the dynamics of a system.

The k-piece linear approximation with shifting point fkµ we will use will be the linear map using
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the same set of points as the first approximation f7, except for the top point. For the top point, we
will let the value a4 = µ vary such that 0.15 < µ < 0.41. We remark that b4 will not be changed when
we use this approximation. Three maps of the set f7µ are shown in the right picture of Figure 7

3.4 A piece-wise third degree polynomial approximation

Another possible approximation to the map f is with a piece-wise third order polynomial approxima-
tion. This approximation can be made by choosing k points with their slopes (a1, b1, s1), . . . , (ak, bk, sk)
on the graph f , where f(an) = bn, sn ∈ R and

0 = a1 < . . . < ak = 1,

and by defining the map fp : [0, 1]→ [0, 1] as

fp(x) = αix
3 + βix

2 + γix+ δi with x ∈ [ai, ai+1], ∀i ∈ [1, . . . k − 1],

where coefficients [αi, βi, γi, δi] ∈ R4 are such that
a3i a2i ai 1
a3i+1 a2i+1 ai+1 1
3a2i 2ai 1 0

3a2i+1 2ai+1 1 0



αi
βi
γi
δi

 =


bi
bi+1

si
si+1


since fp(ai) = bi, fp(ai+1) = bi+1, f

′
p(ai) = si and f ′p(ai+1) = si+1.

One should be careful with this approximation since it is very likely to cross the boundaries of unit
interval or not having unit interval as its entire range when applying this approximation carelessly. An
appropriate set of points that keeps this remark into account can be:

(a1, b1, si) = (0, 0.03, 1.2), (a2, b2, s2) = (0.12, 0.3, 6), (a3, b3, s3) = (0.15, 0.94, 4),

(a4, b4, s4) = (0.19, 0.99, 0.25), (a5, b5, s5) = (0.35, 0.99,−0.25), (a6, b6, s6) = (0.41, 0.94,−2.6),

(a7, b7, s7) = (0.46, 0.32, .− 3), (a8, b8, s8) = (0.6, 0.12,−0.5), (a9, b9, s9) = (1, 0,−0.1).

This set of intervals is appropriate because the fourth interval with slopes is chosen in such a way that
the result is a parabola that exactly touches the value 1 at x = 0.27.

The graph of rescaled local maximum temperatures and the piece-wise polynomial approximation
fp is shown in Figure 9.
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4 Basic dynamics of the toy model

Now that we have derived our toy model, we will analyse their dynamics. In the upcoming sections, we
will analyse the following dynamical properties of the approximations we have made in the previous
chapter. We will explore the following properties considering the piece-wise linear and polynomial
approximation, mentioned in the previous chapter.

• Time series of iterated values;
• Occurring El Niño periods;
• The fixed and periodic points;
• Stable and unstable sets of the time series.

As the observant reader may notice, we have not yet discussed El Niño periods. Therefore, let us
discuss it now.

Definition 13. Consider an interval [a, b] ⊆ R, a map f : [a, b] → [a, b] and a point x0 ∈ [a, b] with
time series O+(x0).

Iterates xn ∈ O+(x0) = {x0, x1, . . .} such that xn > xn+1 where n ∈ N are denoted as an El Niño
point.

Now consider two consecutive El Niño points xa, xb ∈ O+(x0), where a < b. The number of
iterations it takes to get from xa to xb is the period of the El Niño point xb, or El Niño period for
short, and is equal to b− a.

Before we elaborate on basic properties on specific approximations separately, we will discus what
they have in common.

4.1 General properties of the approximations

We begin our analysis with a quick comparison between the time series’ pattern of the linear approx-
imation and the local maxima of the ENSO model, found in Figure 11 & 3 respectively, to see if
we succeeded in reproducing the oscillating pattern. Indeed, the repeated pattern of increasing local
maximum values of the ENSO model is also visible with our toy model.

As the title of this section suggests, the other maps will have some overlapping characteristics.
This is not necessarily because the chosen approximations are close enough to the local maxima of the
ENSO model, but due to its global shape with respect to its fixed point.

El Niño maps and similar behaviour

We start with how this ”global shape” will look like. We will denote four characteristics and name
these approximations El Niño maps.

Definition 14. A continuous prognostic map f : [0, 1]→ [0, 1] is called an El Niño map if it meets
these four requirements:

1. f is onto.
2. f has exactly one fixed point p ∈ (0, 1).
3. There exists exactly one point q ∈ (0, p) such that f(q) = p.
4. There is a point t such that f(x) for x ∈ (0, t) is increasing (i.e. if x1 > x2, then f(x1) > f(x2))

and f(x) for x ∈ (t, 1) is decreasing (i.e. if x1 > x2, then f(x1) < f(x2)).

To illustrate this definition, we will check if the linear approximations of Section 3.2 meets its
requirements. We check that f7 : [0.1] → [0, 1] is indeed onto since it is continuous and has points
f7(0.27) = 1 & f7(1) = 0, meaning that its co-domain equals its domain. Next, f7 indeed has one
fixed point around 0.45 ∈ (0, 1) and a point f(q) = p round 0.12 ∈ (0, p). The last requirement is
easily tested by checking its construction in Section 3.2. From the definition of El Niño maps, we can
directly state some consequences.

22



Figure 10: The approximation f7 and its domain
divided in intervals A = [0, q), B = (q, p) and
C = (p, 1]. The arrows indicate to which interval
a point inside some interval will be mapped.

Figure 11: The first 49 iterations of the linear
approximation f7 with initial value 0.4.

Corollary 1. An El Niño map f : [0, 1] → [0, 1] with fixed point p and q 6= p such that f(q) = p has
the following direct results:

1. The point such that f(t) = 1 has t ∈ (q, p);
2. f(1) = 0.

With these results we can have 3 separate cases for all x ∈ [0, 1]\{q, p}:

3. If x < q, then x < f(x) < p;
4. If q < x < p, then p < f(x);
5. If p < x, then f(x) < p.

From the latter, we get the following consequences:

6. x is an El Niño point if and only if p < x;
7. every El Niño point has at least period 2.

The proof of each item of this corollary can be found in Appendix. By using item 3 to 5 of Corollary
1 we divide the domain of f into three intervals A = [0, q), B = (q, p) and C = (p, 1] and evaluate how
iterates of each interval develop, as is represented with arrows in Figure 10.

This can be done for any El Niño map due to their similar behaviour. The sequence of non-El Niño
points prior to an El Niño point xn ∈ (p, 1] of period a will always be xn−a < . . . < xn−1 < xn such
that {xn−a, . . . , xn−2} ⊂ [0, q) and xn−1 ∈ (q, p).

Partial inverse of approximations restricted to the non-decreasing part of the map

The third requirement of El Niño maps f : [0, 1] → [0, 1] with fixed point p is that they need to have
a point q ∈ (0, p) such that f(q) = p. For the linear approximation we have q ≈ 0.12. We see that the
results of the ENSO model have q ≈ 0.14.

We also can determine for how many iterations a value will stay within interval [0, q) if we go back
further. We know that, by definition, El Niño maps are not invertible. But we do not necessarily have
to consider the inverse of the whole map, since we are only looking to points smaller than q. Note
that, by requirement 4 of Definition 14, there must exist a point t such that f(x) is increasing for all
x ∈ (0, t) and by item 1 of Corollary 1, q < t, implying that f(x) is one-to-one for at least x ∈ [0, q].
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To be more exact, the map is one-to-one up to the point that f(x) = 1 and its one-to-one after that
point.

Therefore, we can consider left and right partial inverses of El Niño maps f , denoted as f−1l and
f−1r respectively. The left partial inverse has domain [f(0), 1] and co-domain [0, t] and the right partial
inverse has domain [0, 1] and co-domain [t, 1]. We will illustrate these inverses with the example of a
k-piece linear approximation fk of Section 3.2 by inverting equation (6). The result, a general formula
and the left and right inverse of the 7-piece linear approximation, are given underneath.

f−1k (x) = ai +
ai+1 − ai
bi+1 − bi

(x− bi), x ∈ [bi, bi+1], ∀i ∈ [1, . . . k − 1], for b1 ≤ x ≤ 1, (7)

f−17,l (x) =


x−0.03

1.7 , if 0.03 ≤ x < 0.2,
x−0.2
14.8 + 0.1, if 0.2 ≤ x < 0.94,
x−0.94

0.5 + 0.15, if 0.94 ≤ x ≤ 1,

for 0.03 ≤ x ≤ 1. (8)

f−17,r (x) =


7(1−x)

3 + 0.27, if 1 ≥ x > 0.94,
0.94−x
12.4 + 0.41, if 0.94 ≥ x > 0.32,

7(0.32−x)
10 + 0.46, if 0.32 ≥ x > 0.12,

0.12−x
0.3 + 0.6, if 0.12 ≥ x ≥ 0,

for 0.03 ≤ x ≤ 1. (9)

We emphasize that left and right partial inversions are indeed possible for every El Niño map. Due
to the simplicity of the linear approximation f7 and its straightforward partial inverse, we take it as
our example. A general representation of a partial inverse restricted to the non-decreasing part of
some El Niño map f would be f−1 : [f(0), 1]→ [0, f−1(1)].

Predicting periods of El Niño points with El Niño characteristics

Recall that intervals A and B from Figure 10 are separated by the value q such that f(q) = p.
Note that q = f−1l (p), where f−1l denotes the left partial inverse of the map f . Points x such that
f−1l (p) < x < p appear in interval B and will be mapped by f to an El Niño point. Points x < f−1l (p)
appear in interval A, which means that f would map them towards a point lower than the fixed point
p. Therefore, the point f−1l (p) separates the points x ∈ [0, p) into a set of points that become an El
Niño point after 1 iteration and a set that become an El Niño point after 2 or more iterations.

We can repeat this process for the latter set of points x ∈ [0, f−1l (p)). In this fashion, we can
find out which points will be an El Niño point after exactly 2 iterations. These points are such that
f−2l (p) < x < f−1l (p) since the right inequality indicates that x is not an El Niño point after 1
iteration, while the left inequality indicates that x is will be an El Niño point within 2 iterations. This
pattern can be repeated until iterates of the partial inverse f−1l is mapped outside its domain. For
the linear approximation f7, that occurs when f1−a7,l (p) ∈ [0.03, f(0.03)) and in general this is when

f1−al (p) ∈ [f(0), f2(0)) for some a > 1 ∈ N.
We can check that iterations of partial inverses of the fixed point p divide the domain [0, 1] into a

open intervals and half-open intervals with one end-point that is either 0 or 1. For all El Niño points
xn ∈ O+(x0), xn > p, each of these open intervals have elements such that f−kl (p) < xn−k < f1−kl (p)
for k ∈ {1, 2, . . . , a − 1}, where fk(xn−k) = xn and a ∈ N is such that f1−al (p) ∈ [0, f(0)). We call
a+ 1 the maximum period of El Niño points for the map f , since it is the largest El Niño period
possible. This number differs per El Niño map.

We also name the sequence (f1−al (p), f2−al (p), . . . , f−1l (p), p) which separates open and half-open
sets of points that need the same number of map iterations to become an El Niño point. We define
this sequence as the El Niño characteristics. Lastly, we remark that the number of El Niño char-
acteristics is one less than the maximum orbit. A visualization of all notions we just defined is given
in Figure 12.
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Figure 12: An illustration of an El Niño map f with a graphical analysis towards its fixed point p.
The El Niño characteristics are also denoted by fk(p) where k ∈ {1 − a, 2 − a, . . . , 0} and the sets of
points SE−i where i ∈ {a, a − 1, . . . , 0} indicates the number of iterations it takes for a point in that
set to become an El Niño point. Note that a+ 1 is the maximum period of f .

4.2 Basic properties of linear approximations

For the properties of linear approximations, we will mainly focus on the 7-piece approximation f7.
Thereafter, we will quickly state some properties of the 50-piece approximation f50 and discuss the
differences between them.

In the previous section, we already analysed some specific properties of the linear approximation f7
while we investigated general properties of approximations. For this section, we will solely focus on the
linear approximation and its features. The results in this section are based on numerical computation
concerning the four points stated in the beginning of this chapter. Hence, the values of time series, El
Niño periods, fixed and periodic points and stable and unstable sets will be discussed.

Time series and El Niño periods

We start with two histograms, given in Figure 13 and 14, showing the occurrences of values and El
Niño periods. For the values, we see that values around 0, 0.1 and 1 occur the most. If we look closer,
we see five peaks, around 0.01, 0.05, 0.12, 0.19 and 0.96. When we look at Figure 7, we see that the
most grey point also clutter around these values and thus they indeed seem to occur frequently.

Some of this behaviour can be explained with the histogram of the El Niño periods. Every possible
El Niño period smaller or equal than 5 occurs. El Niño periods of 5 occur the most, which could
explain the five peaks we have seen in the histogram of the values. Probably, sequences with values
close to the sequence (0.19, 0.96, 0.01, 0.05, 0.12) occur frequently for the map fl, since they roughly
follow each other.

To make these deductions more explicit, we start with the El Niño characteristics of f7. These
can be calculated with the inverse, which was already given explicitly in equation 8, and are given as
(0.012, 0.051, 0.117, 0.450). This confirms that the maximum El Niño period is indeed equal to 5.
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Figure 13: A histogram of 100 segments of the
first 10,000 iterations of f7 with initial value 0.4.

Figure 14: A histogram showing the frequency
of periods of El Niño points of f7.

Figure 15: The number of iterations it takes such
that an initial point comes back within 0.01 (red)
and 0.0001 (green) from the initial value.

Figure 16: The time-20,000 Lyapunov exponent
of 10,000 initial values of the linear approxima-
tion.

Periodic points

Determining all periodic points numerically is impossible, since the their periods can become infinitely
large. But we can give an indication of how many there are by investigating whether a point comes
close to its initial value. Figure 15 shows how many iterations it takes for a point to return within a
certain epsilon. For the linear approximation, all 1000 evenly spaced points inside the domain return
within 0.0001 after 500,000 iterations.

The precious result gives us the suspicion that, after many iterations, we can get arbitrarily close
to any initial value, indicating that periodic points might be dense. This is one of the requirements
for chaos according to Devaney, as seen in Definition 9.

Lyapunov exponent

We continue by estimating the Lyapunov exponent of this map. We estimate the Lyapunov exponent
by using a time-20,000 Lyapunov exponent with a transient of 10,000 iterations. The results, illustrated
in Figure 16, show that the approximation has a time-20,000 Lyapunov exponent between 0.3 and 0.33,
indicating repelling behaviour for initial values along the whole domain.
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Figure 17: All periodic point with prime period
less than or equal to 20. Here, for each periodic
point, the forward orbit of p for 20 iterations dis-
played. Hence, the time series for each periodic
orbit is shown for each periodic point.

Figure 18: All periodic point with prime period
less than or equal to 20. Here, for each periodic
point, the forward orbit of p+ 0.01 is shown for
100 iterations. Hence, the unstable set of 100
iterations is shown for every periodic point p.

Figure 19: A histogram of occurring El Niño pe-
riods in the first 10,000 iterations of f50.

Figure 20: The time-20,000 Lyapunov exponent
of 10,000 initial values of the map f50.

Unstable sets

We have seen that repelling behaviour runs along the whole domain. But we have not seen whether
the unstable sets of periodic points consist of the whole domain or just a subset of the domain.

To find this out, we first evaluate a set of periodic point. Figure 17 shows for every periodic point,
the value of the x-axis, its time series on the y-axis for each p = x. By making a small perturbation
in the value of p, in this case ε = 0.01, we will get an unstable set. In Figure 18, we have chosen to let
the unstable set have 100 elements. When we further increase that number, the whole interval will be
blue. Thus for every unstable periodic point, the whole domain seems to be the unstable set for every
periodic orbit.

The 50-piece Linear approximation

Aside from the map f7, we also consider the linear approximation f50. Since these maps are essentially
of the same kind, we will not analyse it extensively. A property of both of these maps is that they

27



Figure 21: The first 49 iterations of fp with ini-
tial value 0.42.

Figure 22: A histogram of 100 segments of the
first 10,000 iterates of fp with initial value 0.42.

both behave choatically. The main difference between f7 and f50 is the difference in the maximum
orbit of El Niño points. Figure 19 shows the its maximum orbit of El Niño points is 7, which is two
iterations more than f7.

Some slight differences is the fixed point, which is equal to 8457
19000 ≈ 0.4451, and its Lyapunov

exponent, as is shown in Figure 20. The Lyapunov exponent of f7 jumps around the value 0.32, while
the value of the Lyapunov exponent of f50 is around 0.26.

4.3 Basic properties of the polynomial approximation

As done with the linear approximation, we will engage in analysing basic properties of the polynomial
approximation. To start off, we take note that there are a number of appearance differences between
the polynomial and linear approximation. The most notable are that fp is smooth, while fl is obviously
not smooth, and this approximation looks like a better fit to the points of the ENSO model, which
can be seen in Figure 9.

Time series and El Niño periods

We start our analysis with its time series and a histogram of the values of its time series, given in
Figure 21 & 22. At first glance, the time series seem similar to the one of the linear approximation,
but the histogram shows something odd: Six values occur equally often. The histogram of El Niño
periods would look equally monotonous: Only period six occurs.

The reason for these appearances in values can be seen in figure 21. In the beginning, the iterates
vary in value, but quickly stabilize. After iterate 25, the periods already seem identical. This behaviour
leads us directly to the next section.

Periodic points, stable sets and unstable sets

Before we focus on the six values that stabilize quickly, we start with the periodic points of the map.
As we have done for the linear approximation, we have evaluated the first 500,000 iterates of 1000
equally separated values of the domain of the polynomial approximation and the results are given in
Figure 23.

This plot shows far less iterates that reappear in the neighbourhood of the initial point. Also notable
is the fact that the highest number of iterations for which an iterate to be inside a neighbourhood of
0.01 of an initial value is 32, considering the 500,000 iterates we have evaluated. Only 3 of the 1000
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Figure 23: The number of iterations it takes such
that an initial point comes back within 0.01 (red)
and 0.0001 (green) from the initial value.

Figure 24: The 6-fold composition of fp. Peri-
odic points are shown in red when multiplier m
has |m| ≥ 1 and with a green star when |m| < 1.

Figure 25: The time-20,000 Lyapunov exponent of 10,000 initial values of the linear approximation.

points have an iterate within 0.0001 of its initial value, opposed to the linear approximation, for which
all points had an iterate within 0.0001 of its initial value.

Let us go back to the six stabilizing values. This nature coincides with the notion of forward
asymptoticness. The initial value tend to six attracting periodic points. When we evaluate the time
series of every initial value of the domain, the same behaviour will occur. This explains the plot
of Figure 23, since all values will quickly tend towards these attracting periodic points and hence it
suggests that the whole domain will be the stable set of the polynomial approximation.

Before we illustrate this with the Lyapunov exponent, we show the 6-fold composition of the
polynomial approximation in Figure 24. Note that there are periodic points with multipliers less than
1, which implies that there exists stable sets by Proposition 1.

In Figure 25, we have the results of the time-20,000 Lyapunov exponent of every initial value.
Indeed, its value for every initial point is slightly lower than -0.2 and almost looks like a constant line,
emphasizing its stable nature.
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5 Bifurcation of the linear approximation with shifting top
point

We proceed our analysis with the toy model given by the linear approximation with shifting top point
we described in Section 3.3. This continuous set of maps only changes in its top section f(x) > 0.94,
due to a changing top point f(µ) = 1 where µ ∈ (0.15, 0.41). Note that the map discussed in Section
4.2 belongs to this set and can be obtained if we choose µ = 0.27.

We start our analysis with a bifurcation diagram of this family shown in Figure 26. We see that
for values of µ higher than approximately 0.186, and hence also for µ = 0.27, all values between 0 and
1 seem to occur. Values of µ lower than approximately 0.186, on the other hand, show a significant
smaller set of values for Xµ and a lower Lyapunov exponent, shown in Figure 28 and 29. More
specifically, we see five branches of occurring values. One of these branches is shown in more detail in
Figure 27. We will treat every change in dynamics of these branches.

To treat these dynamics we will use close-ups of the 5, 10, 15 and 30-fold composition of the linear
approximation. The full scale versions in the case that µ = .1677 are shown in Figure 30 to 33.

5.1 Period tripling

The first change of behaviour happens at precisely µ = 0.1677. At every branch of Figure 26, the five
lines tend monotonically towards the points 0, 0.03, 0.081, 0.1677 and 1 is split into three lines at this
point. Period tripling is a rare phenomenon and cannot be explained using conventional bifurcation
theory, which is focused on smooth maps. Any piece-wise linear El Niño map is not smooth and
therefore this kind of strange behaviour can occur.

The number 0.1677 is no coincidence since the time series starting from x = 0 is 0, 0.03, 0.081, 0.1677
for any µ. When µ = 0.1677, the next iterate will be 1, which is followed by 0, completing the circle.
Since the same type of period cannot exist after µ = 1677, it evolves from a periodic point of period 5
to one of period 15.

A close-up of the 5-fold composition of the map at µ = 0.167, µ = 0.1677 and µ = 0.1685, shown
in Figure 34, shows that the fixed point around p = 0.1677 becomes unstable. As the map changes
continuously, the kink moves past the black identity line and the slope of the fixed point becomes a
steep slope.

For all maps with µ ∈ [0.151, 0.1677), their fifth composition has a stable fixed point and thus
they have a stable periodic point of period 5. The time series of these periodic points are the stable
fixed points of the 5-fold composition and these values are the start of each of the five branches of the
bifurcation diagram of Figure 26.

After µ = 0.1677, we have period tripling at every branch, indicating periodic points of period 15.
Therefore we will examine the 15-fold composition of the map. A close-up of the 15-fold composition
of the map with µ = 0.167, shown in Figure 35, also shows a stable fixed point at the same location.
This was to be expected, since periodic points of period 5 are also periodic period 15. The difference
between period 5 and 15 is, however, that after µ = 0.1677, spikes with three stable fixed points emerge
after the kink with the latter case. These stable points emerge in every branch, pinpointing all 15
values of the time series of the periodic points of period 15. As the µ progresses, these spikes grow, as
can be seen in Figures 36.

5.2 Chaotic behaviour inside branches

When we follow the 15-fold composition of the map for increasing values of µ, we also see that spikes
move away from the identity line and eventually, the do not intersect anymore. This happens in the
last plot of Figure 36, after µ = 0.174. At this point, the spikes lose their three stable fixed points.
As expected, this also happens with the 30-fold composition in Figure 39. The tree stable fixed points
are shown and disappear in the second plot, again, after µ = 0.174.
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The difference between the 30 and 15-fold composition is the number of unstable fixed points. It
turns out that, between the highest and lowest fixed points, there are many unstable fixed points. The
range of these fixed points grow with the amplitude of the spikes. The result of what we observe is
again visible in the bifurcation diagram, Figure 27. The stable period 15 periodic points disappear
around µ = 0.174 and the many unstable periodic points between the highest and lowest stable periodic
points take over in every branch.

In Figure 29, we see the Lyapunov exponent jump at that point to a positive but still relatively
low value. The periodic points are not stable, but only a small set of points occur in the bifurcation
diagram. This does not mean that periodic points do not exist outside these branches, as can be seen
in Figure 39 and 40.

The range of values inside the branches of the bifurcation diagram

The reason they do not occur in the bifurcation diagram is very interesting to research and probably
has something to do with basins of attraction. But with a look at the forward orbits, we already can
see points stay locked up inside these branches of Figure 26. Let us take µ = 0.175, 0.182 and look at
forward orbits with x0(0) and xend(1) for this experiment.

µ = 0.175, O+(x0 = 0) = (0, 0.03, 0.081, 0.1677, 0.9825, 0.0053, 0.0389, 0.0962, 0.1935, 0.9953),

O+(x9 = 1) = (0.0070, 0.0419, 0.1013, 0.2191, 0.9902, 0.0029, 0.0350, 0.0895, 0.1821, 1);

µ = 0.182, O+(x0 = 0) = (0, 0.03, 0.081, 0.1677, 0.9732, 0.0080, 0.0437, 0.1042, 0.2628, 0.9787),

O+(x9 = 1) = (0.0055, 0.0393, 0.0969, 0.1947, 0.9950, 0.0015, 0.0326, 0.0854, 0.1751, 1).

Our aim is to proof that values of time series stay within the branches. First we consider the
forward orbits for µ = 175. We start with x0 = 0 and continue towards x4 = 0.9825. For any value of
µ, the line segments are increasing and therefore, for a some range, these will be the lowest values of
each branch. That is, if x0 = 0 is contained inside the lowest branch.

For the next value of the forward orbit, we note that the next line segment of the map is decreasing.
Therefore, since x4 = 0.9825 is considered to be the lowest value of the highest branch, the next value
x5 = 0.0053 must be the highest of the lowest branch. When we proceed, we come across x8 = 0.1935.
Note that for every interval [x0, x5], [x1, x6], [x2, x7] and [x3, x8] fits inside a single linear segment of
the map.

For the next interval, we need to note that x8 = 0.1935 > µ = 0.175 and x9 = 0.9953 > x4 = 0.9825
and thus values that are mapped from the interval [x3, x8] will be within [0.9825, 1]. Looking back
with the forward orbit O+(x9 = 1), we see that these values are indeed within the given intervals.
Therefore, the values of sets of branches indeed stay inside the branches.

For the case where µ = 0.182, we see a great increase of range of values in the bifurcation diagram
of Figure 27, specifically starting from the value 0.2. Looking at the end of branch interval [x3, x8] =
[0.1677, 0.2628], we see a great increase in its value. This is due to reaching the end of a line segment
of the map at 0.2, as can be seen in Figure 7. The slope increases, explaining the great increase of
range of values with relatively low density. Still we have that x9 = 0.9787 > x4 = 0.9732 and thus
the same procedure to find ranges of value inside the branch applies. When this was not the case, we
choose x9 to be the lowest number of the highest branch.

5.3 Period 10 solutions and the wall of chaos

After the preciously mentioned sets of chaos, when we proceed with increasing the value µ, we see
that the values start to converge towards two lines of values, ultimately resulting in seemingly stable
periodic point. Since this again occurs at every branch, its period must be 10.
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To show these periodic points indeed become stable, we will look to a close-up of the 10-fold
composition of the linear approximation with shifting top point µ ∈ [0.177, 0.187], shown in Figure 37
and 38. Indeed, we see that stable periodic points occur at values µ = 0.185 and µ = 0.186. The slope
of the two fixed points change continuously and are -1.133, -1.018, -0.993 and -0.970 for µ equals 0.18,
0.184, 0.185 and 0.186 respectively, confirming their attracting nature.

While the slope of these fixed points becomes more and more mellow, the fixed point moves towards
a kink and eventually reaches a segment with a very steep slope. This happens between µ = 0.186 and
µ = 0.187 as can be seen in Figure 38. After this point, the values of the bifurcation diagram occur
over the whole domain. This change in behaviour is again very interesting to research and probably
has to do with basins of attraction.

As a summary of the events discussed in the current and previous section, one can consider the
development of the 30-fold composition for µ = [0.174, 0.187]. In Figure 39, we see the stable periodic
points of period 15 in the first plot and the steep spikes at values above 0.2 in the third plot. This
progresses in Figure 40, where periodic point of period 10 become stable in the second plot and
disappear in the third plot.
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Figure 26: The bifurcation diagram of the lin-
ear approximation with shifting top point µ ∈
[0.151, 0.409].

Figure 27: The bifurcation diagram of the lin-
ear approximation with shifting top point µ ∈
[0.165, 0.19].

Figure 28: The Lyapunov exponent range for the
linear approximation with shifting top point µ ∈
[0.151, 0.409].

Figure 29: The Lyapunov exponent range for the
linear approximation with shifting top point µ ∈
[0.165, 0.19].

Figure 30: The 5-fold composition of the linear
approximation with top point set to µ = .1677

Figure 31: The 10-fold composition of the linear
approximation with top point set to µ = .1677
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Figure 32: The 15-fold composition of the linear
approximation with top point set to µ = .1677

Figure 33: The 30-fold composition of the linear
approximation with top point set to µ = .1677

Figure 34: Close-ups of the 5-fold composition of the linear approximation with top point µ set to
0.167, 0.1677 and 0.1685. The range and domain of the close-up is [0.16, 0.18]. Green stars indicate
stable fixed points and red dots indicate unstable fixed points.

Figure 35: Close-ups of the 15-fold composition of the linear approximation with top point µ set to
0.167, 0.1677 and 0.1685. The range and domain of the close-up is [0.16, 0.18]. Green stars indicate
stable fixed points and red dots indicate unstable fixed points.

Figure 36: Close-ups of the 15-fold composition of the linear approximation with top point µ set to
0.17, 0.174 and 0.175. The range and domain of the close-up is [0.16, 0.2]. Green stars indicate stable
fixed points and red dots indicate unstable fixed points.
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Figure 37: Close-ups of the 10-fold composition of the linear approximation with top point µ set to
0.177, 0.18 and 0.184. The range and domain of the close-up is [0.15, 0.3]. Green stars indicate stable
fixed points and red dots indicate unstable fixed points.

Figure 38: Close-ups of the 10-fold composition of the linear approximation with top point µ set to
0.185, 0.186 and 0.187. The range and domain of the close-up is [0.15, 0.3]. Green stars indicate stable
fixed points and red dots indicate unstable fixed points.

Figure 39: Close-ups of the 30-fold composition of the linear approximation with top point µ set to
0.174, 0.177 and 0.18. The range and domain of the close-up is [0.15, 0.3]. Green stars indicate stable
fixed points and red dots indicate unstable fixed points.

Figure 40: Close-ups of the 30-fold composition of the linear approximation with top point µ set to
0.183, 0.186 and 0.187. The range and domain of the close-up is [0.15, 0.3]. Green stars indicate stable
fixed points and red dots indicate unstable fixed points.
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6 Snap-back repellers

We continue with showing the existence snap-back repellers for linear approximations. Let us recall
Definition 11 and follow the requirements as a recipe. We will start with the 7-piece linear approxima-
tions of section 3.2 and see if we can broaden towards the 7-piece linear approximation with shifting
point of section 3.3.

6.1 Finding snap-back repellers for the linear approximation

We start with the initial 7-piece linear approximation f7 with its only fixed point p. The first criterion
is the definition states that p needs to be an expanding point in the neighbourhood Br(p). For this,
f7 needs to be differentiable inside Br(p). It is key to keep this neighbourhood large to have enough
room to find a point x0 ∈ Br(p) with p in its forward orbit.

Choosing the right neighbourhood such that p is an expanding point

We know from Section 3.2 that p ≈ 0.4496 lies on the linear part between points given as (ai, bi) with
a5 = 0.41 and a6 = 0.46. The piece-wise linear map f7 only not differentiable on these points (ai, bi).
Therefore, the neighbourhood Br(p) needs to lie within the interval (0.41, 0.46). We stay within this
interval when we take r = 0.01.

For all values x0 ∈ B0.01(p), we have a slope of −0.62/0.05 = −12.4. Since f7 is a 1-dimensional
map, the only eigenvalue of Df7(x) equals the slope. The absolute value of the slope easily exceeds 1
and thus we know that p is an expanding point of f7 inside B0.01(p).

An approach with the backward orbits of p

To find a starting point of the orbit towards a snap-back repeller to fulfilling the second criterion,
we need to find a point x0 ∈ B0.01(p) not equal to p such that there exists an integer k > 0 with
fk7 (x0) = xk = p and Dfk7 (x0) 6= 0. To find this point, we will look into possible backward orbits of p.
We will do this by choosing x0 = p and find f−k7 (x0) = x−k ∈ B0.01(p) such that x0 6= x−k, or better,
x0 6= x−1, to avoid equivalent orbits.

It is impossible to determine exactly the right point such that its forward orbit will hit p exactly.
Therefore, we will investigate the backward orbit of p to search for a point within B0.01(p). The
drawback of this method is that we need to consider the inverse of f7, which consists of two functions
f−17,l and f−17,r , described by equations (8) and (9). Therefore, the inverse can have two different answers
for the same input. To denote the path of inverses we consider, we list these in the subscript. For
instance f−ki1...ik(x), where ij ∈ {l, r} for all j ∈ {1, . . . , k}. An example of such a part of inverses is

f−1r ◦ f−1l (x) = f−2lr (x).
Since precision is key, knowing that f7 behaves chaotically, we determined values of possible back-

ward orbits of p as fractions by keeping track of their integer numerator and denominators. Fortunately,
this is relatively easy to do with linear approximations. For starters, we remark that the periodic point
can be determined by using equation (6) for the fifth segment of the linear approximation. Namely,
f7(p) = p = 0.94 + 0.32−0.94

0.46−0.41 (p − 0.41), p ∈ [0.41, 0.46] results in p = 753
1675 . We also remark that

f−17,r (p) = p. We prefer to have that f−1(p) 6= p and thus we will start the backward orbit with a left
inverse.

Our goal now is to find x−kf
−k
7,i1...ik

(p) such that i1 = l and x−k ∈ B0.01(p). We separate the
numerator and denominator to calculate x−k with exact fractions using numerical trail and error.
Hence we determine the backward orbit of every path of partial inverses and check if those fractions
are within B0.01(p).

36



Figure 41: The graphical analysis of f−47,lrrr(p). Figure 42: The graphical analysis of f−57,lrrrr(p).

Numerically finding the orbits to prove that p is a snap-back repeller

The results of this approach gives us multiple answers. We will consider to two solutions for the
smallest value k, namely f−47,lrrr(p) = 322040977

714695700 ≈ 0.4506 and f−57,llrrr(p) = 5492019109
12149826900 ≈ 0.4520. Figure

41 and 42 show that these points indeed map towards p after 4 and 5 iterations respectively. Their
respective paths of partial inversions can also be derived by following their graphical analyses.

6.2 Proving chaos in the sense of Devaney with the snap-back repellers

With the previous result, however, we cannot yet say that the map f7 is chaotic in the sense of Devaney.
Recall that Theorem 1 requires that the five conditions of Definition 12 need to hold for our snap-back
repeller.

Non-degeneracy of snap-back repellers

We first will show that p is a nondegenerate snap-back repeller by proving the last three items of
Definition 11. Item 3 holds if we choose a neighbourhood such that f(Br(p)) ⊂ [0, 1]. Since f7 is
strictly decreasing on the interval (0.27, 1), this holds for all r < p− 0.27. Note that, by proving this
item, we have shown indirectly that p is a regular expanding point, since p needs to be inside this open
set.

Next, we note that the two starting points we found are interior points of Br(p). Therefore, there
indeed exists a neighbourhood Bδ0 around f−47,lrrr and f−57,llrrr that is within the interior of Br(p), which
proves the fourth item.

For the last item, we use a neighbourhood with radius r = 0.00001. We calculate the forward orbit
of the boundaries of the neighbourhoods to see if p is indeed a interior point. From these calculations
we indeed get the expected results, p ∈

(
f4(f−47,lrrr − 0.00001), f4(f−47,lrrr + 0.00001)

)
≈ (0.4427, 0.4564)

and p ∈
(
f5(f−57,llrrr − 0.00001), f5(f−57,llrrr + 0.00001)

)
≈ (0.4379, 0.4612). Therefore, the last item is

also proven and p is indeed a nondegenerate snap-back repeller.

6.3 Snap-back repeller in the linear approximations with shifting point

Now that we have proven that p is a nondegenerate snap-back repeller satisfying Definition 12, we
proceed to Theorem 1. Note that the map f is only chaotic in the sense of Devaney on Λ ⊂ U , where
U is any neighbourhood of p. Recall that f7 had chaotic behaviour while f7µ for all µ ≤ 0.1677 had
stable period 5 solutions.

37



orbit path uses top line-pieces value numerator denominator
lrrr no 0.45060 322040977 714695700
llrrr no 0.45202 5492019109 12149826900
lrlrrr no 0.45050 23825571943 52887481800
lllrrr yes 0.45625 18239394383 39976849800
lrllrrr no 0.45189 609427139849 1348630785900
llrlrrr no 0.45043 404974094281 899087190600
lllrlrr yes 0.44122 11758979597 26651233200
lrrllrrr no 0.45204 9449252603597 20903777181450
lrlrlrrr no 0.45050 3526222870049 7827347306400
lrlllrrr yes 0.45389 2014101826513 4437430327800
llrrlrrr no 0.45064 37680616716263 83615108725800
llrllrrr no 0.45169 10355930752433 22926723360300

Table 2: Starting points of the 12 orbits going towards p within 8 iterations of f7.

orbit path value numerator denominator
lllrrr 0.45881 366836781727 799536996000
lllrlrrr 0.44504 14883585672803 33047529168000
lrlllrrr 0.45473 40356438316697 88748606556000

Table 3: Starting points of the 3 different orbits using top line-pieces of f7µ with µ = 0.1677.

We remark that the two orbits of f7 leading to the snap-back repeller only had points in the orbit
that use function lines that both f7 and f7µ have. Since Theorem 1 only claims chaos for a specific
Cantor set, maybe we can find certain orbits towards p of f7 that do not occur at f7µ when µ = 0.1677
for example, due to its stable behaviour.

12 orbits towards p for the map without and with shifting point

To answer this question, we first need to find more orbits, such that every line-piece of f7 has a point
of at least one orbit. To achieve this, we calculated all possible orbits towards p within 8 iterations.
We did the same for f7,µ with µ = 0.1677.

It turns out that three of these orbits use the top line-pieces. Hence those orbits cannot be orbits
of f7µ. By looking into the orbits of f7µ, the three orbits using its top line-pieces can be found and
are shown in Table 3. Note that the middle orbit of that table needed an extra right inverse to get
into the neighbourhood B0.01(p) compared to the seventh orbit in Table 2. The graphical analyses of
both maps are shown in Figures 43 and 44, showing the use of the top line-pieces three times and their
differences.

Due to slope near the fixed point p, right inverses of both f7 and f7µ converge to p rapidly.
Thus every combination of left and right inverse at the start can eventually lead to points in any
neighbourhood of p of radius r > 0. Also, every line-piece of both maps are used and, if we go far
enough, any neighbourhood will have a point with a forward orbit towards p, even for the map f7µ.

Since every combination of inverses has a possibility to reach Br(p) for any r > 0, we can replicate
the Cantor set for which both maps are chaotic. Like with the construction of the famous Cantor
ternary set, we can choose between left or right inverses an infinite number of times, provided that we
start with a left inverse. This confirms that there is indeed a Cantor set for which both maps f7 and
f7µ act chaotically in the sense of Devaney.
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Figure 43: The graphical analyses of the points
of Table 2 with map f7.

Figure 44: The graphical analyses of the points
of Table 2 and 3 with map f7µ.

7 Predictability of extreme events

The toy model we are currently working with is specifically designed to approximate one variable
of the ENSO model. Eastern equatorial Pacific temperatures play an important role in the El Niño
phenomenon and therefore a toy model can be interesting. To determine the quality of its results, we
need to be able to quantify them.

In the paper of Sterk et al. [SHR12], a methodology is presented to determine the predictability of
extreme events of a dynamical system using preceding points with a certain time step. Determining
the predictability of El Niño points using the toy model enables us to quantify the quality of the results
of the toy model.

7.1 Applying the methodology on the toy model

We will start with applying the methods of the paper of Sterk et al. to the toy model. Before we start,
we discuss some differences in approach between the approach used in the paper of Sterk et al. and
the approach we will be taking.

Differences in approach

The approach we will be taking is fundamentally different. In the paper, predictability is determined
by creating discrete models and we already consider a discrete model for which we want to determine
predictability of extreme events.

The set of points denoting extreme events mentioned in the paper of Sterk et al. are chosen to be
a certain percentile of the highest observed values. From those values, discrete time steps are used to
determine a set of preceding values to determine predictability in that specific case. Both of these sets
contain pieces of continuous trajectory.

With the toy model, we approach it the other way around. The toy model gives us the discrete
steps towards extreme events. Therefore, the sets of extreme events in the case of the toy model are
just points and not pieces of continuous trajectory.
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The methodology used for the toy model

As is done in the paper of Sterk et al., we choose a sample of points S from the time series O+(x0) of
the map f . For this, we choose a sufficiently large sample size N .

S = {fk(x0) | k ∈ {1, . . . , N}}.

The goal is to determine the predictability of extreme events. First off, we need to determine what
we consider as an extreme event. This will be the set Eq consisting of values of S that exceed a certain
value q.

Eq = {x ∈ S | x > q}.
To examine the predictability of these extreme events, we need to determine the set of values Lτ,q

that lead to an extreme event after a certain number of iterations. The number of iterations before an
extreme event is called the lead time τ .

Lτ,q = {x ∈ S | fτ (x) ∈ Eq}.

The predictability of extreme events is determined by the time-τ Lyapunov exponent of the lead
time set L. The set of all these predictability values is denoted as Λτ,q.

Λτ,q = {λτ (x) | x ∈ Lτ,q}.

With the distribution of values in the set Λτ,q we will be able to classify the predictability of points
x ∈ S for some lead time τ , where points x > q are considered extreme events. Negative values within
Λτ,q indicate well-predictable extreme events, while positive are not well-predictable. The smaller the
value, the better the predictability of that extreme event.

7.2 Insight in predictability calculations

The calculations for predictability in the case of the toy model are quite straightforward. To get a
feeling of the calculations we will be doing numerically, we will treat some examples analytically.

Intervals of the lead time set

Specifically for El Niño maps, we can determine the intervals of the lead time sets Lτ,q with relative
ease, especially when we consider El Niño points as extreme events. Therefore we will be discussing
the set Lτ,p. Recall from Section 4.2 that, for some El Niño map f , all points x such that f1 ∈ (x) > p
are within (f−1l (p), p). Hence we know that L1,p = (f−1l (p), p).

Note that the borders of intervals of El Niño points are found with the left and right inverse of
p and that

(
f−1l (p), p

)
=
(
f−1l (p), f−1r (p)

)
. The same goes for higher values of τ . Therefore, we can

obtain the intervals for lead time τ = 2 by left and right inverting p one step further.

L2,p =
(
f−2ll (p), f−2rl (p)

)
∩
(
f−2rr (p), f−2lr (p)

)
=
(
f−2ll (p), f−1l (p)

)
∩
(
p, f−2lr (p)

)
.

Note, or check with any El Niño map, that with a left inverse, subsequent values become lower and
with a right inverse, low values are followed by the highest values and high values become relatively
low but are still larger than every left inverse outcome. This is important to note when we order the
intervals. Continuing this process for any lead time τ will lead to a lead time set of

Lτ,p =
(
f−τll...l(p), f

−τ
rl...l(p)

)
∩ . . . ∩

(
f−τrl...lr(p), f

−τ
ll...lr(p)

)
.

General term for predictability of El Niño points

With analytic calculations, we can do not need to consider a sample size or a specific orbit. Hence, for
any lead time τ , we can represent the set of predictability values of El Niño points as

Λτ,p =

{
1

τ
log
(
fτ ′(x)

) ∣∣∣∣ (f−τll...l(p), f−τrl...l(p)) ∩ . . . ∩ (f−τrl...lr(p), f−τll...lr(p))}.
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7.3 Predictability of extreme events of linear approximations

The two El Niño maps we are going to use for numerical computation is the 7-piece linear approximation
f7 and the 50-piece linear approximation f50. We will use a sample size of S = 10, 000 and consider
lead times τ = 1 until τ = 6.

For selection of events for this experiment, we use the whole set S, the set of El Niño points and
the events such that values exceed 0.95 and 0.99. Therefore, we will have q = 0 and q = p in the first
two cases and q = 0.95 and q = 0.99 in the last two cases. The fixed point p of f7 equals 753

1675 ≈ 0.4496
and p of f50 equals 8457

19000 ≈ 0.4451. We remark that for f7, 26.5 percent are El Niño points and for f50
only 19.2 percent. For the case q = 0.95 more than half of the highest El Niño points are considered
and for q = 0.99 it is the highest twelfth for f7 and the highest sixth for f50.

Result of these experiments are shown in Figure 45 to 52. With these boxplots, the median is
indicated with the middle red line, the box shows the range of the middle half values and the whiskers
denote the minimum and maximum value excluding outliers, which are shown with red pluses.

Results of the individual experiments of the map f7

The results for predictability of the sample set considering the map f7, given in Figure 45, show a
relative steady median which stays between 0 and 0.5. Furthermore, it shows a wide range of Lyapunov
exponent values that becomes smaller when τ becomes larger. This is because different parts of the
map f7 map the initial point and the Lyapunov exponent averages the slopes of these parts. For this
case, the events seem to be relatively good predictable when τ = 3 opposed to other values for τ ,
although the differences are small.

Secondly, we have the results for predictability of El Niño points, shown in Figure 46. The behaviour
of the range does not differ much from the case considering all values, but the box indicating the
middle half values differs a lot. Instead of considering all points, we now only consider El Niño points
as extreme events, which is 26.5 percent of the points in our sample set S. The median jumps from
−0.5 to 1 and goes back to under 0.5, indicating that there are many well-predictable El Niño points
for τ = 1 and many with a bad predictability when τ equals 2,3 or 4.

In the last two cases, the set of points such that x > 0.95 and x > 0.99 are considered as extreme
events. These are shown in Figure 47 and 48 respectively. Due to the smaller and more specific selection
of points combined with the basic shape of the map f7, we start with a small range of predictability
values, which gets larger as τ progresses. In fact, for τ = 1, only two distinct values occur in these case,
since these points only come from the two highest lines of the map f7. When τ = 2, the values are
still quite well-predictable and after some relatively bad predictable values after that, the Lyapunov
dives under 0.5 again.

Predictability results of f50 compared to f7

Figure 49 to 52 show the result for the predictability of values of the map f50. The maps f7 and f50
more or less show the same behaviour. The differences between these maps are explainable from the
characteristics of these maps.

The medians of predictability values of the map f7 act somewhat jumpy at some points. Due
to the more smooth shape of the map f50, these medians are less fidget. This is well-visible for the
predictability of the whole sample set. For f50, the median has a far more constant behaviour opposed
to that of the map f7. This behaviour is also visible in the cases of extreme events. It is not hard to
imagine a smooth curve through these medians.

Some behaviour is emphasized with this more smooth approximation. In general, the more selective
we are with extreme events, the better their predictability. For the case when q = 0.99 and τ = 1,
these values average around -2. Note that the lead time for which values are least well-predictable
gets larger as the selection of extreme events becomes more strict. Thus, higher values are better
predictable and, if the selection of the set of extreme events is really strict, these stay well-predictable
for higher values of τ .
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Figure 45: A boxplot of predictability values of
the sample set with τ from 1 to 6 iterations for
the map f7.

Figure 46: A boxplot of predictability values of
El Niño points with τ from 1 to 6 iterations for
the map f7.

Figure 47: A boxplot of predictability values of
points x > 0.95 with τ from 1 to 6 iterations for
the map f7.

Figure 48: A boxplot of predictability values of
points x > 0.99 with τ from 1 to 6 iterations for
the map f7.

Concluding predictability of extreme events

Both f7 and f50 show about the same behaviour. Because the latter map is more smooth, its pre-
dictability values are more smooth. A nice feature is that their medians tend to their Lyapunov
exponent as τ progresses.

To conclude, we have seen that with more strict sets of extreme events more well-predictable points
occur and values are well-predictable for larger values for τ . For both linear approximations, when
q > 0.95, values are mostly well-predictable for lead time τ = 1 and when q > 0.99 for the map f50,
values are also mostly well-predictable for lead time τ = 2. With mostly well-predictable, we mean that
more than 75 percent of the values have a negative time-τ Lyapunov exponent. In the case q = 0.973,
that is more than 30 percent of El Niño points, all extreme events have a negative predictability value
for τ = 1 and hence are all well-predictable.
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Figure 49: A boxplot of predictability values of
the sample set with τ from 1 to 6 iterations for
the map f50.

Figure 50: A boxplot of predictability values of
El Niño points with τ from 1 to 6 iterations for
the map f50.

Figure 51: A boxplot of predictability values of
points x > 0.95 with τ from 1 to 6 iterations for
the map f50.

Figure 52: A boxplot of predictability values of
points x > 0.99 with τ from 1 to 6 iterations for
the map f50.
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8 Discussion and conclusion

After investigation several properties and characteristics of the toy model for the ENSO model, we
will conclude by answering the main question after we discuss the four sub-questions.

Can it be useful to employ a toy model over the ENSO model?

• Can we simplify the ENSO model into a toy model that is able to simulate one variable accurately?
• How can we determine the difference in quality of results between the toy model and the ENSO

model?
• What are the possible benefits of using such a toy model instead of the ENSO model?
• Are there possible downsides on using a toy model instead of the ENSO model?

Quality of the results

With the toy model, described in Section 3, we are indeed able to make a model using local maxima of
the eastern equatorial Pacific sea surface temperatures T2 of the ENSO model. The accurate example
of the 50-piece linear approximation has El Niño periods 2 to 7, which corresponds to El Niño. More
relevant, the ENSO model has an average time distance between El Niño phenomena of 4 to 5 years,
which is similar to this example. Therefore it is possible to simplify the ENSO model with a toy model
that models one variable such that dynamics like the El Niño period are similar.

In Section 7, we were able to quantify predictability of map approximations. From the results
of the predictability of the toy model we deduced that extreme cases of El Niño points were very
well-predictable. The results of that experiment say that the top half temperatures T2 of El Niño
phenomena are 75 percent well-predictable and the highest 30 percentile are all well-predictable with a
lead time of one iteration. In practice this would mean that extreme cases of the El Niño phenomenon
can be well predicted a year in advance with a toy model. To determine the quality between the toy
model and the ENSO model, such a predictability analyses must be preformed on the ENSO model.

Overall, the toy model can deliver accurate and qualitative good results by using only one variable
of the ENSO model, answering the first two sub-questions. To give a complete answer on the second
sub-question, the ENSO model also needs to be analyzed.

Practical benefits and downsides

With the ENSO model, a wide scope of variables and their dependence on each other is considered to
model the El Niño-Southern Oscillation as well as possible. But with using a toy model, we are able to
focus on a specific variable. This simplification of the ENSO model saves time, calculation capacity and
decreases the need of comprehensive knowledge on the El Niño phenomenon and dynamical systems,
making it easier to understand and more accessible to work with.

Using a simplification, however, causes that not every aspect is taken into account. Despite that
variable values are probably in line with the ENSO model, it is quite possible that, for example, order
or frequency of variable values deviate far from reality because the underlying process is not taken
into account. A close look into differences of trajectories of the toy model and the ENSO model can
disclose this matter.

Therefore, the possibility of using a toy model can provide an elementary and straightforward way
of modelling, which can be useful in many situations where time, capacity and knowledge are not
abundant.

Research in context of comparable work

Before we conclude the thesis, we shortly view the methods we have treated in the light of other
methods for simplifying models. Most of these articles concentrate on a generic way to simplify a
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model, although the goal is the same: maximizing the utility of the model by keeping both fidelity and
simplicity as high as possible [E07]. A challenging task since these are conflicting characteristics.

Most of these generic simplifications concentrate on the more idle parts of a model. An example
is the inactive junction concept, often used in articles on mechanical engineering [E07] & [EFS06].
More mathematical methods to achieve a simpler model is presented in the book [W90] by reducing
dimensionality and eliminating non-linearity. The approach of this thesis amounts to the same thing.
An example of linearization through a Poincaré section is found in [PY01]. The purpose of that paper is
to find an alternative with the use of a formal change of variables such that the transformed differential
equation defines a system with a new symmetry.

In this context, we see that roughly the same methods are used to achieve the goal of simplifying a
model. The toy model, however, approaches this more ruthless by concentrating on one variable and
ignoring the others. Therefore, the fidelity of the model is at stake. This is greatly compensated with
the degree of simplicity, but we do not know if it is worth it compared to other methods.

Conclusion and further research possibilities

With the answers on the four sub-questions, we conclude that employing a toy model over the ENSO
model indeed can be useful.

There are multiple areas which have further research possibilities. Examples to this are comparing
different toy model approaches, comparing toy models on distinct dynamical systems, calculating the
time benefits of using a toy model on a certain dynamical system and calculating the accuracy loss
due to a toy model. Other dynamical systems to apply and compare with this approach can include
the Lorenz attractor among others. A couple of examples can be found in [SHR12].

Applying existing methods, shortly discussed in the previous section, on the ENSO model and
comparing them to the toy model can give more sight on how well this simplification preforms compared
to these other methods. Measuring the fidelity/simplicity trade-off can further determine the exact
usefulness of the toy model of the ENSO model.
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Appendix

Proof of Corollary 1

Proof.

1. The map f is onto, hence ∃x ∈ [0, 1] such that f(x) = 1. Consider the point t from requirement
4 of Definition 14. ∀ε1, ε2 such that t > ε1 > ε2 > 0, we have f(t − ε1) < f(t − ε2) and
f(t+ ε2) > f(t+ ε1). Due to continuity, we must have f(t− ε2) < f(t) and f(t) > f(t+ ε2). If
f(t) < 1, then f cannot be onto. Hence f(t) = 1.

Next consider the only fixed point p of f and the continuous function g(x) = f(x)− x. Assume
t > p, then ∀x > t we have f(x) < 1. Now ∀t < 1, g(t) = 1−t > 0 and g(1) = f(1)−1 < 1−1 = 0.

The intermediate value theorem, which can be found in [D89, p.10], state that for any
continuous function h : [a, b] with h(a) = u and h(b) = v and for any w between u and v. There
exists a c between a and b such that f(c) = w.

By the intermediate value theorem, because g(t) > 0 and g(1) < 0, ∃p∗ ∈ (t, 1) such that
g(p∗) = 0. This implies that f(p∗) = p∗, which means that it is another fixed point of f . This is
not possible and thus our assumption t > p is not true.

Now consider the point q 6= p with f(q) = p from requirement 3 of Definition 14 and assume
that t < q. Then, because t < q < p and both q and p must be in the decreasing part of f , we
must have f(q) > f(p). But f(q) = f(p) = p. Therefore we need to have that t ≥ q.
Next, assume that t = p. This implies p = f(p) = f(t) = 1. But since p ∈ (0, 1), that is also not
possible.

Lastly assume that t = q. This means that f(t) = f(q) = p, implying again that p = f(t) = 1,
which leads to a contradiction.

If we subtract all impossible points and intervals from [0, 1], we see that we must have that
t ∈ (q, p).

2. Recall that f is increasing ∀x ∈ (0, t) and decreasing ∀x ∈ (t, 1). But since f is onto, we must
have that ∃x ∈ [0, 1] such that f(x) = 0.

Due to the increasing nature of f at (0, t), we have that ∀x > 0, we must have that 0 < f(x).
This is because ∀x∗ such that 0 < x∗ < x we have f(x∗) < f(x). Hence the only option for all
x ∈ [0, t) to have f(x) = 0 is x = 0. This would mean that f(0) = 0 and hence it would be a
fixed point. This yields a contradiction.

We consider f at the interval (t, 1), which is decreasing. Here ∀x < 1, we have that 0 < f(x),
because ∀x∗ such that 1 > x∗ > x we have f(x∗) < f(x). Therefore, only x = 1 can be an option
to be such that f(x) = 0. Since this is the only option and considering that f is onto, we have
that indeed f(1) = 0 for every El Niño map.

3. The only fixed point is p ∈ (0, 1) and we have proven that the point such that f(t) = 1 has
t ∈ (q, p). We again consider the function g(x) = f(x) − x. ∀x < p we have that g(x) 6= 0
because p is the only fixed point. By the intermediate value theorem, we know that ∀x < p
either g(x) < 0 or g(x) > 0. Otherwise there needed to be a x < p for which g(x) = 0, indicating
another fixed point. We already have proven that f(t) = 1, thus g(t) = 1 − t > 0. Therefore
g(x < p) > 0 and hence x < f(x < p).(?)

We also know that f(x) is decreasing ∀x ≤ q < t. Hence ∀x, x∗ ∈ [0, q], we have x < x∗ implies
f(x) < f(x∗). If we take x∗ = q, we get x < q implies f(x) < f(q) = p.

By combining the previous two arguments, we get that if x < q, then x < f(x) < p.
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4. By argument (?), we already know that ∀x ∈ (q, p), we have x < f(x). We also know that
∀x, x1 ∈ [q, t), we have x1 < x implies f(x) > f(x1) and ∀x, x2 ∈ (t, p], we have x < x2 implies
f(x) > f(x2). By taking x1 = q and x2 = p, these arguments imply that both x ∈ (q, t) and
x ∈ (t, p) imply f(x) > p. If we also note that f(t) = 1 > p, we have proven that ∀x ∈ (q, p), we
have f(x) > p.

5. Since t < p, we know that f(x ≥ p) is decreasing. Hence ∀x, x∗ ∈ [p, 1], we have x > x∗ implies
f(x) < f(x∗). If we take x∗ = p, we get x > p implies f(x) < f(p) = p.

6. (⇒), x is an El Niño point ⇔ f(x) < x. If x < p, then x < f(x) by item 3 and 4 of Corollary 1.
If x = p, then x = f(x). Hence the only option left is p < x. By item 5 of Corollary 1, this is
indeed true.

(⇐), p < x implies f(x) < p by item 5 of Corollary 1. From this, f(x) < x instantly follows,
which implies that x is indeed an El Niño point.

7. This statement is equivalent to proving that there does not exist an El Niño point with period
1, that is, there does not exist El Niño points x1, x2 such that f(x1) = x2. We recall that x is
an El Niño point if and only if p < x.

Assume x1 is an El Niño point ⇒ p < x1 ⇒ f(x1) = x2 < p ⇒ x2 cannot be an El Niño point.
Thus the El Niño point after x1 will have a period of at least 2.

48



Matlab code

TMvalues.m

1

2 f unc t i on [ ] = TMvalues (Map, I n i t i a l v a l u e , Transient , Max iter ,
P l o t u n t i l i t e r , Number of segments , Combined f igure )

3

4 % Toy Model va lue s
5 %
6 % This func t i on gene ra t e s i t e r a t e d va lue s o f a map and p l o t s i t s forward
7 % o r b i t and histograms o f va lue s .
8 %
9 % Map Enter a func t i on handle to eva luate .

10 %
11 % I n i t i a l v a l u e Enter an i n i t i a l va lue to eva luate over the map .
12 %
13 % Trans ient The number o f i t e r a t i o n s that w i l l be omitted from
14 % the r e s u l t s f o r the va lue s and El Nino pe r i od s . When
15 % t h i s i s s e t to −1, the i n i t i a l va lue w i l l be added .
16 %
17 % Max iter The maximum number o f i t e r a t i o n s f o r which the
18 % values w i l l be generated .
19 %
20 % P l o t u n t i l i t e r Set the number o f i t e r a t i o n s f o r which the i t e r a t i o n
21 % l i n e s , l i n e s that v i s u a l i z e the i t e r a t i o n process ,
22 % need to be p l o t t ed .
23 %
24 % Number of segments The number o f segments the un i t i n t e r v a l w i l l be
25 % div ided f o r the purpose o f d i s p l a y i n g the
26 % d i s t r i b u t i o n o f a l l generated va lues .
27 %
28 % Combined f igure Set t h i s va lue to 1 to l e t a l l 4 p l o t s be in the
29 % same f i g u r e . Otherwise , a l l p l o t s w i l l have t h e i r
30 % own f i g u r e .
31

32 c l f
33 c l o s e a l l
34

35 mapPlot = f i g u r e ;
36

37 i f Combined f igure == 1
38 h i s t P l o t = f i g u r e ;
39 e l s e
40 va lH i s t = f i g u r e ;
41 va lScat = f i g u r e ;
42 d i s t H i s t = f i g u r e ;
43 d i s t S c a t = f i g u r e ;
44 end
45

46 % Check i f I n i t i a l v a l u e , Max iter , P l o t u n t i l i t e r and Map iter
47 % have v a l i d va lue s .
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48

49 i f ( I n i t i a l v a l u e < 0) | | ( I n i t i a l v a l u e > 1)
50 di sp ( ’ ! Not an input with in the c l o s e d un i t i n t e r v a l i n to v a r i a b l e ”

Max iter ” o f func t i on ”TM” . ’ )
51 end
52

53 i f ( Max iter < 0) | | ( Max iter ˜= round ( Max iter ) )
54 di sp ( ’ ! No non−negat ive i n t e g e r input in to v a r i a b l e ” Max iter ” o f

func t i on ”TM” . ’ )
55 end
56

57 i f ( P l o t u n t i l i t e r < 0) | | ( P l o t u n t i l i t e r ˜= round ( P l o t u n t i l i t e r ) )
58 di sp ( ’ ! No non−negat ive i n t e g e r input in to v a r i a b l e ” P l o t u n t i l i t e r ”

o f func t i on ”TM” . ’ )
59 end
60

61 i f Max iter < P l o t u n t i l i t e r
62 di sp ( ’ ! ” P l o t u n t i l i t e r ” has a h igher va lue than ” Max iter ” and w i l l

be s e t equal . ’ )
63 P l o t u n t i l i t e r = Max iter ;
64 end
65

66 % Check whether the v a r i a b l e i s a func t i on handle and p lo t the func t i on .
67

68 f i g u r e ( mapPlot ) ;
69

70 hold on
71

72 i f i s a (Map, ’ f unc t i on hand l e ’ )
73 map = Map;
74 x = 0 : . 0 0 1 : 1 ;
75 y = ze ro s (1 , 1001) ;
76 f o r i t =1: 1001
77 y ( i t )= map( x ( i t ) ) ;
78 end
79

80 p lo t (x , y )
81

82 e l s e
83 di sp ( ’ ! No func t i on handle input in to v a r i a b l e ”Map” o f func t i on ”TM

” . ’ )
84

85 end
86

87 so lArray = ze ro s ( Max iter − Transient , 1) ; % Generate l a r g e enough array .
88 i t e rVa lue = I n i t i a l v a l u e ; % Let i n i t i a l va lue be the f i r s t va lue .
89

90 % When the t r a n s i e n t i s choosen to be −1, the i n i t i a l va lue w i l l be added
91 % to the s o l u t i o n array .
92

93 i f −1 == Trans ient
94
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95 so lArray (1 , 1) = i t e rVa lue ; % For the case the i n i t i a l
96 end
97

98

99 p lo t ( [ 0 , 1 ] , [ 0 , 1 ] , ”k ”) ; % Plot the i d e n t i t y l i n e ( b lack ) .
100

101 highCount = −100; % Another r e s u l t w i l l be the d i s t anc e between high
102 highCountArray = [ ] ; % va lue s . To make sure i t s t a r t s count ing from a
103 % El Nino point , the counter s t a r t s with −100.
104 % Later , checks w i l l be made i f i t i s p o s i t i v e .
105

106 % F i l l the s o l u t i o n array , p l o t the i t e r a t i o n l i n e s ( green to red ) and
107 % f i l l the El Nino per iod array .
108

109 f o r i t e r = 1 : P l o t u n t i l i t e r
110

111 iterValueNew = map( i t e rVa lue ) ;
112

113 i f i t e r > Trans ient
114

115 so lArray ( i t e r − Transient , 1) = i t e rVa lue ; % F i l l i n g so lArray .
116 end
117

118 p lo t ( [ i t e rVa lue , i t e rVa lue ] , . . . % The l i n e from the map
119 [ i t e rVa lue , iterValueNew ] , . . . % to the i d e n t i t y map .
120 ’ c o l o r ’ , [ i t e r / P l o t u n t i l i t e r 1− i t e r / P l o t u n t i l i t e r 0 ] )
121

122 p lo t ( [ i t e rVa lue , iterValueNew ] , . . . % The l i n e from the id
123 [ iterValueNew , iterValueNew ] , . . . % map to the next po int .
124 ’ c o l o r ’ , [ i t e r / P l o t u n t i l i t e r 1− i t e r / P l o t u n t i l i t e r 0 ] )
125

126 % A El Nino po int i s reached i f the next va lue i s lower .
127

128 i f i t e rVa lue > iterValueNew
129

130 % F i r s t we make sure that we s t a r t with an El Nino po int .
131

132 i f highCount > 0
133 highCountArray = [ highCountArray , highCount ] ;
134 end
135

136 highCount = 1 ; % I f we would have two conse cu t i v e El Nino
137 % po in t s ( not p o s s i b l e ) , then the d i s t anc e i s one .
138 e l s e
139 highCount = highCount + 1 ; % When the cur rent va lue i sn ’ t an El
140 % Nino point , the d i s t anc e i n c r e a s e s .
141 end
142

143 i t e rVa lue = iterValueNew ;
144 end
145

146 t i t l e ( [ ’The i t e r a t e d value from i n i t i a l ( green ) to the ’ , . . .
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147 num2str ( P l o t u n t i l i t e r ) , ’−th ( red ) ’ ] )
148 x l a b e l ( ’ Value N ’ )
149 y l a b e l ( ’ Value N+1 ’ )
150

151 hold o f f
152

153 % F i l l−up the remaining space in the array that doesn ’ t need p l o t t i n g .
154

155 f o r i t e r = P l o t u n t i l i t e r + 1 : Max iter
156

157 iterValueNew = map( i t e rVa lue ) ;
158

159 i f i t e r > Trans ient
160

161 so lArray ( i t e r − Transient , 1) = i t e rVa lue ; % F i l l i n g so lArray .
162 end
163

164 i f i t e rVa lue > iterValueNew
165

166 i f highCount > 0
167 highCountArray = [ highCountArray , highCount ] ;
168 end
169 highCount = 1 ;
170

171 e l s e
172 highCount = highCount + 1 ;
173

174 end
175

176 i t e rVa lue = iterValueNew ;
177 end
178

179 % Creat ing a histrogram and a s c a t t e r p l o t o f the a l l i t e r a t e d va lues and
180 % El Nino pe r i od s .
181

182 i f Combined f igure == 1
183 f i g u r e ( h i s t P l o t ) ;
184 t i l e d l a y o u t (2 , 2)
185 n e x t t i l e
186 e l s e
187 f i g u r e ( va lH i s t ) ;
188 end
189

190 histogram ( solArray , Number of segments )
191 t i t l e ( ’The occurance o f va lue s ’ )
192 x l a b e l ( ’ va lue ’ )
193 y l a b e l ( ’Number o f occurances ’ )
194

195 i f Combined f igure == 1
196 n e x t t i l e
197 e l s e
198 f i g u r e ( va lScat ) ;
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199 end
200

201 histogram ( highCountArray )
202 t i t l e ( ’The occurances o f El Nino pe r i od s ’ )
203 x l a b e l ( ’ El Nino per iod ’ )
204 y l a b e l ( ’Number o f occurances ’ )
205

206 i f Combined f igure == 1
207 n e x t t i l e
208 e l s e
209 f i g u r e ( d i s t H i s t ) ;
210 end
211

212 i f Max iter > 100
213 s c a t t e r (1 + Trans ient : l ength ( so lArray ) + Transient , solArray , ”b . ” )
214 e l s e
215 p lo t (1 + Trans ient : l ength ( so lArray ) + Transient , solArray , ”b.−”)
216 end
217

218 t i t l e ( ’ Chronology o f i t e r a t e d va lues ’ )
219 x l a b e l ( ’n ’ )
220 y l a b e l ( ’M n ’ )
221

222 i f Combined f igure == 1
223 n e x t t i l e
224 e l s e
225 f i g u r e ( d i s t S c a t ) ;
226 end
227

228 i f Max iter > 100
229 s c a t t e r ( 1 : l ength ( highCountArray ) , highCountArray , ”b . ” )
230 e l s e
231 stem ( 1 : l ength ( highCountArray ) , highCountArray , ”b . ” )
232 end
233

234 t i t l e ( ’ Chronoloy o f El Nino pe r i od s ’ )
235 x l a b e l ( ’ El Nino po in t s ’ )
236 y l a b e l ( ’ El Nino pe r i od s ’ )
237 ylim ( [ min ( highCountArray )−1 max( highCountArray ) +1])

TMcomposition.m

1 f unc t i on [ P e r i o d i c p o i n t s , S lope ] = TMcomposition (Map , . . .
2 Compos i t ion fo ld , Prec i s i on , Figures , Keep f igures , . . .
3 Min x , Max x , Min y , Max y)
4

5 % Toy Model compos it ion
6 %
7 % This func t i on determines the p e r i o d i c po in t s and t h e i r s l o p e s o f a
8 % c e r t a i n compos i t ion o f the g iven map .
9 %
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10 % Map Enter a func t i on handle to eva luate .
11 %
12 % Compos i t ion fo ld I f t h i s number i s non−zero , i t w i l l f i n d the
13 % p e r i o d i c po in t s o f t h i s number o f i t e r a t i o n s f o r the
14 % choosen map .
15 %
16 % P r e c i s i o n The p r e c i s i o n used f o r c a l c u l a t i n g p e r i o d i c po in t s .
17 % Use a decimal number to determine the step s i z e .
18 %
19 % Figures I f non−zero , a p l o t i s shown o f the reques ted
20 % compos it ion o f the map, showing s t a b l e and unstab le
21 % p e r i o d i c po in t s .
22 %
23 % Keep f i gu r e s I f zero , i t removes p r e v i o u s l y made f i g u r e s .
24 %
25 % Min x , . . . , Max y The range used f o r the f i g u r e .
26

27

28 i f narg in <= 3
29 Figures = 1337 ;
30 end
31

32 i f narg in <= 4
33 Keep f i gu r e s = 1337 ;
34 end
35

36 i f narg in <= 5
37 Min x = 0 ;
38 Max x = 1 ;
39 Min y = 0 ;
40 Max y = 1 ;
41 end
42

43 i f Keep f i gu r e s < 1
44 c l f
45 c l o s e a l l
46 end
47

48 map = Map;
49

50 i f F igures > 0
51 i t e r P l o t = f i g u r e ;
52

53 i f F igures < 2
54 mapPlot = f i g u r e ;
55

56 % Choosing a map and p l o t t i n g i t .
57

58 f i g u r e ( mapPlot ) ;
59

60 hold on
61
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62 i f i s a (Map, ’ f unc t i on hand l e ’ )
63 x = 0 : . 0 0 1 : 1 ; % This map i s not d i r e c t l y p l o t t ed l i k e
64 y = ze ro s (1 , 1001) ; % the prev ious two . The y coo rd ina t e s
65 f o r i t =1: 1001 % are generated us ing i t s map func t i on .
66 y ( i t )= map( x ( i t ) ) ;
67 end
68

69 i f F igures < 2
70 p lo t (x , y )
71 end
72 e l s e
73 di sp ( ’ ! No func t i on handle input in to v a r i a b l e ”Map” o f func t i on ”TM

” . ’ )
74

75 end
76

77 hold o f f
78

79 end
80

81 % Plot the n−th i t e r a t i o n o f the map and f i n d i t s p e r i o d i c po in t s .
82

83 f i g u r e ( i t e r P l o t ) ;
84 hold on
85 p lo t ( [ 0 , 1 ] , [ 0 , 1 ] , ”k ”) % Plot the i d e n t i t y map in black .
86

87

88 xlim ( [ Min x Max x ] )
89 ylim ( [ Min y Max y ] )
90

91 f p r i n t f ( ’The %3.0 f t imes i t e r a t e d map i s checked f o r p e r i o d i c po in t s .\n ’
, . . .

92 Compos i t ion fo ld )
93

94 end
95

96 P e r i o d i c p o i n t s = NaN(2ˆ Compos i t ion fo ld − 1 , 1) ;
97 Slope = P e r i o d i c p o i n t s ;
98 perPointCount = 0 ;
99

100 f o r s tep = Min x : P r e c i s i o n : Max x − P r e c i s i o n
101 i t e r S t e p 1 = step ; % Create v a r i a b l e f o r the
102 i t e r S t e p 2 = step + P r e c i s i o n ; % beg in ing and end o f each
103 % i n t e r v a l to i t e r a t e with .
104 % The i t e r a t i o n o f both va lue s .
105 % Min and max statements are needed to s t r i c t l y stay with in un i t
106 % i n t e r v a l to avoid machine accuracy problems .
107

108 f o r mapIter = 1 : Compos i t ion fo ld
109 i t e r S t e p 1 = min (1 , max(0 , map( i t e r S t e p 1 ) ) ) ;
110 i t e r S t e p 2 = min (1 , max(0 , map( i t e r S t e p 2 ) ) ) ;
111 end
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112

113 % Plot the cur rent i n t e r v a l o f the map in blue .
114

115 i f F igures > 0
116

117 p lo t ( [ step , s tep+P r e c i s i o n ] , [ i t e rS t ep1 , i t e r S t e p 2 ] , ”b”)
118 end
119

120 % When an i n t e r v a l conta in s an odd number o f p e r i o d i c po in t s (we
121 % expect the uses to choose an appropr ia t e p r e c i s i o n to avoid the
122 % p o s s i b i l i t y o f more that one p e r i o d i c po in t s per i n t e r v a l ) , the
123 % d i f f e r e n c e between cur rent and next s tep changes s i gn . The product
124 % of t h i s d i f f e r e n c e at the s t a r t and the end o f the i n t e r v a l w i l l
125 % indeca te an odd number o f p e r i o d i c po in t s when i t i s non−p o s i t i v e .
126

127 i f ( i t e r S t e p 1 − s tep ) ∗ ( i t e r S t e p 2 − ( s tep + P r e c i s i o n ) ) <= 0
128

129 % The s t a b i l i t y o f a p e r i o d i c po int depends on the s l ope . I f the
130 % abso lu te va lue s o f the s l ope o f the i n t e r v a l i s sma l l e r than 1 ,
131 % then i t w i l l be s t a b l e ( i f the p r e c i s i o n i s appropr ia te ) .
132

133 s l ope = ( i t e r S t e p 2 − i t e r S t e p 1 ) / P r e c i s i o n ;
134

135 % We can l o c a t e the p e r i o d i c po int with h igher p r e c i s i o n i f we
136 % cons id e r that at that point , we must have s tep = i t e rS t ep , thus
137 % perPoint = step + x = i t e r S t e p 1 + x ∗ s l ope
138 % x ∗ (1 − s l ope ) = i t e r S t e p 1 − s tep
139 % x = ( i t e r S t e p 1 − s tep ) / (1 − s l ope )
140 % Hence , perPoint = step + ( i t e r S t e p 1 − s tep ) / (1 − s l ope ) .
141

142 perPoint = step + ( i t e r S t e p 1 − s tep ) / (1 − s l ope ) ;
143

144 perPointCount = perPointCount + 1 ;
145 P e r i o d i c p o i n t s ( perPointCount ) = perPoint ;
146 Slope ( perPointCount ) = s l ope ;
147

148 i f F igures > 0
149 f p r i n t f ( ’At %11.10 f i s a ’ , perPoint )
150

151 i f abs ( s l ope ) < 1
152 f p r i n t f ( ’ STABLE p e r i o d i c po int . ( s l ope = %8.7 f ) .\n ’ ,

s l ope )
153

154 % Plot s t a b l e per iod po int i n t e r v a l green .
155

156 p lo t ( perPoint , perPoint , ”g ∗”)
157 e l s e
158 f p r i n t f ( ’n unstab le p e r i o d i c po int . ( s l ope = %8.7 f ) .\n ’ ,

s l ope )
159

160 % Plot unstab l e per iod po int i n t e r v a l red .
161
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162 p lo t ( perPoint , perPoint , ” r . ” )
163 end
164 end
165 end
166 end
167

168

169 i f F igures > 0
170 t i t l e ( [ ’The map i t e r a t e d ’ , num2str ( Compos i t ion fo ld ) , ’ t imes ’ ] )
171 x l a b e l ( ’M n ’ )
172 y l a b e l ( [ ’M {n+’ , num2str ( Compos i t ion fo ld ) , ’ } ’ ] )
173

174 hold o f f
175 end

TMperiod2.m

1 f unc t i on [ ] = TMperiod2 (Map, Number of points , Max iter , . . .
2 Eps i l on ar ray , Dot s i z e )
3

4 % Toy Model
5 %
6 % This func t i on gene ra t e s p e r i o d i c po in t s o f a map .
7 %
8 % Map Enter a func t i on handle to eva luate .
9 %

10 % Number of points The number o f po in t s checked f o r p e r i o d i c i t y .
11 %
12 % Max iter The maximum number o f map i t e r a t i o n to determine
13 % whether or not a po int i s ( c l o s e to be ) a p e r i o d i c
14 % point .
15 %
16 % Eps i l on a r ray An array o f e p s i l o n va lue s . The per iod o f the f i r s t
17 % i t e r a t e that has a d i f f e r e n c e sma l l e r that eps i l on ,
18 % f o r each e p s i l o n in the array , w i l l be saved .
19

20 c l f
21 c l o s e a l l
22

23 mapPlot = f i g u r e ;
24

25 % Check i f I n i t i a l v a l u e , Number of i ter , P l o t u n t i l i t e r and Map iter
26 % have v a l i d va lue s .
27

28 i f ( Max iter <= 0) | | ( Max iter ˜= round ( Max iter ) )
29 di sp ( ’ ! No p o s i t i v e i n t e g e r input in to v a r i a b l e ” Max i te r dense ” o f

func t i on ”TM” . ’ )
30 end
31

32 Eps i l on a r ray = s o r t ( Eps i l on a r ray ) ;
33
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34 % Choosing a map and p l o t t i n g i t .
35

36 f i g u r e ( mapPlot ) ;
37

38 hold on
39

40 i f i s a (Map, ’ f unc t i on hand l e ’ )
41 map = Map;
42 x = 0 : . 0 0 1 : 1 ; % This map i s not d i r e c t l y p l o t t ed l i k e
43 y = ze ro s (1 , 1001) ; % the prev ious two . The y coo rd ina t e s
44 f o r i t =1: 1001 % are generated us ing i t s map func t i on .
45 y ( i t )= map( x ( i t ) ) ;
46 end
47 p lo t (x , y )
48

49 e l s e
50 di sp ( ’ ! No func t i on handle input in to v a r i a b l e ”Map” o f func t i on ”TM

” . ’ )
51

52 end
53

54 hold o f f
55

56 so lArray = ze ro s ( l ength ( Eps i l on a r ray ) +1, Number of points ) ;
57

58 so lArray ( 1 , : ) = l i n s p a c e (0 , 1 , Number of points ) ;
59

60 p e r i o d i c P l o t = f i g u r e ;
61

62 % Since t h i s p roc e s s can take a long time , a load ing bar w i l l
63 % v i s u a l i z e the p rog r e s s .
64

65 l oad ing = 0 ;
66 f p r i n t f ( ’ \n Finding a l l p e r i o d i c po in t s . . . \ n ’ )
67 f p r i n t f ( ’|0%%−−−−−−−−−−−−−−−−−−−−−−−−100%%|\n ’ )
68

69 f o r i t e r P o i n t = 1 : Number of points
70

71 i t e r V a l = so lArray (1 , i t e r P o i n t ) ;
72

73 f o r iterMap = 1 : Max iter
74

75 i f so lArray ( l ength ( Eps i l on a r ray ) + 1 , i t e r P o i n t ) == 0
76

77 i t e r V a l = Map( i t e r V a l ) ;
78

79 f o r i t e r E p s i l o n = 1 : l ength ( Eps i l on a r ray )
80

81 i f so lArray ( i t e r E p s i l o n + 1 , i t e r P o i n t ) == 0
82

83 i f Eps i l on a r ray ( l ength ( Eps i l on a r ray ) + 1 −
i t e r E p s i l o n ) . . .
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84 > abs ( i t e r V a l − so lArray (1 , i t e r P o i n t ) )
85

86 so lArray ( i t e r E p s i l o n + 1 , i t e r P o i n t ) = iterMap ;
87

88 end
89 end
90 end
91 end
92 end
93

94 i f l oad ing < f l o o r (30 ∗ i t e r P o i n t / Number of points )
95

96 l oad ing = f l o o r (30 ∗ i t e r P o i n t / Number of points ) ;
97 f p r i n t f ( ’#’ )
98

99 end
100 end
101

102 percentageDense = [ sum( so lArray ( l ength ( Eps i l on a r ray ) + 1 , : ) > 0) ∗ 100
/ Number of points sum( so lArray ( l ength ( Eps i l on a r ray ) , : ) > 0) ∗ 100 /

Number of points ] ;
103

104 f p r i n t f ( ’ \n\nThe map, i t e r a t e d at most %3.0 f times , i s checked f o r %6.0 f
i n i t i a l va lue s .\n ’ , . . .

105 Max iter , Number of points )
106 f p r i n t f ( ’The p e r i o d i c po in t s are %6.4 f percent dense , us ing an e p s i l o n o f

%12.11 f .\n ’ , percentageDense (1 ) , Eps i l on a r ray (1 , 1) )
107 f p r i n t f ( ’The p e r i o d i c po in t s are %6.4 f percent dense , us ing an e p s i l o n o f

%12.11 f .\n ’ , percentageDense (2 ) , Eps i l on a r ray (1 , 1) )
108

109

110 f i g u r e ( p e r i o d i c P l o t ) ;
111

112 hold on
113

114 f o r i t e r E p s i l o n = 1 : l ength ( Eps i l on a r ray )
115

116 s c a t t e r ( so lArray (1 , : ) , so lArray ( i t e r E p s i l o n + 1 , : ) , Dot s i ze , . . .
117 [ min (1 − ( i t e r E p s i l o n − 1) / ( l ength ( Eps i l on a r ray ) − 1) ,

so lArray ( i t e r E p s i l o n + 1 , : ) ) . ’ min ( ( i t e r E p s i l o n − 1) / (
l ength ( Eps i l on a r ray ) − 1) , so lArray ( i t e r E p s i l o n + 1 , : ) ) . ’ 1
− min (1 , so lArray ( i t e r E p s i l o n + 1 , : ) ) . ’ ] )

118

119 % [ 1 − min (1 , so lArray ( i t e r E p s i l o n + 1 , : ) ) . ’ z e r o s (1 ,
Number of points ) . ’ min (1 , so lArray ( i t e r E p s i l o n + 1 , : ) ) . ’ ]

120

121 end
122

123 s e t ( gca , ’ y s c a l e ’ , ’ l og ’ )
124 t i t l e ( ’The per iod o f ( c l o s e to ) p e r i o d i c po in t s ’ )
125 x l a b e l ( ’ Values ’ )
126 y l a b e l ( [ ’ I t e r a t i o n s to get with in e p s i l o n = ’ , num2str ( Eps i l on a r ray (1 ,

59



1) ) ] )
127

128 end

TMbifur.m

1 f unc t i on [ ] = TMbifur (Map, Steps , Min mu , Max mu , . . .
2 Min value , Max value , Transient , Max iter , I n i t i a l , . . .
3 Dot s i ze , L a s t o u t f i r s t i n , Keep f i gu r e s )
4

5 % TM b i f u r
6 %
7 % Create a b i f u r c a t i o n diagram f o r a 2−parameter map .
8 %
9 % Map Enter a 2−parameter func t i on handle to eva luate .

10 %
11 % Min mu The minimum value o f the map’ s second parameter .
12 %
13 % Max mu The maximum value o f the map’ s second parameter .
14 %
15 % Steps The number o f s t ep s used f o r second parameter va lue s
16 % between Min mu and Max mu .
17 %
18 % Trans ient The number o f i t e r a t i o n s that w i l l be omitted from
19 % the r e s u l t s f o r the va lue s at a g iven mu. When t h i s
20 % i s s e t to −1, the i n i t i a l va lue w i l l be added .
21 %
22 % Max iter The number o f i t e r a t i o n s used to gather va lue s .
23 %
24 % I n i t i a l The i n i t i a l va lue used to s t a r t the i t e r a t i o n s .
25 %
26 % Dot s i z e The s i z e o f the dots in the b i f u r c a t i o n diagram .
27 %
28 % L a s t o u t f i r s t i n When t h i s i s s e t to 1 , the l a s t i t e r a t e o f a va lue
29 % of mu w i l l be the i n i t i a l va lue f o r the next mu.
30 %
31 % Keep f i gu r e s When t h i s i s s e t to 1 , the prev ious f i g u r e s w i l l not
32 % be c l o s e d .
33

34 % In the case that some parameters were not f i l l e d in , standard va lues
35 % w i l l be app l i ed .
36

37 i f narg in <= 8
38 I n i t i a l = 0 ;
39 end
40

41 i f narg in <= 9
42 Dot s i z e = . 5 ;
43 end
44

45 i f narg in <= 10
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46 L a s t o u t f i r s t i n = 1337 ;
47 end
48

49 i f narg in <= 11
50 Keep f i gu r e s = 1337 ;
51 end
52

53 i f Keep f i gu r e s ˜= 1
54 c l f
55 c l o s e a l l
56 end
57

58 mapPlot = f i g u r e ;
59 b i f u r P l o t = f i g u r e ;
60

61 % Check whether the v a r i a b l e i s a func t i on handle and p lo t the func t i on
62 % f o r the minimum mu and the maximum mu.
63

64 f i g u r e ( mapPlot ) ;
65 hold on
66

67 i f i s a (Map, ’ f unc t i on hand l e ’ )
68 map = Map;
69 x = 0 : . 0 0 1 : 1 ;
70 y1 = ze ro s (1 , 1001) ;
71 y2 = y1 ;
72 y3 = y1 ;
73

74 f o r i t =1: 1001
75 y1 ( i t )= map( x ( i t ) ,Min mu) ;
76 y2 ( i t )= map( x ( i t ) , . 5 ∗ ( Min mu + Max mu) ) ;
77 y3 ( i t )= map( x ( i t ) ,Max mu) ;
78 end
79

80 p lo t (x , y1 , ” b”)
81 p lo t (x , y2 , ”m”)
82 p lo t (x , y3 , ” r ”)
83

84 e l s e
85 di sp ( ’ ! No func t i on handle input in to v a r i a b l e ”Map” o f func t i on ”TM

” . ’ )
86

87 end
88

89 % Create a s o l u t i o n array f o r a l l i t e r a t i o n s o f every s tep between the
90 % minimum mu and maximum mu.
91

92 so lArray = ze ro s ( Max iter − Transient , Steps + 1) ;
93

94 i t e rVa lue = I n i t i a l ;
95

96 % Display a load ing bar to v i s u a l i z e the p rog r e s s .
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97

98 l oad ing = 0 ;
99 f p r i n t f ( ’ \n Ca l cu l a t ing a l l po in t s . . . \ n ’ )

100 f p r i n t f ( ’|0%%−−−−−−−−−−−−−−−−−−−−−−−−100%%|\n ’ )
101

102 f i g u r e ( b i f u r P l o t ) ;
103

104 hold on
105

106 f o r s tep = 0 : Steps
107

108 mu = Min mu + (Max mu − Min mu) ∗ s tep / Steps ; % Current mu.
109

110 % I t e r a t e u n t i l j u s t a f t e r the t r a n s i e n t value .
111

112 f o r i t e r = 1 : Trans ient + 1
113

114 i t e rVa lue = map( i te rVa lue , mu) ;
115 end
116

117 % Let the f i r s t va lue a f t e r the t r a n s i e n t be the f i r s t o f the array .
118

119 so lArray (1 , s tep + 1) = i t e rVa lue ;
120

121 % F i l l the array with the remaining va lue s .
122

123 f o r i t e r = 2 : Max iter − Trans ient
124

125 so lArray ( i t e r , s t ep + 1) = map( so lArray ( i t e r − 1 , s tep + 1) , mu) ;
126 end
127

128 % Create a vec to r o f the cur rent s tep and remove unwanted va lue s .
129

130 so lVec to r = so lArray ( : , s t ep + 1) ;
131 so lVec to r = so lVec to r ( so lVec to r >= Min value & so lVec to r <= Max value

) ;
132

133 % Plot the va lue s o f the s o l u t i o n vec to r with the cur rent mu.
134

135 s c a t t e r ( ones ( s i z e ( so lVec to r ) ) ∗ mu, so lVector , Dot s i ze , ’b ’ )
136

137 % Enlarge the load ing bar , depending on the number o f s t ep s taken .
138

139 i f l oad ing < f l o o r (30 ∗ s tep / Steps )
140

141 l oad ing = f l o o r (30 ∗ s tep / Steps ) ;
142 f p r i n t f ( ’#’ )
143 end
144

145 i f L a s t o u t f i r s t i n ˜= 1 % Check whether we want to r e s e t i n i t a l .
146

147 i t e rVa lue = I n i t i a l ; % Reset i n i t i a l va lue f o r the next s tep .
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148 end
149 end
150 f p r i n t f ( ’ \n P lo t t i ng . . . \ n ’ )
151

152 hold o f f
153

154 t i t l e ( ’ B i f u r c a t i o n ’ )
155 x l a b e l ( ’Mu’ )
156 y l a b e l ( ’ Values ’ )

TMlya init.m

1 f unc t i on [ ] = TMlya init (Map, Der ivat ive , Transient , Max iter , . . .
2 M i n i n i t i a l , Max in i t i a l , I n i t i a l s t e p s )
3

4 % TM lya i n i t
5 %
6 % This func t i on c a l c u l a t e s the Lyapunov exponent o f f i n i t e time o f
7 % the func t i on over a range o f i n i t i a l c o n d i t i o n s .
8 %
9 % Map Enter a func t i on handle to eva luate .

10 %
11 % Der iva t iv e Enter a func t i on handle that i s the d e r i v a t i v e o f
12 % the prev ious func t i on .
13 %
14 % Trans ient The number o f i t e r a t i o n s that w i l l be omitted from
15 % the r e s u l t s f o r the va lue s at a g iven mu. When t h i s
16 % i s s e t to −1, the i n i t i a l va lue w i l l be added .
17 %
18 % Max iter The number o f i t e r a t i o n s used to gather va lue s .
19 %
20 % M i n i n i t i a l The s m a l l e s t i n i t i a l va lue used f o r the i t e r a t i o n s .
21 %
22 % M a x i n i t i a l The l a r g e s t i n i t i a l va lue used f o r the i t e r a t i o n s .
23 %
24 % I n i t i a l s t e p s The number o f s tep used f o r the i n i t i a l va lue s .
25

26 c l f
27 c l o s e a l l
28

29 mapPlot = f i g u r e ;
30 l yaP lo t = f i g u r e ;
31

32 % Check whether the v a r i a b l e i s a func t i on handle and p lo t the func t i on
33 % f o r the minimum mu and the maximum mu.
34

35 f i g u r e ( mapPlot ) ;
36 t i l e d l a y o u t (1 , 2)
37 n e x t t i l e
38

39 hold on
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40

41 i f i s a (Map, ’ f unc t i on hand l e ’ )
42 map = Map;
43 x = 0 : . 0 0 1 : 1 ;
44 y = ze ro s (1 , 1001) ;
45

46 f o r i t =1: 1001
47 y ( i t )= map( x ( i t ) ) ;
48 end
49

50 p lo t (x , y , ” b”)
51

52 e l s e
53 di sp ( ’ ! No func t i on handle input in to v a r i a b l e ”Map” o f func t i on ”

TMlya init ” . ’ )
54 end
55

56 hold o f f
57

58 % The same f o r the d e r i v a t i v e .
59

60 n e x t t i l e
61

62 hold on
63

64 i f i s a (Map, ’ f unc t i on hand l e ’ )
65 dmap = Der iva t i ve ;
66 x = 0 : . 0 0 1 : 1 ;
67 y = ze ro s (1 , 1001) ;
68

69 f o r i t =1: 1001
70 y ( i t )= dmap( x ( i t ) ) ;
71 end
72

73 p lo t (x , y , ” r ”)
74

75 e l s e
76 di sp ( ’ ! No func t i on handle input in to v a r i a b l e ” Der iva t i ve ” o f

func t i on ” TMlya init ” . ’ )
77

78 end
79

80 % Set standard va lues i f a parameter was l e f t empty .
81

82 i f narg in <= 2
83 Trans ient = 1000 ;
84 end
85

86 i f narg in <= 3
87 Max iter = Trans ient + 500 ;
88 end
89
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90 i f narg in <= 4
91 M i n i n i t i a l = 0 ;
92 end
93

94 i f narg in <= 5
95 M a x i n i t i a l = 1 ;
96 end
97

98 i f narg in <= 6
99 I n i t i a l s t e p s = 100 ;

100 end
101

102 % Create a Lyapunov exponent array l a r g e enough f o r every s tep between
103 % the minimum i n i t i a l va lue and the maximum i n i t i a l va lue .
104

105 l eArray = ze ro s (1 , I n i t i a l s t e p s + 1) ;
106

107 % Display a load ing bar to v i s u a l i z e the p rog r e s s .
108

109 l oad ing = 0 ;
110 f p r i n t f ( ’ \n Ca l cu l a t ing a l l Lyapunov exponents . . . \ n ’ )
111 f p r i n t f ( ’|0%%−−−−−−−−−−−−−−−−−−−−−−−−100%%|\n ’ )
112

113 f o r s tep = 0 : I n i t i a l s t e p s % Use p r e c i s i o n f o r maximum step s .
114

115 % Calcu la te the i n i t i a l va lue o f the cur rent s tep .
116

117 i t e rVa lue = M i n i n i t i a l + ( M a x i n i t i a l − M i n i n i t i a l ) ∗ s tep /
I n i t i a l s t e p s ;

118

119 % I t e r a t e u n t i l j u s t a f t e r the t r a n s i e n t value .
120

121 f o r i t e r = 1 : Trans ient
122

123 i t e rVa lue = map( i t e rVa lue ) ;
124 end
125

126 % F i l l the array with the remaining va lue s .
127

128 f o r i t e r = 1 : Max iter − Trans ient
129

130 i t e rVa lue = map( i t e rVa lue ) ;
131

132 % Add the d e r i v a t i v e o f that i t e r a t e d value devided by the t o t a l
133 % number o f i t e r a t i o n s to the Lyapunov exponent array .
134

135 l eArray ( s tep + 1) = leArray ( s tep + 1) + log ( abs ( Der iva t ive (
i t e rVa lue ) ) ) / ( Max iter − Trans ient ) ;

136 end
137

138 % Enlarge the load ing bar , depending on the number o f s t ep s taken .
139
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140 i f l oad ing < f l o o r (30 ∗ s tep / I n i t i a l s t e p s )
141

142 l oad ing = f l o o r (30 ∗ s tep / I n i t i a l s t e p s ) ;
143 f p r i n t f ( ’#’ )
144 end
145

146 end
147

148 f p r i n t f ( ’ \n P lo t t i ng . . . \ n ’ )
149

150 f i g u r e ( lyaP lo t ) ;
151

152 hold on
153

154 p lo t ( l i n s p a c e ( M i n i n i t i a l , Max in i t i a l , I n i t i a l s t e p s + 1) , leArray ∗ 0 ,
”k ”)

155 p lo t ( l i n s p a c e ( M i n i n i t i a l , Max in i t i a l , I n i t i a l s t e p s + 1) , leArray , ”b”)
156

157 hold o f f
158

159 t i t l e ( [ ’ Lyapunov exponents o f f i n i t e time (n goes from ’ , num2str (
Trans ient + 1) , ’ to ’ , num2str ( Max iter ) , ’ ) . ’ ] )

160 x l a b e l ( ’ I n i t i a l va lue s ’ )
161 y l a b e l ( ’ Lyapunov exponents ’ )

TMlya mu.m

1 f unc t i on [ ] = TMlya mu(Map, Der ivat ive , Min mu , Max mu , Mu steps , . . .
2 Transient , Max iter , M i n i n i t i a l , Max in i t i a l , I n i t i a l s t e p s )
3

4 % TM lya mu
5 %
6 % This func t i on c a l c u l a t e s the minimum , mean and maximum ( depending on
7 % the i n i t i a l va lue s ) Lyapunov exponent o f f i n i t e time o f the func t i on
8 % over a range o f mu va lue s .
9 %

10 % Map Enter a 2−parameter func t i on handle to eva luate .
11 %
12 % Der iva t iv e Enter a 2−parameter func t i on handle that i s the
13 % d e r i v a t i v e o f the prev ious func t i on .
14 %
15 % Min mu The minimum value o f the map’ s second parameter .
16 %
17 % Max mu The maximum value o f the map’ s second parameter .
18 %
19 % Mu steps The number o f s t ep s used f o r second parameter va lue s
20 % from Min mu to Max mu .
21 %
22 % Trans ient The number o f i t e r a t i o n s that w i l l be omitted from
23 % the r e s u l t s f o r the va lue s at a g iven mu. When t h i s
24 % i s s e t to −1, the i n i t i a l va lue w i l l be added .

66



25 %
26 % Max iter The number o f i t e r a t i o n s used to gather va lue s .
27 %
28 % M i n i n i t i a l The s m a l l e s t i n i t i a l va lue used f o r the i t e r a t i o n s .
29 %
30 % M a x i n i t i a l The l a r g e s t i n i t i a l va lue used f o r the i t e r a t i o n s .
31 %
32 % I n i t i a l s t e p s The number o f s t ep s used f o r the i n i t i a l va lue s .
33

34 c l f
35 c l o s e a l l
36

37 mapPlot = f i g u r e ;
38 l yaP lo t = f i g u r e ;
39

40 % Check whether the v a r i a b l e i s a func t i on handle and p lo t the func t i on
41 % f o r the minimum mu and the maximum mu.
42

43 f i g u r e ( mapPlot ) ;
44 t i l e d l a y o u t (1 , 2)
45 n e x t t i l e
46

47 hold on
48

49 i f i s a (Map, ’ f unc t i on hand l e ’ )
50 map = Map;
51 x = 0 : . 0 0 1 : 1 ;
52 y1 = ze ro s (1 , 1001) ;
53 y2 = y1 ;
54 y3 = y1 ;
55

56 f o r i t =1: 1001
57 y1 ( i t )= map( x ( i t ) ,Min mu) ;
58 y2 ( i t )= map( x ( i t ) , . 5 ∗ ( Min mu + Max mu) ) ;
59 y3 ( i t )= map( x ( i t ) ,Max mu) ;
60 end
61

62 p lo t (x , y1 , ” b”)
63 p lo t (x , y2 , ”m”)
64 p lo t (x , y3 , ” r ”)
65

66 e l s e
67 di sp ( ’ ! No func t i on handle input in to v a r i a b l e ”Map” o f func t i on ”

TMlya mu ” . ’ )
68

69 end
70

71 hold o f f
72

73 % The same f o r the d e r i v a t i v e .
74

75 n e x t t i l e
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76

77 hold on
78

79 i f i s a (Map, ’ f unc t i on hand l e ’ )
80 dmap = Der iva t i ve ;
81 x = 0 : . 0 0 1 : 1 ;
82 y1 = ze ro s (1 , 1001) ;
83 y2 = y1 ;
84 y3 = y1 ;
85

86 f o r i t =1: 1001
87 y1 ( i t )= dmap( x ( i t ) ,Min mu) ;
88 y2 ( i t )= dmap( x ( i t ) , . 5 ∗ ( Min mu + Max mu) ) ;
89 y3 ( i t )= dmap( x ( i t ) ,Max mu) ;
90 end
91

92 p lo t (x , y1 , ” b”)
93 p lo t (x , y2 , ”m”)
94 p lo t (x , y3 , ” r ”)
95

96 e l s e
97 di sp ( ’ ! No func t i on handle input in to v a r i a b l e ” Der iva t i ve ” o f

func t i on ”TMlya mu ” . ’ )
98

99 end
100

101 % Set standard va lues i f a parameter was l e f t empty .
102

103 i f narg in <= 4
104 Mu steps = 100 ;
105 end
106

107 i f narg in <= 5
108 Trans ient = 1000 ;
109 end
110

111 i f narg in <= 6
112 Max iter = Trans ient + 500 ;
113 end
114

115 i f narg in <= 7
116 M i n i n i t i a l = 0 ;
117 end
118

119 i f narg in <= 8
120 M a x i n i t i a l = 1 ;
121 end
122

123 i f narg in <= 9
124 I n i t i a l s t e p s = 100 ;
125 end
126
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127 % Create a mu array l a r g e enough f o r every step between the minimum mu
128 % and the maximum mu. Every mu w i l l get a minimum , average and maximum
129 % Lyapunov exponent , s i n c e these are dependent on the i n i t i a l va lue s .
130

131 muArray = ze ro s (3 , Mu steps + 1) ;
132

133 % Display a load ing bar to v i s u a l i z e the p rog r e s s .
134

135 l oad ing = 0 ;
136 f p r i n t f ( ’ \n Ca l cu l a t ing a l l Lyapunov exponents . . . \ n ’ )
137 f p r i n t f ( ’|0%%−−−−−−−−−−−−−−−−−−−−−−−−100%%|\n ’ )
138

139 f o r stepMu = 0 : Mu steps
140

141 mu = Min mu + (Max mu − Min mu) ∗ stepMu / Mu steps ;% Current mu.
142

143 % Create a Lyapunov exponent array l a r g e enough f o r every s tep
144 % between the minimum i n i t i a l va lue and the maximum i n i t i a l va lue .
145

146 l eArray = ze ro s (1 , I n i t i a l s t e p s + 1) ;
147

148 f o r s t e p I n i t = 0 : I n i t i a l s t e p s
149

150 % Calcu la te the i n i t i a l va lue o f the cur rent s tep .
151

152 i t e rVa lue = M i n i n i t i a l + ( M a x i n i t i a l − M i n i n i t i a l ) ∗ s t e p I n i t
/ I n i t i a l s t e p s ;

153

154 % I t e r a t e u n t i l j u s t a f t e r the t r a n s i e n t va lue .
155

156 f o r i t e r = 1 : Trans ient
157

158 i t e rVa lue = map( i te rVa lue , mu) ;
159 end
160

161 % F i l l the array with the remaining va lue s .
162

163 f o r i t e r = 1 : Max iter − Trans ient
164

165 i t e rVa lue = map( i te rVa lue , mu) ;
166

167 % Add the d e r i v a t i v e o f that i t e r a t e d value devided by the
t o t a l

168 % number o f i t e r a t i o n s to the Lyapunov exponent array .
169

170 l eArray ( s t e p I n i t + 1) = leArray ( s t e p I n i t + 1) + log ( abs (
Der iva t i ve ( i t e rVa lue , mu) ) ) / ( Max iter − Trans ient ) ;

171 end
172 end
173

174 muArray ( : , stepMu + 1) = [ min ( leArray ) ; mean( leArray ) ; max( leArray ) ] ;
175
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176 % Enlarge the load ing bar , depending on the number o f eva luated mu’ s .
177

178 i f l oad ing < f l o o r (30 ∗ stepMu / Mu steps )
179

180 l oad ing = f l o o r (30 ∗ stepMu / Mu steps ) ;
181 f p r i n t f ( ’#’ )
182 end
183 end
184

185 f p r i n t f ( ’ \n P lo t t i ng . . . \ n ’ )
186

187 f i g u r e ( lyaP lo t ) ;
188

189 hold on
190

191 p lo t ( l i n s p a c e (Min mu , Max mu , Mu steps + 1) , muArray ( 1 , : ) ∗ 0 , ”k ”)
192 p lo t ( l i n s p a c e (Min mu , Max mu , Mu steps + 1) , muArray ( 1 , : ) , ”g ”)
193 p lo t ( l i n s p a c e (Min mu , Max mu , Mu steps + 1) , muArray ( 2 , : ) , ”b”)
194 p lo t ( l i n s p a c e (Min mu , Max mu , Mu steps + 1) , muArray ( 3 , : ) , ” r ”)
195

196 hold o f f
197

198 t i t l e ( [ ’ Lyapunov exponents o f f i n i t e time (n goes from ’ , num2str (
Trans ient + 1) , ’ to ’ , num2str ( Max iter ) , ’ ) . ’ ] )

199 x l a b e l ( ’Mu’ )
200 y l a b e l ({ ’ Lyapunov exponents over i n i t i a l va lue s ’ , ’ ( min = green , mean =

blue , max = red ) ’ })

TMmulti.m

1 f unc t i on [ ] = TMmulti (Map, I n i t i a l s a r r a y , Number o f i t e r )
2

3 % Toy Model mult i
4

5 % Creates mu l t ip l e g r a p h i c a l ana ly s e s in one f i g u r e .
6 %
7 % Map Enter a func t i on handle to eva luate .
8 %
9 % I n i t i a l s a r r a y An array o f i n i t i a l va lue s f o r each a n a l y s i s .

10 %
11 % Number o f i t e r The number o f i t e r a t i o n s f o r the ana ly s e s .
12

13

14 c l o s e a l l
15

16 f i g u r e ;
17

18 hold on
19

20 x = 0 : . 0 0 1 : 1 ; % This map i s not d i r e c t l y p l o t t ed l i k e
21 y = ze ro s (1 , 1001) ; % the prev ious two . The y coo rd ina t e s
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22 f o r i t =1: 1001 % are generated us ing i t s map func t i on .
23 y ( i t )= Map( x ( i t ) ) ;
24 end
25 p lo t (x , y )
26

27 i n i t i a l s L e n g t h = length ( I n i t i a l s a r r a y ) ;
28

29 so lArray = ze ro s ( Number o f i t e r + 1 , i n i t i a l s L e n g t h ) ; % Generate a l a r g e
enough array .

30 so lArray (1 , 1 : i n i t i a l s L e n g t h ) = I n i t i a l s a r r a y ; % Let i n i t i a l va lue be
the f i r s t va lue .

31

32 p lo t ( [ 0 , 1 ] , [ 0 , 1 ] , ”k ”) ; % Plot the i d e n t i t y l i n e ( b lack ) .
33

34 f o r i t l e n g = 1 : i n i t i a l s L e n g t h
35 f o r i t e r = 1 : Number o f i t e r
36

37 so lArray ( i t e r + 1 , i t l e n g ) = Map( so lArray ( i t e r , i t l e n g ) ) ; %
F i l l i n g so lArray

38

39 p lo t ( [ so lArray ( i t e r , i t l e n g ) , so lArray ( i t e r , i t l e n g ) ] , . . . % The
l i n e from the Map

40 [ so lArray ( i t e r , i t l e n g ) , so lArray ( i t e r +1, i t l e n g ) ] , . . . % to
the i d e n t i t y Map.

41 ’ c o l o r ’ , [ i t e r / Number o f i t e r 1− i t e r / Number o f i t e r 0 ] )
42

43 p lo t ( [ so lArray ( i t e r , i t l e n g ) , so lArray ( i t e r +1, i t l e n g ) ] , . . . % The
l i n e from the id

44 [ so lArray ( i t e r +1, i t l e n g ) , so lArray ( i t e r +1, i t l e n g ) ] , . . .% Map
to the next po int .

45 ’ c o l o r ’ , [ i t e r / Number o f i t e r 1− i t e r / Number o f i t e r 0 ] )
46

47 end
48 end
49 t i t l e ( [ ’The i t e r a t e d value from i n i t i a l ( green ) to the ’ , . . .
50 num2str ( Number o f i t e r ) , ’−th ( red ) ’ ] )
51 x l a b e l ( ’ Value N ’ )
52 y l a b e l ( ’ Value N+1 ’ )
53

54 hold o f f

TMcompmovie.m

1 f unc t i on [ ] = TMcompmovie(Map, Compos i t ion fo ld , . . .
2 Min mu , Max mu , Number of mus , Prec i s i on , Min x , Max x , Min y , Max y)
3

4 % Toy Model compos it ion
5 %
6 % This func t i on c r e a t e s an animation o f the N−f o l d compos i t ion o f a
7 % 2−parameter map, s h i f t i n g the second value through time . Pe r i od i c

po in t s
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8 % are shown with red dots i f they are unstab le and with a green s t a r i f
9 % they are s t a b l e .

10 %
11 % Map Enter a 2−parameter func t i on handle to eva luate .
12 %
13 % Compos i t ion fo ld The cons ide r ed compos it ion o f the map .
14 %
15 % Min mu , Max mu The range o f the second parameter o f the map .
16 %
17 % Number of mus The d i v i s i o n o f the prev ious mentioned range .
18 %
19 % Min x , . . . , Max y The range used f o r the animation .
20

21 c l o s e a l l
22

23 % Set parameters
24

25 i t e r P l o t = f i g u r e ;
26

27 muArray = l i n s p a c e (Min mu , Max mu , Number of mus ) ;
28 stepsArray = 0 : P r e c i s i o n : 1 ;
29

30 % Plot the n−th i t e r a t i o n o f the map and f i n d i t s p e r i o d i c po in t s .
31

32 f i g u r e ( i t e r P l o t ) ;
33

34 f o r iterMu = 1 : Number of mus
35

36 c l f
37

38 hold on
39

40 p lo t ( [ 0 , 1 ] , [ 0 , 1 ] , ”k ”) % Plot the i d e n t i t y map in black .
41

42 f o r s tep = 1 : s i z e ( stepsArray , 2 ) − 1
43 i t e r S t e p 1 = stepsArray ( s tep ) ;
44 i t e r S t e p 2 = stepsArray ( s tep + 1) ;
45

46 f o r mapIter = 1 : Compos i t ion fo ld
47 i t e r S t e p 1 = min (1 , max(0 , Map( i t e rS t ep1 , muArray ( iterMu ) ) ) ) ;
48 i t e r S t e p 2 = min (1 , max(0 , Map( i t e rS t ep2 , muArray ( iterMu ) ) ) ) ;
49 end
50

51 p lo t ( [ s tepsArray ( s tep ) , s tepsArray ( s tep +1) ] , [ i t e rS t ep1 ,
i t e r S t e p 2 ] , ”b”)

52

53 i f ( i t e r S t e p 1 − stepsArray ( s tep ) ) ∗ ( i t e r S t e p 2 − stepsArray ( s tep
+1) ) <= 0

54

55 s l ope = ( i t e r S t e p 2 − i t e r S t e p 1 ) / P r e c i s i o n ;
56 perPoint = stepsArray ( s tep ) + ( i t e r S t e p 1 − stepsArray ( s tep ) )

/ (1 − s l ope ) ;
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57

58 i f abs ( s l ope ) < 1
59 % Plot s t a b l e per iod po int i n t e r v a l green .
60 p lo t ( perPoint , perPoint , ”g ∗”)
61 e l s e
62 % Plot unstab l e per iod po int i n t e r v a l red .
63 p lo t ( perPoint , perPoint , ” r . ” )
64 end
65 end
66 end
67

68 xlim ( [ Min x Max x ] )
69 ylim ( [ Min y Max y ] )
70

71 t i t l e ( [ ’The map i t e r a t e d ’ , num2str ( Compos i t ion fo ld ) , ’ t imes ’ ] )
72 x l a b e l ( ’M n ’ )
73 y l a b e l ( [ ’M {n+’ , num2str ( Compos i t ion fo ld ) , ’ } ’ ] )
74

75 compMovie ( iterMu ) = getframe ;
76 end
77

78 movieWriter = VideoWriter ( ’ Comp Movie 10 ,0001 ’ , ’MPEG−4 ’ ) ;
79 movieWriter . FrameRate = 10 ;
80

81 open ( movieWriter ) ;
82 writeVideo ( movieWriter , compMovie ) ;
83 c l o s e ( movieWriter ) ;

TMstableset.m

1 f unc t i on [ ] = TMstableset (Map, Max composition , Prec i s i on , S e t s i z e ,
Set i t e r max , Dot s i z e )

2

3 % Toy Model compos it ion
4 %
5 % This func t i on shows unstab le s e t o f every r e p e l l i n g p e r i o d i c po int .
6 %
7 % Map Enter a func t i on handle to eva luate .
8 %
9 % Max composition I f t h i s number i s non−zero , i t w i l l f i n d the

10 % p e r i o d i c po in t s o f equal or l e s s than t h i s number
11 % of i t e r a t i o n s f o r the choosen map .
12 %
13 % P r e c i s i o n The p r e c i s i o n used f o r c a l c u l a t i n g p e r i o d i c po in t s .
14 % Use a decimal number to determine the step s i z e .
15 %
16 % S e t s i z e The number o f e lements f o r every unstab l e s e t .
17

18 so lArray = NaN(2ˆ( Max composition + 1) − 2 − Max composition , S e t s i z e ) ;
19 xArray = so lArray ;
20 compPerPntPosition = 0 ;
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21 i n i t i a l V a l u e s = l i n s p a c e (0 , 1 , S e t s i z e ) ;
22

23 % Display a load ing bar to v i s u a l i z e the p rog r e s s .
24

25 f p r i n t f ( ’ \n Going through a l l compos i t ions . . . \ n ’ )
26 f p r i n t f ( ’ |1−−4−−7−−10−−14−−18|\n ’ )
27

28 f o r compos it ion = 1 : Max composition
29

30 [ perPoints , s l ope ] = TMcomposition (Map, composit ion , Prec i s i on , 0 , 0)
;

31

32 f o r i t P o i n t = 1 : s i z e ( perPoints , 1 )
33

34 i f abs ( s l ope ( i t P o i n t ) ) < 1
35

36 so lArray ( compPerPntPosition + itPo int , 1) = . . .
37 perPo ints ( i t P o i n t ) ;
38 xArray ( compPerPntPosition + itPo int , : ) = . . .
39 repmat ( perPo ints ( i t P o i n t ) , 1 , S e t s i z e ) ;
40

41 f o r i t S e t = 1 : S e t s i z e
42

43 s e t I t e r = 0 ;
44 value = i n i t i a l V a l u e s ( i t S e t ) ;
45

46 whi le s e t I t e r < Set i t e r max &&.. .
47 i snan ( so lArray ( compPerPntPosition + itPo int ,

i t S e t ) )
48

49 value = Map( value ) ;
50

51 i f abs ( perPo ints ( i t P o i n t ) − value ) < P r e c i s i o n
52

53 so lArray ( compPerPntPosition + itPo int , i t S e t ) =
i n i t i a l V a l u e s ( i t S e t ) ;

54 end
55

56 s e t I t e r = s e t I t e r + 1 ;
57 end
58 end
59 end
60 end
61

62 compPerPntPosition = compPerPntPosition + s i z e ( perPoints , 1 ) ;
63

64 f p r i n t f ( ’#’ )
65 end
66

67 f p r i n t f ( ’ \ nPlot t ing . . . \ n ’ )
68

69 s c a t t e r ( reshape ( xArray , [ ] , 1) , reshape ( solArray , [ ] , 1) , Dot s i ze , ’b ’ )
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70 t i t l e ( [ ’The s t a b l e s e t s o f per . po in t s with max . per iod ’ , num2str (
Max composition ) ] )

71 x l a b e l ( ’ Values o f e x i s t i n g s t a b l e per . po in t s ’ )
72 y l a b e l ( [ ’The s e t converg ing to per . po int with in ’ , num2str ( S e t s i z e ) , ’

i t e r a t i o n s ’ ] )
73 xlim ( [ 0 1 ] )
74 ylim ( [ 0 1 ] )

TMunstableset.m

1 f unc t i on [ ] = TMunstableset (Map, Max composition , Prec i s i on , Epsi lon ,
S e t s i z e , Dot s i z e )

2

3 % Toy Model compos it ion
4 %
5 % This func t i on shows unstab le s e t o f every r e p e l l i n g p e r i o d i c po int .
6 %
7 % Map Enter a func t i on handle to eva luate .
8 %
9 % Max composition I f t h i s number i s non−zero , i t w i l l f i n d the

10 % p e r i o d i c po in t s o f equal or l e s s than t h i s number
11 % of i t e r a t i o n s f o r the choosen map .
12 %
13 % P r e c i s i o n The p r e c i s i o n used f o r c a l c u l a t i n g p e r i o d i c po in t s .
14 % Use a decimal number to determine the step s i z e .
15 %
16 % S e t s i z e The number o f e lements f o r every unstab l e s e t .
17

18 so lArray = NaN(2ˆ( Max composition + 1) − 2 − Max composition , S e t s i z e ) ;
19 xArray = so lArray ;
20 compPerPntPosition = 0 ;
21

22 % Display a load ing bar to v i s u a l i z e the p rog r e s s .
23

24 f p r i n t f ( ’ \n Going through a l l compos i t ions . . . \ n ’ )
25 f p r i n t f ( ’ |1−−4−−7−−10−−14−−18|\n ’ )
26

27 f o r compos it ion = 1 : Max composition
28

29 [ perPoints , s l ope ] = TMcomposition (Map, composit ion , Prec i s i on , 0 , 0)
;

30

31 so lArray ( compPerPntPosition + 1 : compPerPntPosition + s i z e ( perPoints
, 1 ) , 1) = . . .

32 perPo ints + Eps i lon ;
33 xArray ( compPerPntPosition + 1 : compPerPntPosition + s i z e ( perPoints , 1 )

, : ) = . . .
34 repmat ( perPoints , 1 , S e t s i z e ) ;
35

36 f o r i t P o i n t = 1 : s i z e ( perPoints , 1 )
37

75



38 i f abs ( s l ope ( i t P o i n t ) ) >= 1
39

40 f o r i t S e t = 2 : S e t s i z e
41

42 so lArray ( compPerPntPosition + itPo int , i t S e t ) = . . .
43 Map( so lArray ( compPerPntPosition + itPo int , i t S e t − 1)

) ;
44 end
45 end
46 end
47

48 compPerPntPosition = compPerPntPosition + s i z e ( perPoints , 1 ) ;
49

50 f p r i n t f ( ’#’ )
51 end
52

53 f p r i n t f ( ’ \ nPlot t ing . . . \ n ’ )
54

55 s c a t t e r ( reshape ( xArray , [ ] , 1) , reshape ( solArray , [ ] , 1) , Dot s i ze , ’b ’ )
56 t i t l e ( [ ’The unstab le s e t s o f per . po in t s with max . per iod ’ , num2str (

Max composition ) ] )
57 x l a b e l ( ’ Values o f e x i s t i n g unstab le per . po in t s ’ )
58 y l a b e l ( [ ’The unstab le s e t with in ’ , num2str ( S e t s i z e ) , ’ i t e r a t i o n s ’ ] )
59 xlim ( [ 0 1 ] )
60 ylim ( [ 0 1 ] )

TMpredictability.m

1 f unc t i on [ valsArray , ecount ] = TMpred ic tab i l i ty (Map, Tau , Sample s ize , . . .
2 Event l imit , I n i t i a l , Map precis ion , Want plot )
3

4 % Calcu la te the time−Tau Lyapunov exponent f o r extreme events o f a map .
5 %
6 % Map Enter a func t i on handle to eva luate .
7 %
8 % Tau The lead time .
9 %

10 % Sample s i ze The number o f i t e r a t i o n s o f the forward o r b i t to
11 % i n v e s t i g a t e .
12 %
13 % Event l im i t The value f o r which exceed ing va lue s are cons ide r ed
14 % as extreme events .
15 %
16 % I n i t i a l The i n i t i a l va lue .
17 %
18 % Map prec i s ion P r e c i s i o n used f o r c a l c u l a t i n g the s l ope o f the map .
19 %
20 %
21

22 c l o s e a l l
23
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24 orb i tArray = NaN(1 , Sample s i ze ) ;
25 valsArray = NaN(3 , Sample s i ze ) ;
26 orb i tArray (1 , 1 ) = I n i t i a l ;
27 ecount = 0 ;
28

29 mapPoints = 0 : Map prec i s ion : 1 ;
30 mapPoints = [ mapPoints ; mapPoints ] ;
31 [ ˜ , S ] = s i z e ( mapPoints ) ;
32 f o r i t e r = 1 : S
33 [ ˜ , p ] = dfunc (Map, Tau , mapPoints (1 , i t e r ) , Map prec i s ion ) ;
34 mapPoints (2 , i t e r ) = p ;
35 end
36

37 f o r i t e r = 1 : Sample s i ze − 1
38 orb i tArray (1 , i t e r + 1) = Map( orb i tArray (1 , i t e r ) ) ;
39

40 i f Tau <= i t e r && orbi tArray (1 , i t e r + 1) > Event l im i t
41 ecount = ecount + 1 ;
42 valsArray (1 , ecount ) = orb i tArray (1 , i t e r + 1 − Tau) ;
43 end
44 end
45

46 valsArray = valsArray ( : , 1 : ecount ) ;
47

48 f o r i t e r = 1 : ecount
49 [ s lope , v a l s ] = dfunc (Map, Tau , valsArray (1 , i t e r ) , Map prec i s ion ) ;
50 valsArray (2 : 3 , i t e r ) = [ va l s , l og ( abs ( s l ope ) ) /Tau ] . ’ ;
51 end
52

53 [ arrayCount , arrayVals ] = groupcounts ( round ( valsArray (3 , : ) . ’ ,− f l o o r (
log10 ( Map prec i s ion ) ) ) ) ;

54

55 i f Want plot == 1
56

57 di sp ( arrayCount . ’ )
58 di sp ( arrayVals . ’ )
59 di sp (mean( valsArray (3 , : ) ) )
60 di sp (sum( valsArray (3 , : )<0)/ ecount )
61 %disp ( ecount )
62 %disp (sum( valsArray (3 , : )<0) )
63 hold on
64 p lo t ( mapPoints (1 , : ) , mapPoints (2 , : ) )
65 s c a t t e r ( va lsArray (1 , : ) , va lsArray (2 , : ) , ’ r . ’ )
66 x l a b e l ( ’ va lue x ’ )
67 y l a b e l ( [ num2str (Tau) , ’− f o l d map app l i ed to x ’ ] )
68 t i t l e ( [ ’ V i s u a l i z a t i o n o f extreme events a f t e r l ead time ’ , num2str (Tau) ] )
69 hold o f f
70 f i g u r e
71 xlim ( [ 0 1 ] )
72 s c a t t e r ( va lsArray (1 , : ) , va lsArray (3 , : ) , ’ r . ’ )
73 x l a b e l ( ’ va lue x ’ )
74 y l a b e l ( [ ’ time− ’ , num2str (Tau) , ’ Lyapunov exponent o f the ’ , num2str (Tau) , ’−
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f o l d map app l i ed to x ’ ] )
75 t i t l e ( [ ’ Lyapunov exponents o f extreme events a f t e r l ead time ’ , num2str (

Tau) ] )
76 f i g u r e
77 histogram ( valsArray (3 , : ) , f l o o r ( min ( valsArray ( 3 , : ) ) ) : c e i l (max( valsArray

( 3 , : ) ) ) )
78 x l a b e l ( ’ va lue s o f Lyapunov exponents ’ )
79 y l a b e l ( ’ occurances ’ )
80 t i t l e ( ’ Histogram of Lyapunov exponents ’ )
81 end
82

83

84

85 f unc t i on [ s lope , x ] = dfunc (Map,Comp, I n i t i a l , P r e c i s i o n )
86

87 % d func
88 %
89 % Calcu la te the s l ope o f the n−f o l d compos i t ion o f a map at an i n i t a l .
90

91 i f i s a (Map, ’ f unc t i on hand l e ’ )
92

93 e l s e
94 di sp ( ’ ! No func t i on handle input in to v a r i a b l e ”Map” o f func t i on ”

dfunc ” . ’ )
95 end
96

97 x = I n i t i a l ;
98

99 s l ope = 1 ;
100

101 f o r i t = 1 : Comp
102

103 s l ope = s l ope ∗ (Map( x + P r e c i s i o n ) − Map( x ) ) / . . .
104 ( P r e c i s i o n ) ;
105

106 x = Map( x ) ;
107

108 end
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forward asymptotic, 11
forward orbit, 9

graphical analysis, 10

hyperbolic periodic point, 12

image, 9
initial condition, 8
intermediate value theorem, 47
invertible, 9

local stable set, 13
local unstable set, 13
Lyapunov exponent, 13

map, 9
mean value theorem, 12
multiplier, 12

n-fold composition, 9
neighbourhood, 14

nth iterate, 9

one-to-one, 9
onto, 9

partial inverse, 9
periodic point, 10

attracting, 11
period, 10
prime period, 10
repelling, 11

phase space, 8
Poincaré map, 10
Poincaré section, 10
pre-image, 9
prognostic equation, 8

smooth, 15
snap-back repeller, 14

non-degenerate, 15
solution curve, 8
stable set, 11

time series, 9
time-n Lyapunov exponent, 13
trajectory, 8
transient, 16

unstable set, 11
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