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Abstract: Due to a multiplicity of factors, the world’s energy demand will increase for the
upcoming decades. In meeting this demand, renewable energy sources such as wind are seen as
attractive alternatives, but their high degree of variability makes integration into power grids a
challenge. Intelligent prediction methods, such as echo state networks (esns), may prove to be
part of the solution. However, studies on feature design for input into such networks is scarce.
Thus, the question “What good features can be designed in helping to solve the very short-term
wind speed prediction task by supervised machine learning?” is posed, concentrating on esns.
To address this question, six meteorological variables from the wind toolkit are subjected to a
series of performance tests via appropriately tuned esn models. By comparing resulting average
nrmse values to a reference persistence model, three conclusions are drawn: (i) only the feature
wind speed appears to be informative in the task; (ii) spatially diverse features are informative,
and (iii) decomposing input features into smooth and noise sub-signals raises informative quality.
Keywords: Echo State Networks (esns) ·Wind Speed Prediction · Supervised Machine Learn-

ing

1 Introduction

According to the United Nation’s world popula-
tion medium-variant projection, mankind is ex-
pected to grow until at least the end of this century
(United Nations, Department of Economic and So-
cial Affairs, Population Division, 2019). Addition-
ally, multiple nations are within an industrialising
process, and see their living standards get raised.
Consequentially, the global energy demand is an-
ticipated to rise further.

In order to meet this demand, up until now,
mostly traditional energy sources have been ex-
pended. These are primarily (hydro)carbons and
their derivatives (petrol, coal, and natural gas;
Panwar, Kaushik, and Kothari, 2011). However,
multiple downsides to these sources have been iden-
tified in the last several decades, such as its ex-
pected depletion at the current rate of exploita-
tion, as well as its environmental impact (Park,
2014) for instance, demonstrates this for ash from
coal-powered plants). As such, policy makers and
others have turned to so-called alternative (or re-
newable) energy sources: “[. . .] primary, domestic
[i.e. not exclusively for industry-level usage], inex-

haustible sources of energy” (Panwar et al., 2011,
p. ). Renewables consist chiefly of solar, wind,
hydro, geothermal, and tidal energy. Their contri-
bution to the global energy supply is expected to
rise by  percent points from  to  (Panwar
et al., 2011).

However, adoption of renewable energy sources is
obstructed by an inherent property that problema-
tises integration into power grids: their intermit-
tency (or, irregularity) of output (Diógenes, Claro,
Rodrigues, & Loureiro, 2020; Sinsel, Riemke, &
Hoffmann, 2020; Soman, Zareipour, Malik, & Man-
dal, 2010; Veers et al., 2019). While traditional
sources such as coal can be steadily supplied and
burned, users are dependent on meteorological cir-
cumstances whether wind will blow, or the sun
will shine. The system that produces these con-
ditions cannot easily be modelled, and, as a re-
sult, power grid operators cannot reliably depend
on the output of renewables; this inevitably leads
to over- and undersupply of power, which is expen-
sive (Ahmed, Al-Ismail, Shafiullah, Al-Sulaiman, &
El-Amin, 2020).

To address this irregularity problem, a straight-
forward idea is to predict the energy sources output
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for some time horizon. Sinsel et al. (2020) reach this
conclusion after their root-cause analysis on inte-
gration of renewable energy into power grids. Fur-
ther, Veers et al. (2019) state in their third grand
challenge of harnessing wind energy that “compu-
tational modelling methods” are required, as “[. . .]
wind [. . .] must provide more predictable and con-
trollable power” (p. ). This latter community –
that of wind energy – seems to have embraced the
prediction approach, where some even argue that
it is ‘invaluable’ for successfully harnessing wind
for energy (Foley, Leahy, Marvuglia, & McKeogh,
2012).

Since numerous studies have been conducted
on wind speed prediction, three taxonomies have
been developed throughout reviews to categorise
and orient approaches; they are based on time
frame (Ahmed et al., 2020; Foley et al., 2012;
Jung & Broadwater, 2011; Soman et al., 2010), in-
tended use (Jung & Broadwater, 2011), and ap-
proach (Foley et al., 2012; Jung & Broadwater,
2011; H. Liu, Chen, Lv, Wu, & Liu, 2019). The first
system categorises predictors based on the predic-
tion range: very short-term (1 s–0.5 h), short-term
(until 6 h), medium-term (until one week), and long
term (up until years). System two classifies based
on whether individual turbines, groups of turbines
or several wind parks are used, whether predic-
tions are given in probability ranges (or not), and
whether turbines are on- or offshore. Lastly, the
third system groups predictors by their method: ei-
ther via uncertainty analysis (which is probabilis-
tic), or single-point forecasts (which can be phys-
ical, statistical, intelligent, or hybrid in nature).
(Here, ‘intelligent’ refers to the array of ai methods
to address classification and regression problems.)
When examining the existent wind speed predic-
tion literature, it can be noted that most work is
performed in the (very-)short time frame, focuses
on one or multiple turbines, and use intelligent and
hybrid predictors (sometimes also called ‘ensemble’
methods).

Especially for these frequently-used intelligent
predictors, the quality of input data is of great im-
portance, as it largely determines the success of its
performance. Besides tuning the system to the in-
put variables, it is also becoming central to select
among features so as to raise the generalising ability
of the network, in part due to the rise in availability
and abundance of data (Guyon & Elisseeff, 2003).

A brief overview of this discipline is therefore in
order.

Feature selection, defined as “a process that se-
lects a subset of original features,” (H. Liu and
Yu, 2005, p. 491) may benefit intelligent predic-
tors in three ways: it reduces resources (such as
computation time and energy), maintains or even
increases the performance of models, and may give
users insight into the relevant factors of the system
which their model is seeking to mimic. Generally,
feature selection approaches are divided into a fil-
ter, wrapper, and hybrid category (H. Liu & Yu,
2005; Salcedo-Sanz, Cornejo-Bueno, Prieto, Pare-
des, & Garćıa-Herrera, 2018). When a predictor’s
performance is used to evaluate subsets of data, the
wrapping approach is utilised. If, instead, an exter-
nal measure of ‘goodness’ is used (such as degree
of correlation), the approach belongs to the former
category. Combining the two lead to hybrid meth-
ods.

Within the literature on wind speed prediction,
multiple authors have addressed the issue of fea-
ture selection. Examples include Mart́ın-Vázquez,
Aler, and Galván (2017), who studied selection of
features for prediction of wind speed at a sim-
ulated wind farm in Sotavento, Spain. Specifi-
cally, they employed two machine learning mod-
els (a support vector machine, and a gradient tree
boosting algorithm) that functioned as both wrap-
per evaluators, and as overall predictors. Similarly,
Salcedo-Sanz et al. (2018) developed a unique al-
gorithm, called Coral Reef Optimisation with Sub-
strate Layer (cro-sl) which, together with an Ex-
treme Learning Machine (elm), cooperated in a
wrapper feature selector for wind speed prediction
on an hourly and daily basis. The authors in this
work also give a review of other studies on feature
selection for renewable energy source prediction;
they estimate from the collected results that util-
ising feature selection may lead to improvements
between 5–40%.

Nonetheless, most studies in wind speed predic-
tion appear to revolve mainly on the predictor and
pre-processing techniques used. When more data
becomes publicly available, and particularly when
information collected at various turbines are con-
sidered (that is, a spatial dimension is added to the
prediction), feature selection may improve results.
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Statement of research question

Considering this relative scarcity of analyses on fea-
ture selection and design, this paper addresses the
question: “What good features can be designed in
helping to solve the very short-term wind speed pre-
diction task by supervised machine learning?”

In order to operationalise this research ques-
tion, some terms need to be specified. Particularly,
‘good’ is interpreted as the improvement (or deteri-
oration) on one or more error metrics, in compari-
son to not including the feature in the net. Further-
more, multiple features will be proposed, but no
claim will be made that this list exhausts all possi-
ble (or ‘good’) inputs. Also, a specific data set will
be chosen to represent the task of wind speed pre-
diction. Lastly, an echo state network neural net-
work architecture will serve as supervised machine
learning method, as it has certain properties that
may prove useful in the task of predicting (highly)
nonlinear time series, to which wind speed progres-
sion over time belongs. Moreover, within the liter-
ature, this network type appears to have not yet
been considered in a feature selection scheme; its
use could thereby contribute to the wind speed fea-
ture selection literature.

Furthermore, it must be noted that this study
builds on the work of Khanal (2018). In their work,
wind speed was predicted with an esn at a thirty-
minute interval. In this work, the scope of their
work will be expanded by (i) explicitly consider-
ing which ‘good’ features can be designed, (ii) at
numerous time intervals (not only 30 minutes).

2 Task Description

Predicting upcoming wind speed at some location
may be regarded as an instance of the supervised
(machine) learning task; a high-level description is
given below.

The supervised learning task

The supervised learning task consists of a so-called
training and testing set, Strain and Stest. These sets
share a similar structure: both contain exclusively
pairs 〈I,O〉, where I (also known as the input) and
O (the output) are tuples of lengths L and K, re-
spectively. L,K ≥ 1. Moreover, L and K are equal
for all pairs in both Strain and Stest. If the elements

of O are discrete (e.g. a subset of Z), the task is
sometimes referred to as a classification task. If,
on the other hand, O stores continuous values, the
term regression task is often employed.∗

Now, the goal of this task is as follows. Given a
presented input I, predict O ‘as accurately as pos-
sible’. Mathematically, we seek the model f∗ map-
ping I to O, such that:

f∗ = arg min
f∈F

(ε(Of , O)) ,where

Of = {f(i) | i ∈ I} (Output of f)

where F is the space of functions in which is
searched, and ε(·, ·) represents a loss function that
assigns to the discrepancy of Of to O an (ordinar-
ily non-negative) real value, indicating the degree
of error.

In order to do so, the learning procedure is split
into two parts: the training and testing phase.
Etrain and Etest belong to the former and latter
phase, in that order. In the former phase, Os are
given as feedback to improve – thus the supervisory
part of the task – while in the latter either no feed-
back is used, or own predictions are used in future
evaluations.

The notion of ‘accuracy’ in the task’s goal left as-
is is ambiguous: after all, how is ε implemented?’
Numerous specific error metrics have been devel-
oped. Two often-used examples are the normalised
root mean squared error (nrmse) and the mean
absolute percentage error (mape).

The wind speed prediction task

In the specific case of predicting wind speed, the
inputs I consist of features that are intended to
be of use in the forecasting process. Examples are
the present-moment wind speed or temperature at
the turbine’s altitude, but derivative features such
as decomposed sub-signals or signals from spatially
distant turbines may be considered as well. O con-
sists of the future wind speed. Different prediction
horizons may be selected, but here the very short-
term horizon is chosen; it varies from a couple of
minutes to around half an hour.

∗Of course, it may be that O holds both limited, discrete
values and continuous values; this description is not intended
to be exhaustive.
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3 Model

The echo state network (esn) is a specific kind of re-
current neural network, in turn an approach to ad-
dressing the supervised learning problem. Concep-
tually, the esn architecture was conceived by two
teams in tandem, with different research objectives.
The first party consisted of Jaeger (2001), whose
naming we use in this paper, while the second team
composed of Maass, Natschlaeger, and Markram
(2002) called the network type liquid state ma-
chines (lsms). Nowadays, both approaches are cat-
egorised under the term reservoir computing (RC),
along with similar techniques.

Describing the approach at a low level of resolu-
tion, there are two primary phases in training an
esn. At the first step, the network is driven by the
sequence of training inputs, which alters the state
of the reservoir. If this is done appropriately, the
following step involves connecting a set of ’optimal’
readout weights from the reservoir to the output.
The network is then ready to map novel inputs to
outputs.

Theory

The echo state network consists of a number of el-
ements, with which we can compose the equations
that govern its dynamics. To begin with the first
set of elements, an echo state network consists of
three primary layers: the input, reservoir, and out-
put. These layers are represented by three vectors
(which vary over discrete time), u(n), x(n), and
y(n), and have corresponding dimensions L,N , and
K.

Said layers are connected by a set of four (static)
weight matrices: the input is linked to the reser-
voir via Winput ∈ RN×K , the reservoir has in-
ternal connections (i.e. recurrent pathways) via
W ∈ RN×N , reservoir-to-output connections are
governed by Wout ∈ RL×(K+N+L) (although re-
current connections among the outputs are less
common), and finally, output-to-reservoir feedback
weights are specified with Wback ∈ RN×L.

Moreover, two-tuples of functions f and fout, a
bias vector b, and a noise vector ν(n) will be em-
ployed. The first two consist of functions to apply
to single entries of a reservoir state. Further, b and
ν(n) are vectors whose entries are sampled from
a distribution (one frequently used is the uniform

distribution: unif(−a, a), a ∈ R+). The main differ-
ence between the two is that the latter changes per
time step; the former is ‘static’, and serves to diver-
sify the nature of the reservoir neurons by applying
individual shifts to their activations.

Given these components, we can specify how the
esn updates its state in light of new input. Further-
more, we can describe how, after having been pre-
sented with the training inputs, the esn can com-
pute an appropriate Wout.

The former is defined in two steps. Specifically,
the state of an esn at time t is updated with

x̃(n) = f
(
Winu(n) + Wx(n− 1) +

Wbacky(n− 1) + b
)

+ ν(n),
(3.1)

x(n) = (1− α)x(n− 1) + αx̃(n). (3.2)

Here, Equations 3.1 and 3.2 are the first and second
steps, respectively. The latter step is characteristic
for leaky integrator neurons; we use these neuron
types in this work. α ∈ 〈0, 1] is the leaking rate – a
parameter of the network.

The update equation is repeated numerous times
during training, once for each input vector u(n).
Once the training reaches its end, the second cen-
tral equation in the esn scheme is used; it spec-
ifies the weights from the reservoir to the output
layer. Multiple options are available, but two com-
mon ones are:

Wout =
(
fout

)−1
(D)E+; (3.3)

Wout =
(
fout

)−1
(D)E (EE′ + βI)

−1
, (3.4)

where D ∈ RL×T (with T the number of dis-
crete time steps) is the teacher signal, and E =
[U;X;Y] ∈ R(K+N+L)×T the matrix of extended
system states, collected over columns. In Equa-
tions 3.3 and 3.4, the first approach is the direct
pseudo-inverse solution (which may be computa-
tionally demanding), and the second ridge regres-
sion (or regression with Tikhonov regularisation);
β ∈ 〈0, 1] is another parameter to the model: the
ridge regression coefficient.

Given this Wout, the output of the system at the
specified time is given by

y(n) = fout
(
Woute(n)

)
, (3.5)

where e(n) is the extended system state at time
step n.
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The last topic of the theory behind esns dis-
cussed here involves the echo state property (or
esp). The esp is applicable to an esn when the
reservoir state can be constructed completely via
the (left-infinite) input history. Expressed mathe-
matically:

x(n) = f echo(. . . ,u(n− 1),u(n)), (3.6)

where the f ∈ f echo are the so-called echo functions.
The esp is of essential importance in both theory

and practice of esns, as it is a necessary condition
for them to function properly. It also provides the
foundation for esns functioning as networks with
the capability to store historical inputs (that is, to
‘memorise’); this is central for certain tasks such as
time series prediction, in which consecutive inputs
are heavily determined by preceding inputs.

Theoretical findings, laid out in Jaeger (2001),
give two conditions that may serve as ‘configuration
boundaries’ of esns. The first condition is sufficient
for the esp to hold. It states that if the largest sin-
gular value σmax of the internal weight matrix W is
less than 1, the system has echo states. In contrast,
the second condition is sufficient to rule out echo
states, and asserts that if the spectral radius of W
(its largest absolute eigenvalue) is strictly greater
than 1, and the input consists of zeroes, the esn
does not have echo states.

Architecture

As was stated before, although echo state networks
are conceptually rich, the basic algorithm can be

Algorithm 3.1 Initialise the esn.

Require: 〈K,N,L〉, the input, reservoir, and out-
put layer sizes; c, the connectivity parameter,
and sin, sres, and sback, the connection scalars.

Ensure: An initialised esn, ready for training.
Win ←− A dense N×K matrix, whose entries are
sampled from sin · unif(−1, 1)
W ←− A sparse N × N matrix with c percent
connectivity, whose values – if nonzero – are sam-
pled from unif(−1, 1). Hereafter, W gets scaled
by sres/ρ(W)
Wback ←− A dense N × L matrix, whose values
are sampled from sback · unif(−1, 1)
x←− 0 (of size RN )

Algorithm 3.2 Train the esn.

Require: Leaking rate α and ridge regression coef-
ficient β; an initialised esn, and a training input-
output tuple 〈U,D〉.

Ensure: A weight matrix Wout that minimises
the error between D and fout(WoutE) in a least
squares sense. (note. Here, we use Equation 3.4,
but this is not the only option available.)
for 0 ≤ n < T do

Set x̃(n) according to Equation 3.1
Set x(n) according to Equation 3.2
e(n)←− [u(n); x(n);y(n− 1)]

end for
E←− E [:, ntransient :T ]
Ytrain ←− Ytrain [:, ntransient :T ]

Wout ←− (fout)
−1(

Ytrain
)
E′ (EE′ + βI)

−1

Algorithm 3.3 Predict with the esn.

Require: A trained esn and a set of testing inputs
U ∈ RK×T .

Ensure: A sequence of outputs Ypred obtained
from the high-dimensional esn reservoir.
x,Z←− empty
yprev ←− 0
for 0 ≤ n < T do

Set x̃(n) according to Equation 3.1
Set x(n) according to Equation 3.2
e←− [u(n);x(n);yprev]
yprev ←−Woute(n)

end for
return fout(WoutE)
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described quite concisely. In essence, to train these
networks, three stages follow up one another. These
are the (i) initialisation, (ii) training, and (iii) pre-
diction stages of the esn. These will now be dis-
cussed briefly; the full pseudocode is laid out in
Algorithms 3.1–3.3. Note here, that ρ(·) is the spec-
tral radius of a matrix, that is, the largest absolute
value of said matrix’s spectrum (or, its set of eigen-
values).

During the section on esn theory, it already be-
came apparent that echo state networks consist of
multiple elements, such as layers, weights, and mul-
tiple central state-changing formulas. Most of these
elements are initialised at the conception of the
network – that is, even before it is trained. Algo-
rithm 3.1 shows specifically which components fall
within this category. Notice that Wback may be dis-
abled by setting sback = 0. Doing so is required for
any problem that does not show elaborate pattern-
generating behaviour. The other parameters, on the
other hand, are meant to be set to nonzero values;
the network will break otherwise.

Note that the distributions used during the
initialisation can be replaced by, for instance,
normal(0, 1). Indeed, in general, many components
in this outline are exchangeable for similar parts.
Since this specific setup gives a good impression of
the idea of esns in practice, we use these settings.

After initialisation, the network is driven with
the training input. If feedback is enabled, the de-
sired, previous outputs ytrain(n − 1) are supplied
via the Wback into the reservoir, which is called
teacher forcing. (In contrast, during prediction, the
esn’s own outputs y(n−1) are used.) While contin-
ually executing the two update steps, an extended
system state matrix E ∈ R(K+N)×T is filled with
the current vertically stacked [u(n);x(n)]s. Once
finished, a transient period (in which the network
had to escape from the initial x = 0 condition)
ttransient is left-removed from the extended system
state and training output matrices E and Ytrain.
Then, the ‘supervision step’ of the esn commences:
linear regression with respect to the training out-
put.

Two approaches to this linear regression prob-
lem – finding that Wout that minimises the error
between Ytrain and WoutE (in what specific sense
depends on implementation) – have already been
listed. If users opt for Equation 3.4 (which we do in
our listings), a regression parameter β needs to be

set, which manages regularisation during the train-
ing. This penalises excessively large Wout, suspect
of potential overfitting.

Once Wout has been calculated, the network can
predict novel input sequences U. The procedure
works largely the same as it was during training:
drive the reservoir by the input data, and store the
results in E. The only large differences are that we
do not remove the transient period – the network
is already attuned to the type of data it needs to
handle – and the fact that we store outputs for the
final result by computing y(n) ←− fout(Woute(n))
for the different ns.

Considering the complete algorithm, we may see
why esns are adept at handling nonlinear data, and
why they are relatively fast in training.

The first phenomenon can be explained largely
by the projection of the input sequences u(n) into
the high-dimensional ‘reservoir space’ RN via the
Win, especially with relatively large networks, such
as those with thousands of nodes. This allows the
information to be more easily discriminated. More-
over, due to the relative sparseness and appropriate
spectral radius of W, the network has rich, nonlin-
ear dynamics, which also greatly contributes to the
flexibility of the esn in prediction and classification
tasks.

Phenomenon two emerges mainly due to the last
step of the output training. Normally, rnns need to
use intensive backpropagation techniques for train-
ing. In contrast, the esn needs to perform a rela-
tively inexpensive linear regression of the teacher
output.

Prediction Task

Lastly, a brief exposition of the prediction task in
the context of the esn is follows, relating the dis-
cussed material to the task at hand.

Given a set of inputs Itest ∈ RL×T for testing,
the goal is to obtain predictions Otest ∈ RK×T that
are l ∈ Z+ steps forward in time with respect to
those of Itest. This is achieved by (i) initialising
the esn according to Algorithm 3.1, (ii) training
the network with training data according to Al-
gorithm 3.2 (which involves inputs different from
sItest), and, lastly, (iii) driving the esn’s reservoir
by Itest and reading out its response at the output
layer, yielding Otest.
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4 Methods

Data

For this project, a dataset needs to meet a number
of requirements so as to be useful in answering the
research question. First, it has to be of sufficient
size, as machine learning methods such as the used
esn simply require considerable amounts of data,
or at least tend to perform better when more data is
available to train, validate, and test with. Second, it
has to be of sufficient ‘temporal granularity’ in the
sense that it could be employed for very short-term
wind speed prediction. Third, it has to have more
features than just wind speed data, as the research
question relies on the breadth of raw features to
design new (and potentially useful) ones. Lastly, it
has to capture data for multiple locations, so that
the spatial dimension of features could be used in
feature design, too; Jung and Broadwater (2011)
and others suggest this may be useful.

A dataset that supersedes the one used by
Khanal (2018) (i.e. the Eastern Wind dataset)
has been selected. The Wind Integration National
Dataset (wind), built by Draxl, Clifton, Hodge,
and McCaa (2015) at the National Renewable En-
ergy Laboratory (nrel), is a large set of simu-
lated data for the integration of wind into the
United States power grid. It consists of data for
over 126,000 sites (equally spaced out in 2 × 2 km
patches, with 7 years of data (ranging from –
), where each site possesses  variables. Since
not all features were available to the public, only
wind speed, wind direction, temperature, baromet-
ric pressure, air density, and wind power are used
(all available features, except time, which was used
for linking the data indices with dates and times);
also see Table 4.1 for an overview. Requirements i,
iii and iv are thereby met; condition ii is achieved
due to the grid spacing in the data.

Since working with all data would be unneces-
sarily cumbersome, an arbitrary 3 × 3 set of sites
in Diamond, Missouri have been chosen; see Fig-
ure 4.1 for details. From these sites, the  features
are tried and combined both temporally and spa-
tially to determine what may be of help in solving
the wind speed prediction problem using the esn.

Importantly, the features or feature combinations
are all normalised before exposing them to the esn,
meaning the mean value of the signals is brought

Figure 4.1: The locations of the turbines, along
with their relative locations listed
above the points. Coordinates range
from N37◦0′34.3′′ to N37◦2′48.3′′, and
from W94◦18′10.5′′ to W94◦21′0.1′′.
ids of the sites are – from top-left to
bottom-right – 30844, 30845, 30846,
30682, 30683, 30684, 30509, 3050,
and 30511.
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# Feature Detail Dimension Available Used

1 Time In utc s ×
2 Wind speed At 100 m m/s × ×
3 Wind direction At 100 m deg × ×
4 Temperature At 2 m K × ×
5 Barometric pressure At surface Pa × ×
6 Air density At 100 m kg/m3 × ×
7 Wind power Per 5 min MW × ×

Table 4.1: The Seven available features (of seventeen) provided by the wind dataset (partially
adapted from Draxl et al. (2015)). × indicates applicability.

to zero, and the variance is set to one. This is cen-
tral for echo state networks (among other network
types), as it allows all input signals to contribute
equally to the reservoir state (although different in-
put weight scalings could alter this situation), and
prevents saturation by certain high-magnitude sig-
nals.

For two examples of original (not-yet normalised)
input signals, and of a decomposed signal, see Fig-
ure 4.2.

Decomposition

As was noted in the introduction, wind speed (and
generally any meteorological variable) tends to vary
quite a lot over time. This volatility may lower the
quality of the data in certain contexts, such as su-
pervised machine learning.

This problem has been identified by multiple re-
searchers (for a review, see Qian, Pei, Zareipour,
and Chen, 2019); the literature appears to largely
agree that decomposition of the input data may
prove to be a partial solution.

Decomposition of time series data, in essence, in-
volves applying a procedure to said data to obtain
multiple ‘derived signals’. For instance, trends, sea-
sonal oscillations and noise may be separated from
one another using certain methods. Since such ‘sub-
signals’ only represent one aspect of the original
time series, users can identify what components of
the data may be informative for their task, and
continue with only those items. These parts may
be left as-is, or can be synthesised again with oth-
ers to obtain filtered signals. A common filtering
strategy is to only retain large trends, effectively
smoothing the original time series.

Two decomposition methods often used within
the wind speed prediction literature are the wavelet
transform (as in D. Liu, Wang, and Wang, 2005;
H. Liu and Chen, 2019; Wang, Lei, Liu, Peng, and
Liu, 2019) and singular spectrum analysis (such as
Chen et al., 2019). Due to the relatively large size
of the input features – leading to considerable com-
putation times – only the wavelet transform is em-
ployed.

The wavelet transform has been incrementally
developed by multiple scholars over a couple of
decades (starting in the eighties), but one re-
searcher often referred to as the instigator of mod-
ern wavelet theory is Daubechies (1992). It is
closely related to the Fourier transform in two re-
gards: both transport a signal to a different do-
main, and both extract frequency information from
the original signal. Different from the latter, how-
ever, is that the wavelet transform also obtains lo-
calised, temporal information; it actually strikes a
balance between the temporal and frequency do-
mains. Thereby, it avoids part of the limitation of
the Fourier transform: requiring signals to be rep-
resented as being composed of a set of infinitely
re-occurring sines and cosines. Especially for more
erratically behaving signals, this would lead to a
complex representation. Besides inclusion of tem-
poral information, the wavelet transform allows for
many basis functions – called wavelets – instead of
sines and cosines. Selecting an appropriate basis for
representation in the wavelet domain is crucial in
effectively decomposing via its technique.

Although the scope of this article does not al-
low us to go into fine detail of the wavelet trans-
form, the main idea is as follows: a high- and low-
pass filter variant of the wavelet are convolved with
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Figure 4.2: Two signals from the input data and a four-level decomposition of the 2011 cen-
ter turbine wind speed, plotted. Note that for the decomposition, the red signal is
the original, while the blue, brown, green, and orange ones are derived signals (from
smooth to ‘detailed’, or, noisy).

the target signal, leading in-place in the signal’s
left half to an approximation (roughly, ‘smoothed’)
sub-signal, and, in its right half, to a detail compo-
nent (often containing noise). The procedure then
is continually repeated in-place with approxima-
tion sections of the signal, until the filter’s length
has surpassed that of the approximation section;
the signal then has been fully decomposed. At this
point, undesired sections can be set to zeroes, after
which an inverse operation recomposes the signal.
The end result is a filtered signal, hopefully more
useful for the intended task.

During the experiment, the wavelet and decom-
position strategy used (if applicable) will be men-
tioned in the configuration listings. Furthermore,
the Python package by Lee, Gommers, Waselewski,
Wohlfahrt, and O’leary (2019) will be used.

Evaluation

Per run, esn parameters and a selection of to-be-
used input features will be utilised. The output fea-
ture remains constant: (future) wind speed, speci-
fied by lag l. Here, a brief outline of the evaluation
of single runs is explained.

First, the inputs I ∈ RL×T and expected out-
puts O ∈ R1×T (the output dimension K here set
to 1) will be lagged by l, creating an input and
output partition where respectively the first and
last T − l entries are selected: Il ∈ RL×(T−l) and
Ol ∈ R1×(T−l). In the dataset of the current exper-
iment, l = 1 would imply a 5-minute lag between
input and expected output, for instance.

Train
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(Discrete) time
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Train Test

Test

Test
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︙

K

Fold

Figure 4.3: A visual summary of Ksplit-fold tem-
poral cross-validation. Note that the
lag l between input and output is
contained in the training and test
sets themselves; it is therefore not
represented on the discrete timeline
in this figure.

Next, Il and Ol are split into Ksplit ∈ Z sec-
tions, producing Il,1, Il,2, . . . , Il,Ksplit

∈ RL×M and
Ol,1, Ol,2, . . . , Ol,Ksplit

∈ RL×M . Here,

M = b(T − l)/Ksplitc,

where the first (T − l) mod Ksplit have one added
entry.

With the Il,i and Ol,i, Ksplit− 1 instances of the
supervised learning problem can be made, following
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the temporal K(split)-fold cross validation scheme.
Specifically, the 〈Strain, Stest〉 tuples are configured
to be

〈〈Il,1, Ol,1〉 , 〈Il,2, Ol,2〉〉 ,
〈〈Il,1 ∪ Il,2, Ol,1 ∪Ol,2〉 , 〈Il,3, Ol,3〉〉 ,

...

Also see Figure 4.3 for a visual overview.
For each of the Ksplit − 1 supervised learning

problems, the esn is trained on Strain and tested
on Stest, producing output Oactual ∈ R1×(T−l) that
can be compared with the relevant Ol,i.

This comparison is achieved via the normalised
root mean square error (nrmse) metric. It is de-
fined as

nrmse(x1(n),x2(n)) =

√∑T
n=1(x1(n)− x2(n))

2

T · var2(x2)

where x1(b) and x2(n) are data sets (and the sec-
ond one the expected, ‘ground truth’ output); T the
number of discrete time steps present in the data
series, and var2(·) the squared variance. This met-
ric is frequently used in the wind speed prediction
literature (such as the papers in the introduction).
Moreover, the nrmse improves comparison across
datasets (not even necessarily wind speed predic-
tion ones) due to its normalisation component.

For the overall system, Ksplit = 12 folds is
set for the cross validation. ‘Goodness’ is mea-
sured in terms of model error, which corresponds
to the wrapper approach (cf. the filter and hybrid
approaches) discussed in the introduction. Three
parameters are optimised, following Lukoševičius
(2012, p. ): the spectral radius ρ(W), the leak-
ing rate α, and the input weight scales sin. Op-
timisation will not occur on a per-fold level, but
per execution of the complete validation scheme.
The technique used here is a grid search, where all
other parameters are set to the default values given
in Table A.1. For the spectral radius, the options
are {0.60, 0.80, 0.90, 0.95, 1.20}, and for the leaking
rate they are {0.7, 0.8, 0.9, 1.0}. For the sin, either
decomposition is used, or not. If it is not used, the
options are {0.8, 0.9, 1.0, 1.1, 1.2}; if wavelet decom-
position is selected, a Daubechies wavelet with 6
moments (sometimes referred to as a ‘D6’ wavelet)
and depth level 4 decomposition is utilised, produc-
ing subsignals 〈a, d1, d2, d3, d4〉 (where a, in wavelet

parlance, is called the approximation coefficient,
and the ds the detail coefficients). From these, four
reconstructions are made, using 〈a〉, 〈d1〉, 〈d2〉, and
〈d3〉. Then, together with the original signal (at the
first index), the reconstructed signals are separately
scaled with the following options:

〈0.2, 0.2, 0.2, 0.2, 0.2〉;
〈0.0, 0.5, 0.25, 0.125, 0.125〉;
〈0.0, 0.7, 0.2, 0.05, 0.05〉;
〈0.1, 0.8, 0.1, 0.0, 0.0〉;
〈0.0, 0.8, 0.2, 0.0, 0.0〉.

In phases other than phase i (see ‘Procedure’ sec-
tion below), input weight scales were determined
manually; see Appendix A for further details.

Lastly, the error metrics are compared against
those of a naive model, which is also subjected
to the temporal K(split)-fold cross validation. This
model is called the persistence model; for every
point in time, it predicts wind speed according to

p(n) = o(n− 1),

that is: the observation at the previous time point is
used as prediction for the current time step. Thus,
it implicitly assumes that the world will remain
static over time. For such noisy data as wind speed,
such a model may appear inappropriate. However,
for the very short-term time frame, this model is
used quite often as reference (see e.g. Jung and
Broadwater, 2011).

Procedure

Having covered the data, decomposition method,
and approach to performance evaluation, the over-
all procedure may now be described.

The experiment will unfold in three separate
phases. Each phase has a separate question, which,
together, aim to aim to answer the research ques-
tion.

In the first phase, a single year and relative tur-
bine location are chosen (2011 and the ‘Center’ tur-
bine in Figure 4.1, respectively); only from this lo-
cation input features are considered. Moreover, a
lag of five minutes is used. In this static environ-
ment, each of the six input features are exposed to
the esn, first in isolation, and later in groups. This
is done in a ‘greedy’ regime, meaning that, over
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iterations, single variables are added to the cur-
rent set of used features in order to see how perfor-
mance improves or deteriorates. That feature which
improves the performance most is selected as the
‘next-in-rank’ feature, thereby producing an order-
ing of the input features. In doing so, the question
“what near-turbine (or, local) features are informa-
tive to the esn?” is posed.

In phase two, the constancy constraint of loca-
tions is dropped, allowing consideration of input
features from remote turbines. As the number of
possible input configurations becomes quite large
in this stage, configurations are curated based on
meteorological plausibility. The question hereby ad-
dressed – and complementary to phase one – is:
“what remote features are informative to the esn?”

Phase three closes the experiment. Here, the
question “do the findings of phases one and two
hold in different situations?” is raised. An attempt
to answer it is done by varying the year and degree
of lag.

During these three phases, the average nrmses
of the various configurations for the input weight
scales (non-decomposed, and decomposed) are
recorded, so as to determine how decomposition
may possibly reduce model error (further). At the
end of each phase, a percentage range of improve-
ment (or deterioration) by decomposition on av-
erage nrmses is supplied, summarising over the
input features (phase i), extra spatial information
added (phase ii), and so on. Here, the best non-
decomposition input weight scaling model’s aver-
age nrmses are compared with those of the best
decomposition model.

By selection, decomposition, and combination
(also spatially) of the six input features via these
three incremental phases, the research question’s
‘good input features’ are intended to be found in a
relatively structured manner.

The project was developed in Python, using the
line of packages by Virtanen et al. (2020).

5 Results

As was explained in the methods section, the dis-
cussion of the results is split into three parts. Each
of these describes the outcomes of a separate phase.
As there are numerous parameters that have been
optimised per separate problem, only spectral radii
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Figure 5.1: Dotplot of performances of
individual-feature models in con-
trast to the persistence model. The
features ‘Density’, . . . , ‘Speed’ refer
to features , , , , , and  in Ta-
ble 4.1. Note: the cross symbolises
the median; the bars the standard
error.

and leaking rate ranges – two of the three pri-
mary parameters to tune, according to Lukoševičius
(2012) – are given here. For all models under dis-
cussion here, the reservoir size is N = 200 nodes.
A separate appendix lists full parameter configura-
tions. Moreover, all models mentioned in this sec-
tion have been tuned separately before comparison.

Phase I

In phase i, the task was to determine, when leaving
year, location, and degree of lag static, which input
feature (or combination of features) was most infor-
mative. This was studied by collecting  average
nrmse values from  separate runs of the -fold
temporal cross-validation scheme for each feature
model under consideration. Here, a run is under-
stood to be one complete execution of the cross-
validation mechanism, where, between runs, only
the rabdin esn model initialisation (e.g. ) varies.
The resulting samples of average nrmses per model
are box-plotted in Figure 5.1. Additionally, the av-
erage nrmse of the persistence model under the
same procedure is plotted as a dashed line as ref-
erence. In this plot, it appears that only the wind
speed feature leads to an improvement over the ref-
erence model in terms of error. For the individual
feature models, spectral radii varied from 0.6–0.7,
and leaking rates from 0.9–1.0.
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Figure 5.2: Dotplot of performances of non-
wind-speed features, plus wind
speed (from step  of phase i),
in comparison to the persistence
model.

Continuing the greedy search procedure, a set
of follow-up models were developed that incor-
porated, additionally to wind speed, one of the
non-wind speed features with the intention to im-
prove on the only-wind-speed model. The perfor-
mances of these models in the -fold temporal
cross-validation regime are displayed in Figure 5.2.
Immediately noticed here is that the models do
not truly seem to improve over the only-wind-speed
model. As such, phase i is halted, concluding that
only the wind speed feature appears to be suffi-
ciently informative to the esn. Quite similar to step
 of this phase, spectral radii were all set to 0.6,
while learning rates varied from 0.9–1.0.

For step i, for wind speed, decomposition reduced
the average nrmse by 30.1%. For air density and
temperature, 21.7% and 11.1% improvements were
observed, while for the remaining features no large
effects were noted.

Phase II

The experiment was subsequently continued by
starting phase ii. In this second phase, the task
was to determine whether features from spatially
distant turbines could be successfully incorporated
into the existing scheme from phase i to obtain a
better prediction.

Building on the impression that only wind speed
seemed to be of satisfactory informational quality,
wind speed features of the turbine combinations
north-south, east-west, north-east-south-west (the
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Figure 5.3: Dotplot of performances of models
inspired by phase i’s final model,
augmented with extra spatial in-
formation from different directions.
These directions refer to the tur-
bines in Figure 4.1.

four cardinal directions), and all directions (includ-
ing diagonals such as north-east) were added to the
phase i model and were re-tuned. The resulting per-
formances (following the same approach as in phase
i) are plotted in Figure 5.3. An apparent downward
trend on average nrmse can be discerned when
more spatial information is provided. For all the
models during this phase, the spectral radii were
set to 0.6, while the leaking rates were selected to
be 1.0.

For phase ii, decomposition structurally reduced
nrmse for all additions of spatial information; av-
erage nrmses reduced in the range 47.6%–53.7%.

Phase III

Having covered phases i and ii, only phase iii re-
mains, in which it is examined whether results repli-
cate in different years and with different degrees of
lag.

To determine whether the findings extrapolate to
other years, wind toolkit data for the same features
and identical locations, but for the year  (in-
stead of ) were prepared and presented to the
set of models from phase ii. Their performances
in this different context can be examined in Fig-
ure 5.4. Besides the observation that errors are sys-
tematically lower for both the esn instances and
the persistence model, again it can be discerned
that errors decrease once more spatial information
is given to the esn models.

12



0.00

0.03

0.06

0.09

East−west North−south Four−directions Plus−diagonals
Configuration

A
ve

ra
ge

 N
R

M
S

E

2012. Central turbine. Persistence NRMSE is 0.095.
2012 (Phase III)

Figure 5.4: Dotplot of performances of the
phase ii models in the year 
– the first component of phase iii.
Note the subtle shift downwards
of all errors in comparison to Fig-
ure 5.3.
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Figure 5.5: The influence of lag on model per-
formances. Red, blue, green, purple,
and brown stand for l ∈ {2, . . . , 6} (10
minutes to 30 minutes). The upper
dashed line is the persistence model
for l = 2; it is 0.163. The persistence
nrmses for the other ls are 0.206,
0.240, 0.269, and 0.293.

Apart from varying the year of study, the lag
used between input and expected output was raised
from the -minute baseline (i.e. l = 1) to -minute
increments between  minutes (l = 2) up until 
minutes (l = 6; frequently defined to be the end of
the ‘very-short term’). As was the case under ex-
periments for different years, models from phase ii
were used. The outcomes are shown in Figure 5.5.
As lag increases, average nrmses increase for both
the models as well as the persistence model: this
is primarily due to increasing uncertainty effects of
the future. However, for all lag scenarios, the seem-
ingly best-performing model (the including diag-
onals) maintains an improvement over the persis-
tence model’s average nrmse above 50%: even with
a -minute lag, the reduction in average nrmse is
a (1− 0.140/0.293) × −100% ≈ −52.2% reduction
in error (using the median of the esn model).

For phase iii, error reductions by decomposition
for variations in lag laid within 37.2%–55.6%. For
variations in year, these were 45%–57%.

Statistical analyses

In addition to the mentioned exploratory plots,
two statistical analyses have been performed on the
models’ errors. Specifically, (i) an exact Wilcoxon
signed-rank test for (a difference in) the median
– with support for tied data – was conducted on
each model’s sample of average nrmses, compar-
ing with the average nrmse of the associated per-
sistence model, and (ii) a Kruskal-Wallis test, fol-
lowed by a Dunn’s test, was performed on phase i’s
wind speed data, versus the spatial addition data
series of phase ii.

For the former test, the null and alternative hy-
potheses were as follows:

H0 : m ≥ mpersistence, and
HA : m < mpersistence.

where m stands for the true median, and
mpersistence for the average nrmse of the persistence
model.

The tests’ results are as follows. For the first four
features shown within Figure 1, the actual median
in average nrmses is not significantly less from the
persistence model average nrmse, V = 55, p ≈ 1.0
(these statistics applying to these four samples indi-
vidually). Thus, H0 is not rejected for these models.
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Original ew ns fd

ew
2.2168
0.0133

ns
2.4338 0.2170
0.0075 0.4141

fd
4.6506 2.4338 2.2168
0.0000 0.0075 0.0133

pd
6.2008 3.9840 3.7670 1.5502
0.0000 0.0000 0.0001 0.0605

Table 5.1: Outcomes of Dunn’s test for the sec-
ond statistical analysis (top: χ2 statis-
tic, below: p-value). ew, ns, fd and
pd stand for east-west, north-south,
four-directions, and plus-diagonals,
respectively. 0.05 p-level significance
in bold. ‘Original’ is phase i’s wind
speed.

In contrast, for all other samples, the actual me-
dian is significantly less from the persistence model
error, V = 0, p ≈ 9.8 · 10−4 (where again, the
same statistic applies to each model individually),
thereby rejecting H0 and deeming HA likely.

For the second analysis, comparing the wind
speed data of phase i with east-west, north-south,
four-directions, and plus-diagonals of phase ii, the
Kruskal-Wallis rank sum test tests whether all sam-
ples come from an identical distribution (H0), or at
least one group does not (HA).

The results indicate that at least one group sig-
nificantly differs from the rest in terms of average
nrmse outcomes, χ2(4) = 45.707, p = 2.834 · 10−9,
rejecting H0 and regarding HA as likely. Here-
after, Dunn’s test was applied to determine pre-
cisely which sample differences were significant. Its
outcomes can be examined in Table 5.1. When com-
paring phase i’s wind speed with the other sam-
ples (in which spatially diverse features were used),
p-values lower than 0.05 can structurally be seen,
suggesting addition of spatial information reduces
average nrmses obtained.

Diagnostics

Lastly, a brief note on model diagnostics. Since echo
state networks are machines that stand or fall de-
pending on the ‘quality’ of their internal reservoir
dynamics (among a set of other factors), four mark-

ers for performance have been tracked during test-
ing: the actual model output, the internal node ac-
tivations, the reservoir weight matrix sparseness,
and the average output weight value. (The second
and third diagnostic metrics are also discussed in
Lukoševičius (2012), p. 670 and pp. –, respec-
tively.) All these metrics seemed to behave as ex-
pected during the testing procedure: the expected
output generally follows the data, except at the be-
ginning, where it needs to ‘attenuate’ to the new
data, still being used to the training inputs; the
internal node activations seem to form variations
on linear combinations of the inputs; the inter-
nal weight matrix appears to be sparse, as well as
have an equal distribution of positive- and negative-
valued scalars, and the average output weight is
maximally around 4.

6 Conclusion

In the context of wind speed prediction, detailed
research has already been conducted, specifically
on how now-popular intelligent predictors can aid
in its goal. However, what input features help in
solving the supervised learning task has largely
remained implicit – instead of being studied ex-
plicitly. As such, the research question “What in-
put features are informative in the very-short term
wind speed prediction task?” was posed.

With the results collected, this question may be
answered in the context of an echo state network
(esn) training and predicting on the wind toolkit
data from  to . This answer has three
parts. They are as follows:

Part i. Of all features, only wind speed
appears to be sufficiently informative.
Here, ‘informative sufficiency’ means: the
ability to help the esn reduce its error be-
low reference (i.e. persistence model) lev-
els.

Part ii. Introducing features that origi-
nate from different turbines than the one
targeted for in the prediction seems to
prove informative for prediction.

Part iii. As was shown at the end of the
discussion of the phases in the results, de-
composition of inputs into smooth and de-
tail sub-signals appears to help in rais-
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ing the quality of said signals (at least
when utilising the wavelet transform, as
was used here).

Of these three general findings that together an-
swer the research question, parts ii and iii are
largely supported by the literature, while the first
is not. Specifically, using spatially diverse features
to derive prediction models in the context of wind
power prediction is explored in Mart́ın-Vázquez et
al. (2017), and decomposition methods are success-
fully used in many works, such as the wavelet trans-
form (e.g. D. Liu et al., 2015; Wang, Lei, Zhang,
Zhou, and Peng, 2019) and singular spectrum anal-
ysis (ssa; for instance Chen et al., 2019).

However, the notion that only wind speed is in-
formative is not in agreement with results from, for
example, Salcedo-Sanz et al. (2018) or the afore-
mentioned work by Mart́ın-Vázquez et al. (in which
many diverse features are used in harmony). Three
causes may be the root of the different results in
this study: (i) the data, (ii) the procedure, or (iii)
the model.

The wind toolkit data is deemed as being an
unlikely cause for the different results for two rea-
sons. First, the data seems to originate from a re-
spectable source (the nrel), and the data has been
extensively verified, according to its authors (Draxl
et al., 2015). Second, the data has been normalised
before subjecting it to the esn models; differences
in magnitude and shift should have been corrected
for.

A second hypothetical cause could be the pro-
cedure. Specifically, the fact that the non-wind
speed features were dropped due to a greedy search
among the possible features could have resulted in
a premature removal of said features. However, the
difference in average nrmse reduction seemed to
be quite considerable (consider again Figure 5.1),
making this cause less probable.

Lastly, the esn architecture may have been the
reason for the relative ineffectiveness of the remain-
ing input features. If this were the case, it would
mean that the model somehow could not extract
the ‘useful’ sections or patterns of these features.
For instance, this may occur when such a feature
largely behaves uncorrelated from the target signal.
If used as input, it would function mostly as noise
in the reservoir, hindering a successful build of an
output weight matrix.

Apart from this open issue, the performance of
the obtained models seems comparable (and even
slightly better, although difference of location and
year may be the cause) than that of Khanal (2018).
In this work, an nrmse of 0.1432 was obtained for
a 30-minute prediction horizon, while for the 30-
minute lag models here, average nrmses between
0.139–0.142 were collected (also see Figure 5.5).
Other authors either use the rmse instead of the
nrmse (such as in Wang, Lei, Liu, et al., 2019) or
work on (typically) hourly or daily prediction hori-
zons (as in the review by H. Liu et al., 2019), both
which problematise comparison.

A couple of future lines of research may be of
interest. First, the scope of the project could be
raised to wind parks instead of turbines (one of
the specialisations mentioned in the introduction;
also see Jung and Broadwater, 2011). Moreover,
more elaborate methods of constructing input fea-
tures could be used, such as taking the first deriva-
tive (between sampled points); in light of the non-
informative features, these methods may help, al-
though decomposition techniques like the wavelet
transform produce similar results with their de-
tail coefficients. Lastly, since this project consid-
ered only Diamond, Missouri, it may be central to
determine whether the results extrapolate to mul-
tiple sites (and thereby see whether the results are
not place-bound).

To conclude, the task of wind speed prediction
has once again been attempted, this time via combi-
nations and decompositions of input features. With
the insights from this study, the large-scale use of
renewable energy sources is sought to be brought
yet closer to reality.
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A Parameter Settings

In this appendix, the parameter settings for the var-
ious models mentioned in the thesis are described.

Unless otherwise specified, standard parameters
listed in Table A.1 apply to the listed configura-
tions.

During phase i, step , a grid search was per-
formed to determine which parameter combination
worked best for each of the individual features, be-
fore running separate tests with the final configu-
ration. These final configurations are shown in Ta-
ble A.2.

For the second step of phase i, wind speed was
supplied in the form shown in Table A.2 (that is, in
its decomposed form, with the same input weight
scales). The other features were individually added
to this wind speed feature following the configura-
tions in Table A.3, following a similar grid proce-
dure as in step . Importantly, they were not de-
composed here. Also see the table caption.

In phase ii, as the number of parameter com-
binations grew larger due to the number of sites
to consider, no grid search was performed. In-
stead, combinations were tested manually, start-
ing from the configurations of phase i. Moreover,
spatially remote features were each decomposed
by a 4-moments Daubechies wavelet, with 6 lev-
els of decomposition (so as to more extensively
smooth the data). Of the decomposition, sub-
signals 〈s1, s2〉 and 〈s3, s4〉 were used for recon-
struction. Then, these were prepended before the
central turbine’s decomposition of four sub-signals
(identical to those of phase i), and all were input
weight scaled according to Table A.4. Other pa-
rameters stayed as were specified in the ‘standard
parameters’ table (Table A.1).

An example may clarify this procedure. Consider
the addition of the eastern and western turbines (as
in the first row of Table A.4). Both the wind speed
signals for the eastern and western turbine were de-
composed according to the aforementioned wavelet
transform. Of all sub-signals, the first two (〈s1, s2〉)
and the third and fourth (〈s3, s4〉) were selected
to reconstruct into two reconstructed signals – call
these r1, r2. This is done for both the eastern and
western turbine, thus yielding r1,east, r2east , r1,west

and r2,west. These signals are input scaled and sent
into the network (columns 1–4 of Table A.4), be-
sides the four central turbine reconstructed time

series from phase i (columns 5–8). In a similar man-
ner, four directions leads to 2×4+4 = 12 columns,
or inputs (4 distant turbines, each yielding two re-
constructed, smoothed signals r1, r2).

To close, phase iii used parameters identical to
phase ii; the year and degree of lag was instead
changed: tuning for these new situations did not
appear to be contributing to a further error de-
crease.

18



Parameter Description Value

Reservoir size (N) The number of nodes present in the reservoir. 200
Connectivity (c) The fraction of non-zero entries in the W weight matrix. 1/20

Shifts A vector of vertical shifts to apply to inputs. 0
Noise (ν) The scalar for dynamic unif(−1, 1) noise to add to reservoir updates. 0

Tichonov coefficient (β) A ridge regression regularisation coefficient. 1/20
Bias level (b) A static unif(−1, 1) noise term to add to reservoir updates. 1/5

Transient period (ntransient) The number of time steps to drop before linear regression. 600
f A squashing function to use in reservoir updates. tanh(·)

fout A squashing function to use for transfer to output. 1(·)
Regression mode The approach to regression taken. Tichonov

sback The scalar for Wback. 0

Table A.1: Standard parameter values. Here, unif(a, b) stands for uniform noise sampled from the
real-valued range [a, b], 1 (·) for the identity function, and ‘Tichonov’ for ridge regression
with Tichonov regularisation via parameter β.

Parameter Density Direction Power Pressure Speed Temperature

Spectral radius 0.7 0.6 0.6 0.6 0.6 0.6
Leaking rate 0.9 0.9 0.9 1.0 0.9 0.9

Input weight scale i 0.2 0.0 0.1 0.8 0.0 0.2
Input weight scale ii 0.2 0.8 0.8 – 0.7 0.2

Input weight scale iii 0.2 0.2 0.1 – 0.2 0.2
Input weight scale iv 0.2 0.0 0.0 – 0.05 0.2
Input weight scale v 0.2 0.0 0.0 – 0.05 0.2

Table A.2: Parameters for phase i, step . The column names refer to the same parameters as
listed in Figure 5.1. Moreover, when more than one input scale was used, the last
four scales refer to scalings for decomposed signals via a Daubechies wavelet with two
moments and four levels of decomposition. (So, the complete, non-decomposed signal
is included at index one.)

Parameter Density Direction Power Pressure Temperature

Spectral radius 0.6 0.6 0.6 0.6 0.6
Leaking rate 1.0 1.0 1.0 1.0 1.0

Input weight scale i 0.05 0.05 0.05 0.05 0.10
Input weight scale ii 0.70 0.70 0.70 0.70 0.70

Input weight scale iii 0.20 0.20 0.20 0.20 0.20
Input weight scale iv 0.05 0.05 0.05 0.05 0.05
Input weight scale v 0.05 0.05 0.05 0.05 0.05

Table A.3: Parameters for phase i, step . Input weight scale i refers to the non-decomposed
feature, while the latter scales refer to the decomposed wind speed signal, using its
input scalings from Table A.2.
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Input weight scales · All values ×100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ew 18 1 18 1 70 10 1 1
ns Identical to ew.
fd 20 1 20 1 20 1 20 1 50 2 1 1
pd 11 1 11 1 11 1 11 1 11 1 11 1 13 1 11 1 11 1 1 1

Table A.4: Parameters for phase ii. ew up until pd stand for ‘east-west’ to ‘plus-diagonals’; for all
abbreviations see Table 5.1’s caption. All values are multiplied by 100 for compactness
(so in reality, we would have 0.18, 0.01, 0.18, . . .).
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