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Abstract— The lateral line is a unique fluid flow sensing

organ found in fish. It has been used as a model to create a
sensor array called an Artificial Lateral Line (ALL). This ALL
can be used in hydrodynamic imaging for the classification of
shapes, velocities or vibrations for objects moving under water.
The ALL could be a replacement for situations where other
sensors, like sonar or radar, might not function properly. Both
the sensor and the classification technique are relatively novel
and have promise for real world applications. This research
focuses on analyzing the performance of two feature extraction
techniques on two different flow datasets that have been created
by an ALL. The two different feature extraction methods are
used to retrieve computationally efficient features from the
two flow datasets; we use a hand-picked feature extraction
and an auto-encoder that automatically tries to detect which
features to extract. These extracted features are then used for
classifying the specific shapes using a classification algorithm
called the Extreme Learning Machine. We also compare these
feature extraction techniques with a raw time series input. The
difference of the two flow datasets are characterized by two
properties; the size of the sensor array and the size of the water
volume in which the sensor array was placed. We found that
the difference between the resulting classification scores of the
two flow datasets was small on a per-run basis. However, there
was a significant difference between the classification scores of
individual windows between the two flow datasets. The auto-
encoder used in this research resulted in non-generalizable
features. These features resulted in the Extreme Learning
Machine having a high classification score on the training set,
whereas the test set had a very low classification score. The
feature extraction methods mentioned in this paper are all
promising and could lead to a fundamental enhancement of
human senses in underwater environments.

Keywords: Artificial Lateral Line, Hydrodynamic Imaging, Extreme
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I. INTRODUCTION

Fish can make use of a lateral line organ that enhances
their senses. This organ gives them sensory input from the
water pressure around them [1]. Fish that are blind rely on the
combination of this lateral line organ and touch in order to
scope out their surroundings. In essence, this organ provides
a ’touch at a distance’ sense. Using the hydrodynamic wakes
that are being measured by this organ, the fish is able to
detect the local environment and react accordingly.

When an object is moving through a fluid, it leaves
characteristic wakes that encode properties like shape, lo-
cation, velocity and vibration of an object [10] [36]. These
hydrodynamic wakes can be identified through the use of
machine learning techniques in order to locate, track and
classify the object.

Artificial Lateral Lines (ALLs) are a type of sensor array
that can be used to mimic the function of the lateral line
organ. Using a series of measurements, we can sample and
analyze a spatiotemporal flow pattern from the hydrodynamic
wake. This pattern can then be used to make predictions
about the sources that created the flow pattern.

Once a classification technique has properly learned the
representation of different characteristic wakes, it can then
be used for object detection and collision avoidance in
autonomous underwater vehicles (AUV) in murky water
or with sonar blindspots. Given fast and reliable signal
processing, which this research paper aims to show, this
sensor and classification combination could, for instance, be
a very viable approach to sense the surroundings of an AUV.

Two distinct feature extraction methods were tested in
this thesis. For one, features were hand-picked and extracted
manually [36]. For the other, we used an auto-encoder to
automatically determine which features need to be extracted
and extract those. This research, among other things, aims
to validate the hand-picked feature extraction technique em-
ployed by Wolf et al. in a previous research [36].

The ALL dataset of Wolf et al., along with the ALL dataset
used in another previous research [32], are used as input for
the feature extraction methods. These two datasets have a
few differences, among which the size of the area in which
it was tested, the size of the sensor array itself and the shapes
that were classified. For the remainder of this paper we will
refer to the two flow datasets as the ‘aquarium‘ dataset, for
the dataset of [32], and the ‘swimming pool‘ dataset, for the
dataset of [36].

The features that are extracted from the two ALL datasets
are passed through an Extreme Learning Machine (ELM).
The Extreme Learning Machine is a type of machine learning
algorithm that can be used for classification [14]. It requires
only one training step in order to get a high classification
score. It has also been shown to work well with ALL-
generated data [33] [27] [34]. In order to compare the
efficiency of the feature extraction methods we also use raw
data input as done in [32]. Raw data means that the time
series of water flow patterns are used without any feature
extraction.

We discuss the viability of such an approach in real-world
situations and try to come up with explanations for why the
flow datasets might differ in their classification score when
put through the same kind of classification technique. We
also perform a parameter sweep for the feature extraction
methods in order to get the most optimal results in terms of



Fig. 1: Schematic of the fluid flow sensor. Fiber Bragg
Gratings (FBG) are used to measure the deflection of the
sphere based on reflecting certain light waves. [31]

classification score.
In short, this thesis aims to be an explorative analysis that

looks at all facets of the two ALL datasets, the two feature
extraction techniques mentioned above and the machine
learning technique used. Our research question is two-fold:

• Will feature extraction methods outperform raw time
series as an input for Extreme Learning Machines?

• Will a smaller sensor array, smaller surroundings and
smaller objects have a significant positive effect on the
classification results of the Extreme Learning Machine?

Our hypothesis is that the feature extraction method will
indeed outperform the raw data as features are compu-
tationally more efficient for the ELM [3] [5]. We also
expect the smaller sensor array/surroundings/objects to have
a positive effect on the classification scores. The latter effect
is expected for two reasons. Either the object moving through
the water might create less turbulence in the surrounding
fluid, or the sensor array registers less flow data when the
objects moves in between the individual sensors of the larger
sensor array.

II. BACKGROUND

Hydrodynamic imaging [11] usually refers to measuring
a projection of the hydrodynamic environment. Measuring
a projection of the surrounding environment can be done
using sensor arrays of different types [28]. We can use
this projection for detecting properties of objects moving
through the surrounding body of water, since the moving
objects create a flow field that encode useful properties.
The following subsections give information about the sensor
array, the datasets used in this research, the machine learning
techniques and the feature extraction methods.

A. Lateral Line

In order to sense the surroundings of a fish, the fish
has a so-called lateral line organ which consists of multiple
distributed neuromasts. A neuromast is a type of sensor that
can sense the pressure gradient of the water that surrounds
the fish. Multiple neuromasts are used to receive sensory
input from all sides of the fish and create what is known as
a ‘flow pattern‘. A flow pattern is defined as a single time
step from multiple sensors that are combined. The cupula
of a neuromast is a gelatinous structure that transmits the
hydrodynamic forces produced by the surrounding flow of
water to the connected hair bundles [20]. The hair bundles
then generate a nervous response [10]. It has been shown
that fish can use these neuromasts to detect dynamic and
static objects around them [12][6]. Not only can they detect
the existence of such an object, it is also possible to identify
the location, vibration and shape of an object [33][8][10]. In
the case of a static object, the pressure waves are generated
by the movement of the fish or by turbulent surroundings.
Dynamic objects on the other hand will generate measurable
flow fields themselves.

A singular neuromast is enough to detect the surrounding
changes in pressure gradients. Therefore, each individual
neuromast can be seen as a full-fledged detector of ‘temporal
patterns‘. Temporal patterns are defined here as multiple time
steps from one sensor that are concatenated together. The
fact that one sensor is enough to detect such patterns is
shown as there is little to no mechanical coupling between
the neuromasts in fish [10].

The combination of the flow pattern and the temporal pat-
tern is called a spatiotemporal pattern. This spatiotemporal
pattern is a representation of what is used by a fish to enhance
its own perception of the surrounding waters.

B. Fluid Flow Sensor

In 2002, Fan et al. showed an initial implementation of an
Artificial Lateral Line (ALL) [7]. Several implementations of
ALLs have been created since. This thesis uses an ALL that
was constructed by the LAkHsMI consortium1. This ALL
has been inspired by the canal neuromasts found in fish [31].
The ALL consists of an array of deflection sensitive sensors
placed along a straight line. This deflection is interpreted as
fluid speed. The sensors used here are therefore a type of
fluid speed sensor, also called an artificial neuromast.

The sensors from the ALL measure deflection through
means of an optical signal. These optical signals are mea-
sured using Fibre Bragg Gratings and can be sent through
optical lines to be measured at a different location. This
makes the sensor especially useful in situations where it is
preferable not to have a need for electricity at the location
of the sensor.

The sensor design consists of the following: a fluid force
recipient spherical body and a fiber support structure pro-
viding elastic coupling to a clamping structure. Inside of the
fibre support structure there are Fiber Bragg Gratings (FBG)

1https://www.lakhsmi.eu/



Fig. 2: A schematic overview of the sensor layout. The sensor layout was similar for the measurements of both flow datasets.
An object, in this case a turned cube, was dragged past the sensor array. Each length and speed is named for the swimming
pool and the aquarium respectively. A had a length of 3.5 m and 500 mm. B had a length of 0.5 m and 64 mm. C had a
length of ∼ 0.62 m and ∼ 70 mm. D had a speed of 0.3 m/s and 127 mm/s.

which reflect light differently depending on the amount of
strain put on the spherical body. This reflection of light
can be measured to determine the forces on the sphere and
thereby the velocity and direction of the surrounding fluid.
A schematic of the sensor can be seen in Figure 1.

C. Extreme Learning Machine

An Extreme Learning Machine (ELM) is used for classifi-
cation of the ALL data. The Extreme Learning Machine is a
feed-forward neural network which only needs one learning
step in order to reliably give high classification scores [14].
It has been shown that this type of machine learning model
generally outperforms support vector machines in their clas-
sification capabilities and/or their training time [21]. Given
that these models can provide a high classification score,
while also providing a short learning time, gives enough
reason to pick this model as an interesting machine learning
candidate to study. In addition, it has also been shown that
the ELM is fast and reliable in the field of hydrodynamic
imaging with ALLs [33] [34]. Models such as multilayer
perceptrons (MLP) or the echo state network (ESN) might
outperform the ELM in classification score, but these systems
take longer to train [27].

Perhaps a more important benefit for the ELM is its
inherent ability to prevent overfitting due to the low number
of hyper parameters of the system. Only the number of
hidden neurons need to be decided upon. This makes it very
straightforward to tune the neural network. The number of
hidden neurons can be decided by trying several permutation
of that hyper parameter and determining the classification
scores of each of these ELM permutations. This poses no
real problem due to the quick training time of the ELM.

D. Hand-picked Feature Extraction

Traditionally features are carefully selected based on their
expected utility. Feature selection is done in order to remove
redundancies in data, increase efficiency in learning tasks
and improve our understanding of the learned results of a
machine learning algorithm [3] [5].

For the purposes of this research, we specifically take a
look at the feature selection in hydrodynamic environments.
The features in the hand-picked feature extraction technique
are based on earlier promising results in river flow conditions
[29].

The hand-picked features consisted of direct current
(mm/s), frequency bands (Hz), kurtosis and skewness. 16
frequency bands were selected from the ANSI half-octave
band definition [2], using 0.25 Hz as a reference frequency
[36]. The kurtosis and skewness describe the distribution of
data in a time window and are added to the feature set as
they have been used in previous fluid flow classifications [29]
and sensor placement optimization [35].

Wolf et al. tested several subsets of the hand-picked
feature sets. Using all frequency bands seemed to better
help in classification than some traditional feature extraction
techniques, like Lasso or FCBF [36].

E. Auto-encoder

Auto-encoders are neural networks that have the goal to
recreate their input in their output with an intermediate step.
This intermediate step is intended to create computationally
efficient features from the input [13]. This type of neural
network usually consists of one input layer, one hidden layer
and one output layer. There do exist multilayer auto-encoders
as well and stacking of auto-encoders is possible, which also
essentially increases the number of hidden layers [16] [18].



Fig. 3: Schematic view (to scale) of the shapes used in [36].

Fig. 4: Schematic view of shapes with different topology,
elongation and surface types. From left to right the topology
changes from the sphere to the square. From top to bottom
the elongation changes. The objects with different surface
type are shown separately. These shapes are the same as
used in [32]

The hidden layer of an auto-encoder is usually restrained
to a smaller dimension than the input in order to get features
that have useful, discernable properties. Auto-encoders with
hidden layers that are smaller than the input are called
undercomplete. By training the undercomplete auto-encoder,
it is forced to generate useful features, otherwise it would
not be able to recreate the original input.

The loss function for the performance of the auto-encoder
during training can be formulated as follows:

E =
1
N

N

∑
n=1

K

∑
k=1

(xkn − x̂kn)
2

︸ ︷︷ ︸
mean squared error

+λ ∗ Ωweights︸ ︷︷ ︸
L2regularization

+β ∗ Ωsparsity︸ ︷︷ ︸
sparsity regularization

Where λ is the coefficient for the L2 regularization term
and β is the coefficient for the sparsity regularization term.
Both terms are used as additional constraints on the output.
These coefficients can be set to any value, but are usually
selected to be low values. Besides these factors we can also
tweak the sparsity proportion. This is the desired proportion
of training examples a neuron reacts to. A low value for
the sparsity proportion usually leads to each neuron in the
hidden layer only giving a high output for a small number
of training examples, which means a higher level of sparsity.

F. Datasets

Two flow datasets were used in this thesis. These datasets
are derived from earlier experiments and will be briefly

discussed here. While the scale of the environment, the
sensor array and the objects is different for both experiments,
the schematic overview is roughly the same. This schematic
overview can be seen in Figure 2.

1) Swimming Pool Dataset: The swimming pool dataset
consists of hydrodynamic flow data created by a large ALL
in a relatively large body of water with large objects. It was
obtained in the experiment by Wolf et al. [36].

Five different shapes were used in the swimming pool
experiment. Also, a source was added where no object,
only the towing platform, was pulled alongside the sensor
array. The dumbbell and the barrel were chosen as they
displace roughly the same amount of water, but have different
topologies. The sphere was chosen since it is generally used
in a lot of ALL-related studies [25]. And finally, there were
two variants of capsules; one is a slender capsule, whereas
the other is the same kind of capsule and has an inverted
bowl attached to the end of it. A schematic view of these
shapes can be seen in Figure 3.

The setup was built on the short side of a swimming pool
with a size of 18 m x 25 m. The sensor array had a length of
3.5 m and was centered along the short side of the swimming
pool. Each sensor of the sensor array was placed 0.5 m apart
from each other.

Each object was towed six times past the sensor array.
Three times in a forward motion and three times in a
backward motion. A full motion of the towing platform took
about 50 seconds. From these 50 seconds, 20 seconds were
selected where the object was moving right in front of the
sensor array.

2) Aquarium Dataset: The aquarium dataset consists of
hydrodynamic flow data created by a small ALL in a
relatively small body of water with small objects. It was
obtained in the experiment by Römer [32].

Eight different shapes were chosen that differed in three
different properties: topology, elongation and surface. Each
changed property was expected to change its hydrodynamic
signature. The topology differences have been defined by
their extremes, namely the sphere and the cube. While in the
middle of the spectrum a rhombicuboctahedron (’rhombus’
for short) was defined. This could change the sensed signals
due to sharper edges causing stronger vortices. The change
of the elongation caused the object to pass the sensor for
a longer time. Since the signal will prolong longer for the
sensor it will most likely have a different hydrodynamic
signature. Changing the surface texture has been inspired
by the golfball. A golfball has little dents all over its surface
which reduces the drag. The hypothesis was that a similar
effect might occur underwater. A schematic overview of
all different shapes has been provided (Figure 4). There is
a change in topology from left to right and a change in
elongation from top to bottom. The different surface types
have been shown individually.

The ALL setup that was built for this experiment consisted
of a water tank of 1200 ∗ 800 ∗ 260 mm (w ∗ l ∗ h) with an
extended Makeblock plotter (1040∗1000) on top that could
span across a large area of the water tank. The sensor array



in this experiment had a total width of 500 mm and each
sensor was placed 64 mm apart from each other. The sensor
array was centered along the width of the water tank.

The second sensor in the array became faulty during
testing and was therefore unreliable. Römer only used 5
sensors in his experiment. This was due to the faulty sensor
and also because the first and last sensors seemed to pick up
some unwanted distortions that most likely occurred due to
the ramp-up and ramp-down phases of motion.

The dataset consists of 9 sources (i.e. the shapes) that have
been dragged past the sensor array at 2 different distances.
Each distance has been tested 20 times in both a forward and
backward direction resulting in 80 different measurements
per source. Note that the spiky sphere was not used at the
closest distance due to the length of the spikes hitting the
sensor array otherwise.

Fig. 5: A schematic overview of the steps taken in the
experiment. Panel A shows the two datasets that are passed
into the feature extraction methods. The aquarium dataset is
also passed as raw data directly to the classifier (represented
by the dotted line), which was done in [32]. Panel B
shows the two feature extraction methods resulting in all
the feature sets. Each dataset and feature extraction method
has its own feature set. Panel C shows the classifier and
the resulting classification score. Each input has its own
respective classification score.

III. METHODS

The goal of this thesis is to determine the efficiency and
viability of several different feature extraction techniques
on ALL-generated data. In the next several subsections,
we provide details for both the feature extraction methods,
the machine learning classifier, and how the results will
be analysed. See also Figure 5, for an overview of the
classification pipeline.

A. Data Transformation

In order to process the data in a similar fashion as the
swimming pool dataset [36], we needed to reshape the
aquarium flow data to the same form as the swimming pool
data.

For each object in the aquarium dataset, 80 movements
were recorded. Each movement consisted of approximately
1250 time samples, sampled at 250 Hz, for both an X and Y
deflection in each array. Each movement was represented
in a [1250, 16]-dimensional struct, where the first term
represents the time samples and the second term represents
the concatenation of the X and Y deflection of eight sensors.
One sensor was removed since it outputted unreliable data.

The data from the swimming pool dataset took the data in
a [1200, 8, 2]-dimensional struct, where the first element is
representing the time samples, the second is representing the
sensors and the third is representing the X and Y deflections.
The X and Y deflection had to be split from each other for
each sensor of the aquarium dataset.

B. Feature Extraction Methods

Two feature extraction methods were used in this experi-
ment. The first method carefully hand-picks the features from
the datasets (see background). The second method, explained
here, tries to automatically determine computationally effi-
cient features and extracts them. Both methods make use of
a moving window approach.

1) Moving window approach: A time window of 4 sec-
onds with a stride of 0.5 seconds and a downsampled
sampling rate of 200 Hz was used. These values were found
using cross-validation optimization. This also agrees with the
theory that characteristic wakes and hydrodynamic stimuli
are in the < 5 Hz range [36], as windows with a sampling
rate of 200 Hz capture that frequency range well.

2) Auto-encoder: A simple auto-encoder consisting of
three layers was used for this experiment. This means there
is only one hidden layer in the auto-encoder. The auto-
encoder was regularized to be a sparse variant. The sparse
variant is encouraged, through means of an added penalty,
to recreate the input data in a more constrained way than
simply mimicking an identity function. This type of auto-
encoder is usually used for classification, as seen in several
researches across domains [17] [26] [23]. The hidden layer
size was set to 250. There is no particular reason why the
number of features should be the same as the hand-picked
feature method. We do not want too large of a step to reduce
the dimensions of the input data, therefore we have chosen
to create more features.



The performance of the auto-encoder was tested during
training using a mean squared error. This performance was
then regularized using an L2 regularization of 0.01, a sparsity
regularization of 4 and a sparsity proportion of 0.10. The
training was performed using a scaled conjugate gradient.
The loss function for the performance is described in the
Background section.

C. Parameter Sweep
Several parameters were tweaked in order to manipu-

late the feature extraction methods. The different parameter
values were tested on the hand-picked feature extraction
method. The best parameter settings were then applied to
both feature extraction methods for the final classification
results. We will briefly discuss the parameters that were
changed and why.

First of all, noise has been added to the dataset. The
addition of noise lowers the chance of overfitting for the
system, and therefore increases the generalizability [4] [24].
These beneficial aspects are especially the case for small
datasets where the neural network has no choice but to
overtrain on each example.

A subset of the time range was selected from which the
features were extracted. Omitting certain parts of the dataset
results in the classifier finding more discernable differences
as some parts of the data are too similar.

Next the removal of certain sensors was considered. Sen-
sor 2 had to be removed since it became unreliable during
testing. The outer sensors were also considered for removal
(see background).

The selection of proper window properties were also
considered since these properties can have a significant effect
on the resulting features. These window properties were the
stride, the resample frequency and the window length. We
know that characteristic wakes are usually found in the < 5
Hz range [36]. The window properties were adjusted in order
to best capture the wakes in this frequency range.

We also applied normalization to the dataset. Normal-
ization is not necessarily a parameter since it was always
applied. The features that are created are therefore within
a range of -1 to 1. There are a variety of practical reasons
why standardized inputs are preferred in some applications
of machine learning, among which its possibility to make
training faster and it also reduces the chance to get stuck in
local optima [15] [9].

Finally, scaling of the feature set is used to change the
features to have larger or smaller values. Note that this is
applied to the entire feature set at once, so there is no real
relative change between features. The scaling here does not
refer to ’standardization’, as there is no need to change the
unit of measurement for individual data points.

D. Classifier Training
The classifier used in this research is called an Extreme

Learning Machine. The Extreme Learning Machine is a type
of feed-forward neural network and only requires on hyper
parameter to be set. This is discussed along with the input
and output of the algorithm.

1) Hidden Layer Size Selection: An important hyper
parameter for ELMs is the number of hidden neurons. We
use a nested cross-validation optimization technique in order
to determine the hidden layer size that has been optimized
for classification score and overfitting reduction. The size of
the hidden layers were generally around 200-300 neurons,
but could change depending on the number of features that
were used as input.

2) Input/output: The input of the ELM were the features
that have been extracted in several different ways. The input
layer, therefore had a size appropriate to the number of
features, which was either 48 or 250 depending on which
feature extraction technique was used. The output layer had
a size equal to the number of different classes the machine
learning algorithm could choose from. In this case, that were
the object shapes producing each of the two flow datasets.
This means the output layer had 6 and 9 different possible
classifications across both flow datasets.

E. Data Analysis

1) Classifier Performance: The performance of the classi-
fier has been measured by the F1-scores. This score considers
both the precision and the recall of the test. An F1 score
has been given for both the complete run and for each
individual window. We consider a ’run’ to be a completed
motion, whereas a ’window’ consists of parts of a complete
motion. Since we use a k-fold cross validation, as will
be discussed shortly, the F1-score is also coupled with a
standard deviation. These metrics should provide the true
error of a system and therefore the performance of each
individual part.

Not only an F1 score has been used to measure the
performance of the classifier. A confusion matrix has been
provided as to give a more complete representation for the
performance of the entire classification pipeline.

2) Statistical Inspection of Parameters: The different sets
of parameters and their effect on the resulting F1 score
were plotted in a box plot. This, together with significance
and post hoc tests, is used to determine the best parameter
setting with respect to efficiency, overfitting reduction and
classification score.

F. k-fold cross-validation

A stratified 3- & 4-fold classification has been used to
train, test and validate the neural network for the aquarium
and the swimming pool dataset respectively. The advantage
of this approach is that all data is used for both training
and validating the model, while still retaining an accurate
measure of the true error. The k-fold classification is there-
fore a useful method to evaluate a machine learning model
on a limited dataset. The dataset for this research is not
necessarily limited. However, with this method we use the
dataset to its full potential.

The training and validation set for each flow dataset are
split into k different subsets of the original data. Two of
the k different subsets are used for validation, whereas the
rest k-2 is used for training and testing of the model. This



Fig. 6: Graphical representation of the different changes to the dataset that might influence the F1-score. Sub-figure A-F
shows the effect of a specific parameter on the resulting F1 score of the ELM.

procedure is then repeated until all data has been used for
both training, testing and validation. The resulting error of
each validation will be averaged over all k times the model
has been validated.

The selection of k should be chosen with some consider-
ation. There are generally several techniques in which this
can be done. For this kind of cross-validation, there is a bias-
variance trade off for the choice of k. The higher the k, the
lower the bias would be for the technique. Typically, cross-
validation is chosen to be around k = 5 or k = 10. These
values return error rate estimates that do not suffer from
either high bias, or high variance [19]. We, however, have
chosen for k = 4 and k = 3 for the aquarium dataset and the
swimming pool dataset respectively. For this research, we
split the two datasets based on the number of movements,
which are 80 and 6 for the aquarium and the swimming pool
dataset respectively. Since it is easy to divide 80 by 4 and 6
by 3, it is more convenient to select the subsets of data in
this manner.

IV. RESULTS

A. Preprocessing of the dataset

Figure 6 shows a box plot comparing the difference be-
tween the effects of each different parameter. The 7 different
variables that have been changed in order to manipulate the
feature extraction into a form better suited to generate the
features are described below:

• Range: The selected subset of time samples
• Scale: The scaling of the feature space after feature

extraction

• Removed Sensors: The sensors of which the data was
omitted

• Window Length: The length (in seconds) of the moving
window

• Stride: The step size (in seconds) with which the win-
dow moves

• Frequency: The frequency used in resampling the mea-
sured data

• Noise: The addition of a 6 dB SNR noise level
The dependent variable in this case was the F1 score that
resulted from running the extracted features through the
ELM. As mentioned earlier, this F1 score is an average of
the k-fold cross-validation process. The ELM was therefore
trained, tested and validated with the output of the dataset.

Since all possible permutation settings have been tested,
some data might not be compatible. For instance, using a
window length of 4 seconds with a sampling frequency of
400 Hz results in no output due to having too little data. A
part of the outliers that are seen in Figure 6 could therefore
be due to a combination of settings that are incompatible.
However, it is usually the case that data that has significantly
more outliers, are outliers that resulted from the choice of
parameters.

Before any significance testing was done, a test for
multicollinearity was performed. Using Pearson’s r test,
a negative correlation was found between frequency and
window length, r(1510) = -.41, p < .01. This is expected
as these parameters both influence the granularity of the
windows. No correlations were found for other variables.

In order to show the significance of each dataset change,



TABLE I: List of F1 scores for the different datasets. Each individual window score (w), as well as the total run score (r)
is shown. Table A shows the F1 scores for the hand-picked feature extraction method. Table B shows the results of the
auto-encoder. Table C shows the results of using raw data, this last approach does not use a moving window approach.

A: Hand-picked train (w) test (w) train (r) test (r)
Dataset F1± σ (%) F1± σ (%) F1± σ (%) F1± σ (%)
Aquarium 99.0 ± 2.1 98.1 ± 3.4 99.5 ± 0.6 99.1 ± 1.0
Swimming Pool 71.0 ± 11.1 63.5 ± 12.5 98.6 ± 4.1 95.6 ± 9.4

B: Auto-encoder train (w) test (w) train (r) test (r)
Dataset F1± σ (%) F1± σ (%) F1± σ (%) F1± σ (%)
Aquarium 59.1 ± 13.2 34.1 ± 16.5 90.1 ± 9.4 48.8 ± 27.8
Swimming Pool 20.1 ± 16.2 19.4 ± 15.8 25.1 ± 26.3 28.2 ± 30.1

C: Raw train (r) test (r)
Dataset F1± σ (%) F1± σ (%)
Aquarium 96.9 ± 2.86 95.1 ± 3.82

an ANOVA was conducted to compare the effects of range,
scale, sensor removal, window length, stride, frequency and
noise on the resulting F1 score in several conditions as
depicted in Figure 6. We found a statistically significant
difference (for α = 0.01) in the average F1-score by the
time sample range [F(4)=175.100, p < 0.001], the removed
sensors [F(2)=94.044, p < 0.001], the addition of noise
[F(1)=25.095, p < 0.001], the window length [F(1)=19.809,
p < 0.001] and the stride [F(1)=369.611, p < 0.001]. The
frequency and the feature space scale seem to have a signif-
icant effect.

A Bonferroni adjusted pairwise t-test revealed that the ’1-
1200’ range resulted in a significantly higher F1 score than
either the ’1-600’ or the ’601-1200’ range. The same goes
for the ’51-1150’ and ’51-1200’ ranges. The three ranges
that scored significantly higher did not significantly differ
from each other. The removal of sensors was also found to
be significant for removing sensors 1,2 and 8 as compared to
only removing sensor 2. This was found to be significantly
lower. There was no significant difference between removing
no sensors and removing sensor 2. The addition of noise
resulted in a significant increase of the resulting F-1 score.
There was also a significant increase of performance for
a window length of 4 seconds as compared to a window
length of 2 seconds. Finally, all levels of the stride factor
differed significantly, where a stride equal to 0.5 resulted in
the highest F1 scores.

B. Comparison of classification scores

Here we compare the F1 scores of the current research
with the F1 scores found using the techniques of [36] and
[32]. All scores shown in Table I have been gathered during
this research. The algorithms and flow datasets have been
used to replicate the F1 score of the previous studies. The
auto-encoder has also been added to this comparison of F1
scores.

Table I shows the results of the ELM for both the aquarium
and the swimming pool datasets under optimal conditions.
The optimal conditions for the aquarium were with the
following parameters; a time sample range from 1 to 1200,
noise was added, sensor 2 was removed, no feature space

scaling was applied and the window properties were set to a
length of 4 seconds, a stride of 0.5 seconds and a resampling
frequency of 200 Hz.

The optimal parameters are much the same for the swim-
ming pool dataset. Two parameters are notably different, the
time range was not limited since this had already been done
to the dataset and the second sensor was not removed. The
following parameter settings were used: noise was added no
feature space scaling was applied and the window properties
were set to a length of 4 seconds, a stride of 0.5 seconds
and a resampling frequency of 200 Hz.

The table also shows the results of using the raw data in
an ELM. This data only shows a full run, since no windowed
approach is used when raw data is submitted.

All two sample t-tests performed here use the F1 scores
from the test scores of complete runs, unless specified
otherwise. An independent samples t-test was conducted to
compare the F1 score for classification using the features
and the raw data, both from the aquarium dataset, as input.
No significant effect was found according to the scores for
the hand-picked features (M=99.1, SD=1.0) and the raw
data (M=95.1, SD=3.82) conditions; t(5)=-2.064, p=0.09.
Two independent samples t-test were performed to compare
the aquarium and the swimming pool dataset for both fea-
ture extraction methods. First, for the hand-picked features,
no significant difference seemed to be found between the
F1 scores of the aquarium dataset (M=99.1,SD=1.0) and
the swimming pool dataset (M=95.6, SD=9.4); t(5)=-0.764,
p=0.48. Secondly, for the auto-encoder features, we also did
not find a significant difference between the aquarium dataset
(M=48.8, SD=27.8) and the swimming pool dataset (M=28.2,
SD=30.1); t(5)=-0.983, p=0.39.

A notable difference can be found between the window F1
scores of the hand-picked features. There exists a significant
difference between the window scores for the hand-picked
features of the aquarium dataset (M=98.1,SD=3.4) and the
swimming pool dataset (M=63.5, SD=12.5); t(5)=-5.437,
p<.01.

Four confusion matrices have been provided and can be
found in Figure 7. These four confusion matrices show the
predictions for the two flow datasets and both the feature



(a) Predictions of swimming pool dataset using the
hand-picked feature extraction

(b) Predictions of aquarium dataset using the
hand-picked feature extraction

(c) Predictions of swimming pool dataset using the
auto-encoder feature extraction

(d) Predictions of aquarium dataset using the
auto-encoder feature extraction

Fig. 7: Four confusion matrices that show the resulting classification of both the flow datasets and both the feature extraction
techniques after being run through the ELM. Each confusion matrix shows the predictions per run. The raw data confusion
matrix has not been added as it can be found in [32].

extraction techniques after running the resulting features
through an ELM.

V. DISCUSSION

We asked whether or not the features extracted from the
raw data would outperform the raw data in and of itself when
presented to the ELM and judged via the F1-score. We also
asked whether a smaller sensor array, smaller surroundings
and smaller objects will have a significant positive effect on
the classification results of the Extreme Learning Machine.
Finally, as a part of the initial research question, we also
sought to determine the classification capabilities of the auto-
encoder features.

Our hypothesis is that the feature extraction method will
indeed outperform the raw data as features are computation-

ally more efficient for the ELM [3] [5]. We also expect the
smaller sensor array/surroundings/objects to have a positive
effect since a smaller setup overall will most likely generate
less disturbing wakes.

Now we have come to the conclusion that feature extrac-
tion does not necessarily outperform raw data. The F1-scores
do not differ significantly, although the standard deviation
is significantly lower. We can also conclude that a smaller
sensor array, smaller surroundings and smaller objects have a
partly significant positive effect on the classification scores.
Namely, the classification scores increase significantly for
windows, where less data is available, but not for complete
runs. A discussion follows about the results from the param-
eter sweep, the two datasets and the two feature extraction
methods.



A. Grouping Topology, Elongation and Surface Type

Looking at the confusion matrices in Figure 7, we can
see that certain shapes are misclassified as certain other
shapes more often. For instance, the sphere, the rhombus
and the golf ball are relatively often mistaken for each
other. This seems to imply that the topology of the rhombus
and the surface type of the golf ball make a relatively
small difference on the characteristic wake. These changes in
topology and surface type do, however, still seem significant
enough to properly identify the shape most of the time.

B. Feature and Raw Data Classification

Using the hand-picked or auto-encoder features has not
shown to significantly increase performance over simply
using raw data as an input for the ELM. The standard
deviation is significantly lower though. It might be that
the classification performance of the feature extraction is
higher in theory, but that it does not show due to the high
classification scores of both methods. Since both feature
extraction methods show a high classification score, the
differences between them are small and hard to attribute to
any single (hyper)parameter.

While no significant difference has been found between
the feature extraction and raw data, we have validated that
the ELM is capable to efficiently process the data from an
ALL. These features or raw data can then be used to correctly
classify hydrodynamic wakes with high confidence. Selecting
the correct parameter settings is essential for getting the high
performance that the ELM got from the hand-picked features.

In all approaches careful tuning was applied through the
use of nested cross-validation and noise. This resulted in
minimal overfitting of the dataset. This is also signified by
the small discrepancies between the training and testing sets.

C. Hand-picked and Auto-encoder Features

Auto-encoders have been shown to outperform hand-
picked feature extraction methods for high-dimensional data
[30][22]. It provides a promising way to generate labelled
data. The generation of features for the aquarium dataset
clearly works as the training classification score has an F1
score as high as 90.1%. However, the generalisability of
those features are very low, since the classification score
drops with about 50% for the test scores. The swimming
pool dataset may have performed as badly as it did due to
the high number of features generated by the auto-encoder,
as there were only a handful of independent measurements.

Taking a look at the confusion matrices in Figure 7, we
see that some objects are classified with relative certainty.
For the swimming pool dataset (Figure 7c), the barrel, the
ball and the dumbbell are classified relatively well. Similarly
for the aquarium dataset, the cigar and the turned cube are
classified relatively well. This seems to imply that there are
some fundamental differences in the two flow datasets. These
difference could be a result of the surrounding turbulence in
the bodies of water.

D. Comparison of Runs and Windows

The classification of the windows was significantly better
for the aquarium dataset. It seems that when there is less data
overall, as in the windows, there is a significant increase in
performance for the aquarium dataset as compared to the
swimming pool dataset. We hypothesize that this is due to
one of two reasons.

Firstly, there might be less turbulence in the body of
water as it comes to rest more quickly than the swimming
pool. This would imply that the measurements done for each
individual shape is of a higher quality. This higher quality
could result in a clearer distinction between characteristic
wakes.

Secondly, the measurements might have less spatial gaps
due to the small space in between the sensors of the sensor
array. Spatial gaps happen when the object takes a long time
to move in between the sensors and the sensors register less
flow data. Having a small sensor array could result in a
constant signal that encodes the characteristic wake, whereas
the (sparse) sensor array for the swimming pool dataset might
have spatial gaps of data while the object is moving from
sensor to sensor.

E. Possible Shortcomings

Different shapes were used in both datasets. Due to the
generalizability of the methods that were employed, this was
not deemed a problem. However, for more reliable results
perhaps using the same shapes in both environments would
be better suited.

The F1-score might not be the best for comparing classifier
performances. A higher F1 score of another classifier cannot
necessarily be used as ”proof” that one is better than the
other. Using more metrics, perhaps Cohen’s Kappa score,
could be useful in future comparisons of classifiers. The
Kappa score takes random classifications into account, and
with that, tries to take the bias away from the actual distri-
bution of the classification data.

The large hidden layer size of the auto-encoder does mean
that there is still a large reduction of dimensionality which
theoretically might result in an improvement for the auto-
encoder.

Finally, the same kind of ALL system was used for the
gathering of both flow datasets. However, through a faulty
sensor the sensor array measuring the flow datasets were not
equal. Any difference between the flow datasets might be due
to the fact that a sensor was missing during measurements
of the aquarium dataset.

F. Future Research

It has been shown that classification of hydrodynamic
wakes can be done reliably and efficiently in different
scenarios. This opens up the possibility for testing in various
real-world applications. Also, there can be expanded further
on this research by the following ideas.

An idea about using the random forest learning method
came up during this research. Since data could be grouped
according to their topology, surface type or elongation,



perhaps a decision tree could be used. The decision tree could
then be based on the characteristics of the shapes.

The auto-encoder was used for this research, but it seemed
to give unreliable results in practice. These unreliable results
mostly came in the form of strong overfitting or specific
object misclassification. One of the possibilities is that the
method employed reduced the data too drastically, losing a
lot of significant information. Stacked auto-encoders could
possibly give better results. The overfitting could also be a
result of the fact that not enough data was used. Perhaps
using more ALL-generated data in the auto-encoder would
result in better classification scores and no overfitting.

VI. CONCLUSION

The current study illustrates the difference between the
effects of sensor scale, environments and feature extraction
techniques on hydrodynamic imaging using an artificial
lateral line (ALL). By showing the effectiveness of the
ELM classification under different situation, it has become
convincing that this technique can be confidently used in
underwater vehicles, canal tracking and other water related
scenarios where other sensors might not work well. The sys-
tem is clearly able to classify hydrodynamic wakes generated
by objects that move past the sensor array.
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