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Abstract

The research carried out in this paper is part of a larger ongoing experiment, the
12N production experiment, being conducted by the Medical Physics Group at KVI-
CART. The 12N production experiment requires a NaI(Tl) scintillation detector
which is to be calibrated. The aim of this research was to investigate the production
of 66Ga via proton irradiation on natural zinc, with a water degraded proton beam,
for use in calibrating this NaI(Tl) scintillation detector. Cross section data for the
natZn(p, x)Y reactions was compiled from external sources (Y represents 66Ga and
relevant contaminants). Data of the proton fluence in the natural zinc target plate,
at specific water depths, was combined with the cross section data to obtain the
reaction rate per starting proton for each isotope Y . Using the reaction rates, a
Python function was written to determine the activity and corresponding γ-spectra
of each isotope, for a given beam current, water depth, irradiation time, and activity
measurement time. It was found that, for a 90 MeV proton beam and a beam
degrading water tank placed 50 cm from the beam exit, the natural zinc plate should
be placed at a water depth of 60 mm for optimal 66Ga production. Furthermore, for
a water depth of 60 mm, a beam current of 30 nA, an irradiation time of 2 hours,
and an activity measurement time of 10 hours, it was found that the 1039.231 keV
γ-decay line of 66Ga is the best line to use for the detector calibration. This is due to
its high intensity (37%) and activity, its energy being within the detectable range,
and the line being clear from any major γ-decay interference. It should be noted
that the research conducted in this paper is yet to be experimentally verified, but if
verified, offers a method of optimisation for experiments of a similar nature.
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Chapter 1

Introduction

Despite the seemingly novel technology, proton therapy has been in use for over half a
century. The idea of using protons in cancer therapy was first conceived by Robert
R. Wilson in 1946[1]. In the following decade, the Lawrence Berkeley National
Laboratory and Uppsala University were the first institutes (respectively) to perform
proton therapy on human patients[2][3]. After this, the field of proton therapy (along
with other ionic beam therapies) burgeoned, with an increasing number of institutes
investing their efforts into proton therapy research[4][5].

One of the most advantageous features of proton beam therapy, as compared to
other radiation therapies, is the nature of its dose (energy) deposition. Ion (in-
cluding protons) beams, when penetrating a medium, are characterized by a slow
dose deposition followed by the Bragg peak, a highly concentrated area of dose de-
position occurring promptly before the particle comes to rest[6]. When applied to
cancer treatment, this concentrated dose enables effective targeting of the tumour
while minimising dose deposition in the surrounding healthy tissue. However, the
position of the Bragg peak in a specific tissue is quite sensitive to tissue character-
istics and experimental conditions, such as the tissue density and the proton beam
energy. Furthermore, there are also other treatment planning and dosimetric chal-
lenges that need to be accounted for (for more information, please refer to Lee et
al. (2018)[7] and Yajnik (2012)[8]).

These dependencies and challenges give rise to uncertainties in the prediction of
the position of the Bragg peak. To help alleviate these uncertainties, conservative
treatment planning is necessary, such as having to use significant safety margins
around the tumour and having to avoid beam directions pointing at vital organs[9].
These cautious measures can result in inefficient treatment plans, and can still cause
unwanted tissue damage. Furthermore, unlike photon therapy, protons do not exit
the patient, meaning there is little way to verify dose delivery. Thus, a real time in
vivo dose delivery verification (RTIVDDV) method can ensure safety and efficiency
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CHAPTER 1. INTRODUCTION

while reducing the time, effort, and costs involved in drafting prediction measures. In
addition, there has been increasing evidence that hypofractionation1 is more effective
than the current conventions in radiation therapy[11–13]. This growing utilisation
of hypofractionation emphasizes the need to develop a RTIVDDV method to ensure
productive yet safe radiation therapy.

Many products of the proton-nuclei reactions in the tissue of the patient undergo
β+-decay, γ-decay, or both. The positrons emitted from β+-decay annihilate al-
most immediately after their production, resulting in characteristic 511 keV γ-
rays. Therefore, positron emission tomography (PET) provides a very promising
method for RTIVDDV. There have been numerous studies in using PET imaging
as a RTIVDDV method during proton therapy. In the past five years, research has
shown that the short lived (t1/2 = 11.000 ms[14]) 12N isotope is a prime candidate
in beam-on PET imaging[15–17]. According to Dendooven et al.[16], 12N was pro-
duced in copious amounts in proton beam interactions with carbon, and was the
dominant source of PET decay for irradiation times of up to 70 seconds in adipose
tissue.2 Thus, research into 12N as a beam-on PET imaging source in proton therapy
is currently being conducted at KVI-CART and partner institutions. This thesis
is part of a larger ongoing experiment at KVI-CART to measure the production of
12N (via proton beam interaction on 12C) versus water equivalent thickness (WET)
by measurement of the characteristic 4.44 MeV γ-ray decay of 12N. The experiment
utilises a sodium iodide (NaI) scintillation detector.

Initially, the aim of this thesis was to perform an efficiency calibration on the NaI(Tl)
detector using an irradiated 66Ga source for use in the 12N production experiment.
However, in light of the COVID-19 pandemic, it was decided best for the experiment
to be replaced by an investigation into the production of 66Ga from natural zinc.
Two major areas related to the initial experiment are covered. First is the production
of 66Ga and other contaminants via proton beam irradiation on natural zinc natZn,
and second is the determination of the best γ-decay line to use in the efficiency
calibration. It is hoped that the results discovered here can be used by the Medical
Physics Group of KVI-CART in the production of 66Ga and subsequent calibration
of the NaI(Tl) detector.

1I.e. delivering higher doses per fraction while reducing the total number of fractions[10].
2Adipose tissue is carbon rich[15, 16].
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Chapter 2

Theoretical Overview

This chapter serves as a brief overview of the relevant theory involved in 66Ga pro-
duction and radiation detection. It has been written with the aid of Knoll (2000)[18],
Kamal (2014)[19], D’Auria (2019)[20] and De Sanctis et al. (2016)[21], along with
some online sources[22–24].

2.1 Interaction of Radiation with Matter

2.1.1 Proton Interaction with Matter

This section borrows heavily from the content found in Chapter 2 of Knoll (2000)[18].
Therefore, for further reading or clarification, the author recommends to refer to
Knoll.As mentioned prior, the NaI(Tl) scintillation detector to be used in the 12N
experiment requires an efficiency calibration prior to its use. 66Ga is to be used as a
reference source, whereby the measurement of its activity will be used in the deter-
mination of the detector efficiency. To produce the 66Ga sample, natural zinc natZn
will be bombarded with protons. Thus this section covers the relevant theory of
proton interaction with matter. Please note that proton interaction with biological
matter, as the case with proton therapy, will not be covered here.

There are several interactions that affect the path of a proton in a medium. The
interaction which is primarily responsible for its energy loss in the medium is the
Coulomb interaction between the proton and the electrons of the atoms within the
medium. There are also other interactions, such as Rutherford scattering and in the
case of interest here, proton induced reactions on atomic nuclei. However, to fully
understand the latter, one must first be accustomed with the basic facts of proton
interactions with matter.
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CHAPTER 2. THEORETICAL OVERVIEW

Due to its positive charge, a proton is susceptible to the Coulomb force. When a
proton enters a medium, the atomic electrons of the medium within the vicinity1 of
the proton immediately experience an attractive force exerted by the proton. The
impulse created by the passing proton can either excite the electron to a higher
atomic orbital or eject the electron from the atom, resulting in an ion. The ex-
tent to which the electron is affected is dependent on the proximity of the proton.
Conservation of energy then stipulates that the proton must lose some of its own
energy. According to Knoll[25] the maximum energy that can be transferred to an
electron of mass me by a proton with energy E and mass mp is 4Eme/mp or around
E/500. Thus the proton must go undergo a lot of these collisions before losing all of
its energy (multiple scattering). The linear stopping power is given by the (mean)
differential energy loss over the associated differential path length of the proton in
the medium

S = −
〈
dE

dx

〉
. (2.1)

In medical physics, this is related to the dose (J·kg−1). In the case of 66Ga produc-
tion, the bombarding protons are non-relativistic (as will be seen, ideal energies are
in the range of 10 to 20 MeV). Thus the expression for the non-relativistic linear
stopping power is given by the classical Bethe formula[26]

−
〈
dE

dx

〉
=

(
e4

4πε20

)
z2

mev2
ZN ln

(
2mev

2

I

)
(2.2)

where z and v are the charge and velocity of the incident particle (i.e. a proton)
respectively and I is the mean excitation potential. Plotting (2.2) against the dis-
tance traversed by the particle yields the Bragg curve. For heavy charged particles,
such as protons, the Bragg curve exhibits a peak, named the Bragg peak, which
occurs directly before the particle stops. As mentioned before, it is this peak that
allows a highly concentrated dose deposition in proton therapy. Fig. 2.1 shows the
relative dose of protons as compared to X-rays in an example patient, with clear
indication of the Bragg peak.

Related to the Bragg peak is the range. Consider a proton beam incident on an
absorbing medium with variable thickness which has been placed in front of a detec-
tor. If the medium thickness is small, the protons lose energy (via interactions with
electrons), but the total number N ′ of protons reaching the detector is equal to the
number N of protons which would reach the detector without the medium present,
so N ′/N = 1. When the thickness is increased, the number of protons incident on
the detector begins to attenuate when the thickness starts to match the shortest
proton track in the medium. Further increasing the thickness causes N ′ to quickly
drop to 0. The mean range Rm is defined as the thickness of the medium which
causes the number of protons incident on the detector to drop to half of its initial

1The magnitude of the force felt is given by Coulomb’s law.
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CHAPTER 2. THEORETICAL OVERVIEW

Figure 2.1: Proton dose (with Bragg peak) as compared to X-rays in example
patient[27]

value, or in other words the thickness at the point N ′/N = 0.5. The extrapolated
range Re is obtained by extrapolating the linear part of the attenuation curve to
zero. In applications, to be able to measure the full energy of a particle, detectors
must have an active region with a greater thickness than the range of the particle
in the detector material.

When a monoenergetic proton beam enters a medium, the interactions of the in-
dividual protons of the beam with the particles in the medium are quite random.
Therefore the energy loss of the beam is a stochastic process. After the beam has
penetrated a certain depth into the medium, the energy of the beam (at that specific
depth) is then no longer monoenergetic, but instead a distribution of energies. The
width of this distribution is a measure of the energy straggling of the beam. The
energy straggling (and thus the distribution of energies) varies along the penetra-
tion path of the beam. This is of special importance to this thesis; as will be seen,
the ideal energies for 66Ga production from natural zinc is in the range of 10-20
MeV. However, the 66Ga will be produced during the 12N production experiment,
which requires a 90 MeV proton beam. Therefore, the beam must first be degraded
by placing the target in water. The energy straggling of the beam in water must
therefore be analysed to maximise the production yield of 66Ga.
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CHAPTER 2. THEORETICAL OVERVIEW

The range is dependent on the energy of the particle and the absorbing material.
Thus, if a beam is subject to energy straggling, this consequentially results in range
straggling. Range straggling is defined as fluctuations in the path length of indi-
vidual particles with the same initial energy[18]. For protons, range straggling is
typically on the order of a few percent of the mean range.

One of the most important parameters in determining the ideal beam conditions for
a required reaction is the cross section. The cross section σ of a reaction is a measure
used to quantify the probability of said reaction happening. It has dimensions of
area, and a typical unit used is the barn (1 b= 10−28 m2). As it has the dimensions
of area, it is commonly interpreted as the ‘effective’ area of interaction of an atom
or molecule in the absorbing medium. If a penetrating particle enters the vicinity of
the cross section (whose face is perpendicular to the particle trajectory) of an atom/
molecule, it will interact with the atom/ molecule. However it is important to note
that this area is fictitious, and the cross section is actually related to the forces in
play between particles. It is dependent on several factors, including the medium
composition, medium density, and the energy of the incoming particle.

2.1.2 Production of 66Ga

Due to the presence of the Coulomb force, the cross sections of proton-induced
reactions as a function of proton energy are hard to determine analytically, and
are instead determined through empirical or computational means. This thesis will
cover data from both, and from that determine the best proton beam energy for the
production of 66Ga. While cross sections are energy dependent, the excitation func-
tions (plots of cross section as a function of proton energy) begin at the threshold
energy, the minimum kinetic energy required of the proton to initiate a reaction.
Thus, the threshold energy is a fixed and readily comparable value for specific re-
actions. The required reaction is natZn(p, x)66Ga, where x represents additional
products. The stable isotopes present in natural zinc and their abundances are 64Zn
(49.17±0.75%), 66Zn (27.73±0.98%), 67Zn (4.04±0.16%), 68Zn (18.45±0.63%), and
70Zn (0.61±0.10%)[28]. The threshold energies for 66Ga production from the rele-
vant zinc isotopes (i.e. the three isotopes present in natural zinc capable of producing
66Ga via proton bombardment) are given in Table 2.1.

Table 2.1: Natural abundances of relevant zinc isotopes and corresponding threshold
energies for 66Ga production via proton bombardment on natural zinc[29]

Reaction
Natural Abundance of
Zinc Isotope (%)

Threshold
Energy (MeV)

66Zn(p, n)66Ga 27.73± 0.98 6.04847
67Zn(p, 2n)66Ga 4.04± 0.16 13.20554
68Zn(p, 3n)66Ga 18.45± 0.63 23.55225
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CHAPTER 2. THEORETICAL OVERVIEW

While 66Ga is to be used as the calibration source, it is also important to identify
other γ-ray sources that will be produced in the proton bombardment of natu-
ral zinc, as these contaminants might interfere with the calibration. Around fifty
contaminants[29] are produced in this reaction, but only those with a half-life t1/2
that might interfere with the γ-spectra of 66Ga (t1/2 = 9.49 h) were considered.
Thus, only the contaminants with a half-life of more than one hour were analysed.
Table 2.2 shows the relevant contaminants X and their half-lives.

Table 2.2: Relevant contaminants X and their half-lives[29][30]

Contaminant Isotope Half-Life t1/2
61Cu 3.33 h
64Cu 12.7 h
67Cu 61.9 h
67Ga 3.26 d
68Ga 67.6 min
62Zn 9.13 h
65Zn 244.26 d

Proton beam fluence φ distribution data for imaginary 0.1 mm slices in a 1 mm
natural zinc plate in a water tank (at a specific water depth) was acquired from
external simulations[31]. Cross section data for the natZn(p, x)66Ga and natZn(p,
x)X reactions was collected from past research and a regression technique applied
to each data set to produce an averaged excitation function for each reaction. Using
both the fluence and the averaged excitation functions, the number R of a specific
isotope Y 2 produced per starting proton (sp−1) can also be determined. R is given
by

R = φσaρa
NA

A
(2.3)

where

– φ is the proton beam fluence - [φ] =cm−2sp−1;

– σ is the energy dependent cross section in the natZn(p, x)Y reaction - [σ] =cm2;

– a = 6.25cm2 is the frontal area of the zinc plate;

– ρa = ρ · l = 0.0714 g·cm−2 is the areal density of the zinc plate. Here l = 0.1
mm is the width of one imaginary zinc slice and ρ = 7.14 g·cm−3 is the density
of natural zinc[28];

– NA = 6.022× 1023 mol−1 is the Avogrado constant;

– A = 65.38 g·mol−1[32] is the atomic mass of natural zinc.

2Y represents both 66Ga and the contaminants X.
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CHAPTER 2. THEORETICAL OVERVIEW

It is clear to see that [R] =sp−1. In practice, it is customary to use per nanoam-
pere hour (nA−1·h−1) rather than per starting proton. This conversion is relatively
straightforward. Noting that the charge of one proton is 1.602× 10−19C[33], 1 C of
charge is then given by

1 C = 1 A · s =
1

1.602× 10−19
sp

and thus

1 sp−1 =
10−9

1.602× 10−19
nA−1 · s−1 × 3600 s · h−1 = 2.247× 1013 nA−1 · h−1. (2.4)

Therefore R can be converted from per starting proton to per nanoampere hour by
multiplication of 2.247 × 1013 nA−1·h−1. In determining the best γ-decay line to
be used for calibration, it is necessary to first determine the activity of each source
for a given proton beam irradiation time tR, proton beam current ip, and activity
measurement time tA (i.e. the time at which the activity is recorded, as measured
from the start of irradiation). During irradiation, the change per unit time in the
number N of a specific isotope Y is given by

dN

dt
= P − λN (2.5)

where P is the production term and λ is the decay constant of the isotope. The
production term P is the number of Y being produced per second as a consequence
of proton beam irradiation. Although R and P are similar, it is important to note
that R is the number of Y being produced per nanoampere hour (or per starting
proton), while P is the number of Y being produced per second for a given beam
current. For a given R ([R] =nA−1·h−1) and proton beam current ip, the production
term is given by

P = R · ip ·
1

3600
h · s−1. (2.6)

There were initially some concerns that P would decrease over time as an increasing
number of zinc atoms would be lost during irradiation. However it was found that
even after an irradiation of 10 hours the loss in zinc was negligible. Furthermore, as
the irradiation time in practice will be around 2 hours, P can be taken as constant
without any loss in accuracy. Solving (2.5) for N gives

N(t) =
P
(
1− e−λt

)
λ

(2.7)

and noting that activity is given by A(t) = λN(t), the activity of Y during irradia-
tion is given by

A(t) = P
(
1− e−λt

)
. (2.8)
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CHAPTER 2. THEORETICAL OVERVIEW

After irradiation, the change per unit time in the number N of Y is given by

dN

dt
= −λN (2.9)

and solving for N gives
N(t) = N0e

−λt (2.10)

which is the well known exponential decay equation. Here N0 is the initial number
of Y present. N0 is given by

N0 =
P
(
1− e−λtR

)
λ

(2.11)

or the number of Y present at the end of the irradiation time tR. The activity of Y
after irradiation is then

A(t) = λN0e
−λt. (2.12)

If the activity measurement is taken during or at the end of irradiation, tA ≤ tR,
then the activity is given by (2.8). However, if the activity measurement is taken
after irradiation, tA > tR, the activity is given by (2.12). To summarise

tA ≤ tR : A(tA) = P
(
1− e−λtA

)
(2.13)

tA > tR : A(T ) = λN0e
−λT (2.14)

where T = tA− tR. It is necessary to use T as tA is measured from the beginning of
irradiation, and N0 as given by (2.11) accounts for both the production and decay
of isotope Y during irradiation. After irradiation, the change in the amount of Y
is governed solely by decay, and thus only the time T after irradiation should be
accounted for. Once the activity is determined, it is a simple matter of finding the
intensity I ([I] =%) of a certain γ-decay line and multiplying this intensity by the
activity. Doing this yields the number of γ-rays of a specific energy produced by Y
per second i.e. the γ-decay activity.
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CHAPTER 2. THEORETICAL OVERVIEW

2.1.3 γ-ray Interaction with Matter

This section borrows heavily from the content found in Chapter 2 of Knoll (2000)[18].
Therefore, for further reading or clarification, the author recommends to refer to
Knoll. Here, γ-ray interactions with matter relevant to the operation of the γ-
ray scintillation detectors are covered. There are three relevant3 interaction types.
In order of ascending energy ranges, they are the photoelectric effect, Compton
scattering, and pair production.

Figure 2.2: The relative importance of each interaction regime with respect to the
atomic number Z of the absorber and the energy of the γ-ray[34]

.

Fig. 2.2 shows the importance of each interaction with respect to the atomic number
of the absorbing medium against increasing γ-ray energy. The curves on the figure
represent the values of Z and hν for which the neighbouring interaction regimes
have equal cross sections (i.e. equal probabilities of occurrence).

Photoelectric Effect
The photoelectric effect is a phenomenon whereby a photon is fully absorbed by an
atom resulting in the ejection of an orbital electron. The energy of the photon is
used to free the electron from its atomic binding, meaning the photon must have
an energy equal to or higher than the binding energy of the electron. If the pho-
ton has energy higher than the binding energy of the electron, the excess energy
is transferred to the electron as kinetic energy. This is neatly summarised in the
expression

Ek = hν −W (2.15)

where Ek is the kinetic energy of the ejected electron, hν is the energy of the incident

3Coherent scattering has been omitted as it is not very relevant in γ-ray detection.
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CHAPTER 2. THEORETICAL OVERVIEW

photon, and W is the binding energy of the electron. As detailed by Fig. 2.2, the
photoelectric effect is dominant for low energy photons paired with high Z materials.
It is useful in scintillation detectors, whereby photomultiplier tubes (PMTs) in the
detector utilise the effect to convert scintillation photons into electrical signals.

In the case of (low energy) γ-rays, tightly bounded (K or L shell) electrons are typ-
ically ejected from the atom. This ionizes the atom, and the empty shell is filled by
either a higher energy electron or by capture of a free electron from the medium.
The former can result in the emission of characteristic X-rays, and while these are
typically reabsorbed close by (again via the photoelectric effect), a small fraction
escape. It is important to account for these escaped X-rays in detector measure-
ments, otherwise they may interfere with the results. Auger electrons may also be
emitted instead of a characteristic X-ray.

Compton Scattering
Compton scattering is the scattering of photons off of charged particles, primar-
ily electrons. Of interest here is the scattering of γ-rays with free electrons in the
absorbing medium. In the collision the electron is assumed to be stationary. The
incident γ-ray is deflected through an angle θ with respect to its original trajec-
tory while transferring some of its energy to the electron. The recoiling electron is
appropriately termed a recoil electron.

All scattering angles are possible, meaning the amount of energy transferred to
the electron can be small (θ ∼ 0) or very large (θ ∼ π, backwards scattering). It is
obvious that the photon always retains some of its energy after a Compton scattering
event. The energy E′ = hν ′ of a scattered photon as a function of the corresponding
incident photon E = hν and scattering angle θ is given by

E′ =
E

1 + E
mec2

(1− cosθ)
. (2.16)

The angular distribution of the scattered γ-rays is given by the Klein-Nishina for-
mula for the differential scattering cross section, though it has not been expressed
here.

Pair Production
Pair production is the creation of a particle-antiparticle pair from a neutral boson.
In the case of interest, a sufficiently energetic γ-ray photon creates an electron-
positron pair in the presence of an external Coulomb field (e.g. an atomic nucleus).
The latter condition is to ensure momentum and energy conservation is satisfied. By
conservation of energy pair production only becomes energetically possible for γ-rays
above 2mec

2 = 1.022 MeV. However the probability of pair production occurring
is normally only significant if the γ-ray has an energy of a few MeV (refer to Fig.
2.2).
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CHAPTER 2. THEORETICAL OVERVIEW

Similar to the photoelectric effect, if the γ-ray has energy in excess of the required
energy for pair production (1.022 MeV), this excess energy is transferred to the
electron and positron as kinetic energy (this sharing of energy is not necessarily
equal). After the interaction, the positron quickly annihilates producing two more
γ-ray photons.

2.2 Principles of Radiation Detection

This section follows the general structure and content of Chapter 4 of Knoll (2000)
[18]. Therefore, please refer there for more information. Interaction of radiation with
a detector, in most detectors, results in the appearance of a small electric charge Q.
When interpreting this charge, it is assumed that the charge appears at the time
t = 0, when the quantum of radiation interacted with the detector. In the case
of scintillation detectors, this is not strictly true, as the electric charge appears in
the PMTs (as a result of the scintillation light) instead of the scintillation material
itself. This electric charge needs to then be collected, which is normally done by
application of an external electric field. The collection time tc of detectors vary,
though generally the current I(t) measured over this time is related to the charge
Q by ∫ tc

0
I(t) dt = Q. (2.17)

There are three modes of detector operation- pulse mode, current mode, and mean
square voltage (MSV) mode. Pulse mode is of relevance to the 12N production exper-
iment and to this thesis. In pulse mode, each photon interacting with the detector
is measured as an individual pulse. Thus pulse mode maintains information on the
energy of the incident photon and the timing between interaction events.

After collection, information pertaining to the pulse amplitude is most commonly
displayed through the differential pulse height distribution. The distribution relates
the quotient dN/dH of the infinitesimal number of pulses dN with an amplitude H
within an infinitesimal range of amplitudes dH in the y-direction, with an increasing
linear scale from zero to an amplitude larger than one observed in the pulse spectra
(to be able to determine the zero of dN/dH) in the x-direction. The number N1→2

of pulses with amplitudes between H1 and H2 can then be determined by

N1→2 =

∫ H2

H1

dN

dH
dH. (2.18)

Note that [H]=V and [dN/dH] =V−1. The total number N0 of pulses can similarly
be determined by integrating over the entire spectra

N0 =

∫ ∞
0

dN

dH
dH. (2.19)
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CHAPTER 2. THEORETICAL OVERVIEW

Instead of the differential pulse height distribution, one can also use the integral
pulse height distribution. The information displayed by these distributions are the
same, just differing in form, and can be easily derived from each other. The x-axis is
equivalent to the differential pulse height distribution, but here the y-axis represents
the number N of pulses which have an amplitude larger than a given amplitude H
of the x-axis.

Figure 2.3: Response Function of a Hypothetical Detector for a Monoenergetic
Radiation Source

In radiation detection, energy resolution is of great importance. Fig. 2.3 shows
the differential pulse height distribution for a hypothetical detector in response to a
monoenergetic source. In the context of a single energy, the differential pulse height
distribution is termed the response function of the detector for that specific energy.
A broader distribution indicates a worse resolution, while a narrow distribution in-
dicates a good resolution. This is due to the fact that the width of the distribution
is directly affected by the amount of fluctuation in pulse measurements. Wide dis-
tributions result from a large amount of fluctuations between pulse measurements,
despite the energy being constant throughout, while narrow distributions represent
little fluctuation between measurements. While resolution can be compared quali-
tatively between response functions, it is defined quantitatively by

R =
FWHM

H0
. (2.20)
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Here FWHM is the full width at half maximum. It is defined as the width of the
distribution at the level where dN/dH is half that of the maximum peak. In Fig.
2.3, the FWHM is indicated by the bold line inside the distribution corresponding
to the y-value of A/2. H0 is the value of H (on the x-axis) corresponding to the
maximum peak, and intersects the FWHM at its halfway point. R is dimensionless,
and is often denoted by a percentage. Since the larger the width of the distribution
the worse the resolution, it is obvious that the smaller the value of R, the better the
resolution. For more information regarding the sources and nature of fluctuations
which affect the energy resolution of detectors please refer to Knoll.

Detection efficiency is the main concern of this thesis. As mentioned, an NaI(Tl)
scintillation detector is to be calibrated. This calibration will be an efficiency cali-
bration, a measure of how many particles are recorded by the detector as a fraction
of either the number of particles emitted by the source or the number of particles
incident on the detector. The former is called the absolute detector efficiency and
is given by

εabs =
Number of Particles (Pulses) Recorded by the Detector

Number of Particles Emitted by the Source
. (2.21)

The latter is called the intrinsic detector efficiency and is given by

εins =
Number of Particles (Pulses) Recorded by the Detector

Number of Particles Incident on the Detector
. (2.22)

Detectors which detect charged particles such as α particles, protons, and β particles
can typically be calibrated in such a way to yield a nearly 100% detector efficiency.
This is due to the fact that charged particles interact (typically via ionization or ex-
citation) nearly immediately upon entering the active region of the detector. During
its path, the particle will cause a significant amount of ionization, ensuring that the
generated pulse will be large enough to be recorded even before the particle reaches
its range. Unfortunately, this is not the case with neutral particles such as photons
and neutrons.

In particular, γ-rays interact solely via the electromagnetic interaction. They are
not subject to the Coulomb force and therefore when they enter the active region
of a detector they must undergo a significant reaction (refer to §2.1.2) for a large
enough pulse to be generated and subsequently recorded. Furthermore, the range of
γ-rays is typically much larger than that of massive charged particles. Thus, there
is a chance that incident γ-rays go through the active region without interaction
and hence are not recorded. This is why it is necessary to determine the efficiency
of the detector. The detector efficiency allows one to derive the activity of a source,
and the amount of radiation incident on the detector, by analysing the number of
pulses recorded by the detector.

The absolute efficiency is heavily dependent on the source-detector distance and the
counting geometry, along with the detector characteristics. The intrinsic efficiency
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is much less affected by the counting geometry and is primarily dependent on the
detector and the incident radiation. In particular, the detector material, the energy
of the incident radiation, and the thickness of the active region along the path of
the incident radiation are some of the main factors affecting the intrinsic efficiency.
The intrinsic efficiency is still dependent on the source-detector distance however,
as this distance will affect the range of incident radiation in the active region. The
two efficiencies are related by

εint = εabs
4π

Ω
. (2.23)

Here Ω is the solid angle subtended by the (active region of the) detector at the
source position. Along with the absolute and intrinsic efficiencies, counting efficien-
cies can also be defined by the nature of the interactions recorded. In particular,
one has the total efficiency and the peak efficiency. The (theoretical) total efficiency
assumes that all interactions, regardless of their energies, are recorded. In reality
however, detectors have energy thresholds. This means that the energy released
by interactions taking place in the active region of the detector must surpass this
threshold to be recorded by the detector. The total efficiency can be approached
by setting this energy threshold to the minimum possible value. Fortunately, the
peak efficiency can be acquired in practice, as it assumes only events which deposit
the full energy of the incident radiation are counted. These events are evidenced by
a peak on the highest end of the respective differential pulse height distributions.
The area under this peak is the number of interactions in which the full energy of
the incident radiation has been deposited. It is also important to note that peak
efficiencies are not affected by variable effects (e.g. noise). Detector efficiencies
should be specified according to both intrinsic or absolute and total or peak. In
γ-ray spectroscopy, the intrinsic peak efficiency is most often used.

If the efficiency of a detector is known it can be used to determine the activity of a
source. In regards to this thesis, the detector of known efficiency to be used is the
High-Purity Germanium (HPGe) detector, which will in turn be used to calibrate
the NaI(Tl) detector. If it is assumed that a source emits radiation isotropically and
that no attenuation occurs between the source and the detector, the intrinsic peak
efficiency εip is related to the activity of the source by

S = N
4π

εipΩ
. (2.24)

Here S is the number of particles (of the specific radiation being detected) emitted
by the source during the measurement period4 and N is the number of events in
the full energy peak. The solid angle Ω is defined as it was for (2.23) and is wholly
dependent on the source-detector geometry. For more information on Ω, please refer
to Knoll.

4Dividing S by the measurement period in seconds yields the activity in Bq.
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2.2.1 NaI(Tl) Scintillation Detector

This section borrows heavily from the content found in Chapter 8 of Knoll (2000)[18].
Therefore, for further reading or clarification, the author recommends to refer to
Knoll. Scintillation is the physical phenomenon whereby visible or UV electromag-
netic radiation is produced inside a scintillation material due to interactions resulting
from the passage of a particle through said material. Particles incident on a scintil-
lation detector interact with the inorganic scintillation material (NaI activated with
thallium) and produce light. This light is registered by a PMT which utilises the
photoelectric effect to convert the scintillation photons into electrical pules. These
pulses are subsequently amplified and analysed. A schematic of this process can be
seen in Fig. 2.4. According to Knoll, there are six properties the ideal scintillation
material should posses- these properties can be found in the Appendix. In practice
though, no material simultaneously meets all six, and therefore choosing a material
always compromises one or more of these qualities in favour of another. The material
of interest here is thallium activated sodium iodide crystal, which is the scintillation
material found in the detector to be used in the 12N production experiment (i.e. the
detector which is to be calibrated with the 66Ga gamma spectrum).

Pure scintillation crystals are inefficient in the scintillation process and typically
produce photons which are of too high an energy for PMTs to detect. This is
usually due to the large band gaps present in their lattice structure. Therefore,
impurities must be introduced into the crystal. This process is called activation and
the impurities are called activators. In semiconductor production, this process is
known as doping. The introduction of impurities creates special sites in the crystal
lattice. At these sites, previously forbidden energy levels are formed within the
band gap (forbidden gap). When a γ-ray traverses the material, many electron-hole
pairs are produced. Holes travel through the material, and upon encountering an
activation site, ionize it. This allows electrons to drop into the site. If the electron
drops into an excited configuration, and subsequently drops to the activator ground
state, it will release a photon. If the activation material is chosen appropriately, these
scintillation photons will be in the visible or UV range. Thallium is the activating
agent for the sodium iodide crystal in the detector which will be used in the 12N
production experiment. Fig. 2.5 shows the energy band structure in an activation
site.

There are other processes which compete with the activator ionization process de-
scribed above, but they will not be detailed here. For a range of materials, NaI(Tl)
included, the photon energy required to produce one electron-hole pair is around
three times that of the band gap. For NaI(Tl), this is about 20 eV. According to
Knoll, the absolute efficiency of thallium activated sodium iodide is around 12%.
Thus, for example, if a 1 MeV γ-ray is fully absorbed, around 120 keV of scintillation
light energy will be produced. This is actually one of the most prominent features of
NaI(Tl) as a scintillation material, it has a superb light yield as compared to other
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Figure 2.4: Diagram of a Scintillation Detector[35]

Figure 2.5: Energy Band Structure in an Activated Scintillation Material

inorganic materials. Despite this high absolute efficiency, the efficiency in practice
is dependent on the sample shape, the detector geometry, and on the γ-ray energy.
Thus, it is wise to expect a lower efficiency, meaning that the γ-ray calibration
source should be quite powerful.

The NaI(Tl) detector to be used has dimensions of 91 mm× 91 mm× 150 mm and
is enclosed in a 1 mm thick, 98 mm wide aluminium housing. A schematic of the
detector can be seen in Fig. 2.6. Furthermore, the detector is also enclosed in a
Eurogam Clover detector housing. There is a tungsten collimator at the top of the
housing. Monte Carlo simulations ran by van der Graaf[36] for a source modelled as
a point source 17.3 cm above the tungsten collimator found the geometrical efficiency
to be 3.29× 10−3. The simulated efficiencies for a 0.9 MeV, 1 MeV, and 1.25 MeV
γ-ray were found to be 2.31 × 10−3, 2.22 × 10−3, and 2.03 × 10−3 respectively. As
will be seen, the ideal 66Ga γ-decay line lies at around 1 MeV, so these energies and

20



CHAPTER 2. THEORETICAL OVERVIEW

their corresponding efficiencies are the most relevant. Note that while efficiencies
have been acquired from simulation, the detector must still be calibrated with an
actual source (i.e. 66Ga).

Figure 2.6: Scionix Scintillation Detector Type V91A150/3M-E1 to be used in the
12N production experiment[36]
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2.2.2 High-Purity Germanium (HPGe) Detector

This section borrows heavily from the content found in Chapter 12 of Knoll (2000)
[18] and several online resources[22–24]. Thus, for further reading please refer to
these sources. Typical semiconductor detectors are useful in detecting massive,
short-ranged, and charged particles, but are not suited for detecting more penetrat-
ing radiation, such as γ-rays. This is due to their limited depletion depths, or active
regions. The depletion depth d of a semiconductor is given by

d =

(
2εV

eN

)1/2

(2.25)

where V is the reverse bias voltage, N is the net impurity concentration in the
semiconductor material, ε is the relative permittivity, and e is the elementary charge.
Germanium of normal semiconductor purity has a depletion depth of 2 or 3 mm,
but as γ-rays are highly penetrating, this is not large enough. By severely reducing
impurity concentration in the semiconductor material, it is possible to achieve higher
depletion depths which are capable of detecting γ-rays. For example, given an
impurity concentration of 1010 atoms per cm3 and a reverse bias voltage of less than
1000 V, a depletion depth of 10 mm can be achieved. However, it is important to
note that this is an extremely low impurity concentration. Such levels of purity
can be achieved in germanium, and detectors utilising high-purity germanium are
appropriately termed high-purity germanium (HPGe) detectors.

Germanium has a relatively low band gap, so HPGe detectors must be operated
at low temperatures to prevent the thermal generation of charge carriers and the
noise induced by the consequential leakage current. When a γ-ray traverses the
semiconductor material (i.e. high-purity germanium), it ionizes some of the semi-
conductor atoms, resulting in the creation of electron-hole pairs. Electrons from
the valence band jump to the conduction band, forming holes in the valence band.
Since, as mentioned, high-purity germanium has a large depletion depth, this allows
the electrons in its atoms to absorb high-energy γ-rays. Furthermore, the number
of electron-hole pairs is typically proportional to the energy of the γ-ray. In the
detector, the germanium is subject to an electric field. Upon the creation of the
electron-hole pairs, these charge carriers travel to the respective electrode. The
potential difference between the electrodes results in an electric pulse, which can
then be analysed to yield information about the energy of the incident γ-ray. This
method, while seemingly similar, is distinct from the scintillation method. In scintil-
lation materials, electrons de-exciting in ionized activator sites result in the emission
of scintillation photons. These photons are registered in PMTs, creating electrical
signals which are amplified and analysed. In HPGe detectors, the recorded electric
pulse is a direct result of the incident γ-ray.
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With regards to the HPGe detector to be used in the experiment, a few drops of
radioactive solution5 were placed on a paper filter. This paper was subsequently
placed directly on the surface of the HPGe detector and yielded efficiencies of 0.049
for a 898 keV γ-ray and 0.038 for a 1173 keV γ-ray[31]. Note that these efficiencies
are in general one order of magnitude larger than the efficiencies from the NaI(Tl)
detector simulation.

5A liquid in which a known amount of radioactive substance has been dissolved in.
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Methods

As mentioned prior, the aim of this research was to calibrate a NaI(Tl) scintillation
detector to be used for a larger ongoing project. Due to the COVID-19 pandemic,
access to experimental equipment was not permitted and therefore the research was
adapted. There were several stages in this research, culminating in the determina-
tion of the optimal 66Ga γ-decay line to be used for the activity measurement.

The source to be used for the activity measurement is 66Ga. This source must be
produced at KVI-CART via proton bombardment on a 1 mm thick natural zinc
plate. The fundamental components of the set up are the beam (more specifically,
the position of the beam exit), a water tank which will degrade the beam1 (water
also acts as a tissue substitute in the 12N experiment), and the zinc plate. To make a
good calibration source, a large amount of 66Ga must be produced. Therefore, based
on the given apparatus, the position of the zinc plate in the water which produces
the largest amount of 66Ga for a given fluence needed to be determined. To do this,
a fluence profile needed to be examined along with a reliable excitation function
for natZn(p, x)66Ga. The activities and gamma spectra of 66Ga and various other
contaminants were also determined. The γ-decay line of 66Ga which was both the
most prominent and as clear from interference as possible was ascertained.

1As mentioned prior, the 66Ga will be produced during the 12N production experiment, which
requires a 90 MeV beam. Thus, the beam must be degraded to produce 66Ga.
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3.1 Excitation Function of natZn(p, x)Y

The physics of nuclear transmutation, especially for Coulomb interacting particles
(such as the proton), is very complicated. Therefore, excitation functions are not
determined analytically, but rather experimentally or computationally. Unfortu-
nately, the author was unable to acquire the appropriate software to compute the
natZn(p, x)Y excitation functions. For the interested reader, two simulation codes
which can be used are ALICE2017 and EMPIRE-II[37][38]. Since experimental and
computational methods were not feasible, cross section data was collected from a
range of sources.

The cross section data for each natZn(p, x)Y reaction was compiled in MS Excel.
The data was then loaded into Python for regression.2 Prior to this, several functions
were tested against the compiled data using Logger Pro from Vernier,3 and it was
determined that a high degree polynomial fit was appropriate for the interpolation.
This could be achieved either through polynomial regression or spline interpola-
tion. Thus three SciPy (Python module) interpolation techniques were used, Polyfit
(and Polyval), UnivariateSpline, and InterpolatedUnivariateSpline. After a visual
and statistical comparison of all three, it was clear that the polynomial regression
(Polyfit) provided both the most accurate and precise fit. The spline interpolations
required high levels of smoothing (due to their sensitivity resulting from the large
distribution in data) to eliminate noise, but this was at the expense of precision in
several areas of the plot. As this average excitation function was needed for fur-
ther analysis, it was imperative that the plot represented the experimental data as
accurately and precisely as possible.

One MS Excel document was used for each individual natZn(p, x)Y reaction. In a
document, each sheet contained data from one cross section data source, along with
a final sheet containing the combined data. The combined data was used for the
polynomial regression. The data consisted of proton energies (in MeV) versus the
corresponding cross sections (in mb). The proton energies were sorted to be strictly
increasing, as Polyfit regression only works for strictly increasing x-values. Using
the Pandas module the data was imported from Excel into the Python workbook.
According to Table 2.1, the lowest threshold energy for 66Ga production from natural
zinc comes from the reaction 66Zn(p, n)66Ga. The threshold energy of this reaction
(minimum proton kinetic energy required) is just below 6.05 MeV. Thus the cross
section should be 0 mb below this value. However, this seemed not to be the case
according to the data from several sources. While these values contradict theoretical
expectations, they fitted the trend quite well and could be explained by experimental
and random error. Initially the author considered omitting these values, but resolved

2Python 3.7 - Spyder 3.3.6 Environment.
3Logger Pro was used for the test functions as it has a large list of pre-made functions with

automatic fitting. Python was used for the final plotting however due to its versatility.
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to include them to account for the uncertainty present in the original experiments.
Inclusion of these values resulted then in a threshold energy of around 5 MeV, not
too far off the theoretical expectation. This phenomenon (nonzero cross sections
below the threshold energy) was also seen in several other reactions, and for similar
reasons, all the data was included.

For some of the regressions, a rank warning was given by Python. This occurs
when the degree of the polynomial is too high to the extent that the fit may be
poorly conditioned to the data. Fortunately, this was not the case within the re-
quired energy intervals (typically around 1 MeV to 90 MeV). While there was of
course uncertainty in each polynomial regression, the fit was always optimized in
the required range. However, the rank warning becomes relevant beyond this range.
Therefore, the fit could not be used to predict cross sections outside of this interval.
This proved not to be a problem however, as cross section predictions outside of the
respective energy ranges were not needed.

Figure 3.1: Process of selecting data point using Web Plot Digitizer

Another problem found was that in some papers, the cross section data was only
provided in graphs, and not in tables. Thus, the data needed to be extracted
directly from the graph. To do this, a screenshot of the graph was taken and
enlarged (and if necessary, straightened) in Adobe Photoshop. This enlarged image
was uploaded onto the online application Web Plot Digitizer[39]. Here the axes
of the plot were scaled appropriately, and the data points acquired by clicking on
them. This obviously led to some random error in all the data sets which were
acquired via this method, but this error was minimized by enlarging the graphs. As
the resolution of each graph was very high, the cursor was always placed within a
data point. Thus the random error was concluded to be negligible. Furthermore,
to increase precision, the sensitivity of the cursor was also reduced to its minimum
during this process. This enabled careful placement of the cursor. Fig. 3.1 shows the
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process of selecting a data point on Web Plot Digitizer. The first image (left) shows
the cursor (intersection between horizontal and vertical lines), the second image
(middle) shows the cursor hovering over a data point from the graph (in black), and
the final image (right) shows the addition of a data point from the application (in
red).

There were also reactions for which there was very limited data. In the few cases
where cross section data on natZn(p, x)Y reactions could not be found, reactions
with specific zinc isotopes were used instead. Each cross section was multiplied by
the isotopic abundance of said zinc isotope in the sample used in the experiment
(typically around 95-99%) and then subsequently multiplied by the abundance of
that specific isotope in natural zinc. This method was used by Hermanne et al.[40].
The data sets which were extracted via Web Plot Digitizer and the cross sections
which were determined by isotopic abundance multiplication are outlined in Table
4.1 in the results section.

3.2 Determination of Zinc Depth

A 1 mm thick zinc plate will be placed in a water tank, as seen in Fig. 3.2. The water
tank is used to degrade the beam. To optimise 66Ga production, it is necessary to
determine the best position to place the zinc plate in the water. The proton fluence
φ in the zinc at different water depths was obtained via external simulations[31].
Within these simulations, the zinc plate was separated into ten imaginary 0.1 mm
slices to allow for the fluence data at each slice to be individually analysed. These
simulations were done using the Monte Carlo N-Particle Transport (MCNP) code.
Simulations were carried out for water depths between 10 mm and 60 mm in steps
of 10 mm, with an additional simulation at 55 mm. The proton beam energy was
set to 90 MeV, as this energy will be used for the actual experiment. At each water
depth, there were ten fluence profiles, one for every 0.1 mm slice in the zinc plate.
Initially, the position of the water tank in the simulation was 329.6 cm from the
beam exit. Due to scattering in the air and the Beam Ionization Monitor, the total
proton fluence at all water depths was very low. Thus the position of the water
tank was moved to 50 cm from the beam exit, which resulted in a much larger
fluence.

For each profile (i.e. for a specific water depth and zinc slice), the fluence was given
for every 0.1 MeV step between 1.05 MeV and 99.95 MeV. Thus, to determine the
region of highest 66Ga production, R needed to be calculated using (2.3). Note that
the fluence was in sp−1·cm−2, and as detailed in (2.3), needed to be multiplied by a,
the frontal area of the zinc plate. In the simulation, a was set to 6.25 cm2, as this is
the proposed zinc area for the experiment. A set of points from the averaged 66Ga
excitation function was extracted from Python. The data set had energy values
from 1.05 Mev to 90.05 MeV, in steps of 0.1 MeV, and the corresponding average
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cross section for each energy value. This data was then compiled with the fluence
data in MS Excel. Data for each water depth was contained on a separate sheet.
R was then calculated for each zinc slice at a certain water depth. The data was
then imported into Python, and a plot was made for each water depth. Each plot
displayed ten curves, one for every zinc depth, and a plot was made with all the
curves combined. From these plots, it was determined that the best position to
place the zinc plate in the water would be at 60 mm.

Figure 3.2: Bird’s-eye view of proposed experimental setup

To make the data more visually accessible, the R values for each zinc slice were
summed over the energies and a plot of R versus zinc depth for each water depth
was made. Then, the ten R values for each water depth were summed and a plot of
R versus water depth was made. These plots both reaffirmed that 60 mm was the
best position to place the zinc plate. Once this was concluded, a similar process was
carried out for all the contaminant reactions. However, instead of calculating R for
all water depths, only data for the 50 mm, 55 mm, and 60 mm water depths was
processed. Plots of R versus zinc depth and R versus water depth were also made
for each reaction.
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3.3 Gamma Spectra

Before a gamma spectrum could be made, the gamma intensities for each isotope
needed to be recorded. These intensities, also known as branching ratios, represent
the fraction of particles (of the respective isotope) which decay by a particular mode.
A mode in this context pertains to γ-decay of a specific energy. For example, the
1039.231 keV γ-decay line of 66Ga has an intensity of 37%. Thus, if 100 66Ga
particles were to decay in a second (i.e. an activity of 100 Bq), then roughly 37 of
those decays would result in 1039.231 keV γ-rays. All the γ-decay intensities were
acquired from the Lund/LBNL Nuclear Data Search[41].

Once R was known for each reaction, water depth, and zinc depth, and the gamma
intensities for each isotope compiled, a Python function was made to calculate the
activities of all the isotopes, and to produce a gamma spectrum. The function takes
four arguments; water depth (50 mm, 55 mm, or 60 mm), beam current, irradiation
time, and activity measurement time. Using the theoretical treatment as described
by (2.3) - (2.14), the function can calculate the activity of each isotope and produce
a complete gamma spectrum of all the isotopes. To determine the ideal γ-decay line
to be used in the calibration, the function was then run using the proposed values
for the actual experiment; a depth of 60 mm, a 30 nA beam current, an irradiation
time of 2 hours, and an activity measurement time of both 10 and 12 hours. The
Python scripts for this activity function and the 66Ga average excitation function
can be found in the Appendix.
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Results

4.1 Average Excitation Functions

Cross section data and the corresponding averaged excitation functions can be found
in this section. While not exactly convention, the author found it most practical
to list the sources used with their corresponding citations. As the graphs were
constructed in Python, there was no way to automatically link a source to the
correct citation number. Thus Table 4.1 contains the sources used, in chronological
publication order, and their citation numbers in this paper, along with additional
notes where relevant.

Table 4.2 and 4.3 contain the relevant reactions, the degrees of the polynomials used
in the regressions, and the coefficients of determination R2 (not to be confused with
the number of isotopes produced per starting proton R) and root mean square errors
(RMSE) of the respective polynomial fits. Furthermore, in Table 4.3, the RMSE
has also been calculated as a percentage of the maximum cross section (respective
to each reaction) to standardise the error for comparison. Since the minimum cross
section of all the reactions is 0 mb, the maximum cross section is equal to the range
of the data. The coefficient of determination and RMSE were calculated using the
sklearn module in Python.

The excitation functions can be found after the tables, in Figs. 4.1 - 4.8. It can be
seen that in the majority of the graphs there is a peak in the range of 10 MeV to 30
MeV. In Fig. 4.1, there are two peaks in the excitation function for 66Ga. The first
at around 12 MeV, and the second at around 35 MeV. Other excitation functions
which have similar peaks are Fig. 4.2 (natZn(p, x)61Cu)) with a peak at around 14
MeV, Fig. 4.5 (natZn(p, x)67Ga) with a peak at around 22 MeV, Fig. 4.6 (natZn(p,
x)68Ga) with a peak at around 12 MeV, and Fig. 4.8 (natZn(p, x)65Zn) with a peak
at around 25 MeV. It will be seen later that the products of these reactions are the
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most prominent contaminants at a water depth of 60 mm.

It is also important to note that in Fig. 4.4 there seems to be a large deviation in
the data of Levkovskii (1991)(2) and Kastleiner et al. (1999) from the average fit.
The reason for this is that the majority of the natZn(p, x)67Cu data was actually
taken from 68Zn(p, x)67Cu and 70Zn(p, x)67Cu cross section data, and multiplied
with both the experimental and natural abundances of 68Zn and 70Zn respectively.
In fact, only Bonardi et al. (2005) had cross section data for the natZn(p, x)67Cu
reaction, while the rest were derived from the aforementioned zinc reactions (see
Table 4.1 for further clarification). Fortunately, the peak of the natZn(p, x)67Cu
excitation function is little over 2 mb. Therefore, while its average fit has the
largest error (RMSE is 11.09% as percentage of range), and the data might not be
very precise nor accurate, its cross section is sufficiently low throughout such that
these errors are negligible.
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Table 4.1: References used for cross sections, their inline citations, and additional
notes

Cross Section References Notes

McGee et al. (1970)[42]
Data for reaction 68Zn(p, x)67Cu
Data obtained from Stoll (2002)
Data obtained via Web Plot Digitiser

. . .

Bonardi & Birattari (1983)[43]
Data obtained from Szelecsenyi (1998)
Data obtained via Web Plot Digitiser

.

Little & Lagunas-Solar (1983)[44]
Data obtained from Kopecky (1990)
Data obtained via Web Plot Digitiser

.
Kopecky (1990)[45] Data obtained via Web Plot Digitiser
.

Levkovskii (1991)(1)[46]
Data for reaction 68Zn(p, x)67Cu
Data obtained from Stoll (2002)
Data obtained via Web Plot Digitiser

.

Levkovskii (1991)(2)[46]
Data for reaction 70Zn(p, x)67Cu
Data obtained from Kastleiner (1999)
Data obtained via Web Plot Digitiser

Nortier et al. (1991)[47]
Hermanne (1994)[48] Data obtained from Szelecsenyi et al. (1998)
Szelecsenyi et al. (1998)[48]
Hermanne et al. (1999)[40]
.

Kastleiner et al. (1999)[49]
Data for reaction 70Zn(p, x)67Cu
Data obtained via Web Plot Digitiser

.
Stoll et al. (2002)[50] Data for reaction 68Zn(p, x)67Cu
Szelecsenyi et al. (2003)[51]
Bonardi et al. (2005)[52] Data obtained via Web Plot Digitiser
Szelecsenyi et al. (2005)(1)[53]
Szelecsenyi et al. (2005)(2)[54]
Szelecsenyi et al. (2005)(3)[55]
Tarkanyi et al. (2005)[56]
Al-Saleh et al. (2007)[57]
Uddin et al. (2007)[58]
Asad et al. (2014)[59]
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Table 4.2: Polynomial degrees used in regression and corresponding coefficients of
determination

Reaction
Degree of Polynomial
Used in Regression

Coefficient of
Determination R2

natZn(p, x)61Cu 17 0.980
natZn(p, x)64Cu 4 0.849
natZn(p, x)67Cu 8 0.882
natZn(p, x)66Ga 19 0.918
natZn(p, x)67Ga 22 0.975
natZn(p, x)68Ga 25 0.996
natZn(p, x)62Zn 11 0.975
natZn(p, x)65Zn 8 0.962

Table 4.3: RMSEs for each polynomial fit

Reaction RMSE (mb)
Maximum
Cross
Section (mb)

RMSE as a
Percentage of
Max. Cross Section (%)

natZn(p, x)61Cu 3.03 77.78 3.90
natZn(p, x)64Cu 2.39 24.88 9.61
natZn(p, x)67Cu 0.24 2.20 11.09
natZn(p, x)66Ga 12.14 172.30 7.05
natZn(p, x)67Ga 7.68 153.00 5.02
natZn(p, x)68Ga 3.28 155.90 2.10
natZn(p, x)62Zn 2.46 50.30 4.89
natZn(p, x)65Zn 13.25 228.24 5.80
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natZn(p, x)66Ga Excitation Function

Figure 4.1: Excitation function for the natZn(p, x)66Ga reaction: linear vertical scale
(upper graph) and logarithmic vertical scale (lower graph)
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natZn(p, x)61Cu Excitation Function

Figure 4.2: Excitation function for the natZn(p, x)61Cu reaction: linear vertical scale
(upper graph) and logarithmic vertical scale (lower graph)
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natZn(p, x)64Cu Excitation Function

Figure 4.3: Excitation function for the natZn(p, x)64Cu reaction: linear vertical scale
(upper graph) and logarithmic vertical scale (lower graph)

36



CHAPTER 4. RESULTS

natZn(p, x)67Cu Excitation Function

Figure 4.4: Excitation function for the natZn(p, x)67Cu reaction: linear vertical scale
(upper graph) and logarithmic vertical scale (lower graph)
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natZn(p, x)67Ga Excitation Function

Figure 4.5: Excitation function for the natZn(p, x)67Ga reaction: linear vertical scale
(upper graph) and logarithmic vertical scale (lower graph)
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natZn(p, x)68Ga Excitation Function

Figure 4.6: Excitation function for the natZn(p, x)68Ga reaction: linear vertical scale
(upper graph) and logarithmic vertical scale (lower graph)
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natZn(p, x)62Zn Excitation Function

Figure 4.7: Excitation function for the natZn(p, x)62Zn reaction: linear vertical scale
(upper graph) and logarithmic vertical scale (lower graph)
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natZn(p, x)65Zn Excitation Function

Figure 4.8: Excitation function for the natZn(p, x)65Zn reaction: linear vertical scale
(upper graph) and logarithmic vertical scale (lower graph)
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4.2 66Ga Production Rates and Water Depth

As mentioned prior, a data set of 1.05 MeV to 90.05 MeV in steps of 0.1 MeV, and
the corresponding cross section at each step, was obtained from the average fit as
seen in Fig. 4.1. Fluence profiles of the zinc plate at different water depths were
acquired via simulations[31]. Simulations were ran for seven water depths, with each
water depth having fluence profiles for (imaginary) 0.1 mm slices in the 1 mm zinc
plate. The proton beam energy was set to 90 MeV, and the water tank was placed
50 cm from the proton beam exit. R was calculated using (2.3). From the following
results, it is clear to see that a water depth of 60 mm is the best position for the
zinc plate to obtain the highest 66Ga production.

Fig. 4.9 shows R (for 66Ga) as a function of proton energy, for ten zinc depths,
at a water depth of 60 mm. Fig. 4.10 shows the curves of all the water depths
with each water depth labelled. Figs. 4.11 - 4.16 show R (for 66Ga) versus proton
energy distributions for the remaining water depths. It is interesting to note that
in Fig. 4.10, as the water depth increases, the energy distributions widen. This is
an example of energy straggling.
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Figure 4.9: R versus proton energy at a water depth of 60 mm for 66Ga

Figure 4.10: R versus proton energy for all water depths for 66Ga
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R versus Proton Energy Distributions for 66Ga

Figure 4.11: Water Depth of 10 mm Figure 4.12: Water Depth of 20 mm

Figure 4.13: Water Depth of 30 mm Figure 4.14: Water Depth of 40 mm

Figure 4.15: Water Depth of 50 mm Figure 4.16: Water Depth of 55 mm
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To make the data more visually accessible, the R values for each zinc depth (i.e. the
normal distribution curves) were summed and each water depth was plotted. This
can be seen in Fig. 4.17. The R values for each water depth were then summed and
plotted as a function of water depth. This can be seen in Fig. 4.18. Note that the
R values have been converted from sp−1 to nA−1·h−1. From this point onward, per
nanoampere hour will be used in place of per starting proton. Again, it is easy to
see that 60 mm is the optimum position.

Figure 4.17: R versus zinc depth for each water depth for 66Ga

Figure 4.18: R versus water depth for 66Ga
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4.3 Contaminant Production

Once it had been determined that 60 mm is the optimum water depth, a similar
process was carried out for the contaminants. However, as 50 mm, 55 mm, and
60 mm were the most productive depths, only these were considered. From each
averaged excitation function (red line in Figs. 4.2 - 4.8) a set of cross sections were
taken. The majority of the data sets had proton energies ranging from 1.05 MeV
to 90.05 MeV, in steps of 0.1 MeV. However, for the natZn(p, x)62Zn and natZn(p,
x)65Zn reactions, the excitation functions ended before 90.05 MeV and there was
not enough data to predict their behaviour. Fortunately, this was not a problem as
the fluence between 50 mm and 60 mm was always zero above 55 MeV, and there
were no excitation function cutoffs below 60 MeV. Thus even if the cross section
data were available, R would simply be zero.

Figs. 4.19 - 4.21 show R as a function of zinc depth for all the products, for the
water depths of 50 mm, 55 mm, and 60 mm respectively. Fig. 4.22 shows R for
all the products at each water depth, with a linear vertical scale (upper graph) and
a logarithmic vertical scale (lower graph). From the graphs it is clear to see that
67Ga, 68Ga, 61Cu, and 65Zn are the most prominent contaminants.

Figure 4.19: R versus zinc depth for all products at a water depth of 50 mm
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Figure 4.20: R versus zinc depth for all products at a water depth of 55 mm

Figure 4.21: R versus zinc depth for all products at a water depth of 60 mm
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Figure 4.22: R versus water depth for all products: linear vertical scale (upper
graph) and logarithmic vertical scale (lower graph)
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4.4 Activities and γ-Spectra

As mentioned prior, once R was determined for all the products, a function was
written to determine the activity of each isotope and produce a γ-spectrum. The
function has four arguments; water depth (50 mm, 55 mm, or 60 mm), beam current,
irradiation time, and the activity measurement time. For the final results, the water
depth was set to 60 mm, the beam current to 30 nA, the irradiation time to 2 hours,
and the activity measurement time to both 10 and 12 hours. Note that the activity
measurement time is measured from the start of the irradiation. For example, an
activity measurement time of 10 hours means it was taken 8 hours after the end
of a 2 hour irradiation session. From Figs. 4.23 and 4.24 it is clear to see that
the 1039.231 keV γ-decay line is the most prominent and also relatively free of
interference. Thus, it is concluded that this is the line which should be used for the
calibration.

Table 4.4: Activities for a water depth of 60 mm, beam current of 30 nA, and
irradiation time of 2 hours

Activity
Measurement
Time (h)

Isotope Activity (Bq)

10 Ga-66 5.39× 106

Ga-67 6.05× 105

Ga-68 4.08× 105

Cu-61 1.13× 106

Cu-64 1.37× 102

Cu-67 6.61× 102

Zn-62 4.88× 102

Zn-65 5.58× 103

12 Ga-66 4.65× 106

Ga-67 5.94× 105

Ga-68 1.19× 105

Cu-61 7.47× 105

Cu-64 1.23× 102

Cu-67 6.46× 102

Zn-62 4.20× 102

Zn-65 5.58× 103
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Water Depth: 60 mm — Beam Current: 30 nA — Irradiation Time: 2 h

Figure 4.23: γ-ray activity at activity measurement time of 10 hours: linear vertical
scale (upper graph) and logarithmic vertical scale (lower graph)
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Water Depth: 60 mm — Beam Current: 30 nA — Irradiation Time: 2 h

Figure 4.24: γ-ray activity at activity measurement time of 12 hours: linear vertical
scale (upper graph) and logarithmic vertical scale (lower graph)
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Discussion

It is clear to see from the results that during the proposed 66Ga production experi-
ment, a water depth of 60 mm should be chosen for the position of the zinc plate.
This is due to 60 mm being the water depth with the highest 66Ga production. Fur-
thermore, it is also clear to see that the 1039.231 keV gamma line of 66Ga should
be used for the activity determination. Reinforcing this is the fact that the HPGe
detector which will be used to determine the activity of the source has an efficiency
which drastically decreases above 2 MeV. Thus, the 1039.231 keV line is the most
appropriate for the activity determination, due to its high intensity (37%) and activ-
ity, its energy being within the suitable range of both detectors, and the line being
clear from any major γ-decay interference. However, there were a few problems
present in the research conducted in this paper which need to be addressed before
any finalising conclusions can be made.

First and foremost is the fact that the majority of the research conducted in this
paper was either theoretical or computational. Experimental results were solely
used during the excitation function analysis, and even then, the results were taken
from other research and further processed in this paper (i.e. averaging of the exci-
tation function using polynomial regression techniques). This is not to say that the
methods used in this paper are invalid, but before anything can be concretely said
about them, this research should be considered with slight skepticism. Thankfully,
plans are underway to verify the research done in this paper. In the likely event that
this research is indeed valid, there are exciting inferences which can be made. Vali-
dating this research would imply that the excitation function analyses, paired with
the MCNP simulation data and γ-ray intensity data, can be used in the future in
preparation for similar experiments. It seems to be a relatively common occurrence
in which a particle beam must be degraded (not necessarily with water) before it
hits its intended target. Thus, to prevent waste of both beam time and the target
material itself, it would be a good idea to utilise the methods from this research to
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optimise the amount of degrading material required, and if necessary, analyse the
resulting spectra, before actually carrying out the experiment. Again however, this
is on the assumption that the research is valid.

If the research presented in this paper is not valid (by means of experimental refu-
tation), then it will be revised and the relevant problems hopefully determined.
Nevertheless, beyond the lack of experimental proof, there were still a few consid-
erable problems present. A rather obvious one is the lack of any real error analysis.
The most extensive error analysis done in this paper was the ascertainment of the
coefficients of determination (R2 values) and root mean square errors (RMSEs) in
the excitation function fitting. The R2 values for the majority of the reactions were
above 0.9, with the exception of natZn(p, x)64Cu and natZn(p, x)67Cu which had
R2 values of 0.849 and 0.882 respectively (still relatively good values). From this it
can be said that all the fits were quite precise, and seemed to reflect the data well.
Unfortunately, while the R2 values were used to manipulate and hone the fits with
statistical precision, they were not used in any other analysis.

There are also many caveats in using R2 analysis, and a few of them were clear in the
regression techniques used in this paper. For some of the reactions, the polynomial
fit had a very high degree. This resulted in a very high (i.e. supposedly very good)
R2 value, but beyond the given range of data, the polynomial behaved erratically
(a consequence of over fitting). For example, after crossing through the final data
point, some functions would rapidly increase, or fluctuate wildly about the x-axis.
Therefore, while the fits were very well adjusted within a range of data, they could
not be used in predicting the behaviour of the excitation function outside of this
range. In the context of the theory, this is fine, as cross sections for proton-nuclei
reactions are based on highly complicated and probability-oriented physics. That
is why they must be determined experimentally or computationally. Regardless,
the point still holds that the polynomial fits were poorly conditioned outside the
required data range. The only way to properly remedy this is by collecting more
data or running simulations for the required proton-nuclei reaction. As mentioned
prior, the ALICE2017 and EMPIRE-II codes can be used for this.

Another caveat present in the use of R2 analysis is that it does not indicate whether
the correct regression was used. As mentioned prior, a polynomial regression was
used after testing the natZn(p, x)66Ga cross section data with several different func-
tions and interpolation techniques. The regression technique seemed to also work
for the other reactions, so was used for all the fits. While polynomial fitting seemed
the most appropriate at the time, and the R2 values seem to reflect that, other tech-
niques that were not tested or were abandoned early might have actually resulted
in better fits. Spline interpolation, while tested, was abandoned after a few cases
of severe over fitting. However, if more time was given to refine the interpolation
technique, and considering that spline interpolation is done through combining poly-
nomials of different degrees, the author believes that for some curves it would have
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been a better choice. Despite the caveats, the polynomial fits were still a relatively
good choice and represented the data quite well.

The RMSEs, and more importantly their values relative to the respective maximum
cross sections, indicate that the final results are probably of the right order of
magnitude, but do not reflect the actual numerical values. For example, the activity
of 66Ga in Table 4.4 at an activity measurement time of 10 hours is given by 5.39×106

Bq. However, the RMSE of the fit as a percentage of the maximum cross section
was 7.05%. This means that the spread of data (as easily seen in Fig. 4.1) was quite
large. Thus, if a hypothetical detector with 100% efficiency was able to detect all
the radiation (i.e. a 4π steradian detection area) coming from a recently irradiated
natural zinc source with the same specifications as detailed in Table 4.4, it would
still not detect 5.39×106 Bq. It will definitely detect an activity on the order of 106,
but the numerical values cannot be accurately discerned, in part due to the presence
of a nonzero RMSE. However, even if the RMSE was 0 and the R2 value 1, the final
results must still be interpreted as order of magnitude estimates due to the fact that
radioactive decay is a stochastic process and thus can never be determined with full
accuracy in a theoretical context. Be that as it may, an order of magnitude estimate
is still extremely useful, especially in the context of the proposed 66Ga production
experiment. Order of magnitude estimates still enable fully reliable comparisons of
production rates and γ-spectra. If experiment verifies the validity of this research
(i.e. 60 mm is the most productive water depth and the 1039.231 keV line is the
best calibration line), then this method can be used for the optimization of similar
experiments and give predictions on the order of magnitude expected for production
rates and activities.

There are a few improvements which could be made on the excitation function fit-
ting. First, as mentioned, is further analysing different regression and interpolation
techniques to find if there are any with better capabilities than polynomial regres-
sion. Another improvement which could have been made would be the propagation
of error obtained from the cross section data (i.e. the errors measured by the au-
thors in Table 4.1) for both the cross sections and the proton energies. This could
have helped in honing the fits to the data. Preliminary calculations were done to
propagate the RMSEs and errors for the proton fluence data when calculating R
(using (2.3)). However, as mentioned above, since it is clear that the data obtained
from this research should be used to estimate orders of magnitude, and since the
error in R was too small to cause any changes in the order of magnitude for any
reaction, it was decided best to disregard the errors in R and subsequent errors
in the activities. With regards to the error analysis, the conclusion would be that
errors could have been used to improve the fitting of the excitation functions, but
would not be too productive for the rest of the research as the errors did not affect
the orders of magnitude of the final results. The only other computational method
used were the simulations for the proton fluence data using MCNP. However, the
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author was not involved in the making of these simulations and therefore cannot
comment on their functioning.

Despite the problems outlined above, the author hopes that the research presented
in this paper will prove fruitful in the future experiments the Medical Physics Group
at KVI-CART intends to pursue. In terms of calibrating the NaI(Tl) scintillation
detector, the 66Ga source will first be made via proton irradiation on natural zinc.
Directly after the irradiation period, a series of measurements will be taken with the
NaI(Tl) scintillation detector. The geometry and configuration of the detector with
respect to the source will be the same as that of the 12N production experiment.
To a good approximation the produced 66Ga source will act as a point source 25
cm away from the NaI(Tl) scintillation detector, similar to the detector geometry
used in the simulations mentioned in §2.2.1. The detector will record the number
of counts N during a measurement period T . N is then related to the activity A of
the source by

A =
N

T · ε · Iγ
(5.1)

where ε is the efficiency of the detector,1 and Iγ is the intensity or branching ratio of
the measured γ-decay line. Once N has been measured with the NaI(Tl) scintillation
detector, the count rate (of the 1039.231 keV line) will then be measured with
the HPGe detector. The HPGe detector measurement will take place around 10
hours after the end of the irradiation. Since the efficiency of the HPGe detector is
known, (5.1) can be used to determine the activity of the 66Ga source. The activity
measurement time for the HPGe detector will be recorded, and along with (2.13)
and (2.14), the activity at the time of the NaI(Tl) scintillation detector measurement
can be determined. Once this activity is known, it is simply a matter of rearranging
(5.1) and using the values of N and T as measured by the NaI(Tl) scintillation
detector to determine its efficiency. It is important to note that the γ-spectra
as presented in Figs. 4.23 - 4.24 are not what is to be expected by the detector
count measurements. These graphs display the absolute activities of the source and
do not take into account detector efficiency or geometry. Thus, while it is true
that the methods (once experimentally verified) used in this research can be used
for optimisation and prediction for experiments of a similar nature, the detector
efficiencies and geometry must also be taken into account.

An example of the above process is as follows. If measurements from the HPGe
detector determine the 66Ga source to have an activity of 5 MBq, and the NaI(Tl)
scintillation detector records 60000 counts within 5 minutes (300 seconds) for the
4295.224 keV line2, then the efficiency of the NaI(Tl) scintillation detector at this

1For a specific detector geometry.
2Note that the NaI(Tl) scintillation detector will be used to measure the 4.44 MeV line of 12N,

thus the efficiency of the detector around this region must be determined.
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energy is around

ε =
60000 counts

300 s · 5 MBq · 0.0404
≈ 1× 10−3

where the 0.0404 term in the denominator is the branching ratio of the 4295.224
keV line (i.e. Iγ=4.04%[41]).
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Conclusion

In conclusion, if the energy of the proton beam used for the 66Ga production ex-
periment is 90 MeV, the beam degrading water tank should be placed 50 cm from
the beam exit and the zinc plate should be placed at a water depth of 60 mm for
maximum 66Ga production. The major contaminants which will result from pro-
ton irradiation on the natural zinc plate at this position are 67Ga, 68Ga, 61Cu, and
65Zn. Thankfully, these contaminants either have sufficiently short half-lives (e.g.
the half-life of 68Ga is 67.6 minutes, thus after 10 hours the majority of the isotope
has decayed), sufficiently long half-lives (e.g. 65Zn has a half-life of 244.26 days,
resulting in consistently low activity), sufficiently low γ-decay intensities (e.g. the
highest γ-ray intensity of 61Cu is 12.2%), or a combination of the former two with
the latter. Thus, as can be seen in Figs. 4.23 and 4.24, the 66Ga γ-spectrum seems
to dominate, with the best calibration line at 1039.231 keV. This has been concluded
to be the best line to use for calibration due to its high intensity (37%) and activity,
its energy being within the suitable range of both detectors, and the line being clear
from any major γ-decay interference. Note that all results from this paper should
be taken as order of magnitude estimates.

It is also worth noting that the research from this paper has yet to be verified
experimentally. If it is verified, this implies that the methods used in this paper can
be used for future experimental planning in similar proton beam/ isotope production
experiments. It is necessary however to account for detector efficiency and geometry
when using the γ-spectra presented by this method, as it only presents the absolute
activities, and not the activities as measured by the detectors. Nonetheless, it is
relatively easy to account for both detector efficiency and geometry.

To finalise, the methods presented in this paper intend to help optimise the experi-
mental set up of the 66Ga production experiment and NaI(Tl) scintillation detector
calibration to be carried out by the Medical Physics Group of KVI-CART later in
2020.
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Appendix

For further inquiries or to acquire data not presented in this paper please contact
the author, Adrian Sidhu, at adriansidhu1@gmail.com.

I Theory Appendices

Six Properties of Ideal Scintillation Material

This list has been taken near verbatim and can be found on page 219 in Knoll[18].
The ideal scintillation material should possess the following properties:

1. The material should convert the kinetic energy of charged particles into de-
tectable light with a high scintillation efficiency;

2. The conversion of kinetic energy into detectable light should be linear in as
wide a range as possible;

3. The medium should be transparent to the wavelength of its own emission light
to ensure optimal light collection;

4. The decay time of the induced luminescence should be short so that fast signal
pulses can be generated;

5. The material should be of good optical quality and be able to be manufactured
in sizes appropriate for use in a practical detector;

6. The index of refraction of the material should be similar to that of glass (∼ 1.5)
to permit efficient coupling of the scintillation light to a PMT or other light
sensor.
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II Method Appendices

In total, there were around forty different Python scripts which were written and
used in this research. However, only the scripts the author found most relevant have
been given here. These are the polynomial regression script used for the excitation
function of 66Ga (Script 1) and the script which produced the isotope activities and
γ-spectra as seen in Table 4.4 and Figs. 4.23 and 4.24 (Script 2). All the other
scripts were either adaptations of the these two scripts, or scripts used for simply
plotting Excel data. For example, the scripts for all the other excitation functions
were adapted from Script 1, while the scripts which produced Figs. 4.9 - 4.16 were
just plotting processed Excel data.
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Script 1: Polynomial Regression Script for the 66Ga Excitation Func-
tion

Given below is the Python script for the polynomial regression plot in Fig. 4.1.
The same code was used for all the other excitation function fits, with the only
changes being the data sources used and the degree of the polynomial utilised in
the fit. There are two important things to mention here. First, the data sources
(i.e. the Excel workbooks containing the relevant data) referenced using the Pandas
package were local file systems, meaning that this code cannot be replicated without
them. In this specific case, all this data is available online (see Table 4.1) but the
author can also be contacted for this data. Secondly, the script presented here,
while fully functional, is not an exact copy of the script used in this paper. A few
additional notes (written in either quotation marks or with a preceding #), that
are now irrelevant, have been removed. An example of one of these irrelevant notes
was a link to a grid spacing information resource for the matplotlib.pyplot module.
Furthermore, additional line breaks (\) have been added to prevent the overflow of
text into the margins.

1 # -*- coding: utf-8 -*-

2 """

3 Created on Thu Apr 30 20:11:42 2020

4

5 @author: Adrian Sidhu

6 """

7 import matplotlib.pyplot as plt

8 import numpy as np

9 import pandas as pd

10 import xlsxwriter

11 from sklearn.metrics import r2_score, mean_squared_error

12

13 """NOTE FERENC IS SZELECSENYI"""

14 plt.rcParams["font.family"] = "serif"

15

16 combined = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

17 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\

18 \Ga Production Sheet 2.xlsx", \

19 sheet_name = "Combined")

20 ferenc = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

21 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\

22 \Ga Production Sheet 2.xlsx", \

23 sheet_name = "Ferenc S. et al. 1998 Hermanne")

24 kopecky = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

25 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\
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26 \Ga Production Sheet 2.xlsx", \

27 sheet_name = "Kopecky 1989")

28 nortier = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

29 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\

30 \Ga Production Sheet 2.xlsx", \

31 sheet_name = "Nortier 1991")

32 little = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

33 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\

34 \Ga Production Sheet 2.xlsx", \

35 sheet_name = "Little and Lagunas-Solar 1983")

36 bonardi = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

37 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\

38 \Ga Production Sheet 2.xlsx", \

39 sheet_name = "Bonardi and Birattari 1983")

40 alsaleh = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

41 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\

42 \Ga Production Sheet 2.xlsx", \

43 sheet_name = "Al-Saleh 2007")

44 asad = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

45 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\

46 \Ga Production Sheet 2.xlsx", \

47 sheet_name = "Asad 2014")

48 hermanne99 = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

49 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\

50 \Ga Production Sheet 2.xlsx", \

51 sheet_name = "Hermanne 1999")

52 szelecsenyi03 = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

53 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\

54 \Ga Production Sheet 2.xlsx", \

55 sheet_name = "Szelecsenyi 2003")

56 szelecsenyi05 = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

57 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\

58 \Ga Production Sheet 2.xlsx", \

59 sheet_name = "Szelecsenyi 2005")

60 tarkanyi = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

61 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\

62 \Ga Production Sheet 2.xlsx", \

63 sheet_name = "Tarkanyi 2005")

64 uddin = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

65 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\

66 \Ga Production Sheet 2.xlsx", \

67 sheet_name = "Uddin 2007")
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68 """Note that below, x is energy and y is the cross section!"""

69 x_combined_list = combined['Proton Energy (MeV)'].tolist()

70 y_combined_list = combined['Cross Section (mb)'].tolist()

71

72 x_ferenc_list = ferenc['Proton Energy (MeV)'].tolist()

73 y_ferenc_list = ferenc['Cross Section (mb)'].tolist()

74

75 x_kopecky_list = kopecky['Proton Energy (MeV)'].tolist()

76 y_kopecky_list = kopecky['Cross Section (mb)'].tolist()

77

78 x_nortier_list = nortier['Proton Energy (MeV)'].tolist()

79 y_nortier_list = nortier['Cross Section (mb)'].tolist()

80

81 x_little_list = little['Proton Energy (MeV)'].tolist()

82 y_little_list = little['Cross Section (mb)'].tolist()

83

84 x_bonardi_list = bonardi['Proton Energy (MeV)'].tolist()

85 y_bonardi_list = bonardi['Cross Section (mb)'].tolist()

86

87 x_alsaleh_list = alsaleh['Proton Energy (MeV)'].tolist()

88 y_alsaleh_list = alsaleh['Cross Section (mb)'].tolist()

89

90 x_asad_list = asad['Proton Energy (MeV)'].tolist()

91 y_asad_list = asad['Cross Section (mb)'].tolist()

92

93 x_hermanne99_list = hermanne99['Proton Energy (MeV)'].tolist()

94 y_hermanne99_list = hermanne99['Cross Section (mb)'].tolist()

95

96 x_szelecsenyi03_list = szelecsenyi03\

97 ['Proton Energy (MeV)'].tolist()

98 y_szelecsenyi03_list = szelecsenyi03\

99 ['Cross Section (mb)'].tolist()

100

101 x_szelecsenyi05_list = szelecsenyi05\

102 ['Proton Energy (MeV)'].tolist()

103 y_szelecsenyi05_list = szelecsenyi05\

104 ['Cross Section (mb)'].tolist()

105

106 x_tarkanyi_list = tarkanyi['Proton Energy (MeV)'].tolist()

107 y_tarkanyi_list = tarkanyi['Cross Section (mb)'].tolist()

108

109 x_uddin_list = uddin['Proton Energy (MeV)'].tolist()
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110 y_uddin_list = uddin['Cross Section (mb)'].tolist()

111

112 x_combined_array = np.array(x_combined_list)

113 y_combined_array = np.array(y_combined_list)

114 x_new = np.arange(1.05, 99.95, 0.1)

115

116 degree = 19

117 combined_poly = np.polyfit(x_combined_array, y_combined_array, \

118 degree)

119

120 combined_poly_2 = np.poly1d(combined_poly)

121 #print(combined_poly)

122 #x_new = np.linspace(x_combined_list[0], x_combined_list[-1],100)

123 #x_new = np.linspace(0, 90, 1800)

124

125 plt.figure(1)

126 plt.plot(x_little_list, y_little_list, 'k.', label = \

127 'Little & Lagunas-Solar (1983)')

128 plt.plot(x_bonardi_list, y_bonardi_list, 'bo', label = \

129 'Bonardi & Birattari (1983)')

130 plt.plot(x_kopecky_list, y_kopecky_list, 'gv', label = \

131 'Kopecky (1990)')

132 plt.plot(x_nortier_list, y_nortier_list, 'c^', label = \

133 'Nortier et al. (1991)')

134 plt.plot(x_ferenc_list, y_ferenc_list, 'm<', label = \

135 'Hermanne (1994)')

136 plt.plot(x_hermanne99_list, y_hermanne99_list, 'y>', label = \

137 'Hermanne et al. (1999)')

138 plt.plot(x_szelecsenyi03_list, y_szelecsenyi03_list, \

139 's', label = 'Szelecsenyi et al. (2003)')

140 plt.plot(x_szelecsenyi05_list, y_szelecsenyi05_list, \

141 'd', label = 'Szelecsenyi et al. (2005)(1)')

142 plt.plot(x_tarkanyi_list, y_tarkanyi_list, 'D', label = \

143 'Tarkanyi et al. (2005)')

144 plt.plot(x_uddin_list, y_uddin_list, 'X', label = \

145 'Uddin et al. (2007)')

146 plt.plot(x_alsaleh_list, y_alsaleh_list, 'P', label = \

147 'Al-Saleh et al. (2007)')

148 plt.plot(x_asad_list, y_asad_list, 'x', label = \

149 'Asad et al. (2014)')

150 #plt.plot(x_combined_array, np.polyval(combined_poly, \

151 x_combined_array), 'b-', label = 'This Work')
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152 plt.plot(x_new, np.polyval(combined_poly, x_new), 'r-',\

153 linewidth = 2, label = 'Average Fit (This Work)')

154 plt.legend(fontsize = 18, loc = 'best')

155 #plt.grid(True)

156 #plt.title('Excitation Function for $^{nat}$Zn(p, x)$^{66}$Ga')

157 #plt.yscale('log')

158 plt.ylim(bottom = 0.01, top = 190)

159 plt.xlabel('Proton Energy (MeV)', fontsize = 25)

160 plt.ylabel('Cross Section (mb)', fontsize = 25)

161 plt.xticks(fontsize = 25)

162 plt.yticks(fontsize = 25)

163 ax = plt.gca()

164 #ax.set_xticks(np.arange(0, 106.05, 10))

165 ax.set_xticks(np.arange(0, 106.05, 10), minor=True)

166 ax.grid(which='major')

167 ax.grid(which='minor', alpha=0.5)

168

169 print("For degree " + str(degree) + " the coefficient of \

170 determination is " + str(r2_score(y_combined_list,\

171 combined_poly_2(x_combined_list))))

172 print("The RMSE is " + str(np.sqrt(mean_squared_error\

173 (y_combined_list,

174 combined_poly_2(x_combined_list)))) + \

175 '\n\n\n')

176

177 workbook = xlsxwriter.Workbook('Ga-66 Average Cross \

178 Section Data.xlsx')

179 worksheet = workbook.add_worksheet()

180

181 new_array = [x_new, np.polyval(combined_poly, x_new)]

182 row = 0

183

184 for col, data in enumerate(new_array):

185 worksheet.write_column(row, col, data)

186

187 workbook.close()

188

189 """SECTION FOR UNCERTAINTY"""

190 def uncertainty_calculator_r2(degree_list):

191 total_r2 = []

192 total_rmse = []

193 for i in degree_list:

70



APPENDIX

194 combined_poly = np.polyfit(x_combined_array, \

195 y_combined_array, i)

196 combined_poly_2 = np.poly1d(combined_poly)

197 total_r2.append(r2_score(y_combined_list, \

198 combined_poly_2(x_combined_list)))

199 total_rmse.append(np.sqrt(mean_squared_error\

200 (y_combined_list, combined_poly_2(x_combined_list))))

201 return total_r2

202

203 def uncertainty_calculator_rmse(degree_list):

204 total_rmse = []

205 for i in degree_list:

206 combined_poly = np.polyfit(x_combined_array, \

207 y_combined_array, i)

208 combined_poly_2 = np.poly1d(combined_poly)

209 total_rmse.append(np.sqrt(mean_squared_error\

210 (y_combined_list, combined_poly_2(x_combined_list))))

211 return total_rmse

212

213 degrees = list(range(1, 90, 1))

214

215 """SECTION FOR EXCEL WORKBOOK EXPORTATION"""

216 workbook = xlsxwriter.Workbook('Uncertainty_In_Polyfit.xlsx')

217 worksheet = workbook.add_worksheet()

218

219 error_array = [degrees, uncertainty_calculator_r2(degrees),\

220 uncertainty_calculator_rmse(degrees)]

221 row = 0

222

223 for col, data in enumerate(error_array):

224 worksheet.write_column(row, col, data)

225

226 workbook.close()
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Activity and γ-ray Spectrum Script

Below is the Python script used to produce the data in Table 4.4 and Figs. 4.23 and
4.24. The script presented here, like before, has been modified to fit the page (using
line breaks) but is still fully functional if one has access to the relevant data. This
is where the theoretical treatment as given by (2.3)-(2.14) has been implemented.

1 # -*- coding: utf-8 -*-

2 """

3 Created on Sat May 30 12:34:13 2020

4

5 @author: Adrian Sidhu

6 """

7 """DICTIONARY GOES - Energy (MeV) : Intensity (%)"""

8 import matplotlib.pyplot as plt

9 import numpy as np

10 import pandas as pd

11

12 plt.rcParams["font.family"] = "serif"

13 plt.rc('font', size=25)

14 plt.rcParams["mathtext.fontset"] = "dejavuserif"

15

16 """THIS SECTION IS FOR THE ACTIVITIES"""

17 """IMPORT SECTION"""

18 ga66wd = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

19 \Bachelor's Thesis\RESEARCH\Ga-66 Production Data\50cm Spectra\

20 \50cm Spectra Data.xlsx", sheet_name = 'Water Depth v. R')

21 ga67wd = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

22 \Bachelor's Thesis\RESEARCH\Gamma Spectra Comparison Data\

23 \FINAL Ga-67 Spectra.xlsx", sheet_name = 'Water Depth v. R')

24 ga68wd = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

25 \Bachelor's Thesis\RESEARCH\Gamma Spectra Comparison Data\

26 \FINAL Ga-68 Spectra.xlsx", sheet_name = 'Water Depth v. R')

27

28 cu61wd = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

29 \Bachelor's Thesis\RESEARCH\Gamma Spectra Comparison Data\

30 \FINAL Cu-61 Spectra.xlsx", sheet_name = 'Water Depth v. R')

31 cu64wd = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

32 \Bachelor's Thesis\RESEARCH\Gamma Spectra Comparison Data\

33 \FINAL Cu-64 Spectra.xlsx", sheet_name = 'Water Depth v. R')

34 cu67wd = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

35 \Bachelor's Thesis\RESEARCH\Gamma Spectra Comparison Data\
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36 \FINAL Cu-67 Spectra.xlsx", sheet_name = 'Water Depth v. R')

37

38 zn62wd = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

39 \Bachelor's Thesis\RESEARCH\Gamma Spectra Comparison Data\

40 \FINAL Zn-62 Spectra.xlsx", sheet_name = 'Water Depth v. R')

41 zn65wd = pd.read_excel(r"C:\Users\Adrian Sidhu\Documents\

42 \Bachelor's Thesis\RESEARCH\Gamma Spectra Comparison Data\

43 \FINAL Zn-65 Spectra.xlsx", sheet_name = 'Water Depth v. R')

44

45 """DATA SECTION"""

46 ga66_rsp = list(ga66wd['R (/sp)'][4:7])

47 ga67_rsp = list(ga67wd['R (/sp)'][4:7])

48 ga68_rsp = list(ga68wd['R (/sp)'][4:7])

49

50 cu61_rsp = list(cu61wd['R (/sp)'][4:7])

51 cu64_rsp = list(cu64wd['R (/sp)'][4:7])

52 cu67_rsp = list(cu67wd['R (/sp)'][4:7])

53

54 zn62_rsp = list(zn62wd['R (/sp)'][4:7])

55 zn65_rsp = list(zn65wd['R (/sp)'][4:7])

56

57

58 ga66_rnah = []

59 ga67_rnah = []

60 ga68_rnah = []

61

62 cu61_rnah = []

63 cu64_rnah = []

64 cu67_rnah = []

65

66 zn62_rnah = []

67 zn65_rnah = []

68

69 for i in ga66_rsp:

70 ga66_rnah.append(i * ((2.246943267 * (10 ** 13)))) \

71 #The value of 2.24E13 is in units of sp/nA h - thus \

72 #converting sp-1 to (nAh)-1

73 for i in ga67_rsp:

74 ga67_rnah.append(i * ((2.246943267 * (10 ** 13))))

75 for i in ga68_rsp:

76 ga68_rnah.append(i * ((2.246943267 * (10 ** 13))))

77
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78 for i in cu61_rsp:

79 cu61_rnah.append(i * ((2.246943267 * (10 ** 13))))

80 for i in cu64_rsp:

81 cu64_rnah.append(i * ((2.246943267 * (10 ** 13))))

82 for i in cu67_rsp:

83 cu67_rnah.append(i * ((2.246943267 * (10 ** 13))))

84

85 for i in zn62_rsp:

86 zn62_rnah.append(i * ((2.246943267 * (10 ** 13))))

87 for i in zn65_rsp:

88 zn65_rnah.append(i * ((2.246943267 * (10 ** 13))))

89

90 """THIS SECTION IS TO CALCULATE THE

91 ACTIVITY OF EACH SOURCE"""

92 def activity(dep, cur, irr_t_hours, t_hours):

93

94 print('Proton Beam Energy: 90 MeV')

95 print('Zinc Depth: ' + str(dep) + ' mm')

96 print('Beam Current: ' + str(cur) + ' nA')

97 print('Irradiation Time: ' + str(round(irr_t_hours, 6))\

98 + ' hours')

99 print('Time elapsed (from irradiation start) at activity\

100 measurement: ' + str(t_hours) + ' hours')

101

102 """dc stands for the decay constant for each isotope.

103 The decay constants have been calculated using

104 half lives found on the IAEA isotope browser."""

105 irr_t = irr_t_hours * 3600

106 t = t_hours * 3600

107

108

109 ga66_dc = np.log(2) / (9.49 * 3600) #9.49 hours

110 ga67_dc = np.log(2) / (3.2617 * 24 * 3600) #3.2617 days

111 ga68_dc = np.log(2) / (67.71 * 60) #67.71 minutes

112

113 cu61_dc = np.log(2) / (3.339 * 3600) #3.339 hours

114 cu64_dc = np.log(2) / (12.701 * 3600) #12.701 hours

115 cu67_dc = np.log(2) / (61.83 * 3600) #61.83 hours

116

117 zn62_dc = np.log(2) / (9.193 * 3600) #9.193 hours

118 zn65_dc = np.log(2) / (243.93 * 24 * 3600) #243.93 days

119
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120 if dep == 50:

121 P_ga66 = ga66_rnah[0] * cur * (1 / 3600) \

122 #1 / 3600 hours in a second. P is the production\

123 #of an isotope per second.

124 P_ga67 = ga67_rnah[0] * cur * (1 / 3600)

125 P_ga68 = ga68_rnah[0] * cur * (1 / 3600)

126

127 P_cu61 = cu61_rnah[0] * cur * (1 / 3600)

128 P_cu64 = cu64_rnah[0] * cur * (1 / 3600)

129 P_cu67 = cu67_rnah[0] * cur * (1 / 3600)

130

131 P_zn62 = zn62_rnah[0] * cur * (1 / 3600)

132 P_zn65 = zn65_rnah[0] * cur * (1 / 3600)

133

134 if t < irr_t:

135 A_ga66 = P_ga66 * (1 - np.exp(-ga66_dc * t))

136 A_ga67 = P_ga67 * (1 - np.exp(-ga67_dc * t))

137 A_ga68 = P_ga68 * (1 - np.exp(-ga68_dc * t))

138

139 A_cu61 = P_cu61 * (1 - np.exp(-cu61_dc * t))

140 A_cu64 = P_cu64 * (1 - np.exp(-cu64_dc * t))

141 A_cu67 = P_cu67 * (1 - np.exp(-cu67_dc * t))

142

143 A_zn62 = P_zn62 * (1 - np.exp(-zn62_dc * t))

144 A_zn65 = P_zn65 * (1 - np.exp(-zn65_dc * t))

145

146 elif t >= irr_t:

147 T = t - irr_t

148

149 N0_ga66 = P_ga66 * (1 - np.exp(-ga66_dc * irr_t))\

150 / ga66_dc

151 N0_ga67 = P_ga67 * (1 - np.exp(-ga67_dc * irr_t))\

152 / ga67_dc

153 N0_ga68 = P_ga68 * (1 - np.exp(-ga68_dc * irr_t))\

154 / ga68_dc

155

156 N0_cu61 = P_cu61 * (1 - np.exp(-cu61_dc * irr_t))\

157 / cu61_dc

158 N0_cu64 = P_cu64 * (1 - np.exp(-cu64_dc * irr_t))\

159 / cu64_dc

160 N0_cu67 = P_cu67 * (1 - np.exp(-cu67_dc * irr_t))\

161 / cu67_dc
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162

163 N0_zn62 = P_zn62 * (1 - np.exp(-zn62_dc * irr_t))\

164 / zn62_dc

165 N0_zn65 = P_zn65 * (1 - np.exp(-zn65_dc * irr_t))\

166 / zn65_dc

167

168 A_ga66 = ga66_dc * N0_ga66 * np.exp(-ga66_dc * T)

169 A_ga67 = ga67_dc * N0_ga67 * np.exp(-ga67_dc * T)

170 A_ga68 = ga68_dc * N0_ga68 * np.exp(-ga68_dc * T)

171

172 A_cu61 = cu61_dc * N0_cu61 * np.exp(-cu61_dc * T)

173 A_cu64 = cu64_dc * N0_cu64 * np.exp(-cu64_dc * T)

174 A_cu67 = cu67_dc * N0_cu67 * np.exp(-cu67_dc * T)

175

176 A_zn62 = zn62_dc * N0_zn62 * np.exp(-zn62_dc * T)

177 A_zn65 = zn65_dc * N0_zn65 * np.exp(-zn65_dc * T)

178

179

180 elif dep == 55:

181 P_ga66 = ga66_rnah[1] * cur * (1 / 3600)

182 P_ga67 = ga67_rnah[1] * cur * (1 / 3600)

183 P_ga68 = ga68_rnah[1] * cur * (1 / 3600)

184

185 P_cu61 = cu61_rnah[1] * cur * (1 / 3600)

186 P_cu64 = cu64_rnah[1] * cur * (1 / 3600)

187 P_cu67 = cu67_rnah[1] * cur * (1 / 3600)

188

189 P_zn62 = zn62_rnah[1] * cur * (1 / 3600)

190 P_zn65 = zn65_rnah[1] * cur * (1 / 3600)

191

192 if t < irr_t:

193 A_ga66 = P_ga66 * (1 - np.exp(-ga66_dc * t))

194 A_ga67 = P_ga67 * (1 - np.exp(-ga67_dc * t))

195 A_ga68 = P_ga68 * (1 - np.exp(-ga68_dc * t))

196

197 A_cu61 = P_cu61 * (1 - np.exp(-cu61_dc * t))

198 A_cu64 = P_cu64 * (1 - np.exp(-cu64_dc * t))

199 A_cu67 = P_cu67 * (1 - np.exp(-cu67_dc * t))

200

201 A_zn62 = P_zn62 * (1 - np.exp(-zn62_dc * t))

202 A_zn65 = P_zn65 * (1 - np.exp(-zn65_dc * t))

203
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204 elif t >= irr_t:

205 T = t - irr_t

206

207 N0_ga66 = P_ga66 * (1 - np.exp(-ga66_dc * irr_t))\

208 / ga66_dc

209 N0_ga67 = P_ga67 * (1 - np.exp(-ga67_dc * irr_t))\

210 / ga67_dc

211 N0_ga68 = P_ga68 * (1 - np.exp(-ga68_dc * irr_t))\

212 / ga68_dc

213

214 N0_cu61 = P_cu61 * (1 - np.exp(-cu61_dc * irr_t))\

215 / cu61_dc

216 N0_cu64 = P_cu64 * (1 - np.exp(-cu64_dc * irr_t))\

217 / cu64_dc

218 N0_cu67 = P_cu67 * (1 - np.exp(-cu67_dc * irr_t))\

219 / cu67_dc

220

221 N0_zn62 = P_zn62 * (1 - np.exp(-zn62_dc * irr_t))\

222 / zn62_dc

223 N0_zn65 = P_zn65 * (1 - np.exp(-zn65_dc * irr_t))\

224 / zn65_dc

225

226 A_ga66 = ga66_dc * N0_ga66 * np.exp(-ga66_dc * T)

227 A_ga67 = ga67_dc * N0_ga67 * np.exp(-ga67_dc * T)

228 A_ga68 = ga68_dc * N0_ga68 * np.exp(-ga68_dc * T)

229

230 A_cu61 = cu61_dc * N0_cu61 * np.exp(-cu61_dc * T)

231 A_cu64 = cu64_dc * N0_cu64 * np.exp(-cu64_dc * T)

232 A_cu67 = cu67_dc * N0_cu67 * np.exp(-cu67_dc * T)

233

234 A_zn62 = zn62_dc * N0_zn62 * np.exp(-zn62_dc * T)

235 A_zn65 = zn65_dc * N0_zn65 * np.exp(-zn65_dc * T)

236

237

238 elif dep == 60:

239 P_ga66 = ga66_rnah[2] * cur * (1 / 3600)

240 P_ga67 = ga67_rnah[2] * cur * (1 / 3600)

241 P_ga68 = ga68_rnah[2] * cur * (1 / 3600)

242

243 P_cu61 = cu61_rnah[2] * cur * (1 / 3600)

244 P_cu64 = cu64_rnah[2] * cur * (1 / 3600)

245 P_cu67 = cu67_rnah[2] * cur * (1 / 3600)
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246

247 P_zn62 = zn62_rnah[2] * cur * (1 / 3600)

248 P_zn65 = zn65_rnah[2] * cur * (1 / 3600)

249

250 if t < irr_t:

251 A_ga66 = P_ga66 * (1 - np.exp(-ga66_dc * t))

252 A_ga67 = P_ga67 * (1 - np.exp(-ga67_dc * t))

253 A_ga68 = P_ga68 * (1 - np.exp(-ga68_dc * t))

254

255 A_cu61 = P_cu61 * (1 - np.exp(-cu61_dc * t))

256 A_cu64 = P_cu64 * (1 - np.exp(-cu64_dc * t))

257 A_cu67 = P_cu67 * (1 - np.exp(-cu67_dc * t))

258

259 A_zn62 = P_zn62 * (1 - np.exp(-zn62_dc * t))

260 A_zn65 = P_zn65 * (1 - np.exp(-zn65_dc * t))

261

262 elif t >= irr_t:

263 T = t - irr_t

264

265 N0_ga66 = P_ga66 * (1 - np.exp(-ga66_dc * irr_t))\

266 / ga66_dc

267 N0_ga67 = P_ga67 * (1 - np.exp(-ga67_dc * irr_t))\

268 / ga67_dc

269 N0_ga68 = P_ga68 * (1 - np.exp(-ga68_dc * irr_t))\

270 / ga68_dc

271

272 N0_cu61 = P_cu61 * (1 - np.exp(-cu61_dc * irr_t))\

273 / cu61_dc

274 N0_cu64 = P_cu64 * (1 - np.exp(-cu64_dc * irr_t))\

275 / cu64_dc

276 N0_cu67 = P_cu67 * (1 - np.exp(-cu67_dc * irr_t))\

277 / cu67_dc

278

279 N0_zn62 = P_zn62 * (1 - np.exp(-zn62_dc * irr_t))\

280 / zn62_dc

281 N0_zn65 = P_zn65 * (1 - np.exp(-zn65_dc * irr_t))\

282 / zn65_dc

283

284 A_ga66 = ga66_dc * N0_ga66 * np.exp(-ga66_dc * T)

285 A_ga67 = ga67_dc * N0_ga67 * np.exp(-ga67_dc * T)

286 A_ga68 = ga68_dc * N0_ga68 * np.exp(-ga68_dc * T)

287
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288 A_cu61 = cu61_dc * N0_cu61 * np.exp(-cu61_dc * T)

289 A_cu64 = cu64_dc * N0_cu64 * np.exp(-cu64_dc * T)

290 A_cu67 = cu67_dc * N0_cu67 * np.exp(-cu67_dc * T)

291

292 A_zn62 = zn62_dc * N0_zn62 * np.exp(-zn62_dc * T)

293 A_zn65 = zn65_dc * N0_zn65 * np.exp(-zn65_dc * T)

294

295 raw_activities = [A_ga66, A_ga67, A_ga68, A_cu61, A_cu64,\

296 A_cu67, A_zn62, A_zn65] #These are the actual activities of\

297 #each isotope in Bq

298 tot_activity = sum(raw_activities)

299 ratioed_activities = [] #This is the ratio of each\

300 #activity to the total activity, to be used as a\

301 #multiplication factor in the gamma spectrum

302 for i in raw_activities:

303 ratioed_activities.append(i / tot_activity)

304

305 return raw_activities

306 #return ratioed_activities

307

308

309 """VALUES"""

310 depth = 60 #mm, can be either 50mm, 55mm, or 60mm. \

311 #Nothing else. Type = Integer

312 current = 30 #nA. Any positive value, Type = Float

313 irradiation_time = 2 #hours. Type = Float

314 activity_time = 12 #Time for activity measurement! \

315 #In hours. Note this includes the irradiation time!

316

317

318 activity_table = {'Isotope' : ['Ga-66', 'Ga-67', 'Ga-68',\

319 'Cu-61', 'Cu-64', 'Cu-67', 'Zn-62', 'Zn-65'],\

320 'Activity (Bq)' : activity(depth, current,\

321 irradiation_time, activity_time)}

322

323 print("Table of activities for:")

324 print("Depth: " + str(depth) + " mm;")

325 print("Beam current: " + str(current) + "nA;")

326 print("Irradiation time:" + str(irradiation_time) + " hour(s)")

327 print("Time of measurement after irradiation begins: "\

328 + str(activity_time) + " hours")

329 print(pd.DataFrame(activity_table))
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330 """"""

331

332 """THIS IS THE GAMMA SPECTRA SECTION"""

333

334 """"""

335 ga66_yspectra = pd.read_excel(r"C:\Users\Adrian Sidhu\

336 \Documents\Bachelor's Thesis\RESEARCH\

337 \Gamma Spectra Comparison Data\Gamma Spectra\

338 \Ga-66 Gamma Spectra.xlsx", sheet_name = 'Sheet1')

339 ga67_yspectra = pd.read_excel(r"C:\Users\Adrian Sidhu\

340 \Documents\Bachelor's Thesis\RESEARCH\

341 \Gamma Spectra Comparison Data\Gamma Spectra\

342 \Ga-67 Gamma Spectra.xlsx", sheet_name = 'Sheet1')

343 ga68_yspectra = pd.read_excel(r"C:\Users\Adrian Sidhu\

344 \Documents\Bachelor's Thesis\RESEARCH\

345 \Gamma Spectra Comparison Data\Gamma Spectra\

346 \Ga-68 Gamma Spectra.xlsx", sheet_name = 'Sheet1')

347

348 cu61_yspectra = pd.read_excel(r"C:\Users\Adrian Sidhu\

349 \Documents\Bachelor's Thesis\RESEARCH\

350 \Gamma Spectra Comparison Data\Gamma Spectra\

351 \Cu-61 Gamma Spectra.xlsx", sheet_name = 'Sheet1')

352 cu64_yspectra = pd.read_excel(r"C:\Users\Adrian Sidhu\

353 \Documents\Bachelor's Thesis\RESEARCH\

354 \Gamma Spectra Comparison Data\Gamma Spectra\

355 \Cu-64 Gamma Spectra.xlsx", sheet_name = 'Sheet1')

356 cu67_yspectra = pd.read_excel(r"C:\Users\Adrian Sidhu\

357 \Documents\Bachelor's Thesis\RESEARCH\

358 \Gamma Spectra Comparison Data\Gamma Spectra\

359 \Cu-67 Gamma Spectra.xlsx", sheet_name = 'Sheet1')

360

361 zn62_yspectra = pd.read_excel(r"C:\Users\Adrian Sidhu\

362 \Documents\Bachelor's Thesis\RESEARCH\

363 \Gamma Spectra Comparison Data\Gamma Spectra\

364 \Zn-62 Gamma Spectra.xlsx", sheet_name = 'Sheet1')

365 zn65_yspectra = pd.read_excel(r"C:\Users\Adrian Sidhu\

366 \Documents\Bachelor's Thesis\RESEARCH\

367 \Gamma Spectra Comparison Data\Gamma Spectra\

368 \Zn-65 Gamma Spectra.xlsx", sheet_name = 'Sheet1')

369

370 """Ga-66 SECTION"""

371 ga66_y_energy = list(ga66_yspectra['y Energy (keV)'])
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372 ga66_y_intensity = list(ga66_yspectra['Intensity (%)'])

373 ga66_yei = list(zip(ga66_y_energy, ga66_y_intensity))

374

375 """Ga-67 SECTION"""

376 ga67_y_energy = list(ga67_yspectra['y Energy (keV)'])

377 ga67_y_intensity = list(ga67_yspectra['Intensity (%)'])

378 ga67_yei = list(zip(ga67_y_energy, ga67_y_intensity))

379

380 """Ga-68 SECTION"""

381 ga68_y_energy = list(ga68_yspectra['y Energy (keV)'])

382 ga68_y_intensity = list(ga68_yspectra['Intensity (%)'])

383 ga68_yei = list(zip(ga68_y_energy, ga68_y_intensity))

384

385 """Cu-61 SECTION"""

386 cu61_y_energy = list(cu61_yspectra['y Energy (keV)'])

387 cu61_y_intensity = list(cu61_yspectra['Intensity (%)'])

388 cu61_yei = list(zip(cu61_y_energy, cu61_y_intensity))

389

390 """Cu-64 SECTION"""

391 cu64_y_energy = list(cu64_yspectra['y Energy (keV)'])

392 cu64_y_intensity = list(cu64_yspectra['Intensity (%)'])

393 cu64_yei = list(zip(cu64_y_energy, cu64_y_intensity))

394

395 """Cu-67 SECTION"""

396 cu67_y_energy = list(cu67_yspectra['y Energy (keV)'])

397 cu67_y_intensity = list(cu67_yspectra['Intensity (%)'])

398 cu67_yei = list(zip(cu67_y_energy, cu67_y_intensity))

399

400 """Zn-62 SECTION"""

401 zn62_y_energy = list(zn62_yspectra['y Energy (keV)'])

402 zn62_y_intensity = list(zn62_yspectra['Intensity (%)'])

403 zn62_yei = list(zip(zn62_y_energy, zn62_y_intensity))

404

405 """Zn-65 SECTION"""

406 zn65_y_energy = list(zn65_yspectra['y Energy (keV)'])

407 zn65_y_intensity = list(zn65_yspectra['Intensity (%)'])

408 zn65_yei = list(zip(zn65_y_energy, zn65_y_intensity))

409

410

411

412

413
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414 """HERE BOTH LINE THICKNESS AND HEIGHT IS PROPORTIONAL TO

415 ACTIVITY OF THE SOURCE - VISUAL AID ONLY, NOT USED IN PAPER"""

416 plt.figure(1)

417 pltwidth = 0.00001

418 for i in range(len(ga66_yei)):

419 if i != 0 and ga66_yei[i][1] > 1:

420 plt.bar(ga66_yei[i][0], ((ga66_yei[i][1] / 100) * \

421 activity(depth, current, irradiation_time, \

422 activity_time)[0]), width = pltwidth * \

423 ((ga66_yei[i][1] / 100) * \

424 activity(depth, current, irradiation_time, \

425 activity_time)[0]), color = 'r')

426 elif i == 0:

427 plt.bar(ga66_yei[i][0], ((ga66_yei[i][1] / 100) * \

428 activity(depth, current, irradiation_time, \

429 activity_time)[0]), width = pltwidth * \

430 ((ga66_yei[i][1] / 100) * \

431 activity(depth, current, irradiation_time, \

432 activity_time)[0]), color = 'r', \

433 label = "$^{66}$Ga")

434 for i in range(len(ga67_yei)):

435 if i != 0:

436 plt.bar(ga67_yei[i][0], ((ga67_yei[i][1] / 100) * \

437 activity(depth, current, irradiation_time, \

438 activity_time)[1]), width = pltwidth * \

439 ((ga67_yei[i][1] / 100) * \

440 activity(depth, current, irradiation_time, \

441 activity_time)[1]), color = 'k')

442 elif i == 0:

443 plt.bar(ga67_yei[i][0], ((ga67_yei[i][1] / 100) * \

444 activity(depth, current, irradiation_time, \

445 activity_time)[1]), width = pltwidth * \

446 ((ga67_yei[i][1] / 100) * \

447 activity(depth, current, irradiation_time, \

448 activity_time)[1]), color = 'k', \

449 label = "$^{67}$Ga")

450 for i in range(len(ga68_yei)):

451 if i != 0:

452 plt.bar(ga68_yei[i][0], ((ga68_yei[i][1] / 100) * \

453 activity(depth, current, irradiation_time, \

454 activity_time)[2]), width = pltwidth * \

455 ((ga68_yei[i][1] / 100) * \
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456 activity(depth, current, irradiation_time, \

457 activity_time)[2]), color = 'b')

458 elif i == 0:

459 plt.bar(ga68_yei[i][0], ((ga68_yei[i][1] / 100) * \

460 activity(depth, current, irradiation_time, \

461 activity_time)[2]), width = pltwidth * \

462 ((ga68_yei[i][1] / 100) * \

463 activity(depth, current, irradiation_time, \

464 activity_time)[2]), color = 'b', \

465 label = "$^{68}$Ga")

466 for i in range(len(cu61_yei)):

467 if i != 0:

468 plt.bar(cu61_yei[i][0], ((cu61_yei[i][1] / 100) * \

469 activity(depth, current, irradiation_time, \

470 activity_time)[3]), width = pltwidth * \

471 ((cu61_yei[i][1] / 100) * \

472 activity(depth, current, irradiation_time, \

473 activity_time)[3]), color = 'g')

474 elif i == 0:

475 plt.bar(cu61_yei[i][0], ((cu61_yei[i][1] / 100) * \

476 activity(depth, current, irradiation_time, \

477 activity_time)[3]), width = pltwidth * \

478 ((cu61_yei[i][1] / 100) * \

479 activity(depth, current, irradiation_time, \

480 activity_time)[3]), color = 'g', \

481 label = "$^{61}$Cu")

482 for i in range(len(cu64_yei)):

483 if i != 0:

484 plt.bar(cu64_yei[i][0], ((cu64_yei[i][1] / 100) * \

485 activity(depth, current, irradiation_time, \

486 activity_time)[4]), width = pltwidth * \

487 ((cu64_yei[i][1] / 100) * \

488 activity(depth, current, irradiation_time, \

489 activity_time)[4]), color = 'darkorange')

490 elif i == 0:

491 plt.bar(cu64_yei[i][0], ((cu64_yei[i][1] / 100) * \

492 activity(depth, current, irradiation_time, \

493 activity_time)[4]), width = pltwidth * \

494 ((cu64_yei[i][1] / 100) * \

495 activity(depth, current, irradiation_time, \

496 activity_time)[4]), color = 'darkorange', \

497 label = "$^{64}$Cu")
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498 for i in range(len(cu67_yei)):

499 if i != 0:

500 plt.bar(cu67_yei[i][0], ((cu67_yei[i][1] / 100) * \

501 activity(depth, current, irradiation_time, \

502 activity_time)[5]), width = pltwidth * \

503 ((cu67_yei[i][1] / 100) * \

504 activity(depth, current, irradiation_time, \

505 activity_time)[5]), color = 'olive')

506 elif i == 0:

507 plt.bar(cu67_yei[i][0], ((cu67_yei[i][1] / 100) * \

508 activity(depth, current, irradiation_time, \

509 activity_time)[5]), width = pltwidth * \

510 ((cu67_yei[i][1] / 100) * \

511 activity(depth, current, irradiation_time, \

512 activity_time)[5]), color = 'olive', \

513 label = "$^{67}$Cu")

514 for i in range(len(zn62_yei)):

515 if i != 0:

516 plt.bar(zn62_yei[i][0], ((zn62_yei[i][1] / 100) * \

517 activity(depth, current, irradiation_time, \

518 activity_time)[6]), width = pltwidth * \

519 ((zn62_yei[i][1] / 100) * \

520 activity(depth, current, irradiation_time, \

521 activity_time)[6]), color = 'deepskyblue')

522 elif i == 0:

523 plt.bar(zn62_yei[i][0], ((zn62_yei[i][1] / 100) * \

524 activity(depth, current, irradiation_time, \

525 activity_time)[6]), width = pltwidth * \

526 ((zn62_yei[i][1] / 100) * \

527 activity(depth, current, irradiation_time, \

528 activity_time)[6]), color = 'deepskyblue', \

529 label = "$^{62}$Zn")

530 for i in range(len(zn65_yei)):

531 if i != 0:

532 plt.bar(zn65_yei[i][0], ((zn65_yei[i][1] / 100) * \

533 activity(depth, current, irradiation_time, \

534 activity_time)[7]), width = pltwidth * \

535 ((zn65_yei[i][1] / 100) * \

536 activity(depth, current, irradiation_time, \

537 activity_time)[7]), color = 'hotpink')

538 elif i == 0:

539 plt.bar(zn65_yei[i][0], ((zn65_yei[i][1] / 100) * \
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540 activity(depth, current, irradiation_time, \

541 activity_time)[7]), width = pltwidth * \

542 ((zn65_yei[i][1] / 100) * \

543 activity(depth, current, irradiation_time, \

544 activity_time)[7]), color = 'hotpink', \

545 label = "$^{65}$Zn")

546 plt.grid(True)

547 plt.xlabel('Energy (keV)')

548 plt.ylabel('No. of $\gamma$-rays per second (s$^{-1}$)')

549 plt.yscale('log')

550 plt.legend(fontsize = 25)

551 plt.title('Depth: ' + str(depth) + ' mm || Beam current: ' \

552 + str(current) + ' nA || Irradiation Time: ' +\

553 str(irradiation_time) + \

554 ' hours || Time Elapsed Since Irradiation Started: ' + \

555 str(activity_time) + ' hours.', fontsize = 'large')

556

557 """"""""""""

558 """"""""""""

559 """HERE BAR HEIGHT PROPORTIONAL TO ACTIVITY,

560 BAR WIDTH CONSTANT,

561 USED TO MAKE GRAPHS IN PAPER"""

562 plt.figure(2)

563 pltwidth = 14

564 for i in range(len(ga66_yei)):

565 if i != 0 and ga66_yei[i][1] > 1:

566 plt.bar(ga66_yei[i][0], ((ga66_yei[i][1] / 100) * \

567 activity(depth, current, irradiation_time,\

568 activity_time)[0]), width = pltwidth, \

569 color = 'r')

570 elif i == 0:

571 plt.bar(ga66_yei[i][0], ((ga66_yei[i][1] / 100) * \

572 activity(depth, current, irradiation_time,\

573 activity_time)[0]), width = pltwidth, \

574 color = 'r', label = "$^{66}$Ga")

575 for i in range(len(ga67_yei)):

576 if i != 0:

577 plt.bar(ga67_yei[i][0], ((ga67_yei[i][1] / 100) * \

578 activity(depth, current, irradiation_time, \

579 activity_time)[1]), width = pltwidth, \

580 color = 'k')

581 elif i == 0:
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582 plt.bar(ga67_yei[i][0], ((ga67_yei[i][1] / 100) * \

583 activity(depth, current, irradiation_time, \

584 activity_time)[1]), width = pltwidth, \

585 color = 'k', label = "$^{67}$Ga")

586 for i in range(len(ga68_yei)):

587 if i != 0:

588 plt.bar(ga68_yei[i][0], ((ga68_yei[i][1] / 100) * \

589 activity(depth, current, irradiation_time, \

590 activity_time)[2]), width = pltwidth, \

591 color = 'b')

592 elif i == 0:

593 plt.bar(ga68_yei[i][0], ((ga68_yei[i][1] / 100) * \

594 activity(depth, current, irradiation_time, \

595 activity_time)[2]), width = pltwidth, \

596 color = 'b', label = "$^{68}$Ga")

597 for i in range(len(cu61_yei)):

598 if i != 0:

599 plt.bar(cu61_yei[i][0], ((cu61_yei[i][1] / 100) * \

600 activity(depth, current, irradiation_time, \

601 activity_time)[3]), width = pltwidth, \

602 color = 'g')

603 elif i == 0:

604 plt.bar(cu61_yei[i][0], ((cu61_yei[i][1] / 100) * \

605 activity(depth, current, irradiation_time, \

606 activity_time)[3]), width = pltwidth, \

607 color = 'g', label = "$^{61}$Cu")

608 for i in range(len(cu64_yei)):

609 if i != 0:

610 plt.bar(cu64_yei[i][0], ((cu64_yei[i][1] / 100) * \

611 activity(depth, current, irradiation_time, \

612 activity_time)[4]), width = pltwidth, \

613 color = 'darkorange')

614 elif i == 0:

615 plt.bar(cu64_yei[i][0], ((cu64_yei[i][1] / 100) * \

616 activity(depth, current, irradiation_time, \

617 activity_time)[4]), width = pltwidth, \

618 color = 'darkorange', label = "$^{64}$Cu")

619 for i in range(len(cu67_yei)):

620 if i != 0:

621 plt.bar(cu67_yei[i][0], ((cu67_yei[i][1] / 100) * \

622 activity(depth, current, irradiation_time, \

623 activity_time)[5]), width = pltwidth, \
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624 color = 'olive')

625 elif i == 0:

626 plt.bar(cu67_yei[i][0], ((cu67_yei[i][1] / 100) * \

627 activity(depth, current, irradiation_time, \

628 activity_time)[5]), width = pltwidth, \

629 color = 'olive', label = "$^{67}$Cu")

630 for i in range(len(zn62_yei)):

631 if i != 0:

632 plt.bar(zn62_yei[i][0], ((zn62_yei[i][1] / 100) * \

633 activity(depth, current, irradiation_time, \

634 activity_time)[6]), width = pltwidth, \

635 color = 'deepskyblue')

636 elif i == 0:

637 plt.bar(zn62_yei[i][0], ((zn62_yei[i][1] / 100) * \

638 activity(depth, current, irradiation_time, \

639 activity_time)[6]), width = pltwidth, \

640 color = 'deepskyblue', label = "$^{62}$Zn")

641 for i in range(len(zn65_yei)):

642 if i != 0:

643 plt.bar(zn65_yei[i][0], ((zn65_yei[i][1] / 100) * \

644 activity(depth, current, irradiation_time, \

645 activity_time)[7]), width = pltwidth, \

646 color = 'hotpink')

647 elif i == 0:

648 plt.bar(zn65_yei[i][0], ((zn65_yei[i][1] / 100) * \

649 activity(depth, current, irradiation_time, \

650 activity_time)[7]), width = pltwidth, \

651 color = 'hotpink', label = "$^{65}$Zn")

652

653

654 plt.grid(True)

655 plt.xlabel('Energy (keV)', fontsize = 25)

656 plt.ylabel('$\gamma$-ray Activity (Bq)', fontsize = 25)

657 plt.ticklabel_format(axis="y", style="sci", scilimits=(0,0))

658 plt.xticks(fontsize = 25)

659 plt.yticks(fontsize = 25)

660 #plt.yscale('log')

661 plt.legend(fontsize = 25, loc = 'best')

662 """plt.title('Depth: ' + str(depth) + ' mm || Beam current: ' +

663 str(current) + ' nA || Irradiation Time: ' +str(irradiation_time)

664 + ' hours || Time Elapsed Since Irradiation Started: ' +

665 str(activity_time) + ' hours.', fontsize = 'large')"""
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666 """THIS IS JUST THE GAMMA SPECTRA,

667 NEITHER HEIGHT NOR WIDTH IS

668 PROPORTIONAL TO ACTIVITY:

669 ONLY USED TO EXAMINE

670 ABSOLUTE SPECTRUM"""

671 plt.figure(3)

672 pltwidth = 10

673 for i in range(len(ga66_yei)):

674 if i != 0 and ga66_yei[i][1] > 1:

675 plt.bar(ga66_yei[i][0], 100, width = pltwidth, \

676 color = 'r')

677 elif i == 0:

678 plt.bar(ga66_yei[i][0], 100, width = pltwidth, \

679 color = 'r', label = "$^{66}$Ga")

680 for i in range(len(ga67_yei)):

681 if i != 0:

682 plt.bar(ga67_yei[i][0], 100, width = pltwidth, \

683 color = 'k')

684 elif i == 0:

685 plt.bar(ga67_yei[i][0], 100, width = pltwidth, \

686 color = 'k', label = "$^{67}$Ga")

687 for i in range(len(ga68_yei)):

688 if i != 0:

689 plt.bar(ga68_yei[i][0], 100, width = pltwidth, \

690 color = 'b')

691 elif i == 0:

692 plt.bar(ga68_yei[i][0], 100, width = pltwidth, \

693 color = 'b', label = "$^{68}$Ga")

694 for i in range(len(cu61_yei)):

695 if i != 0:

696 plt.bar(cu61_yei[i][0], 100, width = pltwidth, \

697 color = 'g')

698 elif i == 0:

699 plt.bar(cu61_yei[i][0], 100, width = pltwidth, \

700 color = 'g', label = "$^{61}$Cu")

701 for i in range(len(cu64_yei)):

702 if i != 0:

703 plt.bar(cu64_yei[i][0], 100, width = pltwidth, \

704 color = 'g')

705 elif i == 0:

706 plt.bar(cu64_yei[i][0], 100, width = pltwidth, \

707 color = 'g', label = "$^{64}$Cu")
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708 for i in range(len(cu67_yei)):

709 if i != 0:

710 plt.bar(cu67_yei[i][0], 100, width = pltwidth, \

711 color = 'olive')

712 elif i == 0:

713 plt.bar(cu67_yei[i][0], 100, width = pltwidth, \

714 color = 'olive', label = "$^{67}$Cu")

715 for i in range(len(zn62_yei)):

716 if i != 0:

717 plt.bar(zn62_yei[i][0], 100, width = pltwidth, \

718 color = 'deepskyblue')

719 elif i == 0:

720 plt.bar(zn62_yei[i][0], 100, width = pltwidth, \

721 color = 'deepskyblue', label = "$^{62}$Zn")

722 for i in range(len(zn65_yei)):

723 if i != 0:

724 plt.bar(zn65_yei[i][0], 100, width = pltwidth, \

725 color = 'hotpink')

726 elif i == 0:

727 plt.bar(zn65_yei[i][0], 100, width = pltwidth, \

728 color = 'hotpink', label = "$^{65}$Zn")

729 plt.grid(True)

730 plt.xlabel('Energy (keV)')

731 plt.yticks([])

732 plt.legend(fontsize = 25)
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