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Abstract. In this thesis we will investigate the differences between the monoscale
Lorenz-96 model and its modifications. We obtain these modifications by changing the
structure of the nonlinear terms in the original Lorenz-96 model. We will treat the gen-
eral modified model and three specific systems and compare these with the Lorenz-96
model. To determine the dynamics of the models, we will study the eigenvalues of the
Jacobian matrix at the trivial equilibrium, Lyapunov coefficients to distinguish between
sub- and supercritical Hopf bifurcations, Lyapunov exponents to determine when there
is chaos for example etc. Some of the results are that in the Lorenz-96 model there
are no escaping orbits, while this is only true under some conditions for the modified
systems. Furthermore there are differences in bifurcations. The external forcing F ap-
pearing in the equations of all these models can be used as a bifurcation parameter. The
trivial equilibrium is always stable when F is zero for every model. For F < 0 some
modifications has a stable trivial equilibrium, while this is not the case for the original
model. For this model there only occur first Hopf bifurcations when F is positive, but for
its modifications there can be other (first) bifurcations too, like a Pitchfork bifurcation.
There are even bifurcations occuring for these modified systems, while these don’t ap-
pear in the original Lorenz-96 model case, such as degenerate bifurcations meaning that
suddenly there appear simultaneously more than one equilibrium and two eigenvalues of
the Jacobian matrix are zero at the same bifurcation parameter F .
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1. Introduction

The Lorenz-96 model, constructed by Edward Norton Lorenz, is used to study the
predictability of the atmosphere [Lor06a]. There exists a multiscale version of it besides
the monoscale version, the reader can find the information about the multiscale version
in the thesis [vK18]. In this thesis we only focus on the monoscale lorenz-96 model, which
is a system with dimension n ∈ N and is given by

ẋj = xj−1(xj+1 − xj−2)− xj + F, j ∈ {0, 1, . . . , n− 1},
where xj−n = xj+n = xj and the constant F ∈ R. Note that the dimension n and
the external forcing F are free parameters. The forcing F can be used as a bifurcation
parameter.

The variables xj in the model can be seen as values of atmospheric quantity, such as
temperature and pressure. These are measured along a latitude circle of the earth, see
Figure 1. As can been seen in this figure, this circle is divided into n equal parts, or
sectors, and the j-th part is associated with the variable xj for all j = 0, 1, . . . , n− 1.

Figure 1. An example of a latitude circle of the earth divided into n equal sectors.

The Lorenz-96 model is not constructed to be a physically realistic model, but it is not
complicated and it is easy to use for numerical experiments. The aim of this model is to
study the issues about the predictability of the atmosphere and the weather forecasting.
However this model has indeed the following physical components. The advection, that
conserves the total energy, is determined by the quadratic terms in the model. Moreover
the damping, which causes that the energy decreases, is obtained by the linear terms and
the external forcing, which keeps the total energy away from zero, is represented by the
constant terms, which is F . In Section 3 we will summarize the dynamics of this Lorenz-
96 model following the thesis [vK18] and the articles [vKS18a] and [vKS18b]. Before that
we will describe the life of Edward Norton Lorenz shortly at the end of this Introduction
using the thesis [vK18].

The monoscale Lorenz-96 model has many different applications. It is used for data
assimilation and predictability in spatiotemporal chaos and to test new ideas in different
areas, like studying the atmosphere and the associated problems in the articles by Lorenz
& Emanuel [LE98] and Lorenz [Lor06a] and [Lor06b]. It is also used for the predictibility
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of extremes in the article by Sterk & Van Kekem [SvK17] and for making and improving
forecasts in the papers by Danforth & Yorke [DY06] and by Basnarkov & Kocarev [BK12].
In addition, the model is used for the dynamical systems to study high-dimensional chaos.
In conclusion, the Lorenz-96 model is used for many applications in various areas.

The main difference between the use of the Lorenz-96 model in this thesis and in other
articles is that we don’t only study the dynamics of the Lorenz-96 model, but the dynamics
of its modifications too. There are differences between the dynamics of the original Lorenz-
96 model and its modifications. Furthermore we discovered some new results about these
modified models and this is not done in previous work. So the purpose of this thesis is
to modify the Lorenz-96 model and to study the dynamical properties of the modified
systems. It is worth to understand these modified models in precise mathematical details
and to obtain new good results. There are still open questions about these modified
systems, which are described in Section 6. These can be investigate further in the future.

We change the Lorenz-96 model by replacing the indices of the variables xj. So we
introduce the general system for some α, β, γ ∈ Z, such that α, β and γ are between −n
and n, and this system is

ẋj = xj+α(xj+β − xj+γ)− xj + F, j ∈ {0, 1, . . . , n− 1},
where again xj−n = xj+n = xj and F ∈ R. Thus the main research question is: What
are the dynamical properties of the modified models in comparison with the
original monoscale Lorenz-96 model?

In Section 4 we will treat the dynamical properties of the general system in detail
for specific α, β and γ using the references [vK18], [vKS18a] and [vKS18b]. One of the
main results is that for any F ∈ R the eigenvalues of the Jacobian matrix at the trivial
equilibrium (F, F, . . . , F ) do not depend on α. Further we will discuss Hopf bifurcations
in this situation. At a Hopf bifurcation an equilibrium point loses stability and then
there appears a periodic orbit. This periodic orbit can be interpreted as a travelling wave
[vKS18a]. One observation from the numerical experiments is that the wave number never
decreases as the dimension n increases. In Section 2.1 we will discuss preliminaries on
Hopf bifurcations and when this bifurcation is sub- or supercritical for dimension 2 and
for higher dimensions using the first Lyapunov coefficient with the aid of the references
[Kuz98] and [vKS18a]. Section 2.2 is about some basic definitions and results for the
Lyapunov exponents. The Lyapunov exponents are a generalization of the eigenvalues at
the equilibrium and of the characteristic multipliers. Lyapunov exponents indicate the
rate of the expansion or contraction near an equilibrium point. Moreover we will calculate
these exponents for a specific system in Section 5.3.

Before we study some three specific systems, we want to know when there are escaping
orbits in Section 4.2 using [Lor80]. This is useful, because then we know how large we
can take the constant parameter F and the dimension n to avoid escaping orbits for a
system. One result is that

|F | < 1

4C
np−

1
2 ,

where C ∈ R>0 is a constant and p ≈ 1 as indicated by numerical experiments. This
inequality means that if n increases, we are allowed to take F larger.

In Section 5 we will treat the dynamics of three specific systems, namely the systems
with (α, β, γ) = (−1, 0,−2), (−1,−1,−2) and (−1, 0,−1). One result for the system with
(α, β, γ) = (−1, 0,−1) is that there occurs a Pitchfork bifurcation at F = 1

2
for all n = 2k,

where k ∈ Z>0 and a second Pitchfork bifurcation occurs at F = 3
5

for n = 4. In the
cases when (α, β, γ) = (−1, 0,−2) and (−1,−1,−2) there occurs a degenerate bifurcation
meaning that there are simultaneously two or more equilibria at the same bifurcation
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parameter F and two eigenvalues are zero. At the end we will summarize and conclude
the research presented in this work. So we will describe what the differences are between
our modified systems and the original Lorenz-96 model and discuss the open problems
about these modifications in the last section 6.

1.1. Edward Norton Lorenz. The original Lorenz-96 model was developed by Edward
Norton Lorenz [vK18]. He was born on 23 May 1917 in West Hartford, Connecticut, in
USA. In 1938 he received his Bachelor’s degree Mathematics at the Dartmouth College
in Hanover in New Hamspshire and received his Master’s degree Mathematics at Har-
vard University in 1940. Moreover he got his second Master’s degree in Meteorology at
Massachusetts Institute of technology (MIT) in 1943. In 1948 he married Jane Loban
and he received also his doctorate in Meteorology. He was appointed full Professor in
Meteorology in 1962. During his life he awarded a lot of prices, such as Symons Memorial
Gold Medal (1973), Crafoord Prize (1983), Kyoto Prize (1991) and Lomosov Gold Medal
(2004). He retired in 1987, but he still did a lot for the science. He died on 16 April 2008
in Cambridge, Massachusetts, in USA.

Figure 2. Edward Norton Lorenz (1917-2008), reference: [Wik].

Edward Lorenz was an important mathematician and meteorologist, who established
theoritical fundaments of weather, climate and atmosphere predictability and he was
founder of the modern chaos theory. he discovered the Lorenz attractor and the Butterfly
effect in 1963. Besides his Lorenz-96 model he also constructed other models, one of them
is the Lorenz-63 model. This model is a three-dimensional model, which has the three
equations

ẋ = −σx+ σy,

ẏ = −xz + rx− y,
ż = xy − βz.

Here x is proportional to the intensity of the convective motion, y is to the difference in
temperature between the rising and falling parts of the fluid and z to the deviation of the
temperature profile from its equilibrium.

This model simulates the convective motion of the fluid between two parallel infinite
horizontal plates in two dimensions. The lower plate is heated and the upper one is cooled.
Furthermore Lorenz-63 model has indeed a physical interpretation comparing with the
Lorenz-96 model. Although Lorenz-63 model has two disadvantages. It has only three
equations and for classical parameter values this model is very dissipative.
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Another model is the Lorenz-84 model, which is a three-dimensional model and it
describes the long-term atmospheric circulation at the midlatitude. It is given by

ẋ = −y2 − z2 − αx+ αF,

ẏ = xy − βxz − y +G,

ż = βxy + xz − z,
where x is the intensity of the symmetric globe-encircling westerly current wind, y and z
are the cosine and sine phases of a chain of superposed waves transporting heat polward.

Edward Norton Lorenz constructed many models. In Section 3 we will treat the dy-
namical properties of the Lorenz-96 model and later on we will discuss its modification.
Before these subjects, we will state some preliminary theory about Hopf bifurcations and
Lyapunov exponents.

2. Preliminaries

2.1. Hopf bifurcations. First at a Hopf bifurcation the equilibrium loses stability and
a periodic orbit appears. A Hopf bifurcation occurs when the complex eigenvalue pair of
the Jacobian matrix at an equilibrium crosses the imaginary axis. In this subsection using
the references [Kuz98] and [vKS18a] we will describe what sub- and supercritical Hopf
bifurcations mean for dimension 2 and higher dimensions. For dimensions larger than 2
we can distinguish between a sub- and supercritical Hopf bifurcation by computing the
Lyapunov coefficient. In Appendix C and in the Section 5 we will investigate when there
occurs a Hopf bifurcation for some case studies and whether this Hopf bifurcation is sub-
or supercritical. First we discuss this for dimension 2 to understand what exactly the
difference is between these two.

To explain the supercritical and subcritical cases, we consider the system depending on
the parameter α,

ẋ1 = αx1 − x2 − x1(x2
1 + x2

2), (2.1)

ẋ2 = x1 + αx2 − x2(x2
1 + x2

2).

Moreover the eigenvalues of the Jacobian matrix at the equilibrium point (0, 0) are α+ i
and α − i. Let z = x1 + ix2, then using the equations of the system we get the complex
normal form of the Hopf bifurcation

ż = ẋ1 + iẋ2 = (α + i)z − z|z|2,

where |z|2 = zz̄ and z̄ = x1 − ix2. Take the representation z = ρeiφ, then the polar form
of the system (2.1) is

ρ̇ = ρ(α− ρ2), (2.2)

φ̇ = 1.

From this polar form we can analyse the bifurcations of the phase potrait of the system
(2.1). The first equation of (2.2) has an equilibrium point ρ0 = 0 for all α and an
equilibrium point ρ1 =

√
α for only α > 0. Moreover the equilibrium ρ0 is linearly stable

for α < 0 and linearly unstable for α > 0. For α = 0 this equilibrium point is still stable,
but nonlinear.

Recall that the equilibrium of the system (2.1) is (0, 0). This is stable for α < 0 and
unstable for α > 0. In the last case this equilibrium is surrounded by a limit cycle or
also called an isolated closed orbit, which is unique and stable and has radius

√
α. At

the critical value α = 0 this equilibrium is nonlinearly stable. Therefore we get the bifur-
cation diagram for the system (2.1) in Figure 3 and for this case the Hopf bifurcation is
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supercritical. It is called supercritical, because the limit cycle exists after the bifurcation,
so when the parameter α is positive.

Figure 3. The bifurcation diagram for supercritical Hopf bifurcation from [Kuz98].

For the subcritical case we have the system with opposite signed nonlinear terms,

ẋ1 = αx1 − x2 + x1(x2
1 + x2

2), (2.3)

ẋ2 = x1 + αx2 + x2(x2
1 + x2

2).

Reasoning similar to the supercritical case shows that there is an unstable limit cycle for
this system (2.3) when α < 0. This cycle disappears when α becomes positive and we get
the bifurcation diagram in Figure 4 when the Hopf bifurcation is subcritical. We call it
subcritical, because the limit cycle appears for α < 0.

Figure 4. The bifurcation diagram for subcritical Hopf bifurcation from [Kuz98].

Now we will explain when the Hopf bifurcation is sub- or supercritical for dimensions
higher than 2. In this case we cannot make bifurcation diagrams as we did for dimension
2. We obtain the sub- or supercritical by calculating the Lyapunov coefficient. If this
coefficient is negative, then it is supercritical. If it is positive, then we have a subcritical
Hopf bifurcation.

The first Lyapunov coefficient can be computed from a center manifold reduction. Here
we only sketch the idea how to determine this coefficient, for more details see [Kuz98]. The
first Lyapunov coefficient l1(FH) corresponding to the Hopf bifurcation at some parameter



6

F = FH for the trivial equilibrium xF = (F, F, . . . , F ) and dimension n is given by, see
for more information [Kuz98],

l1(FH) =
1

2ω0

Re(〈p, C(q, q, q̄)〉 − 2〈p,B(q, A−1B(q, q̄))〉

+ 〈p,B(q̄, (2iω0In)−1B(q, q))),

where A is the Jacobian matrix at xF , B and C are the multilinear function determined
by the Taylor expansion of the nonlinear part of the system. Also, p and q are the complex
eigenvectors of A> and A and ω0 comes from the eigenvalue λl = −ω0i. Note that the
inner product in the last expression is

〈x, y〉 =
n−1∑
k=0

x̄kyk.

To simplify the expression of the first Lyapunov coefficient we change the coordinates,
where we translate the equilibrium xF to the origin using some Taylor transformation.
Then we normalised the eigenvectors p and q and eliminate the inverse matrices. Now
it is filling in the values in the formula of the first Lyapunov coefficient to determine if
it is positive or negative. Moreover if it is zero at FH , then it means that this doesn’t
prove the occurrence of a Hopf bifurcation at FH . In Section 5 and in Appendix C we will
calculate the first Lyapunov coefficients for some systems and an example of the complete
calculation can be found in Appendix B. Now we will discuss some preliminaries on
Lyapunov exponents.

2.2. Lyapunov Exponents. To begin with Lyapunov exponents are a generalization of
the eigenvalues of the Jacobian matrix at the equilibrium point and of the characteristic
multipliers and these both can be used to determine the stability. We will discuss these
in this subsection following the books [Kuz98] and [PC89]. We start with the explanation
of eigenvalues at the equilibrium point, characteristic multipliers and the Poincaré map.

2.2.1. Eigenvalues and Characteristic Multipliers. First consider an equilibrium point x̄
of an autonomous system

ẋ = f(x), (2.4)

where f is a vector field. The local behaviour of the flow near the equilibrium point x̄ is
obtained by the linearization of the vector field at x̄ and the linear vector field is

δx = Df(x̄)δx,

with δx(0) = δx0. This vector field affects the time evolution of δx0 in a neighbourhood
of x̄. Let the eigenvalues of Df(x̄) be λ0, λ1, . . . , λn−1 ∈ C. From the book [PC89] an
result is that if the eigenvalues are distinct and the initial condition is x̄ + δx0, then the
trajectory, to the first order, is

ψt(x̄+ δx0) = x̄+ δx(t) = x̄+ eDf(x̄)tδx0.

Furthermore if every Re(λi) < 0 for all i = 0, 1, . . . , n− 1, then the equilibrium point x̄ is
asymptotically stable. If Re(λi) > 0 for every i = 0, 1, . . . , n− 1, then x̄ is unstable.

The eigenvalues of the Jacobian matrix Df(x̄) tell us about the stability of the equi-
librium point x̄. The stability of a periodic solution is determined by the characteristic
multipliers, these are a generalization of the eigenvalues at x̄ and a periodic solution cor-
responds to a fixed point x∗ of the Poincaré map. A Poincaré map replaces the flow of
a continuous-time system (2.4) of order n with a discrete-time system Σ of order n − 1.
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Let L be a periodic orbit of the system (2.4) and x∗ be a point in L. In Figure 5 Σ is the
Poincaré section crossing the point x∗ and the Poincaré map P is defined by

P : Σ→ Σ,

x 7→ x̃ = P (x),

where x̃ is some point in Σ near x∗. Moreover P (x∗) = x∗ and thus x∗ is a fixed point of
P .

Figure 5. The Poincaré Map with the cycle L.

Going back to the stability, the stability of the periodic solution is equal to the stabilty
of the fixed point. The local behaviour of the map P near the fixed point x∗ of P is
determined by the linear map,

δxk+1 = DP (x∗)δxk,

at x∗ and this map influences the evolution of a perturbation δx0 in a neighbourhood of
x∗. Let the eigenvalues of DP (x∗) be m0,m1, . . . ,mp ∈ C. As before, assume that the
eigenvalues m0, . . . ,mp are distinct and the initial condition is x∗+ δx0, then the orbit of
the Poincaré map P is, to the first order,

xk = x∗ + δxk = x∗ +DP (x∗)kδx0.

Definition 1. Let x∗ be the fixed point of the Poincaré map P and let the eigenvalues of
DP (x∗) be m0,m1, . . . ,mn−1. These m0,m1, . . . ,mp are called the characteristic multipli-
ers of the periodic solution.

Using these characteristic multipliers we can say the following about stability of the
fixed point x∗, hence about the stability of the periodic solution. If |mi| < 1 for all
i = 0, 1, . . . , n − 1, then the fixed point x∗ is asymptotically stable. If |mi| > 1 for any
i = 0, 1, . . . , n − 1, then x∗ is unstable. If it is the case that for some i, j, |mi| < 1 and
|mj| > 1, this implies that the fixed point is a saddle point.

Now we will discuss the relation between the characteristic multipliers and the eigen-
values of the solution of the variational equation. First about the variational equation,
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consider the system (2.4) of dimension n with initial condition x(t0) = x0 and this system
has the solution ψ such that

ψ̇t(x0, t0) = f(ψt(x0, t0), t), ψt0(x0, t0) = x0.

We differentiate the last expression with respect to x0 to get

Dx0ψ̇t(x0, t0) = Dxf(ψt(x0, t0), t)Dx0ψt(x0, t0), Dx0ψt0(x0, t0) = I,

where I is the identity matrix. Let Φt(x0, t0) = Dx0ψt(x0, t0), then the last equality is

Φ̇t(x0, t0) = Dxf(ψt(x0, t0), t)Φt(x0, t0), Φt0(x0, t0) = I,

and this is the variational equation with solution Φt(x0, t0). Since the initial condition is
Φt0(x0, t0) = I, the solution Φt(x0, t0) is the state transition matrix of the linear system.

The relation between the characteristic multipliers and the eigenvalues of the state
transition matrix ΦT (x∗, t0) is as follows. For the non-autonomous case the characteristic
multipliers are the same as the eigenvalues of ΦT (x∗, t0), because P (x) = ψT (x, t0) gives

DP (x∗) = DxψT (x∗, t0) = ΦT (x∗, t0).

From the book [PC89] for the autonomous systems, we have that the eigenvalues of ΦT (x∗)
are m0,m1, . . . ,mn−2, 1, where m0,m1, . . . ,mn−2 are the characteristic multipliers and T
is the minimum period of the limit cycle corresponding to the fixed point x∗.

The characteristic multipliers can be seen as a generalization of the eigenvalues at an
equilibrium point and these can be used to determine the stability of the equilibrium
point and of the limit cycles. Let any T > 0. Consider the autonomous system as
a time-periodic, non-autonomous system with period T , because the vector field of an
autonomous system is independent of time [PC89]. The Poincaré map is given by P (x) =
ψT (x) and since x̄ is an equilibrium point, P (x̄) = x̄. This implies that we can consider x̄
as a periodic solution. Now we want to find the characteristic multipliers of this periodic
solution x̄ and this can be done by calculating DP (x̄) = ΦT (x̄). The variational equation
becomes using ψt(x̄) = x̄,

Φ̇ = Df(x̄)Φ, Φ0 = I.

This is a linear system not depending on time t with the state transition matrix

Φt(x̄) = eDf(x̄)t.

Moreover since we have a non-autonomous system, the characteristic multipliers are
equal to the eigenvalues of Φt(x̄). Therefore by the spectral mapping theorem [PC89] the
eigenvalues λ0, λ1, . . . , λn−1 of Df(x̄) and the characteristic multipliers m0,m1, . . . ,mn−1

are connected as

mi = eλiT , i = 0, 1, . . . , n− 1. (2.5)

The mi can be interpreted as the amount of contraction or expansion in T units of time
and λi as the rate of contraction or expansion. In the next subsubsection we will use these
for the Lyapunov exponents.

2.2.2. Definition. Recall that Lyapunov exponents are a generalization of the eigenvalues
at the equilibrium point and of the characteristic multipliers. The definitions of the
Lyapunov exponents are the following.

Definition 2 (Lyapunov exponents for continuous-time systems). Let x0 be the initial
condition in Rn and assume that m0(t),m1(t), . . . ,mn−1(t) are the eigenvalues of Φt(x0).
The Lyapunov exponents of x0 are for any i = 0, 1, . . . , n− 1,

λ̂i = lim
t→∞

1

t
ln |mi(t)|, (2.6)



9

if the limit exists.

Definition 3 (Lyapunov exponents for discrete-time systems). Let x0 be any initial con-
dition and suppose that the orbit of discrete-time system P of dimension p is {xj}∞j=0. Let

m0(j),m1(j), . . . ,mp−1(j) be the eigenvalues of DP j(x0). Then the Lyapunov exponents
of x0 are

λ̂i = lim
j→∞
|mi(j)|

1
j , i = 0, 1, . . . , p− 1,

if the limit exists.

Now we want to find the Lyapunov exponents of an equilibrium point x̄ to understand
these exponents better. Since (2.5), the Lyapunov exponents are given by

λ̂i = lim
t→∞

1

t
ln |eλit| = lim

t→∞

1

t
Re(λi)t = Re(λi),

for every i = 0, 1, . . . , n − 1. So we have expansion when λ̂i > 0 and contraction when
λ̂i < 0 and these Lyapunov exponents indicate the rate of the expansion or contraction
near the equilibrium point.

Note that the Lyapunov exponents depend on the initial condition x0. If it is the case
that the equilibrium point x̄ 6= x0 and assume that x0 lies in the basin of the attraction of
the equilibrium point x̄, then the Lyapunov exponents are the same for x̄ and x0, because
in the expression (2.6) the limit t→∞ is involved. Hence, every point in the basin of the
attraction of an attractor has the same Lyapunov exponents as for the initial condition
x0 and therefore these exponents are called the Lyapunov exponents of an attractor.

Looking at the Lyapunov exponents of an attractor, we can classify the non-chaotic
attractors. First for the attractor we need that

∑n−1
i=0 λ̂i < 0, which means that contraction

must be more than expansion. Therefore the classification is

1. There is an asymptotically stable equilibrium point, if all λ̂i < 0 for all i =
0, 1, . . . , n− 1.

2. There is an asymptotically stable limit cycle, if λ̂0 = 0 and for every i = 1, 2, . . . , n−
1, λ̂i < 0.

3. There is an asymptotically stable two-torus, when λ̂0 = λ̂1 = 0 and λ̂i < 0 for any
i = 2, 3, . . . , n− 1.

4. There is an asymptotically stable K-torus, if λ̂0 = λ̂1 = · · · = λ̂K and for all
i = K + 1, . . . , n− 1, λ̂i < 0.

Thus we have that every Lyapunov exponent in this situation is never positive.
The Lyapunov exponents of a chaotic attractor must have the following properties.

Firstly, for chaotic attractor we need expansion meaning that at least one of the Lyapunov
exponents must be positive. So this distinguishes a chaotic and a non-chaotic attractor.
For any attractor other than an equilibrium one Lyapunov exponent is zero and lastly,
the sum of the Lyapunov exponents of an attractor must be negative, i.e.

∑n−1
i=0 λ̂i < 0.

Therefore chaos cannot appear in the first and second dimensional cases. For example
when we have 3 dimensional chaos, the Lyapunov exponents are one λ̂0 is positive, the
other λ̂1 is zero and one exponent λ̂2 is negative, since

∑n−1
i=0 λ̂i < 0 and −λ̂0 > λ̂2.

To summarize we have that the Lyapunov exponents are the same as the expression
(2.6), but this is not enough to calculate the Lyapunov exponents of an attractor. There-
fore in the next subsubsection we will obtain an algorithm to do this.

2.2.3. Algorithm for computing the Lyapunov Exponents. In this subsubsection we will
treat the main idea how the algorithm to determine the Lyapunov exponents works and in
Section 5.3 we will implement this procedure for the system with (α, β, γ) = (−1, 0,−1)
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for some dimensions n in Matlab to obtain the results. It is not workable to use the
definition (2.6) of the Lyapunov exponents λ̂i directly, for any i = 0, 1, . . . , n − 1. So
we need another procedure to obtain and program these Lyapunov exponents. The main
idea of the algorithm is to use the Gram-Schmidt Orthonormalization procedure. Thus
we estimate all the n Lyapunov exponents by orthonormalization of n vectors.

Let {δx1, δx2, . . . , δxn} be a set of linearly independent n vectors in Rn. This Gram-
Schmidt orthonormalization generates an orthonormal set of n vectors, which is denoted
by {u1, u2, . . . , un}. This set has the property that the set {u1, . . . , uj} spans the same
subspace as {δx1, . . . , δxj} for all j = 1, 2, . . . , n. Using this information the following
equations hold,

v1 = δx1

u1 =
v1

||v1||
v2 = δx2 − 〈δx2, u1〉u1

u2 =
v2

||v2||
...

vn = δxn − 〈δxn, u1〉u1 − · · · − 〈δxn, un−1〉un−1

un =
vn
||vn||

.

We can find all n Lyapunov exponents simultaneously, if a set of n linearly independent
pertubation vectors δx1, δx2, . . . , δxn is integrated every T units of time and orthonor-
malized many times. Thus after k iterations the orthonormalization procedure gives n

vectors v
(k)
1 , v

(k)
2 , . . . , v

(k)
n and the Lyapunov exponents

λ̂0 ≈
1

kT

k∑
j=0

ln(||v(j)
1 ||),

λ̂1 ≈
1

kT

k∑
j=0

ln(||v(j)
2 ||),

...

λ̂n−1 ≈
1

kT

k∑
j=0

ln(||v(j)
n ||).

Note that we can choose T , but if it is very small, then it leads to excessive orthonor-
malization. If it is very large, then it can lead to numerical overflow in the integration.
Furthermore if the norms ||vi|| are close to one, then we get numerical inaccuracies in
the volume calculations. In Section 5.3 we will apply this algorithm to a specific system.
Before that we will study the dynamics of the Lorenz-96 model.

3. The Lorenz-96 Model

The original monoscale Lorenz-96 model is defined by the n equations

ẋj = xj−1(xj+1 − xj−2)− xj + F, j ∈ {0, 1, . . . , n− 1}, (3.1)

where we have the indices modulo n such that xj−n = xj+n = xj and the bifurcation
parameter F ∈ R. The main idea is to modify this original model and we are going to



11

work out the dynamics of the modified systems in the Sections 4 and 5. Now we will
state the important results of the Lorenz-96 model from the thesis [vK18] and the articles
[vKS18a] and [vKS18b].

3.1. Dynamical Properties. First the trivial equilibrium of Lorenz-96 model is given
by xF = (F, F, . . . , F ) for any n ≥ 1, where F ∈ R. Note that for F = 0 the equilibrium
xF is stable. Since there is circulant symmetry in this original system, we can determine
the eigenvalues of xF explicitly. Furthermore the Jacobian matrix at xF is a circulant
matrix in any dimension n. This means that each row of the Jacobian matrix is a right
cyclic shift of the row above it. Therefore everything of this matrix can be obtained by
its first row.

Now assume that the dimension n ≥ 4. Denote the first row of the Jacobian matrix by

(c0, c1, . . . , cn−1),

where c0 = −1, c1 = F, cn−2 = −F and for any k 6= 0, 1, n − 2, ck = 0, because ẋ0 =
x−1(x1 − x−2) − x0 + F . Since the Jacobian matrix is a circulant matrix, we have the
following eigenvalues, see Appendix A for more information,

λj =
n−1∑
k=0

ckρ
k
j

=
n−1∑
k=0

ck

(
e−2πi j

n

)k
,

for j = {0, 1, . . . , n− 1}. Then

λj = −1 + F
(
e−2πi j

n − e4πi j
n

)
= −1 + F

(
cos

(
2πj

n

)
− cos

(
4πj

n

))
+ iF

(
− sin

(
2πj

n

)
− sin

(
4πj

n

))
= −1 + Ff(j, n) + iFg(j, n). (3.2)

In Figure 6 we see the graphs of f(j, n) and g(j, n). The eigenvector corresponding to the
eigenvalue λj (3.2) is

vj =
1√
n

(1, ρj, ρ
2
j , . . . , ρ

n−1
j )>.

Note that λ0 = −1 and if F = 0, then we have stability, because every real part of the
eigenvalues are −1. If n is even, then all eigenvalues λn

2
= −1− 2F are real. Moreover if

n is a multiple of 3, then the eigenvalues λn
3
, λ 2n

3
= −1 and thus these are real.

Especially, we are interested in complex eigenvalue pairs. The j-th eigenvalue pair is
defined by {λj, λn−j}. Since ρn−j = ρj, λj = λn−j and vj = vn−j, the eigenvalues and
eigenvectors form the complex conjugate pairs, except of course for λ0 = −1 and for
the cases when n is even and when n is a multiple of 3, as we saw before. We need
complex eigenvalue pairs to obtain Hopf bifurcations, we will treat this further in the
next subsection.

3.2. Bifurcations.

3.2.1. Bifurcations for F > 0.
The complex eigenvalue pair crosses the imaginary axis at some value F , so that it causes
a Hopf bifurcation. We can use F ∈ R>0 as a bifurcation parameter.

Before we go into the results of the Hopf bifurcation, we need the following lemma
about eigenvalue crossing.
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Figure 6. The graphs of continuous functions f(x) (blue) and g(x) (pur-
ple) defined in equation (3.2) for Lorenz-96 model, where 2πj

n
is replaced by

the continuous variable x ∈ [0, 2π].

Lemma 1. Let n ≥ 4 and l ∈ N, where 0 < l < n
2

and l 6= n
3
. Then

1. the l-th complex eigenvalue pair {λl, λn−l} of the trivial equilibrium xF = (F, F, . . . , F )
of the system (3.1) crosses the imaginary axis transversally at F = FH(l, n) =

1
f(l,n)

. This causes change in stability of the equilibrium.

2. FH(l, n) lies in the domain
(
Fmin(n),−1

2

)
∪
[

8
9
, Fmax(n)

)
, where

Fmin(n) =

{
−1

2
ifn = 4, 6

1
f(r+1,n)

otherwise

Fmax(n) =

{
1

f(2,7)
ifn = 7

1
f(1,n)

otherwise
,

where r is the quotient of n after division by 3.

The proof of this lemma can be found in the thesis [vK18].
By looking carefully at the graph of f(j, n) in Figure 6, there can be at most two complex

eigenvalue pairs that crosses the imaginary axis simultaneously for some value F . This
implies that we have a Hopf bifurcation or a Hopf-Hopf bifurcation. In the following
theorem it is stated when there is a subcritical Hopf bifurcation or a supercritical one,
see [vK18] for the proof of it.

Theorem 1 (Hopf Bifurcation). Let l and n be as in Lemma 1. If l-th complex eigenvalue
pair crosses only once the imaginary axis at parameter value F = FH , then there occurs
a Hopf bifurcation at FH for the trivial equilibrium xF . The first Lyapunov coefficient for
this bifurcation is given by

l1(l, n) =
4

n
tan

(
πl

n
sin2

(
3πl

n

))
=

5 cos
(

2πl
n

)
+ 8 cos

(
4πl
n

)
− 2 cos

(
6πl
n

)
− 8

4 cos
(

2πl
n

)
− 4 cos

(
4πl
n

)
+ 9

.
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Fix y0 ∈ (0, π) such that

5 cos y0 + 8 cos 2y0 − 2 cos 3y0 − 8 = 0,

then l1(l, n) is

1 positive, if l and n satisfy 0 < l
n
< y0

2π
≈ 0.08825746. This corresponds to a

subcritical Hopf bifurcation.
2 negative, if l

n
∈
(
y0
2π
, 1

2

)
\ {1

3
}. This gives us a supercritical Hopf bifurcation.

Moreover we have a Hopf-Hopf bifurcation when the following holds.

Theorem 2. (Hopf-Hopf bifurcation) Let n ≥ 4 and l1, l2 ∈ N satisfying 0 < l1, l2 <
n
2

and l1, l2 6= n
3
. Then for the trivial equilibrium xF a Hopf-Hopf bifurcation occurs, which

means two eigenvalue pairs crosses both the imaginary axis at the same parameter value
FHH = FH(l1, n) = FH(l2, n), if and only if l1 and l2 satisfy

cos

(
2πl1
n

)
+ cos

(
2πl2
n

)
=

1

2
.

If the last expression doesn’t hold, then we have a Hopf bifurcation. In conclusion,
for F > 0 the first bifurcation is either a supercritical Hopf bifurcation or a Hopf-Hopf
bifurcation and therefore it is not a Pitchfork bifurcation.

3.2.2. Bifurcations for F < 0. For F < 0 we have first Pitchfork bifurcations in some cases
of dimension n. When n is odd, there does not occur a Pitchfork bifurcation. Instead of
that the first bifurcation of the trivial equilibrium xF = (F, F, . . . , F ) is a Hopf bifurcation
at FH = 1

cos( 2πj
n )−cos( 4πj

n )
with j = n−1

2
. This bifurcation is supercritical meaning that the

equilibrium xF loses stability and a stable periodic orbit appears after this bifurcation.
For n = 4k + 2, for k ∈ Z>0, we only have one Pitchfork bifurcation. After this

bifurcation on both equilibria we get a supercritical Hopf bifurcation simultaneously. So
when n = 6 we have a Pitchfork bifurcation at F = −1

2
with three equilibria xF =

(F, F, . . . , F ), xP1 = (a, b, a, b, a, b) and xP2 = (b, a, b, a, b, a), where a and b satisfy

a =
−1 +

√
−1− 2F

2
,

b =
−1−

√
−1− 2F

2
.

Thereafter a Hopf bifurcation occurs at FH = −7
2
.

Moreover when n = 4k, for k ∈ Z>0, there occur two Pitchfork bifurcations consecu-
tively, one at F = −1

2
and the other at F = −3, and after these Pitchfork bifurcations

the four stable equilibria exhibit supercritical Hopf bifurcation at the same time. For
example, for n = 4 there are two Pitchfork bifurcations at F = −1

2
and at F = −3, where

the four branches of the equilibria are of the form

(a, b, c, d), (b, c, d, a), (c, d, a, b) and (d, a, b, c).

Another result is that for even n one eigenvalue is λn
2

= −1−2F = 0 at F = −1
2

and in
this case we have a Pitchfork bifurcation. In conclusion, we studied the bifurcations of the
Lorenz-96 model shortly. Recall that at a Hopf bifurcation an equilibrium loses stability
and gives birth to a periodic orbit. This periodic orbit can be interpreted as a travelling
wave [vK18]. In the next subsection we will discuss the wave number and period of the
Lorenz-96 model.



14

3.3. Wave Number and Period. For F > 0 the first Hopf bifurcation exists with the
following index l+1 .

Proposition 1. Let n ≥ 4 be fixed and for F > 0 the first Hopf and Hopf-Hopf bifurcation
occur for the complex eigenvalue pair {λl, λn−l} with index

l+1 (n) = arg max
0<j<n

3

f(j, n). (3.3)

This index satisfies n
6
≤ l+1 (n) ≤ n

4
except for n = 7. For the case n = 7, l+1 (n = 7) = 1.

Furthermore the first Hopf bifurcation of xF is always supercritical.

A Hopf bifurcation occurs meaning that a birth of a periodic solution from the equilib-
rium. This changes the stability of this equilibrium. First we treat the general case to get
the expression of the periodic orbit and then we apply it to the Lorenz-96 model. Con-
sider a general geophysical model in the following form of a system of ordinary differential
equations

ẋ = f(x, µ), (3.4)

where x ∈ Rn and µ ∈ R is a parameter modelling external circumstances, such as forcing.
Let x0 be an equilibrium for the parameter µ0, which means that f(x0, µ0) = 0. Thus
x0 is a time-independent solution of the system (3.4). Within geophysics this solution x0

is the steady flow and the eigenvalues of the Jacobian matrix Df(x0, µ0) determine the
stability of this equilibrium. Suppose that this Jacobian matrix has two eigenvalues ±ω0i,
which indicates the occurrence of a Hopf bifurcation.

If x0 is stable for µ < µ0 and unstable for µ > µ0, then the Hopf bifurcation is
supercritical under some nondegeneracy conditions [Kuz98]. This means that for µ > µ0

a stable periodic orbit exists. Moreover we have an unstable periodic orbit, if the Hopf
bifurcations are of unstable equilibrium. For small ε =

√
(µ− µ0) the general periodic

orbit that is born at the Hopf bifurcation is approximation of the expression

x(t) = x0 + εRe((u + iv)eiωt) +O(ε2), (3.5)

see [vK18]. Without loss of generality assume that the corresponding eigenvectors u+ iv
of Df(x0, µ0) have unit length.

Back to the Lorenz-96 model, if the conditions of Theorem 1 hold, then we have a
Hopf bifurcation meaning that one complex eigenvalue pair crosses the imaginary axis at
FH = 1

f(l,n)
. Let this be the l-th eigenvalue pair {λl, λn−l}. By equation (3.2) We can

write this into

λl =
g(l, n)

f(l, n)
i = −

cos
(
πl
n

)
sin
(
πl
n

) = −ω0i,

where ω0 can be taken to be the absolute value of the imaginary part at the bifurcation
value. Using the general expression of the periodic orbit (3.5) and for ε =

√
F − FH

sufficiently small the approximation of the periodic orbit for the Lorenz-96 model is

x(t) = F +
√
F − FH

(
vle

iω0t
)

+O(ε2).

Because of this expression we are allowed to determine the physical properties of the wave.
Furthermore the j-th compenent of the expression of the periodic orbit is

xj(t) = F +
√
F − FHRe

(
ei(ω0t− 2πjl

n )
√
n

)
+O(ε2)

= F +

√
F − FH

n
cos

(
ω0t−

2πjl

n

)
+O(ε2).
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This is indeed the formula of the traveling wave, where l is the wave number and the
period is given by

T =
2π

ω0

= 2π tan

(
πl

n

)
. (3.6)

The most interesting wave number is the one of the first bifurcation for the case when
F > 0. This is denoted by l+1 (n) defined as (3.3) and it increases linearly with n. Since f
has a maximum at 2πj

n
= arccos

(
1
4

)
, we have the following results as n tends to infinity.

Proposition 2. As n → ∞, the period of the periodic orbit at the first Hopf bifurcation
is given by

T∞ = lim
n→∞

2π tan

(
πl+1 (n)

n

)
= 2π tan

(
1

2
arccos

(
1

4

))
≈ 4.867.

Moreover the wave number l+1 satisfies the limit:

lim
n→∞

2πl+1 (n)

n
= arccos

(
1

4

)
.

In Figure 7 we see the graphs of the wave number and the period for the Lorenz-96
model. The graph of period tends to a constant as n tends to infinity and the wave
number increases linearly as n increases.

Figure 7. Period T (black) given by equation (3.6) and wave number l+1
(blue) defined by (3.3) as functions of n for the Lorenz-96 model.

Now we will study the wave number for F < 0. Assume that n is odd. Then the index
of the first Hopf bifurcation is minimizing the value of the function f(j, n), which is the
same as

l−1 (n) = arg min f(j, n) =
n− 1

2
. (3.7)
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Note that in this case the wave number also increases linearly as n increases and it
increases faster that for F > 0. Here the period is given by

T = 2π tan

(
π(n− 1)

2n

)
. (3.8)

This period doesn’t tend to a limit as n tends to infinity, but it increases, see Figure 8.
This is different from the case F > 0.

Figure 8. Period T (black) given by equation (3.8) and wave number l−1
(blue) defined by (3.7) as functions of n for the Lorenz-96 model.

These were the important aspects of the Lorenz-96 model. In a later section we will
discuss the dynamics of three specific modified systems, but we will first treat some general
properties of some modified models.

4. The modified Lorenz-96 Model

The purpose of this section is to investigate what happens in general if we change the
indices in the original model using the references [vK18], [vKS18a] and [vKS18b]. We will
do this step by step using α, β, γ ∈ Z. Let α, β and γ be between −n and n, then the
general system is

ẋj = xj+α(xj+β − xj+γ)− xj + F, j ∈ {0, 1, . . . , n− 1}, (4.1)

where we have the indices modulo n, in other words xj−n = xj+n = xj and F ∈ R.
Note that if we put (α, β, γ) = (−1, 1,−2) into the system (4.1), then we get the original

Lorenz-96 model (3.1). First we will discuss the general results for the system (4.1) for
some α, β and γ. Moreover we will only look at the case when n ≥ 4 as for the Lorenz-96
model.

4.1. General Dynamical Properties. Note that there is circulant symmetry in the
general system (4.1), therefore the eigenvalues of the trivial equilibrium xF = (F, F, . . . , F )
can be determined explicitly. As for the original system, we can still obtain everything of
the Jacobian matrix of xF by its first row. So the eigenvalues of the Jacobian matrix at
xF of the general system are defined in the following lemma.
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Lemma 2. Let n ≥ 4 and let α, β, γ ∈ Z. Take α, β and γ between −n and n. The
system (4.1) has the trivial equilibrium xF = (F, F, . . . , F ). Then the eigenvalues of the
Jacobian matrix at xF of this system (4.1) are for j ∈ {0, 1, . . . , n− 1},

λj(F, n) = −1 + Fη(j, n; β, γ) + iFξ(j, n; β, γ), (4.2)

where

η(j, n; β, γ) = cos

(
2πjβ

n

)
− cos

(
2πjγ

n

)
and

ξ(j, n; β, γ) = sin

(
2πjγ

n

)
− sin

(
2πjβ

n

)
.

The corresponding eigenvector is given by

vj =
1√
n

(1, ρj, ρ
2
j , . . . , ρ

n−1
j )>.

Proof. Assume that the first row of the Jacobian matrix at xF is denoted by (c0, c1, . . . , cn−1).
Moreover the first row of this Jacobian matrix is important, therefore we need the equation

ẋ0 = xα(xβ − xγ)− x0 + F.

This equation gives us c0 = −1, cβ = F, cγ = −F and for all k 6= 0, β, γ, ck = 0.
Since the Jacobian matrix is a circulant matrix, the eigenvalues of this matrix are the

following, see Appendix A for more information,

λj(F, n) =
n−1∑
k=0

ckρ
k
j ,

for j = 0, 1, . . . , n− 1. Then

λj(F, n) = −1 + Fρβj − Fρ
γ
j

= −1 + Fe
−2πijβ

n − Fe
−2πijγ

n

= −1 + F

(
cos

(
−2πjβ

n

)
+ i sin

(
−2πjβ

n

))
− F

(
cos

(
−2πjγ

n

)
+ i sin

(
−2πjγ

n

))
= −1 + F

(
cos

(
2πjβ

n

)
− cos

(
2πjγ

n

))
+ iF

(
sin

(
2πjγ

n

)
− sin

(
2πjβ

n

))
= −1 + Fη(j, n; β, γ) + iFξ(j, n; β, γ).

This proves the lemma. �

Remark 1. Note that the expression (4.2) of the eigenvalue is independent of α. Therefore
we only have to change β and γ in the system (4.1) and let α be −1.

As for the original model, we are interested in the complex eigenvalue pairs. Since
ρn−j = ρj, λj = λn−j and vj = vn−j, the eigenvalues and eigenvectors form a complex
conjugate pairs, except when the eigenvalues are real. To obtain the Hopf bifurcation we
need complex eigenvalue pairs. We go further with Hopf bifurcations in subsection 4.3.

First we have a stable trivial equilibrium xF = (F, F, . . . , F ) if in the expression for
λj(F, n) (4.2) the function η(j, n; β, γ) is zero, because then for all j = 0, 1, . . . , n − 1,
λj(F, n) has negative real part. This is also stated in the following lemma.
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Lemma 3. Let n ≥ 4 and let the eigenvalue λj(F, n) of the Jacobian matrix at xF be the
formula (4.2) for j ∈ {0, 1, . . . , n− 1}.

1. For all j = 0, 1, . . . , n−1, if η(j, n; β, γ) = 0 in (4.2), then the eigenvalue λj(F, n)
cannot cross the imaginary axis for all F ∈ R. Therefore the trivial eqiulibrium
xF = (F, F, . . . , F ) is stable.

2. If η(j, n; β, γ) 6= 0, then λj(F, n) crosses the imaginary axis at F = FH = 1
η(j,n;β,γ)

.

3. For any j = 0, 1, . . . , n− 1, if η(j, n) ≤ 0, then the trivial equilibrium xF is stable
for all F > 0. In particular, this holds when γ = 0.

4. For every j = 0, 1, . . . , n − 1, if η(j, n) ≥ 0, then xF is stable for any F < 0. In
particular, this holds when β = 0.

Note that for F = 0 the equilibrium xF is stable.

Proof. The function η(j, n; β, γ) in the expression of eigenvalue λj(F, n) is cos
(

2πjβ
n

)
−

cos
(

2πjγ
n

)
. For statement 1 if η(j, n; β, γ) = 0, then the eigenvalue λj(F, n) has a negative

real part. Hence, we have stability. We use similar approach for statements 3 and 4.
Furthermore if γ = 0, then η(j, n; β, γ) ≤ 0 and if β = 0, then η(j, n; β, γ) ≥ 0. So this
proves the lemma. �

Thus from Lemma 3 we only have bifurcation for β = 0 when F > 0 and for γ = 0
when F < 0. An example for a stable equilibrium xF is taking (α, β, γ) = (−1,−1, 1),
then the modified system is

ẋj = xj−1(xj−1 − xj+1)− xj + F, j ∈ {0, 1, . . . , n− 1},

where xj−n = xj+n = xj. Moreover two other examples are taking (α, β, γ) = (−1, 2,−2)
and (−1,−1, 1), then stable xF is stable.

The next lemma is about when the eigenvalue λj(F, n) is always real for j = 0, . . . , n−1.

Lemma 4. Let n ≥ 4 and we have that the eigenvalue λj(F, n) of the Jacobian matrix
at xF is the expression (4.2) for j ∈ {0, . . . , n − 1}. Then ξ(j, n; β, γ) = 0 if and only if
γ = nk

2j
+ (−1)kβ for k ∈ Z and for some β ∈ Z.

Moreover the eigenvalue λj(F, n) (4.2) with (β, γ = nk
2j

+ (−1)kβ) is always real if and

only if ξ(j, n) is zero.

Proof. The last statement is obvious, so we will show the first statement. Let A = 2πjβ
n

and B = 2πjγ
n

. Then ξ(j, n) is zero if and only if using the product-sum rule,

sinB − sinA = 0 ⇐⇒

2 cos

(
A+B

2

)
sin

(
B − A

2

)
= 0,

if and only if for k ∈ Z,

cos

(
A+B

2

)
= 0 or sin

(
B − A

2

)
= 0 ⇐⇒

A+B

2
=

(
k − 1

2

)
π or

B − A
2

= kπ ⇐⇒

B = 2kπ − π − A or B = A+ 2kπ. (4.3)

The last two formulas give us the expression

B = kπ + (−1)kA.
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So if we fill in A and B, then

2πjγ

n
= kπ + (−1)k

2πjβ

n
⇐⇒

γ =
nk

2j
+ (−1)kβ, for k ∈ Z.

Now fill in A and B in the equations of (4.3), then

γ =
n

j

(
k − 1

2

)
− β or γ =

nk

j
+ β.

Hence, this proves the lemma. �

Furthermore we have a reflection about the x-axis, if we swap β and γ in the functions
η(j, n) and ξ(j, n), because

η(j, n; β = γ, γ = β) = (−1)2 cos

(
2πjγ

n

)
− cos

(
2πjβ

n

)
= −η(j, n; β = β, γ = γ).

The function −η(j, n) reflects η(j, n) about the x-axis. Similarly, for the functions ξ(j, n).
Thus we get the following result.

Corollary 1. Let n ≥ 4 and assume that α, β, γ ∈ Z. Suppose that α, β and γ are between
−n and n. If we have the transformation swapping β and γ in the general system (4.1),
then we get a new system with (α, γ, β) given by

ẋj = xj+α(xj+γ − xj+β)− xj + F, (4.4)

for j ∈ {0, 1, . . . , n − 1}. This new system is identical to the general system (4.1) apart
from a reflection of the bifurcation parameter F .

Proof. Again, the general system (4.1) is

ẋj = xj+α(xj+β − xj+γ)− xj + F, j ∈ {0, 1, . . . , n− 1}.
Take yj = −xj, then

ẏj = −ẋj
= −xj+α(xj+β − xj+γ) + xj − F
= yj+α(yj+γ − yj+β)− yj − F.

This last system is almost the new system (4.4), but instead of F we have −F . This
shows that the new system (4.4) is the same as the general system (4.1) apart from the
reflection of the parameter F . �

Another fact is that the function η(j, n) is symmetric with respect to the straight,
vertical line through (π, 0).

Lemma 5. Suppose that n ≥ 4 and that α, β, γ ∈ Z are between −n and n. Let x = 2πj
n

be a continuous variable in the interval [0, 2π]. For all α, β, γ the function η(x) given
in the expression (4.2) is symmetric with respect to the straight, vertical line through the
point (π, 0).

Proof. To prove this lemma, we need to show that

η(π − x) = η(π + x).

If the last equality holds, then the function η(x) is symmetric with respect to the vertical
line through the point (π, 0).
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So

η(π − x) = cos(βπ − βx)− cos(γπ − γx)

= cos(βπ) cos(−βx) + sin(βπ) sin(βx)

− cos(γπ) cos(−γx)− sin(γπ) sin(γx)

= cos(βπ) cos(βx)− cos(γπ) cos(γx),

because β, γ ∈ Z. Also,

η(π + x) = cos(βπ) cos(βx)− sin(βπ) sin(βx)

− cos(γπ) cos(γx) + sin(γπ) sin(γx)

= cos(βπ) cos(βx)− cos(γπ) cos(γx),

since β, γ ∈ Z. Hence this proves the lemma. �

Lemma 6. Let n ≥ 4 and assume that α, β, γ ∈ Z are between −n and n. Suppose
that x = 2πj

n
is a continuous variable in the interval [0, 2π]. For all α, β, γ the function

ξ(x), given in the expression (4.2), is asymmetric with respect to the straight, vertical line
throught the point (π, 0).

Proof. For this lemma we need to prove that

ξ(π − x) = −ξ(π + x).

If the last expression holds, then we have showed the lemma.
Thus

ξ(π − x) = sin(πγ − xγ)− sin(πβ − xβ)

= sin(πγ) cos(xγ)− cos(πγ) sin(xγ)

− sin(πβ) cos(xβ) + cos(πβ) sin(xβ)

= − cos(πγ) sin(xγ) + cos(πβ) sin(xβ)

= −ξ(π + x).

Hence, ξ(x) is asymmetric. �

4.2. Attractors and Escaping Orbits. In this subsection we will study when there are
escaping orbits using the article [Lor80]. As before we have the following general modified
dynamical system (4.1), where α = −1. Define the following functions

A =
n−1∑
j=0

xjxj−1(xj+β − xj+γ), (4.5)

B =
n−1∑
j=0

x2
j ,

C =
n−1∑
j=0

Fxj.

Let Amax be the maximum of A, Bmin be the minimum of B and Cmax be the maximum
of C on the unit sphere. Therefore Bmin = 1. To determine Cmax, use the Cauchy-Schwarz
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(α, β, γ) Amax

(−1, 0,−1) decreases, nowhere zero
(−1, 0,−2) decreases, nowhere zero
(−1, 4,−2) decreases, nowhere zero except at n = 6

(−1,−1,−2) decreases, nowhere zero

Table 1. The results of Amax for some (α, β, γ).

inequality, then

C =
n−1∑
j=0

Fxj ≤

∣∣∣∣∣∣
〈F...

F

 ,

 x0
...

xn−1

〉∣∣∣∣∣∣
≤

∥∥∥∥∥∥
F...
F

∥∥∥∥∥∥
2

·

∥∥∥∥∥∥
 x0

...
xn−1

∥∥∥∥∥∥
2

=
√
n|F | ·

√√√√n−1∑
j=0

x2
j .

This implies that Cmax ≤
√
n|F | and if for F > 0 this is equal to x0

...
xn−1

 =
1√
n

1
...
1


and if for F < 0 it is the same as x0

...
xn−1

 = − 1√
n

1
...
1

 .

In this case A is zero, but it doesn’t mean that Amax is zero.
So we have found the maximum of C and the minimum of B. Since it is difficult to

determine Amax analytically, we will do this numerically in the following way. Choose α, β
and γ and as before, assume that α = −1. Take a random vector x = (x0, x1, . . . , xn−1)>

with unit norm and calculate A using the formula (4.5). The components of this random
vector can be taken between −1 and 1. We do this for thousand x for every dimension n
between 4 and 50. Then we plot Amax against the dimension n.

Plotting this, we get the Figure 9 for (α, β, γ) = (−1, 0,−1). After many experiments
with this program with different β and γ, the result is that Amax decreases as n increases.
In table 1 we have summarized the results. One observation is that for some systems
Amax is nowhere zero and that it is zero for the system with (−1, 4,−2) for n = 6. We
get that Amax = 0 for n = 6, because A = 0 for all x with unit norm and A = 0 since
j + 4 = j + β = j − 2 = (j + γ) mod n if n = 6. Generally, for the system (4.1) with
α = −1 and for some n, if (j+β) mod n = (j+γ) mod n, then Amax = 0 for dimension
n.

Moreover in Figure 9 we also see the least squares fit of Amax. Here we fit the numerically
calculated number log(Amax) with the linear fit, in other words we fit Amax with f(n) =
Cnp, where p and C are constants. After many runnings and different values of β and γ
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Figure 9. The graphs of Amax (blue), defined as the maximum of A (4.5),
and of the least squares fit of it (red), from this we obtain that Amax de-
creases as n increases.

(α, β, γ) Exponent p

(−1, 0,−1) 0.95
(−1, 0,−2) 0.78
(−1, 4,−2) 0.82

(−1,−1,−2) 0.83
(−1, 20,−5) 0.88
(−1, 50, 31) 0.91

Table 2. The values of the exponent p in the formula (4.6) for various
choices of (α, β, γ). Notice that in all cases p ≈ 1.

the same shape of the least squares fit appears as in Figure 9. This implies that

Amax ≈
C

np
, (4.6)

where C ∈ R is a constant and p ≈ 1 according to the results of the program runnings.
These results of the exponent p for different β and γ are summarized in table 2.

We determined Amax numerically and now we will treat the analytic way to obtain Amax.
We do this by using Lagrange multipliers z for (α, β, γ) = (−1, 0,−1) and dimension
n = 4. We want to determine the maximum of A =

∑3
j=0 xjxj−1(xj − xj−1) subjected to

g(x0, x1, x2, x3) = x2
0 + x2

1 + x2
2 + x2

3 − 1 = 0. Therefore we get the equation

∇A = −z∇g.
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This gives us the equations

2x0x3 − x2
3 + x2

1 − 2x0x1 + 2zx0 = 0,

2x1x0 − x2
0 + x2

2 − 2x1x2 + 2zx1 = 0,

2x2x1 − x2
1 + x2

3 − 2x2x3 + 2zx2 = 0,

2x3x2 − x2
2 + x2

0 − 2x3x0 + 2zx3 = 0

and these imply that

x0 + x1 + x2 + x3 = 0,

x2
0 + x2

1 + x2
2 + x2

3 = 1.

These last equalities mean that we have a 3-sphere intersected by a plane through the
origin in four dimensional space. Thus if x0, x1, x2, x3 are in this sphere satisfying the
equation x0 + x1 + x2 + x3 = 0, then these values give the maximum of A. Further we
cannot say something more about this maximum. Fortunately, we could in a numerical
way.

Knowing Amax, Bmin and Cmax, we want to obtain the non-escaping orbits analytically.
Assume that R2 =

∑n−1
j=0 x

2
j = B. Then the following holds,

dR

dt
≤ AmaxR

2 −BminR + Cmax.

Indeed,

dR

dt
=

d

dt

√√√√n−1∑
j=0

x2
j

=
1

2

(
n−1∑
j=0

x2
j

)− 1
2

·

(
n−1∑
j=0

2xjẋj

)

=

(
n−1∑
j=0

x2
j

)− 1
2 n−1∑
j=0

(xj(xj−1xj+β − xj−1xj+γ − xj + F ))

=

(
n−1∑
j=0

x2
j

)− 1
2

(A−B + C)

= R−1(A−B + C)

≤ R−1AmaxR
3 −BminR +R−1CmaxR

≤ AmaxR
2 −BminR + Cmax.

The last steps are true, because note that the vector (x1
R
, . . . , xn−1

R
) has unit norm since

R =
√∑n−1

j=0 x
2
j , so

C =
n−1∑
j=0

Fxj = R
n−1∑
j=0

F
xj
R
≤ CmaxR
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and similarly,

A =
n−1∑
j=0

xjxj−1(xj+β − xj+γ) ≤ AmaxR
3.

Also, recall that Bmin = 1.
Thus we have the inequality

dR

dt
≤ AmaxR

2 −BminR + Cmax (4.7)

and Amax ≥ 0. Now we will look at two cases for Amax to obtain when there are escaping
orbits or not.

Consider the first case when Amax = 0. This means that the inequality (4.7) becomes
dR
dt
≤ −BminR+Cmax. So there exists one solution R1 to −BminR+Cmax = 0 and the last

inequality is drawn in Figure 10, where R > 0. If dR
dt
< 0, then R decreases. Therefore if

R passes R1, we have that all orbits enter and remain in the interior of the sphere with
radius R1 + ε, where ε > 0 is arbitrary small, see Figure 10. Note that if dR

dt
> 0, R

increases and tend to R1. So the attractor is enclosed by the sphere with radius R1 + ε.

Figure 10. The first case when Amax = 0.

The second case is when Amax > 0. This implies that the graph of AmaxR
2 − BminR +

Cmax is a parabola opening upward. Assume that the discriminant

D = B2
min − 4AmaxCmax

is positive, which means that there exist two distinct solutions R1 and R2 to the equation
AmaxR

2−R+Cmax = 0. The corresponding picture of this situation is in Figure 11 on the
left. Note that if dR

dt
< 0, then R is between R1 and R2. If dR

dt
> 0, then some orbits on

or outside the outer sphere with radius R2 will stay outside or even go to infinity. Some
orbits on or outside this outer sphere will go inside this sphere and immediately enter and
stay in the interior of the sphere with R1 + ε, see the picture of the spheres on the right
in Figure 11. Thus part of the attractor is enclosed by the sphere with R1 + ε.

Moreover if the discriminant D < 0, there is no guarantee that some orbits don’t
escape since dR

dt
always holds. Similar for D = 0, there is still no guarantee that there

exists non-escaping orbits, see Figure 12.
To avoid escaping orbits, we only consider the systems such that

B2
min − 4AmaxCmax > 0, (4.8)
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Figure 11. On the left the second case when Amax > 0 for D > 0 and on
the right the blue sphere with radius R1+ε and the outer sphere with radius
R2.

Figure 12. This is for the case when Amax > 0, where on the left for D = 0
and on the right for D < 0.

and ignore the orbits on or outside the outer sphere with R2, which means choose R such
that R < R2. Furthermore Bmin = 1 and

dR

dt
≤ AmaxR

2 −R + Cmax ≤ AmaxR
2 −R +

√
n|F |,

gives

Amax <
1

4

1√
n|F |

.
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Using the last inequality and (4.6) for p ≈ 1 and for C ∈ R, we get that

|F | < 1

4C
np−

1
2 (4.9)

gives a limit on |F |. This means that if n increases, we are allowed to take F larger.
Moreover Amax and Cmax depend on F and n. As said before, Amax decreases and Cmax

increases as n increases. Thus if −Amax and Cmax increase, then to agree condition (4.8)
we have to choose n and F not too large. Also, if Amax and −Cmax decreases, then the
condition (4.8) is satisfied if and only if AmaxCmax is small enough.

4.3. Hopf Bifurcation, Period and Wave Number.

In this subsection we will discuss the Hopf bifurcation, the period and the wave number
for all α, β and γ. The l-th eigenvalue pair {λl, λn−l} of xF crosses the imaginary axis at
F = FH = 1

η(l,n;β,γ)
meaning that there occurs a Hopf bifurcation. The general expression

of the eigenvalues (4.2) gives λl = i ξ(l,n;β,γ)
η(l,n;β,γ)

and λl = −iω0 = λ̄n−l with

ω0 =
sin
(

2πlβ
n

)
− sin

(
2πlγ
n

)
cos
(

2πlβ
n

)
− cos

(
2πlγ
n

) . (4.10)

In subsection 3.3 we discussed the general expression of the periodic orbit

x(t) = x0 + εRe((u + iv)eiω0t) +O(ε2)

and applied it to the Lorenz-96 model. There is no difference between this formula for
the Lorenz-96 model and its modifications. As for the original Lorenz-96 model, for
sufficiently small ε =

√
F − FH a good approximation of the periodic orbit is x(t) and its

j-th component is

xj(t) = F + ε
Re(ei(ω0t− 2πjl

n ))√
n

+O(ε2)

= F +
ε√
n

cos

(
ω0t−

2πjl

n

)
+O(ε2), (4.11)

for every modified system, where the corresponding eigenvector is vj = 1√
n
(1, ρj, . . . , ρ

n−1
j )>.

This formula of the periodic orbit (4.11) is the expression for a traveling wave in which
the wave number is given by l and the period given by

T =
2π

ω0

. (4.12)

If we fill ω0 in T , then we get the following period.

Definition 4. In general, for all α, β and γ the period is given by

T (β, γ) = T = 2π
cos
(

2πlβ
n

)
− cos

(
2πlγ
n

)
sin
(

2πlβ
n

)
− sin

(
2πlγ
n

) . (4.13)

As for the Lorenz-96 model, we are interested in the wave number of the first Hopf
bifurcation given by l+1 for F > 0 or by l−1 for F < 0.

Definition 5. For F > 0 and γ 6= 0, from FH = 1
η(j,n;β,γ)

it follows that the first Hopf

bifurcation occurs for the complex eigenvalue pair {λl, λn−l} with the index

l+1 (n, β, γ) = l+1 (n) = arg max
0<j≤n

2

η(j, n; β, γ). (4.14)

This l+1 is the wave number for F > 0 and for all α, β, γ.
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If F < 0 and β 6= 0, then we have the index

l−1 (n, β, γ) = l−1 (n) = arg min
0<j≤n

2

η(j, n; β, γ). (4.15)

This l−1 is the wave number for F < 0 and for any α, β, γ.

Note that γ 6= 0 holds for the wave number when F > 0, because γ = 0 gives that
using Lemma 3 there is no bifurcation and thus no wave number. Furthermore we only
need 0 < j ≤ n

2
in the expression for the wave number and not 0 < j ≤ n, because the

function η(j, n) is symmetric according to Lemma 5.
In Figure 13 we see that the wave number l+1 increases as n tends to infinity for the

system with (α, β, γ) = (−1, 0,−2). Strictly speaking, we can only prove that this wave
number never decreases for every n ≥ 4. The idea is as follows. Let x = 2πj

n
. For this

system the function η(x) = 1− cos(2x) has its maximum at π
2
. In the interval [0, π

2
) this

function increases and decreases in (π
2
, π]. If for some dimension n the function η has its

maximum at
2πl+1
n

in the interval [0, π
2
), then the point

2πl+1
n+1

shifts to the left with respect

to the point
2πl+1
n

. This yields η decreases, but in this interval η increases. Therefore for

n + 1 the wave number l+1 must increase. Now the point
2πl+1
n

is in the interval (π
2
, π],

then there are two options. The first case is when
2πl+1
n+1
∈ (π

2
, π], therefore we get closer

to the maximum of η. So the wave number stays the same. Secondly, when the point
2πl+1
n+1
∈ [0, π

2
) the wave number l+1 increases or remains the same.

Figure 13. The increasing wave number as function of n for the system
with (α, β, γ) = (−1, 0,−2).

Hence, for the system with (−1, 0,−2) the wave number never decreases as n increases
and when j always starts with 1 and increases. If j doesn’t start at 1, then the wave
number can behave differently. This is similar to the general case.

Lemma 7. Let n ≥ 4 and let the wave number be given by (4.14) or (4.15). Assume that
j starts with 1 and increases with one by one. If n→∞, then the wave number increases
for all α, β, γ and for any j = 0, 1, ..., n − 1. Strictly speaking, the wave number never
decreases for every n ≥ 4.
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Proof. The proof of this lemma is similar as for the specific case when (α, β, γ) = (−1, 0,−2).
Therefore the wave number never decreases for all α, β, γ, for any j = 0, 1, . . . , n− 1 and
for every dimension n ≥ 4. �

Lastly, let η(x) have its maximum at xmax. Therefore we have the following limit:

lim
n→∞

2πl+1 (n, β, γ)

n
= xmax. (4.16)

Using these general properties and results we will study the dynamics of the three
systems with (α, β, γ) = (−1, 0,−2), (−1,−1,−2) and (−1, 0,−1) in the next section.
Later in section 6 we will use this to compare the Lorenz-96 model with its modifications.

5. Case Studies

5.1. The Case (α, β, γ) = (−1, 0,−2).

5.1.1. Eigenvalues and Graphs of Solutions. In this subsection we will investigate the
dynamical properties of the system with (α, β, γ) = (−1, 0,−2). Using Lemma 2 the
eigenvalues for this system are

λj(F, n) = −1 + F

(
1− cos

(
4πj

n

))
+ iF

(
− sin

(
4πj

n

))
(5.1)

= −1 + Fη(j, n; β = 0, γ = −2) + iFξ(j, n; β = 0, γ = −2),

for j = 0, 1, . . . , n − 1. The graphs of η(j, n) and ξ(j, n) are shown in Figure 14, where
2πj
n

is replaced by the continuous variable x ∈ [0, 2π].

Figure 14. The graphs of the continuous functions η(x) (blue) and ξ(x)
(purple) defined in equation (5.1) for (α, β, γ) = (−1, 0, 2), where the con-
tinuous variable x = 2πj

n
and x ∈ [0, 2π].
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Moreover for n ≥ 4 and F = 1
2

take a = n
4

and b = 3a = 3n
4

. If n is a multiple of 4,
then the eigenvalue λa is

λa = −1 + F

(
1− cos

(
4πa

n

))
+ iF

(
− sin

(
4πa

n

))
= −1 + F (1− cos π) + iF (− sin π)

= −1 + 2F = 0,

Also,

λb = −1 + F (1− cos 3π) + iF (− sin 3π) = 0.

Thus at F = 1
2

two eigenvalues are zero. Therefore the trivial equilibrium becomes
unstable. Now we want to know what happens with the solutions of this system at
F = 1

2
, F < 1

2
and F > 1

2
by doing some numerical experiments for dimension n = 4. It

turns out that we have to be careful with initial conditions xC , which one we choose for
x. If the initial conditions are all the same, for example 0, then every solution converges
to the trivial equilibrium xF , no matter what F is.

Let the initial condition be xC = (0, 0.1, 0.2, 0.3), then the pictures of the solutions
for some parameter F are in Figures 15 and 16. On the left in Figure 15 the solution

Figure 15. For n = 4 the solutions of the system with (α, β, γ) =
(−1, 0,−2) for F = 1

4
on the left and on the right for F = 1

2
, where initial

condition xC = (0, 0.1, 0.2, 0.3).

converges to the equilibrium xF for F = 1
4
< 1

2
. When F = 1

2
the solution doesn’t

converge. The orbit escapes to infinity if F > 1
2

obtained from Figure 16.
Moreover take c = n

2
and if n is a multiple of 4, then λc(F, n) = −1. Indeed,

λc = −1 + F (1− cos 2π) + iF (− sin 2π) = −1,

for any F > 0. Note that if F < 0, then from Lemma 3 we have no bifurcation.

5.1.2. Wave Number and Period. As for the general case, we have a Hopf bifurcation,
when the l-th pair {λl, λn−l} of xF crosses the imaginary axis at F . So λl = −iω0, where
from (4.10) ω0 is

ω0 =
cos
(

2πl
n

)
sin
(

2πl
n

) .
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Figure 16. Similar as in Figure 15, but now for F = 3
5
.

Moreover in Figure 17 we have plotted the wave number and the period. Note that
there is no wave number l−1 for F < 0, because the function η(j, n) is not negative and
thus there is no bifurcation. The difference between this graph of the period and the

Figure 17. Period T (black) given by equation (4.13) and wave number
l+1 (blue) defined by (4.14) as functions of n for (α, β, γ) = (−1, 0,−2).

period of the Lorenz-96 model is that the period is not tending to a constant number in
this case, while it is for the original model for F > 0. The wave number increases, which
is also the case for the original system. If we look carefully how fast the wave number
increases for this system with (α, β, γ) = (−1, 0,−2), then this is 1

4
and for the original

system it is 5
24
≈ 0.2083.

In Figure 17 the period is zero at when n is a multiple of 4. Actually, the period cannot
be zero, only positive. Although a zero period means in this case that we don’t have a
first Hopf bifurcation. If we look again closely to the graph of the period in Figure 17,
then we see that at n = 6, 10, 14, 18, 22, . . . , 98 there are (downward) points (for example
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in Figure 18 it is point b) between the two other points, where there is no first Hopf
bifurcation and at n = 5, 7, 9, 11, . . . , 99 we have peaks (in Figure 18 these are the points
a and c). In Figure 18 if n becomes very large, then the period at point a is almost twice
as big than the period at point b. If n becomes very large, then the period at point c is
at least twice as big than the period at point b.

Figure 18. Repeated structure of part of the graph of the period T , where
a, c are the peaks and b the downward point. T = 0 means no first Hopf
bifurcation.

5.1.3. Bifurcations. Since for n = 4 the eigenvalues of the Jacobian matrix at the trivial
equilibrium xF = (F, F, F, F ) are λ0 = λ2 = −1 and λ1 = λ3 = −1 + 2F = 0 at F = 1

2
,

there is no Hopf bifurcation, but we have a first subcritical Hopf bifurcation for n = 5
at FH ≈ 1

1.81
, see Appendix C and table 4 for more details. It is subcritical, because the

Lyapunov coefficient is l1 ≈ 0.091740 > 0. For dimension n = 6 there occurs a Hopf-Hopf
bifurcation at F = 2

3
.

Now we are interested in what kind of bifurcation there is for dimension n = 4. It is
not a saddle-node bifurcation, neither is it a Pitchfork nor a Transcritical bifurcation. We
have two zero eigenvalues, but this is not a Bogdanov-Takens bifurcation, because the
Jacobian matrix is diagonalizable. If it was not the case, then it could be a Bogdanov-
Takens bifurcation. We have spontaneously, simultaneously two equilibria ”lines” for all
z ∈ R at F = 1

2
and these are(

1

2
, z,

1

2
, 1− z

)
and

(
z,

1

2
, 1− z, 1

2

)
.

Therefore we have a degenerate bifurcation. Actually, this is true for all n = 4k, for
k ∈ Z>0.

Theorem 3. Consider the system with (α, β, γ) = (−1, 0,−2) and for k ∈ Z>0, for any
n = 4k there are two equilibria of the form

L1 =

(
1

2
, z,

1

2
, 1− z, . . . , 1

2
, z,

1

2
, 1− z

)
and

L2 =

(
z,

1

2
, 1− z, 1

2
, . . . , z,

1

2
, 1− z, 1

2

)
,

for all z ∈ R and each of them has n components. Moreover two eigenvalues are zero at
F = 1

2
, then there occurs a degenerate bifurcation at F = 1

2
.
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Proof. This proof can be done by checking if the expressions of these ”lines” are equilibria
for any z ∈ R. Thus for j = 0, 1, . . . , n− 1 at F = 1

2
,

ẋj = xj−1(xj − xj−2)− xj + F =⇒

ẋ0 = xn−1(x0 − xn−2)− x0 + F = (1− z)

(
1

2
− 1

2

)
− 1

2
+ F = 0,

ẋ1 = x0(x1 − xn−1)− x1 + F =
1

2
(z − (1− z))− z + F = 0,

...

ẋn−1 = xn−2(xn−1 − xn−3)− xn−1 + F

=
1

2
((1− z)− z)− (1− z) + F = 0,

for every z ∈ R. This yields we have two equilibria of the form L1 and L2 and two
zero eigenvalues at F = 1

2
for all n = 4k, k ∈ Z>0. Therefore there occurs a degenerate

bifurcation. �

In the next subsection we will discuss the dynamical properties of the system with
(α, β, γ) = (−1,−1,−2). For example, for that system we have Hopf, Pitchfork and also
degenerate bifurcations.

5.2. The Case (α, β, γ) = (−1,−1,−2).

5.2.1. Eigenvalues, Period and Wave Number. In this subsection we will study the dy-
namics of the system with (α, β, γ) = (−1,−1,−2). To begin with the eigenvalues for
this system by Lemma 2,

λj(F, n) = −1 + F

(
cos

(
2πj

n

)
− cos

(
4πj

n

))
+ iF

(
sin

(
2πj

n

)
− sin

(
4πj

n

))
(5.2)

= −1 + Fη(j, n) + iFξ(j, n),

where the graphs of η(x = 2πj
n

) and ξ(x = 2πj
n

) are in Figure 19. The wave number and
the period are shown in Figure 20. Using the expression of the eigenvalues, we will treat
the bifurcations in the next subsubsection.

5.2.2. Bifurcations. For this system for n = 4 we calculate the first Lyapunov coefficient
analytically instead of numerically to show how it works in practice and we will investigate
further the kind of bifurcations. First for n = 4 we have a subcritical Hopf bifurcation at
F = 1.

Theorem 4. Let n = 4 and let the system be with (α, β, γ) = (−1,−1,−2). There occurs
a Hopf bifurcation at FH = 1, which means that the l-th eigenvalue pair with ω0 = 1 and
l = 3 crosses the imaginary axis at this parameter value FH = 1. Then the first Lyapunov
coefficient is given by

l1(FH = 1) =
3

13
> 0.

Thus the Hopf bifurcation is subcritical.

The proof of this theorem is in the Appendix B, because it is a long proof.
Furthermore for n = 5 we also have a Hopf bifurcation at F ≈ 1

1.12
, which is subcritical

and one at F ≈ − 1
1.12

, which is supercritical, see Appendix C and table 4. For dimension
n = 6 we have neither a Hopf bifurcation nor a Hopf-Hopf bifurcation. To discover the
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Figure 19. The graphs of the continuous functions η(x) (blue) and ξ(x)
(purple) defined in equation (5.2) for (α, β, γ) = (−1,−1,−2), where x =
2πj
n

and x ∈ [0, 2π].

Figure 20. Period T (black) defined by equation (4.13) and wave number
(blue) as functions of n for (α, β, γ) = (−1,−1,−2), on the left for F > 0
the wave number l+1 is given by (4.14) and on the right for F < 0 the wave
number l−1 is (4.15).

kind of bifurcation, we need to know what the eigenvalues are exactly for n = 6. These
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are

λ0 = −1,

λ1 = −1 + F,

λ2 = −1 + iF
√

3,

λ3 = −1− 2F,

λ4 = −1− iF
√

3,

λ5 = −1 + F,

this yields two zero eigenvalues at F = 1 and one zero eigenvalue at F = −1
2
.

At F = 1 we have a degenerate bifurcation, because there are two zero eigenvalues and
besides the trivial equilibrium xF=1 = (1, 1, 1, 1, 1, 1) there are six other equilibria of the
forms by using Mathematica

(a, b, c, d, e, f),

(b, c, d, e, f, a),

(c, d, e, f, a, b),

(d, e, f, a, b, c),

(e, f, a, b, c, d),

(f, a, b, c, d, e),

where

a ≈ 1.856, b ≈ 2.708,

c ≈ 3.306, d ≈ 2.977,

e ≈ 0.022 and f ≈ 0.936.

Using Mathematica for F = 0.9, 0.99 and 1.01 there are 13 equilibria and when F = 1.1
we only have one equilibrium, the trivial xF , and this is also true for F = 12. One
observation is that if F is very close to 1, e.g. 0.99, 1.01, then the components of the 6
of the 13 equilibria are very close to the six equilibria of the form (a, b, c, d, e, f) for the
case when F = 1. Note that it cannot be a Bogdanov-Takens, since the Jacobian matrix
is diagonalizable.

At F = −1
2

we only have one zero eigenvalue λ3. We will check if this bifurcation is a
Pitchfork bifurcation or not. Notice that it cannot be a saddle-node bifurcation, because
the trivial equilibrium xF still exists when F < −1

2
. Take an equilibrium solution of the

form (a, b, a, b, a, b) such that a and b satisfy the following equations

b(b− a)− a+ F = 0,

a(a− b)− b+ F = 0.

One solution of these last equations is a = b = F and now we want to find the other
solution by rewriting the last expressions such that

a =
b2 + F

b+ 1
and a2 − ab− b+ F = 0 ⇐⇒(

b2 + F

b+ 1

)2

− b
(
b2 + F

b+ 1

)
− b+ F = 0 ⇐⇒

− 2b3 + b2(2F − 2) + b(−1 + F ) + F (1 + F ) = 0.
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We can solve this last equation by Vieta’s formulas, these are

p+ q + r = F − 1,

pq + qr + rp =
1

2
− 1

2
F,

pqr =
1

2
F (1 + F ),

where p = F such that (b− p)(b− q)(b− r) = 0 and after solving these we get

r+/− = −1

2
∓ 1

2

√
−1− 2F and

q+/− = −1

2
± 1

2

√
−1− 2F .

Take

b = b1 = −1

2
+

1

2

√
−1− 2F ,

b = b2 = −1

2
− 1

2

√
−1− 2F .

Then for b1 we get

a1 =
b2

1 + F

b1 + 1
= −1

2
− 1

2

√
−1− 2F

and for b2

a2 =
b2

2 + F

b2 + 1
= −1

2
+

1

2

√
−1− 2F .

Therefore we have three equilibria xF = (F, F, . . . , F ), xP1 = (a, b, a, b, a, b) and xP2 =
(b, a, b, a, b, a) for F < −1

2
, where

a = −1

2
+

1

2

√
−1− 2F ,

b = −1

2
− 1

2

√
−1− 2F .

Hence, there occurs a Pitchfork bifurcation at F = −1
2

for n = 6. Moreover we have the
following result.

Theorem 5. Consider the system with (α, β, γ) = (−1,−1,−2). Then, for k ∈ Z>0,
for every n = 6k there occurs a Pitchfork bifurcation at F = −1

2
and the eigenvalue

λn
2

= −1− 2F is zero for all n = 6k.

Proof. First by filling in j = n
2

the eigenvalue

λ(j=n
2 ) = −1− 2F,

which is zero at F = −1
2
. So there is a change in stability at F = −1

2
. To prove that

this is a Pitchfork bifurcation for all n = 6k, for k ∈ Z>0 is similar to the case when
n = 6, which we saw before. In this case we get the three equilibria xF = (F, F, . . . , F ),
xP1 = (a, b, . . . , a, b) and xP2 = (b, a, . . . , b, a), where

a = −1

2
+

1

2

√
−1− 2F ,

b = −1

2
− 1

2

√
−1− 2F

for F < −1
2
. Thus there occurs a Pitchfork bifurcation at F = −1

2
for all n = 6k, for

k ∈ Z>0. This proves the theorem. �
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In the next subsection we will treat another interesting system with (α, β, γ) = (−1, 0,−1),
where we study its dynamics using also Lyapunov exponents.

5.3. The Case (α, β, γ) = (−1, 0,−1).

5.3.1. The Solutions and Attractors. In this subsection we will study the dynamical prop-
erties of the system with (α, β, γ) = (−1, 0,−1). For the expression of eigenvalues at the
trivial equilibrium xF = (F, F, . . . , F ) (4.2) the graphs of the functions η(x) and ξ(x) are
shown in Figure 21. The wave number and period can be seen in Figure 22. Note that in
this case we only have the wave number and thus bifurcations for F > 0.

Figure 21. The graphs of the continuous functions η(x) (blue) and ξ(x)
(purple) given in equation (4.2) for (α, β, γ) = (−1, 0,−1), where x = 2πj

n

and x ∈ [0, 2π].

Now we are interested in the plots of the solutions for this system and these are the
Figures 23, 24, 25 and 26, where x1, x2, x3 and x4 are functions of time t. In Figure
23 the solution converge to the trivial equilibrium, which is similar as for other systems.
Although in the Figures 25 and 26 there is a different structure than for other case studies.
In some other case studies the orbit escapes to infinity, but for this system not. It doesn’t
converge either. Observe that from these plots this structure has a pattern. This structure
is also to be seen in Figure 27 when n = 8.

We saw the plots of the solutions and now we will look at the attractors of this system.
The Figures 28, 29, 30, 31, 32, 33 and 34 are the plots of these attractors for the dimensions
n = 4, 5, 6, 7, 8 and 12. In these figures we plot the solutions against each other, especially
x1 against x4. Furthermore we see that there occurs a nice shap, which looks like a
butterfly, where the solutions are repelling or attracting. From these figures for even n
we have some two attracting spirals and for odd n not. By looking at the 3D plots of the
attractor for n = 4 in the Figures 35, 36 and 37 it seems that every solution atracts to or
repels from some ”line”.

To understand better the pictures of the attractors, we plot the distance between this
”line” and the solution of the system with (−1, 0,−1), where ”line” is L = span{ 1√

n
, 1√

n
, . . . , 1√

n
}.

In other words, the distance is between the solution x(t) and the orthogonal projection
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Figure 22. Period T (black) given by (4.13) and wave number l+1 (n) (blue)
defined by (4.14) as functions of n for (α, β, γ) = (−1, 0,−1).

Figure 23. For n = 4 the solutions of the system with (α, β, γ) =
(−1, 0,−1) for F = 1

4
, where the initial condition xC = (0, 0.1, 0.2, 0.3).

from x(t) onto L = span{ 1√
n
, 1√

n
, . . . , 1√

n
} = span{1

2
, 1

2
, 1

2
, 1

2
} for n = 4. For now we only

look at the case when the dimension n = 4. The orthogonal projection P is

P =

〈
x(t),


1
2
1
2
1
2
1
2


〉

1
2
1
2
1
2
1
2

 .

To determine the distance, we use the expression of the distance D

D = ||x(t)− P ||2,

which is the 2-norm of the difference between the orthogonal projection P and the solution
x(t). Therefore we get the Figure 38 for the distance against time t for different F , but
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Figure 24. Similar as for Figure 23, but now for F = 1
2
.

Figure 25. As for Figure 23, but now for F = 1.

we cannot say much about the attractors looking at these plots. So it is still an open
problem, what exactly happens in the figures of these attractors.

5.3.2. The Eigenvalues. First we study the eigenvalues of the Jacobian matrix at xF for
different dimensions n for this system with (α, β, γ) = (−1, 0,−1). This system is denoted
by the following n equations for j = 0, . . . , n− 1 and F ∈ R,

ẋj = xj−1(xj − xj−1)− xj + F.

For n = 1 the Jacobian matrix is −1. For n = 2 the Jacobian matrix at xF is(
F − 1 −F
−F F − 1

)
and its eigenvalues are λ0 = −1 and λ1 = −1 + 2F . At F = 1

2
there is a change in

stability of the trivial equilibrium, since one eigenvalue λ1 = 0. In the case when n = 3
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Figure 26. Similar as for Figure 23, but now for F = 20.

Figure 27. For n = 8 the solutions of the system with (α, β, γ) =
(−1, 0,−1) for F = 2, where initial condition xC =
(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7).

the Jacobian matrix is F − 1 0 −F
−F F − 1 0
0 −F F − 1

 .

Moreover its eigenvalues are

λ0 = −1, λ1 = −1 + 1
1

2
F − iF 1

2

√
3 and λ2 = −1 + 1

1

2
F + iF

1

2

√
3.

This gives us that at FH = 2
3

there occurs a Hopf bifurcation, where λ1 = −i1
3

√
3 and

λ2 = i1
3

√
3.

Now let the dimension n ≥ 4. Denote the first row of the Jacobian matrix by (c0, c1, . . . , cn−1),
where c0 = F − 1, cn−1 = −F and ck = 0 for any k 6= 0. Therefore the eigenvalue for
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j = 0, . . . , n− 1 is

λj(F, n) = −1 + F

(
1− cos

(
2πj

n

))
+ iF

(
− sin

(
2πj

n

))
.

The next step is to write every eigenvalue out for some different n. First take n = 4, then

λ0 = −1,

λ1 = −1 + F − iF,
λ2 = −1 + 2F,

λ3 = −1 + F + iF.

This gives us that for F = 1
2

one eigenvalue is zero and the rest has negative real part.
When F = 1, then we have a Hopf bifurcation, because λ1 and λ3 forms a complex
eigenvalue pair.

Now for n = 5 we have a eigenvalue pair {λ2, λ3} at F = 1

1−cos( 4π
5 )

and a eigenvalue

pair {λ1, λ4} at F = 1

1−cos( 2π
5 )

. So we have a Hopf bifurcation at two different F , where

at FH = 1

1−cos( 4π
5 )

the Hopf bifurcation is supercritical, see Appendix C and table 4.

For n = 6 we have

λ0 = −1,

λ1 = −1 +
1

2
F + iF

(
−1

2

√
3

)
,

λ2 = −1 + 1
1

2
F + iF

(
−1

2

√
3

)
,

λ3 = −1 + 2F,

λ4 = −1 + 1
1

2
F + iF

(
1

2

√
3

)
,

λ5 = −1 +
1

2
F + iF

(
1

2

√
3

)
.

Here we can conclude that for F = 1
2

there is a change in stability. At F = 2 the complex

eigenvalue pair is {λ1, λ5} and at F = 2
3

there is the complex eigenvalue pair {λ2, λ4}.
When n = 7 we have a Hopf bifurcation at three different F . At these three different F

we have the eigenvalue pairs {λ1, λ6}, {λ2, λ5} or {λ3, λ4}. For n = 8 we have that λ4 = 0
at F = 1

2
. Moreover if F = 1

1+ 1
2

√
2
, then the complex eigenvalue pair is {λ3, λ5} and if

F = 1
1− 1

2

√
2
, then we have the complex eigenvalue pair {λ1, λ7}. In the next subsubsection

we will treat the bifurcations of this system.

5.3.3. Bifurcations. First we will investigate what happens with this system when n = 4.
According to the pictures we see that something different happens for this system than
the other systems. It seems that there occurs chaos at some point. As said before, we
have a Hopf bifurcation at FH = 1. If we calculate the first Lyapunov coefficient for this
situation, then this is −1. Therefore this Hopf bifurcation is supercritical.

Although at F = FH = 1 one eigenvalue has positive real part and the rest negative.
This means that we have a change in stability before FH = 1, that is when F = 1

2
.

Then the eigenvalue λ2 = 0. So before the Hopf bifurcation there occurs a bifurcation,
which is not a saddle-node bifurcation, because the trivial equilibrium xF = (F, F, F, F )
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exists when F > 1
2
. Thus we have two options, it can be a Pitchfork bifurcation or a

Transcritical bifurcation.
To check this, try an equilibrium solution of the form xP = (a, b, a, b), where a and b

satisfy the equations

b(a− b)− a+ F = 0

a(b− a)− b+ F = 0.

One of the solutions of the equilibrium is when a = b = F , but this is already the trivial
equilibrium xF . To obtain other forms of solutions we rewrite the last equations into

a =
b2 − F
b− 1

=⇒

b
b2 − F
b− 1

− (b2 − F )2

(b− 1)2
− b+ F = 0,

solving this we get

−2b3 + b2(2 + 2F ) + b(−1− F ) + F (1− F ) = 0.

This expression we can rewrite into the form (b− p)(b− q)(b− r) = 0, where take p = F
and q, r have to be calculated using Vieta’s formulas, which are

p+ q + r = 1 + F,

pq + qr + rp =
1

2
+

1

2
F,

pqr =
1

2
F (1− F ).

After many calculations we get the result that

r+/− =
−1±

√
−1 + 2F

−2
and

q+/− =
−1∓

√
−1 + 2F

−2
.

If we do this also for a, then we get the same result as for b. Hence, another solutions
of a and b are

a =
1

2
+

1

2

√
−1 + 2F ,

b =
1

2
− 1

2

√
−1 + 2F .

With these a and b we have two new equilibria, these are xP1 = (a, b, a, b) and xP2 =
(b, a, b, a). Therefore there are these two equilibria and xF when F > 1

2
and hence, there

occurs a Pitchfork bifurcation at F = 1
2
.

Now the interesting part is what happens at these two equilibria xP1 and xP2 further.
First the Jacobian matrix at xP1 = (a, b, a, b) is

JP1 =


−1 + b 0 0 a− 2b
b− 2a −1 + a 0 0

0 a− 2b −1 + b 0
0 0 b− 2a −1 + a

 .

Swap in the last matrix a and b, then we have the Jacobian matrix JP2 at xP2. Note that
these Jacobian matrices are not circulant matrices. Thus we cannot use the expression of
the eigenvalues of a circulant Jacobian matrix in this case.
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We can calculate the eigenvalues by using the equation det(JP1 − λI) = 0 and this is
the same as

(−1 + b− λ)2(−1 + a− λ)2 − (a− 2b)2(b− 2a)2 = 0 ⇐⇒
((−1 + b− λ)(−1 + a− λ))2 − ((a− 2b)(b− 2a))2 = 0 ⇐⇒
((−1 + b− λ)(−1 + a− λ) + (a− 2b)(b− 2a))×

((−1 + b− λ)(−1 + a− λ)− (a− 2b)(b− 2a)) = 0 =⇒
(−1 + b− λ)(−1 + a− λ) + (a− 2b)(b− 2a) = 0,

(−1 + b− λ)(−1 + a− λ)− (a− 2b)(b− 2a) = 0.

Solving these equations, the eigenvalues of the matrix JP1 are

λ0 = −1 +
1

2
b+

1

2
a+ 1

1

2

√
a2 + b2 − 2

4

9
ab,

λ1 = −1 +
1

2
b+

1

2
a− 1

1

2

√
a2 + b2 − 2

4

9
ab,

λ2 = −1 +
1

2
b+

1

2
a+

√
−1

3

4
(a2 + b2) + 4

1

2
ab,

λ3 = −1 +
1

2
b+

1

2
a−

√
−1

3

4
(a2 + b2) + 4

1

2
ab.

Filling in a and b, we get

λ0 = −1

2
+

√
2

1

4
F − 1

3

8
+ 1

3

8

√
−1 + 2F ,

λ1 = −1

2
−
√

2
1

4
F − 1

3

8
+ 1

3

8

√
−1 + 2F ,

λ2 = −1

2
+

√
−1

3

4
F + 1

1

8
− 1

1

8

√
−1 + 2F ,

λ3 = −1

2
−
√
−1

3

4
F + 1

1

8
− 1

1

8

√
−1 + 2F .

If we swap a and b in the expressions of the eigenvalues of the Jacobian matrix JP1,
we get that these eigenvalues are eigenvalues of JP2. Moreover at F = 3

5
, λ0 is zero. This

means that we have change in stability.
From the previous observations, we can come up with a theorem for this system with

(−1, 0,−1), that shows us that there always occurs a Pitchfork bifurcation at F = 1
2

for
any n = 2k, where k ∈ Z>0.

Theorem 6. Consider the system with (α, β, γ) = (−1, 0,−1). For k ∈ Z>0, for all
n = 2k, there occurs a Pitchfork bifurcation at F = 1

2
. Furthermore, at F = 1

2
the

eigenvalue λn
2

= −1 + 2F is zero, for any n = 2k.

Proof. First we will show that for any n = 2k, k ∈ Z>0, λn
2

= −1 + 2F . Thus, the
eigenvalue for this system is

λ(j=n
2

)(F, n = 2k) = −1 + F

(
1− cos

(
2πj

n

))
− iF sin

(
2πj

n

)
= −1 + F (1− cos(π))− i sin(π)

= −1 + 2F.

Therefore if F = 1
2
, then λn

2
= 0, for all n = 2k.
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So at F = 1
2

we have a change in stability. For k ∈ Z>0 and ∀n = 2k, it is not a

saddle-node bifurcation, because the trivial equilibrium xF still exists when F > 1
2
. Now

we will prove that we have a Pitchfork bifurcation and not a Transcritical bifurcation.
Try an equilibrium solution of the form xP,n = (a, b, a, b, a, b, . . . , a, b), where a and b

satisfy

b(a− b)− a+ F = 0,

a(b− a)− b+ F = 0. (5.3)

Note that if the first point of the equilibrium is a, then the last point is b and vica versa,
because the dimension n is a multiple of 2. Since we have the same equations (5.3) as for
the case when n = 4, we get the same as before using Vieta’s formulas,

a =
1

2
+

1

2

√
−1 + 2F ,

b =
1

2
− 1

2

√
−1 + 2F .

With these values of a and b, we have three equilibria, namely xF ,
xP1,n = (a, b, a, b, a, b, . . . , a, b) and xP2,n = (b, a, b, a, b, a, . . . , b, a). This shows us that we
indeed have a Pitchfork bifurcation at F = 1

2
, for all n = 2k, where k ∈ Z>0. �

Note that the Jacobian matrix of xP1,n is for any n = 2k,

JP1,n =


−1 + b 0 . . . 0 a− 2b
b− 2a −1 + a . . . 0 0

0 a− 2b . . . 0 0
...

...
. . .

...
...

0 0 . . . b− 2a −1 + a

 . (5.4)

As before, if we swap a and b, we get the Jacobian matrix JP2,n of the equilibrium xP2,n.
This matrix has the following properties.

Theorem 7. Consider the matrix JP1,n (5.4) for given a and b and for any n = 2k, where
k ∈ Z>0. Then the eigenvalues of this matrix satisfy

(−1 + b− λ)k(−1 + a− λ)k − (a− 2b)k(b− 2a)k = 0

and therefore these eigenvalues are given by

λ± = −1 +
1

2
(a+ b)± 1

2

√
(2− a− b)2 − 4C,

where C = 1− a− b+ ab− ((a− 2b)k(b− 2a)k)
1
k .

Proof. To prove that (−1 + b− λ)k(−1 + a− λ)k − (a− 2b)k(b− 2a)k = 0 holds, we use
Induction on k. The first, Base step is to check that it holds for k = 1, so for n = 2. Then
the matrix JP1,2 is (

−1 + b a− 2b
b− 2a −1 + a

)
.

This has eigenvalues, that satisy

(−1 + b− λ)(−1 + a− λ)− (a− 2b)(b− 2a) = 0,

λ± = −1 +
1

2
(a+ b)± 1

2

√
(2− a− b)2 − 4(1− a− b− 4ab+ 2(a2 + b2)).

This shows the Base step.
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Now for the Induction step we assume that it holds for n = 2k, which means the
eigenvalues of the matrix JP1,n satisfy (−1 + b−λ)k(−1 +a−λ)k− (a−2b)k(b−2a)k = 0.
We have to show it for n = 2(k + 1) = 2k + 2. Consider the matrix JP1,n=2k

−1 + b 0 . . . 0 a− 2b
b− 2a −1 + a . . . 0 0

0 a− 2b . . . 0 0
...

...
. . .

...
...

0 0 . . . b− 2a −1 + a

 .

Then using this, the matrix JP1,n=2k+2 is almost the same as JP1,n=2k, but with two extra
rows and columns. So JP1,n=2k+2 equals

−1 + b 0 . . . 0 0 0 a− 2b
b− 2a −1 + a . . . 0 0 0 0

...
...

. . .
...

...
...

...
0 0 . . . b− 2a −1 + a 0 0
0 0 . . . 0 a− 2b −1 + b 0
0 0 . . . 0 0 b− 2a −1 + a

 .

Further, the determinant of (JP1,n=2k+2 − λI) is

det



−1 + b− λ 0 . . . 0 0 0 a− 2b
b− 2a −1 + a− λ . . . 0 0 0 0

...
...

. . .
...

...
...

...
0 0 . . . b− 2a −1 + a− λ 0 0
0 0 . . . 0 a− 2b −1 + b− λ 0
0 0 . . . 0 0 b− 2a −1 + a− λ

 = 0.

Looking at the blue part, the last equality is the same as

(−1 + b− λ)k(−1 + a− λ)k · det

(
−1 + b− λ 0
b− 2a −1 + a− λ

)
− (a− 2b)k(b− 2a)k · det

(
a− 2b −1 + b− λ

0 b− 2a

)
= 0 ⇐⇒

(−1 + b− λ)k(−1 + a− λ)k+1 − (a− 2b)k(b− 2a)k+1 = 0.

This gives that the eigenvalues of JP1,n=2k+2 satisfy (−1 + b− λ)k(−1 + a− λ)k+1 − (a−
2b)k(b−2a)k+1 = 0. Therefore we have showed the Induction step. Hence, the eigenvalues
satisfy for all k ∈ Z > 0,

(−1 + b− λ)k(−1 + a− λ)k − (a− 2b)k(b− 2a)k = 0.

If we solve the last equation, we get

(−1 + b− λ)(−1 + a− λ) = ((a− 2b)k(b− 2a)k)
1
k .

Then the eigenvalues satisfy

λ± = −1 +
1

2
(a+ b)± 1

2

√
(2− a− b)2 − 4C,

where C = 1− a− b+ ab− ((a− 2b)k(b− 2a)k)
1
k . Hence, this proves the theorem. �

Definition 6. Since the matrix JP1 has a special form and a special form of eigenvalues,
we call this matrix a Double Row Circulant matrix. Note that this matrix is a square
n× n-matrix.
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Dimension n Important eigenvalues F Bifurcation

4 0,−1,−0.5 + 0.387i,−0.5− 0.387i 0.6 Pitchfork
6 0.236i,−0.236i 0.6161 Hopf
8 0 0.6 Pitchfork?
8 0.419i,−0.419i 0.6486 Hopf
10 0.13i,−0.13i 0.605 Hopf
12 0 0.6 Pitchfork?
12 . . Hopf

Table 3. Certain bifurcations and important eigenvalues for some dimen-
sions n for the system with (α, β, γ) = (−1, 0,−1).

Furthermore if we go further numerically, we see the following observations, which is
summarized in table 3. In the first column of this table the dimension n is stated, the
third the eigenvalues, which we get at some value F , which is in the fourth column. In
the last column we have the kind of the bifurcation. One observation is that for n = 4
at F = 3

5
we have that one of the eigenvalues is zero and the rest has negative real part

and if F becomes larger, than only one eigenvalue is positive and becomes larger and the
rest eigenvalues still have negative real part. For n = 4, 8, 12 a first Pitchfork bifurcation
always occurs at F = 1

2
and maybe a second one occurs at F = 3

5
for n = 8, 12.

For n = 4 we will show that we have a second Pitchfork at F = 3
5
. To show this we

need seven equilibria, we already have the equilibria xF = (F, F, F, F ), xP1 = (a, b, a, b)
and xP2 = (b, a, b, a). Try an equilibrium solution of the form xPP = (c, d, e, f), where
c, d, e and f satisfy the following

f(c− f)− c+ F = 0,

c(d− c)− d+ F = 0,

d(e− d)− e+ F = 0,

e(f − e)− f + F = 0. (5.5)

We want to know what the values of c, d, e and f are and to prove immediately that it
is a Pitchfork bifurcation by using the Newton’s method in Matlab. For this we use a
random initial condition. Afer many runnings with different random initial conditions in
Matlab, we get the result (c, d, e, f) = (0.75, 0.18, 0.71, 0.38). Since we have the values
of c, d, e and f , we can form four other equilibria, which are xPP1 = (c, d, e, f), xPP2 =
(f, c, d, e), xPP3 = (e, f, c, d) and xPP4 = (d, e, f, c). Therefore there are seven equilibria
when F > 3

5
, so there occurs a Pitchfork bifurcation at F = 3

5
for n = 4.

In conclusion, there occurs a first Pitchfork bifurcation at F = 1
2

for every n = 2k, for

k ∈ Z, and a second one at F = 3
5

for n = 4. Moreover for n = 4 there is a supercritical
Hopf bifurcation at F = 1 and the schematic bifurcation diagram is shown in Figure 39.

5.3.4. The Lyapunov Exponents for this System. We apply the algorithm of determining
the Lyapunov exponents to the system with (α, β, γ) = (−1, 0,−1) for dimension n =
4, 5, 6, 7 and 8. Thus in the case n = 4 we will have four Lyapunov exponents. For
programming these Lyapunov exponents we use the Matlab codes from the reference
[Gov04].

First we plot the Lyapunov exponents against time t in the Figures 40 and 41 for F = 1
and F = 7 for dimension n = 4. We see that for F = 1 two Lyapunov exponents becomes
zero and the rest are negative. For F = 7 we have one positive Lyapunov exponent and
one is zero. In the Figures 42, 43 and 44 we see the plots of the Lyapunov exponents
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against the parameter value F for n = 4. For these plots we use the initial condition
xC = (0, 0.1, 0.2, 0.3).

Moreover according to the Figures 42 and 43 we have a change in stability at F = 1
2

and at F = 3
5
, because one of the Lyapunov exponents is zero. So at these values F we

have a Pitchfork bifurcation, which we have proved. If F is between 0.85 and 0.86 one of
the Lyapunov exponents becomes even positive, which means that there begins chaos.

In Figures 44 and 45 the Lyapunov exponents is plotted against F for n = 5. Here we
indeed have a change in stability at F ≈ 1

1.81
, where a supercritical Hopf bifurcation occurs.

If F is around 7
10

, then chaos starts, because we have a positive Lyapunov exponent. For
dimension n = 6 we have the pictures 46 and 47 and indeed, we have a Pitchfork at
F = 1

2
. Furthermore we have a supercritical Hopf bifurcation for F = 2

3
. Since one of the

Lyapunov exponents is positive when F is between 0.65 and 0.66, the chaos begins.
The Figures 48 and 49 gives the graphs of the Lyapunov exponents for n = 7. Here

around F = 0.55 we see a change in stability, because one of the Lyapunov exponents
is zero. Further if F is around 0.66, then chaos starts, since one Lyapunov exponent
becomes then positive. For the last dimension n = 8 we have the pictures 50 and 51 and
at F = 1

2
a Pitchfork bifurcation occurs as expected. At F ≈ 0.6486 we have a Hopf

bifurcation and when F is between 0.64 and 0.65 there starts chaos.
An observation is that for n = 4 and n = 8 one part, i.e. half of the number of the

Lyapunov exponents, and the other part of the Lyapunov exponents come together at two
points, which are approx −0.33 and −0.66, at F ≈ 0.556.

We discussed the dynamical properties of this system and of the two previous systems
with (α, β, γ) = (−1, 0,−2) and (−1,−1,−2). In the next section we will summarize this
and give the conclusion.

6. Conclusion and Open Problems

Here we will summarize and conclude what the differences are between our modi-
fied models, especially the three systems with (α, β, γ) = (−1, 0,−2), (−1,−1,−2) and
(−1, 0,−1), and the original monoscale Lorenz-96 model. At the end we will state some
observations and ideas for future research.

6.1. Summary. Recall that the main purpose is to compare the dynamical properties of
the modified systems with the original monoscale Lorenz-96 model (3.1). Its modifications
can be obtained by changing the structure of the nonlinear terms in the original Lorenz-
96 model and these modified systems are denoted by (4.1) with (α, β, γ), where we can
use F as a bifurcation parameter. Before we described their dynamics, we started with
the preliminary theory about sub- and supercritical Hopf bifurcations and the Lyapunov
exponents. Thereafter we stated the main results about the dynamics of the Lorenz-
96 model. Then we discussed the general properties of the modified system (4.1) for
some α, β, γ, such as for all j = 0, 1, . . . , n − 1 the eigenvalues λj(F, n) (4.2) of the
Jacobian matrix at the trivial equilibrium xF = (F, F, . . . , F ) don’t depend on α and the
wave number never decreases as the dimension n increases obtained from the numerical
experiments for many different systems with (α, β, γ).

The important result of Section 4.2 is a concerning escaping orbits. From the inequality
(4.8) there exist non-escaping orbits and this still holds when the parameter F satisfies
the inequality (4.9) meaning that we are allowed to take F larger as n increases. In
Section 5 we studied the dynamical properties of three specific systems with (α, β, γ) =
(−1, 0,−2), (−1,−1,−2) and (−1, 0,−1). This dynamics and the bifurcations of these
three systems will be summarize in the following subsection and we will obtain the main
differences between the Lorenz-96 model and its modifications to answer our main purpose.
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6.2. Differences.

6.2.1. Escaping Orbits. Now we will discuss the main differences between our modified
systems and the original Lorenz-96 model. To determine whether there are the escaping
orbits, we defined the functions A,B and C by (4.5). We had that the maximum of
A is Amax given by (4.6) and the minimum of B is one for the modified systems. For
these systems there only exist non-escaping orbits when the inequality (4.8) holds. Since
Amax = 0 for the Lorenz-96 model, there are only non-escaping orbits, while there can be
escaping orbits for some modified systems.

6.2.2. Wave Number and Period. Moreover the wave number for the Lorenz-96 model
and our systems increases as n tends to infinity. However the period tends to a constant
for the Lorenz-96 model as n increases for F > 0, while this is not the case for some
systems with (α, β, γ). For example, the period increases for the system with (−1, 0,−1)
and (−1, 0,−2), and this is the case for only F < 0 with (−1,−1,−2). Furthermore when
F < 0 the period increases as n increases for the Lorenz-96 model. Thus the period tends
to a constant or increases as n becomes larger for every general modified system.

6.2.3. Bifurcations. The eigenvalues of the Jacobian matrix at the trivial equilibrium are
given by (4.2) for any general modified system. Notice that if (α, β, γ) = (−1, 1,−2), then
we have the eigenvalues for the Lorenz-96 model. By studying these eigenvalues too, we
obtained the bifurcations of the modified systems and the original model.
6.2.3.1 Case (α, β, γ) = (−1, 0,−1). Note that for F < 0 the trivial equilibrium xF =
(F, F, . . . , F ) is stable and we only have bifurcations for F > 0 for this system. This
is not the case for the Lorenz-96 model, there are bifurcations for F > 0 and F < 0.
Furthermore for F < 0 there occurs a first Pitchfork bifurcation for n ≥ 4 is even and
no one for F > 0, only a first Hopf bifurcation or Hopf-Hopf bifurcation. While for this
system there are indeed first Pitchfork bifurcations and Hopf bifurcations for F > 0.
Notice that in the case when n is even, for this case there occurs the first Pitchfork
bifurcation at F = 1

2
and for the Lorenz-96 model at F = −1

2
.

6.2.3.2 Case (α, β, γ) = (−1, 0,−2). Similar as for the system with (−1, 0,−1), the system
with (−1, 0,−2) there are only bifurcations for F > 0, while there are bifurcations for the
Lorenz-96 model for all F 6= 0. Moreover if n is a multiple of 4, then we have a degenerate
bifurcation. This means that two equilibria ”lines” appear simultaneously at F = 1

2
and

two eigenvalues are zero. However this is not the case for the Lorenz-96 model for every
F .
6.2.3.3 Case (α, β, γ) = (−1,−1,−2). For the system with (−1,−1,−2) there occurs
a Pitchfork bifurcation at F = −1

2
when n is a multiple of 6. This is also true for

the Lorenz-96 model with the same equilibria xF , xP1 = (a, b, a, b, . . . , a, b) and xP2 =
(b, a, b, a, . . . , b, a), where

a = −1

2
+

1

2

√
−1− 2F ,

b = −1

2
− 1

2

√
−1− 2F .

Actually, for the Lorenz-96 model we have a Pitchfork bifurcation at F = −1
2

for even
n ≥ 4, which is not always true for this system, only if n is a multiple of 6. Moreover
at F = 1 there occurs a degenerate bifurcation, which does not appear for the Lorenz-96
model. In this case for n = 4 and F > 0 the first Hopf bifurcation is subcritical, while
for the Lorenz-96 model if the first bifurcation is a Hopf bifurcation, then this is always
supercritical [vK18]. These were the main differences between our modified systems and
the original Lorenz-96 model.
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6.3. Observations and Ideas.

6.3.1. Period. Now we discuss some observations and ideas, which can be used for future
research. First we focus on the period (4.13) for the wave number l+1 (n) (4.14), namely for
F > 0. As for the system with (α, β, γ) = (−1, 0,−2) we see that system with (−1, 4,−2)
has the same graph of the period and the same values for the period, except at n = 6.
Then the difference between these two is about 1.00922, but the rest are identically the
same. If we take (α, β, γ) = (−1, 8,−2), (−1, 12,−2) and (−1, 16,−2), then these systems
has zero period at n = 4, 8, 12, . . . , 96, 100 as for the system with (−1, 0,−2). Actually
the period can never be zero, only positive. Here with zero period we mean that there is
no first Hopf bifurcation.

Thus if β is a multiple of 4 and γ = 4k + 2 for k ∈ Z, then for the system with
(α = −1, β, γ) there is no first Hopf bifurcation when n is a multiple of 4. One observation
is that for some systems when n is not only a multiple of 4 there are no first Hopf
bifurcations. This can happen if β and/or γ become larger. So the idea is as follows.

Idea 1. Let n ≥ 4 and let the wave number be l+1 (n) defined as (4.14). Let β = 4m and
γ = 4k+ 2 for m, k ∈ Z, then for the system with (α, β, γ) = (−1, 4m, 4k+ 2) there is no
first Hopf bifurcation when n is a multiple of 4.

Moreover if we take β = ±1, then it turns out that the period for F > 0, tends to a
constant as n tends to infinity. How larger γ > 0 is, how longer it takes that the period
reaches that constant and similarly for γ is negative and becomes very small.

Idea 2. Let n ≥ 4 and let the wave number be l+1 (n) defined as (4.14). Take β = ±1 and
any γ, then the system with (α, β, γ) = (−1,±1, γ) has the period T given by (4.13), that
converges to a constant as n→∞.

In the next subsubsection we will discussed an open problem about escaping orbits.

6.3.2. Escaping Orbits. In Section 4.2 we studied when there are non-escaping orbits
for the general modified models, where we defined the function A as (4.5). This has
maximum Amax (4.6). As mentioned in Section 4.2, we determined this maximum by
numerical experiments, but why does Amax decrease as n increases? We obtained no
results by studying the components of the random vector x, because these don’t have
a pattern in the way they are chosen. We tried to get an expression for Amax using
Lagrange multipliers, but no result. Another option for future work is to use Lagrange
multipliers numerical methods to obtain a formula for Amax such that we can know why
Amax decreases as n becomes larger.

6.3.3. Attractors. For a specific system with (α, β, γ) = (−1, 0,−1) in Section 5.3 we
plotted the attractors for some bifurcation parameter F and some dimension n, see Figures
28, 29, 33, 30, 31, 32, 34, 35, 36 and 37. We discussed why we got such figures. It seems
that every solution attracts to or repels from some ”line” and we have showned the
plots of the distances between this ”line” and the solution of this system. This ”line” is
span{ 1√

n
, . . . , 1√

n
} and to be more specific, the distance is between the solution and the

orthogonal projection from this solution onto this ”line”. Although we couldn’t much
obtain from the plots of these distances to clarify the figures of the attractors. So the
open problems are why do these attractors look like a butterfly and do every solution
attracts to or repels from some ”line” in the plots of these attractors? What exactly do
these solutions in the figures of the attractors?

In conclusion, we summarized and discussed the main differences between our modified
systems with (α, β, γ) and the original Lorenz-96 model. We treated some open problems
and ideas for further research. So for some aspects we could answer our main research
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question, what the dynamical properties of the modified systems are in comparison with
the original monoscale Lorenz-96 model, in great detail, but not for all aspects.

Appendix A. Eigenvalues and Eigenvectors of Circulant Matrices

In this section we discuss how to determine the eigenvalues and the eigenvectors of the
circulant matrix C following the article [Gra06]. A circulant matrix is of the following
form:

C =


c0 c1 c2 · · · c(n−1)

c(n−1) c0 c1 · · · c(n−2)

c(n−2) c(n−1) c0 · · · c(n−3)
...

...
...

. . .
...

c1 c2 c3 · · · c0


and every entry Ci,j of C is given by Ci,j = c(j−i) mod n. Note that every row of this matrix
C is a right cyclic shift of the row above it.

Now the eigenvalues and the corresponding eigenvectors of C are the solutions of the
equation

Cy = λy,

which is the same as 
c0y0 + ...+ cn−1yn−1

cn−1y0 + ...+ cn−2yn−1
...

c1y0 + ...+ c0yn−1

 = λ

 y0
...

yn−1

 .

This gives us n difference equations

n−1∑
k=m

ck−myk +
m−1∑
k=0

cn−m+kyk = λym, m = 0, 1, ..., n− 1, (A.1)

and the eigenvalues and the corresponding eigenvectors are the solutions of these equations
too. Further, the n equations (A.1) are equivalent to

n−1−m∑
k=0

ckyk+m +
n−1∑

k=n−m

ckyk−n−m = λym, (A.2)

for m = 0, 1, ..., n− 1.
A good guess for a solution to the equations is yk = ρk, because the equations are linear

with constant coefficients. First we obtain what happens, if we make this choice and later
on we will prove that this is the right guess. Substitute yk = ρk into (A.2) and divide
these by ρm, we get for m = 0, 1, ..., n− 1,

n−1−m∑
k=0

ckρ
k + ρ−n

n−1∑
k=n−m

ckρ
k = λ.

Now take ρ to be one of the n distinct complex n-th roots of unity, in other words ρ−n = 1,
then an eigenvalue is given by

λ =
n−1∑
k=0

ckρ
k
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and the corresponding eigenvector is

y =
1√
n

(1, ρ, ρ2, ..., ρn−1)>.

Note that this is a unit eigenvector and it has Euclidean norm equal to 1. Let ρm =
e−2πim/n, which means that ρm is the complex n-th root of unity. This implies that the
eigenvalue is given by

λm =
n−1∑
k=0

cke
−2πimk/n (A.3)

and the corresponding eigenvector is

y(m) =
1√
n

(1, e−2πim/n, ..., e−2πim(n−1)/n)>,

where m = 0, 1, ..., n− 1.
Now we show that our guess is the right one. First we want to obtain the sequence {ck}

from λk by using the Fourier inversion formula, which is the same as using the expression
of λm (A.3)

1

n

n−1∑
m=0

λme
2πilm/n =

1

n

n−1∑
m=0

n−1∑
k=0

(cke
−2πimk/n)e2πilm/n

=
n−1∑
k=0

ck
1

n

n−1∑
m=0

e2πi(l−k)m/n

= cl,

because
n−1∑
m=0

e2πimk/n =

{
n if k mod n = 0

0 otherwise
.

This gives as the sequence {ck}, so that the first row of a circulant matrix is the Fourier
inversion formula, or also called the inverse discrete Fourier transform, of the eigenvalues.
The eigenvalues of a circulant matrix is the same as the discrete Fourier transform of
the first row of the circulant matrix. Here the discrete Fourier transform is of the form
λm =

∑n−1
l=0 cle

−2πiml/n. Thus our guess is right. Hence, we indeed have the eigenvalue λm
and the corresponding eigenvector y(m).

Furthermore, take

U = [y(0)|y(1)|...|y(n−1)]

=
1√
n

[e−2πimk/n;m, k = 0, 1, ..., n− 1]

and let

Λ =


λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 0 · · · λn−1


is the diagonal matrix, also denoted by Λ = diag(λk).
This implies that equation Cy(m) = λmy

(m) is the same as

CU = Y Λ. (A.4)
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Now we claim that U is unitary. Indeed, let ui,j be the (k, j)-th element of the matrix

UU∗, where ∗ means the conjugate transpose and U∗ = U
>

. Note that uk,j is the k-th
row of U times the j-th column of U∗. So

uk,j =
1√
n

(
1 e−2πik/n e−2πi2k/n · · · e−2πi(n−1)k/n

)
× 1√

n


1

e2πij/n

...
e2πi(n−1)j/n


=

1

n

n−1∑
m=0

e2πim(j−k)/n

=

{
1 if (k − j) mod n = 0

0 otherwise
.

Therefore UU∗ = I. Similarly, it follows that U∗U = I.
Hence, equation (A.4) gives us

C = UΛU∗ and Λ = U∗CU.

It is obvious that Λ is normal. Also, C is normal, i.e. C∗C = CC∗, because using
U∗U = UU∗ = I,

C∗C = UΛ∗U∗UΛU∗

= UΛ∗ΛU∗

= UΛΛ∗U∗

= UΛU∗UΛ∗U∗

= CC∗.

So we have the following theorem, which we already proved.

Theorem 8. The eigenvalues of any circulant matrix C is given by

λm =
n−1∑
k=0

cke
−2πimk/n,

for m = 0, 1, ..., n− 1 and the corresponding eigenvector is for m = 0, 1, ..., n− 1

y(m) =
1√
n

(1, e−2πim/n, ..., e−2πim(n−1)/n)>.

Let U = [y(0)|y(1)|...|y(n−1)] and Λ = diag(λk), then

C = UΛU∗.

Appendix B. Proof of Theorem 4

In this section we will prove Theorem 4 about the positive first Lyapunov coefficient
for the system with (α, β, γ) = (−1,−1,−2) and n = 4. Recall that this means that the
first Hopf bifurcation for this case is subcritical.

Proof. First, the eigenvalues of the Jacobian matrix at the trivial equilibrium xF =
(F, F, F, F ) for this system with (−1,−1,−2) and n = 4 are λ0 = −1, λ1 = i, λ2 = −3
and λ3 = −i for F = FH = 1. In this case there occurs a Hopf bifurcation at FH = 1 a.nd
ω0 = 1

Now the question is, is this bifurcation sub- or supercritical? To obtain this, we need
to calculate the first Lyapunov coefficient l1(FH = 1) = l1. The expression of the first
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Lyapunov coefficient corresponding to the Hopf bifurcation at xF for the l-th eigenvalue
pair is as follows in general using [Kuz98] and [vKS18a],

l1(FH) =
1

2ω0

Re(〈p, C(q, q, q̄)〉 − 2〈p,B(q, A−1B(q, q̄))〉

+ 〈p,B(q̄, (2iω0In)−1B(q, q))),

where A is the Jacobian matrix at xF , B and C are the multilinear function determined
by the Taylor expansion of the nonlinear part of the system. Further, the vectors p and
q are the complex eigenvectors of A> and A. Note that we take the inner product as

〈x, y〉 =
n−1∑
k=0

x̄kyk.

Our system with (α, β, γ) = (−1,−1,−2) can be rewritten in the form using change in
coordinates, yj = xj − F ,

ẏ = Ay +
1

2
B(y, y), y ∈ R4.

Here A is the Jacobian matrix, which is for F = FH = 1,

A =


−1 0 −1 1
1 −1 0 −1
−1 1 −1 0
0 −1 1 −1


and Bj(x, y) = xj−1(yj−1 − yj−2) + yj−1(xj−1 − xj−2).

Since the cubic terms are not in this system, the first Lyapunov coefficient is

l1(FH) =
1

2ω0

Re(−2〈p,B(q, A−1B(q, q̄))〉+ 〈p,B(q̄, (2iω0In)−1B(q, q)))

=
1

2ω0

Re(−2l1,1 + l1,2).

Note that A is a circulant matrix. Moreover A is real, therefore Av = λv ⇐⇒ A>v = λ̄v,
where λ is an eigenvalue and v the corresponding eigenvector of A.

In this case l = 3, so Aq = λ1q = iq and A>p = −ip, because p and q are the
corresponding eigenvectors as said before. Take p = q = 1

2
(1, ρ, ρ2, ρ3)> = 1

2
(1,−i,−1, i)>,

then p and q satisfy the previous equations and 〈p, q〉 = 1. Remember that ρj = e−2πi j
n .

Now we will calculate the first term l1,1 in the first Lyapunov coefficient. First,

A−1 =


−1

3
1
3
−1

3
−2

3
−2

3
−1

3
1
3
−1

3
−1

3
−2

3
−1

3
1
3

1
3
−1

3
−2

3
−1

3


and for j = 0, 1, 2, 3, Bj(q, q̄) = qj−1(q̄j−1 − q̄j−2) + q̄j−1(qj−1 − qj−2). Since q−1 = q3,
q−2 = q2 and q̄ = 1

2
(1, i,−1,−i)>,

B(q, q̄) =
1

2
(1, 1, 1, 1)>.

Moreover, A−1B(q, q̄) = 1
2
(−1,−1,−1,−1)> and for j = 0, 1, 2, 3, Bj(q, A

−1B(q, q̄)) =

−1
2
(qj−1 − qj−2), because A−1B(q, q̄)j−1 − A−1B(q, q̄)j−2 = 0. Thus, B(q, A−1B(q, q̄)) =
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1
4
(−1− i,−1 + i, 1 + i, 1− i)> and hence,

l1,1 =
3∑
j=0

p̄jBj(q, A
−1B(q, q̄)) = −1

2
− 1

2
i.

Now we will calculate the second term

l1,2 = 〈p,B(q̄, (2iω0I4 − A)−1B(q, q))〉

=
3∑
j=0

1

2iω0 − λj
〈vj, B(q, q)〉〈p,B(q̄, vj)〉,

using the fact that for any x ∈ Cn by a standard Fourier decomposition, x =
∑n−1

j=0 〈vj, x〉vj,
because the eigenvectors of A, the vj, form a unitary matrix. Then,

B(q, q) = 2qj−1(qj−1 − qj−2) =
1

2
(−1 + i, 1− i,−1 + i, 1− i)>, and

v0 =
1

2
(1, 1, 1, 1)>, v1 = q =

1

2
(1,−i,−1, i)>,

v2 =
1

2
(1,−1, 1,−1)> and v3 = q̄ =

1

2
(1, i,−1,−i)>.

Also,

Bj(q̄, v0) =
1

2
(q̄j−1 − q̄j−2)>, for j = 0, 1, 2, 3, yields

B(q̄, v0) =
1

4
(1− i, 1 + i,−1 + i,−1− i)>.

We have that Bj(q̄, q) = Bj(q, q̄), this implies that B(q̄, v1) = 1
2
(1, 1, 1, 1)>. Furthermore,

B(q̄, v2) =
1

4
(−1 + 3i, 3 + i,−3i+ 1,−3− i)> and

B(q̄, v3) =
1

2
(−1− i, 1 + i,−1− i, 1 + i)>.

Since 〈v0, B(q, q)〉 = 〈p,B(q̄, v1)〉 = 〈v3, B(q, q)〉 = 0, the second term is

l1,2 =
3∑
j=0

1

2iω0 − λj
〈vj, B(q, q)〉〈p,B(q̄, vj)〉

=
1

104
(−4i− 2)(−2i+ 3) = − 7

13
− 4

13
i.

If we combine the results of the two terms, we get that the first Lyapunov coefficient is

l1 =
1

2ω0

Re(−2l1,1 + l1,2)

=
3

13
> 0.

This means that the Hopf bifurcation at FH = 1 is subcritical. �

Appendix C. Hopf bifurcation for some Case Studies

We know that the Hopf bifurcation is subcritical for the system with (α, β, γ) =
(−1,−1,−2) and for n = 4, but what happens in the case when n = 5 or n = 6 and
for some other systems. We have stated the result in the table 4. In this table we are
given which bifurcation we have or none. Also, what the l-th eigenvalue pair is with some
ω0 and what the first Lyapunov coefficient is. If this is positive, then we have a subcritical
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Systems with n Bifurcation FH l ω0 l1 Re(eigenvalue)

(−1,−1,−2) 4 Hopf bif. 1 3 1 3/13 all < 0
(−1,−1,−2) 5 Hopf bif. −1/1.12 3 1.37 −0.76732 all < 0
(−1,−1,−2) 5 Hopf bif. 1/1.12 4 0.32 0.10818 all < 0
(−1,−1,−2) 6 No (Hopf) bif. - - - - -
(−1, 0,−2) 4 No (Hopf) bif. - - - - -
(−1, 0,−2) 5 Hopf bif. 1/1.81 1 0.32 0.091740 all < 0
(−1, 0,−2) 6 Hopf-Hopf bif. FHH = 2/3 - - - -
(−1, 4,−2) 4 No (Hopf) bif. - - - - -
(−1, 4,−2) 5 Hopf bif. −1/1.12 3 1.38 −0.76135 all < 0
(−1, 4,−2) 5 Hopf bif. 1/1.12 4 0.32 0.10818 all < 0
(−1, 4,−2) 6 No (Hopf) bif. - - - - -
(−1, 0,−1) 4 Hopf bif. 1 3 1 −1 one > 0, one < 0
(−1, 0,−1) 5 Hopf bif. 1/1.81 2 0.33 −5.2644 all < 0

(−1, 0,−1) 6 Hopf bif. 2/3 4 1
3

√
3 −1.2990 one > 0, three < 0

Table 4. For different dimensions n and for some systems when a Hopf
bifurcation or a Hopf-Hopf bifurcation occurs at some F and dash means
neither a Hopf nor a Hopf-Hopf bifurcation. Obtain a sub- or supercritical
Hopf bifurcation by the first Lyapunov coefficient l1, if it is positive, then
subcritical and if negative, then supercritical.

Hopf bifurcation. Otherwise, it is supercritical. Moreover in the table there is stated how
many eigenvalues have positive real part and how many have negative real part.



55

References

[BK12] L. Basnarkov and L. Kocarev. Forecast improvement in Lorenz 96 system. Nonlinear Processes
in Geophysics, 19 (5):p.569–575, 2012.

[DY06] C.M. Danforth and J.A. Yorke. Making forecasts for Chaotic Physical Processes. Physical
Review Letters, 96 (14):p. 144102:1–4, 2006.

[Gov04] V.N. Govorukhin. file-name: lyapunov.m. http://www.math.rsu.ru/mexmat/kvm/matds/ and
https://nl.mathworks.com/matlabcentral/fileexchange/4628-calculation-lyapunov-exponents-
for-ode, 2004. [2020-01-26].

[Gra06] R.M. Gray. Toeplitz and Circulant Matrices: A review. Foundations and Trends in Communi-
cations and Information Theory, 2 (3):p.155–239, 2006.
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Figure 28. The attractors of the system with (α, β, γ) = (−1, 0,−1) for
n = 4 at F from 2

5
up to 1 1

10
, where we plot x1 against x4 and the initial

condition xC = (0, 0.1, 0.2, 0.3).
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Figure 29. Similar as in Figure 28, but now at F from 11
5

up to 20.
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Figure 30. The attractors of the system with (α, β, γ) = (−1, 0,−1) for
n = 5 at F = 3

5
, 4

5
, 1, 11

2
, 2, 20, where we plot x1 against x4 and the initial

condition xC = (0, 0.1, 0.2, 0.3, 0.4).
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Figure 31. Similar as in Figure 30, but for n = 6 and xC = (0, 0.1, 0.2, 0.3, 0.4, 0.5).
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Figure 32. Similar as in Figure 30, but for n = 7 and xC = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6).
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Figure 33. Similar as in Figure 30, but now for n = 8 and xC =
(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7).
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Figure 34. Similar as in Figure 30, but for n = 12 and xC =
(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1).
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Figure 35. The 3D plot of the attractor of the system with (α, β, γ) =
(−1, 0,−1) for n = 4 at F = 2, where we plot x1, x4 and x3 and the initial
condition xC = (0, 0.1, 0.2, 0.3).

Figure 36. Similar as in Figure 35, but at F = 7.
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Figure 37. Similar as in Figure 35, but at F = 20.
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Figure 38. The plots of the distances between x(t) and the orthogonal
projection P with respect to t for F = 1

2
, 1, 2, 41

2
, 7, 20 for n = 4 and the

system with (α, β, γ) = (−1, 0,−1).
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Figure 39. For n = 4 the schematic bifurcation diagram for the system
with (α, β, γ) = (−1, 0,−1), where at F = 1

2
a first Pitchfork bifurcation

occurs and a second one at F = 3
5
. At F = 1 we have a supercritical Hopf

bifurcation.

Figure 40. Estimated Lyapunov exponents as a function of time for F = 1
and the system with (α, β, γ) = (−1, 0,−1).
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Figure 41. Similar as the Figure 40, but for F = 7.

Figure 42. The Lyapunov exponents against F , where F is from 0.4 up
to 1 for n = 4 and (α, β, γ) = (−1, 0,−1).
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Figure 43. Similar as in Figure 42, but F between 0.75 and 0.9 to zoom
in on this area.

Figure 44. Similar as in Figure 42, but for n = 5.
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Figure 45. Similar as in Figure 42, but for F between 0.64 and 0.79 to
zoom in and for n = 5.

Figure 46. Similar as in Figure 42, but for n = 6.



70

Figure 47. Similar as in Figure 42, but for n = 6 and F between 0.6 and
0.7 to zoom in.

Figure 48. Similar as in Figure 42, but now for n = 7.
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Figure 49. Similar as in Figure 42, but for n = 7 and F between 0.6 and
0.7 to zoom in.

Figure 50. Similar as in Figure 42, but for n = 8.
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Figure 51. Similar as in Figure 42, but for F between 0.6 and 0.7 to zoom
in and for n = 8.


