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General relativity is a non-linear field theory of gravity which implies graviton-graviton interac-
tions. Born-Infeld theory is a modified non-linear electromagnetic field theory with very specific
self-interactions as well. Is there a geometric interpretation for the non-linear Born-Infeld theory
as there is a natural geometrical origin in general relativity? For some field theories (Dirac Born-
Infeld theory and Special Galileon theory) with similar features including scalar theories with self
interactions, there is a geometric understanding. In this thesis, the foundation of Born-Infeld
theory and general relativity is studied. The physics of branes are studied together with the scalar
field theories such as Dirac-Born-Infeld theory (DBI) and Speical Galileon theory (SG) in order
to understand their geometric interpretation. Since the electromagnetic field Aµ in Born-Infeld
theory only contributes to the antisymmetrical part Fµν of the induced metric, it is found out
that there is no nonlinearly realised symmetry and Aµ transforms as a vector field under linearly
realised Poincaré symmetry to leave Fµν antisymmetric. So, the geometric interpretation as a
brane fluctuating in the transverse direction as in DBI theory and SG theory cannot be applied to
Born-Infeld theory. In the study of classical double copy motivated by the color-kinematics duality
in scattering amplitude, Kerr-Schild ansatz is used to construct the interconnection bewteen the
classical solution of Abelian Maxwell theory and general relativity. Inspired by Kerr-Schild clas-
sical double copy, the duality of the classical solution of Born-Infeld theory and Special Galileon
theory is investigated by examining the possible classical double copy relations between them. The
equation of motion of SG and BI under static and spherically symmetric condition are solved to
take the form of 1

r× hypergeometric series. This indicates a possible double copy relation between
SG and BI. The difficulties of the extension of this possible classical double copy relation to general
relativity is discussed.
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What profit hath a man of all his labour which he taketh under the sun? One generation passeth
away, and another generation cometh: but the earth abideth for ever. The sun also ariseth, and
the sun goeth down, and hasteth to his place where he arose. The wind goeth toward the south, and
turneth about unto the north; it whirleth about continually, and the wind returneth again according
to his circuits. All the rivers run into the sea; yet the sea is not full; unto the place from whence
the rivers come, thither they return again. All things are full of labour; man cannot utter it: the
eye is not satisfied with seeing, nor the ear filled with hearing. The thing that hath been, it is that
which shall be; and that which is done is that which shall be done: and there is no new thing under
the sun. ....... And I gave my heart to know wisdom, and to know madness and folly: I perceived
that this also is vexation of spirit. For in much wisdom is much grief: and he that increaseth
knowledge increaseth sorrow. -Ecclesiastes 1 [10].
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1 Introduction

In the 19th century, English physicist Micheal Faraday discovered experimentally that a changing
magnetic field will induce the flow of the electric current. Unlike his contemporaries, Faraday
refused to accept the notion that electricity was a material fluid that flows through a wire. Faraday
thought electricity as a vibration or transmission of force which was the result of the tension created
in the conductor. Faraday proposed his electrotonic state to convey this idea. This electrotonic
state is considered as a state of tension of the particles in the wire [24]. According to him, the
current is appeared as the setting up or the collapse of such a state of tension. The other geometric
intuition of Faraday is the so-called magnetic field lines of force. This is experimentally seen
through sprinkling iron filings in the magnetic field. The elusive geometrical insights of Faraday as
an experimentalist lays the foundation of the theory of electromagnetism as a field theory. It was
only James Clerk Maxwell who could really describe electromagnetic theory as a field theory in
the language of vector calculus. Maxwell learned from reading William Thomson’s mathematical
paper about the usefulness of the curl equation

~B = ∇× ~A (1.1)

From this mathematical equation, Maxwell realised that the Faraday’s electrotonic intensity can
be denoted by ~A. His insight leads him to realise that what Faraday has described in so many
words can be expressed mathematically as

~E = −∂
~A

∂t
(1.2)

~E is the electric field. Taking the curl on both side of (1.2),

∇× ~E = − ∂

∂t
(∇× ~A) (1.3)

= −∂
~B

∂t
(1.4)

~B is the magnetic field. The second equality line arises from the identity that ~B = ∇× ~A which is
realised from the relation ∇ · ~B = 0 and the fact that the curl of a vector is always divergenceless.
Integrating (1.4) and apply Stoke’s theorem,∫

(∇× ~E) · dA =

∫
~E · dl = − ∂

∂t

∫
~B · dA (1.5)

This is the mathematical expression of Faraday’s law. The vector ~A which is called as vector
potential was initially thought by many (Hertz, Heaviside, etc) as something unnecessary because

they thought it as a non-physical quantity and the formulation of electromagnetism in term of ~A
should be avoided and eliminated. However, it was realised later with quantum mechanics that
this vector potential ~A has physical meaning and cannot be eliminated. The combination of the
vector potential ~A and the scalar potential φ as Aµ also plays a crucial role as the electromagnetic
field in the modern field theory. In physics, the concept of field can be thought of as a quantified
physical quantity given at any point of spacetime. In quantum field theory, the particles are the
excitation of the quantum field.

Beside electromagnetism, field theory is also important in the theory of gravity. In 1915, Albert
Einstein proposed general relativity as a new theory of gravitation to explain gravity as the
manifestation of the curvature of the spacetime to replace the explanation provided by the great
Issac Newton that gravity is an instantaneous force between two objects with mass. In contrast
with the linear gravitational field equation in Newtonian framework which is represented by the
Poisson’s equation, Einstein’s gravitational field equation turns out to be a set of 6 independent
non-linear differential equations. Around the same time and even 10 days earlier than Einstein,
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German mathematician David Hilbert derived the gravitational field equation independently by
figuring out the Lagrangian that leads to Einstein’s field equation through the variational principle.
In general relativity, the gravitational potential field is the metric tensor gµν that governs the
geometric and causal structure of the spacetime. This revolutionary theory has withstood the test
of time. The first success of general relativity was in explaining the anomalous rate of precession of
the perihelion of Mercury’s orbit. Besides that, the prediction of the deflection of light by the sun
given by general relativity is also verified. In 2016, the gravitational wave which is conjectured
within the theory of general relativity was detected by the Laser Interferometer Gravitational-
Wave Observatory (LIGO).

In 1934 which was before the advent of quantum field theory, Max Born and Leopold Infeld also
proposed a new electromagnetic field theory. Their theory leads to a non-linear electromagnetic
field equation by setting up a framework using a non-symmetric metric. Born-Infeld theory is a
hypothesis of the modified field theory of electromagnetism which is inspired by Maxwell’s theory
of electromagnetism and Einstein’s theory of general relativity. This theory has not been verified
by any experiment so far. Born and Infeld argued that principle of finiteness which states that
the physical quantities are not allowed to be infinite is a fundamental principle of physics. Since
Maxwell theory of electromagnetism fails to satisfy the principle of finiteness, they set up a new
framework to improve Maxwell theory. They constructed a theory such that not only the principle
of finiteness is satisfied but also the new theory can be approximated to Maxwell’s theory in a
certain limit. They started by constructing a new Lagrangian. Just like in Special relativity, the
Lagrangian is

L = mc2(1−
√

1− v2

c2
) (1.6)

This Lagrangian serves as a modification of the Newtonian action L = 1
2mv

2. This modifica-
tion leads to the assumption of an upper limit of velocity c. They apply the same notion to
electromagnetism. In Maxwell theory, the Lagrangian is

L =
1

2
(B2 − E2) (1.7)

To have an upper limit of the electromagnetic field strength, they modified (1.7) to be

L = b2(

√
1 +

1

b2
(B2 − E2)− 1) (1.8)

where b is a dimensional correction parameter. It is obvious that in the limit b → ∞, (1.8) is
approximated to be (1.7). Such kind of arguments are quite convincing but a deeper understanding
of the foundation of this new field theory is necessary. In chapter 3, we study the foundation of
Born-Infeld theory and general relativity in details.

Since general relativity has a natural geometrical origin, we wonder is there also a geometrical
interpretation of Born-Infeld theory. There have been a lot of efforts over the last few decades to
geometrize electromagnetism. We also post our question here by asking if Born-Infeld theory is the
corrected modified field theory of electromagnetism, is there also a geometrical origin? After all,
the Lagrangian density of Born-Infeld theory takes the form as the square root of the determinant
of a induced metric Gµν = ηµν+Fµν if we fix the background spacetime to be Minkowski spacetime.
We turn our attention to the possible extrinsic geometric interpretation as the embedding of a
submanifold in a background manifold. One of the main topic in this thesis is the geometric
interpretation of the field theories for which their Lagrangian density can be formulated in the
expression of the pullback of the ambient metric. We start the thesis with a chapter on the
mathematical preliminaries that discuss the relevant concepts of differential geometry used in this
thesis.

In chapter 4, we investigate the important concepts in brane theory such as the background
dependent of a brane, the symmetric properties of the brane, boundary conditions, D branes ,etc
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which are all originated from the study of string theory. After that, we especially study the field
theory of the D branes which is called Dirac Born-Infeld theory (DBI). Due to the symmetry
breaking of the symmetric Poincare group and the nonlinearly realised symmetry when a D brane
is formed, there is a natural geometric interpretation of a D-brane fluctuating in the transverse
direction in DBI theory. We also look into another scalar field theory which is called Special
Galileon theory and study its geometrical origin using complex geometry with Kahler structure.
In the end of chapter 4, we also discuss about whether we can inherit the same methodology to
figure out the geometric interpretation of Born-Infeld theory.

The other main topic in this thesis is the classical double copy. The notion of double copy
first comes from the study of scattering amplitude in quantum field theory. In the story of
scattering amplitude, it was found out that by replacing the color factor to kinematic numerator
in the scattering amplitude of Yang-Mills theory, the scattering amplitude of general relativity is
obtained. In classical double copy, we study the relevant duality by looking at the classical solutions
of the field theories and the map that relates different theories. In chapter 5, We particularly study
the known classical double copy between Abelian Maxwell theory and general relativity which is
called Kerr-Schild double copy. Then we solve the equation of motion of Born-Infeld theory and
Special Galileon theory in perturbative way under the static and spherically symmetric solution
to see is it also possible to construct the double copy relations between Special Galileon theory,
Born-Infeld theory and general relativity.
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2 Mathematical Preliminaries

First of all, we review some mathematical concepts in differential geometry which are important
and used throughout the thesis. We will have to understand the concept of the invariant form,
maps between manifolds, diffeomorphism and Lie derivative.

2.1 Invariant volume form

2.1.1 Levi-Civita Tensor

In a general D-dimensional Euclidean space RD, the volume integral, I is

I =

∫
dDx′

=

∫
|∂x
′

∂x
|dDx

For |∂x
′

∂x | is the Jacobian factor. The imminent task here is to generalize the volume form to any
arbitrary space with any specific form of metric gµν(x). The desired generalized volume form
must be covariant with respect to general coordinate transformation. The general coordinate
transformation rule discussed in this paper are at least C1 diffeomorphic. To be able to construct
such an invariant volume form, the property of the totally antisymmetric Levi-Civita symbol has
to be studied explicitly first. The Levi-Civita symbol is defined as

ε̃µ1µ2.....µD ==


1, if µ1....µD is even permutation of 12.....D,

−1, if µ1....µD is odd permutation of 12.....D,

0, otherwise

(2.1)

Levi-Civita symbol follows a very nice property when it is combined with the determinant of any
matrix Mν

µ , namely

ε̃µ1µ2.....µD |M | = ε̃ν1ν2.....νDM
ν1
µ1
Mν2
µ2
.....MνD

µD (2.2)

For M is the determinant of the matrix Mν
µ . To check whether ε̃ν1ν2.....νD is a tensor or not, set

Mν
µ to be the coordinate transformation matrix ∂xν

∂x′µ . Consequently,

ε̃µ1µ2.....µD = | ∂x
∂x′
|−1ε̃ν1ν2.....νD

∂xν1

∂x′µ1

∂xν2

∂x′µ2
.......

∂xνD

∂x′µD
(2.3)

The above relation shows explicitly that Levi-Civita symbol is not a tenosr as it does not follow
the coordinate transformation rule. There is an extra factor | ∂x∂x′ |−1. Levi-Civita symbol is in fact

a tensor density with weight +1. The weight refers to the order of |∂x
′

∂x |. Apparently, Levi-Civita
symbol is not a suitable and qualified candidate to construct the invariant volume form because
it is not a tensor. However, ε̃µ1µ2.....µD can be combined with another tensor density

√
|g| with

weight −1. For g is the determinant of the metric tensor. To be able to see this, set up a change
of the coordinate system and check how this is going to give impact to g

g → g′ = detg′µν (2.4)

= det(
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ) (2.5)

= | ∂x
∂x′
|2g (2.6)

This indicates that g is not a scalar. Instead it is a tensor density with weight −2. The square
root of |g| which is a tensor density with weight −1 can be combined with levi-Civita symbol with
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weight +1 to form the so called Levi-Civita tensor.

εµ1µ2....µD =
√
|g|ε̃µ1µ2.....µD (2.7)

The reason that the Levi-Civita tensor can be used to generate invariant volume form is still not
explicitly known at this point. It will be clear when the notion of the differential form and wedge
product is discussed in the next section. The absolute value of g is taken because for a Lorentzian
manifold, g is a negative value.

2.1.2 Differential form and wedge product

Definition 2.1.2.1(Differential form): A special class of tensor of type (0, p),

ω = ωµ1µ2.....µpdx
1 ⊗ dx2 ⊗ ......⊗ dxp (2.8)

such that the component ωµ1µ2.....µp is totally anti-symmetric.

A typical example of the differential form is the electromagnetic field strength Fµν . The diffrential
form can be written into the formulation involving wedge product of the bases of the form dx.

Fµνdx
µ ⊗ dxν =

1

2
[Fµν − Fνµ]dxµ ⊗ dxν (2.9)

=
1

2
[Fµνdx

µ ⊗ dxν − Fνµdxν ⊗ dxµ] (2.10)

=
1

2
[Fµνdx

µ ⊗ dxν − Fµνdxµ ⊗ dxν ] (2.11)

=
1

2
Fµνdx

µ ∧ dxν (2.12)

for the wedge product dxµ ∧ dxν is defined to be dxµ ⊗ dxν − dxµ ⊗ dxν . In general, the wedge
product is defined to be

dxµ1 ∧ ..... ∧ dxµp = dxµ1 ⊗ .....⊗ dxµp (2.13)

For dxµ1 ⊗ .....⊗ dxµp denotes the antisymmetrization of dxµ1 ⊗ .....⊗ dxµp

Using the above formulation, the differential p-form can be written as

ω =
1

p!
ωµ1µ2.....µpdx

µ1 ∧ dxµ2 ∧ ...... ∧ dxµp (2.14)

Switching back to the Levi-Civita tensor, since the component of Levi-Civita tensor, εµ1µ2....µD is
totally anti-symmetric, it is actually a differential form. The tensor can be written out explicitly
as

ε =
1

D!
εµ1µ2.....µDdx

µ1 ∧ dxµ2 ∧ .....dxµD (2.15)

=
1

D!

√
|g|ε̃µ1....µDdx

µ1 ∧ dxµ2 ∧ .....dxµD (2.16)

=
√
|g|dx0 ∧ ...... ∧ dxD−1 (2.17)

≡
√
|g|dDx (2.18)

The third equality line arises by using the fact that the Levi-Civita symbol and the wedge product
of dx are both totally antisymmetric. The contraction of them will give rise to a number of D!
same term. Thus, the Levi-Civita tensor acts as a volume form. One can check easily in the
Euclidean space. If the Cartesian coordinate system with metric δνµ is used, then |g| = 1. This

reduces to the familiar volume form dDx.
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Note that the combination of the square root of the determinant of any (0, 2) tensor with Levi-
Civita symbol always forms a tensor which obeys the coordinate transformation rule but only the
specific combination of

√
g with ε̃µ1....µD serves as the identity of volume form.

Therefore, to compute the volume of any manifold with its structure governed by a metric gµν ,
one can just simply evaluate the integral

I ≡
∫ √

|g|dDx (2.19)

The obtained volume form can also be used to constructed any kind of action

S =

∫
Ψ(x)

√
|g|dDx (2.20)

For Ψ(x) is a scalar.

2.2 Maps between manifolds

A manifold M can be linked together with another manifold N by a map ψ, namely ψ : M → N .
The property of the map between 2 manifolds is important to be studied for lot of different reasons.
For example, if one wants to extract the information of the extrinsic geometry from the intrinsic
geometry by embedding a submanifold in a equal or larger dimensional manifold or if someone
wants to study the natural formalism of active coordinate transformation of a same manifold, a
thorough study of the map between manifolds cannot be avoided.

2.2.1 Pullback and Pushforward

Consider 2 manifolds M and N with dimension m and n respectively such that n ≥ m and with
coordinate system xµ and yµ respectively. Imagine a map ψ : M → N and a function f : N → R.
With the function f acting on N to give a real number, the pullback ψ∗ can be defined.

ψ∗f = f ◦ ψ (2.21)

The pullback behaves to pull the operator f from N to M . ψ∗ maps the function space F(N) to
the function space F(M). See figure 1.

Figure 1: Pullback schematic diagram .
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A vector can be thought as a derivative operator in differential geometry acting on a function f
to give real number, namely V : f → R. This is because there exists a one to one correspondence
(complete isomorphism) between any vector ~V to the directional partial derivative ∂~V . Therefore
a vector ∂~V can be expressed as

~V = ∂~V (2.22)

= V µ∂µ (2.23)

and

V : f = V µ∂µf → R (2.24)

For V (p) is a vector at a point p on the manifold M , the pushforward ψ∗ of a vector V can be
defined

(ψ∗V )f = V (ψ∗f) (2.25)

To find the component of the pushforward of a vector (ψ∗V )α, the following deduction is considered

(ψ∗V )α∂αf = V µ∂µ(ψ∗f) (2.26)

= V µ∂µ[f ◦ ψ] (2.27)

= V µ
∂f

∂yα
∂yα

∂xµ
(2.28)

= (V µ
∂yα

∂xµ
)∂αf (2.29)

In the third equality line, chain rule is used. Hence, the component of pushforward of a vector is
found.

(ψ∗V )α = V µ
∂yα

∂xµ
(2.30)

Note that a pushforward maps the tangent space of M at p to the tangent space of N at ψ(p).
Also, since a vector acts on a 1-form, ω to give a real number, ω can only be pulled back from N
to M . See figure 2

(ψ∗ω)(V )) = ω(ψ∗V ) (2.31)

Figure 2: Pushforward schematic diagram [].
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If M and N refer to the same manifold, the behaviour of a vector under a pushforward resembles
the active coordinate transformation. This is obvious from (2.30). However, if M and N are

different manifold (different dimensions,etc), ∂y
α

∂xµ in (2.30) cannot be interpreted as the coordinate

transformation matrix because then ∂yα

∂xµ is not invertible in general.

1-forms are linear maps from vectors to the real numbers. In contrast with vector for which the
basis is represented by partial derivative, the basis of 1-form is represented by the gradient dxµ

ω : V → R (2.32)

ω : V = ωµdx
µV α∂α (2.33)

= ωµV
αδµα (2.34)

= ωµV
µ (2.35)

1-forms can be pulled back from N to M . The component of the pullback of 1-form, (ψ∗ω)µ can
be found by using (2.35)

(ψ∗ω)(V ) = ω(ψ∗V ) (2.36)

= ωα
∂yα

∂xµ
V µ (2.37)

= (ωα
∂yα

∂xµ
)V µ (2.38)

Therefore, the component of pullback of 1-form is

(ψ∗ω)µ = (ωα
∂yα

∂xµ
) (2.39)

Similarly, it is also the case that the behaviour of a 1-form under a pullback represents the active
coordinate transformation if M and N are the same manifold.

A (0, l) tensor, Tµ1µ2.....µl is a linear map from the direct product of l vectors to R. In general one
can pull back tensors with any arbitrary number of lower indices.

(ψ∗T )(V (1), V (2), ......, V (l)) = T (ψ∗V
(1), ψ∗V

(2), ......, ψ∗V
(l)) (2.40)

Similarly, one can push forward any (k, 0) tensor, Sα1α2.....αk by acting it on pulled back 1-forms

(ψ∗S)(ω(1), ω(2), ....., ω(k)) = S(ψ∗ω(1), ψ∗ω(2), ........., ψ∗ω(k)) (2.41)

For the higher-rank tensors, the matrix representation of pullback and pushforward can be ex-
tended by assigning one ∂y

∂x matrix to each index of the tensor

(ψ∗T )µ1.....µl =
∂yα1

∂xµ1
.......

∂yαl

∂xµl
Tα1 .......αl (2.42)

(ψ∗S)α1......αk =
∂yα1

∂xµ1
.......

∂yαk

∂xµk
Sµ1.....µk (2.43)

2.2.2 An Illuminating Example

There is a very nice example in [3]. Consider the case where a S2 sphere with spherical coordinate
system is embedded in a 3-dimensional Euclidean space R3 with Cartesian coordinate system. Let
M denotes the S2 manifold with coordinate system (θ, φ) and N denotes R3 with coordinate
system (x, y, z). Let ψ be a map, ψ : M → N

ψ(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) (2.44)
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ψ will induce an extrinsic metric on S2, which is the pullback of the flat space Euclidean metric.
In Euclidean space,

ds2 = dx2 + dy2 + dz2 (2.45)

Using (2.44)

dx = cos θ cosφdθ − sin θ sinφdφ (2.46)

dy = cos θ sinφdθ + sin θ cosφdφ (2.47)

dz = − sin θdθ (2.48)

It is then easy to deduce that

ds2 = dθ2 + sin2θdφ2 (2.49)

The induced metric, ḡjk is obtained

ḡjk =

[
1 0
0 sin2 θ

]
(2.50)

Now, compute the pullback of metric δjk in Euclidean space

(ψ∗δ)jk =
∂ym

∂xj
∂yn

∂xk
δmn (2.51)

= ḡjk (2.52)

for ∂ym

∂xj matrix is

∂ym

∂xj
=

[
cos θ cosφ cos θ sinφ − sinφ
− sin θ sinφ sin θ cosφ 0

]
(2.53)

Hence, the induced metric used to measure the distance on S2 is obtained by pulling back the
metric from R3.

2.3 Diffeomorphism and Lie derivatives

2.3.1 Active Coordinate transformation induced by Diffeomorphism

Definition 2.3.1.1 (Diffeomorphism) : Given two manifolds M and N , a map ψ : M → N is
called diffeomorphism if its inverse ψ−1 : N →M exists. If ψ is k times differentiable, ψ is called
Ck- diffeomorphism.

The existence of diffeomorphism actually implies that the 2 manifolds M and N are the same. For
a diffeomorphic map ψ, one can use both ψ and ψ−1 to pull back or push forward any tensors from
M to N . Specifically, for a (k, l) tensor field Tµ1µ2......µk

ν1ν2.....νl on M , one can define the pushforward

(ψ∗T )(ω(1), ......, ωk, V (1), ......, V (l)) = T (ψ∗ω1, ....., ψ∗ω(k), [ψ−1]∗V
(1), ......., [ψ−1]∗V

(l)) (2.54)

In components form, the pushforward takes the expression

(ψ∗T )α1......αk
β1.....βl

=
∂yα1

∂xµ1
...
∂yαk

∂xµk
∂xν1

∂yβ1
......

∂xνl

∂yβl
Tµ1.....µk
ν1.....νl

. (2.55)

For pullback, it is exactly the same story. Therefore, from (2.55), it is now obvious that the
pullback and pushforward induced by a diffeomorphic map ψ represents the active coordinate
transformations. To change the coordinate system, first one can use a diffeomorphic map ψ and
act it onM , ψ : M →M , the new coordinate system is obtained by just pulling the coordinate from
the range space to the domain space, (ψ∗x)µ : M → Rn. Similarly, under the active coordinate
transformation, the new tensorial value takes the expression (ψ∗T )µ1......µk

ν1.....νl
. See figure 3.
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Figure 3: A coordinate change induced by the diffeomorphism .

One can also compute the difference of the tensorial value at 2 different points on the manifold
M using the pullback and pushforward induced by a diffeomorphism. To compare the tensorial
value at 2 different points, p and ψp on the manifold, the naive way of simple subtracting T (p)
and T (ψp) does not work because T (p) and T (ψp) lie at different tangent vector space. So, one
possible way to compare them is to pull back T (ψp) to the point p first and then compare them.

∆T = ψ∗(T (ψp))− T (p) (2.56)

This method of comparing the difference of the tensorial value at 2 different points suggest a new
kind of derivative on tensor fields which is used to identify the rate of change of the tensor field
under the flow of diffeomorphism. This derivative is called Lie derivative. We follow the approach
in [3] to introduce Lie derivative by at first looking at a particular easy diffeomorphism and then
generalize the whole concept.

2.3.2 Lie Derivative

A one parameter family of diffeomorphisms, ψt is needed to categorize the rate of change of the
tensor under the flow of the diffeomorphism belong to this family. This can be thought as a
smooth map R×M →M such that for each t ∈ R, there exists a diffeomorphism ψt which satisfy
ψs ◦ ψt = ψs+t [3]. A vector field V = dψt

dt is then induced by this one parameter family of
diffeomorphisms. At a single point p of the manifold M , there is a tangent vector induced there.
For a collection of continuous and successive points, a curve is generated. All these curves will fill
up the entire manifold M .

Consider the case where (x1, x2, ..., xn) is the coordinate system at the point p on the manifold M .
The one-parameter diffeomorphism considered ψt is ψt(x

1, x2, ..., xn) = (x1 + t, x2, ..., xn). The
Lie derivative of a tensor T , LV T along the vector field generated by ψt is defined as

LV Tµ1....µk
ν1.....νl

= lim
t→0

[
ψ∗t [Tµ1....µk

ν1.....νl
](ψt(p))− Tµ1....µk

ν1.....νl
(p)

t
] (2.57)

LV maps a (k, l) tensor fields to a (k, l) tensor fields. It obeys the following properties [3]

1) Linearity

LV (aT + bS) = aLV T + bLV S (2.58)

For a and b are constants. T and S are arbitrary tensor.

2) Leibniz rule

LV (T ⊗ S) = (LvT )⊗ S + T ⊗ (LvS) (2.59)

Lie derivative operator reduces to the directional partial derivative when it acts on a function f

LV f = V µ∂µf (2.60)
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In the case that we study, the pullback of a tensor T can be obtained using (2.55)

(ψ∗T )α1......αk
β1.....βl

= δα1
µ1
....δαkµk δ

ν1
β1
....δνlβlT

µ1......µk
ν1.....νl

(x1 + t, x2, ....., xn) (2.61)

= Tα1....αk
β1......βl

(x1 + t, x2, ....., xn) (2.62)

Hence, the pullback tensorial value ψ∗t [Tµ1....µk
ν1.....νl

](ψt(p)) = Tα1....αk
β1......βl

(x1 + t, x2, ....., xn). From the
definition of the Lie derivative, it is obvious that in such a case, the Lie derivative amounts to

LV Tµ1....µk
ν1....νl

=
∂

∂x1
Tµ1....µk
ν1....νl

(2.63)

In particular, the Lie derivative of a vector field Uµ is

LV Uµ =
∂Uµ

∂x1
(2.64)

The expression of the Lie derivative of a vector field in (2.64) is clearly not in the invariant tensorial
form. However, (2.64) can be rexepressed into the form involving commutator [V,U ]

[V,U ]µ = V ν∂νU
µ − Uν∂νV µ (2.65)

=
∂Uµ

∂x1
(2.66)

= LV Uµ (2.67)

The commutator relation involving the expression of Lie bracket is a well defined tensor. Therefore,
we managed to find a tensorial expression of the Lie derivative generated by a vector field V acting
on another vector field U .

To find the expression of the Lie derivative generated by a vector field V acting on a 1-form, use
(2.59) and (2.60)

Using (2.59)

LV (ωµU
µ) = (LV ω)µU

µ + ωµ(LV U)µ (2.68)

= (LV ω)µU
µ + ωµV

ν∂νU
µ − ωµUν∂νV µ (2.69)

Using (2.60)

LV (ωµU
µ) = V ν∂ν(ωµU

µ) (2.70)

= V ν(∂νωµ)Uµ + V νωµ(∂νU
µ) (2.71)

Equating (2.69) and (2.71) gives rise to the relation of the Lie derivative operator acting on a
1-form ω

LV ωµ = V ν(∂νωµ) + (∂µV
ν)ων (2.72)

The Lie derivative of an arbitrary tensor can be obtained by the similar procedure

LV Tµ1µ2....µk
ν1ν2.....νl

= V σ∂σT
µ1µ2....µk
ν1ν2.....νl

− (∂λV
µ1)Tλµ2....µk

ν1ν2.....νl
− (∂λV

µ2)Tµ1λ....µk
ν1ν2.....νl

− .....+ (∂ν1V
λ)Tµ1µ2....µk

λν2.....νl
+ ....

(2.73)

Note that the partial derivatives ∂ in (2.73) can be replaced by the covariant derivative ∇. It
turns out that all the terms involving Levi-Civita connection will cancel each other.

Lie derivative of the metric tensor is a very important relation. Using (2.73), it can be deduced
that

LV gµν = V σ∇σgµν + (∇µV λ)gλν + (∇νV λ)gµλ (2.74)

= ∇µVν +∇νVµ (2.75)

In the second equality line, the metric compatibility is considered.
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3 Non-linear theory of Electromagnetism and Gravity

In this section, we study the foundation of Born-Infeld theory and general relativity. Born-Infeld
theory and general relativity are the non-linear field theories needed to be understood well for
both of our research topics − the geometrical interpretation of field theories and classical double
copy. Therefore, this chapter serves as the physics preliminaries for this thesis.

3.1 Born-Infeld theory

3.1.1 Brief recap of Maxwell theory

One of the most successful theory in physics is Maxwell’s theory of electromagnetism. In the
absence of any source, the Lagrangian density of Maxwell theory is known to be

L = −1

4
FµνF

µν (3.1)

For Fµν is the electromagnetic field strength which is totally anti-symmetric,

Fµν = ∂µAν − ∂νAµ (3.2)

Applying the least action principle, the equation of motion is found to be

∂µF
µν = 0 (3.3)

In the matrix form, Fµν is written in term of electric and magnetic field as

Fµν =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 (3.4)

The equation of motion (3.3) implies two source free Maxwell equations

∂µF
µν = 0⇔ ∇ · ~E = 0,∇× ~B =

∂ ~E

∂t
(3.5)

The other two Maxwell equations are obtained from the Bianchi identity

∂λFµν + ∂µFνλ + ∂νFλµ = 0⇔ ∇ · ~B = 0,∇× ~E = −∂
~B

∂t
(3.6)

One important thing worth mentioning is that the Maxwell theory in vacuum possesses Lorentz
symmetry. This means that Maxwell action and Maxwell equations in vacuum are covariant with
respect to the Lorentz transformation.

3.1.2 Linear vs Non-linear

Maxwell’s theory is a linear field theory. There is a very important concept to compare the linear
field theory and non-linear field theory. Field equation in Maxwell’s theory with source is

∂2Aµ = κJµ (3.7)

where the 4-current Jµ is (ρ, j1, j2, j3). ρ is the charge density and ji is the current density. In
quantum field theory, the photon γ is the excitation of the electromagnetic field Aµ. The source
Jµ is completely independent of the electromagnetic field Aµ. Therefore, there will be no self
electromagnetic interaction (photon interacts with photon ) in the scattering process.

For non-linear field theory, the self-interaction of the gauge boson is possible. Consider the theory
of general relativity which is a non-linear field theory. We will show here briefly how the self
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interaction of graviton occurs in general relativity. The concepts discused here can be obtained
from other section of this thesis as the theory of general relativity is discussed in details in section
3.2 and linearized gravity is discussed in section 5.3.3. Consider linearized gravity for which the
full metric is written as

gµν = ηµν + hµν (3.8)

In linearized gravity, weak field limit is assumed.

|hµν | � 1 (3.9)

In the weak field limit, the Levi-Civita connection can be well approximated to a form which only
carries linear terms of the field hµν

Γλµν =
ηλρ

2
(∂µhρν + ∂νhρµ − ∂ρhµν) (3.10)

The Ricci tensor which describes the curvature of the spacetime can also be well approximated to

R
(1)
µν that contains only the linear terms of hµν

R(1)
µν =

1

2
(∂2hµν + ∂µ∂νh− ∂µ∂λhλν − ∂ν∂λhλµ) (3.11)

The gravitational field equation in linearized gravity can be expressed as

R(1)
µν −

1

2
ηµνR

(1) = 8πG(τµν) (3.12)

where τµν is

τµν = Tµν +
G

(1)
µν −Gµν

8πG
(3.13)

Tµν is the energy momentum tensor, Gµν is Einstein tensor and G
(1)
µν is the linearized term of

Einstein tensor and G is Newton constant. τµν is interpreted to be the source of the field hµν .
The excitation of the field hµν is graviton g. The field equation in linearized gravity will give the
expression

(∂2 + ...)hµν = 8πGτµν (3.14)

The term Gµν in the source term τµν carries hµν . This explains why gravitational field can generate
gravitational field itself. In other words, the graviton can self-interact with other graviton in the
scattering process. See figure 4.
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Figure 4: Self-Interaction of gravitons [].

In next scetion, we will discuss Born-Infeld theory which is also a non-linear field theory. Just like
in non-linear field theory of gravity the self-interaction of gravitons occurs, the self interaction of
the photons also occurs in Born-Infeld theory.

3.1.3 Motivation for Born-Infeld theory and the Postulation of Invariant Action

In 1934, Max Born and Leopold Infeld proposed a non-linear theory of electromagnetism. Note
that this was before the advent of quantum field theory. At that time, most of the physicists
adopted the dualistic standpoint on the relation of matter and the electromagnetic field. The
main idea of the dualistic standpoint is that the particles are the sources of the field, the particles
are acted on by the field but they are not a part of the field [2]. The other standpoint which
is less popular is the unitarian standpoint that assumes that the only one physical entity is the
electromagnetic field. The particles of matter are to be considered as singularities of the field and
their mass is the derived notion from the field energy [2]. It is obvious that quantum field theory
today as the theoretical framework to construct the standard model takes the unitarian standpoint
because the particle is the excitation of the quantum field in this theory. Beside quantum field
theory, Born and Infeld actually managed to come out with a modified electromagnetic field theory
which is also an unitarian theory. The amazing thing is that their theory satisfies the principle of
finiteness. In the electrostatic case of Maxwell’s theory, the Coulomb potential, V ∝ − 1

r does not
satisfy the principle of finiteness. So, at the point where the charged particle sits, the Coulomb
potential tends to infinity. We will see later in this chapter how Born-Infeld theory overcomes this
problem.

Due to the extraordinary success of quantum field theory, there has been a time that Born-Infeld
theory was neglected. However, due to the recent development in string theory and other theory
like double copy, Born-Infeld theory caught physicists’ attention again and a lot of researches were
devoted to this theory. Therefore, we discuss Born-Infeld theory in this chapter by reviewing how
Born and Infeld constructed this theory.

They started by postulating an invariant action which is covariant with respect to the general
spacetime transformations in the same spirit as discussed in section 2.1.
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Consider the Lagrangian density

L =
√
det(aµν) (3.15)

For aµν is a tensor which is neither symmetric nor anti-symmetric. In general, aµν can be split
up into the symmetrical part and antisymmetrical part.

aµν = gµν + Fµν (3.16)

such that

gµν = gνµ;Fµν = −Fνµ (3.17)

The symmetrical part gµν is the metrical field while the antisymmetrical part Fµν is the elec-
tromagnetic field strength. In last section, it has been shown that one of the possible form of
the invariant action with respect to some transformation laws takes the form such that the La-
grangian density is the square root of the determinant of any arbitrary (0, 2) tensor. The simplest
assumption for L is the linear combination

L =
√
−det(gµν + Fµν) +A

√
−det(gµν) +B

√
det(Fµν) (3.18)

For A and B are arbitrary constant. The minus sign in the first and second term is induced in
order to get the real value of the square root due to the fact that the general manifold considered
is Lorentzian manifold and the determinant of metric tensor is a negative value.

The last term can be omitted. Note that Fµν is written as ∇µAν − ∇νAµ. The usual partial
derivative ∂µ is replaced by the covariant derivative ∇µ since the metric used here is not fixed
to be constant. The spacetime integral of the last term can be changed to a surface term since
it contains only total derivative term. It has no influence on the variational equation of the field
since δAµ is assumed to be zero at the boundary. So, one can take B = 0. The remaining task is
to determine the coefficient A.

L =
√
−det(gµν + Fµν) +A

√
−det(gµν) (3.19)

In order to determine the coefficient A, the imposed condition is that in the limiting condition
of the flat Minkowski space and in the weak electromagnetic field limit, the classical Maxwell
expression for Lagrangian density (3.1) is obtained. This is essential because a good physical
theory should be able to be reduced to the well-known theory which has succeeded to describe the
world in a certain limit. So, in the limit described above, L becomes

L =
√
−det(ηµν + Fµν) +A

√
−det(ηµν) (3.20)

For η is Minkowski metric and it takes expression as

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (3.21)

By careful calculation, −det(ηµν + Fµν) is found to be

−det(ηµν + Fµν) = 1 + (F 2
23 + F 2

31 + F 2
12 − F 2

10 − F 2
20 − F 2

30)− (F23F10 + F31F20 + F12F30)2

(3.22)

= 1 + (F 2
23 + F 2

31 + F 2
12 − F 2

10 − F 2
20 − F 2

30)− det(Fµν) (3.23)

20



In the weak field limit Fµν � 1, the last term can be safely neglected. So, it reduces to

−det(ηµν + Fµν) = 1 +B2
x +B2

y +B2
z − E2

x − E2
y − E2

z (3.24)

To be able to reduce to the Maxwell form FµνF
µν ∝ B2 −E2, the term 1 needs to be eliminated.

Since −det(ηµν) = 1, A has to be −1 to cancel the factor 1 after expanding
√
−det(ηµν + Fµν)

and neglect the higher order term.

A = −1 (3.25)

Therefore, Lagrangian density takes the form

L =
√
−det(ηµν + Fµν)−

√
−det(ηµν) (3.26)

=
√

1 +B2 − E2 −BxEx −ByEy −BzEz − 1 (3.27)

=

√
1 +B2 − E2 − ~B. ~E − 1 (3.28)

=
√

1 + F −G2 − 1 (3.29)

such that

F = B2 − E2 = (F 2
23 + F 2

31 + F 2
12 − F 2

10 − F 2
20 − F 2

30) (3.30)

and

G2 = ~B. ~E = det(Fµν) = (F23F10 + F31F20 + F12F30)2 (3.31)

In a general coordinate system for any arbitrary manifold with its structure governed by gµν(x),

det(gµν + Fµν) = det(gµν) + Φ(gµν , Fµν) + det(Fµν) (3.32)

= det(gµν)[1 +
Φ

det(gµν)
+
det(Fµν)

det(gµν)
] (3.33)

In geodetic coordinate system, it has been found out that Φ
det(gµν) = 1

2FµνF
µν = F and

det(Fµν)
det(gµν) =

−G2. Since the form of Φ
det(gµν) is invariant with respect to the symmetric coordinate transforma-

tion rule, it also takes the same form in those coordinate systems.

The Lagrangian density in general can be written as

L =
√
−det(gµν + Fµν)−

√
−det(gµν) (3.34)

=
√
−det(gµν)(

√
1 + F −G2 − 1) (3.35)

In some papers and textbooks, there is a constant factor −1 in front of the expression (3.34). The
constant factor is trivial because it does not affect the equation of motion obtained from the least
action principle. Both F and G are invariant. It is better to convert G into the form for which
that its invariance property is obvious. To do this, a (4, 0) tensor jabcd is introduced,

jabcd =


1

2
√
−det(gµν)

, if abcd is even permutation of 1234,

− 1

2
√
−det(gµν)

, if abcd is odd permutation of 1234,

0, otherwise

(3.36)

After introducing the tensor jabcd, G can be written as

G =
1

4
jabcdFabFcd (3.37)

and the dual of Fµν , F∗ab can be defined as

F∗ab = jabµνFµν (3.38)
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3.1.4 Equations of motion for Born-Infeld theory

One of the most elegant principle in physics is the least action principle. This principle has the
power to generate physical theory. Once the relevant action is determined, the equation of motion
can be obtained by imposing the constraint of the variation of action with respect to a certain
variable to be zero. It is not the exception for Born Infeld theory. Except using least action
principle, note that 2 Maxwell equations can be obtained from the Bianchi identity (3.6). The
two equations of motion obtained from Bianchi identity are

∇ · ~B = 0;∇× ~E = −∂
~B

∂t
(3.39)

Since the definition Fµν = ∇µAν − ∇νAµ is inherited as well in the Born Infeld theory, the two
equations in (3.39) are also the equation of motions of Born Infeld theory. With help of (3.38),
(3.6) and (3.39) can be brought into a more compact form

∂(
√
−det(gmn)F∗µν)

∂xν
= 0⇔ ∇ · ~B = 0;∇× ~E = −∂

~B

∂t
(3.40)

The divergence operator and the curl operator here is the general one in any general coordinate
system. The major difference between Born Infeld theory and Maxwell theory comes from the
other two equation of motions obtained from the least action principle. This can be seen by first
taking the partial derivative of L taking the form of (3.34) with respect to Fµν . Note that L can

be written as
√
−det(gµν)L, for L is

L =
√

1 + F −G2 − 1 (3.41)

So, ∂L
∂Fµν

=
√
−det(gµν) ∂L

∂Fµν
such that ∂L

∂Fµν
= ∂L

∂F
∂F
∂Fµν

+ ∂L
∂G

G
∂FFµν

∂L

∂F
=

1

2
(1 + F −G2)−

1
2 (3.42)

∂L

∂G
= −G(1 + F −G2)−

1
2 (3.43)

∂F

∂Fµν
=

1

2

∂(F abFab)

∂Fµν
(3.44)

=
1

2
(δµa δ

ν
bF

ab + gamgbnδµmδ
ν
nFab) (3.45)

=
1

2
(2Fµν) (3.46)

= Fµν (3.47)

∂G

∂Fµν
=

1

4
jabcd

∂(FabFcd)

∂Fµν
(3.48)

=
1

4
(jµνcdFcd + jabµνFab) (3.49)

=
1

4
(jµνcdFcd + jµνabFab) (3.50)

=
1

2
F∗µν (3.51)
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Therefore,

∂L

∂Fµν
=

1

2

Fµν −GF∗µν√
1 + F −G2

(3.52)

=
1

2
Pµν (3.53)

For Pµν = Fµν−GF∗µν√
1+F−G2

.

Pµν is interpreted to be the electromagnetic field strength in matter. Pµν is related to Fµν in
a way to that which, in Maxwell’s theory of macroscopic bodies, the dielectric displacement and
magnetic induction have to the field strength [2]. In matrix form, Pµν is written as

Pµν =


0 Dx Dy Dz

−Dx 0 Hz −Hy

−Dy −Hz 0 Hx

−Dz Hy −Hx 0

 (3.54)

To obtain the remaining two equation of motions, vary the action S with respect to Fµν and
require δS = 0,

δS =

∫
δLd4x (3.55)

=

∫ √
−det(gmn)

∂L

∂Fµν
δFµνd

4x (3.56)

=

∫ √
−det(gmn)

∂L

∂Fµν
(∇µδAν −∇νδAµ)d4x (3.57)

= −
∫
∂µ(
√
−det(gmn)

∂L

∂Fµν
)δAν + ∂ν(

√
−det(gmn)

∂L

∂Fµν
)δAµd

4x (3.58)

= −2

∫
∂µ(
√
−det(gmn)

∂L

∂Fµν
)δAνd

4x (3.59)

= 0 (3.60)

In the forth equality line, the relation of covariant divergence ∇µKµ = 1√
−det(g)

∂µ(
√
−det(g)Kµ)

is used. Integration by part is also carried out and the total derivative term can be neglected due
to the fact that δAν is assumed to be zero at the boundary. In the fifth equality, the technique of
renaming the dummy indices is used.

This leads to the equation of motion

2∂µ(
√
−det(gmn)

∂L

∂Fµν
) = ∂µ(

√
−det(gmn)Pµν) = 0 (3.61)

In Maxwell theory, ∂µF
µν = 0⇔ ∇ · ~E = 0;∇× ~H = ∂ ~E

∂t . In the same spirit

∂µ(
√
−det(gmn)Pµν) = 0⇔ ∇ · ~D = 0;∇× ~H =

∂ ~D

∂t
(3.62)

So far all the deductions are carried out using natural unit. In the conventional unit, the electro-
magnetic field strength has to be divided a dimensional correction constant, b. Then the results
obtained before become

L =
√

1 + F −G2 (3.63)
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F =
1

b2
(B2 − E2);G =

1

b2
( ~B · ~E) (3.64)

~H = b2
∂L

∂ ~B
=

~B −G~E√
1 + F −G2

(3.65)

~D = b2
∂L

∂ ~E
=

~E −G~B√
1 + F −G2

(3.66)

3.1.5 The Electrostatic Solution of the Born-Infeld field equation

Consider the electrostatic case (electric field generated by a point charged particle with charge e
according to the Coulomb’s law) where B = H = 0 and all field components are independent of
time. Then, the only field equations survived are

∇× ~E = 0;∇ · ~D = 0 (3.67)

For the case of central symmetry, it is convenient to work in the spherical coordinate system. It
is then easy to solve for D field,

d

dr
(r2Dr) = 0⇒ Dr =

e

r2
(3.68)

For Dr indicates the radial component of D field and e is the elementary charge. The surface
integral of D field over a Gaussian surface can then be computed. Let the Gaussian surface be a
sphere for which the point charged particle is sitting at the centre (origin of the coordinate system)
of the sphere. ∫

Drr
2 sin θdθdφ =

∫
e sin θdθdφ (3.69)

= 4πe (3.70)

Also, the curl of ~E field vanishes implies that ~E field can be written as the gradient of a potential
function, φ

E = −∇φ (3.71)

Since φ possesses central symmetry, it only varies with respect to the radial direction. So,

Er = −dφ
dr

= −φ′(r) (3.72)

Use (3.66), Dr can be expressed as

Dr =
Er√

1− 1
b2E

2
r

=
e

r2
(3.73)

Rearranging (3.73), Er is found to be

Er =
e

r2
0

√
1 + ( rr0 )4

(3.74)

For r0 =
√

e
b . From (3.72), (3.74) is a first order differential equation of electrostatic potential φ,

dφ

dr
= − e

r2
0

√
1 + ( rr0 )4

(3.75)
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Substitute y = r
r0

, φ can be solved by the integral expression

φ =
e

r0

∫ ∞
x

1√
1 + y4

dy (3.76)

Do a further substitution by letting x = tan 1
2β

φ(r) = f(x) =
1

2

∫ π

α(x)

sec2 1
2β√

1 + tan4 1
2β
dβ (3.77)

=
1

2

∫ π

α(x)

1√
cos4 1

2β + sin4 1
2β
dβ (3.78)

=
1

2

∫ π

α(x)

1√
(cos2 1

2β + sin2 1
2β)2 − 2 cos2 1

2β sin2 1
2β
dβ (3.79)

=
1

2

∫ π

α(x)

1√
1− 1

2 sin2 β
dβ (3.80)

=
1

2

∫ π

0

1√
1− 1

2 sin2 β
dβ − 1

2

∫ α(x)

0

1√
1− 1

2 sin2 β
dβ (3.81)

= f(0)− 1

2
F (

1√
2
, α) (3.82)

For α(x) = 2arctan(x). F ( 1√
2
, α) =

∫ α(x)

0
1√

1− 1
2 sin2 β

dβ is recognized as Jacobian elliptic integral.

φ has its maximum value when x = 0. Thus the electrostatic potential has its maximum value in
the centre and its value is

φ(0) =
1.8541e

r0
(3.83)

The curse of the infinity in the old electrostatic theory has been shown to be broken by the modified
electrostatic case in Born-Infield theory. This is shown explicitly in figure 5.
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Figure 5: Electrostatic potential graph [2].

3.2 General relativity

3.2.1 Einstein-Hilbert Action and the Einstein Field equation in vacuum

One of the pillar of modern physics is Einstein’s general theory of relativity which is used to
describe the physics of gravity in term of Riemannian intrinsic geometry. The theory of general
relativity can be generated as well by the field theory approach. The action that yields the Einstein
field equation in vacuum is Einstein-Hilbert action, SH

SH =

∫ √
−gRd4x (3.84)

For
√
−g =

√
−det(gµν), Ricci scalar R = gµνRµν and Rµν is the Ricci curvature tensor. To

obtain the gravitational field equation, applying least action principle by varying SH with respect
to the metrical field gµν and require that δSH = 0.

δSH = (δS)1 + (δS)2 + (δs)3 (3.85)

where

(δS)1 =

∫
d4x
√
−ggµνδRµν (3.86)

(δS)2 =

∫
d4x
√
−gRµνδgµν (3.87)

(δS)3 =

∫
d4xRδ

√
−g (3.88)

Focus on (δS)3 first. One of the relation from linear algebra tells that

ln(detW ) = Tr(lnW ) (3.89)

For W is any arbitrary matrix and Tr refers to the trace of a matrix. Then,

δln(detW ) = δTr(lnW )

δ(detW ) = detW · Tr(W−1δW )

Let W be the metric gµν . With the relation above, it follows that

δg = g(gµνδgµν) (3.90)

= −g(gµνδg
µν) (3.91)

The relation δ(gµνgµν) = 0 is used for the second equality line. Therefore,

δ
√
−g = −1

2

1√
−g

δg (3.92)

=
g

2
√
−g

gµνδg
µν (3.93)

= −1

2

√
−ggµνδgµν (3.94)
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(δS)3 in total is

(δS)3 = −
∫
d4x
√
−g 1

2
gµνδg

µν (3.95)

(δS)1 can be shown to be zero. From the definition of Ricci tensor, it can be derived easily that

δRµν = ∇λ(δΓλνµ)−∇ν(δΓλλµ) (3.96)

For Γ is the Levi-Civita connection and∇Γ is the covariant derivative of the Levi-Civita connection.
Using this relation, (δS)1 can be shown to be

(δS)1 =

∫
(gµν∇λ(δΓλνµ)− gµν∇ν(δΓλλµ))

√
−gd4x (3.97)

=

∫
(∇λ(gµνδΓλνµ))−∇ν(gµν∇ν(δΓλλµ)))

√
−gd4x (3.98)

=

∫
∂λ(
√
−ggµνδΓλνµ)− ∂ν(

√
−ggµνδΓλλµ)d4x (3.99)

= 0 (3.100)

The second equality line arises due to the metric compatibility condition ∇µgµν = 0. The third
equality line arises by using the relation∇µV µ = 1√

−g∂µ(
√
−gV µ). The last equality arises because

the total derivative term can be converted to the surface term, since Levi-Civita connection(3.108)
is expressed as a function of ∂gµν and δgµν and ∇δgµν are assumed to be zero at the boundary,
the boundary term can be neglected.

In total, δSH = (δS)2 + (δS)3

δSH =

∫
d4x
√
−g(Rµν −

1

2
gµν)δgµν (3.101)

Imposing δSH = 0, Einstein field equation in vacuum is obtained

Rµν −
1

2
gµν = 0 (3.102)

3.2.2 Coupling of the gravitational field gµν with matter field

The left hand side of (3.102) is a geometrical object. It is also called Einstein tensor Gµν

Gµν = Rµν −
1

2
gµν (3.103)

One important element is still missing in the theory of gravity. It is the matter. In Newtonian
gravity, matter with mass will generate gravitational field. This must also be the case in Einsteinian
gravity. In weak field limit, Einstein’s theory of gravity can be reduced to the classical Newtonian
theory. Consider the static and weak gravitational field which satisfy the relations (3.104) and
(3.105)

dxi

dτ
� dx0

dτ
(3.104)

gµν = ηµν + hµν , ; |hµν | � |ηµν | (3.105)

For τ is the proper time. (3.104) corresponds to the slow motion condition. Using the geodesic
equation(3.106) now
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d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 (3.106)

With the constraints (3.104) and (3.105), (3.106) can be approximated to

d2xµ

dτ2
+ Γµ00(

dx0

dτ
)2 = 0 (3.107)

Considering only the spatial part by replacing µ to i in (3.107). Use the definition of Levi-Civita
Connection

Γαµν =
1

2
gαρ(∂µgνρ + ∂νgρµ − ∂ρg00) (3.108)

It then can be shown easily that Γi00 = − 1
2g
iρ∂ρg00 by considering the static condition that the

metric is independent of timelike coordinate. Then, the geodesic equation becomes

d2xi

dτ2
− 1

2
∂ih00 = 0 (3.109)

Note that g00 = −1 − h00. In the Newtonian limit, the geodesic equation takes the form (3.109)
by neglecting all the second and higher order term of hµν . Compare (3.109) with the equation of
motion in Newtonian theory of gravity

d2xi

dt2
+ ∂iφ = 0 (3.110)

For φ here is the gravitational potential. So,

h00 = −2φ (3.111)

g00 = −1− 2φ (3.112)

In Newtonian gravity, the gravitational field equation is represented by the Poisson equation

∇2φ = 4πGρ (3.113)

For G here is the Newton gravitational constant and ρ is the mass density. Using the results
obtained before, the Poisson equation can be written into

−∇2g00 = 8πGT00 (3.114)

In the classical limit, the gravitational field equation manifests itself in the form of (3.114). It
is now known that the left hand side of (3.114) which involves second order derivative of metric
tensor is represented by the Einstein tensor. Therefore, the natural reason to couple the energy-
momentum tensor Tµν of matter with the geometrical object Gµν is shown here by just simply
taking the classical limit of the theory.

In the field theory approach, the Einstein-Hilbert action can be coupled with another action, SM
for which its Lagrangian is a function of the matter field Φ ,

S =
1

16πG
SH + SM (Φ, gµν) (3.115)

Applying least action principle again with respect to gµν ,

1

16πG
(Rµν −

1

2
Rgµν) +

1√
−g

δSM
δgµν

= 0 (3.116)
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Define the energy-momentum tensor to be

Tµν = −2
1√
−g

δSM
δgµν

(3.117)

Therefore, the complete Einstein field equation is obtained

Gµν = Rµν −
1

2
Rgµν = 8πGTµν (3.118)

3.2.3 General Relativity as a General Diffeomorphism Covariant theory

The structure of symmetry of general relativity is general diffeomorphism. This means that the
mathematical expression of the theory is invariant with respect to the general diffeomorphism.
There is no prior coordinate system which is superior than other. All coordinate system is equiva-
lent and one will always obtain the same physics of gravity no matter what preference of coordinate
system is used.

Consider an arbitrary diffeomorphism generated by a vector field V . The full action for general
relativity is discussed in the last section which takes the form

S =
1

16πG
SH(gµν) + SM (gµν ,Φ) (3.119)

The variation of S under a diffeomorphism is

δS =

∫
d4x

1

16πG

δSH
δgµν

δgµν +

∫
d4x

δSM
δgµν

δgµν +

∫
d4x

δSM
δΦ

δΦ (3.120)

δgµν is not arbitrary but it only refers to those induced by diffeomorphism here, δgµν = LV gµν .
Focus on the variation of Hilbert action term first,∫

d4x
δSH
δgµν

δgµν =

∫
d4x

δSH
δgµν

(∇µVν +∇νVµ) (3.121)

= 2

∫
d4x
√
−g(Rµν − 1

2
gµνR)∇µVν (3.122)

= −2

∫
d4x
√
−g∇µ(Rµν − 1

2
gµνR)Vν (3.123)

= 0 (3.124)

The third equality arises because ∇µ
√
−g = 0 for metric compatible connection. The last equality

line arises because the Einstein tensor Gµν obeys the Bianchi identity

∇µGµν = ∇µ(Rµν − 1

2
gµνR) = 0 (3.125)

The last term in (3.120) also vanishes because the form of matter field Φ which satisfies the matter
equation of motion is taken. Then, there is only the second term in (3.120) left which is needed
to be worried about. ∫

d4x
δSM
δgµν

δgµν = 2

∫
d4x

δSM
δgµν

∇µVν (3.126)

= −2

∫
d4x
√
−gVν∇µ(

1√
−g

δSM
δgµν

) (3.127)

= −2

∫
d4x
√
−gVν(∇µTµν) (3.128)

So, if the general relativity possesses general covariance, energy-momentum has to be conserved

∇µTµν = 0 (3.129)

The conservation of energy-momentum is one of the deepest consequence of general diffeomorphism
covariance.
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3.2.4 Schwarzschild’s Solution

In 1915, German physicist Karl Schwarzschild provided the first exact solution to the Einstein field
equation. He achieved this while serving in German army during world war 1. Schwarzschild’s
solution is the solution when a spherically symmetric and static spacetime is considered. Further-
more, this solution is also concerned with the situation of the empty space surrounding a spherical
body. In this section, we will review Schwarzschild’s metric.

We work in the spherical coordinate system xµ = (t, r, θ, φ). Consider a spherically symmetric
and static spacetime, the metric becomes

ds2 = gµνdx
µdxν (3.130)

= g00(r, t)dt2 + 2g0r(r, t)drdt+ grr(r, t)dr
2 + r2(dθ2 + sin2 θdφ2) (3.131)

= g00(r)dt2 + 2g0r(r)drdt+ grr(r)dr
2 + r2(dθ2 + sin2 θdφ2) (3.132)

= g00(r)dt2 + grr(r)dr
2 + r2dΩ2 (3.133)

The second equality line arises due to the fact that a spherically symmetric coordinate system is
used. In a rotationally symmetric coordinate system, the terms like drdθ and dθdφ vanish. The
third equality line arises because we consider the spacetime to be stationary. Beside a stationary
spacetime, the static spacetime that we imposed also require the condition that the metric is
invariant under time reversal. This explains why drdt term is dropped in the forth equality line.
Note that dΩ2 = (dθ2 + sin2 θdφ2) in the forth equality line. Therefore, the metric is simplified to

ds2 = g00(r)dt2 + grr(r)dr
2 + r2dΩ2

Nothing stops us from writing the metric as

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dΩ2 (3.134)

The scheme that we will use to find Schwarzschild’s metric is the following. We will substitute
the metric in the expression of (3.134) into Levi-Civita connection Γ. Then, we use Levi-Civita
connection to calculate Riemann tensor Rαβµν . With Riemann tensor known, we deduce Ricci
tensor Rµν . Since we are interested in the solution outside a spherical body, we only care about
Einstein field equation in vacuum Gµν = 0. Equivalently, we want to solve the equations Rµν = 0
to obtain the expression of g00 and grr

g → Γ→ Rαβµν → Rµν = 0→ g00, grr

In the matrix notation, the metric gµν is

gµν =


−e2ν 0 0 0

0 e2λ 0 0
0 0 r2 0
0 0 0 r2sin2θ

 (3.135)

The inverse of the metric gµν is

gµν =


−e−2ν 0 0 0

0 e−2λ 0 0
0 0 r−2 0
0 0 0 r−2sin−2θ

 (3.136)

Recall that Levi-Civita connection takes the expression as

Γαµν =
1

2
gαβ(∂µgνβ + ∂νgµβ − ∂βgµν)
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The independent non-vanishing connection terms are calculated using this expression. For exam-
ple,

Γ1
00 =

1

2
g1β(−∂βg00) (3.137)

= −1

2
g11∂rg00 (3.138)

= −1

2
e−2λ∂r(−e2ν(r)) (3.139)

= e2(ν−λ)(∂rν) (3.140)

The other non-trivial independent connection terms are [3]

Γ1
11 = ∂rλ (3.141)

Γ0
10 = ∂rν (3.142)

Γ2
12 = Γ3

13 =
1

r
(3.143)

Γ1
22 = −re−2λ (3.144)

Γ3
23 = cot θ (3.145)

Γ1
33 = −r sin2 θe−2λ (3.146)

Γ2
33 = − sin θ cos θ (3.147)

Note that Levi-Civita connections are symmetric under the exchange of the lower 2 indices. The
other terms that are not listed are all zero.

Then, we want to calculate Riemann tensor. Recall that Riemann tensor is

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ

We will show one example how to calculate Riemann tensor.

R0
101 = ∂0Γ0

11 − ∂rΓ0
01 + Γ0

0λΓλ11 − Γ0
1λΓλ01 (3.148)

= −∂r(∂rν) + (∂rν)(∂rλ)− (∂rν)(∂rν) (3.149)

= (∂rν)(∂rλ)− ∂2
rν − (∂rν)2 (3.150)

The other non-vanishing independent Riemann tensor terms are [3]

R0
202 = −re−2λ∂rν (3.151)

R0
303 = −re−2λ sin2 θ∂rν (3.152)

R1
212 = re−2λ∂rλ (3.153)

R1
313 = re−2β sin2 θ∂rλ (3.154)

R2
323 = (1− e−2λ) sin2 θ (3.155)

The other terms that are not listed are either zero or they can be deduced from these independent
terms. For example, one of the term that can be deduced from the independent terms is

R1
010 = g1αRα010 (3.156)

= g11R1010 (3.157)

= g11R0101 (3.158)

= g11g00R
0
101 (3.159)

= e−2λ(−e2ν)(∂rν∂rλ− ∂2
rν − (∂rν)2) (3.160)
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The third equality arises by using the relation Rµναβ = Rνµβα. After we know the Riemann
tensor, we want to calculate Ricci tensor

Rµν = Rαµαν

The non-vanishing independent Ricci tensor terms are [3]

R00 = e2(ν−λ)[∂2
rν + (∂rν)2 − (∂rν)(∂rλ) +

2

r
∂rν] (3.161)

R11 = −∂2
rν − (∂rν)2 + (∂rν)(∂rλ) +

2

r
∂rλ (3.162)

R22 = e−2λ[r(∂rλ− ∂rν)− 1] + 1 (3.163)

R33 = sin2 θR22 (3.164)

With Ricci tensor known, we want to solve the field equation Rµν = 0. We note that

R00e
2(λ−ν) +R11 = 0 (3.165)

This implies that

2

r
(∂rν + ∂rλ) = 0 =⇒ ∂r(λ+ ν) = 0 (3.166)

So, we can deduce that

λ = −ν + a (3.167)

where a is a constant. The metric becomes

ds2 = −e−2λe2adt2 + e2λdr2 + r2dΩ2 (3.168)

We can absorb e2a into dt2 by defining dt′2 = e2adt2 and again relabel t′ as t. So, the metric is

ds2 = −e−2λdt2 + e2λdr2 + r2dΩ2 (3.169)

We also solve for

R22 = 0 (3.170)

We will obtain

e2ν(−2r∂rν − 1) + 1 = 0 (3.171)

e2ν(2r∂rν + 1) = 1 (3.172)

e2ν(r)[2r
d

dr
ν(r) + 1] = 1 (3.173)

d

dr
(re2ν) = 1 (3.174)

This implies that

e2ν = 1 +
b

r
(3.175)

where b is another constant. Then, the metric becomes

ds2 = −(1 +
b

r
)dt2 +

1

1 + b
r

dr2 + r2dΩ2 (3.176)
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When r → ∞, we should have the weak field limit. In the last section, we have seen that the
component of metric g00 in the weak field limit is g00 = −(1 + 2φ). In Newtonian gravity, the
gravitational potential is φ(r) = −GMr . So, by taking the weak field limit, we can deduce that

b = −2GM (3.177)

Eventually, we obtain the Schwarzschild’s metric

−(1− 2GM

r
)dt2 +

1

(1− 2GM
r )

dr2 + r2dΩ2 (3.178)

To understand more physics of Schwarzschild’s metric, see [3], [6], [14].

4 The Geometric Interpretation of field theories

The geometrical origin of the field theories can be understood from the viewpoint of background
dependent extrinsic geometry if the Lagrangian density is in the form of the square root of the
determinant of a induced metric. For example, we have seen that in Born-Infeld theory, the
Lagrangian density is

√
−det(ηµν + Fµν) if we fix the background spacetime to be Minkowski

spacetime. Then we can just interpret the induced metric to be ηµν +Fµν and see if we can come
out with some geometrical notions of this field theory with the help of the understanding of the
concepts in the intrinsic geometric interpretation (background independent) of general relativity
that we know. Besides, string theory is also known to be a background- dependent theory by
invoking the notion of branes. In the study of string theory, the notion of the point particle has
been generalized to higher dimensional object called p-branes. p refers to the spatial dimension.
A point particle is a 0 dimensional brane, a string is a 1 dimensional brane, a membrane is a 2
dimensional brane and so on. We will see in this chapter that how the geometrical origin of some
field theories that their Lagrangian density can be formulated in the form of the square root of the
determinant of the induced metric comes from the interpretation that the branes are embedding
within a background space. Therefore, it is necessary to get ourselves familiar with the properties
of branes. In this chapter, we first study the physics of branes following the old routine by first
studying the simplest case (point particle) and then generalize it to arbitrary dimension. Then,
we make use of the properties of the brane to understand the geometrical origin of two scalar field
theories. Finally, we see what we can learn and do for the geometrization of Born-Infeld theory.

4.1 The action for brane and its diffeomorphism invariance as gauge
symmetry

4.1.1 Point particle as 0-brane

The equation of motion of a relativistic point particle moving through a D-dimensional spacetime
is given by the geodesic equation. Its corresponding action S0 is

S0 = −α
∫
ds (4.1)

α is a constant which has the dimension of Length−1. ds is the infinitesimal path taken by the
point particle. The path taken is invariant under spacetime coordinate transformation

ds2 = −gµν(x)dxµdxν (4.2)

The metric gµν describes the geometry of the background spacetime in which the brane is propa-
gating. In Minkowski flat background spacetime, the action S0 becomes

S0 = −m
∫ √

−ηµνdxµdxν (4.3)

= −m
∫ √

−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 (4.4)
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The path taken xµ of the point particle is parametrized by a real parameter τ which is usually
taken to be the proper time. xµ(τ) is called the worldline of the particle. In general, under the
parametrization, ds2 can be written into

ds2 = −gµν(x)
dxµ(τ)

dτ

dxν(τ)

dτ
dτ2 (4.5)

Then, the action becomes

S0 = −m
∫
dτ
√
−gµν(x)ẋµẋν (4.6)

where ẋµ = dxµ(τ)
dτ . This action indicates the length of the worldline in the spacetime diagram.

See figure 6.

Figure 6: Worldline diagram; u denotes the tangent 4-velocity [14].

Action is invariant under the reparametrization or diffeomorphism of worldline coordinate. This
means that the action remains unchanged if replacing the parameter τ → τ ′ = f(τ). Consequently,
dτ → dτ ′ = ∂f

∂τ dτ . Under this reparametrization, the scalar field xµ(τ) transforms to x′µ(τ ′) such
that

x′µ(τ ′) = xµ(τ) (4.7)

and

dx′µ(τ ′)

dτ
=
dx′µ(τ ′)

dτ ′
∂f(τ)

∂τ
(4.8)

The change of the action S′0 under reparametrization is

S′0 = −m
∫
dτ ′
√
−g′µν(x′)

dx′µ(τ ′)

dτ ′
dx′ν(τ ′)

dτ ′
(4.9)

= −m
∫
dτ ′

√
−dx

′µ(τ ′)

dτ ′
dx′µ(τ ′)

dτ ′
(4.10)

= −m
∫
∂f

∂τ
dτ

√
−dx

µ(τ)

dτ

dxµ(τ)

dτ
(
∂f

∂τ
)−2 (4.11)

= −m
∫
dτ

√
−dx

µ(τ)

dτ

dxµ(τ)

dτ
(4.12)

= −m
∫
dτ

√
−gµν(x)

dxµ(τ)

dτ

dxν(τ)

dτ
(4.13)

= S0 (4.14)

34



Therefore, one has complete freedom to parametrize the path xµ.

Since the action S0 in the form (4.6) contains the Lagrangian density which is a non-linear function
as the square root function is involved, it is very hard to extract information (equation of motion,
the symmetric property, etc) from the action taking the form (4.6). So, it is easier for us to have
an equivalent action which takes the simpler form by invoking the auxiliary field e(τ).

Consider the equivalent action S̃0 given by

S̃0 =
1

2

∫
dτ(e(τ)−1ẋ2 −m2e(τ)) (4.15)

where ẋ2 = gµν ẋ
µẋν . To see that (4.15) is equivalent to (4.6), we have to solve the equation of

motion for auxiliary field first. The variation of S̃0 with respect to e is

δS̃0 =
1

2

∫
dτ(− 1

e2
ẋ2δe−m2δe) (4.16)

=
1

2

∫
dτ
δe

e2
(−ẋ2 −m2e2) (4.17)

Setting δS̃0 = 0, the auxiliary field equation of motion is obtained and the equation of motion can
be solved directly which gives rise to

e2 =
−ẋ2

m2
⇒ e =

√
−ẋ2

m2
(4.18)

We then substitute the expression of e in (4.18) into S̃0

S̃0 =
1

2

∫
dτ((− ẋ

2

m2
)−

1
2 ẋ2 −m2(− ẋ

2

m2
)−

1
2 ) (4.19)

= −m
∫
dτ(−ẋ2)

1
2 (4.20)

= −m
∫
dτ

√
−gµν

dxµ

dτ

dxν

dτ
(4.21)

= S0 (4.22)

So, S̃0 is indeed equivalent to S0 if the auxiliary field equation holds for e(τ).

It is also essential to show that S̃0 has reparametrization symmetry. The reparametrization sym-
metry here refers to the changing of coordinate system of the worldline coordinate τ . The world
volume coordinate does not bear any physical meaning. It is just used to parametrize the brane
embedded in a target spacetime. So, the reparametrization symmetry is actually a gauge sym-
metry. It means the redundancy of the description of the same physical state. To see that S̃0

is invariant under reparametrization of τ, we first have to see how the field Xµ(τ) and e(τ) vary
under an infinitesimal change of parametrization τ → τ ′ = τ − ε(τ), for ε is infinitesimal.

x′µ(τ ′) = x′µ(τ − ε(τ)) = xµ(τ) (4.23)

= x′µ(τ)− ε(τ)
d

dτ
x′µ(τ) = xµ(τ) (4.24)

= x′µ(τ)− ε(τ)
d

dτ
[xµ(τ + ε)] = xµ(τ) (4.25)

= x′µ(τ)− ε(τ)
d

dτ
[xµ(τ)] = xµ(τ) (4.26)

The forth equality line arises because all the second and higher order term of ε is neglected after
expanding εxµ(τ + ε). So, the variation of xµ, δxµ is

δxµ = x′µ(τ)− xµ(τ) (4.27)

= ε(τ)ẋµ (4.28)
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The auxiliary field e(τ) transforms under infinitesimal reparametrization as

e′(τ ′)dτ ′ = e′(τ − ε)(dτ − ε̇dτ) = e(τ)dτ (4.29)

= [e′(τ)− ε∂τe′(τ)](dτ − ε̇dτ) (4.30)

= [e′(τ)− ε∂τe(τ + ε)](dτ − ε̇dτ) (4.31)

= [e′(τ)− ε∂τe(τ)](dτ − ε̇dτ) (4.32)

= e′(τ)dτ − ε̇e′(τ)dτ − ε∂τe(τ)dτ (4.33)

= e′(τ)dτ − ε̇e(τ + ε)dτ − ε∂τe(τ)dτ (4.34)

= e′(τ)dτ − ε̇e(τ)dτ − ε∂τe(τ)dτ (4.35)

= e′(τ)dτ − d

dτ
(ε · e)dτ = e(τ)dτ (4.36)

Note that all second and higher order terms of ε is neglected after all expansions in the derivation.
(4.36) leads to the expression of the variation of e field under infinitesimal reparametrization is

δe(τ) = e′(τ)− e(τ) (4.37)

=
d

dτ
(σ · e) (4.38)

The total variation of S̃0 with respect to both e field and xµ field is

δS̃0 =
1

2

∫
dτ(−δe

e2
ẋ2 +

2

e
ẋδẋ−m2δe) (4.39)

Also note that

δẋµ =
d

dτ
δxµ =

d

dτ
(εẋµ) (4.40)

= ε̇ẋµ + εẍµ (4.41)

Substitute (4.41), (4.38) and (4.28) into (4.39)

δS̃0 =
1

2

∫
dτ [

2ẋµ

e
(ε̇ẋµ + εẍµ)− ẋ2

e2
(ε̇e+ eε̇)−m2 d(εe)

dτ
] (4.42)

The last term can be neglected because it is a total derivative term. So, it becomes

δS̃0 =
1

2

∫
dτ [

2ẋµ

e
(ε̇ẋµ + εẍµ)− ẋ2

e2
(ε̇e+ eε̇)] (4.43)

=
1

2

∫
dτ(ε̇e−1ẋ2 − εe−2ẋ2ė+ 2ẋẍεe−1) (4.44)

=
1

2

∫
dτ

d

dτ
[εe−1ẋ2] (4.45)

= 0 (4.46)

Again a total derivative term is obtained and it is dropped as well. Therefore, it is shown explicitly
that S̃0 possesses reparametrization symmetry.

4.1.2 Equation of motion of 0-brane

Due to the reparametrization freedom of the 0-brane action, we can break the gauge freedom by
choosing the parameter τ such that the auxiliary field e(τ) = 1. Then, the action S̃0 becomes

S̃0 =
1

2

∫
dτ(gµν(x)ẋµẋν −m2) (4.47)
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Varying S̃0 with respect to xµ(τ) gives

δS̃0 =
1

2

∫
dτ(2gµν(x)δẋµẋν + ∂kgµν(x)ẋµẋνδxk) (4.48)

=
1

2

∫
dτ(− ∂

∂τ
(2gµν(x)ẋν)δxµ + ∂kgµν(x)ẋµẋνδxk) (4.49)

=
1

2

∫
dτ(−2ẋk∂kgµν(x)δxµẋν − 2gµν ẍ

νδxµ + δxk∂kgµν(x)ẋµẋν) (4.50)

=
1

2

∫
dτ(−2ẍνgµν(x)− 2δkgµν(x)ẋkẋν + ∂µgkν(x)ẋkẋν)δxµ (4.51)

The second equality line can be obtained via integration by part and neglecting the boundary
term. The forth equality line arises by renaming the dummy index.

The field equation for xµ(τ) is obtained by setting δS̃0 = 0. The field equation is

−2ẍνgµν(x)− 2δkgµν(x)ẋkẋν + ∂µgkν(x)ẋkẋν = 0 (4.52)

This can be written as

ẍµ + Γµkλẋ
kẋλ = 0 (4.53)

The equation of motion of 0-brane is recognized as the geodesic equation describing the shortest
path that the particle travels in the embedding manifold.

4.1.3 Generalization to p-brane

After we are getting ourselves familiar with 0-brane, we ought to extend the whole concept of an
action for a point particle (0-brane) to an action for a p-brane. The extension of S0 = −m

∫
ds

to a p-brane in a D(≥ p) dimensional background spacetime is

Sp = −Tp
∫
dµp (4.54)

where Tp is the p-brane tension and it has the unit of mass/ volume, dµp is the (p+1) dimensional
volume element given by

dµp =
√
−det[Gαβ(x)]dp+1σ (4.55)

Gαβ is the induced metric of the worldvolume σα which is the pullback of the ambient metric
gµν(x) of the background spacetime. Gαβ is given by

Gαβ(x) =
∂xµ

∂σα
∂xν

∂σβ
gµν(x) (4.56)

such that α, β = 0, 1, .., p. σ0 = τ while σ1, σ2, ...., σp are the p spacelike coordinates for the
p+ 1 worldvolume embedding in the background spacetime. The role of the induced metric Gαβ
is to measure distances on the worldvolume while the metric gµν(x) plays the role of measuring
distances on the background spacetime.

4.2 Bosonic string theory as 1-brane theory

To see how the p-brane works, it is enlightening to see the case of 1-brane which is the simplest
non trivial case going beyond the 0-brane(point particle). 1-brane is actually a bosonic string and
its action describes the propagation of this string in D dimensional background spacetime. The
worldsheet of the string is parametrized by 2 coordinates σ0 = τ and σ1 = σ with τ being timelike
and σ being spacelike which is the extension for worldline for point particle. The background
spacetime xµ(τ, σ) which is parametrized by the worldsheet coordinates can now be viewed as a
scalar field. It tells how the string propagates and oscillates through the background spacetime.
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4.2.1 The string action

Using (4.54), (4.55) and (4.56), we want to construct the string action. We assume that the
background spacetime is Minkowski flat spacetime. Then, the metric gµν(x) becomes ηµν . The
induced metric Gαβ is then given by

G00 =
∂xµ

∂τ

∂xν

∂τ
ηµν = ẋ2 (4.57)

G11 =
∂xµ

∂σ

∂xν

∂σ
ηµν = x′2 (4.58)

G10 = G01 =
∂xµ

∂τ

∂xν

∂σ
ηµν = ẋx′ (4.59)

In total,

Gαβ =

[
ẋ2 ẋx′

ẋx′ x′2

]
(4.60)

The determinant of Gαβ is then given by

det(Gαβ) = ẋ2x′2 − (ẋx′)2 (4.61)

From (4.55), the string action becomes

SNG = −T
∫
dτdσ

√
(ẋx′)2 − ẋ2x′2 (4.62)

This action is called Nambu Goto action and it can be interpreted as describing the area of the
worldsheet mapped out by the string in spacetime. Since the equations of motion is obtained by
minimizing the action, the equations of motion for the string can be thought as the smallest area
mapped out by the string in the background spacetime [25].

The Nambu Goto action is in the square root form. We can imitate the story of 0-brane here by
introducing an auxiliary field hαβ(τ, σ) to make the action simpler. hαβ here is another metric
living on the worldsheet and it differs from the induced metric Gαβ . The equivalent action is given
by

Sσ = −T
2

∫
dτdσ

√
−hhαβ ∂x

µ

∂σα
∂xν

∂σβ
gµν (4.63)

Sσ is called Polyakov action. h in the action refers to the determinant of hαβ . To show the
equivalence between Sσ and SNG, we first have to note that varying Sσ with respect to the
metrical field hαβ gives rise to energy momentum tensor as explained in section 3.2.2

Tαβ = − 2

T

1√
−h

δSσ
δhαβ

(4.64)

The equation of motion for the field hαβ is obtained by setting the variation in the action Sσ with
respect to the hαβ to be zero, δSσ = 0

δSσ =

∫
δSσ
δhαβ

δhαβ (4.65)

= −T
2

∫
dτdσ

√
−hδhαβTαβ (4.66)

= 0⇔ Tαβ = 0 (4.67)
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Using the same technique in the section 3.2.1, δ
√
−h is

δ
√
−h = −

√
−h
2

hαβδh
αβ (4.68)

So, the variation of Sσ with respect to hαβ , δSσ is

δSσ = −T
2

∫
dτdσ((δ

√
−hhλa∂λx · ∂ax) + (

√
−hδhαβ∂αx · ∂βx)) (4.69)

= −T
2

∫
dτdσ

√
−hδhαβ(−1

2
hαβh

λa∂λx · ∂ax+ ∂αx · ∂βx) (4.70)

For Tαβ is

Tαβ = −1

2
hαβh

λa∂λx · ∂ax+ ∂αx · ∂βx (4.71)

The condition that Tαβ = 0 implies

1

2
hαβh

λa∂λx · ∂ax = ∂αx · ∂βx = Gαβ (4.72)

Taking the square root of minus of the determinant of the tensor with indices αβ gives rise to

1

2

√
−hhλa∂λx · ∂ax =

√
−det(Gαβ) (4.73)

Thus, Sσ is shown to be equivalent to SNG when considering the equation of motion for hαβ of
Sσ.

4.2.2 Symmetries of 1-brane

The Polyakov action (4.63) possesses one global Poincaré symmetry and 2 local symmetries which
are reparametrization symmetry and Weyl symmetry. The invariance of a theory under global
transformation gives rise to conserved current via Noether’s theorem while the invariance of the
theory under local transformations in this case is a sign of absent degree of freedom pointing
to the gauge symmetry. Reparametrization symmetry has been shown explicitly for 0-brane in
section 4.1.1. It is intuitively obvious to expect the extended action of p-brane should also have
parametrization freedom because the propagating of p-brane in the background spacetime should
not be affected by the way to parametrize the worldvolume. Therefore, we are left with Poincaré
transformation and Weyl transformation.

Poincaré global transformation

Poincaré transformation is the translational extension of Lorentz transformation. The infinitesimal
form of Poincaré transformation is written as

δxµ(τ, σ) = aµνx
ν(τ, σ) + bµ (4.74)

For Polyakov action, the transformation solely contributed by Poincaré transformation also re-
quires that the field hαβ remains unchanged, δhαβ(τ, σ) = 0. The scalar field xµ(τ, σ) are defined
on the worldsheet. bµ comes from the translation. The coefficient aµν originates from Lorentz
transformation, with both indices down, aµν is antisymmetric,

aµν = −aνµ (4.75)
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To show that Polyakov action is invariant under Poincaré transformation, vary Sσ with respect to
xµ. Using (4.74), it gives

δSσ = −T
2

∫
dτdσ

√
−hhαβ(∂α(δxµ)∂βx

ν + ∂αx
ν∂β(δxµ))gµν (4.76)

= −T
∫
dτdσ

√
−hhαβ∂α(aµkx

k + bµ)∂βx
νgµν (4.77)

= −T
∫
dτdσ

√
−h(aνk)(hαβ∂αx

k∂βx
ν) (4.78)

= 0 (4.79)

The last equality arises because aνk is antisymmetric while hαβ∂αx
k∂βx

ν is symmetric. Their
contraction gives zero. So, the Polyakov action is indeed invariant under Poincaré transformation.

Weyl local transformation

Weyl transformations are transformations that change the scale of the metric hαβ

hαβ(τ, σ)→ h′αβ(τ, σ) = e2φ(σ)hαβ(τ, σ) (4.80)

while leaving xµ(τ, σ) unchanged. To show that Polyakov action is invariant under Weyl transfor-
mation, we first have to observe how

√
−h transforms

√
−h′ =

√
−det(h′αβ) (4.81)

=
√
−e4φ(σ)det(hαβ) (4.82)

= e2φ(σ)
√
−h (4.83)

Then, observe that
√
−hhαβ transforms as

√
h′h′αβ =

√
−he2φ(σ)e−2φ(σ)hαβ (4.84)

=
√
−hhαβ (4.85)

Thus, Polyakov action is invariant under Weyl transformation.

Reparametrization symmetry

As mentioned before, reparametrization symmetry is a local symmetry for the worldsheet. Under
the changing of the parameter, σ to σ′ = f(σ), the Polyakov action is invariant. The field xµ and
hαβ transforms under reparamnetrization as

xµ(τ, σ) = x′µ(τ, σ′) (4.86)

h′αβ(τ, σ′) =
∂fγ

∂σα
∂fa

∂σβ
hγa(τ, σ′) (4.87)

Gauge fixing using Weyl symmetry and reparametrization symmetry to make the
intrinsic metric hαβ flat.

Since the theory of 1 brane is invariant under reparametrization and Weyl transformations, a
gauge fixing can be made such that the intrinsic metric hαβ becomes flat. The metric hαβ is
symmetric and it has 3 independent components which are h00(σ), h11(σ) and h10(σ) = h01(σ).
Since the theory has reparametrization freedom, use a set of parameters σ′ = f(σ) such that the
metric hαβ is brought into the form h(σ)ηαβ , for h(σ) is a scalar function. Then, one can use the
property of Weyl symmetry to eliminate the function h(σ), namely

e2φ(σ)h(λ) = 1 (4.88)
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Then, under gauge fixing, hαβ = ηαβ . The combination of reparametrization and Weyl transfor-
mation is called conformal transformation. Since gauge symmetries are local symmetries, so the
metric hαβ can only be brought into a flat metric locally. One can only bring hαβ into ηαβ in the
whole world sheet if the worldsheet is free of topological obstructions which means that the Euler
characteristic is zero.

4.2.3 Field equation for the Polyakov Action and the Boundary Conditions

Suppose that the worldsheet topology allows gauge fixed flat intrinsic metric hαβ = ηαβ to be
extended globally, the Polyakov action becomes

Sσ =
T

2

∫
dτdσ(ẋ2 − (x′)2) (4.89)

To derive the equation of motion for the field xµ, setting the variation of Sσ with respect to the
field xµ equal to zero. The variation δSσ is

δSσ =
T

2

∫
dτdσ(2ẋδẋ− 2x′δx′) (4.90)

= T

∫
dτdσ(

∂xµ

∂τ

∂

∂τ
(δxµ)− ∂xµ

∂σ

∂

∂σ
(δδxµ)) (4.91)

= T

∫
dτdσ(−∂

2xµ

∂τ2
δxµ +

∂

∂τ
(
∂xµ

∂τ
δxµ) +

∂2xµ

∂σ2
δxµ −

∂

∂σ
(
∂xµ

∂σ
δxµ)) (4.92)

= T

∫
dτdσ((−∂2

τ + ∂2
σ)xµ)δxµ + T

∫
dσ[ẋµδxµ]

τf
τi − T

∫
dτ [x′δxµ]σ=π

σ=0 (4.93)

The third equality arises via using integration by part. Let us look at the boundary term first

T

∫
dσ[ẋµδxµ]

τf
τi − T

∫
dτ [x′δxµ]σ=π

σ=0 (4.94)

The second term is familiar. The equation of motions are derived by requiring that δxµ = 0 at
τ = τf and τi. So, the second term varnishes. The third term vanishes under 3 conditions

Condition 1 : Closed string

For closed strings, σ is taken to have the periodic condition

xµ(τ, σ + π) = xµ(τ, σ) (4.95)

This implies that

δxµ(τ, σ = 0) = δxµ(τ, σ = π) (4.96)

This makes the second boundary term vanishes. The equation of motion for this case is

(∂2
τ − ∂2

σ)xµ(τ, σ) = 0 (4.97)

with boundary condition (4.95).

Condition 2 : Open string (Neumann Boundary Condition)

In this condition, we set the derivative of xµ with respect to σ varnishes at the σ boundary

∂σx
µ(τ, σ = 0) = ∂σx

µ(τ, σ = π) = 0 (4.98)

The equation of motion is again the one in (4.97) with Neumann boundary condition (4.98). Note
that Neumann boundary condition preserves Poincaré symmetry because

∂σ(xµ)|σ=0,π = ∂σ[aµνx
ν + bµ]|σ=0,π = 0 (4.99)
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Condition 3: Open string (Dirichlet Boundary Condition)

In this condition, we kill the σ boundary term by setting the value of xµ to be constant at the σ
boundary

xµ(τ, σ = 0) = xµ(τ, σ = π) = cµ (4.100)

The equation of motion is then the one in (4.97) with Dirichlet boundary condition (4.100). The
Dirichlet boundary condition condition does not preserve Poincaré symmetry since

aµνx
ν |σ=0,π + bµ 6= cµ (4.101)

Therefore, under a Poincaré transformation, the end of the open string changes.

4.3 Dirac-Born-Infeld theory

4.3.1 D-brane

From the last section, it is shown that the p-brane action is expressed as an invariant volume
form with the induced metric involved. This immediately implies the natural geometrical origin
of p-brane as a p + 1-dimensional hypersurface embedded in a D(≥ p)-dimensional manifold. In
this section, a specific type of brane which is called D-brane is studied. The action of the D-
brane is the so called Dirac Born-Infeld action and again D-brane theory has a very nice geometric
interpretation. We recall that there exist 2 type of boundary conditions for closed string in 1-brane
theory. One is Neumann boundary condition. For Neumann boundary condition, the string can
oscillate and its endpoints can still move along the boundaries as long as their derivatives vanish at
the boundaries. The other one is Dirichlet boundary condition. For Dirichlet boundary condition,
the string can oscillate but the endpoints are fixed at the boundary. One can of course extend
these 2 boundary conditions to p-brane. Now, we consider the situation that Dirichlet boundary
condition holds for some coordinates while Neumann boundary condition holds for the others. So,
at the end points of the brane, we have

∂αx
µ = 0 for µ = 0, 1, ..., p (4.102)

xν = cν for ν = p+ 1, ..., D − 1 (4.103)

So, the end points of the brane are fixed and lied in a p+1-dimensional hypersurface embedding in
a D-dimensional spacetime. See figure 5. This p+ 1 dimensional hypersurface is called D-brane.
D here stands for Dirichlet condition while p is the spatial dimension of the brane. The global
Poincare symmetric group is also broken into

ISO(1, D − 1)→ ISO(1, p− 1)× SO(D − p− 1) (4.104)

SO(D − p− 1) stands for the rotation in the direction imposed by Dirichlet boundary condition.

Figure 7: D-brane [22].

Note that the timelike coordinate x0 cannot have the Dirichlet boundary condition. D-brane
hypersurface can be thought as a dynamical object on its own. This will become obvious when
the action of D-brane under a gauge fixing is introduced in the next section.
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4.3.2 DBI action

In natural unit, the action for a brane in the form of invariant volume for which the background
spacetime is flat Minkowski spacetime is

S = −
∫
dp+1σ

√
−det[∂x

M

∂σα
∂xN

∂σβ
ηMN ] (4.105)

Let the background spacetime coordinates be N = (J,K), for J denotes the coordinates imposed
by the Neumann boundary condition and K denotes the one imposed by Dirichlet boundary con-

dition. In conventional unit, there will be a dimensional correction parameter ΛD

κ which has the
meaning of the brane tension but here we crank it to 1. Since the action (4.105) has reparametriza-
tion freedom, we fix the gauge freedom by imposing static gauge

σα = xα (4.106)

This implies the induced metric becomes

∂xM

∂σα
∂xN

∂σβ
ηMN =

∂σJ
∂σα

∂σJ

∂σβ
+
∂xK
∂σα

∂xK

∂σβ
(4.107)

=
∂σa

∂σα
∂σJ

∂σβ
ηaJ + ∂αxK∂βx

K (4.108)

= δaαη
J
βηaJ + ∂αxK∂βx

K (4.109)

= ηαβ + ∂αxK∂βx
K (4.110)

Define the scalar field xK to be φK . Then the action (4.105) becomes

SDBI = −
∫
dp+1x

√
−det[ηαβ + ∂αφK∂βφK ] (4.111)

If we are interested in the situation with small partial derivative ∂αφ
K , we can expand the deter-

minant form to leading order term

SDBI = −
∫
dp+1x

√
1 + ∂αφK∂αφK (4.112)

Doing a further expansion to get rid of square root gives

SDBI =

∫
dp+1x(1− 1

2
∂αφ

K∂αφK + .....) (4.113)

The DBI action has a geometric interpretation as the world volume action of a p+ 1-dimensional
D-brane embedded in D-dimensional Minkowski space. The scalar field φ is interpreted as the
fluctuation of the D-brane in the transverse direction.

4.3.3 Nonlinearly realised symmetries of DBI theory and minimal coupling to matter

We consider the DBI action describing a D4 brane embedded in 5-dimensional Minkowski space.
The action is

SDBI = −
∫
d4x
√

1 + (∂φ)2 (4.114)

For (∂φ)2 = ∂αφ∂αφ. This DBI action is protected by a nonlinearly realised 5 dimensional
Poincare invariance ISO(1, 4) for an unwarped brane. This action is obviously invariant under
the linearly realised ISO(1, 3) subgroup (Mαβ , Pα). One nonlinearly realised symmetric group is
P4 corresponding to the translation in the fifth dimension. This shift transformation is

φ→ φ+ b (4.115)
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For b is a constant. This symmetric transformation is obvious because the action takes the form
of partial derivative of φ.

The other nonlinearly realised symmetric group is M4α corresponding to the Lorentz transfor-
mation in the 5th dimension. If the signature of the metric is chosen to be (−,+,+,+), the
infinitesimal variation under this transformation is

δvφ(x′) = φ′(x′)− φ(x) = vαx
α (4.116)

δvx
α = −vαφ(x) (4.117)

Therefore, under the infinitesimal fifth dimensional Lorentz transformation,

φ(xα)→φ′(x′α) = φ(xα) + vαx
α (4.118)

φ′(xα − vαφ(x)) = φ(xα) + vαx
α (4.119)

φ′(xα)− φ(x)vα∂αφ
′(x) = φ(xα) + vαx

α (4.120)

φ′(xα)− φ(x)vα∂αφ(x+ vαφ(x)) = φ(xα) + vαx
α (4.121)

φ′(xα)− φ(x)vα∂αφ(x) = φ(xα) + vαx
α (4.122)

The fifth line arises by further expanding and neglect all the second and higher order term of vα

since vα is infinitesimal. This leads to the relation that

δvφ(x) = φ′(x)− φ(x) (4.123)

= vαx
α + φ(x)vα∂αφ(x) (4.124)

Since the fifth dimensional Lorentz transformation takes the theory out of the static gauge, so a
compensating world-volume reparametrization is needed to restore the static gauge. This explains
the variation (4.124). One can check by direct substitution that the Lagrangian of the DBI
action shifts by a total derivative term which can be neglected under this transformation. This
transformation can also be viewed from another more inspiring perspective. Recall that the
induced action for DBI theory is Gαβ = ηαβ + ∂αφ∂βφ. A careful calculation using (4.124) shows
that the infinitesimal variation of the induced metric under this transformation is

δvGαβ = ∂αφ∂βδvφ+ ∂βφ∂αδvφ (4.125)

= ∂αφ(vβ + ∂ν(φvκ∂κφ) + ∂βφ(vα + φvκ∂κφ)) (4.126)

= εκv∂κGαβ + ∂αε
κ
vGκβ + ∂βε

κ
vGκα (4.127)

= LvGαβ (4.128)

For εκv = vκφ(x). (4.127) is recognized as Lie derivative on the induced metric. The corresponding
diffeomorphism is induced by the vector field εκv . Hence, the transformation on φ can be viewed
as to induce a field dependent diffeomorphic coordinate transformation. Then, we can imitate
the story in general relativity to use this induced diffeomorphism to couple the scalar field φ with
matter field Φ. For the minimally coupling matter field Φ with respect to the induced metric
Gαβ , its matter action Sm must also transform under the induced diffeomorphism symmetry. For
example, scalar matter field transforms as

δvΦ = LvΦ = vαφ∂αΦ (4.129)

Then, the full action SDBI + Sm is invariant under the DBI symmetries. A simple example for
Sm can be

Sm =

∫
d4x
√
−G(−1

2
Gαβ∂αΦ∂βΦ− m2

Φ

2
Φ2) (4.130)

For mΦ is the mass of Φ scalar.

44



4.4 Special Galileon theory

4.4.1 The structure of Special Galileon

The other scalar field theory that we desire to study is the special galileon theory. It is found
out by Jiri Novotny that the speicial galileon theory also has a very similar extrinsic geometric
interpretation with the Dirac Born Infeld theory but a complex manifold is needed. The special
galileon is the sum of all the galileon terms with even numbers of fields in D-dimension. The
special galileon action is given as

Ssgal = −1

2

∫
dDx

bD+1
2 c∑

n=1

αn−1

(2n− 1)!Λ(D+2)(n−1)
(∂φ)2LTD2n−2 (4.131)

where Λ is an energy scale and α is a dimensionless parameter. Note that in the section of DBI

theory, we work in the unit such that ΛD

α = 1 so that we do not need to keep track of these
parameters in DBI theory. We show the explicit action of special galileon with fixed relative
coefficients here. LTDn are defined by

LTDn =
∑
p

(−1)pηµ1p(ν1)......ηµnp(νn)φµ1ν1 ...φµnνn (4.132)

for φµν = ∂µ∂νφ. The sum runs over all permutations of ν indices with the sign of permutation
(−1)p. We will work out explicitly for the case D = 4 as an example. The building blocks needed
to construct the action in D = 4 case are

LTD0 = (−1)0 = 1 (4.133)

LTD2 = ηµ1ν1ηµ2ν2φµ1ν1φµ2ν2 − ηµ1ν2ηµ2ν1φµ1ν1φµ2ν2 (4.134)

= φν1ν1φ
ν2
ν2 − φ

ν2
ν1φ

ν1
ν2 (4.135)

= (�φ)2 − (∂µ∂νφ)2 (4.136)

To put everything together with the coefficients, the action for D = 4 is

S = −1

2

∫
d4x((∂φ)2 +

α

6Λ6
(∂φ)2[(�φ)2 − (∂µ∂νφ)2]) (4.137)

The individual galileon terms have the Galileon symmetry. The infinitesimal variation of the
galileon field φ under Galileon transformation is

δφ = c+ bµx
µ (4.138)

The special galileon (sum of the even galileon terms) enjoy another higher-order shift symmetry

δφ = sµν(xµxν − α

ΛD+2
∂µφ∂νφ) (4.139)

At first sight, the special galileon theory seems unrelated to the story of the extrinsic geometry
of brane embedded in a background manifold. However, the geometric construction of the special
Galileon action using D dimensional brane propagating in 2D dimensional flat pseudo-riemannian
space is shown by Jiri Novotny.

4.4.2 The geometrical origin of the Special Galileon

Let us assume the target space to be a D-dimensional complex space MD
C with coordinates

Zµ = Xµ +
i

α
Lµ (4.140)
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Its complex conjugate is

Z̄µ = X − i

α
Lµ (4.141)

where Xµ and Lµ are real coordinates. MD
C is equipped with a hermitian form h defined as

h = ηµνdZ
µ ⊗ dZ̄ν (4.142)

= ηµν([dXµ +
i

α
dLµ]⊗ [dXν − i

α
dLν ]) (4.143)

= ηµν [dXµ ⊗ dXν +
1

α2
dLµ ⊗ dLν ] + ηµν(

−i
α

)[dXµ ⊗ dLν − dLµ ⊗ dLν ] (4.144)

The real part of this form defines a metric with signature (2, 2(D − 1)) on MD
C and it can be

treated as a real 2D dimensional space

ds2 = ηµν [dXµ ⊗ dXν +
1

α2
dLµ ⊗ dLν ] (4.145)

= ηµν [dXµ ⊗ dXν − i

α
dXµ ⊗ dLν +

i

α
dLµ ⊗ dXν +

1

α2
dLµ ⊗ dLν ] (4.146)

= ηµν [dXµ +
i

α
dLµ][dXν − i

α
dLν ] (4.147)

= dZ · dZ̄ (4.148)

The imaginary part of h, ω produces a symplectic Kahler form

ω = ηµν(
−1

α
)[dXµ ⊗ dLν − dLµ ⊗ dLν ] (4.149)

=
1

α
ηµνdX

µ ∧ dLν (4.150)

=
1

2α
ηµν [dXµ ∧ dLν − dLµ ∧ dXν ] (4.151)

=
i

2
ηµν [dXµ ∧ dXν − i

α
dXµ ∧ dLν +

i

α
dLµ ∧ dXν +

1

α2
dLµ ∧ dLν ] (4.152)

=
i

2
ηµν(dXµ +

i

α
dLµ) ∧ (dXν − i

α
dLν) (4.153)

=
i

2
ηµνdZ

µ ∧ dZ̄ν (4.154)

The antisymmetric property of the wedge product is used in the third equality line. The term
dX ∧ dX and dL∧ dL is added in the forth equality line because these terms contract with ηµν to
give zero.

The forms (4.148), (4.150) and (4.154) are all invariant with respect to the transformations

Z ′µ = RµνZ
ν +Aµ (4.155)

This can be viewed as the complex version of the Poincaré transformations where the rotation
matrix Rµν ∈ U(1, D − 1) satisfies the relation of Lorentz transformation

R+ · η ·R = η (4.156)

The complex vector Aµ = c+ i
αb is the translation in MD

C . This transformations generate a group
which can be interpreted as the complex generalization of the Poincaré group ISO(1, D − 1).

To imitate the story in DBI theory, we assume a D-dimensional real Minkowski manifold MD
R

embedded in MD
C . The embedding is parametrized by real parameters σµ with µ = 0, ..., D − 1

Zµ = Zµ(σ) = Xµ(σ) +
i

α
Lµ(σ) (4.157)

46



We choose a gauge such that the Kahler form vanishes on the brane MD
R

ω|MD
R

= 0 (4.158)

This constraint implies that

ηµνdZ
µ ∧ dZ̄ν = ηµν [dZµ ⊗ dZ̄ν − dZ̄ν ⊗ dZµ] (4.159)

= ηµν [
∂Zµ

∂σα
∂Z̄ν

∂σβ
− ∂Z̄ν

∂σα
∂Zµ

∂σβ
]dσα ⊗ dσβ (4.160)

= [
∂Z

∂σα
· ∂Z̄
∂σβ

− ∂Z̄

∂σα
· ∂z
∂σβ

]dσα ⊗ dσβ (4.161)

= 0 (4.162)

This implies that

∂Z

∂σµ
· ∂Z̄
∂σν

− ∂Z̄

∂σµ
· ∂Z
∂σν

= 0 (4.163)

Alternatively, the constraint induced by the gauge satisfying (4.158) induces the relation in the
form of real coordinates equivalent to (4.163) is

∂X

∂σµ
· ∂L
∂σν

− ∂L

∂σµ
· ∂X
∂σν

= 0 (4.164)

The derivation of (4.164) is similar to the the derivation of (4.163) but one should start with (4.150)
instead of (4.154). This constraint is invarint with respect to the transformation (4.155).On the
brane MD

R , there is a real induced metric

Gαβ =
∂Zµ

∂σα
∂Z̄ν

∂σβ
ηµν (4.165)

Our next step is to proceed in the way analogous to the construction of DBI-like action. In order to
do that, we have to further fix the gauge freedom. This is always allowed due to reparametrization
freedom. We introduce a new coordinates xµ on the brane as

xµ = Xµ(σ) (4.166)

In this new parametrization, the embedding is

Xµ(x) = xµ, Lµ = Lµ(x) (4.167)

In Special Galileon theory, the fluctuation of the brane is effectively described by the fields Lµ(x).
We first have to consider both the constraints (4.164) and (4.167)

∂Xµ

∂xα
∂Lµ
∂xβ

=
∂Lν

∂xα
∂Xν

∂xβ
(4.168)

∂xµ

∂xα
∂Lµ
∂xβ

=
∂Lν

∂xα
∂xν
∂xβ

(4.169)

δµα
∂Lµ
∂xβ

= δνβ
∂Lν

∂xα
(4.170)

∂βLα = ∂αLβ (4.171)

(4.171) implies that

Lα = ∂αφ(x) (4.172)
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It is seen that the additional constraint reduces the number of effective degree of freedom of the
special Galileon field φ. The explicit induced metric can then be found as

Gαβ = ηαβ −
i

α
∂βLα +

i

α
∂αLβ +

1

α2
ηµν∂αL

µ∂βL
ν (4.173)

= ηαβ −
i

α
∂β∂αφ+

i

α
∂α∂βφ+

1

α2
ηµν∂α∂

µφ∂β∂
νφ (4.174)

= ηαβ +
1

α2
∂α∂νφ∂

ν∂βφ (4.175)

In this gauge, we therefore have the embedding of the brane as

Xµ(x) = xµ, Lµ(x) = ηµν∂νφ (4.176)

The gauge condition (4.167) is not invariant under the transformation (4.155). So, it is necessary
to combine the traget space transformation (4.155) with compensated reparametrization in order
to preserve the gauge condition (4.176). As a result, the field φ(x) will transform nonlinearly
under (4.155).

Let us consider the complex translation first,

Z ′µ = Zµ + (cµ +
i

α
bµ) (4.177)

xµ is shifted by cµ while Lµ(x) is shifted by bµ

X ′µ(x) = xµ + cµ, L′µ(x) = ηµν∂νφ(x) + bµ = ηµν∂ν [φ(x) + b · x] (4.178)

Due to gauge freedom, we define a new parameter x′µ as

x′µ = xµ + b · x (4.179)

Then we can redefine the field φ using this new parameter,

φ′(x′) = φ(x) + b · x (4.180)

Since it is a translation, ∂′ν = ∂ν , we have

L′′(X ′) = L′µ(x(x′)) = ηµν∂′νφ
′(x′) (4.181)

Hence the gauge (4.176) is preserved using the redefined field φ′(x′). (4.180) corresponds to the
symmetric Galileon transformation (4.138) for each individual Galileon term. So, the complex
translation can be viewed as the combination of spacetime translation and the Galileon transfor-
mation of the Galileon field.

For the complex Lorentz transformation Rµν ∈ U(1, D − 1), it is written as

R = eM+iG = Λ + iU (4.182)

where Λ and U are real matrices,M and G are real generators. The generators satisfy the algebra

ηµρMρ
ν + ηνρMρ

µ = 0 (4.183)

ηµρGρν − ηνρGρµ = 0 (4.184)

The transformation due to Rµν leads to

X ′µ(x) = Λµνx
ν − 1

α
Uµν L

ν(x) = Λµνx
ν − 1

α
Uµν η

νρ∂ρφ(x) (4.185)
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L′(x) =
1

α
ΛµνL

ν(x) + Uµν x
ν =

1

α
Λµν∂

νφ(x) + Uµν x
ν (4.186)

If U = 0, λ = eM ∈ O(1, D − 1) form a subgroup of U(1, D − 1). The transformation generated
by O(1, D − 1) is realised to be linear

x′µ = Λµνx
ν (4.187)

Then, from (4.186), it is obvious that the new redefined field using the parameter (4.187) is

φ′(x′) = φ(x) (4.188)

which preserves the gauge condition (4.176). The remaining transformations generated by G are
identified as hidden duality transformation discussed in [17]. The compensating gauge transfor-
mation for the case U 6= 0 is

x′µ(x) = Λµνx
ν − 1

α
Uµν L

ν(x) = Λµνx
ν − 1

α
Uµν η

νρ∂ρφ(x) (4.189)

Consequently, the redefined field after the transformation to preserve the gauge condition is [17]

φ′(x′) = φ(x)− 1

2
x · ∂φ(x) +

1

2
ηµν(Λµρx

ρ − 1

α
Uµρ η

ρα∂αφ(x))(
1

α
Λνση

σβ∂βφ(x) + Uνσx
σ) (4.190)

(4.190) corresponds to the nonlinearly realised special Galileon transformation (4.139). The action∫
dDx

√
det(Gµν) is also shown in [17] to be equivalent to the quartic formulation of Special

Galileon action through a complicated process which is not enlightening to show here.

As a summary, in term of geometric interpretation, the Galileon field φ is interpreted as the scalar
degree of freedom depicting the fluctuation of a D-dimensional brane embedded in 2D-dimensional
R2,2D−2 Kahler manifold. The nonlinearly realised symmetry of Special Galileon can be explained
as the non-linear realization of the target space symmetry group U(1, D − 1).

4.4.3 Minimal coupling of the Special Galileon with Matter field

Within the formalism of brane construction, the induced metric of the Special Galileon theory is
found to be

Gαβ = ηαβ +
1

α2
∂α∂νφ∂

ν∂βφ (4.191)

The higher order shift symmetry is given in (4.139). With the induced metric and the higher
order shift symmetry known, we are well equipped with all the essential elements to do the matter
coupling as what we have shown in DBI theory. It is easy to checked that under the higher order
shift, the infinitesimal variation of the induced metric can be expressed as a Lie derivative along
the following vector field vµ

δGαβ = LvGαβ , vµ = − 2α

ΛD+2
Sµν∂νφ (4.192)

To do the minimal coupling with matter in the diffeomorphism invariant way, we follow the same
prescription in DBI theory by letting the matter fields transform under the special galileon higher
order shift symmetry as a Lie derivative induced by the vector field vµ For instance, we can couple
Ssgal with a spin-1 particle Aµ with mass mA this time.

SA =

∫
dDx
√
−G(−1

4
FαβF

αβ − m2
A

2
AαA

α) (4.193)

where Fαβ = ∂αAβ − ∂βAα and its indices are manipulated by the induced metric. The vector
field Aα transforms under special Galileon symmetry as

δAα = LvAµ = − 2α

ΛD+2
sµν(∂νφ∂µAα + ∂ν∂αφAµ) (4.194)
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4.5 The geometric interpretation of Born-Infeld theory ?

We have seen the geometric interpretation of two scalar field theories as D-brane embedded in a
background spacetime. What about Born-Infeld theory for which the field is the electromagnetic
field Aµ? If we fix the background spacetime to be Minkowski spacetime, we note that the Born-
Infeld Lagrangian is invariant under Lorentz trnasformation. Born-Infeld Lagrangian is shown
before to be

L =
√
−det(ηµν + Fµν)− 1 (4.195)

To see Lorentz invariance of det(ηµν +Fµν), we first realize that the determinant of any arbitrary
matrixM with componentsMµν is the same with the determinant of the matrix M̄ with component
Mµν .

Mµν = ηµaηνbM
ab (4.196)

= ηµaM
abηνb (4.197)

In matrix notation

M = ηM̄η (4.198)

Taking the determinant of both sides, we obtain

detM = det(ηM̄η) = (det(M̄))(detη)2 = detM̄ (4.199)

We consider a Lorentz transformation x′µ = Λµνx
ν with (detΛ)2 = 1. After Lorentz transformation,

we see that

η′µν + F ′µν = ΛµρΛνσ(ηρσ + F ρσ) = Λµρ (ηρσ + F ρσ)Λνσ (4.200)

Again, in the matrix notation

η̄′ + F̄ ′ = Λ(η̄ + F̄ )ΛT (4.201)

Taking determinant of both side,

det(η̄′ + F̄ ′) = det(η̄ + F̄ ) (4.202)

This proves the Lorentz invariance of the Born Infeld theory for the background spacetime to be
Minkowski spacetime. The induced metric in this case can be written as

Gµν = ηµν + Fµν (4.203)

The Born-Infeld vector Aµ only contributes to the antisymmerical part of the induced metric. We
have seen before that both DBI theory and speial Galileon theory tranform covariantly under the
induced diffeomorphism. The induced diffeomorphism is originated from the nonlinearly realised
symmetry for which that the scalar fields mix with the spacetime coordinates. For BI theory, if
there exist an induced diffeomorphism, both symmetrical part ηµν and antisymmetrical part Fµν
have to transform covariantly separately under the induced diffeomorphism. This leaves only the
linearised Poincaré symmetry. This can be seen by considering the following arguments. Consider
a tensor aµν . Decompose aµν into its symmetrical part and antisymmetrical part

aµν =
1

2
(aµν + aνµ) +

1

2
(aµν − aνµ) (4.204)

= Sµν +Aµν (4.205)
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The symmetrical part is Sµν = 1
2 (aµν+aνµ) and the antisymmetrical part is Aµν = 1

2 (aµν− 1
2aνµ).

Under a general transformation D. Sab transforms as

Sµν = Da
µD

b
νSab (4.206)

= Da
µD

b
νSba (4.207)

= Sνµ (4.208)

Under transformation, Sµν is still symmetric. Similarly, for the antisymmetrical part Aab,

Aµν = Da
µD

b
νAab (4.209)

= −Da
µD

b
νAba (4.210)

= −Aνµ (4.211)

Aµν is still antisymmetric under the transformation. Hence, Sµν and Aµν form invariant subspace
of the representations D ∈ G where G is the group of the transformations. This arguments also
hold to the case aµν = ηµν + Fµν . So, under induced diffeomorphism, ηµν will not interact with
Fµν . The only realised transformation that will leave the theory invariant and also Fµν to be
antisymmetric with the fixed Minkowski spacetime background is Lorentz trnsformation. This
implies the components of the field Aµ are bonded together to transform as a vector field and it
will not mix with the spacetime coordinates.

We have seen that for scalar field theories the infinitesimal variation of the extrinsic metric induced
by the diffeomorphism caused by the nonlinearly realised symmetry can be formulated as a Lie
derivative and the induced metric can be used to couple the scalar field with matter field in a
diffeomorphism invariant way with respect to the non-linearly realised symmetry. Since there
is no nonlinearly realised symmetry for Born-Infeld theory, this implies the similar geometrical
interpretation as happened in DBI theory and special Galileon theory cannot be applied to BI
theory.

5 Classical Double Copy

5.1 Introduction to Double Copy

In physics, scattering amplitude is a function of momenta and spin describing the probability
that a given scattering process occurs. Quantum field theory (QFT) is the theoretical framework
used to predict the scattering amplitude. In it, Feynman diagrams which are a diagrammatic
organization of the perturbative expansion of scattering amplitudes are used to calculate the
scattering amplitude for a given process. Our topic in this chapter is mainly motivated by a kind
of duality in the study of the scattering amplitude. This duality is called color-kinematics duality
or Bern-Carrasco-Johansson (BCJ) duality. Basically, BCJ duality has 2 elements [4]:

1) Amplitudes can be rearranged in a way that their kinematic structures satisfy a kinematic
analog of Jacobi identity.

2) Amplitudes in the dual form can be double copied to generate the new amplitude in other
theories. Such a story produces a web of relations of the form graviton = gluon2 and special
galileon = pion2.

Gluon is the gauge boson in strong interaction and it is the excitation of SU(3) gauge field. The
pion is one of the particle mediating the interaction between a pair of nucleons and it is the scalar
field in non-linear sigma model (NLSM). Jacobi identity in element 1) is the binary operation
describing how the result of the operation is affected by the order of evaluation. For example, the
color factor Jacobi identity in gauge theory is [13]

cs + ct + cu = 0 (5.1)
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where cs = fa1a2bf ba3a4 , ct = fa1a3bf ba4a2 , cu = fa1a4bf ba2a3 . The numerical factor fabc is the
structure constant of the gauge Lie group in non-Abelian Yang Mills theory. The gauge field Aµ(x)
is a traceless hermitian matrix of fields and it can be expanded in the following way

Aµ(x) = Aaµ(x)T a (5.2)

for T a matrices are the generator of the gauge group. The generator matrices obey commutation
relations

[T a, T b] = ifabcT c (5.3)

What it means for element 1) of BCJ duality is that one can always find a representation such
that the parallel relations hold for color and kinematic factors. [13]

ci + cj + ck = 0⇔ ni + nj + nk = 0 (5.4)

The study of this duality in scattering amplitude is beyond the scope of this thesis. The discussion
of the scattering amplitude in the introduction section of this chapter only serves for the purpose
of motivation for another relevant duality in the level of the classical solutions of different field
theories and the details will not be discussed. For a thorough discussion, see [4] and [13]. We
only outline the general idea here and we will not go deep to discuss the concepts in scattering
amplitude.

In BCJ duality, the theory of a perturbative duality between gauge theory and gravity is called
double copy. The theory of double copy states that color numerator in the scattering amplitude of
gauge theories can be replaced by kinematic numerator in a well defined way to give the gravity
amplitudes. The general form of an m-point, L-loop amplitude in non-Abelian gauge theory may
be written as [15]

A(L)
m = iLgm−2+2L

∑
i∈Γ

∫ L∏
l=1

dDpl
2πD

1

Si

nici
παip

2
αi

(5.5)

where the sum is over all cubic topologies Γ ; ni and ci are kinematic numerators and color factors
respectively. g is the coupling constant. The numerators ni are chosen to satisfy the similar Jacobi
identities to the color factors.

The double copy states that the gravity amplitude can be obtained in the following way [15]

M(L)
m = iL+1(

κ

2
)m−2+2L

∑
i∈Γ

∫ L∏
l=1

dDpl
(2π)D

1

Si

niñi
παip

2
αi

(5.6)

Comparing (5.5) with (5.6), the coupling constant g is replaced by the gravitational coupling
constant for κ =

√
16πGN ; the color factor ci is replaced by the kinematic numerators ñi.

Similarly one can start with (5.5) and replace the kinematic numerators ni by a second set of color
factor c̃i. The corresponding scattering amplitude is

T (L)
m = iLym−2+2L

∑
i∈Γ

∫ L∏
l=1

dDpl
(2π)D

1

Si

cic̃i
παip

2
αi

(5.7)

y is another appropriate coupling constant. This scattering amplitude corresponds to the bi-adjoint
scalar field theory. Its field equation is [15]

∂2Φaa
′
− yfabcf̃a

′b′c′Φbb
′
Φcc

′
= 0 (5.8)
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fabc and f̃a
′b′c′ are structure constants of two Lie algebras as two color factors are involved in the

scattering amplitude.

It was found out that this prescription can actually be extended to more theories and actually
there is a web of theories whose amplitudes are the product of color (c) or kinematic (n, r) factors
subjected to Jacobi-like identity. See figure 6.

Figure 8: A web of theories of double copy [21].

In figure 6, BS refers to bi-adjoint scalar field theory; YM refers to Yang-Mills theory; GR refers to
general relativity; BI refers to Born Infeld theory; SG refers to special galileon theory and NLSM
refers to non-linear sigma model.

The double copy is intrinsically perturbative. In this thesis, instead of the double copy in term
of scattering amplitude, we will focus on the related notion which is called classical double copy.
Classical double copy is the theory that intends to find out the map between the classical solution
of the theories within the web in figure 6.

5.2 Kerr-Schild Double Copy

5.2.1 The Duality between General Relativity and Maxwell’s Electromagnetism

In this subsection, we study the classical double copy of (BS↔ Abelian YM↔ GR). Abelian YM
theory here refers to U(1) Maxwell theory of electromagnetism. We will see how these theories
are related to each other through Kerr- Schild double copy.

Consider general relativity in Kerr-Schild coordinate system. The full metric is

gµν = ηµν + κhµν (5.9)

= ηµν + κkµkνφ (5.10)

κ is a dimensional correction constant. The tensor field hµν is graviton. φ is a scalar field. The
vector kµ has the property that it is null with respect to both the flat metric ηµν and the full
metric gµν

kµη
µνkν = 0 = kµg

µνkν (5.11)

The vector field kµ is also geodetic

kµ∂µkν = 0 (5.12)

Due to the properties of kµ vector, the inverse of the full metric is

gµν = ηµν − κkµkνφ (5.13)

It can be checked easily that the inverse metric defined in (5.13) satisfies the relation

gµνg
να = δαµ (5.14)
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Given this full metric, we can compute the Christoffel symbol, Ricci curvature tensor and Ricci
scalar.

The metric-compatible and torsion-free connection takes the form in (3.108). The Ricci tensor is

Rσν = Rρσρν = Γρνσ,ρ − Γρρσ,ν + ΓρρλΓλνσ − ΓρνλΓλρσ (5.15)

The Ricci scalar is

R = gνµRµν (5.16)

By careful calculation and making use of the properties of kµ vector, the Ricci tensor with one
index raising up using full metric takes the expression

Rµν =
1

2
(∂µ∂α(φkαkν) + ∂ν∂

α(φkαk
µ)− ∂2(φkµkν)) (5.17)

The corresponding Ricci scalar is

R = ∂µ∂ν(φkµkν) (5.18)

The Ricci tensor is solved exactly to be linear in this case. We consider the stationary case in
which all the times derivative vanish. We also set k0 = 1 without any loss of generality. In such a
condition, the Ricci tensor and Ricci scalar can be solved

R0
0 =

1

2
∂2φ (5.19)

Ri0 =
1

2
[∂i∂α(φkα) + ∂2(φki)] (5.20)

= −1

2
∂j [∂

i(φkj)− ∂j(φki)] (5.21)

Rij =
1

2
∂l[∂

i(ρklkj) + ∂j(ρk
lki)− ∂l(ρkikj)] (5.22)

R = ∂i∂j(φk
lki) (5.23)

The vacuum solution for Einstein equation is just Rµν = 0. To interpret the result in the spirit of
double copy,we define a vector field Aµ

Aµ = kµφ (5.24)

We also define the field strength as

Fµν = ∂µAν − ∂νAµ (5.25)

= ∂µ∂νφ− ∂ν∂µφ (5.26)

The definition (5.24) and (5.26) is called Kerr-Schild ansatz. The vacuum Einstein equation
Rµν = 0 implies that ∂µF

µν = 0. To see this, we explicitly works out ∂µF
µν = 0

∂µF
µν = ∂2(φkν)− ∂j∂ν(φkj) = 0 (5.27)

When ν = 0, (5.27) becomes

∂2φ = 0 (5.28)
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When ν = i, (5.27) becomes

∂2(φki)− ∂j∂i(φkj) = 0 (5.29)

Therefore, it is shown that ∂µF
µν = 0 coincides with R0

0 = 0 and Ri0 = 0. If we interpret Aµ
to be the electromagnetic field and Fµν to be the electromagnetic field strength, then the duality
between Maxwell theory and general relativity is constructed in the stationary case. The graviton
hµν is obtained by adding a factor of kν to the gauge field Aµ. We can also interpret the scalar
field φ in the spirit of zeroth copy. In the stationary case, φ satisfies the equation

∂2φ = 0 (5.30)

This coincides with the field equation of bi-adjoint scalar field in the abelian case where all the
color structure constants vanish. Hence,φ can be interpreted as bi-adjoint scalar field.

As a summary of this subsubsection, the vector kµ plays an important role in the mapping relation
of (BS↔ Abelian YM↔ GR). Adding the factor kµ to the bi-adjoint scalar field gives the Abelian
gauge field Aµ. Adding the factors kν and kµ to the bi-adjoint scalar field gives the graviton hµν .
The mapping relation can be extended to the non-Abelian self dual YM in a very similar way by
promoting kµ to an operator which is shown in [15].

5.2.2 The duality between Schwarzschild’s solution and Coulomb’s electrostatic so-
lution

We will see now how the Schwarzschild’s solution in general relativity corresponds to Coulomb’s
electrostatic solution in Maxwell’s electromagnetism by Kerr-Schild double copy. We first recall
that in a spherically symmetric and static universe, the Schwarzschild’s metric is read as

ds2 = −(1− 2GM

r
)dt2 +

1

1− 2GM
r

dr2 + f(r)2dΩ2 (5.31)

When r →∞, (5.31) is approximated to the metric in the Newtoninan limit

ds2 = −(1− 2GM

r
)dt2 + (1 +

2GM

r
)dr2 + f(r)2dΩ2 (5.32)

For the Schwarzschild’s solution, the universe is flat everywhere except at a point where the source
with a pointlike mass M is located. Hence, the energy-momentum tensor is represented by a Dirac
delta function

Tµν = Mvµvνδ(3)(x) (5.33)

where vµ = (1, 0, 0, 0) is a vector merely in the timelike direction. The gravitational field equation
is just

Gµν =
κ2

2
Tµν ;κ2 = 16πG (5.34)

with Tµν represented by (5.33). The Kerr-Schild form of the metric gµν exists because general rela-
tivity is invariant under general diffeomorphism indicating there is freedom of choice of coordinate
system. The Kerr-Schild form of the exterior Schwarzschild metric is

gµν = ηµν +
2GM

r
kµkν (5.35)

with

kµ = (1,
xi

r
), r2 = xixi; i = 1...3 (5.36)
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Since gµν = ηµν + κhµν , the graviton hµν in this case is

hµν =
κ

2
φkµkν (5.37)

with the scalar field φ as

φ =
M

4πr
(5.38)

From the viewpoint of double copy, we can reproduce the electromagnetic counterpart by removing
one kν vector and replacing the coupling constant and the source

κ

2
→ g,M → caT

a, kµkν → kµ (5.39)

where caT
a is the superposition of the color charge. Then, we obtain the vector gauge field Aµ

Aµ =
gcaT

a

4πr
kµ (5.40)

The Abelian Maxwell equation with source jν is

∂µF
µν = jν (5.41)

We substitute (5.40) into the left hand side of (5.41) to check what is the source jν .

For the timelike component,

∂µF
µ0 = ∂µ(∂µA0 − ∂0Aµ) (5.42)

= ∂µ(∂µA0) (5.43)

= ∂2[
gcaT

a

4πr
] (5.44)

=
gcaT

a

4π
∇2[

1

r
] (5.45)

= −gcaT
a

4π
δ3(x) (5.46)

Note that we are working in the static and spherically symmetric case where Aµ does not depend
on the timelike coordinate. For the spacelike component,

∂µF
µi ∝ ∂j∂j(

xi

r2
)− ∂i∂j(

xj

r2
) (5.47)

= 0 (5.48)

Thus, the source jν is

jν = −g(caT
a)vνδ(3)(x) (5.49)

The source in both Schwarzschild’s solution and Abelian Maxwell’s solution is represented by the
dirac delta function. So, we see that the classical double copy relation is still well constructed
in this case. Since Abelian Maxwell theory has gauge symmetry, we can perform the gauge
transformation

Aµ → Aµ + ∂µλ (5.50)

For λ is any arbitrary function. We choose λ to be

λ = −gca
4π

log(
r

r0
) (5.51)

For such a gauge fixing, the spatial part of Aµ vanishes.

Aµ = (
gcaT

a

4πr
, 0, 0, 0) (5.52)

This solution is recognized as the Coulomb’s electrostatic solution with a point color charge located
at the origin. Therefore, upon a particlar gauge fixing, the double copy between Schwarzschild’s
solution and Coulomb’s solution is constructed.
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5.3 Classical Double Copy between SG, BI and GR ?

From figure 6, it is realised that there is also double copy relation between Special Galileon theory
(SG), Born Infeld theory (BI) and General Relativity (GR) in term of scattering amplitude. The
n-particle tree level amplitude for SG is [4]

ASG =
∑
i

r2
i

di
(5.53)

where the sum rums over all cubic topologies and di are the associated products of propagator
denominators. Replacing one NLSM kinematic numerator ri to YM kinematic numerator ni, the
amplitude of BI is obtained

ABI =
∑
i

rini
di

(5.54)

If replacing another ri to ni, the scattering amplitude of GR is obtained

AGR =
∑
i

n2
i

di
(5.55)

We ask the question now whether there is also a double copy relation of the classical solution
between these theories like what we have seen before for (BS-YM-GR). In this section, we discuss
the possible route implying the classical double copy of (SG-BI-GR).

5.3.1 The Schematic solution of BI for Static and Spherically symmetric condition

Before, we have seen the classical double copy between the Schwarzschild’s solution in GR and
Coulomb’s electrostatic solution in U(1) Maxwell electromagnetism for which that both theories
have static and spherically symmetric conditions. In searching the possible classical double copy
relation between SG and BI, we ought to see the pattern of the solutions in simple case by imposing
the static and spherically symmetric condition. By static we mean that the field does not depend
on the timelike coordinate. By spherically symmetric we mean the field only depends only on the
radial direction r. In section 2, we have actually solved for BI theory. The ~E field is proportional
to 1√

1+r4
and the timelike component of the vector potential A0 is expressed as Jacobian elliptical

integral. In this section, we will use the perturbative approach to find the solution of the field
equations of BI and SG schematically. The goal here is not to solve the field equations exactly
but is to find the pattern of the solutions and see the similarity between them.

Recall that the action of BI is

SBI =
1

b2

∫
d4x
√
−det(ηµν + bFµν) (5.56)

=
1

b2

∫
d4x
√

1 + b2FµνFµν (5.57)

=
1

b2

∫
d4x[

1

b2
+

1

2
F 2 − b2

8
F 4 +

b4

16
F 6 + ....] (5.58)

Note that the term det(Fµν) after expanding out the determinant form is neglected because

det(Fµν) ∝ ~B · ~E = 0 since there is no magnetic field ~B in electrostatic case. We let the di-
mensional correction parameter b2 to be α

Λ4 . The dimension of Λ , [Λ] = 1. The dimension here
refers to the dimension of mass. We also note that [∂] = 1 and [Aν ] = 1. The field strength Fµν
scales as ∂A, so [Fµν ] = 2. In the schematic way, the BI action is

SBI =

∫
d4x[

Λ4

α
+

1

2
(∂A)2 − α

8Λ4
(∂A)4 +

α2

16Λ8
(∂A)6 + .....] (5.59)
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To find the equation of motion, we vary the action with respect to the vector potential field Aµ

and require that δS = 0

δS =

∫
d4x[∂A∂δA− 4α

8Λ4
∂(∂A)3δA+ ......] (5.60)

The corresponding schematic equation of motion is

∂2A− 4α

8Λ4
∂(∂A)3 + .... = 0 (5.61)

We let the solution of (5.61) to be a perturbative series

A ∼ A(0) +
1

Λ4
A(1) +

1

Λ8
A(2) + ..... (5.62)

There is actually coefficient assigned to each terms for the full solution. Since we are only interested
about the pattern of the solution, we do not pay attention to the coefficients now. Substituting
(5.62) into (5.61) and collect terms by terms with respect to the parameter 1

Λn . We show here the
first two terms corresponding to 1

Λ0 and 1
Λ4

∂2A(0) = 0 (5.63)

∂2A(1) = −α
2
∂(∂A(0))3 + ... (5.64)

Note that since the metric used here is the standard Minkowski metric, we fix the background
coordinate to be Cartesian-like. Although we are working in the schematic way, the exact form
(5.63) is actually ∂2A(0) = 0 with only one d’Alembertian involved. This can be checked easily
by using the exact form of action to derive the equation of motion. Since the static condition is
considered, d’Alembertian operator can be reduced to Laplacian operator. So, the leading term
of the solution A(0) is

A(0) ∼ 1

r
(5.65)

The subleading terms can be found by considering dimensional analysis. In (5.64), the term
∂(∂A(0))3 ∼ 1

r7 , so, A(1) on the left hand side has to scale with 1
r5 . Doing the same for the other

subleading terms, we find the pattern of the solution which is the alternative expression of the
scalar potential A0 = φ as Jacobian elliptic integral provided in section 3.1.5.

A0 ∼ 1

r
+

1

Λ4

1

r5
+

1

Λ8

1

r9
+ .... (5.66)

In the electrostatic case, the gauge fixing is such that the spatial component of Aµ vanish. So, the
only non trivial component is A0. The full solution of (5.66) with the correct coefficient for each
term is an asymptotic expansion of the exact solution expressed in the integral form. In the weak
field limit for r →∞, (5.66) is well approximated to A0 ∼ 1

r in Maxwell theory.

5.3.2 The Schematic solution of SG for Static and Spherically symmetric condition

Now, we turn our attention to the Special Galileon theory (SG). We want to do the same as to find
the pattern of the field equation in static and spherically condition. Schematically, the Lagrangian
density for special Galileon in D = 4 is the sum of the quadratic and quartic Galileon term

SSG =

∫
d4x[(∂φ)2 − α

6Λ6
(∂φ)2(∂∂φ)2] (5.67)
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Vary the action with respect to the Galileon field φ

δSSG =

∫
d4x[2(∂φ)∂δφ− α

12Λ6
(2∂φ∂δφ)(∂∂φ)2 − α

12Λ6
(∂φ)22.∂∂φ∂∂δφ] (5.68)

This leads to the schematic equation of motion by requiring δSSG

∂φ = 0

∂2φ− α

6Λ6
(∂2φ)3 = 0 (5.69)

The first term is exactly the d’Alembertian in the full solution. However, the second term in (5.69)
contains a lot of different terms with the same form but with the indices contracted in different
ways. We again assume the solution φ takes the perturbative form

φ ∼ φ(0) +
1

Λ6
φ(1) +

1

Λ12
φ(2) + ..... (5.70)

Of coarse there are coefficients for each term in (5.70) for the full and exact solution. Substituting
(5.70) into (5.69) and we collect term by with respect to the parameter 1

Λn . We show three terms
here.

For 1
Λ0 :

∂2φ(0) = 0 (5.71)

For 1
Λ6 :

∂2φ(1) = α(∂2φ(0))3 (5.72)

For 1
Λ12 :

∂2φ(2) = α(∂2φ(0))2∂2φ(1) (5.73)

(5.71) implies that φ(0) ∼ 1
r . By considering dimensional analysis, we find that φ(1) ∼ 1

r7 and

φ(2) ∼ 1
r13 . Therefore, the pattern of the solution is found to be

φ ∼ 1

r
+

1

Λ6

1

r7
+

1

Λ12

1

r13
+ ..... (5.74)

5.3.3 Perturbative Gravity

We would also like to see the pattern of the solution of general relativity by considering the
perturbative aspect of gravity. The main benefit of expressing gravity in perturbative way is
that the role of graviton hµν is obvious. Here, we fix the background coordinate system to be
Cartesian-like. First, we write the metric as

gµν = ηµν + κhµν (5.75)

We will at some point crank the dimensional correction parameter κ to 1 so we do not need to
keep track of it and we can simply recover κ later by considering dimensional analysis after we
obtain the desired form of the gravity. Since general relativity is invariant under general coordinate
transformation. In infinitesimal form, the transformation is written as

xµ → xµ + κεµ(x) (5.76)

For λ is infinitesimal. From section 2.3.2, we have seen that the variation of the metric induced
by diffeomorphism is expressed as the form of Lie derivative

gµν → gµν + κ(εα∂αgµν + gαν∂µε
α + gµα∂νε

α) (5.77)

= gµν + κ∂µεν + κ∂νεµ (5.78)
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In the second equality line, all second and higher order terms of κ is neglected. Since Minkowski
metric ηµν is constant, (5.78) implies that

hµν → hµν + ∂µεν + ∂νεµ (5.79)

(5.79) is the gauge transformation in general relativity and the gauge symmetry of general relativity
is induced by diffeomorphism invariance of the theory. The inverse of the metric takes the exact
form as

gµν = ηµν − κhµν + κ2hµλh
λν + ..... (5.80)

One can check that gµνg
να = δαµ . Now, we want to expand Einstein-Hilbert action in powers of

hµν . At this point, we will crank κ to 1. The Lagrangian density of Einstein-Hilbert action is

LEH =
√
−gR (5.81)

for g is the determinant of the metric tensor and R is Ricci scalar. Using (5.75) and (5.80), the
expansion of

√
−gR can be found schematically to be

√
−gR = (1 + h+ h2 + ...)(∂∂h+ h∂∂h+ ...) (5.82)

= ∂∂h+ h∂∂h+ h2∂∂h+ h3∂∂h+ ..... (5.83)

The action can then be expressed as

S =

∫
d4x[(∂h)2 + κh(∂h)2 + κ2h2(∂h)2 + ....] (5.84)

Note that we have recovered κ in (5.84) to correct the dimension in each term. Note also that each
term is just a schematic representation and one will find a mess of indices contracted in different
way if deriving explicitly. The first term ∂∂h in (5.83) can be neglected in the action because it
represents a total derivative term. (5.84) is obtained from (5.83) by simply integrating by part
and neglect the total derivative terms. κ is defined as

κ =
1

Mpl
;Mpl ≈ 2× 1018GeV (5.85)

Mpl is the Planck mass. In order to get the pattern of the solution of the equation of motion from
(5.84), we need to at least know explicitly the first leading term (quadratic of h). We first expand√
−g first

√
−g =

√
−det(ηµν + hµν) (5.86)

= exp
1

2
ln[−det(ηµν + hµν)] (5.87)

= exp[
1

2
ln(det(1 + hµν ))] (5.88)

= exp[
1

2
trln(1 + hµν )] (5.89)

= exp[
1

2
tr(hµν −

1

2
h2 + ...)] (5.90)

= 1 +
1

2
tr(hµν )− 1

4
tr(h2) +

1

2
(
1

2
tr(hµν )− 1

4
tr(h2)2) +O(h3) (5.91)

= 1 +
1

2
hµµ −

1

4
hµνhµν +

1

8
(hµµ)2 +O(h3) (5.92)

The linearized term of Ricci tensor is found to be

R(1)
µν = ∂µ∂νh+ ∂λ∂

λhµν − ∂µ∂λhλν − ∂λ∂νhλµ (5.93)
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Therefore, the first leading term can be obtained explicitly by careful derivation using (5.80),
(5.92) and (5.93)

√
−ggµνR(1)

µν =
1

2
∂λh

µν∂λhµν −
1

2
∂αh∂αh− ∂µhµν∂νh− ∂µhµν∂λhλν + ... (5.94)

If we are only interested about linearized gravity, the corresponding action is

SFP =

∫
d4x(

1

2
∂λh

µν∂λhµν −
1

2
∂αh∂µh

µν∂νh− ∂µhµν∂νh− ∂µhµν∂λhλν ) (5.95)

(5.95) is the massless Fierz-Pauli action. h in (5.95) refers to the trace of hµν This action describes
the linearized gravity with massless graviton in the weak field limit. One can then just simply use
the variational technique to obtain the equation of motion. The equation of motion is found to be

δS

δhµν
= ∂2hµν − ∂λ∂µhλν − ∂λ∂νhλµ + ηµν∂λ∂σh

λσ + ∂µ∂νh− ηµν∂2h = 0 (5.96)

To simplify the equation of motion, we use a constraint to fix the gauge freedom. The constraint
is

∂µhµν − ∂νh = 0 (5.97)

Plugging (5.97) into (5.96), the equation of motion is simplified to

∂2hµν − ∂µ∂νh = 0 (5.98)

To further simplify the equation of motion, we can further fix the gauge subjected to (5.97),
namely transverse traceless gauge

∂µhµν = 0;h = 0 (5.99)

So, we obtain the simple equation of motion after fixing the gauge

∂2hµν = 0 (5.100)

In the static and spherically symmetric condition, the solution of (5.100) takes the form hµν ∼ 1
r .

Now, we return to the perturbative gravity case where the action takes the form (5.84). We can
again vary this action with respect to hµν to obtain the schematic equation of motion. We assume
the solution takes the perturbative form

hµν = h(0)
µν + κh(1)

µν + κ2h(2)
µν + κ3h(3)

µν .... (5.101)

Since we have found that h
(0)
µν ∼ 1

r , we can follow the same procedure as in the case for BI and
SG to obtain the pattern of the subleading terms by considering dimensional analysis. Therefore,
the pattern of the solution is found to be

hµν ∼
1

r
+

1

Mpl

1

r2
+

1

M2
pl

1

r3
+ ... (5.102)

If we assume parity symmetry, the terms hn(∂h)2 in (5.84), for n is odd will not contribute and
can be neglected in the action. Then, the pattern of the solution becomes

hµν ∼
1

r
+

1

M2
pl

1

r3
+

1

M4
pl

1

r5
+ ... (5.103)

With this argument, we see that the series expression of the solution of perturbative gravity in
static and spherically symmetric condition resembles the one in BI theory and SG theory. The
solution of these 3 theories can be expressed as the summation of the 1

rk
terms with fixed coeffi-

cients where k has to be odd. So, with rough calculation by considering dimensional analysis, we
see that the solution of these 3 theories are very similar in term of their mathematical expression.
Since these 3 theories are connected together by the double copy relation in the level of scattering
amplitude and also due to the similarity between their classical solutions, we have enough motiva-
tion and excuse to figure out the possible underlying structure that connects the classical solutions
of these 3 theories. The first step we can do is to solve the equation of motions exactly to obtain
the coefficients for each 1

rk
term.
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5.3.4 Getting the right coefficients and Hypergeometric Series

The standard procedure to obtain the coefficients in this thesis follows the method explained in
the last section. We let the solution to be a series of 1

rk
and substitute this series into the equation

of motion. Then, we collect term by term with respect to the order of the dimensional correction
parameter 1

Λn . From here each coefficient can be calculated. In principle, this method is always
valid and the computation process can be simplified a lot with the help of computer-aided software
(Wofram Mathematica, Matlab, Python, etc). After we have found the coefficients, we need to
look for the structure of the series to gain some ideas on the classical double copy relation.

Born Infeld theory

We will start with Born-Infeld theory. For BI, there is a much more simple way to derive the
coefficients. We have seen in section 3.1.4 that the Electric field Er in electrostatic case of BI

theory takes the form as (3.74). We do a Taylor expansion of Er around
r40
r4

Er =
−e√
r4
0 + r4

(5.104)

= − e

r2
[1 +

r4
0

r4
]−

1
2 (5.105)

= − e

r2
[1− r4

0

2r4
+

3

8
(
r4
0

r4
)2 − 5

16
(
r4
0

r4
)3 + ....] (5.106)

= − e

r2
+
er4

0

2r6
− 3

8

er8
0

r10
+ .... (5.107)

In the electrostatic case, the gauge fixing of the electromagnetic field Aµ is such that the spa-
tial components Ai vanish.A0 which corresponds to the point charge source can be obtained by
integrating (5.107) with respect to the radial coordinate r

A0 =

∫ r

∞
Erdr (5.108)

=

∫ r

∞
dr(− e

r2
+
er4

0

2r6
− 3

8

er8
0

r10
+ ....) (5.109)

=
e

r
− er4

0

10r5
+

1

24

r8
0

r9
− ..... (5.110)

=
e

r
[1− r4

0

10r4
+

1

24

r8
0

r8
− .....] (5.111)

Therefore, we have found the coefficients for the series. c0 = 1, c1 = − 1
10 , c2 = 1

24 and so on. It is
realised that the parentheses in (5.111) takes the form of Gauss hypergeometric function

1− r4
0

10r4
+

1

24

r8
0

r8
− ..... = 2F1(

1

4
,

1

2
;

5

4
,−r

4
0

r4
) (5.112)

The subscript in front of F denotes the number of Pochhammer symbol (α)n used in the numerator
while the subscript behind F denotes the number of Pochhammer symbol used in the denominator.
The Pochhammer symbol is defined as

(α)n = α(α+ 1)(α+ 2)....(α+ n− 1) (5.113)

The Pochhammer symbol can also be expressed in term of gamma function

(α)n = α(α+ 1)(α+ 2)....(α+ n− 1)× 1 · 2 · 3.....(α− 1)

1 · 2 · 3.....(α− 1)
(5.114)

=
(α+ n− 1)!

(α− 1)!
(5.115)

=
Γ(α+ n)

Γ(α)
(5.116)
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The Hypergeometric function is defined as

F (α, β; γ;x) =

∞∑
k=0

(α)k(β)k
(γ)k

xk

k!
(5.117)

= 1 +
αβ

γ
x+

α(α+ 1)β(β + 1)

γ(γ + 1)

x2

2!
+
α(α+ 1)(α+ 2)β(β + 1)(β + 2)

γ(γ + 1)(γ + 2)

x3

3!
+ ....

(5.118)

Using (5.114), one can confirm that the structure of the series in (5.111) is indeed governed by
Gauss hypergeometric series. Thus, the exact solution of A0 is determined. We know that Born-
Infeld theory can be approximated to Maxwell theory (A0 ∼ 1

r ) in the weak field limit. We can
see this by considering r → ∞, the series is indeed dictated by the first leading term ∼ 1

r . With
all the correction terms involved, BI theory turns out to be non-singular as discussed in section
2.2.3.

Special Galileon theory

We will follow the standard procedure to derive the coefficient of the solution of Special Galileon
theory in static and spherically symmetric condition. In D = 4, the action of special galileon
is the sum of the quadratic and quartic Galileon terms taking the expression as (4.137). Using
variational technique and least action principle, the equation of motion is [16]

∂2φ+
1

Λ6
[(∂2φ)3 − 3(∂2φ)∂α∂βφ∂

α∂βφ+ 2∂α∂
βφ∂β∂

γφ∂γ∂
αφ] = 0 (5.119)

(5.119) can be simplified further to a differential equation with only radial coordinate, r =
√
xixi

involved under static and spherically symmetric condition where φ = φ(r) . This can be seen by
using tensor calculus. We note that

∂r

∂xα
=
xα
r

;
∂r

∂xα
=
xα

r
;xαxα = r2 (5.120)

In this case all indices take 1, 2, 3 because we are working under static condition as φ only depends
on spatial coordinates. We calculate ∂2φ first

∂α∂αφ(r) = ∂α[
∂φ

∂r

∂r

∂xα
] (5.121)

= ∂α(
∂φ

∂r
)
xα
r

+
∂φ

∂r
∂α(

xα
r

) (5.122)

=
∂2φ

∂r

∂r

∂xα

xα
r

+
∂φ

∂r
[
3

r
− 1

r
] (5.123)

=
∂2φ

∂r2

xαxα
r2

+
∂φ

∂r
[
2

r
] (5.124)

=
∂2φ

∂r2
+

2

r

∂φ

∂r
(5.125)

= φ′′(r) +
2

r
φ′(r) (5.126)

Then, we calculate (∂2φ)3

(∂α∂αφ)3 = [
rφ′′ + 2φ′

r
]3 (5.127)

= (φ′′)3 +
6

r
φ′(φ′′)2 +

12φ′2φ′′

r2
+

8φ′3

r3
(5.128)
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To calculate the third term −3(∂2φ)∂α∂βφ∂
α∂βφ, we first notice that

∂α∂βφ = ∂α[
∂φ

∂r

xβ
r

] (5.129)

=
∂2φ

∂r2

xαxβ
r2

+
1

r

∂φ

∂r
δβα −

xαxβ
r3

∂φ

∂r
(5.130)

For ∂α∂βφ, we just raise the indices on the right hand side of (5.130). Then, we can compute

∂α∂βφ∂
α∂βφ =

2(φ′)2

r
+ (φ′′)2 (5.131)

Using (5.126) and (5.131), we can calculate

−3(∂2φ)∂α∂βφ∂
α∂βφ = −3[φ′′ +

2

r
φ′][(φ′′)2 +

2

r
(φ′)2] (5.132)

= −12(φ′)3

r3
− 6φ′(φ′′)2

r2
− 6φ′(φ′′)2

r
− 3(φ′′)2 (5.133)

For the last term 2∂α∂
βφ∂β∂

γφ∂γ∂
αφ, it is simplified into

2∂α∂
βφ∂β∂

γφ∂γ∂
αφ = 2(φ′′)3 +

4(φ′)3

r3
(5.134)

We arrange everything in the order of (5.119) and we find the simplified equation of motion

φ′′ +
2

r
φ′ +

1

Λ6
[
6(φ′)2φ′′

r2
] = 0 (5.135)

With this equation of motion, we can figure out the coefficients of the solution as a series. We let

the solution be φ =
∑∞
n=0

φ(n)

Λ6n and we substitute this into (5.135). We then collect the terms with
respect to 1

Λ6n .

For 1
Λ0 :

d2φ(0)

dr2
+

2

r

dφ(0)

dr
= ∇2φ = 0 =⇒ φ(0) =

1

r
(5.136)

For 1
Λ6 :

2

r

d

dr
[φ(1)] +

d2

dr2
[φ(1)] = − 6

r2
[
d

dr
(φ(0))]2

d2

dr2
[φ(0)] (5.137)

Since we know that φ(0) = 1
r and by dimensional analysis, we know that φ(1) = c1

r7 . Substituting
these expression into (5.137), we have

2c1
r

[− 7

r8
] + c1

56

r9
= −12

r9
(5.138)

42c1
r9

= −12

r9
=⇒ c1 = −2

7
(5.139)

For 1
Λ12 :

2

r

d

dr
[
c2
r13

] +
d2

dr2
[
c2
r13

] = −12

7
[
d

dr
(
1

r
)
d

dr
(− 2

7r7
)][

d2

dr2
(
1

r
)]− 6

r2
[
d

dr
(
1

r
)]2

d2

dr2
[− 2

7r7
] (5.140)

156c2
r15

=
144

r15
=⇒ c2 =

12

13
(5.141)
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Iteratively, we can use this procedure to find all coefficients. The coefficients are found to be
c0 = 1, c1 = − 2

7 , c2 = 12
13 , c3 = − 96

19 , c4 = 880
25 , ...... It is realised again that this series can be

expressed in term of a generalized hypergeometric series

φ =
1

r
− 2

7Λ6

1

r7
+

12

13Λ12

1

r13
+ .... (5.142)

=
1

r
3F2(

1

6
,

1

3
,

2

3
;

7

6
,

3

2
;
−27

2Λ6

1

r6
) (5.143)

General Relativity and Remarks

The usual algorithm used to find the coefficients is not very effective for the solution of general
relativity. The main reason is that the counterpart of the solution of general relativity in classical
double copy is not known and obvious yet. There is also technical difficulty due to the highly
non-linear structure that general relativity is based on. One can already see that in perturbative
gravity, the indices mess even in the linear term. In spite of the difficulties, the solution of the
field in BI and SG which inherits the same structure as 1

r× hypergeometric series in static and
spherically symmetric condition shed light on the possible classical double copy solution of the
general relativity. The correction terms in hypergeometric series help to eliminate the singularity
in SG and BI in a coordinate system that is isotropic and static. This implies that the counterpart
solution of general relativity in an isotropic and static coordinate system should also take the form
of 1

r× hypergeometric series for which the curvature singularity at r = 0 is eliminated. The exact
mapping relation is also worth to study and one should look into this from the perspective of
double copy in term of scattering amplitude.

6 Discussion

As a summary, the volume of a manifold with its geometry governed by the metric gµν can be
calculated using the coordinate integral of the invariant volume form,

∫
dDx
√
−g. For a map ψ

that links together 2 manifolds M and N , the pushforward of a vector ψ∗V and the pullback of a
one-form ψ∗ω can be defined. For the case that a submanifold is embedding within a background
manifold, the pullback of the metric tensor of the background manifold defines the induced metric
which plays the role to measure the distance on the submanifold. A map is a diffeomorphism if its
inverse exists. For M and N be the same manifold, the pullback and the pushforward induced by
a diffeomorphic map represents the active coordinate transformation. The infinitesimal variation
of any tensor induced by diffeomorphism can be expressed in the form of Lie derivative.

The Lagrangian density of the modified electromagnetism proposed by Born and Infeld taking
the form L =

√
−det(gµν + Fµν) −

√
−det(gµν) satisfies the principle of finiteness and it can

be approximated to the Maxwell’s theory if the spacetime is the Minkowski space and the field
strength is weak. Born-Infeld theory serves as a non-linear theory of electromagnetism with specific
self-interactions of photons. The action for Einstein general relativity is Hilbert-Einstein action for
which its Lagrangian takes the form

√
−gR. Using the idea that gravity is the manifestation of the

curvature of the spacetime, the appropriate geometrical tensor in the gravitational field equation
which is known to have the second derivative of metric involved from the Newtonian limit has
to be the Einstein tensor, Gµν = Rµν − 1

2gµνR since it obeys Bianchi identity. This requirement
is essential for the conservation of energy-momentum to hold. Schwarzschild’s metric describes a
static and spherically symmetric spacetime with the situation of the empty space surrounding a
spherical body.

The point particle can be viewed as a 0-brane and this concept can be generalized to higher di-
mensional object which is called p-brane. p-brane is parametrized by the worldvolume coordinate.
The action of p-brane which is called Nambu-Goto action which takes the form of the square root
of the induced metric is invariant under any choice of the worldvolume coordinate system. The
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symmetry due to the freedom of the choice of coordinate system is called reparametrization sym-
metry and it is a gauge symmetry. 1-brane acts as a bosonic string and its action is invariant under
global Poincaré trnasformation, local Weyl transformation and local reparametrization transfor-
mation. By invoking an auxiliary field hαβ , Nambu Goto action can be shown to be equivalent to
Polyakov action. In the simple case that assuming the topology of worldsheet allows gauge fixed
flat intrinsic metric hαβ = ηαβ to be extended globally, the equation of motion can be derived un-
der 3 boundary conditions which are closed string case, open string Neumann condition and open
string Dirichlet condition. In Neumann boundary condition, the endpoints of the brane are free to
move. In Dirichlet boundary condition, the endpoints of the brane are fixed. For a D-dimensional
background spacetime, the D + 1 hypersurface is called D-brane in the situation that p worldvol-
ume spacelike coordinates and the timelike coordinate obey Dirichlet boundary condition while
the other D − P − 1 worldvolume coordinates obey Neumann boundary condition. The action of
D-brane is described by Dirac Born Infeld action. The formation of D-brane leads to the symmetry
breaking of Poincaré group. Dirac Born- Infeld theory has a natural geometric interpretation as
a D-brane fluctuating in the transverse direction. For the case that a D4 brane embedded in a 5-
dimensional Minkowski space, the DBI action is protected by a nonlinearly realised 5 dimensional
Poincaré group. The DBI action is found to be invariant under the nonlinearly realised shift and
Lorentz transformation in the fifth dimension. The higher dimensional rotation will bring DBI
theory out of the static gauge and a compensating world-volume reparametrization is needed to
restore the static gauge. The infinitesimal variation of the induced metric can be formulated into
Lie derivative induced by a vector field. Thus, this transformation can be viewed as to be induced
by diffeomorphism and the scalar field in DBI theory can be minimally coupled with matter field
in diffeomorphism invariant way with respect to DBI nonlinearly realised symmetry. The special
Galileon theory is formulated as the sum of the galileon terms with even number of field. Beside
the galileon symmetry enjoyed by each galileon term, the special galileon action is protected by
a higher order shift symmetry. There is also a geometrical origin for Special Galileon theory as a
D-brane fluctuation in the transverse direction but a complex geometry with Kahler structure is
needed. Thus, the action of Special Galileon can also be written as the square root of the deter-
minant of an induced metric which is the typical form used to study the extrinsic geometry. The
infinitesimal variation of this induced metric which is caused by the higher order shift symmetry
can also be formulated as a Lie derivative induced by a vector field. Therefore, the galileon field
can also be coupled with matter field in a diffeomorphism invariant way with respect to special
Galileon symmetry. For Born-Infeld theory, the vector field Aµ only contributes to the antisym-
metric part of the induced metric. Since both the symmetrical part and the antisymmetrical part
of the induced metric has to transform covariantly under the induced diffeomorphism, there is no
nonlinearly realised symmetry. This suggests that the same way to give geometrical interpretation
as in DBI theory and special Galileon theory cannot be applied to BI theory.

Under Kerr-Schild geometry, Einstein field equation is solved exactly to be linear. Kerr-Schild
ansatz is used to construct the classical double copy relation between biadjoint scalar field theory,
Abelian Maxwell theory and general relativity. There is also a classical double copy relation
between Schwarzschild’s solution and Coulomb’s electrostatic solution using Kerr-Schild ansatz.
The solution of the Born-Infeld theory and special Galileon theory under spherically symmetric
and static condition are solved to take take the form 1

r× hypergeometric series. The similarity
between the structure of these 2 solutions suggest a possible classical double relation between them
and also general relativity as there is double copy relation between them in scattering amplitude.

7 Conclusion

Conclusively, under the fixed Minkowski background spacetime, the electromagnetic field Aµ in
Born-Infeld theory transforms as a vector field under linearly realised Poincare symmetry because
Aµ contributes only to the antisymmetrical field strength Fµν of the induced metric and there is
only linearly realised Poincaré symmetry that will leave ηµν and Fµν to transform covariantly in
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a separate way. Therefore, there is no nonlinearly realised symmetry and the interpretation of the
field as a brane fluctuating in the transverse direction does not hold in Born-Infeld theory.

Besides that, the classical solution of Born-Infeld theory and special Galileon theory under static
and spherically symmetric condition are solved to be expressed as a hypergeometric series. For BI,

the solution is 1
r 2F1( 1

4 ,
1
2 ; 5

4 ,−
r40
r4 ). For SG, the solution is 1

r 3F2( 1
6 ,

1
3 ,

2
3 ; 7

6 ,
3
2 ; −27

2Λ6
1
r6 ). The similarity

between the structure of these 2 solution implies a possible classical double copy relation between
them. A thorough investigation of the double copy relation from the viewpoint of scattering
amplitude and also the classical solutions are needed to understand the duality between Special
Galileon theory, Born-Infeld theory and general relativity in a deeper way.
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