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General relativity is a non-linear field theory of gravity which implies graviton-graviton interac-
tions. Born-Infeld theory is a modified non-linear electromagnetic field theory with very specific
self-interactions as well. Is there a geometric interpretation for the non-linear Born-Infeld theory
as there is a natural geometrical origin in general relativity? For some field theories (Dirac Born-
Infeld theory and Special Galileon theory) with similar features including scalar theories with self
interactions, there is a geometric understanding. In this thesis, the foundation of Born-Infeld
theory and general relativity is studied. The physics of branes are studied together with the scalar
field theories such as Dirac-Born-Infeld theory (DBI) and Speical Galileon theory (SG) in order
to understand their geometric interpretation. Since the electromagnetic field A, in Born-Infeld
theory only contributes to the antisymmetrical part F),, of the induced metric, it is found out
that there is no nonlinearly realised symmetry and A, transforms as a vector field under linearly
realised Poincaré symmetry to leave F),, antisymmetric. So, the geometric interpretation as a
brane fluctuating in the transverse direction as in DBI theory and SG theory cannot be applied to
Born-Infeld theory. In the study of classical double copy motivated by the color-kinematics duality
in scattering amplitude, Kerr-Schild ansatz is used to construct the interconnection bewteen the
classical solution of Abelian Maxwell theory and general relativity. Inspired by Kerr-Schild clas-
sical double copy, the duality of the classical solution of Born-Infeld theory and Special Galileon
theory is investigated by examining the possible classical double copy relations between them. The
equation of motion of SG and BI under static and spherically symmetric condition are solved to
take the form of %x hypergeometric series. This indicates a possible double copy relation between
SG and BI. The difficulties of the extension of this possible classical double copy relation to general
relativity is discussed.



What profit hath a man of all his labour which he taketh under the sun? One generation passeth
away, and another generation cometh: but the earth abideth for ever. The sun also ariseth, and
the sun goeth down, and hasteth to his place where he arose. The wind goeth toward the south, and
turneth about unto the north; it whirleth about continually, and the wind returneth again according
to his circuits. All the rivers run into the sea; yet the sea is not full; unto the place from whence
the rivers come, thither they return again. All things are full of labour; man cannot utter it: the
eye is not satisfied with seeing, nor the ear filled with hearing. The thing that hath been, it is that
which shall be; and that which is done is that which shall be done: and there is no new thing under
the sun. ....... And I gave my heart to know wisdom, and to know madness and folly: I perceived
that this also is vexation of spirit. For in much wisdom is much grief: and he that increaseth
knowledge increaseth sorrow. -Ecclesiastes 1 [10].
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1 Introduction

In the 19th century, English physicist Micheal Faraday discovered experimentally that a changing
magnetic field will induce the flow of the electric current. Unlike his contemporaries, Faraday
refused to accept the notion that electricity was a material fluid that flows through a wire. Faraday
thought electricity as a vibration or transmission of force which was the result of the tension created
in the conductor. Faraday proposed his electrotonic state to convey this idea. This electrotonic
state is considered as a state of tension of the particles in the wire [24]. According to him, the
current is appeared as the setting up or the collapse of such a state of tension. The other geometric
intuition of Faraday is the so-called magnetic field lines of force. This is experimentally seen
through sprinkling iron filings in the magnetic field. The elusive geometrical insights of Faraday as
an experimentalist lays the foundation of the theory of electromagnetism as a field theory. It was
only James Clerk Maxwell who could really describe electromagnetic theory as a field theory in
the language of vector calculus. Maxwell learned from reading William Thomson’s mathematical
paper about the usefulness of the curl equation

B=VxA (1.1)

From this mathematical equation, Maxwell realised that the Faraday’s electrotonic intensity can
be denoted by A. His insight leads him to realise that what Faraday has described in so many
words can be expressed mathematically as

Fo_22 (1.2)

E is the electric field. Taking the curl on both side of (1.2),

. B .

VxE——E(VxA) (1.3)
0B

=5 (1.4)

B is the magnetic field. The second equality line arises from the identity that B =V x A which is
realised from the relation V- B = 0 and the fact that the curl of a vector is always divergenceless.
Integrating (1.4) and apply Stoke’s theorem,

tﬂVx@dA:/Ew:—%/EdA (1.5)

This is the mathematical expression of Faraday’s law. The vector A which is called as vector
potential was initially thought by many (Hertz, Heaviside, etc) as something unnecessary because
they thought it as a non-physical quantity and the formulation of electromagnetism in term of A
should be avoided and eliminated. However, it was realised later with quantum mechanics that
this vector potential A has physical meaning and cannot be eliminated. The combination of the
vector potential A and the scalar potential ¢ as A* also plays a crucial role as the electromagnetic
field in the modern field theory. In physics, the concept of field can be thought of as a quantified
physical quantity given at any point of spacetime. In quantum field theory, the particles are the
excitation of the quantum field.

Beside electromagnetism, field theory is also important in the theory of gravity. In 1915, Albert
FEinstein proposed general relativity as a new theory of gravitation to explain gravity as the
manifestation of the curvature of the spacetime to replace the explanation provided by the great
Issac Newton that gravity is an instantaneous force between two objects with mass. In contrast
with the linear gravitational field equation in Newtonian framework which is represented by the
Poisson’s equation, Einstein’s gravitational field equation turns out to be a set of 6 independent
non-linear differential equations. Around the same time and even 10 days earlier than Einstein,



German mathematician David Hilbert derived the gravitational field equation independently by
figuring out the Lagrangian that leads to Einstein’s field equation through the variational principle.
In general relativity, the gravitational potential field is the metric tensor g,, that governs the
geometric and causal structure of the spacetime. This revolutionary theory has withstood the test
of time. The first success of general relativity was in explaining the anomalous rate of precession of
the perihelion of Mercury’s orbit. Besides that, the prediction of the deflection of light by the sun
given by general relativity is also verified. In 2016, the gravitational wave which is conjectured
within the theory of general relativity was detected by the Laser Interferometer Gravitational-
Wave Observatory (LIGO).

In 1934 which was before the advent of quantum field theory, Max Born and Leopold Infeld also
proposed a new electromagnetic field theory. Their theory leads to a non-linear electromagnetic
field equation by setting up a framework using a non-symmetric metric. Born-Infeld theory is a
hypothesis of the modified field theory of electromagnetism which is inspired by Maxwell’s theory
of electromagnetism and Einstein’s theory of general relativity. This theory has not been verified
by any experiment so far. Born and Infeld argued that principle of finiteness which states that
the physical quantities are not allowed to be infinite is a fundamental principle of physics. Since
Maxwell theory of electromagnetism fails to satisfy the principle of finiteness, they set up a new
framework to improve Maxwell theory. They constructed a theory such that not only the principle
of finiteness is satisfied but also the new theory can be approximated to Maxwell’s theory in a
certain limit. They started by constructing a new Lagrangian. Just like in Special relativity, the

Lagrangian is
2 v?

This Lagrangian serves as a modification of the Newtonian action L = %mvz. This modifica-

tion leads to the assumption of an upper limit of velocity ¢. They apply the same notion to
electromagnetism. In Maxwell theory, the Lagrangian is

1
L= 5(32 — E?) (1.7)
To have an upper limit of the electromagnetic field strength, they modified (1.7) to be
1
L:bQ(\/HbQ(BQ—E?)—l) (1.8)

where b is a dimensional correction parameter. It is obvious that in the limit b — oo, (1.8) is
approximated to be (1.7). Such kind of arguments are quite convincing but a deeper understanding
of the foundation of this new field theory is necessary. In chapter 3, we study the foundation of
Born-Infeld theory and general relativity in details.

Since general relativity has a natural geometrical origin, we wonder is there also a geometrical
interpretation of Born-Infeld theory. There have been a lot of efforts over the last few decades to
geometrize electromagnetism. We also post our question here by asking if Born-Infeld theory is the
corrected modified field theory of electromagnetism, is there also a geometrical origin? After all,
the Lagrangian density of Born-Infeld theory takes the form as the square root of the determinant
of a induced metric G, = )y, +F),, if we fix the background spacetime to be Minkowski spacetime.
We turn our attention to the possible extrinsic geometric interpretation as the embedding of a
submanifold in a background manifold. One of the main topic in this thesis is the geometric
interpretation of the field theories for which their Lagrangian density can be formulated in the
expression of the pullback of the ambient metric. We start the thesis with a chapter on the
mathematical preliminaries that discuss the relevant concepts of differential geometry used in this
thesis.

In chapter 4, we investigate the important concepts in brane theory such as the background
dependent of a brane, the symmetric properties of the brane, boundary conditions, D branes ,etc



which are all originated from the study of string theory. After that, we especially study the field
theory of the D branes which is called Dirac Born-Infeld theory (DBI). Due to the symmetry
breaking of the symmetric Poincare group and the nonlinearly realised symmetry when a D brane
is formed, there is a natural geometric interpretation of a D-brane fluctuating in the transverse
direction in DBI theory. We also look into another scalar field theory which is called Special
Galileon theory and study its geometrical origin using complex geometry with Kahler structure.
In the end of chapter 4, we also discuss about whether we can inherit the same methodology to
figure out the geometric interpretation of Born-Infeld theory.

The other main topic in this thesis is the classical double copy. The notion of double copy
first comes from the study of scattering amplitude in quantum field theory. In the story of
scattering amplitude, it was found out that by replacing the color factor to kinematic numerator
in the scattering amplitude of Yang-Mills theory, the scattering amplitude of general relativity is
obtained. In classical double copy, we study the relevant duality by looking at the classical solutions
of the field theories and the map that relates different theories. In chapter 5, We particularly study
the known classical double copy between Abelian Maxwell theory and general relativity which is
called Kerr-Schild double copy. Then we solve the equation of motion of Born-Infeld theory and
Special Galileon theory in perturbative way under the static and spherically symmetric solution
to see is it also possible to construct the double copy relations between Special Galileon theory,
Born-Infeld theory and general relativity.



2 Mathematical Preliminaries

First of all, we review some mathematical concepts in differential geometry which are important
and used throughout the thesis. We will have to understand the concept of the invariant form,
maps between manifolds, diffeomorphism and Lie derivative.

2.1 Invariant volume form
2.1.1 Levi-Civita Tensor

In a general D-dimensional Euclidean space R, the volume integral, I is

I:/dD:r’

or'
= — |dP
[ 15 av

For |%—€| is the Jacobian factor. The imminent task here is to generalize the volume form to any
arbitrary space with any specific form of metric g, (z). The desired generalized volume form
must be covariant with respect to general coordinate transformation. The general coordinate
transformation rule discussed in this paper are at least C'* diffeomorphic. To be able to construct
such an invariant volume form, the property of the totally antisymmetric Levi-Civita symbol has
to be studied explicitly first. The Levi-Civita symbol is defined as

1, if p1....up is even permutation of 12.....D,
€urpia...up == § —1, if p1....up is odd permutation of 12.....D, (2.1)
0, otherwise

Levi-Civita symbol follows a very nice property when it is combined with the determinant of any
matrix M)/, namely

Epspiaein | M| = ooy MUY M2 . MED (2.2)

For M is the determinant of the matrix M ;j . To check whether €,,,,....,, is a tensor or not, set

M, to be the coordinate transformation matrix gf,;. Consequently,
. 0x 4. ozt Ox? ox¥P
6#1#2 _____ uwp — |% Evlyg _____ VD 895/#1 ax/ﬂ2 ....... ax/HD (23)

The above relation shows explicitly that Levi-Civita symbol is not a tenosr as it does not follow

the coordinate transformation rule. There is an extra factor | gf, —1. Levi-Civita symbol is in fact

a tensor density with weight +1. The weight refers to the order of |%—g|. Apparently, Levi-Civita
symbol is not a suitable and qualified candidate to construct the invariant volume form because
it is not a tensor. However, €,,,,....,, can be combined with another tensor density \/m with
weight —1. For g is the determinant of the metric tensor. To be able to see this, set up a change
of the coordinate system and check how this is going to give impact to g

g — g = detg,, (2.4)
0z 0z
= det(5 o 0a) (2.5)
ox ,
_ 2.
0 g (2:6)

This indicates that g is not a scalar. Instead it is a tensor density with weight —2. The square
root of |g| which is a tensor density with weight —1 can be combined with levi-Civita symbol with



weight +1 to form the so called Levi-Civita tensor.

€prpiip = V19I€u1pia...pip (2.7)

The reason that the Levi-Civita tensor can be used to generate invariant volume form is still not
explicitly known at this point. It will be clear when the notion of the differential form and wedge
product is discussed in the next section. The absolute value of g is taken because for a Lorentzian
manifold, g is a negative value.

2.1.2 Differential form and wedge product
Definition 2.1.2.1(Differential form): A special class of tensor of type (0, p),

ppdrt ®da® @ ... ® da? (2.8)

such that the component wy,,......., is totally anti-symmetric.

A typical example of the differential form is the electromagnetic field strength F},,. The diffrential
form can be written into the formulation involving wedge product of the bases of the form dz.

Fda" @ dz” = %[Fl“, — F,,]dz" ® dz¥ (2.9)
= %[Fl“,dx” ® da” — F,,dz” ® dz' (2.10)
= SFude @ da® — Fyudat © do’] (2.11)
= %Fwda@“ A dx? (2.12)

for the wedge product dz* A dz” is defined to be dz" ® dz” — dz* ® dz¥. In general, the wedge
product is defined to be

dzt A AN datr = dat @ L @ date (2.13)

W= SWhpg.... ppdrtt A dxzh A L A dxt» (2.14)
p!

Switching back to the Levi-Civita tensor, since the component of Levi-Civita tensor, €, u,....up is
totally anti-symmetric, it is actually a differential form. The tensor can be written out explicitly
as

1

= g A2 A (215)
1

- ﬁ\/mgﬂL...uDdx#l ANdzh? A ... dat® (2.16)

= \/mdl‘o /\ ...... /\ de_l (217)

= /|g|dPx (2.18)

The third equality line arises by using the fact that the Levi-Civita symbol and the wedge product
of dx are both totally antisymmetric. The contraction of them will give rise to a number of D!
same term. Thus, the Levi-Civita tensor acts as a volume form. One can check easily in the
Euclidean space. If the Cartesian coordinate system with metric 0, is used, then |g| = 1. This
reduces to the familiar volume form d”z.

10



Note that the combination of the square root of the determinant of any (0,2) tensor with Levi-
Civita symbol always forms a tensor which obeys the coordinate transformation rule but only the
specific combination of /g with €,1...,p serves as the identity of volume form.

Therefore, to compute the volume of any manifold with its structure governed by a metric g,
one can just simply evaluate the integral

Iz/\/mcz% (2.19)

The obtained volume form can also be used to constructed any kind of action

S = /\Il(x)\/|g|de (2.20)
For ¥(z) is a scalar.

2.2 Maps between manifolds

A manifold M can be linked together with another manifold N by a map 1, namely ¢ : M — N.
The property of the map between 2 manifolds is important to be studied for lot of different reasons.
For example, if one wants to extract the information of the extrinsic geometry from the intrinsic
geometry by embedding a submanifold in a equal or larger dimensional manifold or if someone
wants to study the natural formalism of active coordinate transformation of a same manifold, a
thorough study of the map between manifolds cannot be avoided.

2.2.1 Pullback and Pushforward

Consider 2 manifolds M and N with dimension m and n respectively such that n > m and with
coordinate system xz* and y* respectively. Imagine a map ¥ : M — N and a function f: N — R.
With the function f acting on N to give a real number, the pullback 1* can be defined.

Yf=fot (2.21)

The pullback behaves to pull the operator f from N to M. 1* maps the function space F(N) to
the function space F(M). See figure 1.

Figure 1: Pullback schematic diagram .
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A vector can be thought as a derivative operator in differential geometry acting on a function f
to give real number, namely V : f — R. This is because there exists a one to one correspondence
(complete isomorphism) between any vector V to the directional partial derivative dy;. Therefore
a vector dy; can be expressed as

V= 8‘7 (2.22)
=V*Ho, (2.23)

and
Vif=Vro,f =R (2.24)

For V(p) is a vector at a point p on the manifold M, the pushforward v, of a vector V' can be
defined

(V) f =V f) (2.25)
To find the component of the pushforward of a vector (1. V)*, the following deduction is considered
(0 V)*af = V'O, (Y f) (2.26)
of oy*
= H — e
Vv Dy D (2.28)
oy~
= H_g
(Vo) 0af (2.29)

In the third equality line, chain rule is used. Hence, the component of pushforward of a vector is
found.

w0y

W) =Vl

(2.30)

Note that a pushforward maps the tangent space of M at p to the tangent space of N at ¥(p).
Also, since a vector acts on a 1-form, w to give a real number, w can only be pulled back from N
to M. See figure 2

(@ w)(V)) = w(¥.V) (2.31)

Figure 2: Pushforward schematic diagram [|.

12



If M and N refer to the same manifold, the behaviour of a vector under a pushforward resembles
the active coordinate transformation. This is obvious from (2.30). However, if M and N are
different manifold (different dimensions,etc), gzi
transformation matrix because then g{: is not invertible in general.

in (2.30) cannot be interpreted as the coordinate

1-forms are linear maps from vectors to the real numbers. In contrast with vector for which the
basis is represented by partial derivative, the basis of 1-form is represented by the gradient dz*

w:V =R (2.32)
w:V =w,dz!' V>0, (2.33)
= w, VO (2.34)

= w,VH (2.35)

1-forms can be pulled back from N to M. The component of the pullback of 1-form, (¢*w), can
be found by using (2.35)

(W w)(V) = w(®V) (2.36)
_ o
I e on
(waz )V (2.38)
Therefore, the component of pullback of 1-form is
. oy
(VW) = (Wag ) (2.39)

Similarly, it is also the case that the behaviour of a 1-form under a pullback represents the active
coordinate transformation if M and N are the same manifold.

A (0,1) tensor, Ty, pus.....; is & linear map from the direct product of [ vectors to R. In general one
can pull back tensors with any arbitrary number of lower indices.

W) (VD v VO = T VD p VA, VD) (2.40)
Similarly, one can push forward any (k,0) tensor, S*1®2-“ by acting it on pulled back 1-forms
() (WM, w® | w®)) = S @ A w®) (2.41)

For the higher-rank tensors, the matrix representation of pullback and pushforward can be ex-
tended by assigning one 9¥ matrix to each index of the tensor

ox
" Oyt oy
(w T)lLl _____ = W ....... WTOQ ....... (6% (242)
v _ YT OYTE
(1, 8) 21k = TR B Lol (2.43)

2.2.2 An Illuminating Example

There is a very nice example in [3]. Consider the case where a S? sphere with spherical coordinate
system is embedded in a 3-dimensional Euclidean space R? with Cartesian coordinate system. Let
M denotes the S? manifold with coordinate system (6,$) and N denotes R?® with coordinate
system (z,y,2). Let ¢ be amap, v : M — N

¥(0, ¢) = (sin 6 cos ¢, sin O sin @, cos 6) (2.44)

13



1 will induce an extrinsic metric on S2, which is the pullback of the flat space Euclidean metric.
In Euclidean space,

ds® = da® + dy?* + d2* (2.45)
Using (2.44)
dx = cos 0 cos ¢pdf — sin 0 sin ¢pd¢p (2.46)
dy = cos 0 sin ¢pdf + sin 6 cos pde (2.47)
dz = —sin 6df (2.48)
It is then easy to deduce that
ds® = d6? + sin0d¢> (2.49)
The induced metric, g;;, is obtained
_ 1 0
Now, compute the pullback of metric §;;, in Euclidean space
. B Y™ Ay
(¢ 5)jk = O @ mn (251)
= Yjk (2.52)
for %y; matrix is
Oy™ | cosfcos¢ cosfsing —sing (2.53)
Ox3 ~ |—sinfsin¢g sinfcos¢ 0 '

Hence, the induced metric used to measure the distance on S? is obtained by pulling back the
metric from R3.

2.3 Diffeomorphism and Lie derivatives
2.3.1 Active Coordinate transformation induced by Diffeomorphism

Definition 2.3.1.1 (Diffeomorphism) : Given two manifolds M and N, a map ¢ : M — N is
called diffeomorphism if its inverse 9~ : N — M exists. If v is k times differentiable, ¢ is called
C*- diffeomorphism.

The existence of diffeomorphism actually implies that the 2 manifolds M and N are the same. For
a diffeomorphic map 1, one can use both ¢ and 1! to pull back or push forward any tensors from
M to N. Specifically, for a (k,[) tensor field Tl’flllf? """ #k on M, one can define the pushforward

(VT (WD, ooy P VO VD) = Tp*wt 0™ [ VD [ VD) (2.54)

In components form, the pushforward takes the expression

poy QYT Oy Oz O™

(w*T)Blj......Bl T Ok T Qe Oybr

oy e (2.55)

For pullback, it is exactly the same story. Therefore, from (2.55), it is now obvious that the
pullback and pushforward induced by a diffeomorphic map v represents the active coordinate
transformations. To change the coordinate system, first one can use a diffeomorphic map ¢ and
actiton M, : M — M, the new coordinate system is obtained by just pulling the coordinate from
the range space to the domain space, (¢*z)* : M — R™. Similarly, under the active coordinate

transformation, the new tensorial value takes the expression (. T')41 1. See figure 3.

14



Figure 3: A coordinate change induced by the diffeomorphism .

One can also compute the difference of the tensorial value at 2 different points on the manifold
M using the pullback and pushforward induced by a diffeomorphism. To compare the tensorial
value at 2 different points, p and ¥p on the manifold, the naive way of simple subtracting T'(p)
and T'(¢p) does not work because T'(p) and T'(¢p) lie at different tangent vector space. So, one
possible way to compare them is to pull back T'(¢p) to the point p first and then compare them.

AT = *(T(¢p)) — T(p) (2.56)

This method of comparing the difference of the tensorial value at 2 different points suggest a new
kind of derivative on tensor fields which is used to identify the rate of change of the tensor field
under the flow of diffeomorphism. This derivative is called Lie derivative. We follow the approach
in [3] to introduce Lie derivative by at first looking at a particular easy diffeomorphism and then
generalize the whole concept.

2.3.2 Lie Derivative

A one parameter family of diffeomorphisms, v; is needed to categorize the rate of change of the
tensor under the flow of the diffeomorphism belong to this family. This can be thought as a
smooth map R x M — M such that for each ¢ € R, there exists a diffeomorphism v; which satisfy
Ps 0Py = Peqe [3]. A vector field V = d—;/;—t is then induced by this one parameter family of
diffeomorphisms. At a single point p of the manifold M, there is a tangent vector induced there.
For a collection of continuous and successive points, a curve is generated. All these curves will fill

up the entire manifold M.

Consider the case where (z!,22,...,2") is the coordinate system at the point p on the manifold M.

The one-parameter diffeomorphism considered 1 is (2!, 22, ...,2") = (2! +t,2%,...,2™). The
Lie derivative of a tensor T', LT along the vector field generated by v, is defined as

o — Jim [y et Py (2.57)

k
..... 143 t—0 t

Ly maps a (k,1) tensor fields to a (k, 1) tensor fields. It obeys the following properties [3]
1) Linearity
Ly (aT +bS) = alyT +bLyS (2.58)
For a and b are constants. T and S are arbitrary tensor.
2) Leibniz rule
Ly(T®S)=(L,T)®S+T®(L,S) (2.59)
Lie derivative operator reduces to the directional partial derivative when it acts on a function f

Lyf=VFo,f (2.60)
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In the case that we study, the pullback of a tensor T’ can be obtained using (2.55)

(WD) Gl = St Ok Ol O Tk (a4 8,22, 2™ (2.61)

Hence, the pullback tensorial value ¢y [T} x| (¢ (p)) = T % (z! +t,2%, .....,2"). From the

Vie....vp INTUNES ) T By
definition of the Lie derivative, it is obvious that in such a case, the Lie derivative amounts to

0
Lyt = g a Tt (2.63)
In particular, the Lie derivative of a vector field U* is
our
LyUH = oy (2.64)

The expression of the Lie derivative of a vector field in (2.64) is clearly not in the invariant tensorial
form. However, (2.64) can be rexepressed into the form involving commutator [V, U]

VU = V¥o,U" — U9,V (2.65)
o

_ %Z : (2.66)

= LyU" (2.67)

The commutator relation involving the expression of Lie bracket is a well defined tensor. Therefore,
we managed to find a tensorial expression of the Lie derivative generated by a vector field V acting
on another vector field U.

To find the expression of the Lie derivative generated by a vector field V' acting on a 1-form, use
(2.59) and (2.60)

Using (2.59)

Ly (w,U") = (Lyw), U +w, (LyU)H (2.68)
= (Lyw), 0" +w, V"0, U* —w,U"0,V* (2.69)
Using (2.60)
Ly (w,U") =V"0,(w,U") (2.70)
=V (0w, )U* + V"w,(0,U") (2.71)

Equating (2.69) and (2.71) gives rise to the relation of the Lie derivative operator acting on a
1-form w

Lyw, =V (0pwy) + (0,V")wy (2.72)

The Lie derivative of an arbitrary tensor can be obtained by the similar procedure

Ly Ty bl = VOO T b — (O\VI )Tzt — (O\VI)TEN e — 4 (B, VAT o
(2.73)

Note that the partial derivatives 9 in (2.73) can be replaced by the covariant derivative V. It
turns out that all the terms involving Levi-Civita connection will cancel each other.

Lie derivative of the metric tensor is a very important relation. Using (2.73), it can be deduced
that

['Vg/w = ngoguu + (VMVA)QXV + (VVVA)Q/M (2.74)
=V,V, +V,V, (2.75)

In the second equality line, the metric compatibility is considered.
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3 Non-linear theory of Electromagnetism and Gravity

In this section, we study the foundation of Born-Infeld theory and general relativity. Born-Infeld
theory and general relativity are the non-linear field theories needed to be understood well for
both of our research topics — the geometrical interpretation of field theories and classical double
copy. Therefore, this chapter serves as the physics preliminaries for this thesis.

3.1 Born-Infeld theory
3.1.1 Brief recap of Maxwell theory

One of the most successful theory in physics is Maxwell’s theory of electromagnetism. In the
absence of any source, the Lagrangian density of Maxwell theory is known to be

1

£=-4

F F* (3.1)
For F),, is the electromagnetic field strength which is totally anti-symmetric,
F,, =0,A,-0,A, (3.2)
Applying the least action principle, the equation of motion is found to be
O F" =0 (3.3)
In the matrix form, F},, is written in term of electric and magnetic field as

0 —-E, —-BE, —E.
E, 0 B. -B,

Fu = E, -B. 0 B, (34)
E. B, -DB, 0
The equation of motion (3.3) implies two source free Maxwell equations
- =~ OE

@LF‘“’:O@VJE':O,VXB:E (3.5)

The other two Maxwell equations are obtained from the Bianchi identity

4 . 0B

aAF#V—k&‘#FM—i—&,F,\u:0<:)V~B:O,VXE:—E (3.6)

One important thing worth mentioning is that the Maxwell theory in vacuum possesses Lorentz
symmetry. This means that Maxwell action and Maxwell equations in vacuum are covariant with
respect to the Lorentz transformation.

3.1.2 Linear vs Non-linear

Maxwell’s theory is a linear field theory. There is a very important concept to compare the linear
field theory and non-linear field theory. Field equation in Maxwell’s theory with source is

PA, =k, (3.7)

where the 4-current J, is (p, j1,Jj2,73). p is the charge density and j; is the current density. In
quantum field theory, the photon 7 is the excitation of the electromagnetic field A,. The source
J,, is completely independent of the electromagnetic field A,. Therefore, there will be no self
electromagnetic interaction (photon interacts with photon ) in the scattering process.

For non-linear field theory, the self-interaction of the gauge boson is possible. Consider the theory
of general relativity which is a non-linear field theory. We will show here briefly how the self
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interaction of graviton occurs in general relativity. The concepts discused here can be obtained
from other section of this thesis as the theory of general relativity is discussed in details in section
3.2 and linearized gravity is discussed in section 5.3.3. Consider linearized gravity for which the
full metric is written as

Guv = Ny + h,uu (38)
In linearized gravity, weak field limit is assumed.
[h| < 1 (3.9)

In the weak field limit, the Levi-Civita connection can be well approximated to a form which only
carries linear terms of the field A,

Ap
n
]‘—‘;ALI/ = 7(8/1«}1‘,01/ + thp;L - aphuu) (310)

The Ricci tensor which describes the curvature of the spacetime can also be well approximated to
Rf}l,) that contains only the linear terms of h,,,

1
R/(}u) = 5(62h/w + 0,0y h — 6M8Ah§ - 61,8)\h2) (3.11)

The gravitational field equation in linearized gravity can be expressed as

1
Rl(}y) - inle(l) = 8rG (") (3.12)
where 7, is
Gl — G
Tuv = j_ZU,D + H787TG & (313)

T, is the energy momentum tensor, G, is Einstein tensor and G,(},,) is the linearized term of
Einstein tensor and G is Newton constant. 7, is interpreted to be the source of the field hy,, .
The excitation of the field h,, is graviton g. The field equation in linearized gravity will give the
expression

(0* + .. hyuw = 87GT,, (3.14)

The term G, in the source term 7, carries h,,. This explains why gravitational field can generate
gravitational field itself. In other words, the graviton can self-interact with other graviton in the
scattering process. See figure 4.
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Figure 4: Self-Interaction of gravitons [|.

In next scetion, we will discuss Born-Infeld theory which is also a non-linear field theory. Just like
in non-linear field theory of gravity the self-interaction of gravitons occurs, the self interaction of
the photons also occurs in Born-Infeld theory.

3.1.3 Motivation for Born-Infeld theory and the Postulation of Invariant Action

In 1934, Max Born and Leopold Infeld proposed a non-linear theory of electromagnetism. Note
that this was before the advent of quantum field theory. At that time, most of the physicists
adopted the dualistic standpoint on the relation of matter and the electromagnetic field. The
main idea of the dualistic standpoint is that the particles are the sources of the field, the particles
are acted on by the field but they are not a part of the field [2]. The other standpoint which
is less popular is the unitarian standpoint that assumes that the only one physical entity is the
electromagnetic field. The particles of matter are to be considered as singularities of the field and
their mass is the derived notion from the field energy [2]. It is obvious that quantum field theory
today as the theoretical framework to construct the standard model takes the unitarian standpoint
because the particle is the excitation of the quantum field in this theory. Beside quantum field
theory, Born and Infeld actually managed to come out with a modified electromagnetic field theory
which is also an unitarian theory. The amazing thing is that their theory satisfies the principle of
finiteness. In the electrostatic case of Maxwell’s theory, the Coulomb potential, V' —% does not
satisfy the principle of finiteness. So, at the point where the charged particle sits, the Coulomb
potential tends to infinity. We will see later in this chapter how Born-Infeld theory overcomes this
problem.

Due to the extraordinary success of quantum field theory, there has been a time that Born-Infeld
theory was neglected. However, due to the recent development in string theory and other theory
like double copy, Born-Infeld theory caught physicists’ attention again and a lot of researches were
devoted to this theory. Therefore, we discuss Born-Infeld theory in this chapter by reviewing how
Born and Infeld constructed this theory.

They started by postulating an invariant action which is covariant with respect to the general
spacetime transformations in the same spirit as discussed in section 2.1.
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Consider the Lagrangian density

L = \/det(a.) (3.15)

For a,, is a tensor which is neither symmetric nor anti-symmetric. In general, a,, can be split
up into the symmetrical part and antisymmetrical part.

Ouv = Guv + Fyu (316)
such that
uv = Guus Fuz/ = _Fuu (317)

The symmetrical part g,, is the metrical field while the antisymmetrical part F),, is the elec-
tromagnetic field strength. In last section, it has been shown that one of the possible form of
the invariant action with respect to some transformation laws takes the form such that the La-
grangian density is the square root of the determinant of any arbitrary (0,2) tensor. The simplest
assumption for £ is the linear combination

L= \/~det(gu + Fu) + Ay/~det(gu) + By/det(F) (3.18)

For A and B are arbitrary constant. The minus sign in the first and second term is induced in
order to get the real value of the square root due to the fact that the general manifold considered
is Lorentzian manifold and the determinant of metric tensor is a negative value.

The last term can be omitted. Note that F),, is written as V,A, — V,A,. The usual partial
derivative 0, is replaced by the covariant derivative V, since the metric used here is not fixed
to be constant. The spacetime integral of the last term can be changed to a surface term since
it contains only total derivative term. It has no influence on the variational equation of the field
since dA,, is assumed to be zero at the boundary. So, one can take B = 0. The remaining task is
to determine the coefficient A.

£ =\~ det(g + Fu) + Ay/~det(gu) (3.19)

In order to determine the coefficient A, the imposed condition is that in the limiting condition
of the flat Minkowski space and in the weak electromagnetic field limit, the classical Maxwell
expression for Lagrangian density (3.1) is obtained. This is essential because a good physical
theory should be able to be reduced to the well-known theory which has succeeded to describe the
world in a certain limit. So, in the limit described above, £ becomes

L=/~ det(nu + Fu) + A/ ~det(10) (3.20)

For n is Minkowski metric and it takes expression as

1 0 0 0
0 -1 0 0

=10 0 -1 0 (3.21)
0 0 0 -1

By careful calculation, —det(n,, + F),,) is found to be

—det(mw + Fw) =1+ (F223 + F321 + F122 - F120 - F220 - F320) — (FasFro + Fa1Fo0 + 1:‘12}‘_'30)2
(3.22)

=1+ (Fg + F) + Fy — Fio — Fyo — Fyp) — det(Flu) (3.23)
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In the weak field limit F),, < 1, the last term can be safely neglected. So, it reduces to
—det(nuy + Fu) =1+ BZ + B, + B — E. — E, — E? (3.24)

To be able to reduce to the Maxwell form F),, F'*" o B? — E?, the term 1 needs to be eliminated.

Since —det(n,,) = 1, A has to be —1 to cancel the factor 1 after expanding \/—det(n,, + F.)
and neglect the higher order term.

A=-1 (3.25)
Therefore, Lagrangian density takes the form
£ = \/~det(u + ) — /—det(n,) (3.26)
= \/1+ B2~ B~ B,E, - B,F, ~ B.E. - 1 (3.27)
:\/1+B2—E2—§.E—1 (3.28)
ey el (3.29)
such that
F =B - B* = (Fgy + F§y + Fiy — Fiy — Fiy — F3)) (3.30)
and
G? = B.E = det(F,,) = (FasFio + F31Fao + F12Fy)? (3.31)

In a general coordinate system for any arbitrary manifold with its structure governed by g, (z),

det(guy + Fl) = det(gun) + ®(guw, Fu) + det(F,) (3.32)
o det(F,,)
det(guu) det(guu)

In geodetic coordinate system, it has been found out that ﬁ = %FWF # = F and Z’Ztt((lg?”")) =
v v

—G?2. Since the form of ﬁ is invariant with respect to the symmetric coordinate transforma-
v

tion rule, it also takes the same form in those coordinate systems.

= det(g)[1 + 1 (3.33)

The Lagrangian density in general can be written as

L= \/~det(gu + Fu) — /~det(g,) (3.34)
=/ —det(g) (VI + F — G2 — 1) (3.35)

In some papers and textbooks, there is a constant factor —1 in front of the expression (3.34). The
constant factor is trivial because it does not affect the equation of motion obtained from the least
action principle. Both F' and G are invariant. It is better to convert G into the form for which
that its invariance property is obvious. To do this, a (4, 0) tensor j*? is introduced,

1

24/ —det(guv) ’

if abed is even permutation of 1234,

jabed — —m, if abed is odd permutation of 1234, (3.36)
0, otherwise

After introducing the tensor j%*°?, G can be written as

1
G = ZjadeFachd (3.37)
and the dual of F,,, Fx% can be defined as
Fxob = jab‘“’F,“, (3.38)
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3.1.4 Equations of motion for Born-Infeld theory

One of the most elegant principle in physics is the least action principle. This principle has the
power to generate physical theory. Once the relevant action is determined, the equation of motion
can be obtained by imposing the constraint of the variation of action with respect to a certain
variable to be zero. It is not the exception for Born Infeld theory. Except using least action
principle, note that 2 Maxwell equations can be obtained from the Bianchi identity (3.6). The
two equations of motion obtained from Bianchi identity are

vB’:o;vXE:—a—B (3.39)

ot

Since the definition F),, = V,A4, — V, A, is inherited as well in the Born Infeld theory, the two
equations in (3.39) are also the equation of motions of Born Infeld theory. With help of (3.38),
(3.6) and (3.39) can be brought into a more compact form

/= det (G F5 q B} 3
o ea(zv ) ):0©V~B:O;V><E——aa—f (3.40)

The divergence operator and the curl operator here is the general one in any general coordinate
system. The major difference between Born Infeld theory and Maxwell theory comes from the
other two equation of motions obtained from the least action principle. This can be seen by first
taking the partial derivative of £ taking the form of (3.34) with respect to F},,,. Note that £ can

be written as \/—det(g,, )L, for L is
L=V1+F-G2-1 (3.41)

oL _ /T oL OL _ 9L OF | AL _ G
So, F., — V det(gw)aFw such that F., — OF 0F,,  0G 0Fr,,

L 1 ;
27 =51+ F-G")72 (3.42)
L .
%G =-GA+F-G?)= (3.43)
OF _ 19(F*Fu) (3.44)
OF,, 2 0F,,
= LUIE 4 g 85 Fu) (3.45)
1
= 5(2F") (3.46)
= (3.47)
0G 1 0 O(FupFeq)
= 4
0F,, 4 0F, (3.48)
1 LV C s 14
= (" Fea + 5" Fap) (3.49)
1 > LV C uva
= Z(]M chd + ]N bFab) (350)
1
= 5 (3.51)
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Therefore,

oL 1 F™ — GF*MY

== 3.52
OFuw 21+F-G? (8:52)
1
= — 4
oL (3.53)

v _ FPY—GFs!"
For P = Wi al
PH is interpreted to be the electromagnetic field strength in matter. P*” is related to F*" in
a way to that which, in Maxwell’s theory of macroscopic bodies, the dielectric displacement and
magnetic induction have to the field strength [2]. In matrix form, P*¥ is written as

o D, D, D,
-D, 0 H. -H,
-D, —H. 0 H,
-D. H, -H, 0

PR = (3.54)

To obtain the remaining two equation of motions, vary the action S with respect to F),, and
require 0.5 = 0,

58 = / SLd'x (3.55)

/ V/ —det(gmn) aF 5Fwd4 (3.56)

;w

/ v —det(gmn) aF (Vu6A, — V,04,)d" s (3.57)
uv

oL oL

A, A,dt .

/a Vg 558 + 0, el lg) )0 Ay (3.58)
oL

=92 A, d* .
/ O/~ etg) 5o Av'a (3.59)
(3.60)
In the forth equality line, the relation of covariant divergence V,K* = —det(g)K*)

d \/—det(g)
is used. Integration by part is also carried out and the total derivative term can be neglected due
to the fact that §A, is assumed to be zero at the boundary. In the fifth equality, the technique of
renaming the dummy indices is used.

This leads to the equation of motion

20,( —det(gmn)gaTL) = 0, (v —det(gmn)P*) =0 (3.61)

In Maxwell theory, 0,F'* =0 & V - E = 0;V x H = 92 1In the same spirit
) - - dD

So far all the deductions are carried out using natural unit. In the conventional unit, the electro-
magnetic field strength has to be divided a dimensional correction constant, b. Then the results
obtained before become

L=V1+F-@? (3.63)

23



1y 1
F= (B>~ E%:;G=—

= (B -E) (3.64)

(=

Gyl _ _B-GE

= = 3.65
0B V1+F—-G? ( )

<~ ,0L E-GB
OE V1+F-G2?

3.1.5 The Electrostatic Solution of the Born-Infeld field equation

(3.66)

Consider the electrostatic case (electric field generated by a point charged particle with charge e
according to the Coulomb’s law) where B = H = 0 and all field components are independent of
time. Then, the only field equations survived are

VxE=0;V-D=0 (3.67)

For the case of central symmetry, it is convenient to work in the spherical coordinate system. It
is then easy to solve for D field,

d, , e
%(T DT)ZO#DT:T?
For D, indicates the radial component of D field and e is the elementary charge. The surface
integral of D field over a Gaussian surface can then be computed. Let the Gaussian surface be a
sphere for which the point charged particle is sitting at the centre (origin of the coordinate system)
of the sphere.

(3.68)

/ D,r? sin 0dfd¢p = / esin 0dfdgo (3.69)
= 4dre (3.70)

Also, the curl of E field vanishes implies that E field can be written as the gradient of a potential
function, ¢

E=-V¢ (3.71)

Since ¢ possesses central symmetry, it only varies with respect to the radial direction. So,

d¢
B -2 _ _y 3.72
% ) (372)
Use (3.66), D, can be expressed as
E,
Dy = ———"  — 32 (3.73)
1-%E2 T
Rearranging (3.73), E, is found to be
E, = S (3.74)

r3/1+ (%)4
For rg = /§. From (3.72), (3.74) is a first order differential equation of electrostatic potential ¢,

____ e (3.75)

TG
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Substitute y = %, ¢ can be solved by the integral expression

e [ 1
_ € / dy
To x \/ ]. + y4
Do a further substitution by letting x = t(m% I6]

sec

o(r) = flz) = ——dp
") g /a(l) 1+ tan* 3
1

2 /acv) \Jeos* 1 +sin' §

dp

1 [ 1
:5/ ds
a(x) \/(c052 18 +sin® 2B8)? — 2cos? 1 Bsin® 1
1 1
_ ,/ - 4B
2 Ja) \/m
2 ﬁ

:f(U)—*F(\/i a)

a(z) 1

For a(z) = 2arctan(z). F(%7 a) = [, Wi
-3 Sin

1 [o@ 1
I
0 1-— % sin? 3

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

dp is recognized as Jacobian elliptic integral.

¢ has its maximum value when = 0. Thus the electrostatic potential has its maximum value in

the centre and its value is
1.8541e

To

$(0) =

(3.83)

The curse of the infinity in the old electrostatic theory has been shown to be broken by the modified

electrostatic case in Born-Infield theory. This is shown explicitly in figure 5.
2+6]

@4

N
1]
1 i 1t t71
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Figure 5: Electrostatic potential graph [2].

3.2 General relativity
3.2.1 Einstein-Hilbert Action and the Einstein Field equation in vacuum

One of the pillar of modern physics is Einstein’s general theory of relativity which is used to
describe the physics of gravity in term of Riemannian intrinsic geometry. The theory of general
relativity can be generated as well by the field theory approach. The action that yields the Einstein
field equation in vacuum is Einstein-Hilbert action, Sg

Sy = / V—gRd*z (3.84)

For /—g = \/—det(g,v), Ricci scalar R = g"”R,,,, and Ry, is the Ricci curvature tensor. To
obtain the gravitational field equation, applying least action principle by varying Sy with respect
to the metrical field g,, and require that 6Sg = 0.

S = (05)1 4+ (6S5)2 + (05)3 (3.85)
where
(58)1 = [ dtov/=gg" 5R, (3.86)
(68)2 = [ d'ay/=gR,ubg" (3.87)
(69)3 = / d*zR6\/—g (3.88)

Focus on (0.5)3 first. One of the relation from linear algebra tells that

In(detW) = Tr(lnW) (3.89)
For W is any arbitrary matrix and T'r refers to the trace of a matrix. Then,

dln(detW) = 0Tr(InW)

§(detW) = detW - Tr(W~15W)

Let W be the metric g,,,,. With the relation above, it follows that

69 = 9(9""3g,) (3.90)
= —9(9ur99"") (3.91)
The relation 6(g"”g,.) = 0 is used for the second equality line. Therefore,
PN (3.92)
—g=—-——0g )
2=y
g9
= —2—gq,,6g" 3.93
2\/jg f ( )
1
= _5\/_799#,,59“” (3.94)
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(695)3 in total is

1
(65)s = —/d4x\/—g§gﬂu5g“” (3.95)
(65)1 can be shown to be zero. From the definition of Ricci tensor, it can be derived easily that
SRy = VA(OT),) — V,(6T3,,) (3.96)

For I' is the Levi-Civita connection and VI is the covariant derivative of the Levi-Civita connection.
Using this relation, (§5); can be shown to be

(65), = / (¢"VA(T,) — g"'V, (STY,) v —gd' (3.97)
- / (VA(g"6T,)) — ¥, (g"'V, (5T3,)))v/—gd's (3.98)
_ / (V=g oT2,) — B,(v/—gg"* 6T}, )d (3.99)
—0 (3.100)

The second equality line arises due to the metric compatibility condition V,g*” = 0. The third
equality line arises by using the relation V,V# = ﬁ@u (v/—gV*). The last equality arises because

the total derivative term can be converted to the surface term, since Levi-Civita connection(3.108)
is expressed as a function of dg,, and dg,, and Vdg,, are assumed to be zero at the boundary,
the boundary term can be neglected.

In total, 6Syg = (55)2 + (55)3

1
8Sy = /d4z\/—g(RW - 5g,w)ég““ (3.101)

Imposing Sy = 0, Einstein field equation in vacuum is obtained

1
R}Ll/ - Qg;u/ =0 (3102)

3.2.2 Coupling of the gravitational field g,, with matter field
The left hand side of (3.102) is a geometrical object. It is also called Einstein tensor G,

1
G/w = R,uu - igpu (3103)
One important element is still missing in the theory of gravity. It is the matter. In Newtonian
gravity, matter with mass will generate gravitational field. This must also be the case in Einsteinian
gravity. In weak field limit, Einstein’s theory of gravity can be reduced to the classical Newtonian
theory. Consider the static and weak gravitational field which satisfy the relations (3.104) and
(3.105)

dx? da®
—_— 3.104
ar < ar (3.109
uv = Nuv + hpua ; ‘h;w| < |7hw| (3105)

For 7 is the proper time. (3.104) corresponds to the slow motion condition. Using the geodesic
equation(3.106) now
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dr? B dr dr
With the constraints (3.104) and (3.105), (3.106) can be approximated to

=0 (3.106)

d?zt L Te (dxo

dr? 0% gr
Considering only the spatial part by replacing p to 4 in (3.107). Use the definition of Levi-Civita
Connection

2 =0 (3.107)

« 1 (0%
Dhw = 59" Ougvp + 0ugpu — 9pg00) (3.108)
It then can be shown easily that ')y = —1¢?9,g00 by considering the static condition that the
metric is independent of timelike coordinate. Then, the geodesic equation becomes
d?zt 1,
— 29 =0 3.109
S0y (3.109)

Note that ¢g°° = —1 — hgo. In the Newtonian limit, the geodesic equation takes the form (3.109)
by neglecting all the second and higher order term of h,,. Compare (3.109) with the equation of
motion in Newtonian theory of gravity
d?z?
dt?

For ¢ here is the gravitational potential. So,

+9'¢=0 (3.110)

hoo = —2¢ (3.111)

goo = —1—-2¢ (3.112)
In Newtonian gravity, the gravitational field equation is represented by the Poisson equation
V3¢ = 4rGp (3.113)

For G here is the Newton gravitational constant and p is the mass density. Using the results
obtained before, the Poisson equation can be written into

~V2g00 = 87GTno (3.114)

In the classical limit, the gravitational field equation manifests itself in the form of (3.114). It
is now known that the left hand side of (3.114) which involves second order derivative of metric
tensor is represented by the Einstein tensor. Therefore, the natural reason to couple the energy-
momentum tensor 7}, of matter with the geometrical object G, is shown here by just simply
taking the classical limit of the theory.

In the field theory approach, the Einstein-Hilbert action can be coupled with another action, Sys
for which its Lagrangian is a function of the matter field ® ,

1
S=—7-5 S (P, guw 3.115
ToncoH T Su(®,9m) (3.115)
Applying least action principle again with respect to g,
1 1 1 0SSy
— (R — zRgu) + — =0 3.116
167TG( (2 2 gl—L ) + /7_9 (59’“/ ( )
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Define the energy-momentum tensor to be

1 0SSy
T = — 3.117
s / 59“” ( )
Therefore, the complete Einstein field equation is obtained
1
Gu = R, — §Rgu,, =8nGT,, (3.118)

3.2.3 General Relativity as a General Diffeomorphism Covariant theory

The structure of symmetry of general relativity is general diffeomorphism. This means that the
mathematical expression of the theory is invariant with respect to the general diffeomorphism.
There is no prior coordinate system which is superior than other. All coordinate system is equiva-
lent and one will always obtain the same physics of gravity no matter what preference of coordinate
system is used.

Consider an arbitrary diffeomorphism generated by a vector field V. The full action for general
relativity is discussed in the last section which takes the form

WSH(QMV) + Sv(guw, P) (3.119)
The variation of S under a diffeomorphism is
! ‘ v 1322 5 12
08 = /d Tom Gé;w /d W(Sgu /dx ) (3.120)

09w is not arbitrary but it only refers to those induced by diffeomorphism here, 6g,, = Ly g
Focus on the variation of Hilbert action term first,

58 58
/d4 JgH(SgW, = /d4x59H (VuVi + V., V) (3.121)
ny 2

/ d*az/—g(R" — WR)V V. (3.122)

1
-2 / d4x\/—gV#(R‘“’ - ig*”’R)V,, (3.123)
=0 (3.124)

The third equality arises because V,/—g = 0 for metric compatible connection. The last equality
line arises because the Einstein tensor G, obeys the Bianchi identity

1
VG = (B~ L) =0 (3.125)

The last term in (3.120) also vanishes because the form of matter field ® which satisfies the matter
equation of motion is taken. Then, there is only the second term in (3.120) left which is needed

to be worried about.
0
/d4 S “Sgu = 2/d4 05M & (3.126)

59Hu
1 6Su
= 72/d4x\/nguVL —
! ( V=g 69;“/

_ 9 / e/ =gV, (V. T") (3.128)

So, if the general relativity possesses general covariance, energy-momentum has to be conserved

vV, T" =0 (3.129)

) (3.127)

The conservation of energy-momentum is one of the deepest consequence of general diffeomorphism
covariance.
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3.2.4 Schwarzschild’s Solution

In 1915, German physicist Karl Schwarzschild provided the first exact solution to the Einstein field
equation. He achieved this while serving in German army during world war 1. Schwarzschild’s
solution is the solution when a spherically symmetric and static spacetime is considered. Further-
more, this solution is also concerned with the situation of the empty space surrounding a spherical
body. In this section, we will review Schwarzschild’s metric.

We work in the spherical coordinate system z* = (t,r,0,¢). Consider a spherically symmetric
and static spacetime, the metric becomes

ds?® = Guvdxtdx”

= goo(r, t)dt? + 2go,(r, t)drdt + g, (r,t)dr® + r*(d6?* + sin? 0dp?)

= goo(r)dt* 4 2go, (r)drdt 4 g, (r)dr? + r*(d6? + sin® d¢?)

= goo(7)dt* + gy (r)dr? + r2dQ>
The second equality line arises due to the fact that a spherically symmetric coordinate system is
used. In a rotationally symmetric coordinate system, the terms like drdf and dfd¢ vanish. The
third equality line arises because we consider the spacetime to be stationary. Beside a stationary
spacetime, the static spacetime that we imposed also require the condition that the metric is

invariant under time reversal. This explains why drdt term is dropped in the forth equality line.
Note that dQ? = (d6? + sin? #d¢?) in the forth equality line. Therefore, the metric is simplified to

ds® = goo(r)dt* + gp,(r)dr® + r2dQ?
Nothing stops us from writing the metric as
ds? = > dt? + 22N dr? 4 r2d02 (3.134)

The scheme that we will use to find Schwarzschild’s metric is the following. We will substitute
the metric in the expression of (3.134) into Levi-Civita connection I'. Then, we use Levi-Civita
connection to calculate Riemann tensor Rj . With Riemann tensor known, we deduce Ricci
tensor R,,,,. Since we are interested in the solution outside a spherical body, we only care about
Einstein field equation in vacuum G, = 0. Equivalently, we want to solve the equations R, =0
to obtain the expression of ggg and g

g*)FHRg,uy %R,uu :04)900797’7*

In the matrix notation, the metric g, is

—e? 0 0 0
0 e 0 0
Juv = 0 0 7’2 0 (3135)
0 0 0 r2sin30
The inverse of the metric g"” is
—e % 0 0 0
0 e 0 0
pr
g 0 0 -2 0 (3.136)
0 0 0 7 2sin20

Recall that Levi-Civita connection takes the expression as

« 1 (03
Lo = 99 5(8MQVB + Ovgus — OpYpuv)
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The independent non-vanishing connection terms are calculated using this expression. For exam-
ple,

Lo = %gw (—9900) (3.137)
- —%g“&«goo (3.138)
= —%e‘”c’ﬂr(—e”(”) (3.139)
= =N (9,v) (3.140)

The other non-trivial independent connection terms are [3]

I =0\ (3.141)
Y% =o.v (3.142)
1
Iy, =73, = " (3.143)
r, =—re 2 (3.144)
'3, = cot 6 (3.145)
I}, = —rsin® fe= (3.146)
%, = —sinfcosf (3.147)

Note that Levi-Civita connections are symmetric under the exchange of the lower 2 indices. The
other terms that are not listed are all zero.

Then, we want to calculate Riemann tensor. Recall that Riemann tensor is

Ry = aﬂl—‘ga - aVFZO’ + PZ)\Fléa - Fg)\l—‘;);(r

ouv

We will show one example how to calculate Riemann tensor.

Ry, = 0ol'Y, — 9,9, + T0,I'}, — IT9,Ig, (3.148)
= 0, (0v) + (0,)(DN) — (Do) (B10) (3.149)
= () (ON) — 821 — (D)2 (3.150)

The other non-vanishing independent Riemann tensor terms are [3]

Ry = —re **0,v (3.151)
Ry = —re”**sin? 00,v (3.152)
Ry, =re 229, (3.153)
Ri,s = re P sin? 09, ) (3.154)
R, = (1 — e ) sin? 4 (3.155)

The other terms that are not listed are either zero or they can be deduced from these independent
terms. For example, one of the term that can be deduced from the independent terms is

Rg10 = 9" Raoto (3.156)
= ¢"" Rio1o0 (3.157)
= g"' Roiox (3.158)
= 9" gooRYo1 (3.159)
= e M (=) (0,10 \ — v — (0,1)?) (3.160)
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The third equality arises by using the relation R,,.3 = R,.8o. After we know the Riemann

tensor, we want to calculate Ricci tensor
(6%
R, =R

pov

The non-vanishing independent Ricci tensor terms are [3]
2
Roo = 2 N[0%0 4 (9,v)% — (8,1) (9, \) + =0,
r

2
Rll = —831/ — (8TV)2 + (8TV)(8T)\) + ;8T)\
R22 = 672)\[7"(8r)\ — 8r1/) — 1] +1

R33 = sin? 0 Rao
With Ricci tensor known, we want to solve the field equation R,, = 0. We note that
Rooe®?* ") 4+ Ry; =0
This implies that
%(&V FON =0 — (A+v) =0
So, we can deduce that
A=—-v+a
where a is a constant. The metric becomes

ds® = —e7 2 e20qt? + e dr? + r2d0?

(3.161)

(3.162)

(3.163)
(3.164)

(3.165)

(3.166)

(3.167)

(3.168)

We can absorb e2® into dt? by defining dt'? = e2%dt? and again relabel ¢ as t. So, the metric is

ds® = —e”2dt? + e dr? + r?dQ?
We also solve for
Roo =0
We will obtain

e (=2row —1)+1=0
e (2ro v +1) =1

d
e () [2T—drl/(r) +1]=1
This implies that

where b is another constant. Then, the metric becomes

1
d82 = —(1 + é)dtZ + 7bd,’42 +T2dQ2
T 1+2

T
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(3.169)

(3.170)

(3.171)
(3.172)

(3.173)

(3.174)

(3.175)

(3.176)



When r — oo, we should have the weak field limit. In the last section, we have seen that the
component of metric goo in the weak field limit is goo = —(1 + 2¢). In Newtonian gravity, the
gravitational potential is ¢(r) = —%. So, by taking the weak field limit, we can deduce that

b=—-2GM (3.177)
Eventually, we obtain the Schwarzschild’s metric

2GM |,
r )dt + (1_ 2GJW)

—(1- dr? 4 r2dQ? (3.178)

To understand more physics of Schwarzschild’s metric, see [3], [6], [14].

4 The Geometric Interpretation of field theories

The geometrical origin of the field theories can be understood from the viewpoint of background
dependent extrinsic geometry if the Lagrangian density is in the form of the square root of the
determinant of a induced metric. For example, we have seen that in Born-Infeld theory, the
Lagrangian density is \/—det(n,, + Fy,) if we fix the background spacetime to be Minkowski
spacetime. Then we can just interpret the induced metric to be 7, + F},,, and see if we can come
out with some geometrical notions of this field theory with the help of the understanding of the
concepts in the intrinsic geometric interpretation (background independent) of general relativity
that we know. Besides, string theory is also known to be a background- dependent theory by
invoking the notion of branes. In the study of string theory, the notion of the point particle has
been generalized to higher dimensional object called p-branes. p refers to the spatial dimension.
A point particle is a 0 dimensional brane, a string is a 1 dimensional brane, a membrane is a 2
dimensional brane and so on. We will see in this chapter that how the geometrical origin of some
field theories that their Lagrangian density can be formulated in the form of the square root of the
determinant of the induced metric comes from the interpretation that the branes are embedding
within a background space. Therefore, it is necessary to get ourselves familiar with the properties
of branes. In this chapter, we first study the physics of branes following the old routine by first
studying the simplest case (point particle) and then generalize it to arbitrary dimension. Then,
we make use of the properties of the brane to understand the geometrical origin of two scalar field
theories. Finally, we see what we can learn and do for the geometrization of Born-Infeld theory.

4.1 The action for brane and its diffeomorphism invariance as gauge
symmetry

4.1.1 Point particle as 0-brane

The equation of motion of a relativistic point particle moving through a D-dimensional spacetime
is given by the geodesic equation. Its corresponding action Sy is

So = fa/ds (4.1)

a is a constant which has the dimension of Length~!. ds is the infinitesimal path taken by the
point particle. The path taken is invariant under spacetime coordinate transformation

ds® = — g, (v)dz"dx” (4.2)

The metric g,,, describes the geometry of the background spacetime in which the brane is propa-
gating. In Minkowski flat background spacetime, the action Sy becomes

Sop = —m/ vV =N dxrdx? (4.3)

—m/ V=(dz0)2 + (dz1)? + (dz2)2 + (da?)2 (4.4)
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The path taken x* of the point particle is parametrized by a real parameter 7 which is usually
taken to be the proper time. z#(7) is called the worldline of the particle. In general, under the
parametrization, ds? can be written into

dat(7) da (1)

ds® = —g,u dr? 4.5
s gp, (.’I,') dr dr T ( )
Then, the action becomes

So = —m/dﬁ/—gw(x)i‘“j;” (4.6)
where ¥ = dng(T). This action indicates the length of the worldline in the spacetime diagram.

See figure 6.

world line

Figure 6: Worldline diagram; u denotes the tangent 4-velocity [14].

Action is invariant under the reparametrization or diffeomorphism of worldline coordinate. This
means that the action remains unchanged if replacing the parameter 7 — 7/ = f(7). Consequently,
dr — dr’ = %dr. Under this reparametrization, the scalar field z#(7) transforms to z’#(7’) such
that

H (") = a2t (1) (4.7)
and
de'™ (') dx™(1') Of(7)
dr  dr’ or (48)
The change of the action S}, under reparametrization is
da'v(7") da' (17)
S(') = —m/dT/\/—g;W(x/)/ 0 (4.9)
da'v(7")
dat(1) dz, (1) Of
—d il —=)2 4.11
T\/ dr (87') (4.11)
“w
:—m/& M mi) (4.12)
B dxl‘ (1) dz¥ (1)
= —m/dT\/ g (x = I (4.13)
=5 (4.14)



Therefore, one has complete freedom to parametrize the path z*.

Since the action Sy in the form (4.6) contains the Lagrangian density which is a non-linear function
as the square root function is involved, it is very hard to extract information (equation of motion,
the symmetric property, etc) from the action taking the form (4.6). So, it is easier for us to have
an equivalent action which takes the simpler form by invoking the auxiliary field e(r).

Consider the equivalent action Sy given by

1

So = 3 /dT(e(T)*:b? —m?2e(T)) (4.15)

where ©% = g, @*i". To see that (4.15) is equivalent to (4.6), we have to solve the equation of
motion for auxiliary field first. The variation of Sy with respect to e is

680 = l/dT(f%i’zée — m?2de) (4.16)
(&

2
1 1
=3 /dTe—g(—i‘Q —m?e?) (4.17)
Setting 65y = 0, the auxiliary field equation of motion is obtained and the equation of motion can
be solved directly which gives rise to

. 2 .2

9 —Z -
e” = 7m2 = e = 7m2 (418)

We then substitute the expression of e in (4.18) into So
~ 1 L.E2 _1l.9 2 Z’E2 _1
= 7m/d7'(7i2)% (4.20)
dx# dxv

= dr\| —guy—— —— 4.21
m/ NI Tar (421)
=5 (4.22)

So, Sy is indeed equivalent to Sy if the auxiliary field equation holds for e(r).

It is also essential to show that Sy has reparametrization symmetry. The reparametrization sym-
metry here refers to the changing of coordinate system of the worldline coordinate 7. The world
volume coordinate does not bear any physical meaning. It is just used to parametrize the brane
embedded in a target spacetime. So, the reparametrization symmetry is actually a gauge sym-
metry. It means the redundancy of the description of the same physical state. To see that Sy
is invariant under reparametrization of 7, we first have to see how the field X*(7) and e(r) vary
under an infinitesimal change of parametrization 7 — 7" = 7 — ¢(7), for € is infinitesimal.

#() = (7 — () = 2" (7) (4.23)
= 2%(r) — e{r) - (r) = 2*(7) (4.24)
= 2 (r) (7)o (7 + )] = 2(7) (4.25)
= (1) = (7)o ()] = 2(r) (4.26)

dr

The forth equality line arises because all the second and higher order term of € is neglected after
expanding ex*(7 + €). So, the variation of z#, dx* is

ozt = ' (r) — 2" (1) (4.27)
= e(1)z* (4.28)
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The auxiliary field e(7) transforms under infinitesimal reparametrization as

(1 —€)(dr — édr) = e(7)dr
"(1) — €dr€' (T)](dT — édr)
€' (1) — edre(t + €)|(dr — édr)
(1) — e0re(T)|(dT — édT)

(

[e
= €/(1)dr — ée'(T)dT — edre(T)dT

= ¢'(1)dr — ée(T + €)dT — €D-e(T)dT
=€/ (1)dr — ée(T)dT — €Dre(T)dT
=¢€/(r)dr — %(e e)dr = e(T)dr

Note that all second and higher order terms of € is neglected after all expansions in the derivation.
(4.36) leads to the expression of the variation of e field under infinitesimal reparametrization is

de(t) =€ (1) —e(r)

d
~dr 7

The total variation of Sy with respect to both e field and 2# field is
de ., 2
68y = dr( ——x + m&x —mZde)

Also note that
d

5‘,1.;” = %(537” = %(633“)
= éir, + €,
Substitute (4.41), (4.38) and (4.28) into (4.39)

-1 2t @ od(ee)
55y = §/d7[7(6xu+exu)—g(ee—&—ee)—m I ]

The last term can be neglected because it is a total derivative term. So, it becomes

-1 23k .2
05y = /dT[ z (exu +€$H) i2 (ée + ed)]

/dT i? —ee%i%¢ 4 2idee™ ")

5 [ar ddT[ ~132)

=0

(4.37)

(4.38)

(4.43)
(4.44)

(4.45)

(4.46)

Again a total derivative term is obtained and it is dropped as well. Therefore, it is shown explicitly

that S possesses reparametrization symmetry.

4.1.2 Equation of motion of 0-brane

Due to the reparametrization freedom of the 0-brane action, we can break the gauge freedom by
choosing the parameter 7 such that the auxiliary field e(7) = 1. Then, the action Sy becomes

~ 1
So = 3 /dT(g,w(:E):i:":t‘” — m2)
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Varying Sy with respect to z#(7) gives

950 = %/ A7 (29,0 ()08 + Orgu ()" 2") (4.48)
= % / dT(—%@gw(:c):b”)w + gy () 23" 52" (4.49)
= % /dT(_2ik8kguu(w)5$H¢V — 29,87 6zt + 6$k8kgm,(m):i:“:t”) (4.50)
= % / A7 (=23 g () — 200Gy (2)25 5" + Oygpy ()F 8" )0t (4.51)

The second equality line can be obtained via integration by part and neglecting the boundary
term. The forth equality line arises by renaming the dummy index.

The field equation for 2#(7) is obtained by setting 6Sy = 0. The field equation is
=28 g () — 200G ()E*E" + Ougpw (x)E* 3" =0 (4.52)
This can be written as
i 4 T ki = 0 (4.53)

The equation of motion of 0-brane is recognized as the geodesic equation describing the shortest
path that the particle travels in the embedding manifold.

4.1.3 Generalization to p-brane

After we are getting ourselves familiar with O-brane, we ought to extend the whole concept of an
action for a point particle (0-brane) to an action for a p-brane. The extension of Sy = —m [ ds
to a p-brane in a D(> p) dimensional background spacetime is

S, = —T, / sy (4.54)

where T}, is the p-brane tension and it has the unit of mass/ volume, dp,, is the (p+1) dimensional
volume element given by

du, = 1/ —det[Gop(z)]|dP o (4.55)

Gop is the induced metric of the worldvolume 0% which is the pullback of the ambient metric
guv(x) of the background spacetime. G is given by

Ozt Ox¥
Gap(z) = &7&79;“/(33) (4.56)
such that o, = 0,1,..,p. ¢° = 7 while o!,02,....,0P are the p spacelike coordinates for the

p + 1 worldvolume embedding in the background spacetime. The role of the induced metric G
is to measure distances on the worldvolume while the metric g, (x) plays the role of measuring
distances on the background spacetime.

4.2 Bosonic string theory as 1-brane theory

To see how the p-brane works, it is enlightening to see the case of 1-brane which is the simplest
non trivial case going beyond the 0-brane(point particle). 1-brane is actually a bosonic string and
its action describes the propagation of this string in D dimensional background spacetime. The
worldsheet of the string is parametrized by 2 coordinates ¢° = 7 and ¢! = ¢ with 7 being timelike
and o being spacelike which is the extension for worldline for point particle. The background
spacetime (7, 0) which is parametrized by the worldsheet coordinates can now be viewed as a
scalar field. It tells how the string propagates and oscillates through the background spacetime.
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4.2.1 The string action

Using (4.54), (4.55) and (4.56), we want to construct the string action. We assume that the
background spacetime is Minkowski flat spacetime. Then, the metric g, (x) becomes 7,,. The
induced metric G,g is then given by

Ox* Ox”
Goo = — ——1n,, = &> 4.57
0= "5""3;" z ( )
Oz Ox” ”
ooy 4.
G11 ) 90 um x ( 58)
Oxt Ox¥ ,
= v = % 4.
Gio = G 9 oo M =TT (4.59)
In total,
@2 ga!
Ga/} = |:j;‘l’/ m/z] (4'60)
The determinant of G,g is then given by
det(Gop) = 722" — (i2')? (4.61)
From (4.55), the string action becomes
Sng = —T/deO’ (zx")? — 222" (4.62)

This action is called Nambu Goto action and it can be interpreted as describing the area of the
worldsheet mapped out by the string in spacetime. Since the equations of motion is obtained by
minimizing the action, the equations of motion for the string can be thought as the smallest area
mapped out by the string in the background spacetime [25].

The Nambu Goto action is in the square root form. We can imitate the story of O-brane here by
introducing an auxiliary field hog(7,0) to make the action simpler. h,s here is another metric
living on the worldsheet and it differs from the induced metric Go3. The equivalent action is given
by

oxt dxV

T
- _ _ppeBZt T
S, . /drdo'\/ o o e I (4.63)

S, is called Polyakov action. h in the action refers to the determinant of h,g. To show the
equivalence between S, and Syg, we first have to note that varying S, with respect to the
metrical field h,g gives rise to energy momentum tensor as explained in section 3.2.2

2 1 68,
T /—F 6hoP

The equation of motion for the field h®? is obtained by setting the variation in the action S, with
respect to the h*? to be zero, 65, =0

Top =

(4.64)

55
= g aB
35, = [ +ozon (4.65)
T
-1 / drdoy/—hSh** Ty (4.66)
0o Ty =0 (4.67)
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Using the same technique in the section 3.2.1, §v/—h is

o—h = “hhagahaﬁ (4.68)

-5

So, the variation of S, with respect to h®?, 69, is

55, = _g / drdo ((08V/=hh N Ozx - Dy) + (V=hSh*F D - Op)) (4.69)
- _g /drdaﬂahw(—%h&ﬂhmm 04T + O - D7) (4.70)

For Ti,p is
Top = —%ha[gh)‘“aAm - 0y + Opx - Opx (4.71)

The condition that T,,3 = 0 implies
1 Aa
ihaﬁh a)\SC . é)ax = 8ax . 0/31’ = Gaﬁ (472)
Taking the square root of minus of the determinant of the tensor with indices af gives rise to
1
5\/—hhmaw - 0qx = \/ —det(Gop) (4.73)

Thus, S, is shown to be equivalent to Syg when considering the equation of motion for h®? of

Se

4.2.2 Symmetries of 1-brane

The Polyakov action (4.63) possesses one global Poincaré symmetry and 2 local symmetries which
are reparametrization symmetry and Weyl symmetry. The invariance of a theory under global
transformation gives rise to conserved current via Noether’s theorem while the invariance of the
theory under local transformations in this case is a sign of absent degree of freedom pointing
to the gauge symmetry. Reparametrization symmetry has been shown explicitly for 0-brane in
section 4.1.1. It is intuitively obvious to expect the extended action of p-brane should also have
parametrization freedom because the propagating of p-brane in the background spacetime should
not be affected by the way to parametrize the worldvolume. Therefore, we are left with Poincaré
transformation and Weyl transformation.

Poincaré global transformation

Poincaré transformation is the translational extension of Lorentz transformation. The infinitesimal
form of Poincaré transformation is written as

oxt(r,0) = ala¥(1,0) + b (4.74)

For Polyakov action, the transformation solely contributed by Poincaré transformation also re-
quires that the field hog remains unchanged, dhqg(7,0) = 0. The scalar field z#(7, o) are defined
on the worldsheet. b* comes from the translation. The coeflicient a¥ originates from Lorentz
transformation, with both indices down, a,, is antisymmetric,

Guy = —Ayy (475)
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To show that Polyakov action is invariant under Poincaré transformation, vary S, with respect to
at. Using (4.74), it gives

38, = —% /deO’\/ —hh®P (0, (52")0px” + Dz’ d5(32H)) g, (4.76)
=T / drdo/—hh*P 9, (alx* + b")dsa” g, (4.77)
_ 7 / drdoy/=T(ap) (h*P 0ua*dyz”) (4.78)
_o (4.79)

The last equality arises because a,j is antisymmetric while h‘”@@amk@gm” is symmetric. Their
contraction gives zero. So, the Polyakov action is indeed invariant under Poincaré transformation.

Weyl local transformation

Weyl transformations are transformations that change the scale of the metric h,p
has(T,0) = Bog(r,0) = 2D hag(r, o) (4.80)

while leaving z# (7, o) unchanged. To show that Polyakov action is invariant under Weyl transfor-
mation, we first have to observe how v/ —h transforms

V=W =/ —det(h,) (4.81)
=/ —e*(@)det(hap) (4.82)
=)y —h (4.83)
Then, observe that v/—hh®? transforms as
VIR = \/Zhe??(@) g 20(0) pad (4.84)
= V/—hh*? (4.85)
Thus, Polyakov action is invariant under Weyl transformation.

Reparametrization symmetry

As mentioned before, reparametrization symmetry is a local symmetry for the worldsheet. Under
the changing of the parameter, o to o’ = f(o), the Polyakov action is invariant. The field z* and
hap transforms under reparamnetrization as

' (r,0) = 2" (r,0") (4.86)

afY of®
:1,@(7-’ O'l) = ﬁwhwa@', 0'/) (487)
Gauge fixing using Weyl symmetry and reparametrization symmetry to make the
intrinsic metric h,g flat.

Since the theory of 1 brane is invariant under reparametrization and Weyl transformations, a
gauge fixing can be made such that the intrinsic metric hog becomes flat. The metric hqg is
symmetric and it has 3 independent components which are hoo(c), h11(0) and hig(c) = ho1(o).
Since the theory has reparametrization freedom, use a set of parameters ¢’ = f(o) such that the
metric hqg is brought into the form h(o)nag, for h(o) is a scalar function. Then, one can use the
property of Weyl symmetry to eliminate the function h(c), namely

2 p(N) =1 (4.88)
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Then, under gauge fixing, hag = 7Nag. The combination of reparametrization and Weyl transfor-
mation is called conformal transformation. Since gauge symmetries are local symmetries, so the
metric h,s can only be brought into a flat metric locally. One can only bring h,g into 74 in the
whole world sheet if the worldsheet is free of topological obstructions which means that the Euler
characteristic is zero.

4.2.3 Field equation for the Polyakov Action and the Boundary Conditions

Suppose that the worldsheet topology allows gauge fixed flat intrinsic metric hog = 145 to be
extended globally, the Polyakov action becomes

S, = % / drdo(i? — (2')?) (4.89)

To derive the equation of motion for the field x#, setting the variation of S, with respect to the
field z* equal to zero. The variation 45, is

58, = g/d7d0(2i5a§ —22'82") (4.90)
oz* 0 oxz* 9
Ozt 0 ozt 0zt 0  Oxt
= - Bl Gl A YAl Gduily 7]
T/deJ( 5.2 oz, + 87’( o dz,) + 92 o, 80( 5 dzt)) (4.92)
:T/drda((—az—i—@g)x“)&c“ +T/da[j7”5mu];f —T/dr[x’&nu]gig (4.93)

The third equality arises via using integration by part. Let us look at the boundary term first

T/da[j;“éxu}:f —T/dr[x’éxu]gzg (4.94)

The second term is familiar. The equation of motions are derived by requiring that dz, = 0 at
7 =77 and 7;. So, the second term varnishes. The third term vanishes under 3 conditions

Condition 1 : Closed string

For closed strings, o is taken to have the periodic condition
(1,0 +7) =at(r,0) (4.95)
This implies that
0z, (r,0 =0) =0z, (1,0 =) (4.96)
This makes the second boundary term vanishes. The equation of motion for this case is
(0% — 92" (1,0) =0 (4.97)
with boundary condition (4.95).

Condition 2 : Open string (Neumann Boundary Condition)

In this condition, we set the derivative of * with respect to o varnishes at the o boundary
Oyt (r,0 =0) = Opat(r,0 =7) =0 (4.98)

The equation of motion is again the one in (4.97) with Neumann boundary condition (4.98). Note
that Neumann boundary condition preserves Poincaré symmetry because

05 (2") | g—o.x = Op[alz” + b]|g—o.x = 0 (4.99)
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Condition 3: Open string (Dirichlet Boundary Condition)

In this condition, we kill the o boundary term by setting the value of * to be constant at the o
boundary

2t (ryo=0)=at(r,oc=m)=c" (4.100)

The equation of motion is then the one in (4.97) with Dirichlet boundary condition (4.100). The
Dirichlet boundary condition condition does not preserve Poincaré symmetry since

abx” |o=o x + b F# (4.101)

Therefore, under a Poincaré transformation, the end of the open string changes.

4.3 Dirac-Born-Infeld theory
4.3.1 D-brane

From the last section, it is shown that the p-brane action is expressed as an invariant volume
form with the induced metric involved. This immediately implies the natural geometrical origin
of p-brane as a p + 1-dimensional hypersurface embedded in a D(> p)-dimensional manifold. In
this section, a specific type of brane which is called D-brane is studied. The action of the D-
brane is the so called Dirac Born-Infeld action and again D-brane theory has a very nice geometric
interpretation. We recall that there exist 2 type of boundary conditions for closed string in 1-brane
theory. One is Neumann boundary condition. For Neumann boundary condition, the string can
oscillate and its endpoints can still move along the boundaries as long as their derivatives vanish at
the boundaries. The other one is Dirichlet boundary condition. For Dirichlet boundary condition,
the string can oscillate but the endpoints are fixed at the boundary. One can of course extend
these 2 boundary conditions to p-brane. Now, we consider the situation that Dirichlet boundary
condition holds for some coordinates while Neumann boundary condition holds for the others. So,
at the end points of the brane, we have

Oqxt =0 for p=0,1,....,p (4.102)

¥ =c” forv=p+1,.,D—-1 (4.103)

So, the end points of the brane are fixed and lied in a p+ 1-dimensional hypersurface embedding in
a D-dimensional spacetime. See figure 5. This p + 1 dimensional hypersurface is called D-brane.
D here stands for Dirichlet condition while p is the spatial dimension of the brane. The global
Poincare symmetric group is also broken into

ISO(1,D — 1) — ISO(1,p— 1) x SO(D — p — 1) (4.104)

SO(D — p — 1) stands for the rotation in the direction imposed by Dirichlet boundary condition.

N
Dirichlet
R

-~
-

- = Neumann

Figure 7: D-brane [22].

Note that the timelike coordinate x° cannot have the Dirichlet boundary condition. D-brane
hypersurface can be thought as a dynamical object on its own. This will become obvious when
the action of D-brane under a gauge fixing is introduced in the next section.
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4.3.2 DBI action

In natural unit, the action for a brane in the form of invariant volume for which the background
spacetime is flat Minkowski spacetime is

92 92N
S = —/d”“a\/—det[aﬂ;a(,;gmmv] (4.105)

Let the background spacetime coordinates be N = (J, K), for J denotes the coordinates imposed
by the Neumann boundary condition and K denotes the one imposed by Dirichlet boundary con-
dition. In conventional unit, there will be a dimensional correction parameter % which has the
meaning of the brane tension but here we crank it to 1. Since the action (4.105) has reparametriza-
tion freedom, we fix the gauge freedom by imposing static gauge

o =a” (4.106)
This implies the induced metric becomes
dzM 9N doy 0o’ Oxy O’
o or =220 TR OT (4.107)
Oo OoP 00 OB~ Qo> OoPf
do oo’
= oo 9gB el T Dok Opa’™ (4.108)
= 0n3Nas + Oazx Opx™ (4.109)
= Tap + OatxOpa’™ (4.110)

Define the scalar field 2% to be ¢. Then the action (4.105) becomes

Sppr = —/d”“x\/—det[nag + 8Q¢K6,3¢)K] (4.111)

If we are interested in the situation with small partial derivative J,¢, we can expand the deter-
minant form to leading order term

Sppr = —/dpﬂxv 1+ 000K 0%¢K (4.112)

Doing a further expansion to get rid of square root gives
1
Sppr = /dp+1x(1 = §aa¢Kaa¢K .. (4.113)

The DBI action has a geometric interpretation as the world volume action of a p + 1-dimensional
D-brane embedded in D-dimensional Minkowski space. The scalar field ¢ is interpreted as the
fluctuation of the D-brane in the transverse direction.

4.3.3 Nonlinearly realised symmetries of DBI theory and minimal coupling to matter

We consider the DBI action describing a D, brane embedded in 5-dimensional Minkowski space.
The action is

Sppr = — [ d*z\/1+ (0¢)? (4.114)

For (0¢)? = 0°¢0,¢. This DBI action is protected by a nonlinearly realised 5 dimensional
Poincare invariance ISO(1,4) for an unwarped brane. This action is obviously invariant under
the linearly realised ISO(1,3) subgroup (Mys, P,). One nonlinearly realised symmetric group is
Py corresponding to the translation in the fifth dimension. This shift transformation is

= o+0b (4.115)
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For b is a constant. This symmetric transformation is obvious because the action takes the form
of partial derivative of ¢.

The other nonlinearly realised symmetric group is My, corresponding to the Lorentz transfor-
mation in the 5th dimension. If the signature of the metric is chosen to be (—,+,+,+), the
infinitesimal variation under this transformation is

Sup(2') = ¢'(a') — ¢(z) = vaz® (4.116)

0,z = —v*¢(x) (4.117)

Therefore, under the infinitesimal fifth dimensional Lorentz transformation,

$(z%) =¢'(2"*) = (%) + vaa® (4.118)
'(w”‘—v%( ) = ¢(z%) + vz (4.119)
¢'(2%) — p(2)v*0ad’ (z) = P(a) + vaz® (4.120)
¢'(2%) = ()0 Dad(x + v d(2)) = P(2*) + var® (4.121)
¢'(2%) — d(2)v"0ad(z) = $(2%) + vaz® (4.122)

The fifth line arises by further expanding and neglect all the second and higher order term of v®
since v® is infinitesimal. This leads to the relation that

dup(x) = ¢'(z) — d(z) (4.123)
= Uz + P()v* Dy () (4.124)

Since the fifth dimensional Lorentz transformation takes the theory out of the static gauge, so a
compensating world-volume reparametrization is needed to restore the static gauge. This explains
the variation (4.124). One can check by direct substitution that the Lagrangian of the DBI
action shifts by a total derivative term which can be neglected under this transformation. This
transformation can also be viewed from another more inspiring perspective. Recall that the
induced action for DBI theory is Gog = Nag + 0a®03¢. A careful calculation using (4.124) shows
that the infinitesimal variation of the induced metric under this transformation is

(SWGOZﬁ = aa(baﬁ(quj) + aﬁ¢aa6v¢ (4125)
= 00 (v + 0, (BV"0x0) + Dpd(va + Pv"0,0)) (4.126)
= €,0xGap + 0a€yGrp + 0p€; Gra (4.127)
= L,Gap (4.128)

For eff = v"¢p(x). (4.127) is recognized as Lie derivative on the induced metric. The corresponding
diffeomorphism is induced by the vector field €f. Hence, the transformation on ¢ can be viewed
as to induce a field dependent diffeomorphic coordinate transformation. Then, we can imitate
the story in general relativity to use this induced diffeomorphism to couple the scalar field ¢ with
matter field ®. For the minimally coupling matter field ® with respect to the induced metric
G g, its matter action S,, must also transform under the induced diffeomorphism symmetry. For
example, scalar matter field transforms as

5, ® = L,® = 17D, @ (4.129)

Then, the full action Spp; + Sy, is invariant under the DBI symmetries. A simple example for
S,, can be

2

1
S, = /d%\/—G(—iG“ﬂ@a@@g@ - %@2) (4.130)

For me is the mass of ® scalar.
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4.4 Special Galileon theory
4.4.1 The structure of Special Galileon

The other scalar field theory that we desire to study is the special galileon theory. It is found
out by Jiri Novotny that the speicial galileon theory also has a very similar extrinsic geometric
interpretation with the Dirac Born Infeld theory but a complex manifold is needed. The special
galileon is the sum of all the galileon terms with even numbers of fields in D-dimension. The
special galileon action is given as

[522] !
__L[p Z o 2 pTD
Ssgal = _§/d T "~ (2n — 1)|A(D+2)(n71) (8¢) £2n72 (4131)

where A is an energy scale and « is a dimensionless parameter. Note that in the section of DBI
theory, we work in the unit such that % = 1 so that we do not need to keep track of these
parameters in DBI theory. We show the explicit action of special galileon with fixed relative
coefficients here. LI'P are defined by

Lo — Z(_l)pnulp(m) ...... nun,p(un)(%lyl B (4.132)
P

for ¢, = 0,0,¢. The sum runs over all permutations of v indices with the sign of permutation
(—=1)P. We will work out explicitly for the case D = 4 as an example. The building blocks needed
to construct the action in D = 4 case are

L = (-1 =1 (4.133)
£§D = pftrigher2 ¢M1u1 (buzl/z — gtz ¢M1V1 ¢M2V2 (4'134)
= O Pr; — O b, (4.135)
= (0¢)* = (0,0,9) (4.136)
To put everything together with the coefficients, the action for D = 4 is
1 «
S = [ @007 + 55 06700 - (0,0,6)%) (4137)

The individual galileon terms have the Galileon symmetry. The infinitesimal variation of the
galileon field ¢ under Galileon transformation is

d¢ =c+ bt (4.138)

The special galileon (sum of the even galileon terms) enjoy another higher-order shift symmetry

«
00 = s (2'a” — S 5750"60"9) (4.139)

At first sight, the special galileon theory seems unrelated to the story of the extrinsic geometry
of brane embedded in a background manifold. However, the geometric construction of the special
Galileon action using D dimensional brane propagating in 2D dimensional flat pseudo-riemannian
space is shown by Jiri Novotny.

4.4.2 The geometrical origin of the Special Galileon

Let us assume the target space to be a D-dimensional complex space Méj with coordinates

Z0 = xr 4 Lpe (4.140)
[0
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Its complex conjugate is
Zn=x - Lpn (4.141)
o

where X#* and L* are real coordinates. MCD is equipped with a hermitian form A defined as

h = n,dZ" @ dZ" (4.142)
= N ([dX" + édL“] ® [dX¥ — édL”}) (4.143)
— D [dXP © dXY 4 AL @ dLY] 4+ ny( L) [AX" @ ALY — dLP © dL) (4.144)

(0% «

The real part of this form defines a metric with signature (2,2(D — 1)) on M and it can be
treated as a real 2D dimensional space

v ]' 1%

ds® = n, [dX" @ dXY + AL @ dL] (4.145)

] ; 1
= nuldX" ® dXY — édX“ ® dL” + édL” ®dX" + —dL" @ dL'] (4.146)
= N [dX" + ~dLM|[dX” — ~dLY] (4.147)

« «
—dZ-dZ (4.148)
The imaginary part of h, w produces a symplectic Kahler form
-1
W = nw(?)[dX“ ®dLY —dL" @ dL”] (4.149)
1
= < Mud X" N dL” (4.150)
1
= 5 [dX* ANdLY —dL* N dX"] (4.151)
«

; . , )
= Ly ldX* AdXY — LdXP ALY + ZdL* A dXY + —dLP A dL] (4.152)

2 @ ! a?
= =N (dX* 4+ —dL*) A (dXY — —dL” 4.153
S (dX" + ZdLF) A (dX” = ZdL) (4.153)
- %“uvdZ“ AdZY (4.154)

The antisymmetric property of the wedge product is used in the third equality line. The term
dX ANdX and dL A dL is added in the forth equality line because these terms contract with 7, to
give zero.

The forms (4.148), (4.150) and (4.154) are all invariant with respect to the transformations
Z'w=REZY + A* (4.155)

This can be viewed as the complex version of the Poincaré transformations where the rotation
matrix R¥ € U(1, D — 1) satisfies the relation of Lorentz transformation

Rt -n-R=n (4.156)

The complex vector A* = c+ éb is the translation in M(CD . This transformations generate a group
which can be interpreted as the complex generalization of the Poincaré group ISO(1,D — 1).

To imitate the story in DBI theory, we assume a D-dimensional real Minkowski manifold MH€
embedded in M. The embedding is parametrized by real parameters o with = 0,...,D — 1

71 = Z1(0) = X (o) + éL”(J) (4.157)
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We choose a gauge such that the Kahler form vanishes on the brane M
wlpp =0 (4.158)
This constraint implies that

NuwdZ" N dZY =0, [dZ" © dZ" — dZY @ dZV) (4.159)
VAR VA VAR VAL

= i « B
77’“’[800‘ doB Qo> dof ldo® ® do (4.160)
0Z 0Z 0Z 0z
N Pt e e ol P g’ B
= l5os 505~ por " psllo” @ do (4.161)
-0 (4.162)
This implies that
0z 074 90Z 0Z —0 (4.163)

dot  dov  dot dov
Alternatively, the constraint induced by the gauge satisfying (4.158) induces the relation in the

form of real coordinates equivalent to (4.163) is

0X O0L 0L 0X
oot Jov Dot dov
The derivation of (4.164) is similar to the the derivation of (4.163) but one should start with (4.150)

instead of (4.154). This constraint is invarint with respect to the transformation (4.155).0On the
brane ML, there is a real induced metric

(4.164)

YA YAd

Cos = 9aw gan v

(4.165)

Our next step is to proceed in the way analogous to the construction of DBI-like action. In order to
do that, we have to further fix the gauge freedom. This is always allowed due to reparametrization
freedom. We introduce a new coordinates x* on the brane as

= X*(o) (4.166)
In this new parametrization, the embedding is
XH(x) = o, LF = L*(x) (4.167)

In Special Galileon theory, the fluctuation of the brane is effectively described by the fields L*(x).
We first have to consider both the constraints (4.164) and (4.167)

0X" 9L, 0L 9X,

dr® 0xB — Oz O2P (4.168)
dxz* 0L,  OLY Ox,

0z 9zf Oz~ OxP (4.169)
s OLw _ s OL o

L
wm

(4.171) implies that

Lo = 0ud(z) (4.172)
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It is seen that the additional constraint reduces the number of effective degree of freedom of the
special Galileon field ¢. The explicit induced metric can then be found as

' ' 1
Gap = Nap = —OpLa + —0aLy+ ~51u0a LM DsL" (4.173)
i i 1
= Nap = 0800 + —0a0pp + —51v0a0"$050" ¢ (4.174)
1
=Tap + ?8a5u¢5”'3@¢ (4.175)

In this gauge, we therefore have the embedding of the brane as
XH(x) =at, L (z) = n*" 0o (4.176)

The gauge condition (4.167) is not invariant under the transformation (4.155). So, it is necessary
to combine the traget space transformation (4.155) with compensated reparametrization in order
to preserve the gauge condition (4.176). As a result, the field ¢(x) will transform nonlinearly
under (4.155).

Let us consider the complex translation first,
20— 70 4 (e + éb“) (4.177)
x* is shifted by ¢* while L*(x) is shifted by b
X'*(x) =at + ', L' (x) = "0, é(x) + b =0, [p(x) + b - 7] (4.178)

Due to gauge freedom, we define a new parameter z'# as

Pt =zt +b-x (4.179)

Then we can redefine the field ¢ using this new parameter,
@)y =¢x)+b-x (4.180)
Since it is a translation, 8/, = 9,,, we have
LX) = L'"(x(2")) = n""0,¢' (2) (4.181)

Hence the gauge (4.176) is preserved using the redefined field ¢'(2’). (4.180) corresponds to the
symmetric Galileon transformation (4.138) for each individual Galileon term. So, the complex
translation can be viewed as the combination of spacetime translation and the Galileon transfor-
mation of the Galileon field.

For the complex Lorentz transformation R% € U(1, D — 1), it is written as
R=eMT9 = A iU (4.182)
where A and U are real matrices, M and G are real generators. The generators satisfy the algebra

NupMY, + M, =0 (4.183)

NupGl — MwpGy, =0 (4.184)

The transformation due to R% leads to

X'M(z) = Aba¥ — lU[,‘L”(x) =Ax" — lUlﬁ‘n””@qu(m) (4.185)
! a
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1 1
L'(z) = EA‘V‘L”(:U) +Ukx" = EAﬁa”qS(x) + Uk (4.186)

IfU=0,\A=eMecO(1,D—1) form a subgroup of U(1, D —1). The transformation generated
by O(1,D — 1) is realised to be linear

't = Az (4.187)
Then, from (4.186), it is obvious that the new redefined field using the parameter (4.187) is
#(@') = () (4.158)

which preserves the gauge condition (4.176). The remaining transformations generated by G are
identified as hidden duality transformation discussed in [17]. The compensating gauge transfor-
mation for the case U # 0 is

1 1
oM (z) = Aba¥ — —UNLY(x) = Aba¥ — =Uln"P0,¢(x) (4.189)
@ a
Consequently, the redefined field after the transformation to preserve the gauge condition is [17]

1 1 1 1
¢ (@) = 9(x) = 50 06(@) + 30 (Nja” — —UknOad(@)) (AP 036(x) + Ua®)  (4.190)
(4.190) corresponds to the nonlinearly realised special Galileon transformation (4.139). The action
J dPx\/det(G,,) is also shown in [17] to be equivalent to the quartic formulation of Special
Galileon action through a complicated process which is not enlightening to show here.

As a summary, in term of geometric interpretation, the Galileon field ¢ is interpreted as the scalar
degree of freedom depicting the fluctuation of a D-dimensional brane embedded in 2 D-dimensional
R%2P~2 Kahler manifold. The nonlinearly realised symmetry of Special Galileon can be explained
as the non-linear realization of the target space symmetry group U(1, D — 1).

4.4.3 Minimal coupling of the Special Galileon with Matter field

Within the formalism of brane construction, the induced metric of the Special Galileon theory is
found to be

1
Gap = Nap + —3020,00" 03¢ (4.191)

The higher order shift symmetry is given in (4.139). With the induced metric and the higher
order shift symmetry known, we are well equipped with all the essential elements to do the matter
coupling as what we have shown in DBI theory. It is easy to checked that under the higher order
shift, the infinitesimal variation of the induced metric can be expressed as a Lie derivative along
the following vector field v*

2c
~ AD+2

0Gap = LyGop, vt = SHY O, ¢ (4.192)
To do the minimal coupling with matter in the diffeomorphism invariant way, we follow the same
prescription in DBI theory by letting the matter fields transform under the special galileon higher
order shift symmetry as a Lie derivative induced by the vector field v* For instance, we can couple
Ssgar With a spin-1 particle A, with mass m4 this time.

1 2
Sy = /de\/—G(—iFaﬁFaﬁ - %AQAQ) (4.193)

where F,3 = 0,4 — 03A, and its indices are manipulated by the induced metric. The vector
field A, transforms under special Galileon symmetry as

2c

6Aa = E’UA;L = _WS

"0 90, Aa + 0,0a0A,) (4.194)
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4.5 The geometric interpretation of Born-Infeld theory ?

We have seen the geometric interpretation of two scalar field theories as D-brane embedded in a
background spacetime. What about Born-Infeld theory for which the field is the electromagnetic
field A,7 If we fix the background spacetime to be Minkowski spacetime, we note that the Born-
Infeld Lagrangian is invariant under Lorentz trnasformation. Born-Infeld Lagrangian is shown
before to be

L= \/~det(nu + Fu) — 1 (4.195)

To see Lorentz invariance of det(n,, + F..,), we first realize that the determinant of any arbitrary
matrix M with components M, is the same with the determinant of the matrix M with component
M,

My, = Duanp M (4.196)
= nuaMaanb (4197)

In matrix notation
M = n]\7[77 (4.198)

Taking the determinant of both sides, we obtain
detM = det(nMn) = (det(M))(detn)? = detM (4.199)

We consider a Lorentz transformation 2/# = A#z" with (detA)? = 1. After Lorentz transformation,
we see that

M 4+ FIH = ABAG ("7 + FP7) = AL (n + FP7)A, (4.200)
Again, in the matrix notation
i+ F' = A7+ F)AT (4.201)
Taking determinant of both side,
det(n + F') = det(ij + F) (4.202)

This proves the Lorentz invariance of the Born Infeld theory for the background spacetime to be
Minkowski spacetime. The induced metric in this case can be written as

G =M + Flu (4.203)

The Born-Infeld vector A,, only contributes to the antisymmerical part of the induced metric. We
have seen before that both DBI theory and speial Galileon theory tranform covariantly under the
induced diffeomorphism. The induced diffeomorphism is originated from the nonlinearly realised
symmetry for which that the scalar fields mix with the spacetime coordinates. For BI theory, if
there exist an induced diffeomorphism, both symmetrical part 7,, and antisymmetrical part F),,
have to transform covariantly separately under the induced diffeomorphism. This leaves only the
linearised Poincaré symmetry. This can be seen by considering the following arguments. Consider
a tensor a,,. Decompose a,, into its symmetrical part and antisymmetrical part

1 1
Apv = §(aw + ay,) + E(aw — ayp) (4.204)
S+ Ay (4.205)
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The symmetrical part is S, = %(a,w +a,,,) and the antisymmetrical part is 4, = %(aW — %aw).
Under a general transformation D. Sy, transforms as

Suy = DD} S (4.206)
= DD} Spa (4.207)
=S, (4.208)

Under transformation, Sy, is still symmetric. Similarly, for the antisymmetrical part Aq,

Ay =DiDb Agy (4.209)
= —D4D} Ay, (4.210)
=—A,, (4.211)

A, is still antisymmetric under the transformation. Hence, S, and A, form invariant subspace
of the representations D € G where G is the group of the transformations. This arguments also
hold to the case a,, = 1y, + Fl. So, under induced diffeomorphism, 7, will not interact with
F,,. The only realised transformation that will leave the theory invariant and also F},, to be
antisymmetric with the fixed Minkowski spacetime background is Lorentz trnsformation. This
implies the components of the field A, are bonded together to transform as a vector field and it
will not mix with the spacetime coordinates.

We have seen that for scalar field theories the infinitesimal variation of the extrinsic metric induced
by the diffeomorphism caused by the nonlinearly realised symmetry can be formulated as a Lie
derivative and the induced metric can be used to couple the scalar field with matter field in a
diffeomorphism invariant way with respect to the non-linearly realised symmetry. Since there
is no nonlinearly realised symmetry for Born-Infeld theory, this implies the similar geometrical
interpretation as happened in DBI theory and special Galileon theory cannot be applied to BI
theory.

5 Classical Double Copy

5.1 Introduction to Double Copy

In physics, scattering amplitude is a function of momenta and spin describing the probability
that a given scattering process occurs. Quantum field theory (QFT) is the theoretical framework
used to predict the scattering amplitude. In it, Feynman diagrams which are a diagrammatic
organization of the perturbative expansion of scattering amplitudes are used to calculate the
scattering amplitude for a given process. Our topic in this chapter is mainly motivated by a kind
of duality in the study of the scattering amplitude. This duality is called color-kinematics duality
or Bern-Carrasco-Johansson (BCJ) duality. Basically, BCJ duality has 2 elements [4]:

1) Amplitudes can be rearranged in a way that their kinematic structures satisfy a kinematic
analog of Jacobi identity.

2) Amplitudes in the dual form can be double copied to generate the new amplitude in other
theories. Such a story produces a web of relations of the form graviton = gluon? and special
galileon = pion?.

Gluon is the gauge boson in strong interaction and it is the excitation of SU(3) gauge field. The
pion is one of the particle mediating the interaction between a pair of nucleons and it is the scalar
field in non-linear sigma model (NLSM). Jacobi identity in element 1) is the binary operation
describing how the result of the operation is affected by the order of evaluation. For example, the
color factor Jacobi identity in gauge theory is [13]

Cs+ ¢ +cy =0 (5.1)
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where ¢, = fa192bfbasas o — farash fbasaz o - faraabfbazas - The pumerical factor fo€ is the
structure constant of the gauge Lie group in non-Abelian Yang Mills theory. The gauge field A, (z)
is a traceless hermitian matrix of fields and it can be expanded in the following way

Au(x) = A% (x)T* (5.2)

for T* matrices are the generator of the gauge group. The generator matrices obey commutation
relations

[T?, T = ifebeTe (5.3)

What it means for element 1) of BCJ duality is that one can always find a representation such
that the parallel relations hold for color and kinematic factors. [13]

cit+ci+ep=0&n;+n;+n,=0 (54)

The study of this duality in scattering amplitude is beyond the scope of this thesis. The discussion
of the scattering amplitude in the introduction section of this chapter only serves for the purpose
of motivation for another relevant duality in the level of the classical solutions of different field
theories and the details will not be discussed. For a thorough discussion, see [4] and [13]. We
only outline the general idea here and we will not go deep to discuss the concepts in scattering
amplitude.

In BCJ duality, the theory of a perturbative duality between gauge theory and gravity is called
double copy. The theory of double copy states that color numerator in the scattering amplitude of
gauge theories can be replaced by kinematic numerator in a well defined way to give the gravity
amplitudes. The general form of an m-point, L-loop amplitude in non-Abelian gauge theory may
be written as [15]

AE) — B gm= 2+2LZ/H C;rl];zsl an;z (5.5)

i€l

where the sum is over all cubic topologies I" ; n; and ¢; are kinematic numerators and color factors
respectively. g is the coupling constant. The numerators n; are chosen to satisfy the similar Jacobi
identities to the color factors.

The double copy states that the gravity amplitude can be obtained in the following way [15]

ym— dPp, 1 nm;
ME) = ZL+1 2+2LZ/H — (5.6)

el

Comparing (5.5) with (5.6), the coupling constant g is replaced by the gravitational coupling
constant for k = /167G v ; the color factor ¢; is replaced by the kinematic numerators 7;.

Similarly one can start with (5.5) and replace the kinematic numerators n; by a second set of color
factor ¢;. The corresponding scattering amplitude is

D ~
T — jEym= 2+2LZ/H d p]gs WCZ';; (5.7)
o

el

y is another appropriate coupling constant. This scattering amplitude corresponds to the bi-adjoint
scalar field theory. Its field equation is [15]

82(I)aa/ _ yfabcfa’b’c’(l)bb'q)cc' =0 (58)
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feb¢ and f a'b'e’ are structure constants of two Lie algebras as two color factors are involved in the
scattering amplitude.

It was found out that this prescription can actually be extended to more theories and actually
there is a web of theories whose amplitudes are the product of color (¢) or kinematic (n, r) factors
subjected to Jacobi-like identity. See figure 6.

BS
YM € NLSM
n r
GR BI SG

Figure 8: A web of theories of double copy [21].

In figure 6, BS refers to bi-adjoint scalar field theory; YM refers to Yang-Mills theory; GR refers to
general relativity; BI refers to Born Infeld theory; SG refers to special galileon theory and NLSM
refers to non-linear sigma model.

The double copy is intrinsically perturbative. In this thesis, instead of the double copy in term
of scattering amplitude, we will focus on the related notion which is called classical double copy.
Classical double copy is the theory that intends to find out the map between the classical solution
of the theories within the web in figure 6.

5.2 Kerr-Schild Double Copy
5.2.1 The Duality between General Relativity and Maxwell’s Electromagnetism

In this subsection, we study the classical double copy of (BS <> Abelian YM > GR). Abelian YM
theory here refers to U(1) Maxwell theory of electromagnetism. We will see how these theories
are related to each other through Kerr- Schild double copy.

Consider general relativity in Kerr-Schild coordinate system. The full metric is

Guv = Nuv + Hh/w (5.9)
=N + K/kuky¢ (5.10)

k is a dimensional correction constant. The tensor field h,, is graviton. ¢ is a scalar field. The
vector k, has the property that it is null with respect to both the flat metric 7,, and the full
metric g,

k' 'k, =0=k,g"k, (5.11)
The vector field k,, is also geodetic
k'ouk, =0 (5.12)
Due to the properties of k, vector, the inverse of the full metric is
g =" — kEMEY ¢ (5.13)
It can be checked easily that the inverse metric defined in (5.13) satisfies the relation

99" =0, (5.14)
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Given this full metric, we can compute the Christoffel symbol, Ricci curvature tensor and Ricci
scalar.

The metric-compatible and torsion-free connection takes the form in (3.108). The Ricci tensor is

_ _ A A
RO'V - Rg‘pl/ - Fgo‘,p - an,u + FZAFVJ - FiAFpU (515)
The Ricci scalar is
R=g""R,, (5.16)

By careful calculation and making use of the properties of k, vector, the Ricci tensor with one
index raising up using full metric takes the expression

RY = (0" 0a(0k k) + 0,0 (9hah¥) — 07 (6K, ) (5.17)

The corresponding Ricci scalar is
R =0,0,(0k"Ek") (5.18)
The Ricci tensor is solved exactly to be linear in this case. We consider the stationary case in

which all the times derivative vanish. We also set k* = 1 without any loss of generality. In such a
condition, the Ricci tensor and Ricci scalar can be solved

R) = 16% (5.19)
2
Ry = (00 (0k°) + 0°(0k") (5.20)
= S0/ (0K) — ¥ (k") (5.21)
RE = SO0 (ph'ky) + 95 (0h'h) — &' (ph'ky)] (5.22)
R = 0,0, (pk'k") (5.23)

The vacuum solution for Einstein equation is just R¥ = 0. To interpret the result in the spirit of
double copy,we define a vector field A,

A, =k (5.24)

We also define the field strength as
F,, =0,A, —0,A, (5.25)
=0,0,¢ — 0,0,¢ (5.26)

The definition (5.24) and (5.26) is called Kerr-Schild ansatz. The vacuum Einstein equation
RY = 0 implies that 9,F*" = 0. To see this, we explicitly works out 9, F'*” =0

O, F™ = 0 (pk") — 0;0" (¢k?) = 0 (5.27)
When v = 0, (5.27) becomes

2o =0 (5.28)
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When v = i, (5.27) becomes
O*(pk") — 0;0"(¢k?) = 0 (5.29)

Therefore, it is shown that d,F" = 0 coincides with R) = 0 and Rj = 0. If we interpret A,
to be the electromagnetic field and F),, to be the electromagnetic field strength, then the duality
between Maxwell theory and general relativity is constructed in the stationary case. The graviton
huw is obtained by adding a factor of k, to the gauge field A,. We can also interpret the scalar
field ¢ in the spirit of zeroth copy. In the stationary case, ¢ satisfies the equation

22 =0 (5.30)

This coincides with the field equation of bi-adjoint scalar field in the abelian case where all the
color structure constants vanish. Hence,¢ can be interpreted as bi-adjoint scalar field.

As a summary of this subsubsection, the vector k,, plays an important role in the mapping relation
of (BS <+ Abelian YM > GR). Adding the factor k, to the bi-adjoint scalar field gives the Abelian
gauge field A,,. Adding the factors k, and k, to the bi-adjoint scalar field gives the graviton h,,.
The mapping relation can be extended to the non-Abelian self dual YM in a very similar way by
promoting k, to an operator which is shown in [15].

5.2.2 The duality between Schwarzschild’s solution and Coulomb’s electrostatic so-
lution

We will see now how the Schwarzschild’s solution in general relativity corresponds to Coulomb’s
electrostatic solution in Maxwell’s electromagnetism by Kerr-Schild double copy. We first recall
that in a spherically symmetric and static universe, the Schwarzschild’s metric is read as

2GM

ds* = —(1 — )dt? +

1
o dr’ + f(r)?dQ? (5.31)

r

1-—

When r — oo, (5.31) is approximated to the metric in the Newtoninan limit

2GM 2GM
¢ 14 GT)dTQ + f(r)%dQ? (5.32)

ds? = (1= ==)d* + (

For the Schwarzschild’s solution, the universe is flat everywhere except at a point where the source
with a pointlike mass M is located. Hence, the energy-momentum tensor is represented by a Dirac
delta function

T = Muv*v” 6 (z) (5.33)
where v¥* = (1,0,0,0) is a vector merely in the timelike direction. The gravitational field equation
is just

HQ

G = ?TW;,%Q = 167G (5.34)

with T}, represented by (5.33). The Kerr-Schild form of the metric g,,,, exists because general rela-

tivity is invariant under general diffeomorphism indicating there is freedom of choice of coordinate
system. The Kerr-Schild form of the exterior Schwarzschild metric is

Guv = Nuv + , k’pku (535)
with

= (1, 2), 12 = alzyi = 1.3 (5.36)
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Since g, = M + Khyy, the graviton hy,, in this case is

hyw = gwmu (5.37)
with the scalar field ¢ as
M
= — 5.38
¢ 4drr ( )

From the viewpoint of double copy, we can reproduce the electromagnetic counterpart by removing
one k, vector and replacing the coupling constant and the source

g g, M = ¢, T kuky, — k, (5.39)
where ¢,T is the superposition of the color charge. Then, we obtain the vector gauge field 4,
gcT®
A, = k 5.40
I Arr I ( )

The Abelian Maxwell equation with source j” is
O FH = j¥ (5.41)
We substitute (5.40) into the left hand side of (5.41) to check what is the source j¥.

For the timelike component,

0, "0 = 9, (0" A° — 90 AM) (5.42)
=0, (0"A%) (5.43)
caT®
= 62[947] (5.44)
c I 1
= vl (5.45)
caT®
- 79?53(93) (5.46)

Note that we are working in the static and spherically symmetric case where A* does not depend
on the timelike coordinate. For the spacelike component,

0, FM ajaj(g) — 82»6]»(33—;) (5.47)
T T
=0 (5.48)
Thus, the source j” is
7 = —g(caT")"6® (z) (5.49)

The source in both Schwarzschild’s solution and Abelian Maxwell’s solution is represented by the
dirac delta function. So, we see that the classical double copy relation is still well constructed
in this case. Since Abelian Maxwell theory has gauge symmetry, we can perform the gauge
transformation

Ay — Ay 4 0 (5.50)
For ) is any arbitrary function. We choose A to be
gCa T
A=—2— — 5.51
e log( ) (551)
For such a gauge fixing, the spatial part of A* vanishes.
geg T
At = 0,0,0 5.52
( 47_[_7/. ] ) ( )

This solution is recognized as the Coulomb’s electrostatic solution with a point color charge located
at the origin. Therefore, upon a particlar gauge fixing, the double copy between Schwarzschild’s
solution and Coulomb’s solution is constructed.
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5.3 Classical Double Copy between SG, BI and GR ?

From figure 6, it is realised that there is also double copy relation between Special Galileon theory
(SG), Born Infeld theory (BI) and General Relativity (GR) in term of scattering amplitude. The
n-particle tree level amplitude for SG is [4]

2
Asc =Y % (5.53)

where the sum rums over all cubic topologies and d; are the associated products of propagator
denominators. Replacing one NLSM kinematic numerator r; to YM kinematic numerator n;, the
amplitude of BI is obtained

Ting

Apr= i a (5.54)
If replacing another r; to n;, the scattering amplitude of GR is obtained
n;
Acr = ; 7 (5.55)

We ask the question now whether there is also a double copy relation of the classical solution
between these theories like what we have seen before for (BS-YM-GR). In this section, we discuss
the possible route implying the classical double copy of (SG-BI-GR).

5.3.1 The Schematic solution of BI for Static and Spherically symmetric condition

Before, we have seen the classical double copy between the Schwarzschild’s solution in GR and
Coulomb’s electrostatic solution in U(1) Maxwell electromagnetism for which that both theories
have static and spherically symmetric conditions. In searching the possible classical double copy
relation between SG and BI, we ought to see the pattern of the solutions in simple case by imposing
the static and spherically symmetric condition. By static we mean that the field does not depend
on the timelike coordinate. By spherically symmetric we mean the field only depends only on the
radial direction 7. In section 2, we have actually solved for BI theory. The E field is proportional
to \/ﬁ and the timelike component of the vector potential A is expressed as Jacobian elliptical
integral. In this section, we will use the perturbative approach to find the solution of the field
equations of BI and SG schematically. The goal here is not to solve the field equations exactly
but is to find the pattern of the solutions and see the similarity between them.

Recall that the action of BI is

1
Sor =15 / da\ [~ det(n + DF,) (5.56)
1
= dz\/1+ b2F,, Frmv (5.57)
R R D
= o5 [ daly + 5 F? = TF 4 T FO (5.58)

Note that the term det(F),) after expanding out the determinant form is neglected because
det(F,) B - E = 0 since there is no magnetic field B in electrostatic case. We let the di-
mensional correction parameter b2 to be «x1. The dimension of A, [A] = 1. The dimension here
refers to the dimension of mass. We also note that [0] = 1 and [A”] = 1. The field strength F),,
scales as OA, so [Fy,,| = 2. In the schematic way, the BI action is

o2
16A8

(%

A (04)" +

(04)° + ... (5.59)

A1
531:/d4m[;+§(8/1)2—
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To find the equation of motion, we vary the action with respect to the vector potential field A*
and require that S =0

4
58 = / d2[0ADSA — 8—;8(&4)3&4 S (5.60)

The corresponding schematic equation of motion is

9%A — %a(aA)?' Fo =0 (5.61)

We let the solution of (5.61) to be a perturbative series

L L

0
A~A<>+A4 I

AD 4 (5.62)
There is actually coefficient assigned to each terms for the full solution. Since we are only interested
about the pattern of the solution, we do not pay attention to the coefficients now. Substituting
(5.62) into (5.61) and collect terms by terms with respect to the parameter 5~. We show here the

first two terms corresponding to % and %

9?40 = (5.63)

8240 = —%6(&4“”)3 +o (5.64)

Note that since the metric used here is the standard Minkowski metric, we fix the background
coordinate to be Cartesian-like. Although we are working in the schematic way, the exact form
(5.63) is actually 92A(®) = 0 with only one d’Alembertian involved. This can be checked easily
by using the exact form of action to derive the equation of motion. Since the static condition is
considered, d’Alembertian operator can be reduced to Laplacian operator. So, the leading term
of the solution A(® is

AO = (5.65)

The subleading terms can be found by considering dimensional analysis. In (5.64), the term
(OA®)3 ~ L 50, AM on the left hand side has to scale with . Doing the same for the other
subleading terms, we find the pattern of the solution which is the alternative expression of the
scalar potential A° = ¢ as Jacobian elliptic integral provided in section 3.1.5.

1 11 11

Aty oy
T+A4T5+A8T9+

(5.66)
In the electrostatic case, the gauge fixing is such that the spatial component of A* vanish. So, the
only non trivial component is A°. The full solution of (5.66) with the correct coefficient for each
term is an asymptotic expansion of the exact solution expressed in the integral form. In the weak
field limit for r — oo, (5.66) is well approximated to A° ~ % in Maxwell theory.

5.3.2 The Schematic solution of SG for Static and Spherically symmetric condition

Now, we turn our attention to the Special Galileon theory (SG). We want to do the same as to find
the pattern of the field equation in static and spherically condition. Schematically, the Lagrangian
density for special Galileon in D = 4 is the sum of the quadratic and quartic Galileon term

(67

5 (00)(000)" (5:67)

Ssa = /d4$[(3¢)2 -
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Vary the action with respect to the Galileon field ¢

(07

12A6

!
12A6

555G::j/d4xp(6¢)86¢—— (20006$)(004)* — (0¢)?2.006005¢] (5.68)

This leads to the schematic equation of motion by requiring 55‘;;@ =0

e
6A6
The first term is exactly the d’Alembertian in the full solution. However, the second term in (5.69)

contains a lot of different terms with the same form but with the indices contracted in different
ways. We again assume the solution ¢ takes the perturbative form

1
Az

Of coarse there are coefficients for each term in (5.70) for the full and exact solution. Substituting
(5.70) into (5.69) and we collect term by with respect to the parameter . We show three terms

0% — (0%¢)® =0 (5.69)

1
6~ 0 + 5o + 1o+ (5.70)

An .
here.
For %:
For %:
82¢(1) — a(82¢(0))3 (572)
For ﬁ:
922 — a(82¢(0))232¢>(1) (5.73)

(5.71) implies that 60 ~ % By considering dimensional analysis, we find that ¢() ~ %7 and
$? ~ T% Therefore, the pattern of the solution is found to be

1 11 1 1

¢~ t a1z

v 2 + (5.74)

5.3.3 Perturbative Gravity

We would also like to see the pattern of the solution of general relativity by considering the
perturbative aspect of gravity. The main benefit of expressing gravity in perturbative way is
that the role of graviton h,, is obvious. Here, we fix the background coordinate system to be
Cartesian-like. First, we write the metric as

v = Nuw + Khyw (5.75)

We will at some point crank the dimensional correction parameter £ to 1 so we do not need to
keep track of it and we can simply recover x later by considering dimensional analysis after we
obtain the desired form of the gravity. Since general relativity is invariant under general coordinate
transformation. In infinitesimal form, the transformation is written as

at — ot + ket (x) (5.76)

For A is infinitesimal. From section 2.3.2, we have seen that the variation of the metric induced
by diffeomorphism is expressed as the form of Lie derivative

Guv = Guv + K(Eaaag;w + gavauea + guaauea) (577)
= g + KOu€, + KOye, (5.78)
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In the second equality line, all second and higher order terms of x is neglected. Since Minkowski
metric 7, is constant, (5.78) implies that

h;u/ - huu + apﬁz/ + auep (579)

(5.79) is the gauge transformation in general relativity and the gauge symmetry of general relativity
is induced by diffeomorphism invariance of the theory. The inverse of the metric takes the exact
form as

g/J.l/ _ nltu — kh* + K?hihAV + ..... (580)

One can check that g,,,g"* = ¢;. Now, we want to expand Einstein-Hilbert action in powers of
hyuw. At this point, we will crank & to 1. The Lagrangian density of Einstein-Hilbert action is

Lpn =+/—gR (5.81)

for g is the determinant of the metric tensor and R is Ricci scalar. Using (5.75) and (5.80), the
expansion of /—gR can be found schematically to be

V—gR = (1+h+h?+..)(00h + hddh + ...) (5.82)
= D0h + hddh + h*0dh + h300h + ... (5.83)

The action can then be expressed as
S = /d4x[(8h)2 + kh(Oh)? + K2h2(8h)? + ... (5.84)

Note that we have recovered & in (5.84) to correct the dimension in each term. Note also that each
term is just a schematic representation and one will find a mess of indices contracted in different
way if deriving explicitly. The first term 00h in (5.83) can be neglected in the action because it
represents a total derivative term. (5.84) is obtained from (5.83) by simply integrating by part
and neglect the total derivative terms. « is defined as
1 18
k= —:Mpy ~2x10°GeV (5.85)
My,

My, is the Planck mass. In order to get the pattern of the solution of the equation of motion from
(5.84), we need to at least know explicitly the first leading term (quadratic of k). We first expand

\/—g first

V=9 =1/—det(nu + hu) (5.86)
1
= expiln[—det(nm, + hu)] (5.87)
_ ea:p[%ln(det(l + )] (5.88)
= emp[%trln(l + hi)] (5.89)
= e:vp[%tr(hﬁ - %h2 +...)] (5.90)
— 14 Loy - Loty + L) - L)) + o) (5.91)
2 V) Ty 242" Ty '
1 1 1 f
=L+ ghi = 7P hy + g(hg)2 +O(h?) (5.92)

The linearized term of Ricci tensor is found to be

RY) = 8,0,h + 050 hyu — 8,0\ — 95, h)

A (5.93)
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Therefore, the first leading term can be obtained explicitly by careful derivation using (5.80),
(5.92) and (5.93)

1 1
V—=99"R{}) :iaxwakhw = 50%hdah — 0y O, h — Db OB + .. (5.94)
If we are only interested about linearized gravity, the corresponding action is
1 1
Spp = /d4:10(§8>\h’“’8/\hW = iaahaﬂhwayh — 0, W0, h — aﬂh“”&\h{}) (5.95)

(5.95) is the massless Fierz-Pauli action. & in (5.95) refers to the trace of h,,, This action describes
the linearized gravity with massless graviton in the weak field limit. One can then just simply use
the variational technique to obtain the equation of motion. The equation of motion is found to be
)
dhHv
To simplify the equation of motion, we use a constraint to fix the gauge freedom. The constraint
is

= Ohyw — Ox0uhiy — ONO ), + 1w Ox0sh™ + 0,0 h — 1, 0°h = 0 (5.96)

0" hy, — Byh =0 (5.97)
Plugging (5.97) into (5.96), the equation of motion is simplified to
*hy, — 0,0,h =0 (5.98)

To further simplify the equation of motion, we can further fix the gauge subjected to (5.97),
namely transverse traceless gauge

hy =0h=0 (5.99)

So, we obtain the simple equation of motion after fixing the gauge
*hy, =0 (5.100)
In the static and spherically symmetric condition, the solution of (5.100) takes the form h,, ~ %
Now, we return to the perturbative gravity case where the action takes the form (5.84). We can

again vary this action with respect to h,, to obtain the schematic equation of motion. We assume
the solution takes the perturbative form

@)+ &2h3) (5.101)

huw = b)) + kh(Y) + K2 @....

Since we have found that h&ol,) ~ 1 we can follow the same procedure as in the case for BI and
SG to obtain the pattern of the subleading terms by considering dimensional analysis. Therefore,
the pattern of the solution is found to be
1 11 1 1
Py ~ " + My 2 Mgz 3 + ... (5.102)
If we assume parity symmetry, the terms h™(9h)? in (5.84), for n is odd will not contribute and
can be neglected in the action. Then, the pattern of the solution becomes
1 11 1 1
h#,,w;JrM—glr—?)wLMiglﬁJr... (5.103)
With this argument, we see that the series expression of the solution of perturbative gravity in
static and spherically symmetric condition resembles the one in BI theory and SG theory. The
solution of these 3 theories can be expressed as the summation of the %,c terms with fixed coeffi-
cients where k has to be odd. So, with rough calculation by considering dimensional analysis, we
see that the solution of these 3 theories are very similar in term of their mathematical expression.
Since these 3 theories are connected together by the double copy relation in the level of scattering
amplitude and also due to the similarity between their classical solutions, we have enough motiva-
tion and excuse to figure out the possible underlying structure that connects the classical solutions
of these 3 theories. The first step we can do is to solve the equation of motions exactly to obtain
the coefficients for each %k term.
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5.3.4 Getting the right coefficients and Hypergeometric Series

The standard procedure to obtain the coefficients in this thesis follows the method explained in
the last section. We let the solution to be a series of %,C and substitute this series into the equation
of motion. Then, we collect term by term with respect to the order of the dimensional correction
parameter A—ln From here each coefficient can be calculated. In principle, this method is always
valid and the computation process can be simplified a lot with the help of computer-aided software
(Wofram Mathematica, Matlab, Python, etc). After we have found the coefficients, we need to

look for the structure of the series to gain some ideas on the classical double copy relation.
Born Infeld theory

We will start with Born-Infeld theory. For BI, there is a much more simple way to derive the
coefficients. We have seen in section 3.1.4 that the Electric field E, in electrostatic case of BI

theory takes the form as (3.74). We do a Taylor expansion of E, around :—§

—e

E,=—— 5.104
rd 4+ rd ( )
e ’I"é _1
— _72[1 + 74} 2 (5.105)
4 4 4
e To 3,70\ d ,To\3
= ——[1— 9% L (02 _ (0 1
7"2[ 2rd 8(7‘4) 16(7"4) o] (5.106)
4 3 8
= %0 2% , (5.107)

r2  2r6 810
In the electrostatic case, the gauge fixing of the electromagnetic field A* is such that the spa-
tial components A’ vanish.A® which corresponds to the point charge source can be obtained by
integrating (5.107) with respect to the radial coordinate r

A= | E,dr (5.108)
oo
T 4 8
B e ery 3derg
_ /Oo dr(-5+58 - 2904 ) (5.109)
4 8
e erg 1 rg
=-— — = 5.110
r 10r® + 24 19 ( )
e re 18
=-1--LX+=2_ . 5.111
7“[ 1074 * 24 r8 ) ( )
Therefore, we have found the coefficients for the series. ¢o = 1,¢1 = —%, Ccy = ﬁ and so on. It is
realised that the parentheses in (5.111) takes the form of Gauss hypergeometric function
4 8 4
To 1ry 115 rg
— —— — =oFi (=, ==, —— 5.112
1004 T 2478 21 (55— a) ( )

The subscript in front of F' denotes the number of Pochhammer symbol (@), used in the numerator
while the subscript behind F' denotes the number of Pochhammer symbol used in the denominator.
The Pochhammer symbol is defined as

(@) =ala+1)(a+2)..(a+n—-1) (5.113)

The Pochhammer symbol can also be expressed in term of gamma function

(@) = o+ D+ 2@t n—1) x == @D (5.114)
_ W (5.115)
_ F(l‘}(l‘)”) (5.116)
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The Hypergeometric function is defined as

a, B y; @ Z Lk (5.117)
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(5.118)

Using (5.114), one can confirm that the structure of the series in (5.111) is indeed governed by
Gauss hypergeometric series. Thus, the exact solution of AY is determined. We know that Born-
Infeld theory can be approximated to Maxwell theory (A% ~ %) in the weak field limit. We can
see this by considering r — oo, the series is indeed dictated by the first leading term ~ % With
all the correction terms involved, BI theory turns out to be non-singular as discussed in section
2.2.3.

Special Galileon theory

We will follow the standard procedure to derive the coefficient of the solution of Special Galileon
theory in static and spherically symmetric condition. In D = 4, the action of special galileon
is the sum of the quadratic and quartic Galileon terms taking the expression as (4.137). Using
variational technique and least action principle, the equation of motion is [16]

2*¢ + 45 [(3%) 3(82¢)0a0500%0° b + 200,0° 950" $0,0“¢] = 0 (5.119)

(5.119) can be simplified further to a differential equation with only radial coordinate, r = v/ziz;
involved under static and spherically symmetric condition where ¢ = ¢(r) . This can be seen by
using tensor calculus. We note that

ar To Or fi 9

Or _ma Or @ 12
Oz« r Oxq p e =T (5.120)

In this case all indices take 1, 2,3 because we are working under static condition as ¢ only depends
on spatial coordinates. We calculate 9%¢ first

@87"

0%0ad(r) = 0%[5 "5 3] (5.121)
= o (92)te y Dgele (5.122)
_ Z%Mjfa %[% (5.124)
_ 327‘;5 . %% (5.125)
= §/(r) + 29'(r) (5120)
Then, we calculate (6%6)*
(0°0,0)° = [MF’ (5.127)
= (o + ooy 4 B B (5.128)

63



To calculate the third term —3(02¢)9,0560“0° ¢, we first notice that

6gl5 s

0a0p0 = Oy [81" . -] (5.129)
_Pbwarg 106, waus 09
Tor2 2 ror b r3  Or (5.130)

For 00%$, we just raise the indices on the right hand side of (5.130). Then, we can compute

Da0p0*0° p = @ + (¢")? (5.131)
Using (5.126) and (5.131), we can calculate
307 0)ads00°0°6 = 30" + 20" + 2(0')] (5.132)
_12(¢)°  64/(¢")°  6¢'(¢")? "2
e e () (5.133)

For the last term 20,0° 900" 90,0 ¢, it is simplified into

200,0° 40507 $0,0%¢ = 2(¢")* +

(5.134)

We arrange everything in the order of (5.119) and we find the simplified equation of motion

6(¢")%¢"

¢" + ¢ +A6[ 3

J]=0 (5.135)

With this equation of motlon we can figure out the coefficients of the solution as a series. We let

the solution be ¢ = >~ o Aﬁn and we substitute this into (5.135). We then collect the terms with

respect to Aén .

For AO
2p©  2dp® 1
S T =Vie=0= ¢ = (5.136)
For A6
d? 6. d
1) Wy _ 2 1.% (0 (0)
r d?" [¢ } d,rg [¢ ] 7,,2 [dr (¢ )] d,r2 [¢ ] (5137)

Since we know that ¢(© = 1 and by dimensional analysis, we know that ¢() = “+. Substituting

1
)

these expression into (5.137), we have
2c1 7 56 12
42¢q 12 2
77'9 pry _,',,79 :} Cl = —? (5.139)
For ﬁ:
2d o, d® e 12d,1.d, 2 d 1. 6.d1,d& 2
S T et Py G [ iy e . 5.140
rdr[r13]+dr2[r13] 7 [dr(r)dr( 77“7>Hdr2(r)] TQ[dT(T)] dr? 3 77“7] ( )
156¢9 144 12
7,’,.15 = 77"15 :} C2 = E (5.141)
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Iteratively, we can use this procedure to find all coefficients. The coefficients are found to be
co = 1,¢c1 = 7%,62 = %,03 = 7%704 = %, ...... It is realised again that this series can be

expressed in term of a generalized hypergeometric series

1 21 12 1

0=~ 7ae T g (5.142)

1 11273 =271
= ~oB(5. 355 5 g o) (5.143)

General Relativity and Remarks

The usual algorithm used to find the coefficients is not very effective for the solution of general
relativity. The main reason is that the counterpart of the solution of general relativity in classical
double copy is not known and obvious yet. There is also technical difficulty due to the highly
non-linear structure that general relativity is based on. One can already see that in perturbative
gravity, the indices mess even in the linear term. In spite of the difficulties, the solution of the
field in BI and SG which inherits the same structure as %x hypergeometric series in static and
spherically symmetric condition shed light on the possible classical double copy solution of the
general relativity. The correction terms in hypergeometric series help to eliminate the singularity
in SG and BI in a coordinate system that is isotropic and static. This implies that the counterpart
solution of general relativity in an isotropic and static coordinate system should also take the form
of %x hypergeometric series for which the curvature singularity at r = 0 is eliminated. The exact
mapping relation is also worth to study and one should look into this from the perspective of
double copy in term of scattering amplitude.

6 Discussion

As a summary, the volume of a manifold with its geometry governed by the metric g,, can be
calculated using the coordinate integral of the invariant volume form, [ dPz\/—g. For a map 1
that links together 2 manifolds M and N, the pushforward of a vector ¥,V and the pullback of a
one-form 1*w can be defined. For the case that a submanifold is embedding within a background
manifold, the pullback of the metric tensor of the background manifold defines the induced metric
which plays the role to measure the distance on the submanifold. A map is a diffeomorphism if its
inverse exists. For M and N be the same manifold, the pullback and the pushforward induced by
a diffeomorphic map represents the active coordinate transformation. The infinitesimal variation
of any tensor induced by diffeomorphism can be expressed in the form of Lie derivative.

The Lagrangian density of the modified electromagnetism proposed by Born and Infeld taking
the form £ = \/—det(gu, + Fu,) — \/—det(g,,) satisfies the principle of finiteness and it can
be approximated to the Maxwell’s theory if the spacetime is the Minkowski space and the field
strength is weak. Born-Infeld theory serves as a non-linear theory of electromagnetism with specific
self-interactions of photons. The action for Einstein general relativity is Hilbert-Einstein action for
which its Lagrangian takes the form /—gR. Using the idea that gravity is the manifestation of the
curvature of the spacetime, the appropriate geometrical tensor in the gravitational field equation
which is known to have the second derivative of metric involved from the Newtonian limit has
to be the Einstein tensor, G\, = R, — % gu I since it obeys Bianchi identity. This requirement
is essential for the conservation of energy-momentum to hold. Schwarzschild’s metric describes a
static and spherically symmetric spacetime with the situation of the empty space surrounding a
spherical body.

The point particle can be viewed as a 0-brane and this concept can be generalized to higher di-
mensional object which is called p-brane. p-brane is parametrized by the worldvolume coordinate.
The action of p-brane which is called Nambu-Goto action which takes the form of the square root
of the induced metric is invariant under any choice of the worldvolume coordinate system. The
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symmetry due to the freedom of the choice of coordinate system is called reparametrization sym-
metry and it is a gauge symmetry. 1-brane acts as a bosonic string and its action is invariant under
global Poincaré trnasformation, local Weyl transformation and local reparametrization transfor-
mation. By invoking an auxiliary field ho3, Nambu Goto action can be shown to be equivalent to
Polyakov action. In the simple case that assuming the topology of worldsheet allows gauge fixed
flat intrinsic metric hog = 1 to be extended globally, the equation of motion can be derived un-
der 3 boundary conditions which are closed string case, open string Neumann condition and open
string Dirichlet condition. In Neumann boundary condition, the endpoints of the brane are free to
move. In Dirichlet boundary condition, the endpoints of the brane are fixed. For a D-dimensional
background spacetime, the D + 1 hypersurface is called D-brane in the situation that p worldvol-
ume spacelike coordinates and the timelike coordinate obey Dirichlet boundary condition while
the other D — P — 1 worldvolume coordinates obey Neumann boundary condition. The action of
D-brane is described by Dirac Born Infeld action. The formation of D-brane leads to the symmetry
breaking of Poincaré group. Dirac Born- Infeld theory has a natural geometric interpretation as
a D-brane fluctuating in the transverse direction. For the case that a D, brane embedded in a 5-
dimensional Minkowski space, the DBI action is protected by a nonlinearly realised 5 dimensional
Poincaré group. The DBI action is found to be invariant under the nonlinearly realised shift and
Lorentz transformation in the fifth dimension. The higher dimensional rotation will bring DBI
theory out of the static gauge and a compensating world-volume reparametrization is needed to
restore the static gauge. The infinitesimal variation of the induced metric can be formulated into
Lie derivative induced by a vector field. Thus, this transformation can be viewed as to be induced
by diffeomorphism and the scalar field in DBI theory can be minimally coupled with matter field
in diffeomorphism invariant way with respect to DBI nonlinearly realised symmetry. The special
Galileon theory is formulated as the sum of the galileon terms with even number of field. Beside
the galileon symmetry enjoyed by each galileon term, the special galileon action is protected by
a higher order shift symmetry. There is also a geometrical origin for Special Galileon theory as a
D-brane fluctuation in the transverse direction but a complex geometry with Kahler structure is
needed. Thus, the action of Special Galileon can also be written as the square root of the deter-
minant of an induced metric which is the typical form used to study the extrinsic geometry. The
infinitesimal variation of this induced metric which is caused by the higher order shift symmetry
can also be formulated as a Lie derivative induced by a vector field. Therefore, the galileon field
can also be coupled with matter field in a diffeomorphism invariant way with respect to special
Galileon symmetry. For Born-Infeld theory, the vector field A, only contributes to the antisym-
metric part of the induced metric. Since both the symmetrical part and the antisymmetrical part
of the induced metric has to transform covariantly under the induced diffeomorphism, there is no
nonlinearly realised symmetry. This suggests that the same way to give geometrical interpretation
as in DBI theory and special Galileon theory cannot be applied to BI theory.

Under Kerr-Schild geometry, Einstein field equation is solved exactly to be linear. Kerr-Schild
ansatz is used to construct the classical double copy relation between biadjoint scalar field theory,
Abelian Maxwell theory and general relativity. There is also a classical double copy relation
between Schwarzschild’s solution and Coulomb’s electrostatic solution using Kerr-Schild ansatz.
The solution of the Born-Infeld theory and special Galileon theory under spherically symmetric
and static condition are solved to take take the form %x hypergeometric series. The similarity
between the structure of these 2 solutions suggest a possible classical double relation between them
and also general relativity as there is double copy relation between them in scattering amplitude.

7 Conclusion

Conclusively, under the fixed Minkowski background spacetime, the electromagnetic field A, in
Born-Infeld theory transforms as a vector field under linearly realised Poincare symmetry because
A, contributes only to the antisymmetrical field strength £}, of the induced metric and there is
only linearly realised Poincaré symmetry that will leave 7, and F},,, to transform covariantly in
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a separate way. Therefore, there is no nonlinearly realised symmetry and the interpretation of the
field as a brane fluctuating in the transverse direction does not hold in Born-Infeld theory.

Besides that, the classical solution of Born-Infeld theory and special Galileon theory under static
and spherically symmetric condition are solved to be expressed as a hypergeometric series. For BI,

the solution is %QF:[(%, %; %, —:—é) For SG, the solution is %3F2(%, %, %; %, %; ;TQZT%) The similarity
between the structure of these 2 solution implies a possible classical double copy relation between
them. A thorough investigation of the double copy relation from the viewpoint of scattering
amplitude and also the classical solutions are needed to understand the duality between Special

Galileon theory, Born-Infeld theory and general relativity in a deeper way.
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