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Abstract
This research elaborates on the concepts of formation control, velocity tracking
and leader-follower strategy in a port-Hamiltonian framework. First, in chapter 1,
background information is provided about graph theory and the port-Hamiltonian
framework, followed by the outline of the research. Then, the design and results of
the formation controller, velocity tracking controller and leader-follower controller
are presented in chapter 2 where the agents are modelled as fully actuated, single
integrator agents and the variables of interest are velocity, position and displace-
ment. The leader-follower controller uses the concepts of both formation control
and velocity tracking control to create a stable system. The results are obtained via
simulations in Matlab and Simulink models. The Simulink models are presented in
appendix A and the Matlab scripts can be found in appendix B.
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Introduction
Looking at nature, different types of formations can be distinguished, such as flocks
of birds or a school of fish. These formations are a product of nature and provide
benefits to the animals. A group of fish can spot a predator easier than one single
fish. A flock of birds can spot possible food easier than one single bird. From these
examples alone, it can be seen that when individuals form a formation, performance
can be enhanced. However, this is not limited to the animal realm, because the same
concepts can be applied to artificial individuals. An increasing number of govern-
ments and companies are exploring the possibility of deploying unmanned vehicles
for replacing humans in labour intensive work (Quaranta, 2016) (National Research
Council, Division on Engineering & Physical Sciences, Board on Army Science &
Technology and Committee on Army Unmanned Ground Vehicle Technology, 2003)
(Shiue & Chang, 2010). These robots, more specifically called Unmanned Grounded
Vehicles (UGV) or Unmanned Aerial Vehicles (UAV), move autonomously and can
form any formation that is desired. The UGVs in combination with the UAVs show
promising possibilities for aid in marine corps combat, construction, agriculture and
other logistical challenges (Naval Studies Board, Division on Engineering & Physical
Sciences, Committee on Autonomous Vehicles in Support of Naval Operations and
National Research Council, 2005)(Krizmancic et al., 2020) (Dreano, 2018)(Bonadies
et al., 2016) (Kuru et al., 2019). Furthermore, a multi-agent network with formation
problems can be compared to a network of multiple satellites orbiting around the
earth keeping a constant relative distance enabling the technology of Global Posi-
tioning System (GPS) (Xu et al., 2007) (Parkinson et al., 1996) or robots that can
help disable mines from war zones by staying in a formation and keep a constant
velocity to minimise disturbances (Healey, 2001). The mentioned examples all form
a formation which results in enhanced performances of the network as a whole.

Furthermore, chapter 1 will discuss the research design plan, and is divided into
four sections. Section 1.1 elaborates on preliminary background information about
graph theory and the framework used for modelling the mechanical system. Section
1.2 discusses the formulation of the problem, including the problem context, problem
statement and the system description. The last section of Chapter 1 is the research
proposal in section 1.3 and will discuss how the research will look like and which
concepts are utilised. Chapter 2 discusses the design of controllers that should solve
the problem discussed in section 1.2. The chapter is divided into three sections;
section 2.1 is focused on the formation control, section 2.2 describes the velocity
tracking problem and the solution and section 2.3 elaborates on how to combine
both the formation control and velocity tracking in a leader-follower strategy to
solve the presented problems.
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Chapter 1

Research Design

1.1 Background Information

Before the problem context or system description can be defined, preliminary back-
ground information is necessary in order to fully understand the concepts.

The port-Hamiltonian concept is a method of representing a multi-domain sys-
tem, i.e. a mechatronics system, which arose due to "the widespread interest for
unifying the modelling frameworks of different physical domains" (Van Der Schaft,
2019). A port-Hamiltonian system consists of energy storing elements and energy
dissipating elements that come together in a central energy routing structure, called
a Dirac structure (Van Der Schaft, 2019). The example in figure 1.1 shows the flow
(f) and effort (e) variables. Consequently, one can read the flow and effort vari-
ables as velocity and force in the mechanical domain and voltages and currents in
the electrical domain. The Dirac structure has the property of power conservation,
meaning that it links the flow and effort variables in a way that the power input
is equal to the power output (Van Der Schaft, 2019). The Dirac structure allows
for the introduction of virtual couplings in the port-Hamiltonian system, which are
virtual representations of mechanical components, i.e. spring or damper. The dy-
namics of such a mechanical component are then used as the dynamics of a virtual
version between agents. This virtual coupling allows the system to behave as if a
spring or damper is present, without the physical presence of it.

Figure 1.1: Dirac structure that visualises a port-Hamiltonian system. source: Van
Der Schaft (2019)
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Dynamical relations in discrete systems, i.e. mass-spring-damper mechanical
systems or multi-body systems, lead to various sorts of network dynamics (Van
Der Schaft & Maschke, 2013). The analogy with graph theory allows the coupling
of a port-Hamiltonian framework with a multi-agent system. The coupling with
graph theory is based on the fact that externally supplied power goes through the
vertices of the graph. Due to the conservation law in a port-Hamiltonian framework,
the increase of energy is the external power minus the power lost in the dissipating
elements which are associated to some of the edges or vertices of the graph (Van
Der Schaft & Maschke, 2013). Moreover, the virtual coupling is directly linked to the
edges of a graph, as each edge represents a virtual coupling between the agents. The
number of edges in a graph determines the number of virtual couplings and between
which agents. Furthermore, the Dirac structure of the whole system is directly
defined by the incidence matrix (B) of the multi-agent network (Van Der Schaft &
Maschke, 2013).

The incidence matrix is a subject of graph theory, however, before defining the
incidence matrix, basic graph theory should be understood. Let G = (ν, e) be a
graph with nodes ν = (v1, v2, ..., vn) and edges e = (e1, e2, ..., ej). Vertices i and k,
where i, k ∈ ν, are adjacent or neighbours if they are the ends of a common edge
(Ahn, 2020). Using this knowledge, the incidence matrix can be defined. If the
edge eik = (vi, vk) is directed from k to i, then qik will have a +1 value and qki will
have a −1 value in the incidence matrix B = B(G) = (qik). If eik = (vi, vk) = 0
meaning that there is no edge connecting the two vertices, the entries qik and qki
are both zero (Merris, 1994). Consequently, the incidence matrix is representation
of the vertices and the edges, meaning that the rows represent the vertices and the
columns represent the edges. Furthermore, incidence matrix is not the only matrix
for graph theory, as the adjacency matrix A or the degree matrix D are also matrices
based on a graph. The adjacency matrix is a matrix where aik has the value of 1
if there exists an edge between vi and vk; otherwise, a value of zero is appointed.
The degree matrix is a diagonal matrix where the value for aii is the number of
neighbours of node vi. Finally, using A and D, a Laplacian matrix can be computed
by L = D− A.

The Laplacian matrix is a representation solely of the vertices, whereas the
incidence matrix takes the edges also into account. Moreover, the directed edge
introduces the concepts of a directed and undirected graph. An directed graph has
only directed edges and is denoted by ~G = (ν, ~ε). In such a directed graph, the
possibility of a cycle presents itself if a path from edge to edge can be taken where
the first and last node is the same, but otherwise all nodes are distinct (Easley &
Kleinberg, 2010). For the research, only acyclic graphs are considered. Moreover,
the undirected graph, as the name suggest, does not contain directed edges. Finally,
a graph can be considered a tree graph, if there exists a node vi which has a directed
path to all other nodes and no cycles are present in the graph (Ahn, 2020).
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1.2 Problem Formulation

The problem formulation section will elaborate on the problem that is presented to
the researcher. Before the problem statement can be made, the problem context
needs to be assessed and the current state of the art is determined, in order to
formulate a correct system description.

1.2.1 Problem Context

This section discusses the problem context and what the state of the art is for current
literature. Based on the body of knowledge presented in section 1.1, the problem
context can be defined. The problem that is presented concerns the lacking of a
controller for a single integrator network in a port-Hamiltonian framework that can
ensure formation keeping and tracking of a constant velocity via a leader-follower
strategy.

The formation control problem is not a new phenomena, as described in the in-
troduction. Moreover, prior research in the formation control and velocity tracking
fields are present in current literature. (Peng et al., 2020) (K. Cao et al., 2019) (Tran
et al., 2020) (Meng & Jia, 2014). However, none of these studies suggest the use
of a single integrator in the port-Hamiltonian framework for modelling the agents.
Moreover, none of these studies use the concept of the leader-follower strategy. The
amount of new leader-follower studies are on a rise in recent years (Oh et al., 2015)
(Scharf et al., 2003) (Scharf et al., 2004). The leader-follower strategy is a control
approach where the network is not considered as a whole, but is divided into leaders
and followers (Kang et al., 2014) (Zhao, 2018). The concept is based on the fact
that the leader move with a desired velocity, either constant or time-varying, and
the followers control the distance, displacement or relative position with respect to
the leader agent. When the leader agent moves with a constant velocity, it is not
concerned with the desired formation, meaning that the velocity of the leader is
not altered by the formation controller. The advantage of the leader-follower strat-
egy, compared to just combining the formation and velocity tracking controllers, is
that per agent, less information is needed to obtain the correct results. The leader
is only required to know the desired velocity and the follower agents are only re-
quired to know the desired displacement to form the desired formation. By limiting
the required information, the calculating capacity is reduced (Kang et al., 2014).
Existing literature on leader-follower strategies use relative positions as control vari-
ables in a mechanical framework and do not consider modelling the agents in a
port-Hamiltonian framework (Kang et al., 2014) (Zhao, 2018) (Scharf et al., 2003)
(Scharf et al., 2004).

The advantage of the port-Hamiltonian framework is that it can describe a
mass-damper model (figure 1.2) as a system of energy which, consequently, can be
used to verify (asymptotic) stability using Lyapunov’s theorem. Moreover, such a
mechanical system is useful as the analogy with graph theory can be made. The
graph theory is particularly important due to the nature of the formation problem.
"In order to obtain a formation, agents must position themselves relative to the other
agents in the system" (Olfati-Saber & Murray, 2004). It should be noted that the
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positioning process of an agent requires information of other agents, the relative
displacement, with respect to the other agents. This means that an information
flow (edge) must present between two agents (vertices). As this resembles basic
graph theory, other characteristics of graph theory can be applied to the system
of interest, i.e. (weighted) adjacency matrix, degree matrix, incidence matrix or
Laplacian matrix (Ahn, 2020).

Furthermore, agents can be positioned in a formation for increased performance,
for example if coverage is requested (Vos, 2015), which is a situation where the robots
must position themselves in a predefined formation to cover an area as efficiently
as possible. The formation can be considered as a consensus between agents (Saber
& Murray, 2003). Consensus problems have a long history in computer sciences,
in particular distributed computations (Olfati-Saber & Murray, 2004) (Olfati-Saber
et al., 2007). According to Olfati-Saber et al. (2007), a consensus in a network of
agents is defined as "to reach an agreement regarding a certain quantity of interest
that depends on the state of all agents" and consequently a consensus algorithm as
"an interaction rule that specifies the information exchange between an agent and
all of its neighbours on the network". Therefore, it can be derived that a consensus
algorithm takes the information of all the agents into account and actuate the agents
to a final formation, a consensus.

However, for the current problem, the focus lies primarily on the formation
control and velocity tracking, where certain parameters of the agents converge to
predefined desired values. Nonetheless, the consensus methods are considered as a
useful alternative and used as a basis for the leader-follower strategy.

m

D
F(t)

q(t)

Figure 1.2: A standard mass-damper system

1.2.2 Problem Statement

This section will provide the problem statement based on the problem context. The
bigger problem of the research is that agents must be able to form and keep a for-
mation with the help of a controller. The actual problem that is tackled in this
research, is the absence of a leader-follower strategy in a port-Hamiltonian frame-
work which can solve the bigger problem of formation keeping. The system that is
analysed, is a single integrator system modelled in a port-Hamiltonian framework,
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as described by Vos (2015). Due to the chosen variables (position, momenta and
relative displacement) that are measured for each agent of the system, the system
can be classified as a distributed formation control (Vos, 2015). The problem is
defined in the following problem statement.

In order to increase the performance of a multi-agent network, agents must reach
a specified formation and hold this formation with a constant velocity. With a leader-
follower strategy, this formation and constant velocity can be achieved and reduce the
computing capacity needed for every agent (Kang et al., 2014). Current literature
on leader-follower strategies does not consider a single integrator system modelled in
a port-Hamiltonian framework. Therefore, this research must provide new insights
by taking a new approach, the port-Hamiltonian framework, to the leader-follower
strategy and, consequently, the formation and velocity tracking problem to create a
clearer overview of the energy flows than currently exists.

1.2.3 System Description

The system description section will discuss the system that is under consideration
and the corresponding state space variables. The system that is evaluated is a net-
work consisting of n agents which must reach a predefined formation and velocity.
The agents in the system can be interpreted as point masses which can move in
any direction in order to obtain the correct position for the formation. The agents
communicate directly with each other, as in distributed control theory (Vos, 2015),
meaning that the system can be considered as a linear position-based algorithm,
instead of a non-linear distance-based algorithm (Y. Cao et al., 2012) (Vos, 2015).
Using the positions, the relative displacement between the agents is determined,
which are the controller variables. Furthermore, agents are modelled as fully actu-
ated agents, meaning that the number of inputs is equal to the degree of freedom of
the system, in a tree graph (see section 1.1). The agents can be modelled according
to the port-Hamiltonian framework and the mass-damper system, defined by Vos
(2015). In this system, with n number of agents, denote qi ∈ Rn as the displace-
ment of the mass mi and the momentum pi ∈ Rn where pi = q̇imi for i = 1, 2, ...n.
Moreover, the mass is assumed to be at rest and subject to an input force denoted
as u. With the defined variables, the mechanical system of the agent is defined as

[
q̇
ṗ

]
=

[
0 1
−1 0

] [∂H
∂q

(p)
∂H
∂p

(p)

]
+

[
0
1

]
u

y =
∂H

∂p
(p)

(1.1)

where p = (p1, p2, ...pn)T , q = (q1, q2, ...qn)T and the Hamiltonian H(p) = 1
2
pTM−1p,

with M = (m1,m2...mn), corresponds to the kinetic energy stored in the mass per
agent.
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1.3 Research Proposal

The research proposal section will elaborate on the research strategy and methods
used. The purpose of this section is to determine the outline of the research. First,
the research objective will be established, which will be used for the decision on
relevant topics for the research questions. Then, the used materials are discussed,
followed by the chosen research cycle, validation and planning.

1.3.1 Research Objective

This section will define the research objective and the corresponding criteria. The
objective will function as a guide to the research, as the objective determines the
research questions. Moreover, when the objective is met, the final designed artefact
should pose a solution to the defined problem statement.

The goal of this research is to design a controller with the objectives of formation
control and velocity tracking for a group of agents modelled as a single integrator
in a port-Hamiltonian framework described in (1.1) and, consequently, implement it
in a leader-follower strategy controller that ensures velocity tracking and formation
keeping. Designing the formation, velocity tracking and leader-follower controller is
done by searching for relevant literature and by experimental testing via mathemat-
ical models in order to obtain the correct results and parameters. This goal must
be met within three months.

1.3.2 Research Questions

This section defines the research questions that are used in order to guide the re-
searcher in the process of finding relevant literature and answers. Each question
is formulated in a way that ensures that the final answers will provide relevant
knowledge and help in achieving the research objective.

Central Questions

The central question will be formulated, bearing in mind that the answers must
help in achieving the research objective and must provide a steering function to the
research. The central questions are therefore defined as:

1. What are the characteristics of a controller that controls the formation of the
single integrator system in a port-Hamiltonian framework?

2. What are the characteristics of a controller that controls the velocity tracking
problem of the single integrator system in a port-Hamiltonian framework?

3. How are the two controllers combined in order to ensure that all control ob-
jectives are met?

4. Which characteristics of the formation and velocity controllers can be used for
the leader-follower strategy controller?
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Sub Questions

The sub questions provide guidance in answering the central question, as each answer
to a sub question must be a part of the final answer to the central question. The sub
questions are formulated using the method of unravelling key concepts, where the
most important concepts are decomposed in smaller dimensions in order to create a
more detailed overview. The concepts of interest for this research are marked with
an asterisk (*) in figures 1.3 and 1.4. Using this method, the following sub questions
are formulated:

1. What are the control objectives for the formation control?

2. What are the control objectives for the velocity tracking?

3. Which mechanical dynamics are required for the controller, using the concept
of virtual coupling?

4. What methods are necessary for proving (asymptotic) stability of the con-
trollers?

5. Which tools and criteria are necessary for the simulation of the closed-loop
systems in Matlab?

Formation control 

Control objectives*

Virtual couplings*

Spring-dynamics

Matlab simulation*

(Asymptotic) stability*

Damper-dynamics

Routh-Hurwitz

Lyapunov

Dimensions

1-dimensional (x)

2-dimensional (x,y)

3-dimensional (x,y,z)

Figure 1.3: Key concepts for the formation control
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Velocity tracking

Control objectives*

Virtual couplings*

Spring-dynamics

Matlab simulation*

(Asymptotic) stability*

Damper-dynamics

Routh-Hurwitz

Lyapunov

Dimensions

1-dimensional (x)

2-dimensional (x,y)

3-dimensional (x,y,z)

Figure 1.4: Key concepts for the velocity tracking

1.3.3 Research Strategies & Materials

In order to find the most relevant materials for answering the research questions,
the research strategy must be determined. The choice of the strategies are based on
a set of criteria discussed by Verschuren & Doorewaard (2010): breadth or depth,
qualitative or quantitative and empirical or desk research. The formulated
problem in section 1.2.2 requires an in-depth research, due to the specific application
to a multi-agent network that must reach a formation and track a velocity. However,
general knowledge and concepts from the final deliverable can be used in future
research on formation control or leader-follower strategies. Furthermore, the research
is a quantitative research, as the results consists of calculations, numerical results
and tables. Lastly, the research is an empirical research, as the data and results are
acquired by the researcher by running computer simulations.

Based on the classification of the research, the strategies that fit the criteria are
experiments and desk research(Verschuren & Doorewaard, 2010). The experiment is
a strategy that involves an in-depth, qualitative and empirical research, which fit the
criteria exactly. The experiments consists of computer simulations in Matlab, where
the controller is tested with different initial conditions. By considering different
initial conditions, the controller can be optimised through trial and error. The
resulting data from the simulations are used for further improving the controller.

The second strategy, the desk research, is chosen as a useful strategy, because
the right theoretical concepts need to be applied to the controller and mechanical
system even though the research requires empirical knowledge gathering. The the-
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oretical concepts can only be acquired through a literature research, which shows
the need for the desk research.

After choosing the strategies, the materials are determined. The research ma-
terial indicates what type of material and source is used for the research in order
to answer the research questions and are determined using the theory of Verschuren
& Doorewaard (2010). In order to answer the research questions and consequently
achieve the research objective, this research will use Documents, Literature and
Simulations as the main sources for acquiring relevant knowledge. The accessing
of the sources is done by content analysis, search method and computer programs,
respectively (Verschuren & Doorewaard, 2010). Sub questions 1, 2,3 and 4 require
documents and literature material, due to theoretical nature of the questions and
the already existing literature. Sub question 5 requires simulation material, because
it needs actual simulation results to determine the right set-up.

1.3.4 Research Cycle

This section briefly elaborates on the design cycle that is applicable to this research.
The chosen cycle is the empirical cycle as described by Wieringa (2014) (figure
1.5). The most important aspect of this cycle is the induction and deduction of a
hypothesis, which concerns the characteristics of the formation, velocity tracking and
leader-follower controller. Based on the hypothesis, the testing and evaluation phase
is performed. As mentioned before, the testing is done via computer simulations and
based on the evaluation of the results, the controllers are adopted accordingly.

Figure 1.5: Empirical cycle as described by Wieringa (2014)

1.3.5 Validation

This section elaborates on the validation process of the final deliverable of the re-
search. The results of the research will be validated using a mathematical computer
model. This model is constructed using the computer software Matlab2019b, more
specifically, the Simulink add-on. The simulations should validate that the proposed
controllers are stable and the control objectives are met. If time allows it, more val-
idation using physical agents will be conducted. The controller will be applied as
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an input to the physical agents, in this case mobile robots, to see if the formation is
indeed stable after time t. This enables the researcher to see if the controller yields
the desired results in real-life, when the system is subject to disturbances.

1.3.6 Planning

This section discusses and visualises the planning for the research. First, theory
about formation control and velocity tracking is examined before anything can be
designed. This process starts in the design plan phase and is extended in the re-
search phase with 1 week. Consequently, a controller for the proposed system in
eq. (1.1) must be designed and the proof must be constructed which spans a total
period of approximately 3-4 weeks.This includes the controller for the formation
control and the velocity tracking. When the controllers are designed, the testing of
the controlling algorithm is performed. This should take approximately 1-2 work-
weeks. If everything goes according to plan, the last 3-4 weeks will be used for the
application of a leader-follower model for the formation control of three agents and
testing with physical robots.

Designing
the

formation
controller

Formulating
the proof for

the
controller

Testing the
controller
in Matlab

with
various

scenarios

Application
of leader-
follower
strategy 

Designing
the velocity

tracking
controller

Testing the
controller
in Matlab

with
various

scenarios
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via physical

robots

Figure 1.6: Visual representation of the planning



Chapter 2

Controllers design

This chapter elaborates on the controllers characteristics. In order to ensure that
the right formation is achieved, a controller must be designed to create a closed-loop
system that ensures the desired formation. Moreover, to prevent the formation from
drifting, a constant velocity must be tracked by the agents. The constant velocity
can be a zero or a nonzero desired velocity. The nonzero desired velocity can be
useful if the agents are required to move as a formation. The formation control with
constant velocity equal to zero is described in section 2.1. The closed-loop system
with a nonzero desired velocity is described in section 2.2. Moreover, section 2.2
also discusses the combination of the two controllers into one closed-loop system
to achieve the control objectives of both controllers. In section 2.3, the concepts
of formation keeping and velocity tracking are combined into a new leader-follower
strategy where the required calculating capacity is reduced per agent.

2.1 Formation control

The thesis written by Vos (2015) elaborates on the design process of a controller for
a system similar as described in section 1.2.3. Therefore, the method described in
the thesis will function as a basis and guide for the design of the controller for the
formation control. Additionally, with the position qi and momentum pi defined in
section 1.2.3, other variables related to virtual couplings should be defined. With
a total number of virtual couplings e, the relative displacement zj ∈ Rn and the
desired relative displacement z∗j ∈ Rn for j = 1, 2..e, where j is the virtual coupling
between the agents. In order to ensure that the desired formation is achieved, two
control objectives are formulated:

p→ 0,

as t→∞
z → z∗,

(2.1)

The formation control objectives are achieved by using virtual couplings which
consists of a virtual damper and spring, where the relative displacement zj is used
as the spring elongation, the input velocity is denoted as wj ∈ Rn and the output
force as τj ∈ Rn. The virtual spring is responsible for the convergence to the
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desired displacement and the damper is present in the controller to ensure that the
agents come to a full stop and, consequently, hold the formation and do not drift.
The dynamics of such a spring-damper system in a port-Hamiltonian framework
is described by Duindam et al. (2009), van der Schaft & Jeltsema (2014) and Vos
(2015) as:

żj = wj

τj =
∂Hc

j

∂zj
+Dc

jwj

(2.2)

where Dj ∈ Rnxn is the semi-definite positive dissipation function and Hj(zj) is the
Hamiltonian for the controller which includes a spring as virtual coupling and is
denoted as:

Hc
j (zj) =

1

2
(zj − z∗j )TKc

j (zj − z∗j ) (2.3)

with positive definite spring constant Kc
j ∈ Rn. For the ease of notation, z =

(z1, z2, ..., ze)
T , z∗ = (z∗1 , z

∗
2 , ...z

∗
e)T , w = (w1, w2, ..., we)

T , τ = (τ1, τ2, ..., τe)
T , and for

the system matricesKc = block.diag(Kc
1, K

c
2, ..., K

c
e),Dc = block.diag(Dc

1, D
c
2, ..., D

c
e).

The Hamiltonian can be denoted as Hc =
∑e

j=1 H
c
j (zj) = 1

2
(z − z∗)TKc(z − z∗).

As mentioned in section 1.2.3, the agents are modelled as a tree graph, with
corresponding incidence matrix B. Then, according to Vos (2015), the coupling of
the agents and the virtual coupling can be done by:

B =

−1 0
1 −1
0 1

 (2.4)

u = −(B ⊗ In)τ

w = (BT ⊗ In)y
(2.5)

where u is the input force of mechanical system, y is the output of the mechanical
system (1.1) and w is the input velocity of the controller.

In the closed-loop system, since the output of the controller is the input of
the mechanical system and the output of the mechanical system is the input of the
controller, then, using (1.1), (2.2) and (2.5), the closed-loop system can be described.

Controller state variable:

ż = w

= (BT ⊗ In)y

= (BT ⊗ In)
∂H

∂p
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Mechanical system state variable:

ṗ = −In
∂H

∂q
+ Inu

= −(B ⊗ In)τ

= −(B ⊗ In)

(
∂H

∂z
+Dcw

)
= −(B ⊗ In)

(
∂H

∂z
+Dc(BT ⊗ In)

∂H

∂p

)
= −(B ⊗ In)

∂H

∂z
− (B ⊗ In)Dc(BT ⊗ In)

∂H

∂p

Resulting in the closed-loop system[
ṗ
ż

]
=

[
−(B ⊗ In)Dc(BT ⊗ In) −(B ⊗ In)

(BT ⊗ In) 0

] [
∂Hr

∂p
∂Hr

∂z

]
(2.6)

where the Hamiltonian Hr(z, p) is equal to the sum of the Hamiltonian in (1.1) and
the Hamiltonian in (2.3) (van der Schaft & Jeltsema, 2014), yielding Hr(z, p) =∑n

i=1Hi(pi) +
∑e

j=1H
c
j (zj) = 1

2
pTM−1p + 1

2
(z − z∗)TKc(z − z∗). The closed-loop

system (2.6) and Hamiltonian Hr(z, p) meet the control objectives (2.1). Consider
the following proposition.

Proposition 2.1. By coupling the agents in the system with an controller with
dynamics described in (2.2) via coupling (2.5), the resulting closed-loop system de-
scribed in (2.6) ensures that p→ 0 and z → z∗, when t→∞, thereby achieving the
control objectives (2.1).

Proof. Taking Hr(z, p) as a Lyapunov function candidate, it can be verified that
Hr(z, p) ≥ 0. In the equilibrium point

Hr(z∗, 0) =
1

2
0TM−10 +

1

2
(z∗ − z∗)TKc(z∗ − z∗)

= 0

Since Kc is a positive constant and both displacement error and momentum are
quadratic, it is verified that Hr(z, p) is greater than zero for all values of z 6= z∗ and
p 6= 0. Furthermore, the time derivative of Hr(z, p), using the chain rule, is defined
as

Ḣr(z, p) =
∂Hr

∂p

dp

dt
+
∂Hr

∂z

dz

dt

=
∂Hr

∂p

(
−(B ⊗ In)Dc(BT ⊗ In)

∂Hr

∂p
− (B ⊗ In)

∂Hr

∂z

)
+
∂Hr

∂z
(BT ⊗ In)

∂Hr

∂p

= −∂
THr

∂p
(B ⊗ In)Dc(BT ⊗ In)

∂Hr

∂p
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It is easily verified that Ḣr ≤ 0, due to the minus sign and the quadratic form of
the partial derivative. Therefore, using LaSalle’s invariance principle, the function
converges to the largest invariant set where Ḣr = 0. Consequently, ∂Hr

∂p
= 0, which

results in p = 0 and ṗ = 0. Thus, substituting p = 0 and ṗ = 0 in (2.6), yields the
equation

0 = −(B ⊗ In)Dc(BT ⊗ In) · 0− (B ⊗ In)
∂Hr

∂z
= −(B ⊗ In)Kc(z − z∗)

(2.7)

In order for this equation to hold, either B or (z − z∗) must be zero, due
to the fact that Kc is a positive non-zero design constant. However, since B is
the incidence matrix of an acyclic graph, the columns of matrix B are linearly
independent, meaning that Rank(B)=2. Consequently, if there exists a equation as

(B ⊗ In)(z − z∗) = 0

where Rank(B) = n = number of columns and (z − z∗) is a scalar, only the trivial
solution ((z − z∗) = 0) exists. Therefore, it means that, in order for (2.7) to hold,
(z − z∗) = 0 ⇒ z = z∗. Therefore, it is proven that the controller yields a
closed-loop system that meets all the controller objectives.

2.1.1 Simulations

Consider a network with number of agents n = 3, which are moving in the x- and
y-direction, due to the triangular shape as desired formation. Every agents has a
mass mi = 0.167kg for i = 1, 2, 3. The network consists of e = 2 edges, which are
represented as homogeneous virtual couplings, which have a spring constant Kc

j =
0.7kg/s2, a damping coefficient Dc

j = 2kg/s and desired displacement z∗j,x = 0.3m,
z1,y =

√
0.27 ≈ 0.520m, z2,y = −

√
0.27 ≈ −0.520m for j = 1, 2. The desired relative

displacement is equal to the nominal spring length. The incidence matrix depends
on the number of agents and the number of states space variables. Due to the x-
and y-component of each agents, the incidence matrix is equal to

(B ⊗ I2) =


−1 0 0 0
0 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 0
0 0 0 1

 (2.8)
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The simulations are run using Simulink and Matlab 2019b. The Simulink model
used for the simulation can be found in appendix A.1. The agents are considered as
point masses, meaning that they can move freely in the framework. The simulation
is run for t = 30s and the initial conditions are set at qx(0) = (1.03, 1.20, 1.32)m,
qy(0) = (0, 0, 0)m, px(0) = (0, 0, 0)kg m/s, py(0) = (0, 0, 0)kg m/s. The results are
shown in figures 2.1, 2.2 and 2.3.

Figure 2.1 shows the displacement of the two virtual couplings after t = 30s.
The graph shows two lines, one going to a final value 0.3m and one going to a
final value ≈ 0.52m, corresponding to the desired relative displacement zx and zy,
respectively. Due to the symmetric form of a triangle, z1,x and z2,x overlap. This
can also be seen in figure 2.2, as the distance between agent 2 and agent 1, and the
distance between agent 2 and agent 3, is both +0.3m.

Figure 2.2 shows the x- and y- position of the three agents after t = 30s. Due to
the settling time of the displacement, the formation is achieved after ts = 11.0917s.
The dashed lines indicate that the agents reach a triangular formation. Due to the
fact that the agents come to a full stop, the travelled distance is limited as the agents
no longer move when the formation is achieved.

Figure 2.3 shows that the velocity of the three agents converge to a final value
of 0. This implies that p = 0 as p = velocity · mass = 0 · 0.167 = 0. The sign of
the velocity indicate the direction, as can be seen when the x-directional velocity
of the agent 1 is compared to the x-directional velocity of agent 3, which move in
complete opposite directions. Velocity v1,y is not distinguishable in figure 2.3, as it
follows the same trajectory as velocity v3,y.

Figure 2.1: The relative displacement of the agents after implementation of the
formation controller.
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Figure 2.2: The position of the agents after implementation of the formation con-
troller.

Figure 2.3: The velocity of the agents after implementation of the formation con-
troller.



18 2.2. VELOCITY TRACKING

2.2 Velocity Tracking
For the velocity tracking, again, the thesis of Vos (2015) is taken as a basis and
a guide for obtaining the correct error variables and state space representations of
the total system, including the mechanical system and the controller. The velocity
tracking controller is designed independently from the formation controller, meaning
that the formation controller is not considered for the closed-loop system. However,
the two controllers are combined, where the formation controller is considered in the
closed-loop system.
The concept of velocity tracking is the convergence of the velocity to the desired
velocity. Consequently, this yields the following control objective:{

p→ m · v∗, as t→∞ (2.9)

In order to track the desired velocity, the error between the actual velocity and
the desired velocity must converge to zero. Since the agents are required to form
any 2-dimensional shape, both the velocity in the x- and y-direction are considered,
yielding the desired velocity v∗i = (v∗i,x, v

∗
i,y)

T . For simplicity of notation, pi =
(pi,x, pi,y)

T , qi = (qi,x, qi,y)
T . In order to ensure the tracking of the desired velocity,

the error state variables are determined[
q̄i
p̄i

]
=

[
qi − v∗i t
pi −miv

∗
i

]
(2.10)

Using the error variables, the following Hamiltonian can be defined

H t
i =

1

2
p̄Ti m

−1
i p̄i

=
1

2
pTi m

−1
i pi − pTi v∗i +

1

2
v∗Ti miv

∗
i

To simplify notation, H t =
∑n

i=1 H
t
i (pi) = 1

2
p̄TM−1p̄. Using the notations of

(1.1) to define the input and output of the mechanical system, in order to ensure
that the error system converge to zero (Vos, 2015), the output of the controller
must be equal to uci,x = −Dt

i(yi,x − v∗i,x) and uci,y = −Dt
i(yi,y − v∗i,y), where uci =

(uci,x, u
c
i,y)

T , yi = (yi,x, yi,y)
T and Dt is the damping coefficient for the system with

Dt = block.diag(Dt
1, D

t
2, ...D

t
n). Therefore, the controller dynamics can be described

as

q̇ci = yi

uci = −Dt
i(yi − v∗i )

(2.11)

To simplify notation, uc = (uc1, u
c
2, ...u

c
n)T , qc = (qc1, q

c
2, ...q

c
n)T , y = (y1, y2, ...yn)T .

Combining (1.1) with the controller dynamics of (2.11), yields the following error
closed-loop system [

˙̄q
˙̄p

]
=

[
0 I2

−I2 −DtI2

][∂Ht

∂q̄
∂Ht

∂p̄

]
(2.12)
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The closed-loop system ensures that vi,x → v∗x and vi,y → v∗y for i = 1, 2, ...n.
The closed-loop system enables velocity tracking of a non-zero desired velocity.
Moreover, combining the velocity tracking controller (2.11) with the controller in
(2.2) yields a closed-loop system that meets the control objectives of (2.1) and (2.9).
Consider the following theorem.

Theorem 2.2. Take ui,1 as ui of (2.5) and ui,2 as ui of (2.11), then, using ui =
ui,1 + ui,2, the system in (1.1) converges to z = z∗, p = m · v∗ when t→∞, thereby
achieving all control goals of (2.1) and (2.9)

Proof. Define z̄ = z − z∗ to create an error state space system. For simplicity of
notation, define p̄ = (p̄1, p̄2, ..., p̄n) and q̄ = (q̄1, q̄2, ..., q̄n). Then, the closed-loop
system, obtained from (2.6) and (2.12), is defined as ˙̄q

˙̄p
˙̄z

 =

 0 1 0
−1 −D̄ −(B ⊗ In)
0 (BT ⊗ In) 0


∂H̄

∂q̄
∂H̄
∂p̄
∂H̄
∂z̄

 (2.13)

with D̄ = Dt + (B ⊗ In)Dc(BT ⊗ In) and error Hamiltonian H̄(p̄, z̄) = 1
2
p̄TM−1p̄+

1
2
z̄TKcz̄ . Take the error Hamiltonian as a candidate Lyapunov function. It is easily

verified that H̄ ≥ 0

H̄(0, 0) =
1

2
0TM−10 +

1

2
0TKc0 = 0

Since Kc and m are both a positive non-zero constant, and both p̄ and z̄ are
quadratic, H̄ will be greater than zero for any input 6= 0. The time derivative,
using the chain rule, is given by

˙̄H =
∂H̄

∂q̄

dq̄

dt
+
∂H̄

∂p̄

dp̄

dt
+
∂H̄

∂z̄

dz̄

dt

=
∂H̄

∂q̄

∂H̄

∂p̄
+
∂H̄

∂p̄

(
−∂H̄
∂q̄
− D̄∂H̄

∂p̄
− (B ⊗ In)

∂H̄

∂z̄

)
+
∂H̄

∂z̄
(BT ⊗ In)

∂H̄

∂p̄

= −∂
T H̄

∂p̄
D̄
∂H̄

∂p̄

Due to the minus sign and the quadratic form for the partial derivative, it can
be verified that ˙̄H ≤ 0. Invoking LaSalle’s invariance principle, yields that (2.13)
converges to the largest invariant set where ˙̄H = 0 and, consequently, ∂H̄

∂p̄
= 0. This

results in p̄ = 0 and ˙̄p = 0, achieving the first control objective of velocity tracking.
Filling in p̄ = 0 and ˙̄p = 0 in (2.13), gives the equation

0 =
∂H̄

∂q̄
− D̄ · 0− (B ⊗ In)

∂H̄

∂z̄

= −(B ⊗ In)Kcz̄

This equation can only hold if B or z̄ is equal to zero, asKc is a positive non-zero
design constant. However, since B is the incidence matrix of a acyclic graph, the
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columns are linearly independent and Rank(B) = 2. Since the number of columns
of B is equal to the rank, for the equation (B ⊗ In)z̄ = 0, with matrix (B ⊗ In)
and scalar z̄, only the trivial solution exist where z̄ = 0. Thereby completing the
proof.

2.2.1 Simulations

Consider again a network with number of agents n = 3, where the mass of every
agent mi = 0.167kg. For the closed-loop system, the damping coefficient of the
controller is defined as Dt

i = 2kg/s and with desired velocity v∗i,x = 0.2m/s and
v∗i,y = 0.3m/s for i = 1, 2, 3.

The simulations are run using Simulink and Matlab 2019b. First, the velocity
tracking closed-loop system is simulated individually. The Simulink model used for
the simulation can be found in appendix A.2. The agents are considered as point
masses, meaning that they can move freely in the framework. The simulation is
run for t = 3s, to show the rise and settling time. The initial conditions are set
at qx = (1.03, 1.20, 1.32)m, qy = (0, 0, 0)m, px = (0, 0, 0)kg m/s, py = (0, 0, 0)kg
m/s. The initial conditions are set to be equal to the initial conditions of the
formation controller, to yield comparable results. The result is shown in figure 2.4.
It can be seen in figure 2.4 that the two lines converge to vi,x → v∗i,x = 0.2m/s and
vi,y → v∗i,y = 0.3m/s for i = 1, 2, 3. Since the desired velocity is equal for all agents,
the results of the other agents follow the same line. Dots and dashed lines are used
to show the individual results as much as possible.

Figure 2.4: The final velocity in x- and y-direction for all the agents in the system,
only considering velocity tracking
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As per theorem 2.2 and the corresponding proof, if the controller for formation
control and velocity tracking are combined, all control objectives (2.1)(2.9) are met.
The proof is verified with simulations which are performed using the same initial
conditions as for the simulation of the formation control and velocity tracking, with
t = 30s. The Simulink model can be found in appendix A.3. The results are shown
in figures 2.5, 2.6, and 2.7.

Figure 2.5 shows the convergence of the displacement to the desired displace-
ment, indicating z → z∗. In the combined scenario (ts = 20.9702s), the speed of
convergence is slower compared to the formation controller (ts = 11.0917s). This
difference can be explained by the the movement with a constant velocity of the
agents, which hinders the stabilisation of a constant relative displacement.

Figure 2.6 shows a linear graph, which is due to the fact that the agents track
a constant velocity; thus constantly move away from their original point. It may
seem that agents 1 and 2 cross paths, but this is not true due to the fact that agent
2 moves ahead of agent 1. Furthermore, it can be seen that, at the end-points, the
triangular formation is achieved.

Figure 2.7 displays vi,x → v∗i,x = 0.2m/s and vi,y → v∗i,y = 0.3m/s for i = 1, 2, 3,
indicating that the velocities of the agents all converge to the desired value for the
final velocity. The peak of the y-velocity agent 2 is explained by the fact that agent
2 is positioned ahead of the other agents.

Figure 2.5: The relative displacement of the agents after implementation of the
formation controller and the velocity tracking controller
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Figure 2.6: The position of the agents after implementation of the formation con-
troller and the velocity tracking controller

Figure 2.7: The velocity of the agents after implementation of the formation con-
troller and the velocity tracking controller
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2.3 Leader-follower

In section 2.1 and section 2.2, all the agents are required to know the desired dis-
placement and the desired velocity. With the leader-follower strategy, it is assumed
that the follower agents do not know the desired velocity. The necessity for all this
data leads to larger CPUs required for every agent. To overcome this issue, the im-
plementation of a leader-follower strategy can utilised. The leader-follower strategy
specifies one or more leaders within the network which knows the desired velocity
and will try to converge to that velocity. The other agents present in the network
do not know the desired velocity, and only measure the relative displacement with
respect to the leader. This leads to follower agents requiring less equipment and the
whole network to be more cost-efficient (Kang et al., 2014). Depending on the num-
ber of agents in the network (n), the number of leaders (n`) is determined. Based
on the number of leaders, the number of followers nf = n − n` can be determined.
It is assumed that all followers are directly connected to the leader. The objectives
for the leader follower strategy, based on (2.1) and (2.9), are defined as

for the leader {
p` → m · v∗, as t→∞ (2.14)

for the follower 
z → z∗,

as t→∞
pf → p`,

(2.15)

The proposed controller uses the same concepts as the formation controller (2.2)
and is applied to all the follower agents, whereas the leader agent is controlled by
the velocity tracking controller in section 2.2. Therefore, the first control objective,
concerning the velocity of the leader, is not considered in the following controller.
By assuming that all the followers are directly connected to the leader, the incidence
matrix (2.4) is not applicable. Instead, an adjusted matrix is used, denoted as B∗,
which is a matrix that consists of only the incidence matrix rows that belong to the
respective follower. In order to track the leader’s velocity, the follower agents have
error variables defined as [

p̄f
z̄f

]
=

[
pf − p`
zf − z∗f

]
(2.16)

where zf is the displacement between the leader and follower, z∗f is the desired
displacement, pf is the momenta of the follower agent and p` is the leader agent’s
momenta and is considered as an constant. For each follower, the formation control
dynamics are

żf,j = wf,j

τf, j =
∂Hzf

∂zf,j
+Dcwf,j

(2.17)
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whereHzf = 1
2
(zf,j−z∗f,j)TKc(zf,j−z∗f,j) is the Hamiltonian, τf = (τf,1, τf,2, ...τf,e)

T is
the output force of the leader controller , wf = (wf,1, wf,2, ...wf,e)

T is the input
velocity and Dc = block.diag(Dc

1, D
c
2, ..., D

c
e)is the damping coefficient to improve

transient properties. In order to simplify notation, zf = (zf,1, zf,2, ...zf,e)
T , z∗f =

(z∗f,1, z
∗
f,2, ...z

∗
f,e)

T . The velocity of the leader can be considered as a constant, because
the agent is not dependent on any other agent and thus will converge to v∗ due to
the velocity tracking controller (2.11) being applied to the leader agent. The follower
agents are only able to measure the displacement with respect to the leader agent
and velocity of the leader, which means that the desired velocity is not known for
the follower agents. Furthermore, it is assumed that the follower agents are capable
of measuring their own velocity. Using this information, the coupling equations,
based on (2.5), are

wf = (B∗T ⊗ In)(yf −
p`
m

)

uf = −(B∗ ⊗ In)τf
(2.18)

Where yf = (y1,f , y2,f , ...ynf ,f )T is the output velocity of the mechanical system, m
is the mass of the leader, in this case equal to the mass of the followers. Using the
controller dynamics (2.17), error variable (2.16) and the coupling equations (2.18),
the following closed loop exists ˙̄pf

˙̄z

 =

−(B∗ ⊗ In)Dc(B∗T ⊗ In) −(B∗ ⊗ In)

(B∗T ⊗ In) 0


∂Hf

∂p̄f

∂Hf

∂z̄

 (2.19)

With HamiltonianHf (p̄f , z̄) =
∑nf1

i=1 Hi(p̄i,f )+
∑ef

j=1 H
zf
j (zj) = 1

2
p̄TfM

−1p̄f+1
2
z̄TKcz̄.

Applying the closed loop system to the first follower agent, will meet the controller
objectives. Consider the following theorem.

Theorem 2.3. Using the velocity tracking controller (2.11) for the leader agent and
the controller uf (2.18) for the follower agents, the total system (1.1) converges to
p` → mv∗ , pf → p`, z → z∗, when t→∞. Thereby achieving the control objectives
(2.14) (2.15) for the whole system.

Proof. Taking Hf (p̄f , z̄) as a Lyapunov function candidate, it can be verified that
Hf (p̄f , z̄) ≥ 0. In the equilibrium point

Hf (0, 0) =
1

2
· 0 ·M−1 · 0 +

1

2
· 0 ·Kc · 0

= 0

The follower momentum and the displacement have a quadratic form which means
that those parameters will always be semi-positive. Moreover, the positive design
parameter Kc and the absolute value for the mass M , yields an equation Hf (p̄f , z̄)
which will have a positive value for every input 6= 0. Furthermore, the time derivative
of the Hamiltonian is given by
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Ḣf =
∂Hf

∂p̄f

dp̄f
dt

+
∂Hf

∂z̄

dz̄

dt

= −∂
THf

∂p̄f
(B∗ ⊗ In)Dc(B∗T ⊗ In)

∂Hf

∂p̄f

It is verified that Ḣf ≤ 0 due to the quadratic form of the partial derivative and
adjusted incidence matrix, the positive design constant Dc and the minus sign.
Invoking LaSalle’s invariance principle, the system will converge to the state where
Ḣf = 0, which can only hold if ∂Hf

∂p̄f
= 0 and, consequently, p̄f = 0 and ˙̄pf = 0,

meaning that pf → p`, thereby meeting the first control objective. Filling in these
values in (2.19), yields

0 = −(B∗ ⊗ In)Dc(B∗T ⊗ In) · 0− (B∗ ⊗ In)
∂Hf

∂z
= −(B∗ ⊗ In) · z̄ ·Kc

For this equation to hold, z̄ or B∗ must be equal to zero, as Kc is a non-zero design
constant. Since the column of B are linearly independent, it can be concluded that
the columns of B∗ are also linearly independent. Using the same concept as the
proof 2.1 and section 2.2, then, it can be concluded that if B∗ is linearly independent
and the above equation is of the form (B∗ ⊗ In)z̄ = 0, the trivial solution exists.
Therefore, it can be concluded that the displacement error z̄ = 0. Furthermore, it
can be said that the leader-follower strategy results in p` → mv∗ via the velocity
tracking controller and pf → p` and z̄ → 0 via the adjusted formation controller,
thereby completing the proof.

2.3.1 Simulations

Consider a network with number of agents n = 3 which are moving in x- and y-
direction. Every agents has a mass mi = 0.167kg for i = 1, 2, 3. The network
consists of e = 2 number of edges, which are represented as homogeneous virtual
couplings, which have a spring constant Kc

j = 0.7kg/s2, a damping coefficient Dc
j =

2kg/s and desired displacement z∗j,x = 0.3m and z1,y =
√

0.27 ≈ 0.520m, z2,y =

−
√

0.27 ≈ −0.520m for j = 1, 2. For the velocity tracking of the leader agent, the
damping coefficient of the controller is defined as Dt

i = 2kg/s and desired velocities
v∗i,x = 0.2m/s, v∗i,y = 0.3m/s for i = 1

The simulations are run with Matlab2019b and Simulink. The simulink model
used for the simulation can be found in appendix A.4. The initial conditions for
the leader agent are qx = 1.20m, qy = 0m, px = 0kg m/s, py = 0kg m/s. The
initial conditions for the first follower agent is qx = 1.03m, qy = 0m, px = 0kg m/s,
py = 0kg m/s. The initial conditions for the remaining follower agent is qx = 1.32m,
qy = 0m, px = 0kg m/s, py = 0kg m/s. The results can be found in figures 2.8 2.9
2.10.

Figure 2.8 visualises how the three agents move with respect to a global frame-
work. As the figure shows, when the leader agent is only tracking the desired velocity
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and the follower agents are only subject to a formation controller, the triangular for-
mation is achieved. The time displayed is 15 seconds, as the maximum settling time
for the displacement is equal to ts = 10.6149s. The figure shows that, when the
formation is achieved, it does not change, indicating a steady state. Furthermore,
it should be noted that, although it may seem as if the leader agents and the first
follower cross paths, this is not true. The graph should be read, bearing in mind
that the leader agent moves ahead of the follower agents, meaning that the agents
will never cross paths. This is illustrated in the graph as the end-position of the
leader is above the follower agents.

Figure 2.9 clearly follows a different trajectory compared to the velocity graphs
of the formation controller and the velocity tracking controller (figures 2.3 and 2.4),
but do converge to the desired velocities v∗i,y = 0.3m/s and v∗i,x = 0.2m/s. The
graph shows that the velocity of the leader converges relatively quick to the desired
velocity, which is supported by the settling time of ts = 2.0282s. The velocities
of the followers take more time to converge to the desired values, (ts = 9.7721s).
Both followers have the same y-velocity trajectory, meaning that they have the same
maximum settling time.

Figure 2.10 shows the displacement between the leader and the follower agents.
Again, the trajectories are different from the formation controller. Nonetheless, the
displacement still converge to the desired displacement. Displacement 1 (y) is not
distinguishable in the graph, because it follows the same trajectory as displacement
2 (y). Both follower agents reach a displacement of ≈ −

√
0.27, as can be seen in

figure 2.8.

Figure 2.8: The position graph of the three agents using the leader follower strategy
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Figure 2.9: The velocity graph of the follower agents

Figure 2.10: The displacement graph of the three agents using the leader follower
strategy



Chapter 3

Conclusion & Future Research

3.1 Conclusion
This section will provide the conclusions that can be drawn from the research and the
obtained results. The results show that when the correct controller is implemented
to the mechanical system, the control objectives are met and the control variables
converge to the desired value, which is confirmed by the simulation results. The
implementation of the system in a port-Hamiltonian framework provides an overview
about the energy flows within a network and allows for checking of the stability via
the Lyapunov method. Moreover, it is confirmed that with the proposed formation
controller (2.2), any 2-dimensional shape can be achieved, based on the number of
agents in the network. Furthermore, it can be concluded that the controller yields a
stable closed-loop system which means that the formation is held when t→∞. The
controller for the velocity tracking (2.11) achieves the control objective of tracking
a desired velocity and when the formation and velocity tracking controllers are
combined and both the controllers are implemented as an input to the mechanical
system, it can be concluded that the closed loop system is stable and meets all
control objectives of formation control and velocity tracking.

Furthermore, the two controllers are used for the leader-follower strategy in the
port-Hamiltonian framework. The leader agent is merely controlled by the velocity
tracking controller (2.11) and the followers are controlled by the adjusted forma-
tion controller (2.17). The formation controller for the followers only measures the
displacement with respect to the leader agent and the velocity of the leader. How-
ever, the adjusted formation controller does not use the information of the desired
velocity, yet still converge to the desired velocity. Based on the simulation results,
it can be concluded that, with the leader-follower strategy, where multiple agents in
a network are controlled by different controllers, a stable system is achieved which
meets all control objectives. Therefore, by meeting the control objectives, it can be
concluded that the final design meets the objective of the research, and, therefore,
will be a partial solution to the problem presented in the problem statement.
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3.2 Future Research
The Future research section will elaborate on possible additional research related to
the topic of formation control in a port-Hamiltonian framework. The first point of
interest is the disturbance rejection in the model. Due to time constraints and the
complexity of the disturbance characteristics, the model presented in this research
does not consider disturbances of any sort, meaning that the robustness of the
controllers is not tested. By not testing the robustness, it is not implied that the
controllers are not robust at all. However, it is recommended for future research
to consider disturbance rejection for the controllers to accommodate to real-life
disturbance problems.

The second point of interest is the time-varying desired velocity for the velocity
tracking controller. This research only considered the parameter ’desired velocity’
to be a constant value over time. If the controllers can be designed to track a time-
varying velocity, the controllers become more widely applicable. The advantage of a
time-varying velocity is that it can support velocities in different direction if the rigid
body is required to follow a certain path that requires direction changes. Moreover,
for other practical use, i.e. mine sweeping, a velocity is required that can adopt
to the environment and react accordingly. Again, due to time constraints and the
complexity of the time-varying desired velocity, it is not included in this research.

The third point of interest is the possibility of heading, which is again related
to the movement of the system as a rigid body. In order to implement heading, the
agents must be wheeled robots and the front- and rear-end of the wheeled robots
should be defined, to establish the reference points for the heading. The heading of
an agent determines how the agent is positioned, with respect to a global framework.
If a wheeled robot is required to rotate around it’s own axis, the heading of the
robot determines how much rotation is required. The research did not consider the
heading, because of the time constraint and the non-availability for wheeled robots,
due to the Covid-19 pandemic.

The fourth and final point of interest, is the use of a double-integrator model for
the agents. The research only considers a single-integrator agent, meaning that the
agent is only subject to a damping force. The double-integrator agent is modelled as
a mass which is subject to a damping force and a spring force. The double-integrator
representation is closer to reality but also more complex. Due to time constraints
and the absence of the required knowledge, the modelling of the double-integrator
is omitted.

All the aforementioned points can help in improving the quality and validation
of the controller and final results. Therefore, it is recommended for future research
to consider and include the four improvement topics.



Appendix A

Simulink models

A.1 Formation control

Figure A.1: The Simulink model used for the formation controller

A.2 Velocity tracking

Figure A.2: The Simulink model used for the velocity tracking controller
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A.3 Formation control and velocity tracking

Figure A.3: The Simulink model used for the combination of the formation control
and the velocity tracking

A.4 Leader-follower strategy

Figure A.4: The simulink model used for the leader-follower strategy, where the
formation controller and the velocity tracking controller are used separately



Appendix B

Matlab scripts

B.1 Formation control

Figure B.1: Matlab script used for the formation control with initial conditions and
the matrices for the mechanical system and the controller
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B.2 Velocity tracking

Figure B.2: Matlab script used for the velocity tracking describing the initial con-
ditions and matrices of the controller
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