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Abstract: This EEG study investigated which cognitive stages are present when solving a
simple arithmetical task and what their qualitative changes with respect to learning are. We
hypothesised there are cognitive stages that di↵er in occupation over three distinct learning
phases, similar in characteristics to the cognitive, associative and autonomous phase as defined
by Fitts and Posner (1967). To this end, we used an alpha-arithmetical task by Zbrodo↵ (1995)
from which we obtained EEG-correlates. Using a bottom-up approach combining hidden semi-
Markov modelling and multi-variate pattern analysis, we found that with practice the number of
cognitive stages, response time and e↵ect of task di�culty all reduced, substantiating multiple
learning phases. However, the obtained cognitive stages remained dependent on task di�culty
and did not fully conform to the characteristics of expected final learning phase.

1 Introduction

Learning is a process present in almost all organ-
isms, both animal and plant, and even in artifi-
cial machines. The concept of learning encompasses
a wide domain and although learning may occur
after just one event, often it is a process of re-
peated events leading to knowledge and skill ac-
cumulation. Hence, practice makes perfect, but we
don’t yet know how. What then do we know about
the mechanisms of learning? To answer this ques-
tion, the current study shall apply the novel anal-
ysis technique of Hidden semi-Markov Model with
Multi-Variate Pattern Analysis (HsMM-MVPA) on
electroencephalography (EEG) correlates, to dis-
tinguish the cognitive stages present in solving an
alpha-arithmetical task and examine their qualita-
tive changes with learning.

Understanding the mechanisms of learning is im-
portant. If we can better understand these mecha-
nisms that improve task performance, we can de-
sign tasks more e↵ectively. In search of these mech-
anisms, we may start with considering the most
visible e↵ect of learning: the increase in one’s per-
formance in a simple task over time. Seeking to
characterise this behaviour, the meta-analysis of
Newell and Rosenbloom (1993) described the im-
provement in response time during practice, as a
power function of the number of practice trials

taken, dubbed “the Power Law of Practice”. They
ascribed this observed speedup to small qualitative
changes in task execution, but do not discuss its
cognitive nature. The Race Model, part of the In-
stance Theory of Automization (Compton and Lo-
gan, 1991; Logan, 1988) does propose underlying
cognitive mechanisms of speedup. The Race Model
states that each time a problem is solved, the an-
swer is encoded in memory and when the problem is
presented again, this encoded instance ‘races’ with
similar instances for response generation. Further-
more, its predicted reduction of variability of re-
sponse times over time fit well with experimental
data.

However, one issue with either theory is they
suggest a continuous speedup of a single learning
phase, while the observed speedup may instead be
attributed to qualitative changes between di↵erent
learning phases. The Component Power Law The-
ory (CMPL) by Rickard (1997) states that there
are two possible cognitive processes, calculation
and the relatively faster retrieval of an answer. At
any time, the current learning phase is determined
by the dominant process used and, over time, the
learning phase switches from the calculation to the
retrieval phase, associated with a step-wise speedup
in response time. Quantitative changes within these
learning phases are possible too, building fluency in
calculation and retrieval.
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O↵ering another distinction of learning phases,
Fitts and Posner (1967) suggest the cognitive, the
associative, and the autonomous learning phase.
These three phases were operationalised by An-
derson in his Adaptive Control of Thought (ACT)
theory and underlying learning mechanisms were
identified in Adaptive Control of Thought-Rational
(ACT-R) simulating skill acquisition (Anderson,
1990, 2007). ACT-R attributed two shifts in learn-
ing mechanisms to the three learning phases. The
shift from the cognitive to the associative phase was
marked by a shift from computation to retrieval.
The shift from the associative to the autonomous
phase was marked by a compilation of retrieval
subprocesses into a reflexive production, relying on
instant recognition of the problem and associated
answer. Furthermore, ACT-R allows for speed-up
within the first two learning phases through its
mechanisms of knowledge compilation, collapsing
multistep procedures into simpler and shorter pro-
cedures, and declarative strengthening, increasing
the speed of retrieval. ACT-R has been well suited
in modelling the interplay of cognitive processes
and fitting behavioural data over a range of exper-
imental studies.
Up to this point, most studies relied exclu-

sively on behavioural data. To overcome the lim-
itations of response time based methodology, the
field of cognitive neuroscience has used neuroimag-
ing to evaluate response time models. Borst and
Anderson (2015) demonstrated the novel analy-
sis technique of Hidden semi-Markov Model with
Multi-Variate Pattern Analysis (HsMM-MVPA)
that could distinguish qualitatively di↵erent tem-
poral stages based on correlates of neuroimaging
data. A HsMM-MVPA is a stochastic model that
tries to identify a sequence of hidden states that
underlie a set of given observations. In a HsMM,
each state can correspond to several observations,
making it so that the stages can be of variable du-
ration (Yu, 2010). Their demonstration was fur-
ther developed by Anderson, Zhang, Borst, and
Walsh (2016), which was then used in a number of
studies that successfully as a basis to discover and
examine the underlying cognitive stages. In turn,
this was used to test the pure insertion assump-
tion (Zhang, Walsh, and Anderson, 2018b), exam-
ine cognitive mechanisms of association (Zhang,
Walsh, and Anderson, 2017) or even map working
memory both spatially and temporally (Zhang, van

Vugt, Borst, and Anderson, 2018a). HsMM-MVPA
seems promising and suitable for a wide range of
neuroscientific research. How may we then apply
this powerful method to investigate the progress of
learning?

In order to investigate e↵ects of practice, Teni-
son and Anderson (2016) used response time data
of a practice task for HMM analysis (similar to
HsMM), to find three distinct learning phases. Each
phase showed speedup with practice, however, most
speedup was produced by the transitions between
the learning phases. Furthermore, they find par-
allels to the phases of skill acquisition proposed
by the ACT-R theory; the cognitive, associative,
and autonomous learning phase. In order to inves-
tigate the underlying cognitive stages in a single
task and their changes with learning phase, they
continued their research using functional magnetic
resonance imaging (fMRI) data for HsMM-MVPA
and find three cognitive stages: Encoding, Solving,
and Responding (Tenison, Fincham, and Ander-
son, 2016). These stages show similar patterns to
the mechanisms used in ACT-R simulations, where
the first learning phase is dominated by a Solving
stage while the last learning phase is dominated by
the Responding stage. However, we assume there
are more temporally distinct cognitive stages than
this study could capture due to the low temporal
resolution of fMRI. Therefore, the current study
shall apply HsMM-MVPA on electroencephalogra-
phy (EEG) correlates instead, to distinguish tem-
porally close cognitive stages.

Previous studies have used a variety of tasks
to study the e↵ects of practice, each with their
own advantages and disadvantages. Lebiere (1999)
described a model of an alpha-arithmetical task
(Zbrodo↵, 1995) and observed a speedup due to
learning phase transitions. This task consisted of
problems such as ‘A+2=C’ where participant had
to count on the left-hand side using the alphabet
and then confirm or reject the equation. This task
was also later implemented in the ACT-R tutorial
(Bothell, 2009) which indicated there to be three
learning phases. Furthermore, adults approach the
problem similar to how children learn arithmetic
and do not direct rely on retrieved numerical knowl-
edge, due to the task’s partially alphabetical nature
(Barrouillet and Fayol, 1998). For these reasons, the
Zbrodo↵ task is a suitable task to study the learn-
ing phases of practice on.
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In the current study, we investigated which cog-
nitive stages are present in solving a simple arith-
metical task and what their qualitative changes are
with respect to learning. We observed the e↵ects of
learning in the context of a Zbrodo↵ task, suitable
due to its arithmetical yet novel nature. We then
used HsMM-MVPA on EEG-correlates to obtain
cognitive stages of fine temporal resolution. We hy-
pothesised there are some defined cognitive stages
that di↵er in occupation over three distinct learning
phases, similar in characteristics to the cognitive,
associative and autonomous phase.

2 Method

2.1 Participants

29 university students between the ages 18 and 32
participated in this study. All were right-handed,
had normal or corrected-to-normal vision and no
neurological disorders. All participants provided
written informed consent and were monetarily com-
pensated. Six participants were excluded for anal-
ysis; one participant due to having a non-Latin al-
phabet in their native language, three participants
due to incomplete EEG data, one participant be-
cause of excessive ocular movements in EEG data
and one participant because of inconsistencies be-
tween behavioural and EEG data. The analysis was
performed on the data of the remaining 23 partici-
pants (12 females; M = 23.6 years, � = 3.93). The
study was performed according to the rules of con-
duct imposed by the Ethics Committee (CETO) of
the Faculty of Arts of the University of Groningen,
including the voluntary character and the absence
of individual identifiers.

2.2 Task design

The participants were asked to identify novel math-
ematical equations as correct on incorrect using
a simple keyboard response, based on Zbrodo↵
(1995). The mathematical equations used were in
the format of ‘A+2=C’, where alphabetical charac-
ters referred to their index in the alphabet. As such,
this equation would be correct as indeed ‘C’ occurs
two places later than ‘A’ in the alphabet. An ex-
ample of an incorrect equation would be ‘A+3=B’
as B does not occur three places later than ‘A’ in

the alphabet.

The experiment used the addends ‘+2’, ‘+3’ and
‘+4’, reflecting various di�culties. On the left hand
side of the equations, 6 di↵erent ‘left-side’ charac-
ters (A to F) were used. On the right hand side of
the equations, 8 di↵erent ‘right-side’ characters (C
to K) were used as corresponding possible answers.
Each of 3 addends was combined with 2 left-side
characters, which were then finally combined with
2 right-side characters, one completing the equa-
tion to form a correct equation and one forming
an incorrect equation. This resulted in 12 unique
equations that were presented throughout the ex-
periment, of which exactly half were correct. Each
of these unique equations were presented 16 times
per block and 48 times throughout the entire ex-
periment. There was a total of 192 trials per block
and 576 trials in total.

2.3 Procedure

Firstly, participants received the instruction to
identify the mathematical equations as correct or
incorrect with a keyboard response using only their
right hand. Furthermore, they were instructed to
refrain from using their fingers to count. They then
completed one practice round of 6 trials that used
di↵erent characters than in the rest of the exper-
iment, followed by three blocks of 192 trails with
two breaks per block.

A trial started with a black fixation dot in the
centre of a white background presented for a ran-
dom, variable duration between 500 and 1500ms.
Then, the stimulus was presented as a simple, 5-
character equation separated with spaces (e.g. ‘A
+ 2 = C’) in black in the centre of a white screen,
using the font ‘Droid Sans Mono’, size 20px. An an-
swer could be given during the following 10 000ms
using the keys ‘b’ and ‘n’ for identifying the equa-
tion as correct or incorrect, respectively. After ei-
ther the response or 10 000ms, feedback would be
presented for 1000ms in the same black font in
the middle of the screen (‘Correct!’, ‘Incorrect’ or
‘Late’). This trial format is visually represented in
Figure 2.1. Halfway and at the end of each block,
the participant was given a break and shown the
average response time and accuracy of that block.
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A + 2 = C

Correct!

fixation
500-1500ms

until response or 10000ms
stimulus

feedback
1000ms

Figure 2.1: Example trial set-up

2.4 Behavioural analysis

Two behavioural measures were collected, accuracy
and response time. Firstly, per condition of ad-
dend and block and per participant, trials with
a response time outside 3 standard deviations of
the mean were discarded, 1.8% of all trials. Sub-
sequently, to evaluate di↵erences in accuracy in
the various conditions, a linear mixed-e↵ects model
(LME) was fitted on the accuracy of trials, with the
condition as fixed e↵ect and the participant as a
random e↵ect. The LmerTest R package was used
to obtain p-values for fixed e↵ects based on Sat-
terthwaite’s method (Kuznetsova, Brockho↵, and
Christensen, 2017). Then, trials with incorrect re-
sponses were discarded and another LME model
was fitted on the participants’ response times with
the same fixed and random e↵ects.

2.5 EEG recording and preprocess-

ing

The EEG was recorded from 32 electrodes using ac-
tive Ag-AgCI electrodes (Biosemi Active Two sys-
tem). The recording had a sampling rate of 512Hz
and all scalp impedances were kept below 30⌦.
These electrodes were positioned according to the
10-20 layout system and two reference electrodes
were placed on the mastoids. Data were then post-
hoc referenced to the average of the mastoid elec-
trodes. Furthermore, 4 electrodes were placed sur-
rounding the left eye to record eye movements.
For preprocessing and analysis, the EEG data

were then preprocessed using the EEGLAB toolbox
(Delorme and Makeig, 2004) and custom scripts
running on MATLAB (MATLAB, 2020). Firstly,
the data were subjected to a low-pass filter of 1Hz

and a high-pass filter of 40Hz and downsampled to
256Hz. Artefacts were rejected manually, leading
to a reduction of 1.85% of data on average. Subse-
quently independent component analysis (ICA) was
performed with EEGLab’s runica function, using
a logistic infomax algorithm (Bell and Sejnowski,
1995). On average, 1 to 2 components were then
subtracted to remove eye blinks or muscle activ-
ity. Removed channels were topographically recon-
structed using spherical spline interpolation.

2.6 HsMM-MVPA preprocessing

For the processing of the data for HsMM-MVPA,
the data were first downsampled further to 100Hz
to allow for faster computations. The data were
then epoched on a trial-by-trial basis from stim-
ulus onset to consecutive response. Outliers were
removed according to the same criteria as for be-
havioural analysis (see Section 2.4). Also, trials
with a duration of less than 500ms were rejected
(constituting less than 0.5% of the data), allowing
the determination of a su�cient number of cogni-
tive stages in the subsequent analysis. The HsMM-
MVPA would use all the data points between the
stimulus and the response of all trials. A 400ms
baseline was computed and subtracted from each
epoch and any incomplete trials, induced by arte-
fact rejection, were removed. A covariance matrix
was computed for each trial and subject separately
(Portoles, Borst, and van Vugt, 2018). Secondly, to
reduce the dimensionality of the highly intercor-
related EEG sensory data, a principal component
analysis (PCA) was performed in preparation for
HsMM-MVPA. The first 10 components accounted
for 94.8% of the variance of the EEG signal. Lastly,
the data were normalised using z-scores. This trans-
formed data are the EEG-correlates used for the
subsequent analysis.

2.7 HsMM-MVPA

In our case, the HsMM-MVPA will identify the cog-
nitive stages given the observations of all EEG data
from stimulus to response per trial. The HsMM-
MVPA method used is based on the study of An-
derson et al. (2016). The HsMM-MVPA identifies
brief sinusoidal peaks as its states, termed ‘bumps’.
The regions between bumps are termed ‘flats’, pe-
riods with a mean amplitude of zero reflecting a
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distinct cognitive stage. A number of assumptions
are made to facilitate analysis. Firstly, bumps are
assumed to follow the shape of a half-sine and last
50ms. Because all trials minimally last 500ms, this
means maximally 10 bumps can be fit. Secondly,
the HsMM-MVPA model assumes these bumps do
not overlap. Thirdly, the flat durations are assumed
to follow a gamma distribution with a shape param-
eter of 2. An n-bump model estimates n+1 cogni-
tive stages between the stimulus presentation and
the response, separated by those bumps. The model
assesses the log-likelihood of a particular bump
placement as well as its associated flat gamma du-
ration, per individual trial. The model then max-
imises the summed log-likelihood of these across all
trials using a standard Expectation-Maximisation
(E-M) algorithm. This involves the computation-
ally expensive process of considering all possible
placements of the bump locations, which the dy-
namic programming of HsMM-MVPA is very suit-
able for.
The fitting process of bumps and flats requires

initial bump amplitudes and gamma distributions
which will be used for the E-M algorithm. The out-
come of this algorithm is very sensitive to the initial
starting points however. To avoid ending up in lo-
cal maxima, our approach is based on that of Zhang
et al. (2018b). The initial parameters are obtained
from fitting a separate model per condition on the
maximum number of bumps nmax = 10. Then, to
construct models with nmax�1 bumps placed at var-
ious locations, these parameters are used a start-
ing point. Of these models, only the model with
the best fit (highest log-likelihood) is retained and
its parameters are used as starting point for the
generation of the next n � 1-bump models. This
process continues down to the 1-bump model. By
starting with the maximum number of bumps, this
approach aims to preserve the bump topologies and
avoid local maxima.
The HsMM-MVPA generates models of cognitive

stages increasing in number of bumps and there-
fore also increasing in degrees of freedom and thus
in log-likelihood. To avoid overfitting, a leave-one-
out cross-validation (LOOCV) procedure was ap-
plied, comparing models based on their both log-
likelihood and their parsimony. Per HsMM-MVPA
model, the model was created based on the data of
all but one participant and then subsequently fit-
ted on that remaining participant, obtaining a log-

likelihood. This was repeated for all participants.
The overall log-likelihood of the model was taken as
the mean of all LOOCV log-likelihoods. Secondly,
the significance of the di↵erence in log-likelihood
for n-bump and n + 1-bump models was investi-
gated. For each such pair, a comparison was made
for how many subjects the log-likelihood increased
with the more complex n+ 1-bump models. Then,
a sign test was used on this ratio p to determine if
a significant number of participants improved from
n� 1 to n bumps. This enabled the verification of
whether a model su�ciently outperformed a more
parsimonious model, warranting its increased com-
plexity.

2.8 HsMM-MVPA model selection

To allow experimental conditions to shape the
HsMM-MVPA model, the model can be made sep-
arately on the data of di↵erent conditions. As
such, one model was made on all available data,
one model was made per block condition, another
model was made per addend condition and lastly
one model was made per block per addend. Then,
the fit of these models was compared to select
the best overall fit to the data, while keeping in
mind for di↵erent conditions, di↵erent amount of
bumps may fit best. Lastly, for the selected model,
bumps of the underlying sub-models per condition
were mapped to one another, to investigate whether
the model could be simplified by sharing cognitive
stages across conditions.

3 Results

3.1 Behavioural results

Behavioural results were gathered in the form of
response times and accuracy. Figure 3.1 shows the
response time per addend per block. Firstly, we ob-
serve a decreasing e↵ect of block on response time,
the largest from block 1 to 2. This reflects expo-
sure to the task facilitating learning, which in turn
lowers response time. Secondly, we observe an in-
creasing e↵ect of addend on response time, but not
between addend 3 and 4. Addend 2 has lower as-
sociated response times than both addends 3 and
4, reflecting reduced di�culty of the task lowering
response time. Lastly, between block 1 and 2, the
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decrease in response time is somewhat larger for
addend 4 than for the other addends. That is, the
initial reduction of response time is larger for the
most di�cult task condition. These conclusions are
supported by the results of the LME models, show-
ing significant e↵ects for block, addend (excluding
3-4) and interactions (see Table 3.1).
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Figure 3.1: Response time per addend per block

in milliseconds. Error bars denote the 95% CI

of the within-subject standard error.

Response time
Estimate t value p-value

Intercept 2,027.16 11.26 < 0.001 ***
Addend 3 669.36 18.19 < 0.001 ***
Addend 4 922.60 25.06 < 0.001 ***
Block 2 -591.92 -16.05 < 0.001 ***
Block 3 -757.39 -20.52 < 0.001 ***
Addend 3:Block 2 -182.67 -3.51 < 0.001 ***
Addend 4:Block 2 -463.35 -8.89 < 0.001 ***
Addend 3:Block 3 -372.03 -7.13 < 0.001 ***
Addend 4:Block 3 -569.70 -10.92 < 0.001 ***

Table 3.1: LME model of response time

Figure 3.2 shows the accuracy per addend per
block. Firstly, we observe that from block 1 to 2 the
accuracy increases, mostly so for addend 4. That
is, the initial improvement in accuracy is primarily
seen in the most di�cult task condition. The ac-
curacy does not seem to increase from block 2 to
block 3, indicating an absence of further improve-
ment in accuracy over time. The accuracy remains
at around 95% indicating good performance over-

all. Overall, the accuracy is lower for addend 4 com-
pared to addends 2 and 3, which do not di↵er much
from each other on all blocks.

These conclusions are supported by the results
of the LME models, showing significant e↵ects for
block and addend (excluding 2-3) (see Table 3.2).
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Figure 3.2: Accuracy per addend per block in

percentages. Error bars denote the 95% CI of

the within-subject standard error.

Accuracy
Estimate z value p-value

Intercept 3.241 12.35 < 0.001 ***
Addend 3 -0.285 -1.86 0.06
Addend 4 -1.019 -7.30 < 0.001 ***
Block 2 0.520 2.86 < 0.01 **
Block 3 0.761 3.90 < 0.001 ***
Addend 3:Block 2 -0.103 -0.43 0.67
Addend 4:Block 2 0.232 1.04 0.30
Addend 3:Block 3 0.056 0.21 0.83
Addend 4:Block 3 -0.005 -0.02 0.98

Table 3.2: LME model of accuracy

3.2 ERP results

Both stimulus-locked and response-locked ERP
waveforms were obtained over twelve scalp regions,
combinations of frontal, central, parietal and occip-
ital regions, left, centre or right⇤, aggregated per

⇤
Corresponding to EEG channels F3 Fz F4, C3 Cz C4,

P3 Pz P4, O1 Oz O2 from left to right, top to bottom re-

spectively.
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block or per addend. Subsequently, the di↵erences
between each set of three conditions were pair-
wise evaluated using the t-test and the Benjamini-
Hochberg procedure to control the False Discovery
Rate (FDR; Benjamini and Hochberg, 1995). The
response-locked ERPs per block are presented in
Figure 3.3 and other combinations in Appendix A.
Firstly, we observe significant di↵erences only be-

tween blocks, not between addend conditions. Sec-
ondly, more significant di↵erences arise in response-
locked than in stimulus-locked ERP waveforms.
Thirdly, significant di↵erences arise mostly between
block 1 and 3, less so in between block 1 and 2 or
2 and 3.
Observing the response-locked ERPs per block

in Figure 3.3, the learning process contributed ad-
ditively to mean voltages over middle and right-
lateralised frontal regions prior to response, and
subtractively to mean voltages over left-lateralised
posterior regions after response. Other significant
e↵ects of conditions are not observable. Because
the di↵erences in ERPs were mostly observed when
comparing block 1 and block 3 and because the
HsMM-MVPA is modelled on EEG-correlates, we
decided to make HsMM-MVPA models for only
these blocks.

3.3 HsMM-MVPA results

3.3.1 Model comparison

Various HsMM-MVPA models were made on the
EEG-correlates of block 1 and 3, being either based
on all data, per block, per addend or per block and
addend. The resulting loglikelihoods per number of
bumps are presented in Figure 3.4. We may first
observe that across most bumps, the block and ad-
dend separated model has a higher mean loglike-
lihood than all other models. Secondly, all models
have an overall maximal likelihood at 6 bumps. Al-
though the block and addend separated separated
model has the highest mean likelihood, upon fur-
ther inspection it displayed few di↵erences per ad-
dend and may be subject to over-fitting. We ten-
tatively reject the maximally separated model for
now and investigate the model of second highest
loglikelihood, separated per block.
Next, we compared the likelihood of this model

per bump across block 1 and block 3, presented in
Figure 3.5. For block 1, the highest loglikelihood

with a significant improvement, as compared to a
simpler model with one less bump, is the bump-6
sub-model. This sub-model is favourable compared
to the block 1 bump-7 sub-model which does not
significantly outperform the simpler 6-bump model.

For block 3, there is no sub-model with a sig-
nificant improvement compared to a simpler sub-
model. Therefore, we will choose the bump-5 sub-
model with the highest loglikelihood instead. We
shall call the combined bump-6 block 1 and bump-
5 block 3 the ‘bump-selected block model’ from now
on, visually presented in Figure 3.4 at the average
number of bumps, 5.5. Before selecting this model
as the best model, the summed likelihood of this
model was compared to that of previously consid-
ered bump-6 block and addend separated model.
To this end, the models were compared, both using
5 bumps for block 1 and 6 bumps for block 3. This
maximally separated model did not outperform the
simpler bump-selected block model as it improved
in loglikelihood for only 16 of 23 participants, not
significant according to a sign test (also indicated
in the Figure 3.4 with ”n.s.”). Therefore, we will
favour the bump-selected block model due to its
reduced complexity and use it for further evalua-
tion.

3.3.2 Model inspection

The bump-selected block model has 6 bumps in
block 1 and 5 bumps in block 3, with position and
topologies as displayed in Figures 3.6 and 3.7. We
may observe that for both blocks, the initial four
bumps share similar topology patterns and onsets
across blocks, although di↵ering in scale. A possible
simplification of the model can be made by having
block 1 and 3 sub-models share bumps. To this end,
combinations of the first four bumps were mapped
by taking their mean parameters and the result-
ing likelihood was as presented in Figure 3.8. We
observe some bump combinations map better than
others. Most notably, the most simple model that
shares the initial four bumps is not outperformed
by the non-mapped model, nor by any other more
complex mapping combination (not shown). There-
fore, we will select this model as our final model,
as it is the least complex model not outperformed
by more complex models.
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dicates the non-significant improvement of the

block and addend separated model (at bump-6

block 1 and bump-5 block 3) over the bump-

selected block model.
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models of block 1 and block 3 respectively. Ra-

tios indicate the proportion of subjects p for

which there is an improvement over the n � 1-
bump of the same sub-model. Asterisks indicate

significant improvement where p � 17.

3.3.3 Cognitive stage interpretation

As we have now obtained a final model, a func-
tional interpretation of its bumps, based on their
topologies and onsets, can be made. Our first stages
showed a striking similarity to Berberyan, van Maa-
nen, van Rijn, and Borst (2020) (submitted). We
therefore closely follow her interpretation, with ad-
ditions from the studies by Zhang et al. (2017;
2018a).

As the first bump in those studies, the current
first bump also has a central-parietal negativity and
early onset of 100ms. This is characteristic of an N1
ERP component, typically interpreted as an index
of visual attention (Luck, 2005). As such, the cog-
nitive stage 1 is most likely a ‘Pre-attention stage’.
The second bump has a prominent frontal positiv-
ity and an onset of 200ms. This is characteristic of
an P2 ERP component, associated with attention
(Miltner, Johnson, Braun, and Larbig, 1989; Rugg,
Milner, Lines, and Phalp, 1987) making cognitive
stage 2 most likely an ‘Attention’ stage, handling
the initial interpretation of the presentation format.
The third bump displays a central-frontal positiv-
ity and onset of 400ms. The topology matches that
of a P3a ERP component associated with engage-
ment of attention and processing of novelty (Polich,
2003). The onset is quite late for a P3a ERP com-
ponent however, this bump may instead be the
dissipation of activation of bump 2. We shall la-
bel cognitive stage 3 a ‘Attention orienting’ stage.
The fourth bump di↵ers in scale between block 1
and 3 and displays a posterior-anterior gradient of
increasing, lateralised positivity for both blocks.
This, together with its onset of 400ms, is similar
to the FN400 ERP component, widely accepted as
an index of familiarity-driven recognition (Curran,
2000; Mark and Rugg, 1998). Thus, this stage may
be involved in participants’ judgement of whether
this problem was familiar, and thus whether it was
worth attempting a retrieval process. This leads to
our interpretation of cognitive stage 4 as a ‘Recog-
nition’ stage. Until the fourth bump, our stages are
conform Berberyan et al., however, the following
bumps and their interpretations are specific to our
experiment.

The fifth bump is di↵erent across block 1 and
3. First, let us consider block 1. The fifth bump
displays a large frontal negativity, not directly
matching well-known ERP components. Further-
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The vertical dashed line indicates the time of response.

Figure 3.7: Topologies of the bumps of the

bump-selected block model.
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a non-significant improvement of non-mapped

model to the mapped model where 23� p < 17.

more, this bump has an onset of more than 1000ms
later than the previous bump and is dependent in
onset (and thus prior stage duration) on the ad-
dend. This process lasts longer for higher addends,
similar to the Solving process of the study of Teni-
son et al. (2016). Most likely, this stage is involved
in the advancement of characters along the alpha-
bet, including any retrieval of the alphabet’s order,
as these processes would last longer for higher ad-
dends, as well as matching the calculated answer to
the presented right-hand side called response map-
ping. Therefore, we label cognitive stage 4 of block 1
the ‘Calculation and Response mapping’ stage. Re-
garding cognitive stage 5, this stage may have been
involved in storing the correct answer in memory
for later reuse, providing a basis for participants’
speedup over time. This would then make cogni-
tive stage 5 of block 1 a ‘Memory storage’ stage.
The sixth bump of block 1 displays a strong frontal
positivity and occurs about 250ms prior to the re-
sponse. As the sixth cognitive stage is followed by
response execution, it is most likely involved in the
necessary motor planning, making cognitive stage
6 the ‘Response’ stage.

Regarding block 3, as it has one less bump than
block 1, it may be that the fifth bump of block 3
includes both processes in bumps 5 and 6 of block
1. As bump 5 of block 3 shares its duration de-
pendency on addend with bump 5 of block 1 but
to a lesser degree, it may be partially involved in
calculation too. Furthermore, bump 5 of block 3
shares its frontal positivity with bump 6 of block 1,
suggesting involvement in memory processes, most
likely memory retrieval. Also it is likely that this
process matches the generated answer to the cor-
rect response. Therefore, the cognitive stage 4 of
block 3 may be labelled the ‘Retrieval, Calculation
and Response mapping’ stage, followed by a ‘Re-
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sponse stage’ as in block 1. These stages and pre-
vious conclusions are visually presented in Figure
3.9.

4 Discussion

The aim of this study was to investigate which cog-
nitive stages are present in solving a simple arith-
metical task and what their qualitative changes
are with respect to learning. This study used an
alpha-arithmetical task to observe the e↵ects of
practice. Furthermore, it used HsMM-MVPA on
EEG-correlates to obtain cognitive phases. Follow-
ing studies that inspected learning phases of similar
arithmetical tasks, we hypothesised there are de-
fined cognitive stages that di↵er in occupation over
three distinct learning phases, similar in character-
istics to the cognitive, associative and autonomous
phase.
Firstly, the behavioural analysis shows clear ev-

idence of learning over the course of the experi-
ment, reducing response times and increasing ac-
curacy for all blocks. Furthermore, per block the
e↵ect of addend decreases, suggesting a decrease
of dependency on addends for cognitive phases as
learning phases transition, akin to study of Tenison
et al. (2016). However, in the last block response
times remain distinctly shorter for an addend of 2,
compared to the other addends, which is contradic-
tory to our hypothesis; although there is evidence
of di↵erent learning phases, the last learning phase
reached does not fully conform to characteristics
of the associative or autonomous phase of Tenison
and Anderson (2016).
One possible cause of this remaining addend de-

pendency of the last learning phase lies in the pre-
sentation format. Throughout the experiment, the
full equation was presented as ‘A+2=D’ where par-
ticipants had to judge its validity. It is likely that
upon answering, participants memorised this full
equation along with its binary answer, instead of
merely the left-hand side of the equation alongside
its (calculated) alphabetical answer. This is in con-
trast to the study of Tenison et al., where partici-
pants had to calculate a numerical answer and as-
sociate this with the problem presented. This pre-
sentation format may have led to increased inter-
ference in retrieval with similar encoded answers.
That is, this format has a high degree of similar-

ity between presented visual items, sometimes their
entire left hand side, and a high degree of similarity
between encoded binary answers. As such, a stored
presentation of ‘A+2=C’ as ‘valid’ may have in-
terfered with the retrieval process of the correct
answer to a presentation of ‘A+2=D’, given their
overlap of the left hand side. This may have pre-
vented participants from successfully and distinctly
encoding and retrieving answers and so reaching
the associative phase and fully removing addend
dependency. To avoid this complication, the study
could be adapted to present only the left side of the
equations itself and ask the participant to complete
i.e. ‘A+2=?’. This alternative format would prompt
participants to initially calculate the alphabetical
answer and largely prevent associations across dif-
ferent presentations. This adaptation would result
in a larger set of keys corresponding to a possi-
ble answer, influencing response execution. To pre-
vent subsequent variability in duration and cogni-
tive processes, the experiment should therefore ask
participants to first press e.g. the spacebar and only
then indicate the correct answer using an alphabet-
ical key in a limited timeframe. Including this pos-
sible interference, the final model of this study does
show a speedup, reduction of cognitive stages and
decrease of e↵ect between addends 3 and 4 across
blocks, supporting our hypothesis to a large degree.

Furthermore, the improvement in both response
time and accuracy is visibly largest between block
1 and 2. It could well be that the two transition be-
tween three learning phases have a di↵erent e↵ect
on behavioural measures, that is that the first tran-
sition produces the largest speedup. Alternatively,
it could be there are only two learning phases, block
1 and block 2 & 3. However, this latter interpreta-
tion is incongruent with the ERP waveforms as cog-
nitive index, which display mostly significant di↵er-
ences between block 1 and 3, rather than between
block 1 and 2 (or block 2 and 3). It may well be
there is a mixture of three learning phases, not well-
separated over the experimental blocks. In order to
interpret these phases distinctly, a division of learn-
ing phases could be made on the basis of the latency
data using HsMM, as in the study of Tenison and
Anderson. A pitfall of such an approach would be
the increased risk of overfitting introduced by ap-
plying both HsMM-MVPA to latency data to de-
termine learning phases and to neural correlates to
determine cognitive stages, although exciting.
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Figure 3.9: Bump topologies, onsets and stage interpretation of final model. Time is relative to

stimulus onset and cross symbols indicate response execution. For the fifth bumps, the underlying

onset per addend and standard deviations thereof are displayed.

Moreover, the e↵ect of addend appears non-
linear too. The response times di↵er mostly be-
tween addend 2 and addends 3 and 4. It may be
that for the lower addends a di↵erent strategy was
used than for higher addends, resulting in faster re-
sponse times. However, the EEG waveforms show
no evidence of di↵erent cognitive processes for dif-
ferent strategies. Further complicating the matter,
the accuracy shows an another separation, where
accuracy di↵ers mostly between addends 2 and 3
and addend 4. Thus, for two di↵erent strategies,
it is unclear for which addends they would have
been used. To evaluate the possibility of strategies
per addend, the addends used could be extended
to also include 5 and 6, and then inspect if a clear
division of behavioural measures between addend
ranges becomes apparent. One possible e↵ect of ad-
dend unaccounted for, is that only the start of the
alphabet was used as base, A to F, such that the
lower addend of 2 extends less far in the alphabet.
It is likely characters this early in the alphabet are
more accessible to retrieval than later characters, as
these are more used in everyday alphabetical num-
bering, mathematics, etc. This makes an addend of
2 disproportionally likely to remember, compared
to addends 3 and 4. This also further complicates
determining the moment of learning phase transi-
tions as discussed before; it may be that for lower

addends the transition in learning phase to the as-
sociative and autonomous phase occurs earlier than
for higher addends. This e↵ect may be avoided by
simply using a character range placed later in the
alphabet such as J to O, where the beginning of the
total range of characters used in the experiment, is
not more familiar to participants than the end.

Regarding the cognitive stages, we found evi-
dence of 6 and 5 distinct cognitive stages respec-
tively at the beginning and the end of the prac-
tice task. The initial four stages are shared across
blocks while the last stages are specific per block.
These initial four stages pertain to visual recogni-
tion processes largely independent of the task. This
is also found in previous literature on simple vi-
sual tasks with HsMM-MVPA on EEG-correlates,
demonstrating the reliability of HsMM-MVPA in
finding these stages. Furthermore, we found more
cognitive stages in the first block than in the last,
supporting distinct learning phases. The reduc-
tion of cognitive stages over blocks mirrors the
mechanisms of ACT-R’s learning phase transitions;
knowledge compilation and the collapse of multi-
step procedures. On the other side, the last block
still displays a longer stage dependent on addend,
and therefore likely involved in calculation (called
the Solving stage in Tenison and Anderson). It
must be noted this observation is the same as the
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remaining dependency of response time on addend
as previously discussed.
Furthermore, the amount of learning phases can-

not be verified on the basis of the HsMM-MVPA re-
sults, as only two blocks were used. However, if the
moment of transition of learning phases could be
well determined beforehand (possibly with HsMM-
MVPA on latency data as discussed before), the
cognitive stages found per learning phase could be
used to investigate their qualitative di↵erences in
terms of their number and topology per learning
phase.
With regard to the model selection of HsMM-

MVPA, it must be noted the selection made is not
without its challenges. Sign tests were used to bal-
ance parsimony and fit of a model, but this could
not avoid a di�cult selection procedure. This study
faced four possibilities of model separation; all data
(A), per block (B), per addend (C) or per block
and addend (D), respectively increasing in com-
plexity and loglikelihood. The best fitting model
D outperformed the simplest model A based on a
significant sign test and was thus interpreted as
preferable. The second best fitting model B was
not outperformed by the most complex model D,
and was also its subset (discarding di↵erences per
addend), and thus preferred above model D. How-
ever, this model B did not significantly outperform
the simplest model A itself, based on a sign test.
This in turn implies that model A should be pre-
ferred above model B. This apparent cyclic reason-
ing is the result of the thresholding that is the core
of frequentist statistics, together with a continuous
accumulation of loglikelihood over increasing levels
of complexity. There exists no undisputed decision
to this conflict. This study has selected model B as
the best fit, based on ERP data which displayed sig-
nificant di↵erences in block and none for addends.
It may be that there exist interactions of addend
and block, that is, possibly for some addends, there
exist distinctly di↵erent cognitive phases per block
than for other addends. This could be possible if
indeed di↵erent strategies were used per addend,
a↵ecting the rate and processes of learning, as dis-
cussed earlier. Introducing more addend conditions
would therefore also shed light on such possible in-
teractions and in turn, aid HsMM-MVPA model se-
lection. However, adapting model selection to pos-
sible addend interactions would require a more rig-
orous selection procedure than the currently used

method, as the number of possible models would
vastly increase and most likely contain more cyclic
and contradictory model preferences.

Lastly, per definition cognitive ‘stages’ describe
the parts of a serial process. However, it is likely
that a practice task does not consist of only se-
rial processes, but contains parallel, partially over-
lapping processes as well. HsMM-MVPA provides
topology, onset and duration of cognitive stages,
but it is not suited to model parallel cognitive pro-
cesses. As such, we attributed multiple functions
to a single cognitive stage to explain the observed
characteristics, such as both memory retrieval, cal-
culation and response mapping. Although it is
likely these are all present to various degrees, one
should be careful with multiple functional interpre-
tations based on a single bump’s characteristics.
Therefore, we see an opportunity for further re-
search to investigate the extent to which functional
interpretation of cognitive stages based on HsMM-
MVPA holds and explore possible approaches of
dealing with the partially parallel nature of cog-
nitive processes.

The findings of this study on the progress of
practice are largely specific for the task used. The
HsMM-MVPA method used shows great promise
in unraveling underlying cognitive stages and in-
forming us on qualitative cognitive di↵erences be-
tween conditions. This study is part of the devel-
opment of the neuroscientific field, replacing pure
behavioural characterisations with an analysis of
the mixture of underlying cognitive stages instead.
However, dependent on the spatial and temporal
resolution of the data used, functional interpreta-
tion of these cognitive stages remains di�cult. We
look forward to more applications of HsMM-MVPA
on neuroimaging data able to combine both a high
temporal and spatial resolution, possibly through
combining EEG and fMRI techniques.
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Figure A.1: Response-locked ERP waveforms from twelve regions for three addend conditions.

Shaded areas indicate standard error of ERP signal of block associated by color. There are no

temporal regions of Benjamini-Hochberg corrected significance.
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the graphs indicate temporal regions of Benjamini-Hochberg corrected significance, pairwise as

block 1-2, 2-3 and 3-1.
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Figure A.3: Stimulus-locked ERP waveforms from twelve regions for three addend conditions.

Shaded areas indicate standard error of ERP signal of block associated by color. There are no

temporal regions of Benjamini-Hochberg corrected significance.
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