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Abstract

In order to develop more advanced nuclear technologies, it is necessary to deter-
mine well the (n,xn) cross-sections of materials used in these technologies. As direct
measurement of these cross-sections is difficult, gamma ray spectroscopy is used to
determine (n,xnγ), which can then be used to determine (n,xn) cross-sections. HPGe
detectors are used for gamma-ray spectroscopy, and Monte-Carlo simulations are em-
ployed to calibrate these detectors. This research performs a Monte-Carlo simulation
of a HPGe detector with the aim of reproducing the energy spectrum of the detector
in terms of energy resolution and efficiency. The results are inconclusive due to the
poor quality of the measured 152Eu spectrum as a result of a pile-up effect. Though
inconclusive, analysis of results suggests a simulation with a better resolution than
the detector, and a growth in the thickness of the detectors dead layer since its last
calibration due to much higher efficiencies in the simulation at low energies.
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1 Introduction

1.1 Motivation

In this section the need for further research into nuclear energy technologies is discussed
in the context of current and future global energy demands and the need for the reduction
of carbon dioxide emissions to curb the damaging impacts of global warming.

1.1.1 Global Energy Needs and Global Warming

The International Energy Organisation(IEA) is an intergovernmental agency whose work
focuses on ”the enhancement of the reliability, affordability and sustainability of energy”.
According to their World Energy Outlook for 2019 almost one billion people still do not
have access to electricity. Providing electricity to these people in the future will clearly
necessitate an increase in energy production, though in order to avoid significant damage
caused by climate change this increase in production must be pursued in a way such that
any corresponding increase in greenhouse gas emissions is minimised[1].

The World Energy Outlook 2019 (produced by the IEA) describes three scenarios which
outline how global energy needs could evolve over the next twenty years if different actions
are taken (or not taken). The first, the current policy scenario, describes how global
energy needs will carry on if current trends continue without change. It is expected that
an increase in energy demand of 1.3% yearly will be reached, resulting in a continuous
increase in energy production related emissions[1].

The second scenario, the stated policies scenario, describes the same development when
world governments follow the specific policies they have already announced. In this scenario
a 1.0% yearly rise in energy demand is expected. Though this slows the rise in emissions,
global sustainability goals will not be reached by these policies alone, and a peak in global
emissions will not occur before 2040[1].

The sustainable development scenario describes an approach for meeting sustainable
energy goals in full. The goals of this scenario are inline with those set out by the Paris
Agreement, to keep the rise in global temperatures ”well below 2◦C ... and pursuing efforts
to limit [it] to 1.5◦C”[2]. This is essential in order to minimise the damaging effects of
global warming. The IPCC Special Report on Global Warming of 1.5◦C, predicts with
high confidence the ” warming of extreme temperatures in many regions, and increases
in frequency, intensity and/or amount of heavy precipitation in several regions”. It also
predicts with medium confidence ”an increase in intensity or frequency of droughts in some
regions”. These are predicted for a global warming of 1.5◦C as compared to pre-industrial
levels[3]. All these effects are expected to be further exacerbated if warming reaches 2.0◦.
Keeping the rise in average global temperatures to global warming of 1.5◦C instead of 2.0◦C
could result in ”420 million fewer people being frequently exposed to extreme heatwaves...
(medium confidence)”. This would also ”limit risks of increases in heavy precipitation
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events in some regions” while also ”reducing the probability of extreme droughts in other
regions (medium confidence)”[3].

Such increases in global average temperature will most likely have a number of adverse
societal impacts in terms of the damage or destruction of livelihoods, constraining economic
growth and directly effecting human health[3]. All these impacts are projected to be less
severe at a temperature increase of 1.5◦C, and so it is imperative to limit warming to this
temperature to avoid the instability and negative effects associated with any higher level
of warming. In the sustainable development scenario proposed by the IEA in order to keep
warming at 1.5◦C, a model for global energy where ”renewables account for around 80%
of capacity additions in all regions” is described. This increase in capacity of renewables
is supplemented by nuclear power and carbon capture technologies[1]. Further research
into new nuclear energy technologies is therefore essential to achieve the goals of the Paris
Agreement.

1.1.2 Modern Nuclear Energy

Currently, all commercial nuclear reactors in operation rely on uranium as their fuel source.
The main design of these reactors are boiling water reactors and pressurised water reactors,
which generate electricity by using the energy released from the fission of uranium nuclei
to boil water and create steam which drives a turbine[4].

The World Nuclear Energy Association, as of May 2020, estimates that there are enough
reserves of uranium available at competitive prices to last another 90 years[5]. Therefore
if nuclear energy is to help with the global transition to a carbon free energy production
model, it is necessary to develop other reactor types that utilise different fuel sources.

One potential alternative to uranium is the use of thorium(Th-232). Though Th-232
is not fissile, it is fertile, and so can be transmuted into uranium-233 , which is fissile.
This transmuted U-233 can then be used as fuel for a reactor[6]. The viability of this
thorium\uranium fuel cycle has already been demonstrated in the Canadian CANDU re-
actor[5]. Another type of reactor that has been proposed for using thorium fuel are molten
salt reactors, where molten salt containing the fuel is used as the primary coolant[6].

In order to fully develop these new nuclear technologies, it is important that the be-
haviour of all materials used be well characterised. To achieve this, the inelastic and (n,xn)
cross sections of these materials should be studied and understood.

1.2 Neutron Cross-Section Studies

A extensive neutron cross-section database is key to the development of new nuclear tech-
nologies, with neutron induced reactions being essential in the relation to nuclear power
production. A detailed understanding of neutron cross-sections is extremely important to
properly describe these neutron induced reactions[7].

In this section the role of the Geel Electron LINear Accelerator(GELINA) Neutron
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Figure 1: Aerial View of the GELINA time-of-flight facility from [7]

Time of Flight Facility in the investigation of inelastic and (n,xn) cross sections of mate-
rials relevant to nuclear technologies is discussed. The roles of both the Gamma Array for
Inelastic Neutron Scattering (GAINS) and GeRmanium array for Actinides PrEcise MEa-
surements (GRAPhEME) are elaborated upon and linked to the topic of this research.

1.2.1 GELINA

As explained in the paper by D. Ene et al. [7], the GELINA Facility is a pulsed white
neutron source for high resolution measurements using the time-of-flight technique. The
four main components of the facility are a high-power pulsed linear electron accelerator, a
post accelerating beam compression magnet system, a mercury cooled uranium target for
neutron production, and the various flight paths along which different experimental setups
are installed[8]. Figure 1 gives an aerial view of the facility, highlighting some of these
important features.

According to the description given on the EU Science Hub [8] of the facility, ”a typical
beam operation mode for the linear electron accelerator uses 100 MeV average energy, 10
ns pulse length, 800 Hz repetition rate, 12 A peak and 100µA average current”. The post-
acceleration pulse compression system then reduces the pulse width to approximately 1 ns
(FWHM), while maintaining the same current, which therefore produces a peak current of
120 A[8].

This compressed electron beam is then incident on the cooled uranium target. Uranium
is well-suited to the production of photons via bremsstrahlung and so is selected to be used
in the target, as when these photons are produced within the uranium target they will cause
nuclear reactions, producing neutrons[7]. It is necessary to minimise neutron moderation
by the coolant of the target, and mercury is well-suited to this role[7]. With the 1 ns
pulse a peak neutron production of 4.3 · 1010 neutrons can be obtained, with an average
production rate of 3.4 · 1013 neutrons/s. The neutron energy distribution of the produced
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Figure 2: The GAINS Spectrometer[9]

neutrons covers a range from subthermal to 20 MeV, with its peak at 1-2 MeV. To obtain
significant numbers of neutrons in the energy range below 100 keV it is necessary to add
a hydrogen-rich moderator. It is then possible to select either moderated or unmoderated
neutron beams for each flight path, depending on the energy range required for a certain
experiment[8].

The flight paths are arranged symmetrically in a radial pattern about the uranium
target. They range in length from 10 metres to 400 metres[8]. The flight tubes are under
vacuum with a diameter of 50cm[7]. On each flight path experimental stations are installed.
The two experimental setups that are of concern to this research are the GAINS and
GRAPhEME setups.

1.2.2 GAINS and GRAPhEME

The GAINS setup is the experimental setup for the investigation of the neutron cross-
sections of stable nuclei and is situated 200m from the the neutron source.

A fission chamber with 235U deposits is placed in the neutron beam, before the location
of the setup, for neutron flux determination. The samples have been carefully characterised
by alpha counting to obtain the total activity and radial profile of the samples, which then
allows the neutron flux passing through the fission chamber to be determined to within 2%
uncertainty[9].

The GAINS spectrometer (figure 2) is composed of 12 high efficiency HPGe detectors
placed about the target material, at 125◦, 110◦ and 150◦ relative to the incoming neutron
beam[9].

The remainder of the GAINS setup is composed of a classical acquisition system. This
system is based on DC440 Acqiris 12 bit digitizers. This system is able to achieve neutron
energy resolution of around 1 keV at 1 MeV and 3.5 keV at 10 MeV[9].

The GRAPhEME setup is the experimental setup used in the investigation of neutron
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Figure 3: Top view of the GRAPhEME setup[9]

cross-sections of radioactive nuclei, or more specifically actinides. Compared to the GAINS
setup, the flight path is significantly shorter, at 30m from the neutron source. This is
in order to make up for the small amount of target nuclei used[9]. Conceptually, the
GRAPhEME setup is analogous to the GAINS setup, though the details of the setup, like
the length of the flight path, vary, as well as components used.

The neutron flux is again measured using a fission chamber employing 235U samples
placed in the beam, approximately 1 meter before the sample, which have been charac-
terised in the same manner as the chamber used in the GAINS setup[9].

Four HPGe detectors (figure 3) are placed at 110◦ and 150◦ relative to the incoming
neutron beam direction. It is important to note that since this setup is significantly closer
to the neutron production source, the electronic devices used are sensitive to the electro-
magnetic field generated by the electron accelerator. To combat this, an electromagnetic
insulation is added[9].

The data acquisition system associated to GRAPhEME is based on TNT2 card from
the Institut Pluridisciplinaire Hubert Curien (IPHC). It has an amplitude resolution of 14
bits, and is able to achieve a neutron energy resolution of about 10keV at 1MeV and 1MeV
at 20MeV[9].

In order to investigate the neutron cross-sections of the materials being studied in both
of these setups, a technique known as prompt γ-ray spectroscopy is employed, which utilises
the HPGe detectors common to each setup.

1.3 Prompt γ-Ray Spectroscopy

The study of (n,xn) cross-sections can be approached in different ways. The most direct
method involves direct detection of emitted neutrons, but this requires the ability to distin-
guish between neutrons from elastic scattering, inelastic scattering, (n,xn) reactions, and,
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if the sample is fissionable, neutrons produced in the fission process. This is difficult to
achieve.

In order to avoid these issues, the technique of prompt γ-ray spectroscopy is employed
at the GELINA facility. In this method, the γ emitted by the excited nucleus formed by
the (n,xn) reaction is detected. It requires that the nuclear excitation scheme and the
sample composition are well known, but if this is the case, the selective identification of
detected γ-rays allows the reduction of the ambiguity to the underlying nuclear process.
Angular differential (n,xnγ) cross-sections are measured for each transition, and when used
in conjunction with the time-of-flight measurements that can be performed at the facility,
an accurate description of the (n,xnγ) excitation function can be obtained. Incorporating
information on branching ratios, conversion coefficients and level decay sequences, level
production and total cross-sections can be determined, though the deduced total (n,xn)
cross-section is often a lower limit[9].

In order to accurately utilise this technique, it is necessary to have well calibrated HPGe
detector arrays. This can be aided through the simulation of these detectors, which is the
aim of this research.

1.4 Simulation of HPGe Detectors

The goal of this research is to setup a Monte-Carlo (MC) simulation program which will
reproduce the energy spectrum of a Germanium detector in terms of energy resolution
and efficiency. MC simulations allow precise characterisation of the various data correc-
tions to be achieved, and so attaining better control and determination of systematical
uncertainty[9].

It had originally been planned to simulate the detector arrays from GELINA. These
simulations would be validated with data sent from the facility. However, due to the
ongoing COVID-19 crisis it was not possible to obtain calibration data for these arrays
from the GELINA facility. Fortunately, there is a HPGe detector available to work with at
KVI-CART in University of Groningen. HPGe detectors are relatively simple in design, and
so aside from specific measurements and casing materials used, the detector at KVI-CART
is thought to be sufficiently similar to those at GELINA. If a MC simulation program
that reproduces well the energy spectrum from this HPGe detector can be designed, it is
thought that it should be a relatively simple process to adjust measurements and materials
of the simulated detector when data from the GELINA facility next becomes available.

The goal of this research is then to reproduce the energy spectrum for the HPGe detector
located at KVI-CART in University of Groningen using MC-simulation methods. This will
be done in terms of energy resolution and efficiency, and the results will be compared with
data collected by the detector from calibration radioactive sources.
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2 Theoretical Framework

2.1 Semiconductor Diode Detector

The behaviour of electrons in crystalline materials is described in terms energy bands,
with a simplified model having two bands: valence and conduction. The valence band
refers to energy levels at which electrons in the outer shells of atoms are localised at
specific lattice sites within the crystal. The conduction band is made up of energy levels
at which electrons move freely throughout the crystal. In semiconductors and insulators,
these bands are separated by forbidden energy levels, which are referred to as the bandgap
of the material. Semiconductors and insulators can be differentiated by the size of this
bandgap, with semiconductors having a relatively narrow bandgap when compared to those
of insulators[10]. These materials will then conduct electricity when a large enough voltage
is applied so as to excite electrons into the conduction band.

When an electron is excited into the conduction band, it leaves a positively charged
vacancy, known as a hole, in the valence band. These holes tend to move in an electric field,
but in the opposite direction of to that of an electron, with the motion of both contributing
to the conductivity of the material. The combination of both is known as an electron-hole
pair. At any nonzero temperature, it is possible for a valence electron to gain sufficient
thermal energy from other electrons in the valence band to be excited into the conduction
band. The probability of an electron-hole pair being generated is related to the size of the
bandgap and the absolute temperature by

p(T ) = CT
3
2 exp(− Eg

2kT
) (1)

where T is the absolute temperature, Eg is the bandgap energy, k represents the Boltzmann
constant and C is a proportionality constant of the material[10].

In a semiconductor, electron-hole pairs move under the influence of an electric field ,
with a net drift velocity parallel to the direction of the applied field. This drift velocity is
initially proportional to the strength of the applied field, however when the field strength
becomes large enough, the saturation velocity is achieved, after which further increases in
field strength will not produce corresponding increases in drift velocity. Semiconductor
detectors are then generally operated with high enough field strengths to ensure that sat-
urated drift velocity is achieved as this minimises the time required to collect the charge
carriers and obtain a signal[11].

In addition to this drift, charge carriers are also subjected to the influence of random
thermal motion that results in diffusion. Without this diffusion, all charge carriers would
follow the paths of the electric field lines to the collecting electrodes of the detector. This
diffusion causes a spread in arrival positions of charge carriers, and is well characterised by
a Gaussian distribution with a standard deviation of

σ =

√
2kTx

eE
(2)
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with x the drift distance, E the electric field magnitude and e the charge of the electron.
This spreading due to diffusion limits the precision that can be achieved for position mea-
surements made using the location at which charges are collected at the electrodes of the
detector[11].

Energy deposition occurs when incident radiation interacts in the active volume of a
semiconductor. This energy deposition cause the creation of equal numbers of electrons
and holes. Semiconductor detectors have a particular advantage here, with a relatively
low ionisation energy ( energy required to produce an electron-hole pair ). For example,
the value for germanium is about 3eV (see table 11.1 in [12]). This allows for a large
number of charge carriers to be produced per unit energy deposited, and this large number
of charge carriers reduces the impact of statistical fluctuations in the number of charge
carriers produced. The reduction of the effect of statistical fluctuations therefore improves
the obtained energy resolution, in comparison with other detector types[13].

2.2 Germanium Gamma-Ray Detectors Structure

The active volume of a semiconductor detector is approximately given by the volume of
its depletion layer. For highly penetrating radiation such as gamma rays, it is important
to have a large active volume in order to maximise the probability of an interaction. The
thickness of the depletion region is given by

d =

√
2εV

eN
(3)

with V the reverse voltage bias, ε the dielectric constant, e the electron charge, and N the
net impurity concentration in the bulk of the detector. Clearly, a larger active volume can
therefore be achieved by reducing the net impurity concentration. Techniques for producing
highly purified Germanium have been developed that can reduce the concentration of
impurities to approximately 1010atoms/cm3. Detectors produced from germanium of this
purity are referred to as intrinsic or high-purity germanium (HPGe) detectors. While
having the benefit of increasing the active volume of the detector, these HPGe detectors
also have the advantage that it is only necessary to cool them during operation, unlike
other types of germanium detectors which must be cooled constantly and can be damaged
if they warm to room temperature[14].

The active volume of a germanium detector can be taken to be approximately the
volume between the n+ and p+ contacts. Though thin relative to the size of the active
volume, these contacts can be thick enough to contribute to a dead layer at the surface
of the crystal, which can affect radiation on its way to the crystal. For gamma rays with
energy values around 200 keV energy or greater, the impact of such layers can be is generally
insignificant. The thickness of these dead layers can change slowly over time as a result of
the formation of surface channels. As a result of this it is necessary to calibrate detectors
regularly to determine accurately the thickness of its dead layers[15].
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(a) Closed-ended coaxial configuration
Black lines represent electrical contacts

(b) High purity p-type coaxial detector

Figure 4: Closed-ended coaxial geometry [16]

Another contribution to the size of the active volume is the geometry of the detector.
For HPGe detectors used in γ-ray spectroscopy, a closed-ended coaxial geometry is utilised.
In this case, the outer surface of cylindrically shaped crystal is covered by an electrode,
while the core of the crystal is removed so a second electrode can be placed in the inner
surface of the crystal created by the core removal. By increasing the length of the crystal
along the cylindrical axis, a larger active volume can be achieved while minimising the
voltage necessary to form the depletion region. In some coaxial geometries, the central
core is not fully removed with the outer contact extending over one flat end of the crystal
(see figure 4a). This is employed to avoid complications arising from leakage currents at
the front surface[16].

It should also be noted that for coaxial geometries, the rectifying contact can be placed
either at the inner or outer surface of the crystal, which results in significantly different
electric field conditions. In the case the rectifying contact is located on the outer surface,
the depletion layer grows inwards until it reaches the inner hole surface at the depletion
voltage. The opposite is true for a configuration with the rectifying contact on the inner
surface, and a much larger voltage is required to fully deplete the detector volume. The
first configuration results in higher electric field values in the outer volume of the crystal
which is desirable as this is where most of the volume of the crystal lies. Because of these
advantages, all coaxial HPGe detectors place their rectifying contact on the outer surface.
The outer contact for a p-type HPGe (which is used in this research) will be n+ (see figure
4b)[16].

2.3 Characteristics of Germanium Detectors

Germanium detectors are particularly useful when used for γ-ray spectroscopy due to the
significantly better energy resolution that they achieve relative to other detector types that
could be used, such as scintillator type detectors. This improved energy resolution helps
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in the separation of peaks arising from transitions producing gamma rays of similar energy
values. In other detectors these nearby transitions can be indistinguishable due the large
width of the peaks.

The total energy resolution is mainly affected by three factors: the inherent statistical
spread in the number of charge carriers, variations in charge collection efficiency, and
contributions of electronic noise. At low energies, the contributions from electronic noise
and charge collection are the most significant. The significance of the statistical spread in
the number of charge carriers produced increases with increasing energy, and so an increase
in spread is expected with increasing energy[17].

Though germanium detectors have improved resolution relative to other detectors, they
suffer in terms of efficiency. Due to the smaller sizes available and lower atomic num-
ber(resulting in lower photoelectric cross-section), germanium detectors have photopeak
efficiencies an order magnitude lower than corresponding scintillator detectors. The bet-
ter resolution of germanium detectors does however offset this reduction in efficiency by
helping with the identification of closely spaced and weak sources[18].

An important feature to note of the response function of a germanium detector is the
presence of the Compton continuum. Though interactions are mostly photoelectric ab-
sorption for low-energy gamma rays, as the incident energy increases Compton scattering
becomes more significant. Compton scattering in a detector will produce a characteristic
Compton edge, which is an approximately normal distribution from the maximum energy
transferred via Compton scattering to the minimum. At higher energy, events contribut-
ing to the photopeak are much more likely to be multiple interactions, such as Compton
scattering followed by photoelectric absorption[18]. It should be noted that in this re-
search incident gamma rays never have energy large enough for pair-production to become
relevant[19].

2.4 Monte-Carlo Methods

A Monte-Carlo Simulation, otherwise known as a stochastic computer simulation, is defined
as a simulation which incorporates some randomness in the underlying model, as opposed
to a fully deterministic simulation[20]. These methods are used to perform simulations
of physical systems which may be deterministic in nature, but current models do not
well describe their behaviour. In this research the GEANT4 particle simulation toolkit is
employed to build the simulation, which implements these techniques.
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Figure 5: Labeled diagram of detector[21]

3 Experimental Setup and Simulation Method

Two measurements are made as part of this research. The first is of the gamma ray
spectrum used for calibration of the ADC channels. This uses a 60Co source was used in
combination with a LYSO scintillator containing 176Lu. The second measurement is taken
using a 152Eu source. The spectrum obtained from this is used to analyse the simulation
output.

In this section, the simulation toolkit and design, the detector geometry, and the method
for processing of the simulation output are described.

3.1 Detector Geometry

The detector used in this experiment is a closed-ended coaxial HPGe gamma detector
(EG&G-Ortec, p-type, model GEM-45200-S). As of the last calibration of this detector,
the germanium crystal has been found to have a diameter of 61.8 mm, a height of 78.3
mm, a 1.25 mm thick top dead layer (covering the closed-end) and a 2.1mm lateral dead
layer (covering the length of the crystal). The detector is surrounded by a 1 mm thick
magnesium end cap, with diameter 82.0 mm, height of 90.0 mm, and a 5 mm distance
from the end cap to the crystal surface. The densities of germanium and magnesium were
taken as 5.323 and 1.74 g cm−3 respectively[21]. The dead layers or contacts are diffused
lithium of unknown density (standard density 0.534 g cm−3 from GEANT4 material is
implemented in simulation[22])[23]. It should be noted that some of these measurements
are not the nominal detector dimensions as provided by the manufacturer, but dimensions
obtained from the calibration procedure as described by van der Graaf et al. in [21].
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3.2 GEANT4

GEANT4 is a toolkit for simulating the passage of particles through matter. It provides
precise simulation of electromagnetic interactions of particles with matter, covering a wide
range of energies (from 250 eV to the TeV range). The toolkit exploits the benefits of
object-oriented programming, and is implemented in the C++ programming language[24].

The toolkit allows for the creation of a geometrical model consisting of different shapes
and components and to define ”sensitive” elements that record information (hits) about a
particles interaction with the model. The user is also able to control the characteristics of
the generated primary particles, such as particle type, energy, and momentum and source
distribution[24].

3.3 Simulation Description

Though there are many components necessary to construct a successful simulation, this
description will focus on those key components necessary for a high level understanding of
the simulation.

The geometry of the simulated detectors is in line with the description of the detector
as described previously. The G4 Mg material provided in Geant4 matches the density
of the end cap as described in[21] and so is used. The G4 Li material is also used for
the dead layers as the density is unknown. Though the density of G4 Ge matches the
provided density of the germanium crystal, the crystal must be cooled to liquid nitrogen
temperatures (77K[15]) and so a user defined material is implemented. The detector is
placed in a vacuum as the detector must be evacuated during operation (include values
and source).

The two segments of the crystal (it was necessary to construct the crystal out of two
volumes due to the partial hole in closed-ended coaxial detectors) are set as the sensitive
detectors. These sensitive detectors generate hits and will record any non-zero energy
deposition that takes place within the crystal of the detector.

The charge carriers and their collection at the contacts of the detector is not simulated.
The thinking is that when energy deposition occurs, charge carriers are generated, and
so this is what is recorded. The simulation of their movement and collection would add
further complexity to the simulation. The characteristics of this process, as well as the
characteristics of the electronics used to output the signal, can be taken from experimental
measurements and reproduced by using a smoothing function on the simulation output.

The primary particle source is taken to be a point source, placed along the central(z)
axis of the detector, 12.8 cm away. The primary particle is a gamma ray of user defined
energy. The momentum of the primary particle is such as to always be heading along
the z-axis, towards the detector, but with randomised x and y axis components. These
randomised components are adjusted by inspection using visualisation of the detector and
particle tracks so as to focus the majority of beams on the detector. This randomisation
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of the x and y momentum components forms a ”cone” of gamma rays. This is done to
minimise time spent simulating particles that do not travel through the detector, and so
reducing the run time of the simulation.

The energies of peaks in the measured spectrum are identified using a calibration func-
tion. The intensities of these peaks are found by matching these peak energies to transitions
listed on the NuDat2 database from Brookhaven National Laboratory[25]. Using the ratios
of these intensities, the number of events necessary to simulate each peak while maintaining
the correct ratio between these peaks can be found.

The simulation outputs the recorded energy deposition in a .root file format so as
to aid further processing and analysis, which is carried out in the ROOT data analysis
framework. On its website, ROOT is described as ”A modular scientific software toolkit. It
provides all the functionalities needed to deal with big data processing, statistical analysis,
visualisation and storage”[26]. It is primarily written in C++, with some integration with
other languages.

3.4 Processing Simulation Output

This section describes the steps that are followed to further process the output after running
of the simulation in GEANT4.

3.4.1 Calibration

The results of measurements taken with the detector are output in ADC channel numbers.
It is therefore necessary to calibrate these ADC outputs by producing a function mapping
ADC channel numbers to energy values.

To do this, measurements are taken of gamma ray sources with well known decay
schemes. As the energy values of the gamma rays produced in these decays are well
known, a function mapping the mean value of the peaks in the measured spectrum to their
corresponding gamma ray energy can be produced.

For this research, a 60Co source was used in combination with a LYSO scintillator con-
taining 176Lu. The decay schemes of both 60Co and 176Lu (figure 6a and 6b respectively)
are well understood and cover the relevant energy ranges and so are well suited for cali-
brating the ADC channels. The most intense peaks from the decay schemes of each are
listed in table 1[25].

The peaks on the 152Eu spectrum are then fitted with gaussians to obtain their mean
peak values and widths, and the calibration function is applied to these values to convert
them into energy(keV) so the spectrum can be simulated.

3.4.2 Sigma as a Function of Energy and the Smoothing Function

As mentioned, contributions to the total width or sigma of a peak change as a function of
energy. In particular, the contribution of the statistical spread in number of charge carri-
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(a) 60Co decay scheme
(b) 176Lu decay scheme

Figure 6: Decay schemes of transitions used in calibration[25]

ers produced becomes more significant with increasing energy. Therefore a non-constant
and increasing sigma as a function of energy is expected, though the exact behaviour is
unknown.

To produce this function the sigma values of the peaks from the calibration spectrum
from the calibration spectrum are used. The calibration spectrum again has the issue of
having very few data points, making it difficult to infer any particularly complex behaviour.
As the behaviour of sigma with increasing energy is expected to be increasing, but not
necessarily linear, this could be a potential issue.

The mean peak values(keV) are plotted against their corresponding sigma values(keV)
and a graph is fitted to these points. The parameters for this fit are then included in the
smoothing function. This function takes a simulated peak .root file as its input. It takes
the energy value of each point of the simulated peak, calculates its corresponding sigma
value(using the previously obtained parameters) and then plots a point randomly from a
gaussian with the energy value as its mean and the sigma value as its width. This causes a
”smoothing” of the output of the simulation, and attempts to introduce sources of spread
that the simulation does not account for.
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(a) 60Co 176Lu Calibration Spectrum (b) Mean peak values vs transition energy

Figure 7: Mean peak values of recorded peaks for 60Co and 176Lu decay are plotted against
corresponding transition energies to obtain calibration curve

4 Results

In this section, the results of each step of the simulation process are presented. Important
plots and figures will be included. Any large tables and error analysis will be added in the
appendix.

4.1 Calibration

An energy spectrum for 60Co and 176Lu with four distinct peaks is recorded(Figure 7a)
and these peaks are fitted with gaussians in ROOT to obtain their mean peak values in the
ADC channel outputs. The mean peak values are then plotted against their corresponding
transition energy values (Table 1), and a linear plot is fitted to these points. The parameters
of this linear plot are the parameters of our calibration function (Figure 7b). A linear fit
is chosen due to the low number of data points, which makes it difficult to infer any more
complex behaviour, and as the fit is within the error bars of each point. For this fit a slope
of 0.2434(0.0009) and a y-intercept of −0.47± 3.02 is found.

Table 1: Table of relevant transitions, intensities, and their corresponding mean peak values

Element Energy(keV) Intensity(%) Mean Peak Value (ADC Channel)
60Co 1332.492 (4) 99.9826 (6) 5476.09 (7)
60Co 1173.228 (3) 99.85 (3) 4821.90 (7)
176Lu 306.78 (4) 93.6 1261.7 (2)
176Lu 201.83 (3) 78.0 (25) 831.7 (4)

This calibration function is then used to convert the mean peak values, obtained by
fitting the measured peaks with gaussians, of the 152Eu spectrum (figure 8) from ADC
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Figure 8: 152Eu Measured Spectrum

channels to energy(keV). The 152Eu decay radiation datasets on NuDat2 [25] are then
checked to see if a corresponding transition exists, and its intensity is noted (Table 2). In
total, 17 potential peaks were identified and fitted. This could be done for all but one of the
peaks of the spectrum (peak number 4). The peak was very small, and so this indicates that
it was arising from either Compton scattering, some other process associated with another
peak on the spectrum, or a source of background radiation, but not a gamma produced by
any transition associated with 152Eu. It should also be noted that peak number 8 had two
transitions of very similar value and intensity associated with it, and so when simulating
the peak at this energy the sum of these intensity values is used.

4.2 Sigma as a function of Energy and the Smoothing Function

As well as mean peak values, sigma values from each peak are obtained for each peak of
the 60Co-176Lu spectrum. Using the obtained calibration function, the sigma values in
units of channel number are converted into energy(keV), and then plotted against their
corresponding transition energy values. A linear plot is fitted to these points (figure 9),
chosen for the same reasons as outlined for the calibration function. For this fit a slope of
6.6 · 10−4 ± 0.5 · 10−4 and a y-intercept of 1.54 ± 0.06 is found, which is then used in the
smoothing function.

4.3 Simulation

Using the corresponding intensities of each peak, the number of events at each energy to
be simulated is determined. Peak 17, having the highest intensity, is chosen as the peak for
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Table 2: Table of 152Eu mean peak values and their matching transitions and intensities

Peak Number
Mean Peak Value

(ADC Channel)

Converted Peak

Energy (keV)

Matched Transition

Energy (keV)
Intensity(%)

1 6294.8 (5) 1532 (7) 1528.1 (4) 0.279 (3)

2 5799.3(1) 1411 (6) 1408.013 (3) 20.87 (9)

3 5347.8 (9) 1301 (6) 1299.142 (8) 1.633 (11)

4 5076 (2) 1235 (6) No Transition None

5 4998 (1) 1216 (6) 1212.948 (11) 1.415 (8)

6 4584 (1) 1115 (5) 1112.076 (3) 13.67 (8)

7 4476.6 (2) 1089 (5) 1085.837 (10) 10.11 (5)

8 3973.5 (2) 967 (5) 963.38 (4)/964.057 (5) 11.6 (13)/14.51 (7)

9 3575.4 (5) 870 (5) 867.38 (3) 4.23 (3)

10 3212.0 (2) 781 (4) 778.9045 (24) 12.93 (8)

11 2829 (2) 688 (4) 688.67 (5) 0.856 (6)

12 2350 (7) 572 (4) 566.438 (6) 0.131 (3)

13 1836.0 (4) 446 (4) 443.9606 (16) 2.827 (14)

14 1702.5 (6) 414 (4) 411.1165 (12) 2.237 (13)

15 1425.80 (8) 347 (3) 344.2785 (12) 26.99 (20)

16 1017.2 (2) 247 (3) 244.6974 (8) 7.55 (4)

17 512.2 (1) 124 (3) 121.7817 (3) 28.53 (16)

which the maximum number of events, 1000000, will be simulated. The number of events
N for every other peak is determined by

N = 1000000× Intensity of peak x

Intensity of peak 17
(4)

These values are listed in table 3. Each peak is then simulated separately and combined
into a single histogram (figure 10a). This combined histogram is then passed through the
smoothing function to obtain the simulated spectrum (figure 10b).
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Figure 9: Plot of 60Co-176Lu sigma values as a function of peak energy

(a) Merged simulated peaks for 152Eu
(b) Smoothed spectrum for 152Eu

Figure 10: The action of the smoothing function on the simulated spectrum
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Table 3: Relative intensity values used to calculate number of events to be simulated for
each peak

Peak Number Intensity Ratio Events to be Simulated

1 0.009779179811 9779

2 0.7315106905 731511

3 0.05723799509 57238

4 No Transition No Transition

5 0.04959691553 49597

6 0.4791447599 479145

7 0.3543638275 354364

8 0.9151770067 915177

9 0.1482649842 148265

10 0.4532071504 453207

11 0.03000350508 30004

12 0.004591657904 4592

13 0.09908867858 99089

14 0.0784086926 78409

15 0.9460217315 946022

16 0.2646337189 324634

17 1 1000000
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4.4 Energy Resolution and Efficiency

To study the energy resolution of the simulation the sigma values of the widths of the
simulated peaks are compared to those of the 152Eu spectrum (see table 4). Initially, an
attempt to fit a single gaussian to the peaks of this spectrum (like that of the calibration
spectrum) was made.

It was found however, that the fit was extremely poor and was resulting in very large
sigma values. It is thought that this is a result of a failure of the readout electronics due to
a higher count rate associated with the 152Eu source relative to those used in calibration.
This high count rate results in a pile-up effect. In this case, a tail pile-up is observed, which
impacts the quality of the resolution by ”adding wings” to the peak[27].

To remedy this issue, a technique where two gaussians are fitted to the peak is employed.
A narrow gaussian is fitted in order to remove the effect of pile-up on the resolution, while
a second, wider gaussian is fitted so as to fit a curve to the entire peak. The sigma value
for the peak is taken from the narrow peak. An example of this method is shown for a
peak from the 152Eu spectrum in figure 11.

Figure 11: Fitting of two gaussians to peak

The peaks of the simulated spectrum are fitted with single gaussians, as the simulation
does not replicate the pile-up and so the resolution of the simulation is not impacted in the
same way. The ratio of the sigma values from the measured 152Eu spectrum to the sigma
values of the corresponding simulated peaks are plotted against peak energy(figure 12).
Two fits are made: linear and constant. For the linear fit a slope of −2.4 · 10−4± 0.3 · 10−4

and a y-intercept of 1.62 ± 0.02 is found, while for the constant fit, a value of 1.45 ± 0.01
is obtained.

23



(a) Linear fit (b) Constant fit

Figure 12: Fitted plots of sigma ratios against peak energies

To validate these fits a two sided chi-squared test is performed at significance level α =
0.05. For the linear fit, χ2 = 84.0835, with number of degrees of freedom ν = 16− 2 = 14
(16 data points, 2 parameters fitted). Upper and lower critical values are 26.119 and 5.629
respectively[28], and so the linear fit is rejected. The constant fit has χ2 = 170.971 with
ν = 15. Corresponding upper and lower critical values are 27.488 and 6.262[28], rejecting
this fit as well.

Table 4: Sigma and count values for both experimental and simulated spectra, and their
ratios

Peak
Number

Experimental
Sigma (keV)

Simulated
Sigma (keV)

Sigma Ratio
Measured
Count Number

Simulated
Count Number

Count
Ratio

1 3.6 (3) 2.54(8) 1.4(1) 4.4(2) · 103 1.18(6) · 103 3.7(2)

2 3.32 (7) 2.499(6) 1.33(3) 50.9(5) · 103 91.9(4) · 103 0.555(6)

3 2.5 (3) 2.46(3) 1.0(1) 3.5(2) · 103 7.7(2) · 103 0.45(3)

4 3.8 (7) No transition No Transition 1.5(2) · 103 No transition No Transition

5 3.9 (5) 2.35(4) 1.7(2) 2.0(2) · 103 6.8(2) · 103 0.29(3)

6 2.8 (1) 2.298(8) 1.20(4) 50.2(6) · 103 70.9(4) · 103 0.71(1)

7 3.4 (1) 2.27(1) 1.50(6) 39.8(5) · 103 52.8(4) · 103 0.75(1)

8 2.95 (9) 2.204(5) 1.34(4) 33.6(5) · 103 148.9(6) · 103 0.226(4)

9 2.8 (7) 2.12(2) 1.3(3) 9.1(4) · 103 26.2(3) · 103 0.35(2)

10 2.77 (8) 2.060(8) 1.35(4) 29.9(5) · 103 84.9(5) · 103 0.352(7)

11 2 (3) 2.061(8) 0.80461±1.25459 3.2(3) · 103 5.8(3) · 103 0.55(6)

12 3.2 (3) 1.89(6) 1.7(2) 9(3) · 103 1.6(3) · 103 6(2)

13 2.8 (2) 1.83(2) 1.53(8) 10.4(4) · 103 27.2(3) · 103 0.38(2)

14 2.3 (2) 1.83(2) 1.3(1) 6.4(4) · 103 22.7(3) · 103 0.28(2)

15 2.93 (4) 1.788(3) 1.64(2) 112.5(9) · 103 312.8(9) · 103 0.360(3)

16 2.5 (1) 1.730(6) 1.45(6) 28.0(6) · 103 110.7(6) · 103 0.253(5)

17 2.38 (7) 1.642(2) 1.45(4) 70.4(8) · 103 56.9(1) · 104 0.124(5)
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In order to investigate the efficiency of the simulation relative to the actual detector, we
look at the number of counts recorded under each experimental peak, and then compare this
number to the count number of the corresponding simulated peak (table 4). Specifically,
the ratio of the experimental count number and the simulated count number is taken and
is plotted against peak energy.

As before, a linear and constant fit are taken. For the linear fit a slope of 3.10 · 10−4 ±
0.04 · 10−4 and a y-intercept of 1.12 · 10−1 ± 0.02 · 10−1 is found. In figure 13 two plots are
presented. Figure 13a is the full plot picturing all data points, while figure 13b gives an
image without two large outliers, though these are still images of the same fit with all the
same data points.

(a) Plot of count ratios against
peak energy values

(b) Cropped plot of count ratios leaving out out-
liers

Figure 13: Linear fit of plot of count ratios against peak energy values, one enlarged to
aide investigation

The corresponding constant fit for the count ratio gives a value of 0.209±−0.001, the
plots shown in 14.

To validate these fits a two sided chi-squared test is again performed at significance
level α = 0.05. For the linear fit, χ2 = 6467.57, with number of degrees of freedom
ν = 16 − 2 = 14 (16 data points, 2 parameters fitted). Upper and lower critical values
are 26.119 and 5.629 respectively[28], and so the linear fit is rejected. The constant fit has
χ2 = 15624.4 with ν = 15. Corresponding upper and lower critical values are 27.488 and
6.262[28], rejecting this fit as well. Both these fits seem exceptionally poor.
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(a) Plot of count ratios against
peak energy values

(b) Cropped plot of count ratios leaving out out-
liers

Figure 14: Constant fit of plot of count ratios against peak energy values, one enlarged to
aide investigation

Table 5: Sigma values from multiple fittings of peak 8 and 10 using double gaussian method

Peak
Number

Fit 1 Fit 2 Fit 3 Fit 4 Fit 5 Fit 6 Fit 7 Fit 8 Fit 9 Fit 10

8 11.2(4) 11.6(4) 11.2(5) 11.8(4) 11.5(3) 11.2(4) 11.3(4) 10.9(5) 12.1(4) 12.4(3)

10 11.3(3) 11.4(4) 11.5(3) 10.8(4) 11.4(4) 11.4(4) 12.6(5) 13.1(3) 13.0(4) 11.9(3)

4.4.1 Investigation of Failure of Fits

It was noticed that the sigma of the narrow gaussian fitted to peaks in the 152Eu could
change significantly due to variations in placement of boundary points used for the fitting
of the gaussian. This could potentially lead to error in the sigma values resulting from the
judgement of the user that is unaccounted for in the error value output. To investigate
this, ten fits using the double gaussian method were made of two separate peaks of the
152Eu spectrum, peak 8 and 10. The sigma values(ADC channel number) obtained from
these fits are listed in table 5. The errors of the sigma values associated with the fitting
of peaks used in the analysis of the performance of the simulation cover a range of values
centred on the sigma value obtained from the original fit. For peak 8 this is 11.7 to 12.6
and 11.1 to 11.7 for peak 10, see table 6 in the appendix for these values. The sigma values
of table 5 are checked to see if they fall within these ranges. Yellow colouring indicates
the sigma value falls outside the range, but the range covered by accounting for its error
overlaps with the previously described range. Red colouring indicates that even accounting
for the error of the sigma value, it still falls outside the range.

As can be seen from table 5 30% of the values fall fully outside of their respective ranges,
with 60% only having overlapping ranges. This suggests the potential for a reasonably large
error resulting from the described issues with the fitting.
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Making the assumption that 68% of the measured values should be within the range
spanned by the error of the recorded sigma value, an increase of the error by ±0.5 due to
variations inherent in the fitting procedure can be justified.

For the linear fit a slope of −1.8 · 10−4 ± 0.7 · 10−4 with a y-intercept of 1.55± 0.07. A
χ2 = 16.0636 is found which falls between the critical values for a two sided chi-squared
test at significance level of α = 0.05. The constant fit achieves a value of 1.40 ± 0.03
with a χ2 = 22.65 , which the chi-squared test also fails to reject. The issue of having no
acceptable fit has now been replaced with the inability to discriminate between both fits
as the chi-squared test now fails to reject both. These plots are shown in figure 15.

(a) Linear plot of sigma ratios against
peak energy values

(b) Constant plot of sigma ratios against
peak energy values

Figure 15: Adjusted error plots

This issue of non-constant error introduced by the double gaussian fit method is also
suspected to lead to unaccounted for variation in the count ratio.
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5 Discussion

The goal of this research was to simulate the energy spectrum of a HPGe detector in terms
of energy resolution and efficiency. In this section, the extent to which this was achieved
is discussed using the results presented in the previous section.

5.1 Energy Resolution

A perfect replication of the detector energy resolution by the simulation would output
widths such that a constant ratio of 1.0 would be achieved. Here, an average ratio of
approximately 1.3 is obtained. All but one of the sigma ratios are greater than 1.0, indi-
cating that this simulation approach has failed to fully account for all factors contributing
to the spread of peak energy values. The linear fit in figure 12a has a shallow slope of
−2.4 · 10−4 ± 0.3 · 10−4, which would indicate that the sigma ratio is on average, constant.
The small negative slope could indicate a slight increase in widths at lower energy levels
as a result of increased noise at these low levels. Looking at figure 8, a large amount
of electronic noise can be seen at lower energy levels, which decreases significantly with
increasing energy.

It should be noted as the 60Co-176Lu spectrum used for calibration only has two rel-
atively weak peaks at lower energies, it is possible that the smoothing function does not
properly account for spreading that occurs at lower energy values when more intense tran-
sitions are present.

Though the shallow slope motivates the conclusion that the preferred fit for the sigma
ratio is the constant fit, it should be remembered that it is effectively impossible to deter-
mine definitively the correct fit or behaviour of the sigma ratio plot due to the rejection of
both fits by the chi-squared test. Conversely, it is also not possible to stat outright that
the simulation fails to reproduce well the resolution of the detector, due to the poor quality
of the 152Eu spectrum resulting from the pile-up effect.

5.2 Simulation Efficiency

Analysis of the efficiency of the simulation when compared to the measured spectrum is
a little less straightforward than for the energy resolution. Unlike the energy resolution
where an ideal sigma ratio of 1.0 exists, no such corresponding ideal value is available
for the count ratio as the number of events simulated is arbitrary. There is however, an
ideal behaviour. In the case that the simulation perfectly reproduces the efficiency of the
detector, it would be expected that the count ratios would be constant over the whole
energy range.

For the fit in figure 13 a slope of 3.10 · 10−4 ± 0.04 · 10−4 is found. Apart from two
outliers, the ratios are all of comparable magnitude, though generally increasing with
increasing energy. As the count ratio is given by measured count divided by simulated
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count, this indicates a decrease in the efficiency of the simulated detector with increasing
energy, though this slope is quite shallow.

Compare the ratio of recorded counts for peak 15 to peak 17 in both the measured and
simulated spectrum. For the measured spectrum, Peak 15

Peak 17 = 112540.0764
70402.4372 ≈ 1.6, while for the

simulated spectrum the same ratio gives 312840.862
569323.0134 ≈ 0.6. This is quite a large discrepancy,

particularly as these two peaks are the most intense in the spectrum.
A possible explanation for this issue is the thickness of the dead layers of the detector.

As mentioned in section 2.2, the impact of dead layers only becomes significant for gamma
ray energies lower than 200 keV. The transition energy for peak 17 is 124.199 keV (see
table 2), making the thickness of the dead layers significant for this transition. Therefore
this discrepancy is indicative of a thicker than expected dead layer, as a lower fraction of
the simulated gammas at this energy are interacting with the dead layer, resulting in a
significantly higher recorded count. The paper used for the geometry of the simulation [21]
was published in 2014, and it is not unreasonable to think the thickness of the dead layer
has increased since that calibration was performed.

The constant fit is extremely poor, and so it is very unlikely that the simulation repro-
duces well the efficiency of the detector. Much of this inaccuracy could again be linked to
the detrimental impact of the pile-up effect on the recorded spectrum and issues with the
method employed to remedy this. The spreading of peaks caused by the pile-up effect may
lead to inaccuracies in determining the the true count number under each peak, and these
errors may be non-constant due to variation introduced by the double-gaussian method
used to fit these peaks. This non-constant error could then lead to the non-constant peak
ratios seen.

Another potential source of error that should be mentioned is the matching of the
smallest peaks to low intensity transitions. Some of the very small peaks had a large
number of potential transitions. When the sum of these intensities were taken, intensity
values comparable to significantly larger peak were achieved, which is obviously incorrect.
A few transitions that best matched the calibration were then taken. If the simulation was
to be repeated perhaps a cutoff value for peaks should be chose, peaks below which would
not be simulated. It should be noted that excluding these peaks from the fitting of the
plot has been tested and no significant improvement in the fit was observed.
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6 Summary and Conclusion

The pile-up effect has a significant impact on the quality of the 152Eu spectrum. The
increased width makes it difficult to determine accurately the true widths of the peaks,
and the variation introduced by the double-gaussian method used to combat this makes it
impossible to definitively conclude if the simulation reproduces the energy resolution well.
Any error introduced to account for this variation does not allow any conclusions to be
drawn about the most appropriate fit, as neither is rejected by a chi-squared test.

The spreading of the peaks by the pile-up effect also causes issues with determining
the how well the simulation reproduces the detector efficiency, by introducing non-constant
error in the count number via the double-gaussian method.The generally increasing count
ratio suggests a higher than expected efficiency at lower energy levels, potentially due to
an increase in dead layer thickness, though again it is not possible to make any concrete
claims due to the poor quality of the spectrum

On the whole, it is effectively impossible to make any definitive statements with regards
to the success or failure of the simulation. Analysis of results suggests a constant sigma
ratio of approximately 1.3, which would indicate a better resolution in the simulation than
the detector, and an increasing count ratio which suggests higher efficiency at low energy
levels in the simulation.

It should however be considered a success that a Monte-Carlo simulation framework for
a HPGe detector has been designed that seems to output reasonable results, and hopefully
can be used as a basis for further research.

Ultimately, the measurement of the 152Eu spectrum should be repeated. The source
should be placed further back from the detector, which would reduce the frequency of
emitted radiation passing through the detector, in turn decreasing the count rate and
reducing or eliminating the impact of pile-up on the spectrum. If the same increase in
count ratio is still seen, the thickness of the dead layers in the simulation should be adjusted
until a constant count ratio could be obtained. In this way, an updated value for the dead
layer thickness could be obtained. Unfortunately obtaining a new spectrum measurement
was impossible as a result of the current COVID-19 situation.

With regards to future extensions to this project, the ultimate aim is to simulate a
full HPGe detector array from GELINA. If after obtaining a new spectrum for 152Eu it
can be shown that the simulation reproduces well the energy spectrum of the detector, the
logical next step would be to adjust the dimensions of the simulated detector and arrange
multiple copies of the detector in the same configuration as a full array. If calibration data
from GELINA can be obtained, the performance of this array should then be compared to
calibration data from the array.
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A Error Propagation

Equations used for error propagation come from [29]. These first equations give the rela-
tions of the variables.

Z = A±B (5)

Z =
A

B
or Z = A ·B (6)

The next two equations give the relations between each variables error for the previous
relations, following the same order.

∆Z =
√

(∆A)2 + (∆B)2 (7)

∆Z = Z ·

√(
∆A

A

)2

+

(
∆B

B

)2

(8)

These equations are all that are necessary for the error propagation.
Beginning with the conversion of the peaks from ADC channels to energy, we have an

equation of the form
E = (p0 ·ADC) + p1 (9)

where E is the converted peak in units of energy, ADC is the unconverted peak in channel
number, and p0 and p1 are the relevant parameters from the calibration curve. Each of
these has an associated error. The error in p0 · ADC is given by (8) and the subsequent
total error in the energy of the peak ∆E is given by (7), using the error of p1 and the
previously calculated multiplication error.

For converting sigma values the following simple equation is used as the sigma values
are widths of peaks and so p1 is not used.

σE = p0 · σADC (10)

To find ∆σE only (8) is necessary.
The error propagation procedure for the ratios of the sigma and count numbers are the

same. As the ratio of two numbers is being taken, (8) can be used in a straightforward
manner.
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B Raw Fit Data

The following section contains tables of raw data taken from fitting of peaks and any
subsequent operations performed on these values.

Table 6: Raw fit data from Eu-152 spectrum

Peak
Number

ADC Mean
Peak Value

ADC Mean
Peak Value
Error

ADC Sigma
Value

ADC Sigma
Error

Count
Count

Error

1 6294.786606 0.503099 14.591865 1.042064 4363.609805 163.196892

2 5799.30134 0.143875 13.65314 0.261537 50952.17304 512.139449

3 5347.833404 0.854316 10.290192 1.38396 3482.199369 234.813955

4 5076.142931 1.472508 15.706766 2.843136 1467.033339 204.888576

5 4998.227668 1.139169 16.176308 2.037973 1970.640023 214.377911

6 4583.620638 0.221231 11.366128 0.386351 50230.61478 623.683869

7 4476.643823 0.199453 13.980666 0.552299 39748.69988 511.691538

8 3973.45914 0.167876 12.127552 0.354514 33612.9182 505.433566

9 3575.426127 0.516178 11.43243 2.67033 9096.097699 409.792978

10 3211.975225 0.179977 11.391084 0.336792 29888.4088 520.916026

11 2828.981428 2.068493 6.8131 10.623307 3190.752563 336.184517

12 2350.255705 6.761642 13.120338 1.414127 9353.11829 2666.13144

13 1836.017045 0.421974 11.510023 0.613714 10430.52599 387.007051

14 1702.448897 0.567993 9.47927 0.896318 6364.670267 373.213612

15 1425.798379 0.081656 12.052957 0.145183 112540.0764 869.900754

16 1017.179307 0.202265 10.3028 0.388609 27989.20437 561.821531

17 512.184882 0.101594 9.77866 0.265728 70402.43729 778.4455177

34



Table 7: Converted fit data from Eu-152 spectrum and matching transition data

Peak
Number

Converted
Peak Energy
(keV)

Converted
Peak Error
(keV)

Converted
Sigma (keV)

Converted
Sigma
Error (keV)

Matching
Transition

Transition
Error

Intensity(%)
Intensity
Error

1 1531.75 6.74556 3.55184 0.254034 1528.1 4 0.279 3

2 1411.15 6.32635 3.32334 0.0649834 1408.013 3 20.87 9

3 1301.25 5.95602 2.50476 0.337016 1299.142 8 1.633 11

4 1235.12 5.74247 3.82322 0.692216 No Transition No Transition No Transition No Transition

5 1216.16 5.67525 3.93751 0.496308 1212.948 11 1.415 8

6 1115.24 5.33957 2.76665 0.0946671 1112.076 3 13.67 8

7 1089.2 5.25609 3.40306 0.135098 1085.837 10 10.11 5

8 966.715 4.87316 2.95199 0.0870671 963.38/964.057 4/5 26.11 13/7

9 869.829 4.58492 2.78279 0.650082 867.38 3 4.23 3

10 781.36 4.33105 2.77273 0.0826982 778.9045 24 12.93 8

11 688.135 4.11089 1.65839 2.58585 688.67 5 0.856 6

12 571.608 4.13399 3.19365 0.344444 566.438 6 0.131 3

13 446.436 3.52612 2.80168 0.149789 443.9606 16 2.827 14

14 413.924 3.46573 2.30737 0.218362 411.1165 12 2.237 13

15 346.584 3.34722 2.93383 0.0371675 344.2785 12 26.99 20

16 247.121 3.20881 2.50783 0.0951027 244.6974 8 7.55 4

17 124.199 3.09705 2.38024 0.0653524 121.7817 3 28.53 16
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Table 8: Raw fit data from simulated Eu-152 Spectrum

Peak
Number

Simulated
Sigma(keV)

Simulated
Sigma Error
(keV)

Simulated
Count

Simulated
Count Error

1 2.541906 0.080314 1183.326479 56.362864

2 2.4986 0.006255 91855.92435 439.474411

3 2.45524 0.028106 7723.576152 144.930567

4 No Transition No Transition No transition No transition

5 2.349033 0.04079 6819.678679 170.409598

6 2.297834 0.008405 70883.47051 431.278828

7 2.265223 0.010682 52762.85934 389.134979

8 2.204393 0.005303 148853.1537 607.825999

9 2.123543 0.017165 26187.83667 317.006362

10 2.059467 0.008019 84869.82593 508.700952

11 2.061123 0.007674 5781.882345 248.909445

12 1.891812 0.063266 1566.781522 254.796556

13 1.832684 0.01549 27162.88109 329.233926

14 1.829961 0.019711 27162.88109 329.233926

15 1.787583 0.002899 312840.862 870.202296

16 1.730298 0.005462 110662.7492 557.637429

17 1.642023 0.001978 569323.0134 1179.156515

36



Table 9: Raw ratio data for the Eu-152 spectrum

Peak
Number

Sigma
Ratio

Sigma Ratio
Error

Count
Ratio

Count Ratio
Error

1 1.397313669 0.109256 3.687578942 0.223317

2 1.330080845 0.0262202 0.5546966448 0.00617486

3 1.020169108 0.13776 0.4508532447 0.0315574

4 No Transition No Transition No transition No transition

5 1.676225919 0.213277 0.2889637644 0.0322538

6 1.204025182 0.0414331 0.7086365047 0.00979833

7 1.502306837 0.0600593 0.7533462056 0.0111768

8 1.339139618 0.0396282 0.2258126036 0.00351849

9 1.310446739 0.306314 0.3473405541 0.0162033

10 1.346333784 0.0404959 0.3521676694 0.00649065

11 0.8046050624 1.25459 0.5518535959 0.0628107

12 1.688143431 0.190623 5.969637859 1.95911

13 1.528730539 0.0827471 0.3839992509 0.0149886

14 1.260884795 0.120096 0.2804640483 0.0169414

15 1.641227288 0.0209617 0.3597358596 0.00295522

16 1.449363058 0.0551533 0.2529234505 0.00523441

17 1.449577746 0.0398382 0.1236599182 0.0013911
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