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Abstract

Formation control offers the possibility to operate without the necessity of a centralized
system making it appealing to a myriad of applicable fields. This paper contributes to the
current literature by investigating the global convergence capabilities of a bearing-based
formation control law using the simulation software ROS. Four agents tried to achieve a
rectangular shape in a series of 81 distinct simulations that delivered rigours data about
the control law’s performance. The results yielded convergence capabilities from any
displacement from the desired formation shape although failure rates were high due to
a poor data processing performance. Finally, common errors and the error causes were

discussed and solutions for future research were suggested.



Contents

1__Introduction|
(1.1 Problem analysis| . . . . ... ... ... ... .. ... ... . ... ...

(1.1.1  System description| . . . . . . . . . . . . .. .. ... .. ... ..

[I.1.4  Research objective| . . . . . . ... .. ... ... L.

[1.1.5 Research questions| . . . . . .. ... .. ... .. ... .......

[2.1.1  Graph theory| . . . . . . . . ..
[2.1.2  Rigidity theory| . . . . . . . .. ..o

[4.1 Notation of the result summary tablef . . . . . ... .. .. ... ... ...
4.2 Formation a=3, b=4| . . . . .. ...
4.3 Formation a=5, b=5[ . . . . . . ...

B ol

[>.2  Data processing problem| . . . . . . ... ... .. o000

[5.3  Research questions answered by the thesis| . . . ... ... ... ... ...




27

28






1 INTRODUCTION

1 Introduction

Formation control of a multi-agent system has been a highly researched topic during the
past years. It examines the problem of controlling a group of robots in order to arrange
them to a specified geometrical shape (Chan et al.[2020)). The group is placed randomly
in space and needs to allocate its desired location from a suite of on-board sensors and rel-
ative position measurements, instead of using the help of a centralized system (de Queiroz
et al[2019). The application of controlling the formation of a multi-agent system ranges
from transportation to surveillance and search operations, thus being an extremely rel-
evant research topic (Guo et al|2010). Previous research has shown that the relative
information that an agent requires to achieve a desired formation is based on: (1) posi-
tion, (2) displacement, (3) distance or (4) bearing measurements (Cao et al. 2019, |Ahn
2019, |Li et al.|2018]). Bearing only measurements have an advantage for situations where
exchanging signals is prohibited or the payload of a robot needs to be reduced, so that
heavy sensors are undesirable (Trinh et al.|2019, Ahn|2019). These characteristics are

of great importance in the industry, for example in the production of unmanned aerial
vehicles (UAVs) and unmanned underwater vehicles (UUVs) (Li & Xie [2018).

Extensive research has already been carried out in the field of bearing-based formation
control. The research areas focus on a variety of dynamics, namely, single-integrator
dynamics, double integrator dynamics, formation control using the absolute position, for-
mation control using the relative position, formation control using a directed network (Li
& Xie|2018) and (Chan et al.| (2020) found a control law guaranteeing collision avoidance.
However, the control law constructed by |Chan et al.| (2020) has been proven only theo-

retically.

However, the performance of the control law is still unexplored, meaning simulations
on the system’s capabilities need to be performed. Therefore, this research project will
contribute to the existing research by analyzing the limitations and merits of the given

control law, which is based on the formation control using only bearing measurements.

Firstly, the problem analysis is given, which will give a system description that scopes the
boundaries of the project. The final problem is elaborated on and stated in the problem
analysis followed by the research questions. Secondly, the preliminary literature is studied
and the simulation setup is described. Then, the results will give a detailed overview of

the outcome of the simulations. Finally, a conclusion is drawn.
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1.1 Problem analysis
1.1.1 System description

Analyzing the system in terms of a larger system and a subsystem will prove helpful for
understanding the critical components involved. Firstly, the larger system is composed of
multiple mobile robots that converge to a desired geometrical shape. Each mobile robot
is able to allocate their adjacent neighbours by a rotating laser equipped on top of their
structure. Therefore, in an ideal case the mobile robots are aware of their neighbours po-
sition but do not have access to the data the other robots are sensing because the system
is decentralized. Figure [l illustrates the identification between all four mobile robots in

space.

The subsystem serves to visualize the sensing setup of each mobile robot. For that, Figure
shows two robots, where robot p; is the observer and robot p; is being observed (Guo
et al[[2010). Each robot is assumed to be circular with a radius of » = 1. The bearing
measurement is taken from the outermost corners of the adjacent neighbours and the
allocated corners are then used to find the internal angle 6;; (Chan et al.2020)). Using

geometrical arguments it is also possible to find the inter center distance (d;;).

The larger system Sub system

(a) The simulation setup with (b) Sensing setup with

four mobile robots. Edges be- robot ’i’ being the ob-
tween each agent are added to il- server and robot ’j’ be-
lustrate that the robots are able ing the observed robot
to sense each other (Chan et al. (Chan et al.|[2020)
2020))

Figure 1: Illustration of (a) the whole system and (b) the subsystem
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1.1.2 Problem context

Bearing based formation control has been studied extensively considering various dynam-
ics of a multi-agent network. The DTPA laboratory has researched the field of formation
control and (Chan et al. (2020) has designed a control law providing local exponential
convergence for circular mobile robots using relative bearing measurements only. The
control law was solved purely theoretically, thus the system has not been tested using a
3D simulation engine. More specifically, the influence of sensors and the data transmission

between the robots was not simulated yet.

1.1.3 Problem statement

A research group from the DTPA laboratory has developed a control law for bearing based
formation control of a multi-agent system. However, the control law was only proven on
its local exponential convergence theoretically and has not been tested on its local and
global convergence in a simulation. Therefore, the expected performance, meaning the

systems limitations and merits, are unknown.

1.1.4 Research objective

The research objective is to analyze the performance of the given bearing-based formation
control law, and explore the control law’s limitations within three months by conducting
computer simulations. The results will be relevant as the acquired data will contribute to
the findings made by the DTPA laboratory and thus supports current literature on the
formation control of a sensor reduced multi-agent system

1.1.5 Research questions

The questions for the research project are reduced to one central question. The central
question has been formulated in a way, such that the sub questions answer the central
question and therefore the stated research objective can be achieved.

Central question

1. What is the performance of the control law for bearing-based formation control with

respect to global convergence using computer simulation?
Sub questions
1. What is the convergence behavior of the control law?
2. What are the regions of attraction?

3. What are the control law’s limitations in a simulation?
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4. What are the reasons for a simulation failure?

5. What is the probability that the system will converge?



2 LITERATURE REVIEW

2 Literature review

2.1 Preliminaries

The following section intends to elaborate on the preliminary knowledge that was applied
in the paper of |Chan et al.| (2020)). As the research paper is based on the preliminaries,
it is necessary to understand the essential information to follow through the approach of

the control law.

2.1.1 Graph theory

An undirected graph G is a pair (V, £) where V is the set of vertices V := {1,2,...,n} and
E :={{i,j}|i,j € V} is the finite set of vertices. The set of unordered pairs {3, j} is called
edges (Chan et al.[2020)). An edge {i,j} indicates that ¢ and j are neighbours to each
other, and the sets of neighbour vertices of i are denoted as N; := {j € V| {i,j} € £}.
Furthermore, the graph does not have an edge from vertex i to the same vertex ¢ (Chan
et al.|[2020).

2.1.2 Rigidity theory

To guarantee that the desired formation shape is realizable, the 'Rigidity theory’ is ap-
plied. The theory studies the attainability of formations given predetermined constraints
between the agents, for example the distance or the inner angle between each agent (Ahn
2019). More generally, rigidity theory describes the phenomenon that it is technically
not feasible to move a node of the network without deforming the geometrical formation

(Sidman & John 2017).

2.1.3 Local versus global convergence

Chan et al. (2020) demonstrated theoretically that the constructed control law has local
exponential convergence, meaning that the agents can converge to the desired formation
shape if an agent’s individual solution point is located nearby the agent’s initial position.
Consequently, the control law is said to be globally convergent if the agents converge to

their solution point regardless of their initial position on the global coordinate frame.

2.2 The control law

This subsection will briefly mention and explain the crucial expressions and formulas of
the given control law. First, the notations are given followed by the actual control law

describing the angle-constraint control problem.
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2.2.1 Notation

The notation z" is the transpose of the vector x and ||z|| = /= describes the 2-norm
of x (Chan et al.2020). The notation z* is used to visualize the desired value of x and
hold constant during the simulation as the desired formation shape will be predetermined.
Lastly, 1, x, and xg are used to describe the left, center and right side of the circular

robot respectively.

2.2.2 Angle-constrained formation control problem

The multi-agent system is assumed to move with single integrator dynamics,
pilt) = uq(t),

where u; and p; are stacked vectors and w; is the input velocity for the control of the
nexus robots inside the ROS environment. In order to derive the control law, a group of

n robots, with V = {1,2,...,n} being the index set, is assumed.

The sensory system is located in the center of the robot p; and the laser is able to locate
the two outermost corners of its adjacent neighbours denoted as p;z, and p,g,. The
outer corners are measured in form of relative bearing measurements and are given by

gijL = HZﬁ and g;;r = IIZ—;H The internal angle is then obtained using geometry rules:

cos(f) =1 —2 (di)z. (1)

]
During the simulation the system attempts to acquire the desired relative angles by re-
ducing the system’s error, which is described by the difference of the actual relative angle

measurement to the desired relative angle measurement: e;; = cos(6;;) — cos(0};).

In order to guarantee collision avoidance at any given time moment, the robots are not al-
lowed to touch each other during the simulation, meaning the inner-center distance needs
to remain larger than both of the agent’s radii added together: ||p;(t)—p;(t)|| > 2r, V¢t > 0.
Additionally, the objective is to achieve the desired angle when time goes to infinity.

Therefore, convergence is guaranteed if 0;(t) — 0;; as t — oo or e;;(t) — 0 as t — oo.

Given the requirements stated above, |(Chan et al. (2020) proposed the following angle-

based potential function,

vij(em:%r(“s““)‘cos(;%)):%r ( e ) )

cos(6;;) — €ij + Cij
where ¢;; = cos(6;) — 3. The first derivative yields v;;(e;;) := %Vij(eij) = r%
g ij i



2.2 The control law 2 LITERATURE REVIEW

Furthermore, the control input that will be used during the simulation is given by:

-
ulT] = —20;;(e;;(1 — cos b;;) sin eij—gzj+ 3 (3)
||gij+|’
where,
o (o) =

-
Yij+ 2%z

® Tousl? = 3(2 Va2,

s
a

S — 1 ) ..
o 2= o sinby

The given formulas were enough to formulate a code for the controller that is able to
acquire a velocity input navigating the agents into the desired direction. The lines 205 to
231 of the Python code in Listing [2| show how the control law was realized in code.
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3 Setup

This section will give information on the equipment and code used to execute the simula-
tion. Additionally, the structure, that was used for the simulations so that rigorous data

can be obtained, will be explained.

3.1 Equipment
3.1.1 Nexus robots

The mobile robots used in the simulation are manufactured in
reality by the company 'Nexus robotics’ (see Figure [2) and they 4
can be controlled by an external program running on the pro-
gramming language "Python”. Each robot is equipped with a
battery, a computer, a DC motor, a rotating laser and a low

quality camera. However, since the research is based on bearing

measurements, the rotating laser on the top center of the robot

will be the only activated sensor during the simulation. The sim-

Figure 2: Picture

ulation will also disregard the rotation of the robot, thus it is of one of the Nexus

assumed the robot can move into any two dimensional direction obots used
without rotating around its own axis. Lastly, the minimum speed

of the robot is limited to 0.002 2 and the maximum speed is limited to 0.2 %*. This re-
striction was necessary to optimize the tracking of other robots during the simulation.
Otherwise, the rapid movement would decrease the measurement quality and produce

unreliable results.

3.1.2 Laser sensor

The laser scanner mounted on the top center of each robot is a RPlidar scanner. Un-
derstanding the functioning of the RPlidar scanner is crucial in order to understand the
reaction of the system to certain measurement inputs. Thus, this section will give a brief

overview of the way the RPlidar scanner operates.

The RPlidar scanner is a 360° rotating laser sensor produced by the company 'Slamtec’
(Slamtec| 2018). At the start of each scan, the sensor will begin by shooting an infrared

laser ray into its starting direction followed by new laser ray shots, clockwise around its

midpoint, till a whole revolution is completed (Rasshofer & Gresser|2005)). This process

will be repeated until the simulation is stopped. Some laser rays will collide with an object
and then bounce back so that they are sensed by a photo sensor equipped to the laser.
The time the laser ray takes to return to its origin is called the time-of-flight and is used
to determine the distance between the laser scanner and the object (Shan & Toth|2018).
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The RPlidar sensor stores the information inside an array and publishes the array to the

intended subscriber.

It is important to recognize that each of the array’s entries represent one laser ray and
that the array is ordered in a way that the first laser ray will be the first entry of the
array. If a laser ray does not collide with an object, the array will show ”Infinity”. For
every object that is recognized, the sensor will give the distance to the object in meters.

Figure |3| shows a schematic drawing of the process.

Depending on the user demands, various sensor settings can be adjusted. For example, it
is possible for the user to vary the field of view from 0° - 360° to for example 0° - 180°,
which will increase the computational capacity as a decreased number of rays will reduce
the distance calculations of the laser’s computer. However, the simulation performed for
this research will require a 360° view thus the robots will be identifiable from any position

in the simulation environment.

The standard setting also includes a resolution with the unit ray per degree’, which is
equal to 1. This proved disadvantageous during the simulation as a higher density of rays

was needed for the agents, located far from each other, to remain visible for the sensor

(see Figure . Accordingly, the resolution was increased to 10 d’;;ff:e.
) r
dc—é ...................................
] —
S
=
3
S]
O -
| Object 1
D Object 2
RPlidar Q R
scanner X-coordinate

Figure 3: Illustration of the functioning of the RPlidar sensor. Recognize that object 1 is
identified and object 2 is not.
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3.2 Software

The software program chosen to execute the simulation is ROS
(Robotic Operating System). The software runs on the operat-
ing system Ubuntu 18.04 LTS (Bionic Beaver) and is updated to
its currently most recent version called "ROS Melodic”. Addi-

tionally, the software is open source and offers message passing

between processes based on a subscriber-publisher principle. A
subscriber is a node that ’subscribes’ or acquires data from an- Figure 4: Picture of
other node and a publisher is a node that ’publishes’ or sends four Nexus robots
data to another node. This methodology allows the existence of spawned inside of
decentralized controllers inside ROS because each robot will be Gazebo

able to perform their own calculations.

At the beginning of each simulation, four nexus robots are spawned on individual coordi-
nates in the physics engine tool ”Gazebo”. Then, two algorithms (Data processing node,
Controller), written in the programming language ”Python”, are executed repeatedly.
The functioning of each code will be elaborated in sections later on. However, as each
mobile robot does its individual computations on board, a sum of eight codes needs to be

running simultaneously (see Figure [4)).

Once everything is running correctly, each agent will use the velocity input of the controller
to calculate the direction and speed the mobile robot needs to maneuver in order to acquire
the desired geometrical shape. The measurements that have been collected by each robot
during the simulation (Input velocity of each robot and Inter-agent distance error) are

then formatted into a diagram and published to the user’s desktop.

3.3 Data processing node

The data processing node’s function is to structure the information received from the
scanner and publish only what is needed to the controller. The process of structuring the

data will be elaborated in the following section.

Firstly, the data processing node subscribes to the published data of the individual robot
measured by the laser. The data is then analyzed for clusters or more specifically groups
of values that show numbers and do not show infinite values. As the robots are the only
objects that have collision enabled inside of the simulation environment, it can be con-
cluded, that each cluster is representative for a robot. Therefore, the number of adjacent

neighbours is determined by counting the number of clusters.

10
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Secondly, the infinite values inside of the array are filtered out by the data processing
node and a separate array for each data cluster is constructed. If everything worked as
intended, there should be three separated and ordered arrays. Next, the distance to each
robot is calculated by finding the average value of each cluster. The relative angle is deter-

mined by counting the number of rays that have been shot out since the starting position

rays

Zooeee will result in the relative angle
gree

of the laser scan. Knowing that the resolution is 10

towards each robot.

Lastly, the relative distance d;; and position vector z;; of each robot are summarized into
a vector called ”Z-values”, which is published to the respective controller. The code for

the data processing node is represented in the Appendix Listing [I}

3.4 Controller

The controller’s code used during this research is based on a Matlab code formulated
by Nelson P.K. Chan which is transferred to a Python code and implemented into the
ROS environment by the researcher. The objective of the controller is to use the Z-value
vector, published by the data processing node, to calculate a control input that will steer
the robot into its desired position. The way the controller operates is explained in the

following section.

Before the Z-value vector can be used to calculate the velocity input for the nexus robots,
the desired angle towards the robots needs to be determined. For convenience, the de-
sired angle is calculated inside the code and not entered manually. This procedure has
the advantage that the user has to define only the height (a) and width (b) of the desired
formation shape before the simulation, and the code will compute the remaining values

needed for the control law.

Thereafter, the respective data for each nexus robot is attained from the Z-value vector.
The data is then used to compute the control input which is published to nexus robot.

The code for the controller is represented in the Appendix Listing [2]

3.5 Simulation

Before a series of simulations is conducted, a structured plan is made that will guarantee
comprehensive data acquisition. It is ensured that every simulation will test distinctive
system properties thus collecting rigorous data that will pinpoint the control law’s limi-

tations.

11
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Overall, three formation shapes will be tested. The first formation will have a height of 4m
and a width of 3m. This specific formation shape was also tested by [Chan et al.| (2020)),
thus a successful simulation will demonstrate the general functionality of the control law.
The second formation will be a square of 5m. This formation intends to test the system’s
behavior if Nexus 1 and Nexus 4 have two identical inner-angles towards the robots Nexus
2 and Nexus 3. The last formation will be of height 2.5m and width of 5m. This scenario
will test the collision avoidance feature of the control law as the robots (Nexus 1 Nexus
2 4+ Nexus 3 Nexus 4) will need to maneuver closely to the minimal inner distance of 2r

without crashing into each other.

Secondly, each of the three formation shapes will be explored regarding their regions of
attraction. Therefore, each robot will be positioned at an increasing distance from their
initial point of solution. All together, three zones are created around each of the four
points of convergence. The first zone will test the local convergence of the formation
shape and covers an radius of 1m from the initial point of convergence. The second zone
reaches from 1m to 2m from the initial point of convergence and the third zone can be
any where from 2m and higher. The intention is to create an increasingly challenging

situation in order to identify reasons of failure.

Thirdly, within each zone the robots will be placed at three different positions. The first
position tested should be the most basic and easiest placement to converge from, so that it
can be proven that the displacement from the solution point is not the reason for failure.
Consequently, the first position will be a scaled version of the desired formation shape.
The second and third position will be chosen randomly within each zone. However, it
should be recognized, that the second positioning is an ’easier’ shape to converge from

than the third positioning. Meaning, the third positioning tries to test limitations by:
e placing robots in between the sight of view of other robots

e switching the position of two robots to see if they can be identified correctly by their

adjacent neighbours
e creating an initial formation shape that is contrasting to the desired formation shape

Finally, each positioning will be tested three times. Nonetheless, the gain of each con-
troller will be increased after each attempt. The gain was chosen from the following
values: 10, 20, 50, 100, 200, 500. Higher gain values are used when the robots are placed
further away from each other. This decision was made to increase the converging time
significantly as the inner angle decreases considerably if long-distance measurements are
taken. Consequently, the control input is multiplied with a value much smaller than 1,

resulting in an extremely low velocity input that sometimes is lower than 0.002 %, which

12
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stops the robot’s movement (see Section |3.1.1)).

To summarize, a total of 3-3-3-3 = 81 simulations will be conducted. The results of each
simulation will be captured on a summary table and saved in diagrams. Figure[17] [18 and
show a representation of the spawning positions of each robot on a coordinate system.
Each zone is marked by a ticked red circle that is placed around each of the four red solu-
tion points. The dots coloured in green, grey and blue represent the positions where each
robot was spawned. The green dot is the scaled version of the desired formation shape.
The grey and blue dots are randomly placed in each zone, whereby convergence from the
blue dots is more contrasting to the desired formation shape than than convergence from

the grey dots.

13
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4 Results

This section will give a detailed description of the results obtained during the simulations.
First, an introduction to the notation of the summary table is given. Then, the results
of formation 1, 2 and 3 are described in Section [4.2] and [4.4] Lastly, the performance
with respect to each zone will be analyzed (see Section and the performance with
respect to the gains (see Section [4.6)).

4.1 Notation of the result summary table

The summary tables (Figure @, and include information for each simulation exe-
cuted. Each table shows data from 27 simulations that have been conducted for one spe-
cific formation shape. The initial position shows the x and y coordinates of each robot’s
spawning position. The convergence column gives information on whether the system
converged ("Yes”) or not ("No”). For the purpose of simplicity, the system is stated to
have converged if the final error range remains below 0.5m for each robot. Thereafter,
the next column shows the time it took for the system to converge. If the system did not

converge the time was not stated.

Then, the gain is given followed by the final error range. The column of the final error
range shows the error of the inner-center distance to each robot and uses a variety of
different notations. The notation 70.2 > ” means that the final error did fluctuate due to
the robots readjusting progress. However, the absolute inner-center distance error never
got higher than 0.2m after convergence. The notation "1.7 = ” shows that the robot’s
final error fluctuations were unusually small and remained at 1.7m. The intention for this
implementation, was to identify error causes more easily and to have another qualifier
for the quality of the systems final position. The notation 0.4 1 7 illustrates that the
system converged until a final error of 0.4m, but then the final error started to increase

%N

indefinitely. Lastly, a sign was used if the system did not converge or did not show

extraordinary behavior that could have been used for interpretation of error causes.

The ”Error causes” aim to give a brief insight into the reason why an error occurred. It
can be broken down to ”Wrong measurement”, ”View blockade”, ”Wrongly identified”,
”Not identified”, ”Instable” and ”?”. A wrong measurement can be traced back to the
data processing node. Even though the controller receives a value for each robot, the
measurement that is published is actually wrong. A similar but slightly different error
type is
However, there is now a confusion of measurements between two robots, for example the
distance that should be published for the robot Nexus 2 is actually the distance from the

Y

"wrongly identified”. Each robot also receives a value for this in conjunction.

14
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robot Nexus 4. This error occurs as the data processing node identifies the robots by their
relative angle and not something more distinguishable, making tracking their neighbours
more difficult. The error ”"Not identified” occurs if one or multiple robots are not sensed
by the sensor. Therefore, no data is published to the controller, and thus the robot is not
moving. Next, ”View blockade” has the same consequences as ”Not identified”. Only this
time the error can be further specified, meaning that one robot blocks the view between
two other robots, by standing in between two robots which results in fewer robots being
identified. Therefore, the two other robots cannot identify each other which leads to the
incomplete transmission of the Z-value vector. Lastly, ”7?” means an error occurred but

the causes are unknown.

The final column shows the success percentage of each starting position, each convergence

zone and each formation shape.

4.2 Formation a=3, b=4

An individual description of each simulation would become extremely extensive and go
beyond the scope of the research. Therefore, it was decided to choose only specific simu-

lations that are representative for the general system behavior.

The formation a=3 b=4 demonstrated an overall success rate of 85.1% making it the
highest performing formation. The average time spent converging was 26.07s. In general
the system did not have noticeable difficulties with converging to the desired formation
shape, considering the fact that robots’ starting positions were not switched (see Figure
[0, Zone 3, Position 3, Try 1-3, where each simulation failed due to a wrong identification
at the beginning) or the robots did not block each others’ sight of view (see Figure @,
Zone 2, Position 3, Try 3, where the view of sight between Nexus 2 and 3 was blocked by
Nexus 4).

Nonetheless, one specific error did occur, which is noteworthy, as it happened during later
simulations too. During the second try of position 3 in zone 2 (see Figure , wrong
measurement values got published to the robot Nexus 1 which resulted in a crash of the
controller. The exact cause of the wrong transmission cannot be diagnosed, but the in-
terruption in the graphical plot of the input velocity (see Figure bb) and the peaks from
seconds 7.5 - 9 in the graphical plot of the inter-agent distance error measurement (see
Figure [5a) are common identifications for the incident of this specific error. When reading
up on the measurements inside of the data processing node, it can be seen that an inter-
agent distance of below 2 got transmitted. Accordingly, it is logical that the controller

would crash because it contradicts the constraint of collision avoidance (see Section [2.2.2)).

15
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Error [m]

Inter-agent distance error measured by Nexus 1

— el_nx2
el_nx3
— el_nx4

g

10.0 12,5 15.0 17.5

Time [s]

0.0 2.5 5.0 7.5

(a) The inter-agent distance error measurement

of Nexus 1 during the second try of position 3

in zone 2 for formation 1 (a = 3, b = 4)

Input velocity Nexus 1
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0.18

— pdot_nx1

0.0

2.5

5.0

10.0 12.5 15.0 17.5

Time [s]

7.5

(b) The input velocity measurement of Nexus
1 during the second try of position 3 in zone 2
for formation 1 (a = 3, b = 4)

Figure 5: Illustration of the inter-agent distance error measurement and input velocity of

Nexus 1 during the simulation

Moreover, Figure 20 shows a typical example of a successful convergence to formation 1.

Note that exponential convergence is not observable as the speed of the Nexus robots got
limited to a maximum of 0.2 (see Section (3.1.1]).

Desired Initial position Try |Convergence| Time [s] Gain Final error Error cause Success [%]
formation range [m]
a b Nexus 1 Nexus 2 Nexus 3 Nexus 4
X ¥ X v X y X y
1{Yes 7 10[0.2 =
0 -1 4 -1 0 4 4 4 2| Yes 5 2010.2 > - 100
3| Yes 3 50]0.2>
1{Yes 20 10]0.25 = -
3 4 0 0 2.5 0 0 35 3 3 2| Yes 18 2010.2> - 100 | 100
3| Yes 33 50/0.2>
1{Yes 82 10[0.2 =
0 0 |3.65[-025 1 3 |425( 3 2| Yes 86 20]0.25> 100
3| Yes 60 50/0.25>
1 Yes 28 10]0.1 =
-0.9|-19]| 49 [-19|-09 | 49 [ 49 | 49 2| Yes 12 20]0.05 > 100
3| Yes 8 50]0.05>
1{Yes 30 10]0.3 =
3 4 2 -1.5 | 45 1 -09 | 49 5 3 2| Yes 20 20]0.5 > 100 | 88.7 | 85.1
3| Yes 15 50]0.3 >
1{Yes 20 10]0.3 =
0.5 1 3.5 2.5 1 25| 25 2 2|No 20]- Wrong measurement | 66
3|No - 50f- View blockade
1 Yes 22 100]0.2 = -
3 4 7 -4 3 7 7 7 2| Yes 23 200{0.3 = 100
3| Yes 20 500{0.2>
1{Yes 27 100]0.2 = -
3 4 1 6 | 65 |-05| -3 7 7 6 2| Yes 27 200{0.2 > - 100 | 66.7
3| Yes 27 500{0.2> -
1|No - 100]- Wrongly indentified
0 -4 | 85 3 -1 | 75| 75 |-05 2[No 200)- Wrongly indentified 0
3No 500]- Wrongly indentified

Figure 6: Table that summarizes important data from the 27 simulations done on the
Formation 1 (a=3, b=4)
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4.3 Formation a=5, b=5 4 RESULTS

4.3 Formation a=5, b=5

The formation a = 5 b = 5 had a success rate of 51.85% with an average convergence
time of 22.69s. The average final error range of the formation is 0.16m. If the system
did converge, it happened relatively smoothly and faster compared to the simulations of

other formations. Figure [7a shows a good example for a stable convergence.

Inter-agent distance error measured by Nexus 1 Inter-agent distance error measured by Nexus 4

H
5}
s
~

— el_nx2 1 — el_nxl
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— el _nx4 — e3_nx3

IS v o
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Error [m]
Error [m]

N
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T T T T T T T T T v T T
o 10 20 30 40 50 0 10 20 30 40 50
Time [s] Time [s]

(a) The inter-agent distance error measurement (b) The inter-agent distance error measure-
of Nexus 1 during the first try of position 1 in ment of Nexus 4 during the first try of position

zone 3 for formation 2 (a = 5, b = 5) 2 in zone 3 for formation 2 (a = 5, b = 5)

Figure 7: Ilustration of two inter-agent distance error measurements of Nexus 1 and

Nexus 4 during the simulation

The first errors that occured in zone 1, position 3, try 1-3 were foreseeable as the posi-
tioning of the robots triggered a view blockade between Nexus 2 and Nexus 3 caused by
Nexus 4 (see Figure |18 the blue dots in zone 2). This had the consequence that Nexus
2 and 3 only recognized 2 robots which shortened the Z-value vector, thus the controller
used wrong or no values for its calculation. In most of the cases the agents started drifting

away from each other as wrong velocity inputs are received.

However, in zone 3 another error occurred that cannot be pinpointed. Essentially, as
soon as the robots began converging to their desired formation shape everything seemed
to work accordingly. Nevertheless, once all the agents reached the minimum inter-agent
distance error, Nexus 1 and Nexus 4 started drifting away until they have reached an error
of 1.7m, while Nexus 2 and Nexus 3 kept their desired inter-agent distance of 5m. Figure
[ and Figure 20b,c show the same behavior during other simulations. This behavior
together with a possible solution will be further discussed in Section [5.1]
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Desired Initial position Try |Convergence| Time [s] Gain Final error Error cause Success [%o]
formation range [m]
a b Nexus 1 Nexus 2 Nexus 3 Nexus 4
X i X ¥ X i X i
1| Yes 17.5 10{0.2 > -
05| 05|45 |05 |05 (45| 45| 45 2| Yes 10 20]0.15> - 100
3| Yes 6 50[0.2> -
1|No 20 100{0.6 > Instable
5 5 0 1 5 1 1 5 6 5 2| Yes 10 200]0.1 = - 66.6 | 88.9
3| Yes 7 500]0.3 >
1| Yes 8 100{0.3 > -
0 1 5 1 0 4 5 4 2| Yes 25 200{0.4 > - 100
3| Yes 14 500]0.2 >
1| Yes 10 100{0.3 > -
-l4 | -14 | 64 | -14|-14| 64 | 64 | 64 2| Yes 9 200]0.2 > - 100
3| Yes 8 500]0.1 >
1| Yes 45 100{0.4 > -
5 5 1 1.5 5 1 1 5 6 5 2|No - 200]0.5 = ? 33.3 | 444|518
3|No - 500|104 T Wrong measurement
1[No - 100|- Wrongly indentified
1 1.5 7 0 0 7 3.5 4 2|No - 200]- Wrongly indentified 0
3|No - 500f- Not identified
1| Yes 45 100{0.1 >
-3.5|-35( 85 |-35|-35]| 85| 85 |85 2| Yes 29 200]0.1 > - 66.6
3|No - 500]- Measurement error
1|No - 100{1.7 Measurement error
5 5 3.5 1 3 -5 0 10 7.5 6 2|No - 200|11.7= Measurement error 0 22.2
3|No - 500]- Measurement error
1|No - 100{- Wrong measurement
2 1.5 7 0 0 4 5 4 2|No - 200]0.15 = Wrongly indentified 0
3|No - 500]2.5 = ?

Figure 8: Table that summarizes important data from the 27 simulations done on the
Formation 2 (a=5, b=>5)

4.4 Formation a=2.5, b=5

The formation a = 2.5 and b = 5 did have the same success percentage as formation 2 of
51.85%. The average convergence time of formation 3 is 69.7s and the average final error

range is 0.167m.

The formation shape is the most unstable due to an uncertainty of the data processing
node. The simulations of zone 2 have an relatively low success rate of 11.1%. This is
caused by a wrong measurement transmission of Nexus 3. As it can be seen from Figure[J]
the Nexus 3 robot did have a constant distance to Nexus 1 and Nexus 4 even though Nexus
4 continuously drifted away from Nexus 1. This type of system behavior is not possible.
In the simulation environment it was observed that Nexus 3 actually kept the intended
inter-agent distance of 2.5m to Nexus 4, but drifted away from Nexus 1. Therefore, it can
be concluded that the Z-value vector, transmitted from the data processing node to the
controller of Nexus 1, was wrong. however, the reason for the wrong measurement is un-

known. Further examples of the same behavior are given in Figure 20(d, e in the Appendix.

Furthermore, another error was observed inside of zone 3. During each simulation within
zone 3, the system started converging accordingly until Nexus 4 had reached a specific
relative position to the other robots. As soon as this position was reached, Nexus 4 re-

ceived frequently data from four robots instead of three robots. Consequently, the graph
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Inter-agent distance error measured by Nexus 1 Inter-agent distance error measured by Nexus 4
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of Nexus 1 during the third try of position 3 in ment of Nexus 4 during the third try of position

zone 2 for formation 3 (a = 2.5, b = 5) 3 in zone 2 for formation 3 (a = 2.5, b = 5)

Figure 9: Comparison of the measurements of the Nexus robots 1 4 during the same

simulation

jumps back and fourth between two values which caused the fluctuations in the graphical
plot (see Figure[I0p). However, the other three agents continued to receive measurements
of only three robots (see Figure ) The ramifications of the wrong measurements were
that it was arbitrary if the system did converge or not. If the correct measurements out-
weigh the wrong measurements, the system would converge (see Figure and Figure

21p-c). However, there are also multiple examples where the system did not converge
anymore (see Figure R1d,e).

When analyzing the graph accurately, it can be observed that the upper and lower values of
Nexus 1 copy the same trend as the upper and lower values of Nexus 3. This symmetry of
both trends might hint a confusion of the data processing node between the measurements

of Nexus 1 and 3. A possible cause and solution to fix this problem will be discussed in

Section 5.2
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4 RESULTS
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(a) The inter-agent distance error measurement (b) The inter-agent distance error measure-

of Nexus 1 during the second try of position 3 ment of Nexus 4 during the second try of po-
sition 3 in zone 3 for formation 3 (a = 2.5, b

=5)

in zone 3 for formation 3 (a = 2.5, b = 5)

Figure 10: Comparison of the measurements of the Nexus robots 1 & 4 during the same

simulation
Desired Initial position Try |Convergence| Time [s] Gain Final error Error cause Success [%0]
formation range [m]
a b Nexus 1 Nexus 2 Nexus 3 Nexus 4
X b X b X J X b
1| Yes 40 10]0.2 >
05 (05| 3 |-05]-05]| 55 3 5.5 2| Yes 20 20[0.1> 100
3| Yes 17 50]0.4 >
1| Yes 100 10/0.4 >
251 5 0 1 25 1 0 6 25 4 2| Yes 70 20[0.3 > 100 | 100
3| Yes 60 50]0.1>
1| Yes 150 10|04 >
0505 2 0.5 0 6 35 5 2| Yes 120 20]0.4 > 100
3| Yes 90 50]0.2>
1| Yes 60 100{0.1 >
-14(-14] 39 |-14|-14| 64 | 39 | 64 2|No - 200 Measurement error 333
3|No 500]- Measurement error
1|No 100]- Measurement error
251 5 0 |-15]| 35 1 |-05] 35 1 5 2|No 200[- Measurement error 0 111|518
3|No 500]- Measurement error
1|No 100{- Measurement error
0.5 1 2 2.5 0 6 4 4 2|No 200]- Measurement error 0
3|No 500]- Measurement error
1|No 100]- Measurement error
-3.5 | -3.5 6 S35 -3.5 | 9.5 6 9.5 2|No 200]- Measurement error 0
3|No - 500]- Measurement error
1| Yes 80 100{0.1 >
25| 5 |-35]-35] 3 -5 -3 5 3 2.5 2| Yes 50 200[0.2> 66.6 | 44.4
3|No - 500]- Measurement error
1| Yes 80 100{0.2 >
2 3 5 3 1 75| -3 4 3 2| Yes 90 200[0.2> 66.6
3|No 500]- Measurement error
Figure 11: Table that summarizes important data from the 27 simulations done on the

Formation 3 (a=2.5, b=>5)

4.5 Performance of each zone

The results of the three previous formation shapes have been restructured into a table
(see Figure [13). The new table focuses on the behavior of the three zones of the three

formation shapes with respect to the success percentage, convergence time and average
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final error. The table is also visualized in three bar charts (see Figure [12a), [12b]) and
12d).
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Figure 12: The three diagrams illustrate the performance each formation inside of the
three zones with respect to the success percentage, the convergence time and final error

range

Figure [12a] shows the success percentage with respect to each formation shape and the
zones 1 - 3 separated. Overall, the formation a=3 b=4 has the highest success rate of all
zones combined, followed by formation 2 and 3 which actually perform equally high.

Formation 1 and 2 show the trend that the success rate decreases with increasing zones
or in other words, with an increasing distances from the solution point. However, zone 2

is performing the lowest in formation 3.

Secondly, Figure[12D]illustrates the convergence time with respect to each formation shape
and the zones 1 - 3 separated. Formation 3 has the highest convergence time by far while
Formation 1 and 2 needed approximately the same overall time to converge. There is no

obvious trend between the zones.
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4.6 Performance of different gains 4 RESULTS

Finally, Figure demonstrates the final error range with respect to each formation
shape and the zones 1 - 3 separated. Even though there is no evident trend between the
zones, there is a trend between the three formation shapes. Generally, the overall final

error did reduce slightly from formation 1 to formation 2 to formation 3.

Criteria Zone 1 Zone 2 Zone 3
Formation 1 | Formation 2 | Formation 3 | Formation 1 | Formation 2 | Formation 3 | Formation 1 | Formation 2 | Formation 3
Success 100 88.9 100 88.7 44.4 11.1 66.7 222 44.4
Average Time [s] 34.89 13.06 74.11 19.00 18.00 60.00 24.33 37.00 75.00
Time per Zone [s] 40.69 3233 45.44
Average final error [m] 0.22 ‘ 0.23 ‘ 0.22 0.28 ‘ 0.24 ‘ 0.10 0.28 ‘ 0.10 ‘ 0.18
Final error per Zone [m] 0.22 0.21 0.18

Figure 13: The table analyzes the performance of each formation with respect to the three

different zones in terms of its convergence time, final error range and success percentage

4.6 Performance of different gains

In order to analyze the influence of the gains on the success percentage, convergence time
and final error another table has been created, summarizing the necessary information
(see Figure [15]). The table has been visualized in three different bar charts (see Figure
[14a} [14b| and [14¢|) which will be described in this section.

The first chart (Figure shows the success percentage with respect to each gain and
the zone 1-3 separated. It is easily visible that zone 1 is performing the highest for all
gains used except for the gain 100, where zone 3 performs slightly better. Additionally,
it can be said that there is a correlation between an increasing success percentage and

decreasing gain.

Secondly, Figure illustrates the convergence time with respect to each gain and the
zones 1 - 3 separated. The most obvious trend is that the convergence time decreases if the
gain increases inside the same zone. However, zone 2 at gain 100 represents an outlier as
the convergence time jumps up to 38.33s. Furthermore, the larger zones most commonly

have the highest convergence times within the same gain compared to the lower zones.

Finally, Figure demonstrates the final error range with respect to each gain and the
zones 1 - 3 separated. Zone 1 gain 100 shows the maximum final error range while zone
2 gain 500 has the smallest final error range. Besides that, there are no obvious trends
within the data.
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Figure 14: The three diagrams illustrate the performance each gain (10, 20, 50, 100, 200,
500) inside of the three zones with respect to the success percentage, the convergence time

and final error range

Zone 1 Zone 2 Zone 3
Gains 10 20 50 100 200 500 10 20 50 100 200 500 100 200 500
Avg. Time [s] 59.50 47 | 38.43 14 17.50 | 10.50 | 26 16 11.50 | 38.33 9 8 50.80 | 43.80 | 23.50

Avg. Success [%] 100 100 100 50 100 100 100 | 66.67 | 66.67 | 50 | 16.67 | 16.67 | 55.56 | 55.56 | 22.22

Avg. Final error [m] | 0.257 | 0.229 | 0.221 | 0.300 | 0.250 | 0.250 | 0.233 | 0.275 | 0.175 | 0.267 | 0.200 | 0.100 | 0.160 | 0.200 | 0.200

Figure 15: The table analyzes the performance of each formation with respect to the used
gains (10, 20, 50, 100, 200, 500) in terms of its convergence time, final error and success

percentage
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5 Discussion

The research intends to explore the global convergence capabilities of the control law made
by (Chan et al.| (2020) using computer simulation. The simulation series that was executed
to test the control law’s limitations revealed discrepancies which will be elaborated on in
this section. Finally, whether the research questions, formulated in Section [1.1.5| and
[I.1.5] are answered by the results will be discussed.

5.1 Error of 1.7m

The cause for a displacement of 1.7m of the robots Nexus 1 and Nexus 4 is unknown, yet

a certain intervention of the system might offer a solution to the problem.

During the simulation of the formation described in Section [4.3] it was observed that the
connections of the robots Nexus 2 and Nexus 3 remained at a stable distance. It gave
the impression to the researcher that the connections (1432, 1433, 2434, 3<+4) are more
prioritized by the system than the connection between robot 1 and 4. In other words,
if Nexus 2 and Nexus 3 approached each other, it would have been possible for them to
keep the intended distance to Nexus 1 and Nexus 4 by pushing the robots more outward.
However, Nexus 2 and Nexus 3 are not able to sense that the connection 1<+4 becomes
increasingly incorrect due to the fact that each robot is decentralized and can only access
its own information. This means that Nexus 4 will be displaced by the 'power’ of two

robots while trying to keep the desired distance to Nexus 1 on its own.

A possible solution therefore might be to implement another connection between robot 2

and robot 3 so that the formation’s rigidity increases.

5.2 Data processing problem

In order to find a potential solution, that is able to fix the data processing problem de-
scribed in Section [4.4] the cause of the fluctuation needs to be traced back to its origin.

Firstly, fluctuations are caused by a confusion between the robots 1 and 3, which is caused
by the Z-vector. The Z-vector varies in size when the fluctuations occur because the Z-
vector was designed in such a way that it can store the information of any number of
robots. Therefore, the vector has three entries reserved for each robot that is recognized
by the laser. If the laser suddenly detects more than three robots, new entries will be
added into the Z-vector accordingly. The new vector might then move information from
its initial position and replace it with data of the additional robot. As a result, the con-

troller will call misleading information.
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5.3 Research questions answered by the thesis 5 DISCUSSION

Nonetheless, the vector varies in size due to the wrong identification of the data processing
node. As described in Section the data published by the laser scanner is a vector
with ideally three clusters because three robots are visible. However, in this scenario the
laser scanner will publish four clusters to the data processing node which then concludes
that the robot Nexus 4 is surrounded by four robots. A clearer understanding can be
obtained by looking at the following scenario. For example, a situation is created where
only the robots Nexus 4 and Nexus 2 are considered (see Figure [16). Nexus 4 starts to
scan for Nexus 2 with its rotating laser sensor, although this time, the starting position
of the laser scanner will be pointed on the center of Nexus 2. Then the scan will continue
clockwise around Nexus 4. However, as soon as the laser scan reaches its final position,
Nexus 2 will be measured a second time. This is extremely crucial as now the published
vector includes two clusters which are placed at the end and beginning of the array. The
data processing node will then interpret the two clusters as two robots even though only

one robot is recognized.

It is assumed that a similar situation occurs within the simulation of formation 3. The
agent starts to fluctuate once changing velocity inputs are received by the controller. An
improved code for the data processing node, that is able to combine data clusters from

the same robot, should be implemented into the controller.

2 \

4

Figure 16: Hlustration of the assumed scenario in Section

5.3 Research questions answered by the thesis

The research aimed to find an answer to the following central question: ”What is the

performance of the control law for bearing-based formation control with respect to global
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convergence using computer simulation?”. The question was then broken down into sev-
eral sub questions which are stated in Section [I.1.5] This subsection will discuss the

answers to the research question.

The results have found that the control law does converge with a success percentage of
62.9% to its desired formation shape. Additionally, provided that the gain is chosen
appropriately, the control law does not show a boundary of the robot’s distance away

from its point of solution. Nonetheless, the robots most probably do not converge if:
1. the robots rotational order is changed.
2. the robots are blocking each others sight of view.
3. the robots receive wrong measurement inputs by the data processing node.

The reasons for a simulation failure can , except for a few unknown cases, all be tracked
down to the data processing node or laser scanner. Not a single simulation failure could
be identified that failed due to the wrong computations of the control law. Therefore, it
can be assumed that the control law is globally convergent. However, global convergence
cannot be guaranteed as the chance of failure during a simulation was simply too high
hence a well-founded statement about the global convergence behavior of the control law

cannot be made.

First, the measurement and tracking inside of the simulation needs to be improved sig-
nificantly by rewriting the code for the data processing node. A new code will make the
simulation more stable guaranteeing a more accurate analysis of the control law. However,
revision of the data processing node goes beyond the scope of the research and therefore

it is suggested as future research.
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6 Future Research

The simulation results showed that there is a high chance of failure due to the unrelia-
bility of the data processing node. Frequently, inaccurate and partially wrong data was
published by the data processing node to the controller of the robots and especially to
the robot 'Nexus 4.

Although, the results of the research did diagnose the limitations of the control law, the
gathered data proved to be too unreliable because the simulation is highly error prone.
Therefore, it is suggested to improve the code of the data processing node further and
repeat a series of simulations. Comparing the gathered data to the results of this re-
search will identify similarities and dissimilarities, thus supporting the credibility of this
research’s findings. Moreover, new results can be found that will add on the knowledge

acquired in this research.

Another implementation into the system that is worth analyzing, is the addition of a
sixth edge between Nexus 2 and Nexus 3. Section already mentioned that a new edge
might strengthen the formation’s stability. However, simulations need to be performed in
order to see if a sixth edge would remove fluctuations and stop Nexus 1 and Nexus 4 from

drifting outside of the formation shape.
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7 Conclusion

In this thesis, a theoretically proven bearing-based formation control law was analyzed on
the control law’s performance with respect to its global convergence capabilities. In order
to test the control law, a series of simulations were executed on the software ROS Melodic.
Additionally, each robot used local information acquired only by a RPlidar laser scanner
mounted on to the robot, thus the control law did not make use of a centralized system.
The aim of the research was to identify the region of attraction, the success percentage,
the control law’s limitations and the reasons of failure. Therefore, 81 distinct simulations

tested a variety of scenarios, thus diagnosing the flaws of the simulation and control law.

The results have shown that the overall success percentage is 62.9%. Generally, it was
observed that an increasing displacement of the agents, away from the desired formation
shape, correlates with an increasing failure rate and convergence time. However, the final
error range did not correspond to the robot’s displacement towards its desired location.
Nonetheless, there was no region of attraction identified. Furthermore, the simulations
mainly failed due to a false transmission of distance measurements which also was the
main cause for a system failure. The wrong measurements were caused by the data pro-
cessing node that performed poorly in the interpretation of the laser scanner’s data. More
specifically, it is suggested to rewrite the code of the data processing node, so that track-

ing and identification features will be improved.

In conclusion, it is assumed that the control law is globally convergent. However, the sys-
tem is currently unstable, making the gathered data unreliable. Therefore, it is suggested
to improve the conversion of laser scanner measurement into usable data by rewriting the
code of the data processing node. Consequently, the new simulation will be more stable,

and the new findings will support the assumptions of the research.
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Figure 17: Visual illustration of the spawning coordinates of each nexus robot for the

formation a=3 b=4
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Figure 18: Visual illustration of the spawning coordinates of each nexus robot for the

formation a=5 b=5

Figure 19: Visual illustration of the spawning coordinates of each nexus robot for the

formation a=2.5 b=5
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#!/usr/bin/env python

from __future__ import division

import sys

from math import *
import rospy

: import numpy as np

from rospy_tutorials.msg import Floats

from std_msgs.msg import Int32
from rospy.numpy_msg import numpy_msg

from sensor_msgs.msg import LaserScan

class determine_z_values:

’>?? Determines the inter-agent distance values and publishes it to

z_values topic ’7’

’>?? NOTE: this script requires the simulation with LIDAR to be
running first, as well as an input
argument , an example of how to properly run this code in the

terminal is as following:

rosrun lasmulticontrol3d dataprocessingnode_N.py "1"

Laser scanner angle zero is in the backward direction wrt the robot
as used here.
We use angles (0:360) ’°°

def __init__(self):

>?2> TInitiate self and subscribe to /scan topic ’7°

# which nexus?

self .name = ’n_1"

# Desired distance - used for sending if no z is found or if the
dataprocessingnode is shutdown:

# robot not influenced if one z not found

self.d = np.float32(3)

self.dd = np.float32(np.sqrt(np.square(self.d)+np.square(self.d)
))

# set min and max values for filtering ranges in meter during

initiation

0.25
50

self .min_range

self .max_range
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42 # prepare shutdown

43 self . running = True

44 rospy.on_shutdown(self.shutdown)

45

16 # prepare publisher

a7 self .pub = rospy.Publisher (self.name +’/z_values’, numpy_msg(

Floats), queue_size=1) #Publish the distances and angles to agents in
range
48 self .PUB = rospy.Publisher (self.name +’/agents’, Int32 ,

queue_size=1) #Publish the amount of surrounding agents

50 # subscribe to /scan topic with calculate_z as callback
51 rospy.Subscriber (’/n_lhokuyo_points’, LaserScan, self.

calculate_z)

53 np.set_printoptions (precision=2)

54

55 def calculate_z(self, msg):

56 >?? Calculate the z_values from the scan data ’’’
57 # Check if not shutdown

58

59 self .ranges= np.asarray(msg.ranges)

60 # print self.ranges

62 if self.running:

65 # Save the angles (hits) of the robots in seperate
arrays
66 z_a = np.where((self.ranges >= self.min_range) & (self.

ranges <= self.max_range)) [0] #The zero at the end is to access the

first value of the tuple created by "np.where", so z_a is just an
array

67

68 n =1

69 # print ’z_a = ’,z_a

70 for i in range(len(z_a)-1): # Calculates the number of robots

71

72 if (z_ali]l] - z_al[i + 1] >= -10):

73

74 continue

76 elif (-10 <= z_a[i] - z_al[i-1] <= 10):

79
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80 R=[]
81 r=np.array ([])
82 Zval=np.array ([])

84 P =0
85 # Compares difference between angles in z_a to decide if it’s a new
robot, and if it is it creates and array r, which is then added to

the list R

86 for i in range(P,len(z_a)-1):

88

89 if (z_al[i]l - z_a[i + 1] >= -10) and i!=(len((z_a))
-2):

90

91 r=np.append(r,z_ali])

92 elif (-10 <= z_al[i] - z_al[i - 1] <= 10):

93 r=np.append(r,z_alil)

94 R.append (r)

95 P = 1+i

9% r=np.array ([])

o7

98 elif (z_al[i] - z_al[i + 1] >= -10) and i==(len((z_a))-2):
99 r=np.append(r,z_ali])

100 R.append (r)

101

103 for i in range(m): #transform list R to array of integers
104 R[i]J=R[i].astype(int)
105 #print R

107 if z_a[0]==0 and z_a[-1]1==7199: #This loop makes sure
that a robot is not read twice if it is located at the scan starting

point (Doesn’t work perfectly)

108 R[0]= np.append (R[0],R[-1])
109 del R[-1]

110 n=n-1

111

112 self .PUB.publish(n)

113 k=2

114

115

116 #print (R)

117 self.z_aX=np.zeros ([len(R)])
118 self.zn_X=np.zeros ([len(R)])
119 self.z_a_min=np.zeros ([len(R)])

120 self.z_a_max=np.zeros ([len(R)])

121 self.zn_min=np.zeros([len(R)])
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122 self.zn_max=np.zeros ([len(R)])

124 for j in range(O,n): #This section makes matrices for

the distances to each neighbour
126 if R[j] != np.array([]):
128 self.z_aX[j] = int((np.round ((R[j]).mean()))

/(200)) #Matrix of mean distance from the read values to each

neighbour

129 # /200 is needed for a resolution of 10 and
samples of 7200 10*20=200 (see hokuyo_utm30lx.urdf.xacro)
130 self.zn_X[j] = np.float32(np.min(self.ranges[(R[

j100:(1len(R[j1)11)1))

132 # Tracking variables

134 self.z_a_min[j]

1))

np.min(np.int_(R[j1[0:1len(R[j

136 self.z_a_max[j] = np.max(np.int_(R[jJ[0:1len (R[]
IDEDD

138 self.zn_min[j]
np.int_(R[j1[0:1en(R[j1)1)1))

np.min(np.float32(self.ranges|[

140 self.zn_max[j]

np.int_(R[jJ[0:1en(R[j1)1)1))

np.max(np.float32(self.ranges|[

142 else:

1]
o

144 self.z_aX[j]

146 self.zn_X[j] self.d

149 self.z_aX=self.z_aX.astype(int) #transform z_aX to an

array of integers

150 print’distance (2, 4, 3)= ’,self.zn_X

151 print’angle= (2, 4, 3)= ’,self.z_aX

152 Zval=[]

153 self.zx=np.zeros ([len(R)])

154 self .zy=np.zeros([len(R)])

155 self .z_values=[] #np.zeros ([3*x1len(R)])

156

157 for i in range(O,n): #Loop to calculate x and y distance

to each neighbour
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self.zx[i] = np.float32(np.cos((self.z_aX[i]l-np.int_
(180) ) *2*np .pi/360) *self.zn_X[i]) #2*np.pi/360: converts to radians

self.zy[i] = np.float32(np.sin((self.z_aX[i]-np.int_
(180) ) *2*np.pi/360) *self.zn_X[i])

Zval .append([self.zn_X[i], self.zx[i], self.zy[il])
print ("data from Nexus 1 (2, 4, 3):")

for i in range(O,n): #Loop to print the x and y

distances of detected agents

print ’zx_[’,i,’] = ’, self.zx[il]
print ’zy_[’,i,’] = ’, self.zyl[il]
print ’--°

print ’-----------—---——--—- ?

for i in range(O,n): #This loop puts all the values into

the z_values matrix

self.z_values= np.concatenate(Zval[:]1[:])

self.z_values=np.asarray(self.z_values, dtype=np.float32
) #this line ensures that all numbers are type np_float (without it

the publisher doesn’t publish the proper values)

print ’Z values = ’,self.z_values

# publish z_values to send to Controller Node

self .pub.publish(self.z_values)

def shutdown(self):
rospy.loginfo("Stopping dataprocessingnode_1")
self .running = False
self.z_values = np.array([self.d, self.d, 0, \
self.dd, self.dd, 0, \
self.d, self.d, 0], dtype=np.float32)
self .pub.publish(self.z_values)
print (’Shutting Down’)

rospy.sleep (1)

if
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rospy.init_node (’dataprocessingnode_1’, anonymous=False)
determine_z_values ()

rospy.spin ()

Listing 1: Data processing node of robot 1

39



N

23

24

25

26

30

31

32

33

REFERENCES REFERENCES

#!/usr/bin/env python

#Import important packages

from __future_

_ _ import division

from math import *

import rospy

import matplotlib.pyplot as pl

import numpy as np

from rospy_tutorials.msg import Floats
from rospy.numpy_msg import numpy_msg

from geometry_msgs.msg import Twist

# Number of robots = 4
# They are linked to each other in the following way

# Robot $ 1 $ has a link with Robots $ 2 $, $ 3 $, and $ 4 $
# Robot $ 2 $ has a link with Robots $ 1 $, and $ 4 $
# Robot $ 3 $ has a link with Robots $ 1 $, and $ 4 $
# Robot $ 4 $ has a link with Robots $ 1 $, $ 2 $, and $ 3 $

HHAHAHAHBHHARARAHBHBABAHAHAHBH BB AR AR AHBH BB AR RS BH BB H AR AH BB RS

# Dimensions

N = 4 # Number of circular robots
M =5 # Number of edges

d = 2 # Ambiance dimension

r =1 # Radius of each robot

HHAHAHAH AR HAHAHAHBHBAH AR AR AH AR AR AR AR BHBH RSB A R RS BH R BB AR AH BB RS

Desired formation shape

# Rectangle shape
a = 2.5 # a = Width
b =5 # b = Height

# Positioned in clockwise direction

# Robot positions BEFORE translation + rotation
plr = np.array([[0], [0]])
p2r = np.array([[al, [0]1)
p3r = np.array ([[0], [bll)
p4r = np.array([[al, [b]l])

# Translate + rotate the desired formation shape
#TVector = np.array([[2], [2]]) # Translation vector
#RotAngle = 30 # Rotation angle

#RotMatrix = np.array([[cos(degrees(RotAngle)), -sin(degrees (RotAngle))

], [degrees(sin(RotAngle)), cos(degrees(RotAngle))]])

# Rotational matrix

# Robot positions AFTER tramnslation + rotation

40



REFERENCES REFERENCES

47 #pld = np.dot (RotMatrix, plr) + TVector
18 #p2d = np.dot (RotMatrix, p2r) + TVector
10 #p3d = np.dot (RotMatrix, p3r) + TVector
50 #p4d = np.dot (RotMatrix, p4r) + TVector

52 # Stacked position vector
53 #pd = np.array ([[p1d], [p2d], [p3d]l, [p4dll)

55 # Relative state variables
56 # Relative position

57 z12d = p2r - plr

58 z13d = p3r - plr

50 z14d = p4r - plr

60 z24d = p4r - p2r

61 z34d = pd4r - p3r

63 # Relative distance

64 d12d = np.linalg.norm(z12d)
65 d13d = np.linalg.norm(z13d)
66 d14d = np.linalg.norm(z14d)
67 d24d = np.linalg.norm(z24d)
6s d34d = np.linalg.norm(z34d)

70 # Cosine of intermnal angle (Article Formula (5))
71 cthetal2d = 1 - 2 x (r / d12d) **2

72 cthetal3dd = 1 - 2 * (r / di13d) *x2
73 cthetaldd = 1 - 2 x (r / d144d) *x*2
74 ctheta24d = 1 - 2 x (r / d24d) *x2
75 ctheta34d = 1 - 2 x (r / d344) *x*2

77 # Stacked cosine vector
7s cthetad = np.array([[cthetal2d], [cthetal3d], [cthetald4d], [ctheta24d],
[ctheta34d]])

so # Desired Intermal angle

s1 thetal2d = np.arccos(cthetal2d)
s2 thetal3d = np.arccos(cthetal3d)
s3 thetaldd = np.arccos(cthetal4dd)
s1 theta24d = np.arccos(ctheta24d)
s5 theta34d = np.arccos(ctheta34d)

g7 # Stacked intermnal vector

ss thetad = np.array([[thetal12d], [thetal3d], [thetal4d], [theta24d], [
theta34d]])

89

90 # Fixed constants / Interval for the error vector (e = ctheta - cthetad)

91 cd = cthetad - 0.5
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92 fd = 1 - cthetad

93

94 # Minimum value

95 bb = np.minimum (0.5 * cd, fd)

96

o7 HHBHHAAAHHHHHAHAHAHBHARARAH B R AR AR A HHH B R AR HH BB B AR A AR H BB RARAS

9¢ class controller:

99 >?’ The controller uses the interagent distances to determine the
desired velocity of the Nexus ’’°

100

101 def __init__ (self):

102 >?2 Tnitiate self and subscribe to /z_values topic ’7’°

103 # controller variables

104 self .running = np.float32(1)

105

106 self .U_old = np.array ([0, 0])

107 self.U_oldd = np.array ([0, 0])

108

109 # Motion parameters

110

111 # prepare Log arrays

112 self.einndis12_log = np.array([])

113 self .einndis13_log np.array ([])
114 self.einndisl4_log = np.array([])
115 self.Un = np.float32([])

116 self .U_log = np.array([])

117 self.time = np.float64 ([])

118 self.time_log = np.array([])

119 self .now = np.float64([rospy.get_time()])
120 self .begin = np.float64([rospy.get_time()])
121 self .k = 0

123 # prepare shutdown

124 rospy.on_shutdown(self.shutdown)

125

126 # prepare publisher

127 self .pub = rospy.Publisher(’/n_1/cmd_vel’, Twist, queue_size=1)
128 self.velocity = Twist ()

130 # subscribe to z_values topic
131 rospy.Subscriber(’/n_1/z_values’, numpy_msg(Floats), self.

controller)
133 # subscribe to controller_variables

134 rospy.Subscriber(’/controller_variables’, numpy_msg(Floats),

self .update_controller_variables)
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def update_controller_variables(self, data):

>?? Update controller variables ’’’

if self.running < 10:

# Assign data

self.controller_variables = data.data

# Safe variables

self .running

def controller (self

B

np.float32(self.controller_variables [0])

data) :

>?? Calculate U based on z_values and save error velocity in log

arrays ’’°

if self.running < 10:

# Input for controller

z_values= data.data
Ktheta = 500

#get z_values

z12 = np.array([[z_values[1]], [z_values([2]11])

z13 = np.array ([[z_values[7]], [z_values[81]])

z14 = np.array([[z_values[4]], [z_values([5]]])

# Relative distance
d12 = z_values [0]
d13 = z_values[6]
d14 = z_values [3]

print "Relative distances = ",d12,d13,d14
print "Desired distances = ",d12d,d13d,d14d

# Decompose cd

# Lower bound for error

cl12d = cd[0]
c13d = cd[1]
cl4d = cd[2]

# Decompose cthetad

# Desired cosine values
cthetad [0]
cthetad [1]
cthetad [2]

cthetal2d
cthetal3d
cthetal4dd

# Cosine of
cthetal?2
cthetal3
cthetal4d

1
1
1

internal angle

2 x (r / d12)*x*2
2 x (r / di13)*xx*2
2 x (r / di14)*x*2
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183 thetal2 = np.arccos(cthetal2)

184 thetal3 = np.arccos(cthetal3)

185 thetald4d = np.arccos(cthetald)

186

187 print ’Desired angle = ’,thetal2d,thetal3d,thetalédd
188 print ’Actual angle = ’,thetal2,thetal3,thetald

189

190 # Sine of intermnal angle

191 sthetal2 = np.sin(thetal2)
192 sthetal3 = np.sin(thetal3)
193 sthetald = np.sin(thetald)

194

195 # Error in cosine value

196 ethetal2 = cthetal2 - cthetal2d
197 ethetald3 = cthetal3 - cthetal3d
198 ethetald = cthetald4d - cthetalédd

199

200 # Inner distance error

201 einndisl12 = d12 - di2d
202 einndis13 = d13 - di13d
203 einndisl14 = d14 - di4d

205 #Control law
206 vi2 = r * ((ethetal2 * c12d) / ((ethetal2 + c12d) **3))
207 vli3 = r * ((ethetal3d * c13d) / ((ethetal3 + c13d) **3))

208 vid = r * ((ethetald * c14d) / ((ethetald + c14d)*%*3))
209

210 sal2 = 1 / (2xr) * sthetal?2

211 sal3 = 1 / (2*r) * sthetall

212 sald = 1 / (2*r) * sthetald

213

214 gplusl2 = 2 *x sal2 *x zl12

215 gplusl3 = 2 * sal3 * zl13

216 gplusl4 = 2 * sald *x zl4

217

218 mgplusl2 = 4 x (sal2)**2 *x d12#*%2

219 mgplusl13 = 4 * (sal3)*x2 * d13**2

220 mgplusld = 4 x (sal4d)**2 *x d14x*x%2

221

222 parV1i2 = -2 x v12 x (l-cthetal2) * sthetal2 * ((gplusi12)/(

mgplus12))

223 parVvi3 -2 * v13 * (1-cthetal3) * sthetal3 * ((gplus13)/(

mgplus13))

224 parVi4d -2 x v14 x (l-cthetal4) * sthetald * ((gplusid)/(

mgplusi14))
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#tparVi2 = -v12 * ((4*xr*x*2)/(d12*%4))*z12
#tparV13 = -v13 * ((4xr**2)/(d13+*%4))*z13
#tparV14 = -vi14 * ((4*xr*x2)/(d14x**4))*z14

# Individual control law

U = - Ktheta * parV12 - Ktheta * parV13 - Ktheta * parVi4

print "U robotl= ", U

# Saturation
v_max = 0.2
v_min = 0.002
for i in range(len(U)):
if U[i] > v_max:
U[i] = v_max
elif U[i] < -v_max:
U[i] = -v_max
elif -v_min < U[i]+self.U_old[i]+self.U_o0ldd[i] < v_min

# preventing shaking

[(11))1D)

Uli] = 0

# Set old U values in order to prevent shaking
self .U_oldd = self.U_old
self.U_old = U

# Append error and velocity in Log arrays

self.einndisl12_log = np.append(self.einndisl12_log, einndisl?2

self .einndisl13_log np.append (self.einndis13_log, einndisil3

self .einndisl4_log np.append (self.einndisl4_log, einndisié4d

self.Un = np.float32([np.sqrt(np.square(U[0])+np.square (U

self .U_log = np.append(self.U_log, self.Un)

# Save current time in time log array
if self.k < 1:
self .begin = np.float64 ([rospy.get_time()])
self .k = 10
self .now = np.float64 ([rospy.get_time()])
self.time = np.float64([self.now-self.begin])
self.time_log = np.append(self.time_log, self.time)

# publish
self.publish_control_inputs(U[0], U[1])
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269 elif 10 < self.running < 1000:

270 self .shutdown ()

271

272 def publish_control_inputs(self ,x,y):

273 >?? Publish the control inputs to command velocities

274

275 NOTE: somehow the y direction has been reversed from the

indigo-version from Johan and

276 the regular kinetic version. Hence the minus sign.

277

278 ’0

279

280 self .velocity.linear.x =

281 self .velocity.linear.y =

282

283 # print ’cmd_vel NEXUS 1 (x,y)’, self.velocity.linear.x, self.
velocity.linear.y

284 # rospy.loginfo(self.velocity)

285

286 self .pub.publish(self.velocity)

287

288 def shutdown (self):

289 ’>?? Stop the robot when shutting down the controller_1 node ’’°

290 rospy.loginfo("Stopping Nexus_1...")

201 self .running = np.float32(10000)

292 self .velocity = Twist ()

293 self .pub.publish(self.velocity)

294

205 # np.save (’/home/s2036975/Documents/Master Thesis/experiments/

experiment_x/E1_log_nx1’, self.El1_log)

206 # np.save (’/home/s2036975/Documents/Master Thesis/experiments/
experiment_x/E4_log_nxl’, self.E4_log)

207 # np.save (’/home/s2036975/Documents/Master Thesis/experiments/
experiment_x/U_log_nx1l’, self.U_log)

208 # np.save (’/home/s2036975/Documents/Master Thesis/experiments/
experiment_x/time_log_nxl’, self.time_log)

299

300 rospy.sleep (1)

301

302

303 pl.close("all")

304 pl.figure (0)

305 pl.title("Inter-agent distance error measured by Nexus 1")

306 pl.plot(self.time_log, self.einndisl2_log, label="el_nx2", color
=7b7)
307 pl.plot(self.time_log, self.einndisl13_log, label="el_nx3", color
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pl.
pl.

pl

pl.

pl.
pl.
pl.
pl.
pl.
pl.

pl

pl.

.plot(self.time_log, self.einndisl4_log, label="el_nx4", color

xlabel ("Time [s]")
ylabel ("Error [m]")
.grid O)

legend ()

figure (1)

title ("Input velocity Nexus 1 ")
plot(self.time_log, self.U_log, label="pdot_nxl",
xlabel ("Time [s]")

ylabel ("Velocity [m/s]")

grid ()

.legend ()

pause (0)

326 if __mame__ == ’__main__"’:

try:

rospy.init_node(’controller_1’, anonymous=False)

controller ()

rospy.spin ()

except

rospy.loginfo("Controller node_1 terminated.")

Listing 2: Controller 1
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