
Analysing the Global Convergence

Capabilities of a Bearing-Based

Formation Control Law using ROS

Bachelor Thesis

Nils Meile - S3511863

Supervisors: prof. dr. Bayu Jayawardhan & Mehran Mohebbi

Industrial Engineering and Management

Faculty of Science and Engineering

University of Groningen

June 12, 2020

List of Abbreviations

UAV Unmanned Aerial Vehicle

UUV Unmanned Underwater Vehicle

DTPA Discrete Technology Production Automation

LIDAR Light Detection and Ranging

ROS Robotic Operating System

LTS Long Term Support

Abstract

Formation control offers the possibility to operate without the necessity of a centralized

system making it appealing to a myriad of applicable fields. This paper contributes to the

current literature by investigating the global convergence capabilities of a bearing-based

formation control law using the simulation software ROS. Four agents tried to achieve a

rectangular shape in a series of 81 distinct simulations that delivered rigours data about

the control law’s performance. The results yielded convergence capabilities from any

displacement from the desired formation shape although failure rates were high due to

a poor data processing performance. Finally, common errors and the error causes were

discussed and solutions for future research were suggested.

Contents

1 Introduction 1

1.1 Problem analysis . 2

1.1.1 System description . 2

1.1.2 Problem context . 3

1.1.3 Problem statement . 3

1.1.4 Research objective . 3

1.1.5 Research questions . 3

2 Literature review 5

2.1 Preliminaries . 5

2.1.1 Graph theory . 5

2.1.2 Rigidity theory . 5

2.1.3 Local versus global convergence . 5

2.2 The control law . 5

2.2.1 Notation . 6

2.2.2 Angle-constrained formation control problem 6

3 Setup 8

3.1 Equipment . 8

3.1.1 Nexus robots . 8

3.1.2 Laser sensor . 8

3.2 Software . 10

3.3 Data processing node . 10

3.4 Controller . 11

3.5 Simulation . 11

4 Results 14

4.1 Notation of the result summary table . 14

4.2 Formation a=3, b=4 . 15

4.3 Formation a=5, b=5 . 17

4.4 Formation a=2.5, b=5 . 18

4.5 Performance of each zone . 20

4.6 Performance of different gains . 22

5 Discussion 24

5.1 Error of 1.7m . 24

5.2 Data processing problem . 24

5.3 Research questions answered by the thesis 25

6 Future Research 27

7 Conclusion 28

1 INTRODUCTION

1 Introduction

Formation control of a multi-agent system has been a highly researched topic during the

past years. It examines the problem of controlling a group of robots in order to arrange

them to a specified geometrical shape (Chan et al. 2020). The group is placed randomly

in space and needs to allocate its desired location from a suite of on-board sensors and rel-

ative position measurements, instead of using the help of a centralized system (de Queiroz

et al. 2019). The application of controlling the formation of a multi-agent system ranges

from transportation to surveillance and search operations, thus being an extremely rel-

evant research topic (Guo et al. 2010). Previous research has shown that the relative

information that an agent requires to achieve a desired formation is based on: (1) posi-

tion, (2) displacement, (3) distance or (4) bearing measurements (Cao et al. 2019, Ahn

2019, Li et al. 2018). Bearing only measurements have an advantage for situations where

exchanging signals is prohibited or the payload of a robot needs to be reduced, so that

heavy sensors are undesirable (Trinh et al. 2019, Ahn 2019). These characteristics are

of great importance in the industry, for example in the production of unmanned aerial

vehicles (UAVs) and unmanned underwater vehicles (UUVs) (Li & Xie 2018).

Extensive research has already been carried out in the field of bearing-based formation

control. The research areas focus on a variety of dynamics, namely, single-integrator

dynamics, double integrator dynamics, formation control using the absolute position, for-

mation control using the relative position, formation control using a directed network (Li

& Xie 2018) and Chan et al. (2020) found a control law guaranteeing collision avoidance.

However, the control law constructed by Chan et al. (2020) has been proven only theo-

retically.

However, the performance of the control law is still unexplored, meaning simulations

on the system’s capabilities need to be performed. Therefore, this research project will

contribute to the existing research by analyzing the limitations and merits of the given

control law, which is based on the formation control using only bearing measurements.

Firstly, the problem analysis is given, which will give a system description that scopes the

boundaries of the project. The final problem is elaborated on and stated in the problem

analysis followed by the research questions. Secondly, the preliminary literature is studied

and the simulation setup is described. Then, the results will give a detailed overview of

the outcome of the simulations. Finally, a conclusion is drawn.

1

1.1 Problem analysis 1 INTRODUCTION

1.1 Problem analysis

1.1.1 System description

Analyzing the system in terms of a larger system and a subsystem will prove helpful for

understanding the critical components involved. Firstly, the larger system is composed of

multiple mobile robots that converge to a desired geometrical shape. Each mobile robot

is able to allocate their adjacent neighbours by a rotating laser equipped on top of their

structure. Therefore, in an ideal case the mobile robots are aware of their neighbours po-

sition but do not have access to the data the other robots are sensing because the system

is decentralized. Figure 1a illustrates the identification between all four mobile robots in

space.

The subsystem serves to visualize the sensing setup of each mobile robot. For that, Figure

1b shows two robots, where robot pi is the observer and robot pj is being observed (Guo

et al. 2010). Each robot is assumed to be circular with a radius of r = 1. The bearing

measurement is taken from the outermost corners of the adjacent neighbours and the

allocated corners are then used to find the internal angle θij (Chan et al. 2020). Using

geometrical arguments it is also possible to find the inter center distance (dij).

(a) The simulation setup with

four mobile robots. Edges be-

tween each agent are added to il-

lustrate that the robots are able

to sense each other (Chan et al.

2020)

(b) Sensing setup with

robot ’i’ being the ob-

server and robot ’j’ be-

ing the observed robot

(Chan et al. 2020)

Figure 1: Illustration of (a) the whole system and (b) the subsystem

2

1.1 Problem analysis 1 INTRODUCTION

1.1.2 Problem context

Bearing based formation control has been studied extensively considering various dynam-

ics of a multi-agent network. The DTPA laboratory has researched the field of formation

control and Chan et al. (2020) has designed a control law providing local exponential

convergence for circular mobile robots using relative bearing measurements only. The

control law was solved purely theoretically, thus the system has not been tested using a

3D simulation engine. More specifically, the influence of sensors and the data transmission

between the robots was not simulated yet.

1.1.3 Problem statement

A research group from the DTPA laboratory has developed a control law for bearing based

formation control of a multi-agent system. However, the control law was only proven on

its local exponential convergence theoretically and has not been tested on its local and

global convergence in a simulation. Therefore, the expected performance, meaning the

systems limitations and merits, are unknown.

1.1.4 Research objective

The research objective is to analyze the performance of the given bearing-based formation

control law, and explore the control law’s limitations within three months by conducting

computer simulations. The results will be relevant as the acquired data will contribute to

the findings made by the DTPA laboratory and thus supports current literature on the

formation control of a sensor reduced multi-agent system

1.1.5 Research questions

The questions for the research project are reduced to one central question. The central

question has been formulated in a way, such that the sub questions answer the central

question and therefore the stated research objective can be achieved.

Central question

1. What is the performance of the control law for bearing-based formation control with

respect to global convergence using computer simulation?

Sub questions

1. What is the convergence behavior of the control law?

2. What are the regions of attraction?

3. What are the control law’s limitations in a simulation?

3

1.1 Problem analysis 1 INTRODUCTION

4. What are the reasons for a simulation failure?

5. What is the probability that the system will converge?

4

2 LITERATURE REVIEW

2 Literature review

2.1 Preliminaries

The following section intends to elaborate on the preliminary knowledge that was applied

in the paper of Chan et al. (2020). As the research paper is based on the preliminaries,

it is necessary to understand the essential information to follow through the approach of

the control law.

2.1.1 Graph theory

An undirected graph G is a pair (V , E) where V is the set of vertices V := {1, 2, ..., n} and

E := {{i, j}| i, j ∈ V} is the finite set of vertices. The set of unordered pairs {i, j} is called

edges (Chan et al. 2020). An edge {i, j} indicates that i and j are neighbours to each

other, and the sets of neighbour vertices of i are denoted as Ni := {j ∈ V| {i, j} ∈ E}.
Furthermore, the graph does not have an edge from vertex i to the same vertex i (Chan

et al. 2020).

2.1.2 Rigidity theory

To guarantee that the desired formation shape is realizable, the ’Rigidity theory’ is ap-

plied. The theory studies the attainability of formations given predetermined constraints

between the agents, for example the distance or the inner angle between each agent (Ahn

2019). More generally, rigidity theory describes the phenomenon that it is technically

not feasible to move a node of the network without deforming the geometrical formation

(Sidman & John 2017).

2.1.3 Local versus global convergence

Chan et al. (2020) demonstrated theoretically that the constructed control law has local

exponential convergence, meaning that the agents can converge to the desired formation

shape if an agent’s individual solution point is located nearby the agent’s initial position.

Consequently, the control law is said to be globally convergent if the agents converge to

their solution point regardless of their initial position on the global coordinate frame.

2.2 The control law

This subsection will briefly mention and explain the crucial expressions and formulas of

the given control law. First, the notations are given followed by the actual control law

describing the angle-constraint control problem.

5

2.2 The control law 2 LITERATURE REVIEW

2.2.1 Notation

The notation x> is the transpose of the vector x and ||x|| =
√
x describes the 2-norm

of x (Chan et al. 2020). The notation x∗ is used to visualize the desired value of x and

hold constant during the simulation as the desired formation shape will be predetermined.

Lastly, xL, x+ and xR are used to describe the left, center and right side of the circular

robot respectively.

2.2.2 Angle-constrained formation control problem

The multi-agent system is assumed to move with single integrator dynamics,

ṗi(t) = ui(t),

where ui and pi are stacked vectors and ui is the input velocity for the control of the

nexus robots inside the ROS environment. In order to derive the control law, a group of

n robots, with V = {1, 2, ..., n} being the index set, is assumed.

The sensory system is located in the center of the robot pi and the laser is able to locate

the two outermost corners of its adjacent neighbours denoted as pjLi
and pjRi

. The

outer corners are measured in form of relative bearing measurements and are given by

gijL =
zijL
||zijL||

and gijR =
zijR
||zijR||

. The internal angle is then obtained using geometry rules:

cos(θij) = 1− 2

(
r

dij

)2

. (1)

During the simulation the system attempts to acquire the desired relative angles by re-

ducing the system’s error, which is described by the difference of the actual relative angle

measurement to the desired relative angle measurement: eij = cos(θij)− cos(θ∗ij).

In order to guarantee collision avoidance at any given time moment, the robots are not al-

lowed to touch each other during the simulation, meaning the inner-center distance needs

to remain larger than both of the agent’s radii added together: ||pj(t)−pi(t)|| > 2r, ∀t ≥ 0.

Additionally, the objective is to achieve the desired angle when time goes to infinity.

Therefore, convergence is guaranteed if θij(t)→ θ∗ij as t→∞ or eij(t)→ 0 as t→∞.

Given the requirements stated above, Chan et al. (2020) proposed the following angle-

based potential function,

Vij(eij) =
1

2
r

(
cos(θij)− cos(θ∗ij)

cos(θij)− 1
2

)2

=
1

2
r

(
eij

eij + cij

)2

, (2)

where cij = cos(θ∗ij)− 1
2
. The first derivative yields vij(eij) := ∂

∂eij
Vij(eij) = r

eijcij
(eij+cij)3

.

6

2.2 The control law 2 LITERATURE REVIEW

Furthermore, the control input that will be used during the simulation is given by:

u>ij = −2v̂ij(eij(1− cos θij) sin θij
g>ij+
||gij+||2

, (3)

where,

• v̂ij(eij) =
vij(eij)

r

• g>ij+
||gij+||2 =

2 s
a
zij

4(s
a)

2
d2ij

• s
a

= 1
2r
sinθij

The given formulas were enough to formulate a code for the controller that is able to

acquire a velocity input navigating the agents into the desired direction. The lines 205 to

231 of the Python code in Listing 2 show how the control law was realized in code.

7

3 SETUP

3 Setup

This section will give information on the equipment and code used to execute the simula-

tion. Additionally, the structure, that was used for the simulations so that rigorous data

can be obtained, will be explained.

3.1 Equipment

3.1.1 Nexus robots

Figure 2: Picture

of one of the Nexus

robots used

The mobile robots used in the simulation are manufactured in

reality by the company ’Nexus robotics’ (see Figure 2) and they

can be controlled by an external program running on the pro-

gramming language ”Python”. Each robot is equipped with a

battery, a computer, a DC motor, a rotating laser and a low

quality camera. However, since the research is based on bearing

measurements, the rotating laser on the top center of the robot

will be the only activated sensor during the simulation. The sim-

ulation will also disregard the rotation of the robot, thus it is

assumed the robot can move into any two dimensional direction

without rotating around its own axis. Lastly, the minimum speed

of the robot is limited to 0.002 m
s

and the maximum speed is limited to 0.2 m
s

. This re-

striction was necessary to optimize the tracking of other robots during the simulation.

Otherwise, the rapid movement would decrease the measurement quality and produce

unreliable results.

3.1.2 Laser sensor

The laser scanner mounted on the top center of each robot is a RPlidar scanner. Un-

derstanding the functioning of the RPlidar scanner is crucial in order to understand the

reaction of the system to certain measurement inputs. Thus, this section will give a brief

overview of the way the RPlidar scanner operates.

The RPlidar scanner is a 360° rotating laser sensor produced by the company ’Slamtec’

(Slamtec 2018). At the start of each scan, the sensor will begin by shooting an infrared

laser ray into its starting direction followed by new laser ray shots, clockwise around its

midpoint, till a whole revolution is completed (Rasshofer & Gresser 2005). This process

will be repeated until the simulation is stopped. Some laser rays will collide with an object

and then bounce back so that they are sensed by a photo sensor equipped to the laser.

The time the laser ray takes to return to its origin is called the time-of-flight and is used

to determine the distance between the laser scanner and the object (Shan & Toth 2018).

8

3.1 Equipment 3 SETUP

The RPlidar sensor stores the information inside an array and publishes the array to the

intended subscriber.

It is important to recognize that each of the array’s entries represent one laser ray and

that the array is ordered in a way that the first laser ray will be the first entry of the

array. If a laser ray does not collide with an object, the array will show ”Infinity”. For

every object that is recognized, the sensor will give the distance to the object in meters.

Figure 3 shows a schematic drawing of the process.

Depending on the user demands, various sensor settings can be adjusted. For example, it

is possible for the user to vary the field of view from 0° - 360° to for example 0° - 180°,
which will increase the computational capacity as a decreased number of rays will reduce

the distance calculations of the laser’s computer. However, the simulation performed for

this research will require a 360° view thus the robots will be identifiable from any position

in the simulation environment.

The standard setting also includes a resolution with the unit ’ray per degree’, which is

equal to 1. This proved disadvantageous during the simulation as a higher density of rays

was needed for the agents, located far from each other, to remain visible for the sensor

(see Figure 3). Accordingly, the resolution was increased to 10 rays
degree

.

Figure 3: Illustration of the functioning of the RPlidar sensor. Recognize that object 1 is

identified and object 2 is not.

9

3.2 Software 3 SETUP

3.2 Software

Figure 4: Picture of

four Nexus robots

spawned inside of

Gazebo

The software program chosen to execute the simulation is ROS

(Robotic Operating System). The software runs on the operat-

ing system Ubuntu 18.04 LTS (Bionic Beaver) and is updated to

its currently most recent version called ”ROS Melodic”. Addi-

tionally, the software is open source and offers message passing

between processes based on a subscriber-publisher principle. A

subscriber is a node that ’subscribes’ or acquires data from an-

other node and a publisher is a node that ’publishes’ or sends

data to another node. This methodology allows the existence of

decentralized controllers inside ROS because each robot will be

able to perform their own calculations.

At the beginning of each simulation, four nexus robots are spawned on individual coordi-

nates in the physics engine tool ”Gazebo”. Then, two algorithms (Data processing node,

Controller), written in the programming language ”Python”, are executed repeatedly.

The functioning of each code will be elaborated in sections later on. However, as each

mobile robot does its individual computations on board, a sum of eight codes needs to be

running simultaneously (see Figure 4).

Once everything is running correctly, each agent will use the velocity input of the controller

to calculate the direction and speed the mobile robot needs to maneuver in order to acquire

the desired geometrical shape. The measurements that have been collected by each robot

during the simulation (Input velocity of each robot and Inter-agent distance error) are

then formatted into a diagram and published to the user’s desktop.

3.3 Data processing node

The data processing node’s function is to structure the information received from the

scanner and publish only what is needed to the controller. The process of structuring the

data will be elaborated in the following section.

Firstly, the data processing node subscribes to the published data of the individual robot

measured by the laser. The data is then analyzed for clusters or more specifically groups

of values that show numbers and do not show infinite values. As the robots are the only

objects that have collision enabled inside of the simulation environment, it can be con-

cluded, that each cluster is representative for a robot. Therefore, the number of adjacent

neighbours is determined by counting the number of clusters.

10

3.4 Controller 3 SETUP

Secondly, the infinite values inside of the array are filtered out by the data processing

node and a separate array for each data cluster is constructed. If everything worked as

intended, there should be three separated and ordered arrays. Next, the distance to each

robot is calculated by finding the average value of each cluster. The relative angle is deter-

mined by counting the number of rays that have been shot out since the starting position

of the laser scan. Knowing that the resolution is 10 rays
degree

will result in the relative angle

towards each robot.

Lastly, the relative distance dij and position vector zij of each robot are summarized into

a vector called ”Z-values”, which is published to the respective controller. The code for

the data processing node is represented in the Appendix Listing 1.

3.4 Controller

The controller’s code used during this research is based on a Matlab code formulated

by Nelson P.K. Chan which is transferred to a Python code and implemented into the

ROS environment by the researcher. The objective of the controller is to use the Z-value

vector, published by the data processing node, to calculate a control input that will steer

the robot into its desired position. The way the controller operates is explained in the

following section.

Before the Z-value vector can be used to calculate the velocity input for the nexus robots,

the desired angle towards the robots needs to be determined. For convenience, the de-

sired angle is calculated inside the code and not entered manually. This procedure has

the advantage that the user has to define only the height (a) and width (b) of the desired

formation shape before the simulation, and the code will compute the remaining values

needed for the control law.

Thereafter, the respective data for each nexus robot is attained from the Z-value vector.

The data is then used to compute the control input which is published to nexus robot.

The code for the controller is represented in the Appendix Listing 2.

3.5 Simulation

Before a series of simulations is conducted, a structured plan is made that will guarantee

comprehensive data acquisition. It is ensured that every simulation will test distinctive

system properties thus collecting rigorous data that will pinpoint the control law’s limi-

tations.

11

3.5 Simulation 3 SETUP

Overall, three formation shapes will be tested. The first formation will have a height of 4m

and a width of 3m. This specific formation shape was also tested by Chan et al. (2020),

thus a successful simulation will demonstrate the general functionality of the control law.

The second formation will be a square of 5m. This formation intends to test the system’s

behavior if Nexus 1 and Nexus 4 have two identical inner-angles towards the robots Nexus

2 and Nexus 3. The last formation will be of height 2.5m and width of 5m. This scenario

will test the collision avoidance feature of the control law as the robots (Nexus 1 Nexus

2 + Nexus 3 Nexus 4) will need to maneuver closely to the minimal inner distance of 2r

without crashing into each other.

Secondly, each of the three formation shapes will be explored regarding their regions of

attraction. Therefore, each robot will be positioned at an increasing distance from their

initial point of solution. All together, three zones are created around each of the four

points of convergence. The first zone will test the local convergence of the formation

shape and covers an radius of 1m from the initial point of convergence. The second zone

reaches from 1m to 2m from the initial point of convergence and the third zone can be

any where from 2m and higher. The intention is to create an increasingly challenging

situation in order to identify reasons of failure.

Thirdly, within each zone the robots will be placed at three different positions. The first

position tested should be the most basic and easiest placement to converge from, so that it

can be proven that the displacement from the solution point is not the reason for failure.

Consequently, the first position will be a scaled version of the desired formation shape.

The second and third position will be chosen randomly within each zone. However, it

should be recognized, that the second positioning is an ’easier’ shape to converge from

than the third positioning. Meaning, the third positioning tries to test limitations by:

• placing robots in between the sight of view of other robots

• switching the position of two robots to see if they can be identified correctly by their

adjacent neighbours

• creating an initial formation shape that is contrasting to the desired formation shape

Finally, each positioning will be tested three times. Nonetheless, the gain of each con-

troller will be increased after each attempt. The gain was chosen from the following

values: 10, 20, 50, 100, 200, 500. Higher gain values are used when the robots are placed

further away from each other. This decision was made to increase the converging time

significantly as the inner angle decreases considerably if long-distance measurements are

taken. Consequently, the control input is multiplied with a value much smaller than 1,

resulting in an extremely low velocity input that sometimes is lower than 0.002 m
s

, which

12

3.5 Simulation 3 SETUP

stops the robot’s movement (see Section 3.1.1).

To summarize, a total of 3 ·3 ·3 ·3 = 81 simulations will be conducted. The results of each

simulation will be captured on a summary table and saved in diagrams. Figure 17, 18 and

19 show a representation of the spawning positions of each robot on a coordinate system.

Each zone is marked by a ticked red circle that is placed around each of the four red solu-

tion points. The dots coloured in green, grey and blue represent the positions where each

robot was spawned. The green dot is the scaled version of the desired formation shape.

The grey and blue dots are randomly placed in each zone, whereby convergence from the

blue dots is more contrasting to the desired formation shape than than convergence from

the grey dots.

13

4 RESULTS

4 Results

This section will give a detailed description of the results obtained during the simulations.

First, an introduction to the notation of the summary table is given. Then, the results

of formation 1, 2 and 3 are described in Section 4.2, 4.3 and 4.4. Lastly, the performance

with respect to each zone will be analyzed (see Section 4.5) and the performance with

respect to the gains (see Section 4.6).

4.1 Notation of the result summary table

The summary tables (Figure 6, 8 and 11) include information for each simulation exe-

cuted. Each table shows data from 27 simulations that have been conducted for one spe-

cific formation shape. The initial position shows the x and y coordinates of each robot’s

spawning position. The convergence column gives information on whether the system

converged (”Yes”) or not (”No”). For the purpose of simplicity, the system is stated to

have converged if the final error range remains below 0.5m for each robot. Thereafter,

the next column shows the time it took for the system to converge. If the system did not

converge the time was not stated.

Then, the gain is given followed by the final error range. The column of the final error

range shows the error of the inner-center distance to each robot and uses a variety of

different notations. The notation ”0.2 > ” means that the final error did fluctuate due to

the robots readjusting progress. However, the absolute inner-center distance error never

got higher than 0.2m after convergence. The notation ”1.7 = ” shows that the robot’s

final error fluctuations were unusually small and remained at 1.7m. The intention for this

implementation, was to identify error causes more easily and to have another qualifier

for the quality of the systems final position. The notation ”0.4 ↑ ” illustrates that the

system converged until a final error of 0.4m, but then the final error started to increase

indefinitely. Lastly, a ”-” sign was used if the system did not converge or did not show

extraordinary behavior that could have been used for interpretation of error causes.

The ”Error causes” aim to give a brief insight into the reason why an error occurred. It

can be broken down to ”Wrong measurement”, ”View blockade”, ”Wrongly identified”,

”Not identified”, ”Instable” and ”?”. A wrong measurement can be traced back to the

data processing node. Even though the controller receives a value for each robot, the

measurement that is published is actually wrong. A similar but slightly different error

type is ”wrongly identified”. Each robot also receives a value for this in conjunction.

However, there is now a confusion of measurements between two robots, for example the

distance that should be published for the robot Nexus 2 is actually the distance from the

14

4.2 Formation a=3, b=4 4 RESULTS

robot Nexus 4. This error occurs as the data processing node identifies the robots by their

relative angle and not something more distinguishable, making tracking their neighbours

more difficult. The error ”Not identified” occurs if one or multiple robots are not sensed

by the sensor. Therefore, no data is published to the controller, and thus the robot is not

moving. Next, ”View blockade” has the same consequences as ”Not identified”. Only this

time the error can be further specified, meaning that one robot blocks the view between

two other robots, by standing in between two robots which results in fewer robots being

identified. Therefore, the two other robots cannot identify each other which leads to the

incomplete transmission of the Z-value vector. Lastly, ”?” means an error occurred but

the causes are unknown.

The final column shows the success percentage of each starting position, each convergence

zone and each formation shape.

4.2 Formation a=3, b=4

An individual description of each simulation would become extremely extensive and go

beyond the scope of the research. Therefore, it was decided to choose only specific simu-

lations that are representative for the general system behavior.

The formation a=3 b=4 demonstrated an overall success rate of 85.1% making it the

highest performing formation. The average time spent converging was 26.07s. In general

the system did not have noticeable difficulties with converging to the desired formation

shape, considering the fact that robots’ starting positions were not switched (see Figure

6, Zone 3, Position 3, Try 1-3, where each simulation failed due to a wrong identification

at the beginning) or the robots did not block each others’ sight of view (see Figure 6,

Zone 2, Position 3, Try 3, where the view of sight between Nexus 2 and 3 was blocked by

Nexus 4).

Nonetheless, one specific error did occur, which is noteworthy, as it happened during later

simulations too. During the second try of position 3 in zone 2 (see Figure 5), wrong

measurement values got published to the robot Nexus 1 which resulted in a crash of the

controller. The exact cause of the wrong transmission cannot be diagnosed, but the in-

terruption in the graphical plot of the input velocity (see Figure 5b) and the peaks from

seconds 7.5 - 9 in the graphical plot of the inter-agent distance error measurement (see

Figure 5a) are common identifications for the incident of this specific error. When reading

up on the measurements inside of the data processing node, it can be seen that an inter-

agent distance of below 2 got transmitted. Accordingly, it is logical that the controller

would crash because it contradicts the constraint of collision avoidance (see Section 2.2.2).

15

4.2 Formation a=3, b=4 4 RESULTS

(a) The inter-agent distance error measurement

of Nexus 1 during the second try of position 3

in zone 2 for formation 1 (a = 3, b = 4)

(b) The input velocity measurement of Nexus

1 during the second try of position 3 in zone 2

for formation 1 (a = 3, b = 4)

Figure 5: Illustration of the inter-agent distance error measurement and input velocity of

Nexus 1 during the simulation

Moreover, Figure 20a shows a typical example of a successful convergence to formation 1.

Note that exponential convergence is not observable as the speed of the Nexus robots got

limited to a maximum of 0.2m
s

(see Section 3.1.1).

Figure 6: Table that summarizes important data from the 27 simulations done on the

Formation 1 (a=3, b=4)

16

4.3 Formation a=5, b=5 4 RESULTS

4.3 Formation a=5, b=5

The formation a = 5 b = 5 had a success rate of 51.85% with an average convergence

time of 22.69s. The average final error range of the formation is 0.16m. If the system

did converge, it happened relatively smoothly and faster compared to the simulations of

other formations. Figure 7a shows a good example for a stable convergence.

(a) The inter-agent distance error measurement

of Nexus 1 during the first try of position 1 in

zone 3 for formation 2 (a = 5, b = 5)

(b) The inter-agent distance error measure-

ment of Nexus 4 during the first try of position

2 in zone 3 for formation 2 (a = 5, b = 5)

Figure 7: Illustration of two inter-agent distance error measurements of Nexus 1 and

Nexus 4 during the simulation

The first errors that occured in zone 1, position 3, try 1-3 were foreseeable as the posi-

tioning of the robots triggered a view blockade between Nexus 2 and Nexus 3 caused by

Nexus 4 (see Figure 18 the blue dots in zone 2). This had the consequence that Nexus

2 and 3 only recognized 2 robots which shortened the Z-value vector, thus the controller

used wrong or no values for its calculation. In most of the cases the agents started drifting

away from each other as wrong velocity inputs are received.

However, in zone 3 another error occurred that cannot be pinpointed. Essentially, as

soon as the robots began converging to their desired formation shape everything seemed

to work accordingly. Nevertheless, once all the agents reached the minimum inter-agent

distance error, Nexus 1 and Nexus 4 started drifting away until they have reached an error

of 1.7m, while Nexus 2 and Nexus 3 kept their desired inter-agent distance of 5m. Figure

7b and Figure 20b,c show the same behavior during other simulations. This behavior

together with a possible solution will be further discussed in Section 5.1.

17

4.4 Formation a=2.5, b=5 4 RESULTS

Figure 8: Table that summarizes important data from the 27 simulations done on the

Formation 2 (a=5, b=5)

4.4 Formation a=2.5, b=5

The formation a = 2.5 and b = 5 did have the same success percentage as formation 2 of

51.85%. The average convergence time of formation 3 is 69.7s and the average final error

range is 0.167m.

The formation shape is the most unstable due to an uncertainty of the data processing

node. The simulations of zone 2 have an relatively low success rate of 11.1%. This is

caused by a wrong measurement transmission of Nexus 3. As it can be seen from Figure 9

the Nexus 3 robot did have a constant distance to Nexus 1 and Nexus 4 even though Nexus

4 continuously drifted away from Nexus 1. This type of system behavior is not possible.

In the simulation environment it was observed that Nexus 3 actually kept the intended

inter-agent distance of 2.5m to Nexus 4, but drifted away from Nexus 1. Therefore, it can

be concluded that the Z-value vector, transmitted from the data processing node to the

controller of Nexus 1, was wrong. however, the reason for the wrong measurement is un-

known. Further examples of the same behavior are given in Figure 20d, e in the Appendix.

Furthermore, another error was observed inside of zone 3. During each simulation within

zone 3, the system started converging accordingly until Nexus 4 had reached a specific

relative position to the other robots. As soon as this position was reached, Nexus 4 re-

ceived frequently data from four robots instead of three robots. Consequently, the graph

18

4.4 Formation a=2.5, b=5 4 RESULTS

(a) The inter-agent distance error measurement

of Nexus 1 during the third try of position 3 in

zone 2 for formation 3 (a = 2.5, b = 5)

(b) The inter-agent distance error measure-

ment of Nexus 4 during the third try of position

3 in zone 2 for formation 3 (a = 2.5, b = 5)

Figure 9: Comparison of the measurements of the Nexus robots 1 4 during the same

simulation

jumps back and fourth between two values which caused the fluctuations in the graphical

plot (see Figure 10b). However, the other three agents continued to receive measurements

of only three robots (see Figure 10a). The ramifications of the wrong measurements were

that it was arbitrary if the system did converge or not. If the correct measurements out-

weigh the wrong measurements, the system would converge (see Figure 20f and Figure

21a-c). However, there are also multiple examples where the system did not converge

anymore (see Figure 21d,e).

When analyzing the graph accurately, it can be observed that the upper and lower values of

Nexus 1 copy the same trend as the upper and lower values of Nexus 3. This symmetry of

both trends might hint a confusion of the data processing node between the measurements

of Nexus 1 and 3. A possible cause and solution to fix this problem will be discussed in

Section 5.2.

19

4.5 Performance of each zone 4 RESULTS

(a) The inter-agent distance error measurement

of Nexus 1 during the second try of position 3

in zone 3 for formation 3 (a = 2.5, b = 5)

(b) The inter-agent distance error measure-

ment of Nexus 4 during the second try of po-

sition 3 in zone 3 for formation 3 (a = 2.5, b

= 5)

Figure 10: Comparison of the measurements of the Nexus robots 1 & 4 during the same

simulation

Figure 11: Table that summarizes important data from the 27 simulations done on the

Formation 3 (a=2.5, b=5)

4.5 Performance of each zone

The results of the three previous formation shapes have been restructured into a table

(see Figure 13). The new table focuses on the behavior of the three zones of the three

formation shapes with respect to the success percentage, convergence time and average

20

4.5 Performance of each zone 4 RESULTS

final error. The table is also visualized in three bar charts (see Figure 12a), 12b) and

12c)).

(a) (b)

(c)

Figure 12: The three diagrams illustrate the performance each formation inside of the

three zones with respect to the success percentage, the convergence time and final error

range

Figure 12a shows the success percentage with respect to each formation shape and the

zones 1 - 3 separated. Overall, the formation a=3 b=4 has the highest success rate of all

zones combined, followed by formation 2 and 3 which actually perform equally high.

Formation 1 and 2 show the trend that the success rate decreases with increasing zones

or in other words, with an increasing distances from the solution point. However, zone 2

is performing the lowest in formation 3.

Secondly, Figure 12b illustrates the convergence time with respect to each formation shape

and the zones 1 - 3 separated. Formation 3 has the highest convergence time by far while

Formation 1 and 2 needed approximately the same overall time to converge. There is no

obvious trend between the zones.

21

4.6 Performance of different gains 4 RESULTS

Finally, Figure 12c demonstrates the final error range with respect to each formation

shape and the zones 1 - 3 separated. Even though there is no evident trend between the

zones, there is a trend between the three formation shapes. Generally, the overall final

error did reduce slightly from formation 1 to formation 2 to formation 3.

Figure 13: The table analyzes the performance of each formation with respect to the three

different zones in terms of its convergence time, final error range and success percentage

4.6 Performance of different gains

In order to analyze the influence of the gains on the success percentage, convergence time

and final error another table has been created, summarizing the necessary information

(see Figure 15). The table has been visualized in three different bar charts (see Figure

14a, 14b and 14c) which will be described in this section.

The first chart (Figure 14a) shows the success percentage with respect to each gain and

the zone 1-3 separated. It is easily visible that zone 1 is performing the highest for all

gains used except for the gain 100, where zone 3 performs slightly better. Additionally,

it can be said that there is a correlation between an increasing success percentage and

decreasing gain.

Secondly, Figure 14b illustrates the convergence time with respect to each gain and the

zones 1 - 3 separated. The most obvious trend is that the convergence time decreases if the

gain increases inside the same zone. However, zone 2 at gain 100 represents an outlier as

the convergence time jumps up to 38.33s. Furthermore, the larger zones most commonly

have the highest convergence times within the same gain compared to the lower zones.

Finally, Figure 14c demonstrates the final error range with respect to each gain and the

zones 1 - 3 separated. Zone 1 gain 100 shows the maximum final error range while zone

2 gain 500 has the smallest final error range. Besides that, there are no obvious trends

within the data.

22

4.6 Performance of different gains 4 RESULTS

(a) (b)

(c)

Figure 14: The three diagrams illustrate the performance each gain (10, 20, 50, 100, 200,

500) inside of the three zones with respect to the success percentage, the convergence time

and final error range

Figure 15: The table analyzes the performance of each formation with respect to the used

gains (10, 20, 50, 100, 200, 500) in terms of its convergence time, final error and success

percentage

23

5 DISCUSSION

5 Discussion

The research intends to explore the global convergence capabilities of the control law made

by Chan et al. (2020) using computer simulation. The simulation series that was executed

to test the control law’s limitations revealed discrepancies which will be elaborated on in

this section. Finally, whether the research questions, formulated in Section 1.1.5 and

1.1.5, are answered by the results will be discussed.

5.1 Error of 1.7m

The cause for a displacement of 1.7m of the robots Nexus 1 and Nexus 4 is unknown, yet

a certain intervention of the system might offer a solution to the problem.

During the simulation of the formation described in Section 4.3, it was observed that the

connections of the robots Nexus 2 and Nexus 3 remained at a stable distance. It gave

the impression to the researcher that the connections (1↔2, 1↔3, 2↔4, 3↔4) are more

prioritized by the system than the connection between robot 1 and 4. In other words,

if Nexus 2 and Nexus 3 approached each other, it would have been possible for them to

keep the intended distance to Nexus 1 and Nexus 4 by pushing the robots more outward.

However, Nexus 2 and Nexus 3 are not able to sense that the connection 1↔4 becomes

increasingly incorrect due to the fact that each robot is decentralized and can only access

its own information. This means that Nexus 4 will be displaced by the ’power’ of two

robots while trying to keep the desired distance to Nexus 1 on its own.

A possible solution therefore might be to implement another connection between robot 2

and robot 3 so that the formation’s rigidity increases.

5.2 Data processing problem

In order to find a potential solution, that is able to fix the data processing problem de-

scribed in Section 4.4, the cause of the fluctuation needs to be traced back to its origin.

Firstly, fluctuations are caused by a confusion between the robots 1 and 3, which is caused

by the Z-vector. The Z-vector varies in size when the fluctuations occur because the Z-

vector was designed in such a way that it can store the information of any number of

robots. Therefore, the vector has three entries reserved for each robot that is recognized

by the laser. If the laser suddenly detects more than three robots, new entries will be

added into the Z-vector accordingly. The new vector might then move information from

its initial position and replace it with data of the additional robot. As a result, the con-

troller will call misleading information.

24

5.3 Research questions answered by the thesis 5 DISCUSSION

Nonetheless, the vector varies in size due to the wrong identification of the data processing

node. As described in Section 3.1.2, the data published by the laser scanner is a vector

with ideally three clusters because three robots are visible. However, in this scenario the

laser scanner will publish four clusters to the data processing node which then concludes

that the robot Nexus 4 is surrounded by four robots. A clearer understanding can be

obtained by looking at the following scenario. For example, a situation is created where

only the robots Nexus 4 and Nexus 2 are considered (see Figure 16). Nexus 4 starts to

scan for Nexus 2 with its rotating laser sensor, although this time, the starting position

of the laser scanner will be pointed on the center of Nexus 2. Then the scan will continue

clockwise around Nexus 4. However, as soon as the laser scan reaches its final position,

Nexus 2 will be measured a second time. This is extremely crucial as now the published

vector includes two clusters which are placed at the end and beginning of the array. The

data processing node will then interpret the two clusters as two robots even though only

one robot is recognized.

It is assumed that a similar situation occurs within the simulation of formation 3. The

agent starts to fluctuate once changing velocity inputs are received by the controller. An

improved code for the data processing node, that is able to combine data clusters from

the same robot, should be implemented into the controller.

Figure 16: Illustration of the assumed scenario in Section 5.2

5.3 Research questions answered by the thesis

The research aimed to find an answer to the following central question: ”What is the

performance of the control law for bearing-based formation control with respect to global

25

5.3 Research questions answered by the thesis 5 DISCUSSION

convergence using computer simulation?”. The question was then broken down into sev-

eral sub questions which are stated in Section 1.1.5. This subsection will discuss the

answers to the research question.

The results have found that the control law does converge with a success percentage of

62.9% to its desired formation shape. Additionally, provided that the gain is chosen

appropriately, the control law does not show a boundary of the robot’s distance away

from its point of solution. Nonetheless, the robots most probably do not converge if:

1. the robots rotational order is changed.

2. the robots are blocking each others sight of view.

3. the robots receive wrong measurement inputs by the data processing node.

The reasons for a simulation failure can , except for a few unknown cases, all be tracked

down to the data processing node or laser scanner. Not a single simulation failure could

be identified that failed due to the wrong computations of the control law. Therefore, it

can be assumed that the control law is globally convergent. However, global convergence

cannot be guaranteed as the chance of failure during a simulation was simply too high

hence a well-founded statement about the global convergence behavior of the control law

cannot be made.

First, the measurement and tracking inside of the simulation needs to be improved sig-

nificantly by rewriting the code for the data processing node. A new code will make the

simulation more stable guaranteeing a more accurate analysis of the control law. However,

revision of the data processing node goes beyond the scope of the research and therefore

it is suggested as future research.

26

6 FUTURE RESEARCH

6 Future Research

The simulation results showed that there is a high chance of failure due to the unrelia-

bility of the data processing node. Frequently, inaccurate and partially wrong data was

published by the data processing node to the controller of the robots and especially to

the robot ’Nexus 4’.

Although, the results of the research did diagnose the limitations of the control law, the

gathered data proved to be too unreliable because the simulation is highly error prone.

Therefore, it is suggested to improve the code of the data processing node further and

repeat a series of simulations. Comparing the gathered data to the results of this re-

search will identify similarities and dissimilarities, thus supporting the credibility of this

research’s findings. Moreover, new results can be found that will add on the knowledge

acquired in this research.

Another implementation into the system that is worth analyzing, is the addition of a

sixth edge between Nexus 2 and Nexus 3. Section 5.1 already mentioned that a new edge

might strengthen the formation’s stability. However, simulations need to be performed in

order to see if a sixth edge would remove fluctuations and stop Nexus 1 and Nexus 4 from

drifting outside of the formation shape.

27

7 CONCLUSION

7 Conclusion

In this thesis, a theoretically proven bearing-based formation control law was analyzed on

the control law’s performance with respect to its global convergence capabilities. In order

to test the control law, a series of simulations were executed on the software ROS Melodic.

Additionally, each robot used local information acquired only by a RPlidar laser scanner

mounted on to the robot, thus the control law did not make use of a centralized system.

The aim of the research was to identify the region of attraction, the success percentage,

the control law’s limitations and the reasons of failure. Therefore, 81 distinct simulations

tested a variety of scenarios, thus diagnosing the flaws of the simulation and control law.

The results have shown that the overall success percentage is 62.9%. Generally, it was

observed that an increasing displacement of the agents, away from the desired formation

shape, correlates with an increasing failure rate and convergence time. However, the final

error range did not correspond to the robot’s displacement towards its desired location.

Nonetheless, there was no region of attraction identified. Furthermore, the simulations

mainly failed due to a false transmission of distance measurements which also was the

main cause for a system failure. The wrong measurements were caused by the data pro-

cessing node that performed poorly in the interpretation of the laser scanner’s data. More

specifically, it is suggested to rewrite the code of the data processing node, so that track-

ing and identification features will be improved.

In conclusion, it is assumed that the control law is globally convergent. However, the sys-

tem is currently unstable, making the gathered data unreliable. Therefore, it is suggested

to improve the conversion of laser scanner measurement into usable data by rewriting the

code of the data processing node. Consequently, the new simulation will be more stable,

and the new findings will support the assumptions of the research.

28

REFERENCES REFERENCES

References

Ahn, H.-S. (2019), Formation Control, Vol. 205, Springer, Cham.

URL: https://ebookcentral.proquest.com/lib/[SITEID]/detail.action?docID =

5742866

Cao, K., Li, D. & Xie, L. (2019), ‘Bearing-ratio-of-distance rigidity theory with application

to directly similar formation control’, Automatica 109.

Chan, N. P., Jayawardhana, B. & de Marina, H. G. (2020), ‘Angle-constrained formation

control for circular mobile robots’.

de Queiroz, M., Cai, X. & Feemster, M. (2019), ormation Control of Multi-Agent Systems,

Wiley, CPI Group (UK) Ltd, Croydon, CR0 4YY.

Guo, J., Lin, Z., Cao, M. & Yan, G. (2010), ‘Adaptive leader -follower formation control

for autonomous mobile robots’.

Li, X., Luo, X., Wang, J., Zhu, Y. & Guan, X. (2018), ‘Bearing-based formation control of

networked robotic systems with parametric uncertainties’, Neurocomputing pp. 234–235.

Li, X. & Xie, L. (2018), ‘Dynamic formation control over directed networks using

graphical laplacian approach’, TRANSACTIONS ON AUTOMATIC CONTROL,

(11), 3761–3774.

URL: https://ieeexplore-ieee-org.proxy-ub.rug.nl/stamp/stamp.jsp?tp=arnumber=8270712

Rasshofer, R. H. & Gresser, K. (2005), ‘Automotive radar and lidar systems for next

generation driver assistance functions’.

Shan, J. & Toth, C. K. (2018), Topographic Laser Ranging and Scanning: Principles and

Processing, second edn, CRC Press.

URL: https://books.google.nl/books?id=dGpQDwAAQBAJlr=source=gbsnavlinkss

Sidman, J. & John, A. S. (2017), ‘The rigidity of frameworks:theory and applications’.

Slamtec (2018), ‘Prlidar a1’.

URL: https://www.slamtec.com/en/Lidar/A1

Trinh, M. H., Zhao, S., Sun, Z., Zelazo, D., Anderson, B. D. O., Fellow, L. & Ahn, H.-S.

(2019), ‘Bearing-based formation control of a group of agents with leader-first follower

structure’, IEEE Transactions on Automatic Control (2), 598–613.

29

REFERENCES REFERENCES

Appendix

Figure 17: Visual illustration of the spawning coordinates of each nexus robot for the

formation a=3 b=4

30

REFERENCES REFERENCES

Figure 18: Visual illustration of the spawning coordinates of each nexus robot for the

formation a=5 b=5

Figure 19: Visual illustration of the spawning coordinates of each nexus robot for the

formation a=2.5 b=5

31

REFERENCES REFERENCES

(a) The inter-agent distance error measurement

of Nexus 1 during the first try of position 2 in

zone 3 for formation 1 (a = 3, b = 4)

(b) The inter-agent distance error measure-

ment of Nexus 1 during the third try of po-

sition 2 in zone 3 for formation 2 (a = 5, b =

5)

(c) The inter-agent distance error measure-

ment of Nexus 1 during the second try of po-

sition 2 in zone 3 for formation 2 (a = 5, b =

5)

(d) The inter-agent distance error measure-

ment of Nexus 1 during the first try of position

3 in zone 2 for formation 3 (a = 2.5, b = 5)

(e) The inter-agent distance error measure-

ment of Nexus 1 during the second try of po-

sition 3 in zone 2 for formation 3 (a = 2.5, b

= 5)

(f) The inter-agent distance error measure-

ment of Nexus 1 during the first try of position

1 in zone 3 for formation 3 (a = 2.5, b = 5)

Figure 20: Collection of diagrams from ROS for illustration purposes Part 1

32

REFERENCES REFERENCES

(a) The inter-agent distance error measure-

ment of Nexus 4 during the first try of position

1 in zone 3 for formation 3 (a = 2.5, b = 5)

(b) The inter-agent distance error measure-

ment of Nexus 1 during the first try of position

3 in zone 3 for formation 3 (a = 2.5, b = 5)

(c) The inter-agent distance error measure-

ment of Nexus 4 during the first try of position

3 in zone 3 for formation 3 (a = 2.5, b = 5)

(d) The inter-agent distance error measure-

ment of Nexus 1 during the third try of po-

sition 3 in zone 3 for formation 3 (a = 2.5, b

= 5)

(e) The inter-agent distance error measure-

ment of Nexus 4 during the third try of po-

sition 3 in zone 3 for formation 3 (a = 2.5, b

= 5)

Figure 21: Collection of diagrams from ROS for illustration purposes Part 2

33

REFERENCES REFERENCES

1 #!/usr/bin/env python

2

3 from __future__ import division

4

5 import sys

6 from math import *

7 import rospy

8 import numpy as np

9 from rospy_tutorials.msg import Floats

10 from std_msgs.msg import Int32

11 from rospy.numpy_msg import numpy_msg

12 from sensor_msgs.msg import LaserScan

13

14

15 class determine_z_values:

16 ’’’ Determines the inter -agent distance values and publishes it to

z_values topic ’’’

17

18 ’’’ NOTE: this script requires the simulation with LIDAR to be

running first , as well as an input

19 argument , an example of how to properly run this code in the

terminal is as following:

20

21 rosrun lasmulticontrol3 dataprocessingnode_N.py "1"

22

23 Laser scanner angle zero is in the backward direction wrt the robot

as used here.

24 We use angles (0:360) ’’’

25

26 def __init__(self):

27 ’’’ Initiate self and subscribe to /scan topic ’’’

28

29 # which nexus?

30 self.name = ’n_1’

31

32 # Desired distance - used for sending if no z is found or if the

dataprocessingnode is shutdown:

33 # robot not influenced if one z not found

34 self.d = np.float32 (3)

35 self.dd = np.float32(np.sqrt(np.square(self.d)+np.square(self.d)

))

36

37 # set min and max values for filtering ranges in meter during

initiation

38 self.min_range = 0.25

39 self.max_range = 50

40

34

REFERENCES REFERENCES

41

42 # prepare shutdown

43 self.running = True

44 rospy.on_shutdown(self.shutdown)

45

46 # prepare publisher

47 self.pub = rospy.Publisher(self.name +’/z_values ’, numpy_msg(

Floats), queue_size =1) #Publish the distances and angles to agents in

range

48 self.PUB = rospy.Publisher(self.name +’/agents ’, Int32 ,

queue_size =1) #Publish the amount of surrounding agents

49

50 # subscribe to /scan topic with calculate_z as callback

51 rospy.Subscriber(’/n_1hokuyo_points ’, LaserScan , self.

calculate_z)

52

53 np.set_printoptions(precision =2)

54

55 def calculate_z(self , msg):

56 ’’’ Calculate the z_values from the scan data ’’’

57 # Check if not shutdown

58

59 self.ranges= np.asarray(msg.ranges)

60 # print self.ranges

61

62 if self.running:

63

64

65 # Save the angles (hits) of the robots in seperate

arrays

66 z_a = np.where((self.ranges >= self.min_range) & (self.

ranges <= self.max_range))[0] #The zero at the end is to access the

first value of the tuple created by "np.where", so z_a is just an

array

67

68 n = 1

69 # print ’z_a = ’,z_a

70 for i in range(len(z_a) -1): # Calculates the number of robots

71

72 if (z_a[i] - z_a[i + 1] >= -10):

73

74 continue

75

76 elif (-10 <= z_a[i] - z_a[i-1] <= 10):

77

78 n = n + 1

79

35

REFERENCES REFERENCES

80 R=[]

81 r=np.array ([])

82 Zval=np.array ([])

83

84 P = 0

85 # Compares difference between angles in z_a to decide if it’s a new

robot , and if it is it creates and array r, which is then added to

the list R

86 for i in range(P,len(z_a) -1):

87

88

89 if (z_a[i] - z_a[i + 1] >= -10) and i!=(len((z_a))

-2):

90

91 r=np.append(r,z_a[i])

92 elif (-10 <= z_a[i] - z_a[i - 1] <= 10):

93 r=np.append(r,z_a[i])

94 R.append(r)

95 P = 1+i

96 r=np.array ([])

97

98 elif (z_a[i] - z_a[i + 1] >= -10) and i==(len((z_a)) -2):

99 r=np.append(r,z_a[i])

100 R.append(r)

101

102

103 for i in range(n): #transform list R to array of integers

104 R[i]=R[i]. astype(int)

105 #print R

106

107 if z_a [0]==0 and z_a [-1]==7199: #This loop makes sure

that a robot is not read twice if it is located at the scan starting

point (Doesn’t work perfectly)

108 R[0]= np.append(R[0],R[-1])

109 del R[-1]

110 n=n-1

111

112 self.PUB.publish(n)

113 k = 2

114

115

116 #print(R)

117 self.z_aX=np.zeros([len(R)])

118 self.zn_X=np.zeros([len(R)])

119 self.z_a_min=np.zeros([len(R)])

120 self.z_a_max=np.zeros([len(R)])

121 self.zn_min=np.zeros([len(R)])

36

REFERENCES REFERENCES

122 self.zn_max=np.zeros([len(R)])

123

124 for j in range(0,n): #This section makes matrices for

the distances to each neighbour

125

126 if R[j] != np.array ([]):

127

128 self.z_aX[j] = int((np.round((R[j]).mean()))

/(200)) #Matrix of mean distance from the read values to each

neighbour

129 # /200 is needed for a resolution of 10 and

samples of 7200 10*20=200 (see hokuyo_utm30lx.urdf.xacro)

130 self.zn_X[j] = np.float32(np.min(self.ranges [(R[

j][0:(len(R[j]))])]))

131

132 # Tracking variables

133

134 self.z_a_min[j] = np.min(np.int_(R[j][0: len(R[j

])]))

135

136 self.z_a_max[j] = np.max(np.int_(R[j][0: len(R[j

])]))

137

138 self.zn_min[j] = np.min(np.float32(self.ranges[

np.int_(R[j][0: len(R[j])])]))

139

140 self.zn_max[j] = np.max(np.float32(self.ranges[

np.int_(R[j][0: len(R[j])])]))

141

142 else:

143

144 self.z_aX[j] = 0

145

146 self.zn_X[j] = self.d

147

148

149 self.z_aX=self.z_aX.astype(int) #transform z_aX to an

array of integers

150 print’distance (2, 4, 3)= ’,self.zn_X

151 print’angle= (2, 4, 3)= ’,self.z_aX

152 Zval =[]

153 self.zx=np.zeros([len(R)])

154 self.zy=np.zeros([len(R)])

155 self.z_values =[] #np.zeros ([3* len(R)])

156

157 for i in range(0,n): #Loop to calculate x and y distance

to each neighbour

37

REFERENCES REFERENCES

158

159 self.zx[i] = np.float32(np.cos((self.z_aX[i]-np.int_

(180))*2*np.pi /360)*self.zn_X[i]) #2*np.pi/360: converts to radians

160

161 self.zy[i] = np.float32(np.sin((self.z_aX[i]-np.int_

(180))*2*np.pi /360)*self.zn_X[i])

162

163 Zval.append ([self.zn_X[i], self.zx[i], self.zy[i]])

164

165 print ("data from Nexus 1 (2, 4, 3):")

166 for i in range(0,n): #Loop to print the x and y

distances of detected agents

167

168 print ’zx_[’,i,’] = ’, self.zx[i]

169 print ’zy_[’,i,’] = ’, self.zy[i]

170 print ’--’

171

172 print ’--------------------’

173

174

175 for i in range(0,n): #This loop puts all the values into

the z_values matrix

176

177 self.z_values= np.concatenate(Zval [:][:])

178

179 self.z_values=np.asarray(self.z_values , dtype=np.float32

) #this line ensures that all numbers are type np_float (without it

the publisher doesn’t publish the proper values)

180

181 print ’Z values = ’,self.z_values

182

183

184 # publish z_values to send to Controller Node

185 self.pub.publish(self.z_values)

186

187

188 def shutdown(self):

189 rospy.loginfo("Stopping dataprocessingnode_1")

190 self.running = False

191 self.z_values = np.array([self.d, self.d, 0, \

192 self.dd , self.dd , 0, \

193 self.d, self.d, 0], dtype=np.float32)

194 self.pub.publish(self.z_values)

195 print (’Shutting Down’)

196 rospy.sleep (1)

197

198 if __name__ == ’__main__ ’:

38

REFERENCES REFERENCES

199 rospy.init_node(’dataprocessingnode_1 ’, anonymous=False)

200 determine_z_values ()

201 rospy.spin()

Listing 1: Data processing node of robot 1

39

REFERENCES REFERENCES

1 #!/usr/bin/env python

2

3 #Import important packages

4 from __future__ import division

5 from math import *

6 import rospy

7 import matplotlib.pyplot as pl

8 import numpy as np

9 from rospy_tutorials.msg import Floats

10 from rospy.numpy_msg import numpy_msg

11 from geometry_msgs.msg import Twist

12

13 # Number of robots = 4

14 # They are linked to each other in the following way

15 # Robot $ 1 $ has a link with Robots $ 2 $, $ 3 $, and $ 4 $

16 # Robot $ 2 $ has a link with Robots $ 1 $, and $ 4 $

17 # Robot $ 3 $ has a link with Robots $ 1 $, and $ 4 $

18 # Robot $ 4 $ has a link with Robots $ 1 $, $ 2 $, and $ 3 $

19

20 ##

21 # Dimensions

22 N = 4 # Number of circular robots

23 M = 5 # Number of edges

24 d = 2 # Ambiance dimension

25 r = 1 # Radius of each robot

26

27 ##

28 # Desired formation shape

29 # Rectangle shape

30 a = 2.5 # a = Width

31 b = 5 # b = Height

32 # Positioned in clockwise direction

33

34 # Robot positions BEFORE translation + rotation

35 p1r = np.array ([[0] , [0]])

36 p2r = np.array ([[a], [0]])

37 p3r = np.array ([[0] , [b]])

38 p4r = np.array ([[a], [b]])

39

40 # Translate + rotate the desired formation shape

41 #TVector = np.array ([[2] , [2]]) # Translation vector

42 #RotAngle = 30 # Rotation angle

43 #RotMatrix = np.array ([[cos(degrees(RotAngle)), -sin(degrees(RotAngle))

], [degrees(sin(RotAngle)), cos(degrees(RotAngle))]])

44 # Rotational matrix

45

46 # Robot positions AFTER translation + rotation

40

REFERENCES REFERENCES

47 #p1d = np.dot(RotMatrix , p1r) + TVector

48 #p2d = np.dot(RotMatrix , p2r) + TVector

49 #p3d = np.dot(RotMatrix , p3r) + TVector

50 #p4d = np.dot(RotMatrix , p4r) + TVector

51

52 # Stacked position vector

53 #pd = np.array ([[p1d], [p2d], [p3d], [p4d]])

54

55 # Relative state variables

56 # Relative position

57 z12d = p2r - p1r

58 z13d = p3r - p1r

59 z14d = p4r - p1r

60 z24d = p4r - p2r

61 z34d = p4r - p3r

62

63 # Relative distance

64 d12d = np.linalg.norm(z12d)

65 d13d = np.linalg.norm(z13d)

66 d14d = np.linalg.norm(z14d)

67 d24d = np.linalg.norm(z24d)

68 d34d = np.linalg.norm(z34d)

69

70 # Cosine of internal angle (Article Formula (5))

71 ctheta12d = 1 - 2 * (r / d12d)**2

72 ctheta13d = 1 - 2 * (r / d13d)**2

73 ctheta14d = 1 - 2 * (r / d14d)**2

74 ctheta24d = 1 - 2 * (r / d24d)**2

75 ctheta34d = 1 - 2 * (r / d34d)**2

76

77 # Stacked cosine vector

78 cthetad = np.array ([[ctheta12d], [ctheta13d], [ctheta14d], [ctheta24d],

[ctheta34d]])

79

80 # Desired Internal angle

81 theta12d = np.arccos(ctheta12d)

82 theta13d = np.arccos(ctheta13d)

83 theta14d = np.arccos(ctheta14d)

84 theta24d = np.arccos(ctheta24d)

85 theta34d = np.arccos(ctheta34d)

86

87 # Stacked internal vector

88 thetad = np.array ([[theta12d], [theta13d], [theta14d], [theta24d], [

theta34d]])

89

90 # Fixed constants / Interval for the error vector (e = ctheta - cthetad)

91 cd = cthetad - 0.5

41

REFERENCES REFERENCES

92 fd = 1 - cthetad

93

94 # Minimum value

95 bb = np.minimum (0.5 * cd , fd)

96

97 ###

98 class controller:

99 ’’’ The controller uses the interagent distances to determine the

desired velocity of the Nexus ’’’

100

101 def __init__(self):

102 ’’’ Initiate self and subscribe to /z_values topic ’’’

103 # controller variables

104 self.running = np.float32 (1)

105

106 self.U_old = np.array([0, 0])

107 self.U_oldd = np.array([0, 0])

108

109 # Motion parameters

110

111 # prepare Log arrays

112 self.einndis12_log = np.array ([])

113 self.einndis13_log = np.array ([])

114 self.einndis14_log = np.array ([])

115 self.Un = np.float32 ([])

116 self.U_log = np.array ([])

117 self.time = np.float64 ([])

118 self.time_log = np.array ([])

119 self.now = np.float64 ([rospy.get_time ()])

120 self.begin = np.float64 ([rospy.get_time ()])

121 self.k = 0

122

123 # prepare shutdown

124 rospy.on_shutdown(self.shutdown)

125

126 # prepare publisher

127 self.pub = rospy.Publisher(’/n_1/cmd_vel ’, Twist , queue_size =1)

128 self.velocity = Twist()

129

130 # subscribe to z_values topic

131 rospy.Subscriber(’/n_1/z_values ’, numpy_msg(Floats), self.

controller)

132

133 # subscribe to controller_variables

134 rospy.Subscriber(’/controller_variables ’, numpy_msg(Floats),

self.update_controller_variables)

135

42

REFERENCES REFERENCES

136 def update_controller_variables(self , data):

137 ’’’ Update controller variables ’’’

138 if self.running < 10:

139 # Assign data

140 self.controller_variables = data.data

141

142 # Safe variables

143 self.running = np.float32(self.controller_variables [0])

144

145

146 def controller(self , data):

147 ’’’ Calculate U based on z_values and save error velocity in log

arrays ’’’

148 if self.running < 10:

149 # Input for controller

150 z_values= data.data

151 Ktheta = 500

152

153 #get z_values

154 z12 = np.array ([[z_values [1]], [z_values [2]]])

155 z13 = np.array ([[z_values [7]], [z_values [8]]])

156 z14 = np.array ([[z_values [4]], [z_values [5]]])

157

158 # Relative distance

159 d12 = z_values [0]

160 d13 = z_values [6]

161 d14 = z_values [3]

162

163 print "Relative distances = ",d12 ,d13 ,d14

164 print "Desired distances = ",d12d ,d13d ,d14d

165

166 # Decompose cd

167 # Lower bound for error

168 c12d = cd[0]

169 c13d = cd[1]

170 c14d = cd[2]

171

172 # Decompose cthetad

173 # Desired cosine values

174 ctheta12d = cthetad [0]

175 ctheta13d = cthetad [1]

176 ctheta14d = cthetad [2]

177

178 # Cosine of internal angle

179 ctheta12 = 1 - 2 * (r / d12)**2

180 ctheta13 = 1 - 2 * (r / d13)**2

181 ctheta14 = 1 - 2 * (r / d14)**2

43

REFERENCES REFERENCES

182

183 theta12 = np.arccos(ctheta12)

184 theta13 = np.arccos(ctheta13)

185 theta14 = np.arccos(ctheta14)

186

187 print ’Desired angle = ’,theta12d ,theta13d ,theta14d

188 print ’Actual angle = ’,theta12 ,theta13 ,theta14

189

190 # Sine of internal angle

191 stheta12 = np.sin(theta12)

192 stheta13 = np.sin(theta13)

193 stheta14 = np.sin(theta14)

194

195 # Error in cosine value

196 etheta12 = ctheta12 - ctheta12d

197 etheta13 = ctheta13 - ctheta13d

198 etheta14 = ctheta14 - ctheta14d

199

200 # Inner distance error

201 einndis12 = d12 - d12d

202 einndis13 = d13 - d13d

203 einndis14 = d14 - d14d

204

205 #Control law

206 v12 = r * ((etheta12 * c12d) / ((etheta12 + c12d)**3))

207 v13 = r * ((etheta13 * c13d) / ((etheta13 + c13d)**3))

208 v14 = r * ((etheta14 * c14d) / ((etheta14 + c14d)**3))

209

210 sa12 = 1 / (2*r) * stheta12

211 sa13 = 1 / (2*r) * stheta13

212 sa14 = 1 / (2*r) * stheta14

213

214 gplus12 = 2 * sa12 * z12

215 gplus13 = 2 * sa13 * z13

216 gplus14 = 2 * sa14 * z14

217

218 mgplus12 = 4 * (sa12)**2 * d12**2

219 mgplus13 = 4 * (sa13)**2 * d13**2

220 mgplus14 = 4 * (sa14)**2 * d14**2

221

222 parV12 = -2 * v12 * (1-ctheta12) * stheta12 * ((gplus12)/(

mgplus12))

223 parV13 = -2 * v13 * (1-ctheta13) * stheta13 * ((gplus13)/(

mgplus13))

224 parV14 = -2 * v14 * (1-ctheta14) * stheta14 * ((gplus14)/(

mgplus14))

225

44

REFERENCES REFERENCES

226 #tparV12 = -v12 * ((4*r**2)/(d12 **4))*z12

227 #tparV13 = -v13 * ((4*r**2)/(d13 **4))*z13

228 #tparV14 = -v14 * ((4*r**2)/(d14 **4))*z14

229

230 # Individual control law

231 U = - Ktheta * parV12 - Ktheta * parV13 - Ktheta * parV14

232

233 print "U robot1= ", U

234

235 # Saturation

236 v_max = 0.2

237 v_min = 0.002

238 for i in range(len(U)):

239 if U[i] > v_max:

240 U[i] = v_max

241 elif U[i] < -v_max:

242 U[i] = -v_max

243 elif -v_min < U[i]+self.U_old[i]+self.U_oldd[i] < v_min

: # preventing shaking

244 U[i] = 0

245

246 # Set old U values in order to prevent shaking

247 self.U_oldd = self.U_old

248 self.U_old = U

249

250

251 # Append error and velocity in Log arrays

252 self.einndis12_log = np.append(self.einndis12_log , einndis12

)

253 self.einndis13_log = np.append(self.einndis13_log , einndis13

)

254 self.einndis14_log = np.append(self.einndis14_log , einndis14

)

255 self.Un = np.float32 ([np.sqrt(np.square(U[0])+np.square(U

[1]))])

256 self.U_log = np.append(self.U_log , self.Un)

257

258 # Save current time in time log array

259 if self.k < 1:

260 self.begin = np.float64 ([rospy.get_time ()])

261 self.k = 10

262 self.now = np.float64 ([rospy.get_time ()])

263 self.time = np.float64 ([self.now -self.begin])

264 self.time_log = np.append(self.time_log , self.time)

265

266 # publish

267 self.publish_control_inputs(U[0], U[1])

45

REFERENCES REFERENCES

268

269 elif 10 < self.running < 1000:

270 self.shutdown ()

271

272 def publish_control_inputs(self ,x,y):

273 ’’’ Publish the control inputs to command velocities

274

275 NOTE: somehow the y direction has been reversed from the

indigo -version from Johan and

276 the regular kinetic version. Hence the minus sign.

277

278 ’’’

279

280 self.velocity.linear.x = x

281 self.velocity.linear.y = y

282

283 # print ’cmd_vel NEXUS 1 (x,y)’, self.velocity.linear.x, self.

velocity.linear.y

284 # rospy.loginfo(self.velocity)

285

286 self.pub.publish(self.velocity)

287

288 def shutdown(self):

289 ’’’ Stop the robot when shutting down the controller_1 node ’’’

290 rospy.loginfo("Stopping Nexus_1 ...")

291 self.running = np.float32 (10000)

292 self.velocity = Twist()

293 self.pub.publish(self.velocity)

294

295 # np.save(’/home/s2036975/Documents/Master Thesis/experiments/

experiment_x/E1_log_nx1 ’, self.E1_log)

296 # np.save(’/home/s2036975/Documents/Master Thesis/experiments/

experiment_x/E4_log_nx1 ’, self.E4_log)

297 # np.save(’/home/s2036975/Documents/Master Thesis/experiments/

experiment_x/U_log_nx1 ’, self.U_log)

298 # np.save(’/home/s2036975/Documents/Master Thesis/experiments/

experiment_x/time_log_nx1 ’, self.time_log)

299

300 rospy.sleep (1)

301

302

303 pl.close("all")

304 pl.figure (0)

305 pl.title("Inter -agent distance error measured by Nexus 1")

306 pl.plot(self.time_log , self.einndis12_log , label="e1_nx2", color

=’b’)

307 pl.plot(self.time_log , self.einndis13_log , label="e1_nx3", color

46

REFERENCES REFERENCES

=’y’)

308 pl.plot(self.time_log , self.einndis14_log , label="e1_nx4", color

=’r’)

309 pl.xlabel("Time [s]")

310 pl.ylabel("Error [m]")

311 pl.grid()

312 pl.legend ()

313

314 pl.figure (1)

315 pl.title("Input velocity Nexus 1 ")

316 pl.plot(self.time_log , self.U_log , label="pdot_nx1", color=’b’)

317 pl.xlabel("Time [s]")

318 pl.ylabel("Velocity [m/s]")

319 pl.grid()

320 pl.legend ()

321

322 pl.pause (0)

323

324

325

326 if __name__ == ’__main__ ’:

327 try:

328 rospy.init_node(’controller_1 ’, anonymous=False)

329 controller ()

330 rospy.spin()

331 except:

332 rospy.loginfo("Controller node_1 terminated.")

Listing 2: Controller 1

47

	Introduction
	Problem analysis
	System description
	Problem context
	Problem statement
	Research objective
	Research questions

	Literature review
	Preliminaries
	Graph theory
	Rigidity theory
	Local versus global convergence

	The control law
	Notation
	Angle-constrained formation control problem

	Setup
	Equipment
	Nexus robots
	Laser sensor

	Software
	Data processing node
	Controller
	Simulation

	Results
	Notation of the result summary table
	Formation a=3, b=4
	Formation a=5, b=5
	Formation a=2.5, b=5
	Performance of each zone
	Performance of different gains

	Discussion
	Error of 1.7m
	Data processing problem
	Research questions answered by the thesis

	Future Research
	Conclusion

