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“On the mountains of truth you can never climb in vain: either you will reach a point
higher up today, or you will be training your powers so that you will be able to climb higher
tomorrow.”

Friedrich Nietzsche
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Abstract
The massive usage of online social networks has amplified the negative effects that
misinformation has on society. To counter misinformation, fact-checkers try to ver-
ify and debunk news stories. However, due to the speed at which misinformation is
disseminated, manual fact-checking often comes too late. Moreover, misinformation
influences people’s thoughts, beliefs, and opinions even after it has been corrected.
Therefore, to prevent misinformation from being harmful, it is crucial to detect mis-
information in real-time, when it begins to spread.

Automatic approaches have been proposed that utilize machine learning techniques
combined with a variety of features that discriminate misinformation from trusted
information. These approaches rely on micro-blog posts that disseminate misinfor-
mation on online social networks, such as diffusion patterns, linguistic cues, or user
characteristics. The more micro-blog posts become available, the easier it gets to de-
tect misinformation. This makes misinformation detection a time-sensitive task, in
which a trade-off is needed between efficiency and effectiveness.

In this thesis, we focus on the early detection of misinformation on online social net-
works, and evaluate the effectiveness of different features. We do this by extracting
a comprehensive set of network and linguistic features and propose a deep learning
model that combines both feature types. Moreover, we combine the network and
linguistic features with temporal information about diffusion patterns and evaluate
their performances with respect to the earliness of detection.

Because shared misinformation datasets are lacking a method for constructing large,
topic-dependent Twitter datasets has been proposed and used to create a novel po-
litical misinformation dataset. Experiments on this dataset demonstrate that our
proposed method detects misinformation with an accuracy of 93% in near real-time.
Moreover, we find linguistic features outperforming network features and provide
a deep insight into which individual features are effective to detect misinformation,
taking into account the time needed for detection.
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Chapter 1

Introduction

1.1 Introduction

As the printing press increased the spread of information, the internet has increased
the speed and scale at which information can spread. Nowadays, one-third of the
world population uses online social networks (OSNs), like Twitter or Facebook, to
obtain and share information (Ortiz-Ospina, 2019). On these networks news stories
can be broadcast to large numbers of people within minutes after being published.
Therefore OSNs have become a powerful tool in the current media landscape. How-
ever, unlike traditional media, everybody can post and share news stories without
having to comply with some principles regarding quality and truthfulness. As a re-
sult, OSNs are being utilised to disseminate misinformation such as, for example,
propaganda, hoaxes, conspiracy theories, and rumors.

Although misinformation has been around for a long time the speed and quantity at
which misinformation is currently disseminated amplifies the negative effects that
misinformation has on society. Online misinformation has become a weapon to ma-
nipulate the public opinion at scale and recent studies have shown what harmful
consequences this can have politically, economically, and in various other ways. The
use of misinformation to influence people’s opinion was brought to light after the
U.S. presidential election and the Brexit in 2016. It is now widely believed that mis-
information that circulated on OSNs during these elections have influenced their
outcomes (Allcott and Gentzkow, 2017; Howard and Kollanyi, 2016). It was also
this year that Oxford Dictionaries declared ’post-truth’ as international word of the
year1, indicating the disappearance of shared objective standards for truth. Since
then the general consensus is that online misinformation is a serious threat to soci-
ety.

To counter misinformation fact-checkers verify news stories and correct inaccurate
or false information. However, manual fact-checking is not resistant to the quan-
tity and speed at which deceptive information is currently propagated. Further,
researchers have concluded that correcting misinformation after dissemination is
too late to be fully effective e.g. (Lewandowsky et al., 2017), due in part to the
”continued-influence effect” (Lewandowsky et al., 2012): damage caused by expo-
sure to misinformation is hard to undo. This is why detecting and verifying misin-
formation in real-time, as it begins to spread, is crucial.

Previous efforts to automate misinformation detection have utilized machine learn-
ing techniques and combined this with features extracted from article content or

1https://languages.oup.com/word-of-the-year/2016/

https://languages.oup.com/word-of-the-year/2016/
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social context information, such as micro-blog posts, diffusion behaviour, and user
characteristics (Shu et al., 2017). Although various studies proved that these features
are effective in detecting misinformation after dissemination, only a few studies ap-
plied these features to early detection (Pierri and Ceri, 2019).

In this thesis, we want to investigate what features are optimal for automatic mis-
information detection on OSNs with respect to the earliness of detection.2 To do
this we focus on micro-blog posts that broadcast hyperlinks to news articles, either
misinformation or not. We ignore the actual context of these hyperlinks but focus
on the linguistic, network, and temporal properties of these posts. This approach is
motivated by the fact that it appears to be difficult and non-trivial to use only the
text of an article for detection (Shu et al., 2017).

Another issue within this research domain is the lack of ground-truth data to eval-
uate detection methods. This is due to a number of reasons that make creating a
benchmark misinformation dataset very difficult. One of these reasons is that misin-
formation comes in all shapes and sizes, which makes it hard, or even impossible, to
let the dataset include all types of misinformation. This has as consequence that the
performance of a feature highly depends on the data that is used during evaluation.
In this thesis our aim is to find the optimal features for misinformation detection in
general, however, because misinformation detection is topic-dependent and over-
represented in political news (Vosoughi et al., 2018), we decided to evaluate these
features on politically related misinformation articles.

1.2 Research Questions

In essence, the main objective of this thesis is to find out what linguistic, network,
and temporal features, extracted from OSNs, are optimal for the early detection of
misinformation. Additionally, we identify the problems with current datasets and
propose a method to create a novel dataset to evaluate our methods. To support the
main objective we formulated the following research question:

. . .

Which linguistic, network and temporal features can be used effectively for the
early detection of political related misinformation on online social networks?

. . .

To answer the main research question we decomposed this question into the follow-
ing sub-questions:

• SQ1. How can we construct a dataset for political misinformation detection
that includes linguistic, network and temporal information about news articles
broadcast on an online social network?

• SQ2. What linguistic, network, and, temporal features discriminate misinfor-
mation from trusted information and how can we best extract them?

• SQ3. What classification model is able to incorporate all feature spaces while
being able to evaluate each feature space independently from one and other?

2Part of this work has been published in the conference proceedings of the 2nd Multidisciplinary
International Symposium on Disinformation in Open Online Media (Van de Guchte et al., 2020).
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• SQ4. Using the classification model from SQ3 and the identified relevant fea-
tures from SQ2 to detect misinformation, what is the relative contribution of
these feature spaces?

• SQ5. How do the different feature spaces perform with respect to the earliness
of detection?

These sub-questions will be answered in the upcoming chapters. For each question,
we refer to this question in the introduction of the corresponding chapter and answer
it in the summary section of that chapter. Finally, we answer the main research
question in the conclusion of this thesis.

1.3 Thesis Layout

The rest of this thesis is organized as follows. The next chapter presents a detailed
background on misinformation detection that relates to this research. In Chapter
3 we describe how we constructed a novel dataset for misinformation detection.
Chapter 4 and 5 explain our approach which include the features and algorithms
that are being evaluated. Chapter 6 describes the experiments we conducted and
discusses the results. Finally, in Chapter 7 we draw conclusions and present ideas
for future work.
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Chapter 2

Background

In recent years, concerns about the influence of misinformation on society have led to
an increasing interest from academia. Both social and computer scientists have stud-
ied the influence of online misinformation and how to counteract this phenomenon.
Due to the versatility of the problem, different approaches have been suggested. In
this chapter, we describe what previous research has been done, which challenges
remain, and how our research fits in.

2.1 Terminology

The burst in academic research on deceptive online information has resulted in in-
consistent and overlapping terminology. Examples of terminology used for decep-
tive online information in previous research are: fake news, false news, disinformation,
propaganda, hoaxes, conspiracy theories, or rumors. The first three terms have been
used interchangeably while the others define more specific types of deceptive in-
formation. Furthermore, there is some inconsistency about the definition of these
terms which has led to confusion (Weeks and Gil de Zúñiga, 2019). Especially the
term "fake news" has been irredeemably polarized in our current political and media
climate and should therefore be avoided in academic writing (Vosoughi et al., 2018).
We conform to this suggestion and use misinformation as an umbrella term to ad-
dress all false or inaccurate information that is intentionally or unintentionally being
disseminated. This general definition of the term misinformation makes it appropri-
ate for our research as we investigate the detection of misinformation in general, and
not the intent of the writer (e.g. disinformation), or a specific type of misinformation
(e.g. conspiracy theories). Because previous research used different terminology we
will refer to them with the term misinformation only when suitable, and use more
specific terms if necessary.

2.2 The Influence of Misinformation

Misinformation is influencing peoples beliefs and opinions, and this can manifest
itself in various ways. For example, the shootout that took place in a pizzeria as a
result of online claims that the pizzeria for high-ranking officials of the Democratic
Party was using human trafficking and child sexual abuse (Shu et al., 2017). An-
other example occurred in 2016, a tweet claimed that president Obama got injured
by an explosion (Rapoza, 2017). This resulted in a finance stock crisis and wiped out
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130 billion in stock value in only minutes after the tweet was posted. More recently,
misinformation regarding the COVID-19 pandemic showed how false beliefs lead to
health risks. For example, in Iran an article in which people proclaimed that drink-
ing methanol would cure COVID-19 resulted in approximately 500 deaths (Delirrad
and Mohammadi, 2020). These examples show what direct consequences misinfor-
mation can have. However, the majority of misinformation does not have direct con-
sequences but influences people and societies in more profound ways on the long
run. Although is difficult to prove what precise effect misinformation has, or will
have, many researchers believe that misinformation leads to the disappearance of
shared objective standards for truth. As a result, there has been a significant drop in
trust in major institutions, organizations, leaders and many sources of information
(Edelman Trust Barometer 2020).

To minimize the harm caused by misinformation we need to know how misinfor-
mation is affecting humans on an individual level. Due to the variety in types of
misinformation, and because humans respond differently to misinformation, it is
difficult to generalize. Though, recent psychological studies found some fundamen-
tal evidence that misinformation leads to distrust. It was found that the presence
of misinformation results in people disbelieving related facts (Van der Linden et
al., 2017; McCright et al., 2016) and, when framed as conspiracy theories, misinfor-
mation causes people to be less likely to accept official information from, for ex-
ample, governments and institutions (Einstein and Glick, 2015; Jolley and Douglas,
2014). This indicates that misinformation influences humans in more profound ways
than its initial influence, which is misinforming people. In an attempt to solve the
growing distrust researchers have investigated how people respond to the correc-
tion of misinformation. This means that misinformation that is assumed to be true
is later corrected. Unfortunately, most studies concluded that the correction of mis-
information is rarely fully effective (Lewandowsky et al., 2017). In literature this
phenomenon is named the "continued-influence effect" (Lewandowsky et al., 2012)
and means that the damage caused by exposure to misinformation is hard to undo.
Hence, the only way to prevent humans from being harmed by misinformation is to
prevent humans from being exposed to misinformation. For this reason, we investi-
gate in this study how misinformation can be detected immediately after it has been
broadcast on an OSN.

2.3 Characteristics of Misinformation

Key platforms in the spread of misinformation are online social networks (OSNs)
such as Twitter and Facebook. These platforms are used to amplify the spread of
misinformation. Because of the major impact OSNs have in the modern media land-
scape the consensus is that they should actively combat misinformation. Therefore,
OSNs have been investigated widely to find out what distinguishes the spread of
misinformation from truthful information. The next sections describe some major
findings about what characterizes the spread of misinformation and how these char-
acteristics are used to detect misinformation.
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2.3.1 Information Diffusion Patterns

A study by Vosoughi et al. (2018) focused on information diffusion patterns on Twit-
ter. In this work, the spread of true and false news was studied by analyzing more
than 4.5 million tweets which were posted between 2006 and 2017. To classify news
as false they used six independent fact-checking organizations. This extremely large
study drew a remarkable conclusion. In all categories of news (politics, urban leg-
ends, business, science & technology, terrorism & war, entertainment, and natural
disasters) false news diffused significantly farther, faster, deeper, and more broadly
than true news. Between categories, this effect was more pronounced for political
news than for all other categories. This indicates that diffusion patterns of news
stories are useful to distinguish misinformation from truthful information.

Because the information diffusion patterns in online social networks can be com-
plex different features are used to represent these patterns. In early research on the
detection of political abuse on Twitter using information diffusion networks, it was
already found that simple network features were successful in identifying truthful
information (Ratkiewicz et al., 2011). Examples of features they used are the number
of nodes/edges, maximum in/out-degree, and mean size of connected components.
Combining these features with a machine learning classifier resulted in a classifica-
tion accuracy of 95.6 % on a test dataset. Nevertheless, this research dates back to
2011 and since then OSNs have changed in various ways, including the spread of
information, the size of the network, and more. We therefore want to investigate if
these network-related features are useful for misinformation detection.

2.3.2 Social Bots

The information diffusion patterns we described above are products of the users
who spread this information. Therefore researchers have been identifying these
users as this may be useful to discriminate misinformation from truthful informa-
tion. Though real people also spread misinformation (intentionally or unintention-
ally) it was found that automatic spreaders, called social bots, play a major role in the
dissemination of misinformation on OSNs (Ferrara et al., 2016b). Social bots try to
mimic human behaviour to automatically produce content and interact with other
humans. Due to the rapid development of artificial intelligence new social bots are
being developed in very advanced ways.

A review paper by Ferrara et al. (Ferrara et al., 2016b) shows what an enormous
influence social bots have on OSNs. By using automated ways to spread misinfor-
mation they affect stock markets (Hwang et al., 2012), promote terrorist propaganda
(Berger and Morgan, 2015), produce extremist content (Ferrara et al., 2016a), and
influence political campaigns (Bessi and Ferrara, 2016). Since social bots have been
deployed extensively during the U.S. elections of 2016 and the Brexit, the behaviour
of these ’political’ bots is well studied. These studies revealed that social bots are
mainly used to further polarize political discussions and enhance the spread of mis-
information (Bessi and Ferrara, 2016; Bastos and Mercea, 2019). This is done using
so-called botnets which are groups of bots that work together. For example, Shao
et al. (2018b) analyzed 14 million tweets that were posted during and after the U.S.
elections of 2016. What was found is that botnets applied strategies to amplify the
spread of misinformation in an early stage, to increase the chance that an article goes
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"viral." Besides, they found that social bots often mention super-spreaders (users
with many followers) in their posts to reach a big audience.

To find out which users are social bots various detection methods have been investi-
gated. These can be categorized as structured-based, crowdsourcing-based, and machine
learning-based. From these methods the most effective and popular one is machine
learning-based detection (Karataş and Şahin, 2017). Though, with the development of
more sophisticated social bots, the development of bot detection algorithms remains
an ongoing research direction.

2.3.3 Linguistic Features

Previous research on linguistic features has been done using article content or social
media content (e.g. tweets). In this work, we are solely interested in social media
content and therefore we describe here which linguistic characteristics are related to
social media posts that are related to misinformation.

In section 2.3.1, we already mentioned a study that analyzed the spread of false and
true news using more than 4.5 million tweets (Vosoughi et al., 2018). This study also
compared the emotional content of those tweets between true and false stories us-
ing eight different categories for emotion. These categories are surprise, disgust, fear,
anger, sadness, anticipation, joy, and trust. For all tweets, an emotion score for each
category was given. This was done by using a lexicon of 140,000 English words and
32,000 Twitter hashtags that all were related to one of these eight emotions. It was
found that tweets from false news expressed greater surprise and disgust in their text,
whereas tweets related to true news expressed greater trust, anticipation, sadness, and
joy. These results are evidence that linguistic features, that indicate emotional re-
sponses, seem to be promising features to distinguish misinformation from truthful
information. In this study, we will therefore investigate the discriminative power of
such features for detecting misinformation.

To capture the linguistic features that distinguish misinformation from truthful in-
formation various natural language processing (NLP) techniques have been utilized.
These can be categorized as handcrafted features or statistical features. Handcrafted
features make use of regular expressions, lexicons, or other methods to extract lin-
guistic information. In an early study on the credibility of information on Twitter
(Castillo et al., 2011) a comprehensive set of handcrafted features was already found
to detect tweets that contain misinformation with quite some precision, though, out-
performed by a subset of propagation features. This set of linguistic features in-
cluded sentiment words, hashtags, emoticons, orthography, and topic-related fea-
tures. After this more research investigated the use of handcrafted features for mis-
information detection. Recently, a study evaluated a set of linguistic features that
were found to be successful in previous studies (Reis et al., 2019). The linguistic
features consisted of syntax, lexical, psycholinguistic, semantic, and subjectivity fea-
tures extracted from the text of a news article. It was found that all these feature
groups have some discriminative power when distinguishing misinformation from
truthful information. Therefore we want to find out if such features are also good
for misinformation detection when extracted from tweets.

Since the characteristics of misinformation are still not yet fully understood, and
depend on the type of misinformation, it is difficult and time-consuming to cre-
ate hand-crafted features that work well in general (Ruchansky et al., 2017). To
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avoid this limitation statistical linguistic features are used that try to capture the
semantics of a text by a numerical vector representation. These features are named
embeddings and can represent a word, sentence, paragraph, or entire document.
The most promising study that utilised embeddings to detect misinformation is by
Volkova et al. (2017). In this work, the Doc2Vec algorithm (Le and Mikolov, 2014)
was trained on a Twitter corpus that consisted 130,000 of suspicious and verified
tweets. This algorithm generated 200-dimensional embeddings for every tweet in
the corpus. Classifying these embeddings as suspicious or verified with logistic re-
gression performed poorly (65% accuracy), however, when a recurrent or convolu-
tional neural network was used as classifier the accuracy improved by more than 10
percent (78% and 76% accuracy, respectively). Moreover, when a comprehensive set
of handcrafted linguistic features was added a accuracy of 93% was reached. This
study reveals how handcrafted and statistical linguistic can supplement each other
for the detection of misinformation which is why in this study we will also evaluate
both types of features.

2.4 Detection Algorithms

As described in the previous section various characteristics are useful to identify
misinformation, these include diffusion patterns, user characteristics, and linguistic
cues. To use these characteristics for misinformation detection the task is formu-
lated as a supervised binary classification problem. To solve this problem features
are extracted and fed to machine learning classifiers. Depending on the type of fea-
tures, different classifiers are being evaluated. Reis et al. (2019), for example, used
a common approach for misinformation detection in which a set of features, repre-
sented by numerical values, are fed to a supervised machine learning classifier. The
classifiers that have been evaluated are K-Nearest Neighbor, Naive Bayes, Random
Forests, Support Vector Machine, and XGBoost. It was found that Random Forest
and XGBoost performed best, however, this entirely depends on the features and
data that have been used.

In addition to traditional machine learning classifiers, deep learning techniques are
being utilized for misinformation detection. A reason for this is that deep learning
methods can create latent feature spaces that cannot be captured using handcrafted
features. Especially recurrent neural networks (RNNs) have been investigated to
capture the temporal dynamics of the spread of misinformation. Ma et al. (2016)
were the first to propose an RNN for the detection of misinformation on OSNs. This
was done by modeling the spread of misinformation as variable-length time series
data in which each time step contained multiple micro-blog posts that were repre-
sented by a linguistic feature called the term frequency–inverse document frequency
(tf-idf). The RNN could effectively model the spread of rumors and outperformed
other techniques that used handcrafted features.

Recently, some studies focused on the early detection of misinformation (Guo et al.,
2019). These studies extended the work of Ma et al. (2016) by also using RNNs in
combination with different features or mechanisms for early detection. For example,
Chen et al. (2018) extracted linguistic features from a sequence of micro-blog posts,
and combined these with an RNN in which a soft attention mechanism was inte-
grated. This method successfully detects misinformation in an earlier stage. Other
research added a convolutional neural network (CNN) to a commonly used RNN
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for representing propagation paths (Liu and Wu, 2018). The micro-blog posts were
represented by simple user characteristics. It was shown that this model detects
misinformation after 5 minutes with 92% accuracy, however, a limitation of these
models is that the earliness of detection depends on the length of the propagation
path (e.g. number of retweets). This means that only with abundant data at an early
stage of dissemination these models are suitable for early detection. For example,
Liu and Wu (2018) needed approximately 40 tweets in the first 5 minutes to detect
misinformation with 92% accuracy. Since propagation paths vary in size this ap-
proach does not always detect misinformation after 5 minutes. We therefore aimed
to design a detection method that is independent to the number of micro-blog posts.

Thus, misinformation detection algorithms differ in features, classifier, and the time
of detection. Only a few studies investigated the effectiveness of different features
groups for different times of detection. Kwon et al. (2017) evaluated a comprehen-
sive set of linguistic, network, user, and temporal features for time windows from
3 to 56 days. They showed that the effectiveness of temporal and network features
increases over time while that of linguistic features stayed the same. However, lin-
guistic features outperformed all other feature groups for the smallest time window
(3 days). Another interesting finding is that a combination of all features was op-
timal for the largest time window while for the smallest time window this model
was outperformed by a combination of user and linguistic features. The results are
evidence that optimal feature selection may depend on the targeted detection time.

A study similar to our current approach where misinformation detection is being
investigated along with the relative contribution of different feature sets was carried
out by Vosoughi et al. (2017). In this study, the detection accuracy was measured as
a function of latency for temporal and non-temporal models when using linguistic,
user, or propagation features. The results showed that when time passed the tem-
poral model and propagation features became stronger while for real-time detection
non-temporal and linguistic features slightly outperformed the others, though not
very accurate. Their best model achieved a classification accuracy of 55% for near
real-time detection and reached a maximum of 75% after some time.1

2.5 Evaluation Methods

The evaluation of misinformation detection algorithms applied to texts is similar to
traditional classification tasks. A dataset of documents or micro-blogs is labeled as
misinformation or truthful information. The detection algorithms are then trained to
classify a document or message into one of these categories. By splitting the dataset
into train and test sets the algorithms are evaluated using various metrics (e.g. accu-
racy, F1-scores, or AUC). However, a major problem is the collection of high-quality
data for this problem (Asr and Taboada, 2018). Since detection algorithms are being
developed for slightly different tasks, using different types of features, the collection
of existing datasets is heterogeneous.

The work of Pierri and Ceri (2019) gives an overview of existing datasets for de-
tecting misinformation. This overview is replicated in Table 2.5. Here we find that
most datasets solely contain article content and therefore lack the ability to extract
features from social context. Only the Hoaxy and Rumors datasets have been used

1No absolute detection times were presented in this study.
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TABLE 2.1: Overview of existing datasets that contain misinformation
articles (Pierri and Ceri, 2019).
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12 Chapter 2. Background

to construct diffusion networks of how misinformation articles have been dissem-
inated on OSNs. The Hoaxy dataset consists of misinformation and fact-checking
articles, and the tweets that posted a link to these articles on Twitter. Since fact-
checking articles are a specific type of news articles this dataset has not been used
for general misinformation detection but mostly to study the difference between
diffusion networks of misinformation compared to fact-checking articles (e.g. Shao
et al. (2018a)). The Rumors datasets consist of rumors (a story whose truth value
is unverified or deliberately false), and non-rumors, and related posts on Twitter
and Sino Weibo (a Chinese OSN). This dataset is collected by gathering the titles of
news articles that were classified as rumor/non-rumor by the fact-checking website
Snopes2. By extracting keywords from these titles the related micro-blog posts have
been collected. The Rumors datasets are widely used for misinformation detection
and because it contains temporal information about how a story is spread it is the
most used dataset for early detection (e.g. Liu and Wu (2018)).

Unfortunately, the Twitter policy only allows you to publish tweet IDs which means
that Twitter’s API (Application Programming Interface) should be used to recon-
struct these datasets. Since Twitter has started to actively remove suspicious ac-
counts and tweets in 20183 it has become impossible to fully reconstruct the datasets.
Moreover, because the production and dissemination of misinformation is constantly
changing, detection algorithms should be evaluated using up-to-date data.

Summary

This chapter provides an overview of existing literature on the influence and detec-
tion of misinformation on OSNs. In summary, detecting misinformation in real-time
is crucial to be effective, and existing detection methods rely on characteristics that
discriminate misinformation from truthful information on OSNs. These characteris-
tics are captured by extracting features and classified using machine learning meth-
ods. The most effective features rely on network, linguistic, or temporal information
extracted from the micro-blog posts on OSNs. However, most existing detection
methods use these features to detect misinformation after it already has been dis-
seminated. Motivated by this shortcoming we designed a methodology to study the
effectiveness of various features for early misinformation detection which will be
outlined in the remainder of this thesis.

2https://www.snopes.com/
3https://www.nytimes.com/2018/07/11/technology/twitter-fake-followers.html

https://www.snopes.com/
https://www.nytimes.com/2018/07/11/technology/twitter-fake-followers.html
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Chapter 3

Data

In order to develop and evaluate our methods for the automatic detection of misin-
formation we need a dataset that includes linguistic, network and temporal informa-
tion about misinformation on OSNs. As described in the previous chapter existing
misinformation datasets are scarce, homogeneous and often impossible to fully re-
construct. As a result, no publicly available dataset exist that fits the purposes of
this research. Therefore, in this chapter, we give answer to the following research
question:

SQ1. How can we construct a dataset for political misinformation detection
that includes linguistic, network and temporal information about news articles

broadcast on an online social network?

To answer this question we address the issues related to misinformation data and
discuss, and motivate, how we dealt with these problems to create a novel dataset.
Furthermore, to illustrate the quality of our data, a detailed description is given
about how this dataset is constructed. Finally, to contribute to the community and
encourage more research in this domain we have made the dataset available in the
form of a data challenge for the International Conference on Military Information
and Communication Systems (ICMCIS) 20201 which is hosted on the website Kag-
gle.2

3.1 Challenges

A major problem with misinformation detection is that it works like a game of cat-
and-mouse. As detection techniques are evolving so are the methods to generate
and disseminate misinformation. This has as consequence that misinformation data
quickly becomes outdated. For example, previous studies have shown that social
bots play a major role in the dissemination of misinformation on OSNs (Shao et al.,
2018a) which makes them good indicators for detecting misinformation. However,
with the development of social bots going at a rapid pace the bots nowadays act
differently than before (Yang et al., 2019). Therefore, detection methods should be
exposed to data with a significant presence of up-to-date social bots. This can only
be achieved by creating a recent dataset. In this section we describe the challenges
related to creating a misinformation dataset and how our approach tries to overcome
these challenges using available resources.

1https://icmcis.eu/challenge/
2https://www.kaggle.com/c/icmcis2020

https://icmcis.eu/challenge/
https://www.kaggle.com/c/icmcis2020
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The desired dataset for our research includes information that enables us to extract
linguistic, network and temporal features from the dissemination of misinformation
and truthful news articles on an OSN. In this case the linguistic features are extracted
from the linguistic content of the micro-blog posts that share this news article. The
network features can then be extracted by reconstructing information diffusion net-
works from those micro-blog posts. Using the timestamps of the micro-blog posts
time-varying diffusion networks can be used to extract temporal information. There-
fore, we needed to find an appropriate OSN that provided the required data.

In line with the majority of research on early misinformation detection, Twitter be-
came our platform of choice. The reason for this is that Twitter’s data is easily ac-
cessible and includes all the data we require. Besides, Twitter has become a popular
platform for social science and NLP research because it enables the collection of large
quantities of trace data such as tweets and its meta-data. The brevity of the tweets
(max 280 characters) also make it an easy choice for NLP tasks such as sentiment
analysis. This has led to various large Twitter datasets that are utilised to create lin-
guistic models. However, using Twitter as data provider also has some drawbacks.
Maddock et al. (2015) showed that using Twitter’s API to collect data results often
in incomplete datasets due to the deletion of tweets. As mentioned early Twitter has
recently become very active in removing so called suspicious tweets and accounts
which especially affects those that share misinformation. Collecting Twitter data will
therefore most probably result in incomplete data.

After collecting the data with all the features, in order to use it to evaluate our de-
tection method we will need to label the data. But classifying news articles as mis-
information or not is a difficult and labour intensive task. The reason for this is
that misinformation is being written to mislead and therefore hard to observe ob-
jectively. To exclude a dataset from being biased you want to have objective labels
that reflect real world situations. In an attempt to objectively label articles as misin-
formation or trusted information often multiple labelers are used. This ensures that
these labels are of higher quality. Unfortunately, this is very costly and therefore out
of the scope of this study. We therefore used another approach that labels the source
as misinformation instead of individual news articles. This approach enables us to
create a big dataset without many resources. For this we used the existing misinfor-
mation identification systems Hoaxy (Shao et al., 2016) to identify misinformation
and NewsAnalyser (Brena et al., 2019) to identify trusted information. Note that we
collect ’trusted’ instead of ’truthful’ information since we do not verify the content
but base our label on the trustworthiness of the source. Unfortunately, this also af-
fects the quality of the data because content of these news articles is not verified.
The constructed dataset in this study can therefore be considered as silver-truth. In
remainder of this chapter we further describe the approach we took for creating a
novel dataset to better illustrate the quality of our data. Section 3.2 describes how
misinformation articles and related Twitter data is collected while Section 3.3 de-
scribes this for trusted information.

Furthermore, it has been shown that misinformation detection is topic-dependent
(see Section 2.3). This means that the network, linguistic, and temporal features
that are extracted from the Twitter data depend on the topic of the news article.
Therefore, to better evaluate our detection models and because misinformation is
over-represented in political news (Vosoughi et al., 2018) we decided to filter the
news articles on politically related or not. The topic-classifier we build utilizes NLP
methods for text classification and will be described in Section 3.4.
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3.2 Collecting Misinformation

Hoaxy (Shao et al., 2016) is an open source platform3 for the collection, detection and
analysis of online news articles and the dissemination of these articles on Twitter.
The platform can be used to collect data of both misinformation and fact-checking
articles. To do this a pipeline is constructed in which web scraping, web syndication
and Twitter APIs are linked. As input for this pipeline a comprehensive list of 120
low-credibility sources in the U.S. is provided that is compiled and published by
reputable news and fact-checking organizations. This list of sources can be found in
Appendix A.1. These sources are known for frequently publishing hoaxes, rumors,
false news, and conspiracy theories, but may also publish accurate rapports. We
label all this data as misinformation and are aware that this makes our data prone to
mislabeled instances.

Hoaxy also tracks fact-checking websites, however, in this work only the data of
low-credibility sources is used. Giving the list of sources Hoaxy collects data on
news stories using RSS (Really Simple Syndication), which enables it to monitor
multiple websites using a single news aggregator. To enrich this data the Scrapy
framework4 is used for creating a spider that crawls the link structure of the low-
credibility sources.

Because Twitter is a micro-blog that allows only 140 characters per tweet the most
common way to share news stories is to include a link to its web article. Therefore, to
monitor how news stories are spread, Hoaxy extracts all tweets that share the URL
that links to the low-credibility sources. To do this Hoaxy makes use of the filter
endpoint of Twitter’s streaming API5. Unfortunately, not all URLs that link to the
same article are exactly the same. For example, different query parameters in the
URL still link to the same article. Therefore Hoaxy relies on canonical URLs where
possible, and applies a URL canonization method in other cases. This method works
as follows:

Step 1. Transform URL text to lower case

Step 2. Remove protocol schema (e.g. ’http://’)

Step 3. Remove any prefix instance of the strings ’www.’ or ’m.’

Step 4. Remove all query parameters

The Twitter data extracted using these canonical URLs are then stored into a database.
This pipeline is illustrated in Figure 3.1. As you may notice Hoaxy intends to incor-
porate a variety of social media platforms but for now only Twitter is monitored.

The data collected by Hoaxy can be obtained using its API.6 We used this API to fetch
all URLs and related tweets in the period from January 1, 2019 until July 31, 2019.
To filter out only political articles we build a classifier, this classifier is described in
section 3.4. However, to do this we also needed the article’s content. For this we used
the Python library newspaper3k.7 Some articles were unavailable which means we
had to remove them from our data. Finally, to make sure that we could analyze the

3Note that this platform is also used to construct the Hoaxy dataset that is mentioned in Section 2.5
4scrapy.org
5https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
6https://rapidapi.com/truthy/api/hoaxy
7https://github.com/codelucas/newspaper

scrapy.org
https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
https://rapidapi.com/truthy/api/hoaxy
https://github.com/codelucas/newspaper
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FIGURE 3.1: Architecture of the Hoaxy system (Shao et al., 2016).

dissemination behaviour of these articles on Twitter we removed all articles that had
less than 20 tweets.

3.3 Collecting Trusted Information

For the collection of trusted news articles and its related Twitter content we used
the open source software NewsAnalyzer (Brena et al., 2019). NewsAnalyzer is a
software tool that makes possible the extraction of large collections of Twitter news-
sharing users, their news tweets and the full data structure of the shared articles.
In order to provide a list of news sources that publish reliable and trusted articles
we rely on earlier research that used crowd-sourced judgments to define the quality
of a news source (Pennycook and Rand, 2019). In this study the trustworthiness of
various news sources from a republican, democratic and fact-checker perspective
was being investigated. A combined score from all perspectives was provided to
generate a list of most trusted news sources in the U.S. from which we used 9 as input
for NewsAnalyzer. A list of the trusted sources we used can be found in Appendix
A.2.

FIGURE 3.2: Architecture of the NewsAnalyzer system as proposed
by Brena et al. (2019).

The NewsAnalyzer method consists of two steps as depicted in Figure 3.2. First the
list of input sources is used to scrape an initial set of news articles utilizing Python’s
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Newspaper3k library and are then stored in a MongoDB database. After this a con-
tinuous loop is started in which the Twitter Search API8 extracts all tweets that con-
tain the same URL as the articles in the database. As with Hoaxy, only canonical
URLs are used. The users who posted those tweets are further investigated by ex-
tracting their most recent tweets. If a tweet contains a URL to another news article
of one of the provided sources this URL will be stored into the database. This means
that the list of URLs is expanded with new URLs and those new URLs will be fed
back to the beginning of the loop. At the start of this loop articles are categorized by
a built-in classifier that extracts its topic from the URL. This is only done when the
topic is mentioned in the URL, which is often the case for major news platforms. The
following eight topics are used for this: politics, science-tech, world, art-entertainment,
business, local, style, and sports. If the topic of an article is not mentioned in the URL
a machine learning classifier is used to determine this topic. The original classifier
uses only keywords as input features to categorize an article. However, as we aim
to have only political articles we have build another topic classifier using different
features which we describe in more detail in the next section (Section 3.4) and inte-
grated this in the NewsAnalyzer system.

3.4 Topic Classifier

In this section, we describe how we utilised machine learning techniques to build a
topic classifier that filters the collected articles on politically related or not.

3.4.1 Data and Data Preprocessing

The data used to train and test this classifier consists of the articles we scraped using
NewsAnalyzer which already were categorized based on URL information. This
URL information was available for seven out of the nine news sources we used and
contains the topic to which an article belongs. NewsAnalyzer used the previously
mentioned topics that consist of politics and 7 others which we adjusted to politics
and not politics. This resulted in a dataset of 4804 news articles from which 2335
were labeled as politics and 2469 as not politics.

To clean the texts of the articles some simple preprocessing techniques are applied.
First, an article’s text is lowercased and digits, punctuation, and stop words are
removed. The Porter stemming algorithm (Willett, 2006) is used to remove the
common morphological and inflectional endings from words. Finally, we applied
NLTK’s RegexpTokenizer to identify words.

3.4.2 Feature Extraction

To represent the preprocessed articles by feature vectors we make use of the Doc2Vec
algorithm (Le and Mikolov, 2014). This is an unsupervised machine learning tech-
nique that, as its name suggests, transforms variable-length documents into fixed-
length numerical vectors, also named document embeddings. This method is based
on the Word2Vec algorithm (Mikolov et al., 2013) that uses a shallow two-layered

8https://developer.twitter.com/en/docs/tweets/filter-realtime/overview

https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
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neural network to predict words or contexts (two variants exist) in a given doc-
ument. After training this neural network the hidden layer is used to output word
embeddings. Doc2Vec is based on the same technique but generalizes over all words
in the document which enables it to output feature vectors that represent the entire
document. An advantage of this method is that it inherits the semantics of the words
and is therefore widely used for text classification tasks.

To better understand the inner-workings of the Doc2Vec algorithm we recommend
to first read the description of the Word2Vec algorithm in Section 4.3.2 of this the-
sis. Afterwards, a detailed description of the Doc2Vec algorithm can be found in
Appendix B.

For our topic classifier we used the implementation of Doc2Vec by Python’s Gensim
library.9 To train the Doc2Vec model the default configurations provided by the Gen-
sim library are used. Only the window size was increased from 5 to 10, indicating the
maximum distance between the current and predicted word within a sentence. This
was based on a study that compared a window size of 1 and 10 and found that a big-
ger context window creates more topic-oriented embeddings while a smaller context
window creates syntax-oriented embeddings (Bansal et al., 2014). Furthermore, the
vector size of the document embedding was set to 300 to create higher dimension-
ality and a sampling threshold of 1e-5 was used for down-sampling high-frequency
words. Using these configurations we let the algorithm train for 100 epochs. The
obtained Doc2Vec model was then used to infer 300-dimensional feature vectors for
all articles which serve as input for our topic classifier.

3.4.3 Classifiers

Within the NewsAnalyzer model already three different supervised machine learn-
ing classifiers were integrated to categorize articles from which the topic was un-
known. Although these classifiers were initially used for multi-class classification
they work for binary classification problems as well. Additional to the build-in clas-
sifiers we implemented a multilayer perceptron (MLP) and compared their perfor-
mances on the document embeddings that we extracted. In this section, we briefly
describe the inner-workings of these classifiers.

Logistic Regression

Logistic regression is named to its core statistical function, the logistic function,
which is used to map one or more independent variables to a binary dependent
variable. In this case, the dependent variable represents the classes politics and not
politics. The logistic function outputs a probability (p) between 0 and 1 and indicates
the likeliness of the input being politics (when p ≤ 0.5) or not politics (when p > 0.5).
The logistic function can by described as follows:

p(x) =
1

1 + e−x (3.1)

where x is a linear combination of the input variables and represented by:

9https://radimrehurek.com/gensim/models/doc2vec.html

https://radimrehurek.com/gensim/models/doc2vec.html
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x = θ0 + θ1x1 + θ2x2 + θ3x3 + · · ·+ θnxn (3.2)

By estimating the coefficients θn the algorithm determines a decision boundary be-
tween the two classes. To optimize the decision boundary, so it better fits the data,
the algorithm uses stochastic gradient descent. This method updates the coefficients
during training by minimizing the following loss function:

Loss(p(x), y) =

{
−log(p(x)), if y = 1
−log(1− p(x)), if y = 0

(3.3)

where y is the binary label of a sample in the data. By taking the partial derivative of
the loss function a gradient can calculated. This gradient is used to find the direction
that moves the loss function towards a local minimum. Furthermore, L2 regulariza-
tion (Ng, 2004) is used to prevent the model from overfitting the data. This method
adds a penalty to the loss function by computing the sum of the squared values of
the coefficients. This forces the coefficients to be relatively small which makes the
model more robust.

Support Vector Machine

A Support Vector Machine (SVM) aims to find a hyperplane, described by ~w ∗ ~x −
b = 0, that separates two classes in vector space. The optimal hyperplane is found
by maximising the margin between the closest data point of each class and the hy-
perplane. The two lines parallel to the hyperplane that go through the closest data
points are known as the support vectors. Thus, the largest margin is found by max-
imizing the distance between the two support vectors which is represented by:

1
2
‖~w‖2 (3.4)

However, this hard-margin makes the SVM a linear classifier. To enable the SVM to
also classify data that is not linearly separable the algorithm uses a kernel trick and a
soft-margin. The soft-margin appoints a penalty to all the data points that lay on the
wrong side of the decision boundary. The penalty given, is computed by using the
hinge loss:

`(y) = max(0, 1− t · y) (3.5)

where t is the target class (−1 or 1), and y the predicted output value of y = ~w ∗~x− b.
The soft margin is then computed by adding the hinge loss to the margin distance:

1
2
‖~w‖2 + λ

[
1
n

n

∑
i=1

max (0, 1− yi(~w ·~xi − b))

]
(3.6)

where λ determines the trade-off between maximizing the margin and the degree to
which data points can lie on the wrong side of the hyper plane. This causes the hy-
perplane to be relaxed which is favorable for classes that are not linearly separable.
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The kernel trick is a method that maps the data to a higher dimensional space. This
is motivated by the fact that data that is not linearly separable in the input space can
be linearly separated in a higher dimensional space. Therefore the linear SVM can
be used in this higher dimensional space to find a non-linear decision boundary in
the input space.

Random Forest

Random Forest (RF) is part of a group of classifiers that are based on decision trees.
A decision tree can be illustrated as a flow-chart in which the root represent a binary
class and the leafs with nodes represent the features. Taking a top down approach
simple decision are being made at each node that are based on the feature values.
This eventually leads to a predicted class at the root of the tree. To determine the best
split for a given node the quality of the split is being estimated. In this study, a Gini
impurity metric is used for this, which measures the number of correctly classified
instances when randomly picking samples of the dataset, and classify these accord-
ing to the class distribution. The Gini impurity metric is calculated as follows:

G =
C

∑
i=1

p(i)(1− p(i)) (3.7)

where C is total number of classes and p(i) is the probability of picking a sample
from the data with class i. By weighting the Gini coefficient according the size of
the branch a weighted Gini impurity score, named the Gini Gain can be computed.
When training a decision tree the split with the highest Gini Gain constitutes the best
split for the given dataset. A disadvantage of decision trees is that they easily overfit
the training data, which is why RF has been proposed. This algorithm creates a large
number of individual decision trees that operate as an ensemble. By predicting the
output class for each decision tree the model outputs a final class by taking the class
that has been predicted the most. The power of RF lays in the fact that these differ-
ent trees are relatively uncorrelated with each other since this increases the chance of
predicting the right class. To generate multiple relatively uncorrelated decision trees
a method named bagging is performed. Bagging, also known as bootstrap aggrega-
tion, causes the decision trees to be slightly different by randomly choosing samples
from the dataset, with replacement. Replacement will say that some samples appear
more than once to ensure that the size of the dataset for each decision tree is equal.
Moreover, RF uses a random subset of the input features for each decision tree to
predict an output class. In this way, there is even more variation between the deci-
sion trees which results in lower correlation. The less correlated the decision trees
are the better predictions the model makes.

Mulilayer Perceptron

A multilayer perceptron (MLP) is a type of artificial neural networks (ANNs) that,
as it name suggests, consists of multiple layers of perceptrons. Where a traditional
perceptron functions as a linear classifier, can an MLP distinguish data that is not lin-
early separable. In Figure 3.3 the architecture of a 3-layered MLP is illustrated. This
network consist of an input layer, a hidden layer, an output layer, and the weights
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that connect the cells with each other. Note, that a bias cell is added to each layer, ex-
cept the output layer, as this increases the flexibility of the model to fit the data. The
input layer represents the feature vector, in this case a 300-dimensional document
embedding, and by forwarding the feature values through the network the classifier
makes a prediction. Afterwards, backpropagation is used update the weights which
enables the algorithm to learn.

FIGURE 3.3: Architecture of a multilayer perceptron (Pedregosa et al.,
2019).

Feed-forward propagation is done by taking the dot product of the input vector
and the weights, and results in activation values for all the hidden cells. Then a
non-linear activation function is applied to each hidden cell. This ensures that the
network can approximate a non-linear decision boundary. Although various activa-
tion function exist we used a rectified linear unit also called ReLu function (Equation
3.8).

f (x) = max(0, x) (3.8)

The same operations are performed to compute the output activations. These acti-
vations are then transposed to output probabilities in a range between 0 and 1 as
follows:
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pO(k) =
eaO(k)

∑n
k=1 eaO(k)

(3.9)

where aO(k) is the activation of the output cell, n is the number of output cells and
pO(k) is the output probability of that cell. In this case, the output layer has one
output cell because we only have two classes (politics and not politics). This means
that the input vector is classified as politics if pO(k) ≤ 0.5 and as not politics if pO(k) >
0.5 .

Back-propagation is applied to update the weights in the network by computing a
gradient for each weight. The update rule for each weight works as follows:

Wji(new) = Wji(old) + η ∗ ∆H(j) ∗ aH(j) (3.10)

where Wji is the weight between the cell of the actual layer and the cell of the previ-
ous layer, η is the learning rate, aH(j) the activation from the previous neuron and
∆H(j) represents the gradient for each weight. For the output layer the gradient is
calculated by subtracting the actual output probability from the desired output. For
the hidden layer this is done by computing the derivative of the activation func-
tion and multiplying this by a summation of the output gradient (∆O(k)) times the
weights between the hidden cells and the output cell (Wik):

∆H(i) = f ′(a(i)) ∗
n

∑
k=1

(∆O(k) ∗Wik) (3.11)

where a(i) is the activation value of the actual hidden node and n is the number of
nodes in the output layer.

By repeating this process of feed forwarding and back-propagation the model learns
to approximate a function that maps a set of input features to an output class. How-
ever, if the learned function to closely fits the data on which it is trained the MLP is
overfitting. This means that the classifier can not generalize and therefore lacks the
ability to correctly classify unseen data. To prevent the MLP from overfitting we use
a regularization technique named Dropout (Srivastava et al., 2014).

3.4.4 Experiments and Results

During experimentation the hyper-parameter configurations for Logistic Regres-
sion, Random Forest, and the Support Vector Machine were kept the same as in the
original NewsAnalyzer model. Only for the MLP hyper-parameter tuning was per-
formed by doing a random search on a 70/30 percent train/test split of the dataset.
This resulted in a learning rate of 0.01, batch size of 32, dropout rate of 0.5 and 400
hidden cells. To compare all classifiers we have performed 10-fold cross validation
using the aforementioned dataset of politics and not politics articles. In Table 3.1 the
results are shown.
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Classifier Accuracy F-score Recall Precision
Logistic Regression 0.73 ±0.04 0.76 ±0.03 0.76 ±0.03 0.77 ±0.03
Random Forest 0.78 ±0.04 0.80 ±0.02 0.80 ±0.02 0.81 ±0.02
Support Vector Machine 0.77 ±0.03 0.77 ±0.04 0.77 ±0.03 0.78 ±0.03
Multilayer Perceptron 0.94 ±0.07 0.94 ±0.07 0.94 ±0.07 0.94 ±0.07

TABLE 3.1: Average classification accuracy, F-score, recall and preci-
sion with their standard deviation.

From these results we can conclude that the multilayer perceptron (MLP) outper-
forms all other classifiers in this task. We therefore selected the MLP as our classifier
and trained the model again using the entire dataset. The obtained topic classifier is
then utilised to classify articles into the binary classification of either misinformation
and trusted articles (those that were not yet categorized) as politically related or not.

3.5 Dataset

The dataset that we collected using the aforementioned methods consists of 1300
political-related misinformation and trusted news articles along with the tweets that
disseminated these articles on Twitter. The dataset is equally balanced between
classes which results in 650 articles per class. In Table 3.2 some statistics about the
dataset are presented.

Misinformation Trusted
# Articles 650 650
# Total tweets 168088 78462
# retweets 151054 67401
# original/quote/reply tweets 17034 11061
# original tweets 4328 10433
# quote tweets 10651 41
# reply tweets 2055 587

TABLE 3.2: Statistics about the dataset.

We find that on average misinformation articles have been tweeted more often, most
of them are retweets, while trusted articles are more tweeted using original tweets.
This suggests that misinformation spreads farther which confirms previous analysis
on misinformation data (Vosoughi et al., 2018; Shao et al., 2018a). Another interest-
ing property of the data is that quoted and reply tweets are more used for misin-
formation than for trusted information. Quoted tweets are retweets in which you
share an original tweet while adding a comment to it, and reply tweets are used to
only comment on the original tweet. However, the use of these different types of
tweets may imply various social behavior so it is difficult to conclude something out
of this. In the table, the number of original, quote, and reply tweets are also dis-
played together because all of these tweets contain new linguistic information while
retweets always share the same linguistic information as the original tweets. There-
fore, retweets are especially useful to analyze the dissemination behavior of these
articles on Twitter.
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Finally, a disclaimer has to be made. As already discussed in section 3.1 Twitter
is actively removing tweets and therefore, especially in case of misinformation, the
dataset contains missing values.

Summary

This chapter addressed the challenges that arise when constructing a misinforma-
tion dataset and motivated the construction of a novel dataset. Using two existing
tools (Hoaxy and NewsAnalyzer) it was shown how to construct a misinformation
dataset that includes linguistic, network, and temporal information about news ar-
ticles broadcast on Twitter. The labels of the articles are not manually verified but
based on the credibility of the news sources. This means the proposed dataset can
be considered silver standard. Furthermore, a topic classifier was created in which
document embeddings were extracted from the texts of the articles and classified by
utilizing a multilayer perceptron. This topic classifier is used to filter the collected
articles on politically related or not. Ultimately, this resulted in a dataset of 1300
politics articles with related tweets that disseminated these articles on Twitter.
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Chapter 4

Feature Engineering

To find out what are good features for misinformation detection and how to extract
them from the proposed dataset —described in chapter 3— we formulated the fol-
lowing research question:

SQ2. What linguistic, network, and, temporal features discriminate
misinformation from trusted information and how can we best extract them?

In this chapter we demonstrate how Twitter diffusion networks are being recon-
structed from the collected data and propose a novel method for capturing the tem-
porality of these diffusion networks by using snapshots. Moreover, this enables us
to evaluate the different features for early detection by using only parts of the Twit-
ter diffusion networks. Based on earlier research1 a group of network and linguistic
features is being extracted from these diffusion networks. In this case, the network
features include both spreading patterns and user information. Furthermore, we
will give detailed descriptions of the linguistic features (both handcrafted and sta-
tistical) that we extracted from individual tweets and how we transformed these
static features into temporal features by utilizing the Twitter diffusion networks.

4.1 Twitter Diffusion Networks

A Twitter diffusion network describes how a piece of information is being dissemi-
nated on Twitter through tweets. For the articles we collected we created such net-
works using Python’s DyNetx2 library to determine their dissemination. In these
networks the nodes represent tweets and the edges show the relationship between
an original tweet and a share (retweet, quoted tweet or reply tweet). Each node
has a timestamp that corresponds to the time that has passed since the first tweet
in the network was posted. By iterating over different timestamps we can now ob-
serve how the network evolves over time. Note that these networks consist solely of
multiple star networks with a maximum cascade length of 1, as depicted in Figure
4.1.

In reality, users could retweet other retweets and therefore create longer cascades.
Unfortunately, Twitter’s API only provides limited data that points all retweets to
the original tweet which makes it impossible to fully reconstruct the original diffu-
sion networks. Though approaches have been proposed in which cascades are ap-
proximated based on tweet timestamps and friend-follower relationships it appears

1See Chapter 2 for more background literature.
2https://dynetx.readthedocs.io/en/latest/

https://dynetx.readthedocs.io/en/latest/


26 Chapter 4. Feature Engineering

FIGURE 4.1: Example of a star network where T represents an original
tweet while RT a retweet.

that this process is time-intensive (Vosoughi et al., 2017) and therefore not suitable
for early detection.

By iterating over different timestamps we can now observe how an article diffuses
over time. However, since the amount of tweets per article can vary a lot (between
20 and 5000 in our data) we transform these variable-length time series into fixed-
length time series. This is enables us to compare the diffusion patterns of different
news articles regardless of the size of the network. We do this by dividing the dif-
fusion network into snapshots. Snapshots represent the state of the network at a
particular point in time. For example, if the number of snapshots is four (S = 4)
and the detection deadline is four hours (T = 4) than a snapshot represents the
diffusion network after every hour. In Figure 4.2 an example is shown of how a dif-
fusion network evaluates over time when using snapshots. As is illustrated in this
example, an extra star network originates in Figure 4.2c when a new original tweet
is posted and tweet is being retweeted. This means that the network of an article
consists of multiple star networks from which the size is determined by the number
of original tweets. In Because the time series data we created is highly dependent
on the amount of snapshots (S) and the detection deadline (T) we varied with these
variables during experimentation.

(A) Snapshot at t = 0 (B) Snapshot at t = 1 (C) Snapshot at t = 2

FIGURE 4.2: These figures illustrate how a Twitter diffusion network
evolves over time when using snapshots.

4.2 Network Features

In this section, we describe the features we extracted from the Twitter diffusion net-
works. We categorized these network features according to the following categories:
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diffusion patterns, followers, and social bot features. The features we describe are ex-
tracted per snapshot and therefore variate according to the number of snapshots and
the detection deadline that has been chosen.

Diffusion Patterns

The diffusion patterns of a network describe how a network evolves over time. As
described earlier the Twitter diffusion networks consist of star networks which have
as a consequence that only simple network features could be extracted. The most
basic diffusion patterns are therefore captured by tracking the number of nodes,
increase in number of nodes, and the number of cascades. Furthermore, we ex-
tract Twitter-specific features which include the number of original tweets, number
of shares (retweet, quoted tweet or reply tweet), number of likes, and the average
number of likes per cascade. To adjust these features to the varying network sizes
per article we also computed their relative values by dividing them with the net-
work size of the correlating snapshot. This resulted in eleven features to represent
the diffusion patterns.

Followers

On Twitter, information diffusion patterns are related to the users who spread this
information. Users with a lot of followers, also called superspreaders, have a big audi-
ence and therefore tweets by these users reach more people. In Chapter 2 we already
mentioned that social bots try to use superspreaders to let an article go viral (Shao
et al., 2018b). To find out if superspreaders could indicate the presence of misinfor-
mation we extracted the followers count of all Twitter users in our data set. We then
computed six different features using these followers counts.

Two features represent the total and relative amount of followers of all users over
time. The relative amount is computed by dividing the total amount of followers
by the number of users in the network. The reason for this is that the diffusion
networks vary in size and this relative amount ensures the standardization of this
feature. Two other features are extracted by counting the amount of "well-known
users" (> 10,000 followers) and superspreaders (>100,000 followers) in the network.
Existing literature did not define the number of followers that a user must have to
talk about a superspreader. Therefore we invented this definition our self and added
a new one we call "well-known users". The last two features are the relative amount
of "well-known users" and superspreaders by using the previously mentioned stan-
dardization method.

Social Bots

As described in Chapter 2 the influence of social bots in the dissemination of misin-
formation on OSNs is enormous. Tracking social bots in the spread of news articles
on Twitter could therefore indicate that these news articles contain misinformation.
To track social bots we use a state-of-the-art bot detection algorithm called Botome-
ter (Davis et al., 2016). This detection method is suggested to be 86 percent accurate
(Varol et al., 2017) and is widely adopted in other research on misinformation detec-
tion on Twitter (Shao et al., 2018b; Vosoughi et al., 2018).
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Botometer works as follows. A Twitter account is given to the Botometer API3 which
then extracts about 1,200 features using publicly available information and meta-
data extracted from interaction patterns and content. These features are grouped
into six categories: network, content, temporal, user, sentiment, and friends. To classify
an account as either a human or a social bot, Botometer makes use of seven pre-
trained classifiers. One for each category of features and one that uses all features.
These classifiers give a prediction score between 0 and 1, with 0 being most human-
like and 1 being most bot-like.

To generate bot features we computed the Botometer scores for all unique Twitter ac-
counts in our data set. We then averaged the Botometer scores across all the Twitter
accounts that are present in a specific snapshot. We did this for all seven classifiers
which enable us to analyze which category of features is optimal in detecting social
bots that spread misinformation. In addition, we computed the average Botome-
ter scores for Twitter users that posted original Tweets and for Twitter users that
posted retweets. Finally, we used Botometer’s Complete Automation Probability
(CAP) score to count the number of users in the network that are most probably au-
tomated. When the CAP score of a user exceeded a threshold of 0.5 we classified this
user as bot. We then divided the number of bots by the total number of users in the
network to compute the percentage of social bots. All these features result in a total
of 10 bot features per snapshot.

4.3 Linguistic Features

To represent the linguistic content that characterizes the misinformation and trusted
tweets, we extracted two types of linguistic features: tweet embeddings and hand-
crafted features. In this section, we describe what preprocessing steps have been
taken to clean up the texts of the tweets and how we extracted features from them.
Unlike the network features, we extracted these features from individual tweets. By
averaging a feature over all tweets we were able to compute a feature value per
snapshot.

4.3.1 Preprocessing Tweets

Tweets often contain slang, typos, abbreviations, and other types of nonstandard
language which results in noisy data. In this study, we examined various feature
extraction methods to generate linguistic features. Some of these methods need the
original text of the tweet while others benefit from less noisy data. Therefore we have
divided the preprocessing part into two steps. After each step, the data is saved for
further use.

In the first step, the URLs were removed from the tweets and, when present, retweet
mentions were removed. A mention is carried out by using the @ sign immediately
followed by someone’s username and results in a notification of the tweet for the
mentioned user. The retweet mention is a special mention that always refers to the
original tweet. This preprocessing step is carried out to prevent the algorithm from
being biased. Because the data is collected using the URLs of specific news sources
(see Chapter 3) using them for classification could result in the classifier having a

3https://botometer.iuni.iu.edu/#!/

https://botometer.iuni.iu.edu/#!/
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bias towards a specific news source. The same accounts for retweet mentions be-
cause tweets may mention the Twitter account of the news source that posted the
article. Note that we do not remove mentions that do not refer to the original tweet
that posted the article.

The second step consists of various preprocessing techniques that have been inves-
tigated in (Effrosynidis et al., 2017). In this research fifteen techniques are compared
for sentiment analysis tasks on tweets. They showed that some of these techniques
improved the results while others led to a decrease in performance for these specific
tasks. We used the techniques that best suit the types of feature extraction methods
we used. For example, because our feature extraction methods do not make use of
slang we replaced slang with formal English. We did this by using a lexicon that
translated slang to formal English words. Besides this, integers, punctuation, and
hashtags were removed using regular expressions. Contractions were replaced by
its complete form, causing contractions such as won’t turn into will not. To correct
typos and spelling errors we used Norvig’s spelling corrector4. Finally, we removed
all emoticons from the tweets.

The tweets texts saved after the first preprocessing step are indicated as raw tweets
while after the second preprocessing step we call them clean tweets.

4.3.2 Tweet Embeddings

In recent years the development of advanced word embeddings has led to a boost
in various NLP tasks such as syntactic parsing (Socher et al., 2013a) and sentiment
analysis (Socher et al., 2013b). Word embedding techniques are used to map words
from a vocabulary to vectors of real numbers. The main advantage of this technique
is that words with similar meanings are located in close proximity to each other in
vector space. To see if word embeddings are effective in discriminating misinfor-
mation tweets from trusted tweets we used the pre-trained Twitter Word2Vec model
from Godin et al. (2015). This model applies the well-known Word2Vec algorithm
of Mikolov et al. (2013) on a Twitter corpus of 400 million tweets to generate 400-
dimensional word embeddings.

The original architecture of the Word2vec algorithm comes in two flavors: continu-
ous bag of words (CBOW) and skip-gram. The CBOW model predicts a word given
its context while the skip-gram model predicts its context given a word. The latter
is used by Godin et al. (2015) and will be explained here. In Figure 4.3 an example
of a skip-gram Word2Vec model is given. The model consists of a shallow neural
network and receives as input a word, represented by a one-hot vector. A one-hot
vector is a boolean vector whose length is equal to the size of the vocabulary. In this
case, the vocabulary consists of 3,039,345 different words. The position of the input
word is then used to set the corresponding vector index to one while all other values
stay zero, as shown here:

(1) Queen →[0000001000000...]

(2) King →[1000000000000...]

(3) Football →[0010000000000...]

4http://norvig.com/spell-correct.html

http://norvig.com/spell-correct.html
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FIGURE 4.3: Architecture of skip-gram Word2Vec model (Mc-
Cormick, 2016).

A problem with one-hot encoding is that the vector size becomes very large for large
vocabularies. Moreover, it does not preserve any semantic meaning of the word
since the distance between the one-hot encoding of two words is always the same.
For instance, in the example above Queen, King, and Football are equally close to each
other in vector space while not in semantic meaning. The Word2Vec model is used to
transform this sparse representation into a distributed representation, also known as
word embedding. Contrary to a one-hot vector a word embedding is a real-valued,
dense, and low-dimensional vector, as shown here:

(4) Queen →[0.34, 0.51, 0.74]

(5) King →[0.36, 0.51, 0.73]

(6) Football →[0.76, 0.21, 0.43]

Using a distributed representation has as advantage that it can make related or sim-
ilar words occur closer in vector space. This is shown in the example above, Queen
and King have a similar meaning and therefore have a similar vector representation
while that of Football is totally different. Besides, the vector size is of fixed-length,
making it more efficient to store.

A transformation from sparse to distributed representation is achieved by using the
skip-gram model. Giving a one-hot vector the model predicts the probability that
a context word, which lays in a certain range from the input word in that tweet,
is another word in the vocabulary. As shown in Figure 4.3 a neural network that
applies a softmax function on the output layer is used for prediction. The softmax
function converts the output vector to a probability vector that is again equal to the
vocabulary size. This means that for every word in the vocabulary a probability is
computed that represents the likeliness of the context word being that word. Because
it is known what the actual context word is a loss function is used to compute the
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loss between the predicted and targeted output. This loss is then backpropagated
through the network to update the weights.5

By iterating over all the tweets in the Twitter corpus the model learns to predict the
dependency relationships between words. To represent these relationships, not the
trained neural network itself is used but, instead, the weights of the hidden layer
are used as word embeddings. This hidden layer consists of a matrix that is equal to
the vocabulary size times the number of hidden nodes. As mentioned earlier, Godin
et al. (2015) computed 400-dimensional feature vectors which means that their neu-
ral network contained 400 hidden nodes. It appears that this technique is especially
good in capturing semantic information when trained on a very large corpus (Lille-
berg et al., 2015) which is why a pre-trained Word2vec model is used in this study.

Using this pre-trained Word2Vec model with our own data we were able to construct
tweet embeddings. This is done by first computing the word embedding for every
word in a tweet. If a word did not occur in the pre-trained vocabulary this word was
skipped. Ultimately, the tweet embedding was computed by averaging over all word
embeddings in the corresponding tweet.

4.3.3 Handcrafted Features

Based on previous research that used linguistic features for misinformation detec-
tion and other NLP tasks we constructed a set of most promising handcrafted lin-
guistic features. In this section, detailed descriptions of these features are given.

TextBlob

TextBlob6 is a Python library that consist of various NLP tools. Previous efforts al-
ready showed the strength of the sentiment classifier of TextBlob for the detection
of "Fake News" tweets (Krishnan and Chen, 2018; Reis et al., 2019). The sentiment
classifier computes a subjectivity and polarity score for a text, based on the adjec-
tives it contains. Adjectives are used to modify or change the semantics of a noun.
In Examples 7 and 8, a sentence is shown with (indicated in bold) and without an
adjective.

(7) The president of the United States is a terrible man.

(8) The president of the United States is a man.

This example shows that using the adjective "terrible" results in a more subjective
and negative sentence. Applying the TextBlob sentiment classifier on example 7 will
therefore result in a high subjectivity score and low polarity score. The subjective
score of TextBlob is presented by a value between 0.0 and 1.0 while for the polarity
score this value is between −1.0 and 1.0. These scores represent objectivity versus
subjectivity and negativity versus positivity, respectively.

5See Section 3.4.3 for a more detailed description on neural networks.
6https://textblob.readthedocs.io/en/dev/index.html

https://textblob.readthedocs.io/en/dev/index.html
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Orthography

Orthography describes the set of conventions for written language. On Twitter,
these conventions have become less strict causing the use of non-standard orthog-
raphy. Particularly the use of capitalized letters, punctuation, spelling, and emojis
is different from conventional texts. To evaluate if the orthography in tweets dif-
fers between misinformation and trusted articles we extracted several orthography
features which we will describe here.

The frantic use of exclamation marks and capitalized letters is often brought in con-
text with writers that want to cause an emotional reaction. In general, misinfor-
mation contains more content intended to evoke outrage. Therefore we hypothe-
size that misinformation tweets contain more exclamation marks and capital letters.
Using regular expressions we extracted the exclamation marks, capital letters, and
continuous capital letters, and represented them by total counts and percentages of
occurrences. In addition, we looked at hashtags and mentions because these are of-
ten used to amplify the spread of a tweet. This may indicate that users who post a
misinformation or trusted article are knowingly trying to reach a bigger audience.
This strategy is often applied by bots to let a tweet go viral, as found by Shao et al.
(2018b). We represented these features by a total count and a binary value that in-
dicates the presence of at least one hashtag/mention. Finally, we extract the tweet
length by counting the number of characters in a tweet. This is a feature that is
proven to be effective for misinformation detection tasks when part of a larger fea-
ture set (Castillo et al., 2011; Buntain and Golbeck, 2017). However, because in this
study the feature importance of individual features is investigated as well it will
be interestingly to find out if the tweet length is really of discriminative power for
misinformation detection.

The rise of social media has led to a significant increase in the use of emojis. Emojis
are graphical symbols that represent facial expressions, emotions, objects, or ideograms.
A comprehensive study by Novak et al. (2015) investigated the use of emojis on Twit-
ter by analyzing the sentiment of these emojis. They provided a sentiment map of
the 751 most used emojis on Twitter.7 For each emoji, a sentiment score between−1.0
and 1.0 is given. We used this score as a feature whenever an emoji was present in
the tweet and if not a neutral score of 0 was given. In the case of multiple emojis in
the same tweet, we averaged the sentiment score. In addition to the sentiment score,
a binary value was used to indicate if there is at least one emoji present.

Hedges, Subjectivity Cues and other Bias Markers

In a previous study on suspicious and verified news tweets, it was found that sus-
picious tweets contain significantly fewer hedges, subjective cues, and other bias
markers than trusted news tweets (Volkova et al., 2017). Suspicious tweets were la-
beled as such when posted by one of the 174 suspicious Twitter accounts which they
verified manually. To investigate if these features are also of discriminative power
on our data we extract them as well.

Hedges Hedges are words that are used to introduce uncertainty about the propo-
sition that follows. This means that the writer is not totally convinced about the

7http://kt.ijs.si/data/Emoji_sentiment_ranking/index.html

http://kt.ijs.si/data/Emoji_sentiment_ranking/index.html


4.3. Linguistic Features 33

truth of the proposition. Below an example of a sentence with and without a hedge
in it.

(9) We may have to close the shop.

(10) We have to close the shop.

In this example, the hedge (indicated in bold) ensures that the proposition has been
made questionable. To bring this in context with misinformation it seems reason-
able to think that hedges are more used in relation to misinformation since it could
indicate that the truthfulness of the content is questionable. On the other hand, in
scientific papers, which are seen as simple factual texts, hedging is used frequently
to indicate the strength of a claim. This shows that a hedge also could imply that the
writers well overthought the claim they made. Previous research indeed found that
Twitter accounts of verified news sources use more hedges (Volkova et al., 2017). To
find out how hedges are used in tweets that disseminate misinformation articles we
used a list of hedges constructed by Hyland (2018). We extracted these hedges from
tweets using regular expressions and represented them as binary value (present or
not present) and a total count.

Subjectivity Cues Opinions are subjective expressions that describe people’s sen-
timents, appraisals, or feelings toward entities, events, and their properties (Liu,
2010). Subjectivity cues in written language refer to the words that characterize
these opinions. To find these cues in tweets we made use of the subjectivity lexi-
con of Riloff and Wiebe (2003) and another lexicon of positive and negative opinion
words that are constructed by Liu et al. (2005).

The subjectivity lexicon consists of words that are weakly and strongly subjective.
Strong subjective words are mainly used to express subjectivity while weak sub-
jective words are used for both subjective and objective expressions. Positive and
negative opinion words are also indicators of subjective language and therefore this
lexicon could also be used to detect subjectivity in tweets. When manually analyz-
ing both lexicons we observe high similarity. However, since Volkova et al. (2017)
used both lexicons to extract subjectivity features we will do the same. We do this
again by using regular expressions and use a binary representation if a word in the
tweet occurs at least once in the lexicon and, besides, count the total number of oc-
currences.

Bias Markers In language, bias markers refer to the words that are flattering, vague
or endorse a particular point of view. The previously described hedges and subjec-
tivity cues are examples of bias markers. In this section, we describe four other bias
markers (assertive, factive, implicative, and reportive verbs) that are useful for de-
tecting biased language. This was found in a study by Recasens et al. (2013) in which
a Wikipedia8 dataset was used to evaluate the performance of these bias markers.
While Wikipedia strives to keep its language unbiased, Twitter is a platform that
contains a lot of biased language. This was confirmed by Volkova et al. (2017), who
found that both suspicious and verified tweets contained a lot of bias markers. Nev-
ertheless, suspicious tweets contained significantly more bias markers than verified
tweets.

8https://www.wikipedia.org/

https://www.wikipedia.org/


34 Chapter 4. Feature Engineering

The aforementioned bias markers consist of factive, assertive, implicative, and re-
portive verbs. Factive verbs presuppose the truth of their complement cause
(Kiparsky and Kiparsky, 1968). This means that factive verbs are used when the
complement cause is assumed to be true. In Example 11 the verb "knows" implies
that Ronald is sure about the truth of the complement and therefore "know" is a
factive verb. Because the verb "believes" in Example 12 does not indicate that the
complement clause is a fact so "believe" is not a factive verb.

(11) Ronald knows the earth is flat.

(12) Ronald believes the earth is flat

On the contrary, assertive verbs do not presuppose the truth of their but assert a level
of certainty to the complement cause (Hooper, 1975). This level of certainty depends
on the asserting verb that is used. In Examples 13 and 14 the use of assertive verbs is
shown. These examples show that the verbs "say" and "claim" imply different levels
of certainty.

(13) Frank says Russia will attack North Korea if they don’t stop producing
nuclear weapons.

(14) Frank claims Russia will attack North Korea if they don’t stop producing
nuclear weapons.

Implicative verbs imply —depending on the polarity of the main predicate— the
truth or untruth of their complement (Karttunen, 1971). Although factive verbs also
imply the truth of their complement clause, implicative verbs polarity of their com-
plement clause changes when a negation is used (see Ex. 15 and 16) while factive
verbs do not affect the truth of their complement cause under negation (see Ex. 17
and 18).

(15) Donald does remember that he stole a candy from the shop.

(16) Donald does not remember that he stole a candy from the shop.

(17) Ronald knows the earth is flat.

(18) Ronald don’t knows the earth is flat.

Reporting verbs are also known as referring verbs since they are used to report or
refer to others work. These verbs are frequently used in scientific writing to cite
another writer’s work. Using these verbs you can comment, agree or disagree, or
evaluate someone else’s text. This enables people react on the actual context of news
article that is being disseminated. Below some examples of the use of reporting
verbs.

(19) Some people claim that the the Republican Party manipulates voters.

(20) Members of the Republician Party disagree with this claim.

Affective Norms for English Words (ANEW)

A well-known assessment technique to directly measure valence, arousal and dom-
inance associated with a person’s affective emotion to stimuli is the Self-Assessment
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Manikin (Lang, 1980). This technique is primarily used in psychological experiments
and works as follows: a stimulus is presented to a person and this person has to ex-
press their emotions on this stimulus using the assessment form that is shown in Fig-
ure 4.4. The valence score is indicated by five manikins, in a range from happy to un-
happy, from which the participants have to choose one that indicates their emotional
state. The same accounts for arousal (ranged from excited to calm) and dominance
(ranged from controlled to in control), and results is a three-valued score for emotion.
Bradley and Lang (1999) used this technique to measure the emotional response to
1,034 English words. This work was later extended by Warriner et al. (2013) to create
a dictionary of 13,915 English lemmas with related norms of valence, arousal, and
dominance. In this study, the original rating system of the Self-Assessment Manikin
was adjusted from 5-dimensional to 9-dimensional while keeping the original de-
scriptions for range (happy, unhappy, etc.). The scores are therefore represented in
the dictionary by a value between 1 and 9. These are average scores over multiple
assessments that were collected during a large experiment. In this experiment be-
tween 15 and 50 assessments for valence, arousal, and dominance were registered
for all 13,915 words.

FIGURE 4.4: The Self-Assessment Manikin (SAM) form in which a
valence (upper), arousal (middle), and dominance (lower) score can

be given by choosing the right manikin (Bradley and Lang, 1994).

Although the standardization of emotional feelings is extremely difficult this dic-
tionary has proven to be useful in various tasks, including social bot detection on
Twitter (Varol et al., 2017). To investigate if the emotional response in tweets is dif-
ferent to misinformation articles than to trusted articles we used the aforementioned
dictionary to extract valence, arousal, and dominance scores from tweets. Because
the dictionary only contains lemmas we first applied lemmatization on the tweets
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texts using NLTK’s part of speech (POS) tagger9 and WordNetLemmatizer.10 Ad-
ditionally, we checked for negations in the previous three words and reversed the
polarity of the scores if a negation was found. Finally, we averaged the valence,
arousal, and dominance scores from all words in the tweet that were represented in
the dictionary.

Verbs of Attribution

Verbs of attribution, also called attribution tags, are used to attribute information
to others. This means that these verbs can be used to cite someone else’s words,
thoughts, or actions. Different verbs imply subtle differences about the citation. The
examples below show such a difference when using different verbs of attribution
(indicated in bold) in the same sentence.

(21) The New York Times reveals that president Donald Trump has secret al-
liances with Ukraine.

(22) The New York Times speculates that president Donald Trump has secret al-
liances with Ukraine.

In this example, both verbs of attribution (reveals and speculates) are used to cite a
claim by The New York Times. However, the claim in the first example seems more
trustworthy than the second due to the verb that is used. This suggests that verbs of
attribution could be used to weaken or strengthen claims. We therefore hypothesize
that verbs of attribution are more used in misinformation tweets to evoke vagueness
around a related news story or to show agreement (or disagreement).

We extracted these verbs from tweets using a lexicon of attribution verbs.11 This
lexicon was composed to show alternatives for the most used attribution verb, which
is "says". However, as we are interested in all attribution verbs we added "says" to
the lexicon. We then constructed a binary feature that represents the occurrence of
at least one verb of attribution and a real number that represents the total amount of
attribution verbs.

Discourse Connectives

Discourse connectives are words or phrases that connect two coherent sentences and
indicate the presence of discourse relations. Because discourse connectives are be-
ing considered the most reliable signals of coherent relations they are widely used
in a variety of NLP tasks e.g. argumentation mining (Kirschner et al., 2015). With
argumentation mining, the aim is to automatically identify arguments and argumen-
tative relations in discourse. Since misinformation articles include false or inaccurate
claims we hypothesize that tweets related to misinformation include more argumen-
tative language to substantiate or disprove the claim that has been made. Argumen-
tative language often includes attributing causality which is something trusted news
sources are much more careful about. An example of argumentative language is il-
lustrated in the following sentence:

9https://www.nltk.org/api/nltk.tag.html
10https://www.nltk.org/_modules/nltk/stem/wordnet.html
11https://www.centralia.edu/resources/docs/verbsatrib.pdf

https://www.nltk.org/api/nltk.tag.html
https://www.nltk.org/_modules/nltk/stem/wordnet.html
https://www.centralia.edu/resources/docs/verbsatrib.pdf
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(23) The deployment of a 5G mobile network is dangerous because it leads to
health risk.

In this sentence, the word because is a discourse connective and indicates the argu-
mentative relation between the two phrases. Therefore, we will identify the pres-
ence of discourse connectives to recognize argumentative language in tweets. For
identification we utilised an existing list of discourse connectives12 and used regular
expressions to find these words in the tweets. Ultimately, the identified discourse
connectives have been represented by a total count and binary indicator so they can
serve as features for our detection model.

Summary

In Section 4.1 it was shown how Twitter diffusion networks can be reconstructed to
represent the dissemination of news articles on Twitter. To capture the temporality
of these diffusion networks a method is proposed in which time series data is con-
structed by taking snapshots of the network. This method ensures that our detection
method is independent to number of micro-blog posts that are available at the time
of detection. Utilizing the tweets that are included in the snapshots it was shown
how to create temporal-network and temporal-linguistic features. The network fea-
tures represent the diffusion patterns and user characteristics, such as the number of
followers of a user or a bot score that indicates the likeliness of a user being a bot. The
linguistic features consist of a comprehensive set of handcrafted features that try to
capture various linguistic characteristics such as the orthography, subjectivity, sen-
timent, and biased language that is used in the tweets. Furthermore, a pre-trained
Word2Vec model is used to create 400-dimensional Tweet embeddings. in Table 4.1
an overview is given of all the network and handcrafted linguistic features that have
been extracted.

12https://www.sparklebox.co.uk/literacy/vocabulary/word-lists/connectives/.XbFoLugzZaR
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TABLE 4.1: Overview of all network and handcrafted linguistic fea-
tures.

Feature Amount Representation

NETWORK FEATURES

Number of nodes 1 int
Increase in number of nodes 2 int
Number of original tweets 1 int
Number of shares 1 int
Number of likes 2 int
Number of cascades 2 int
Average likes per cascade 2 float
Number of followers 2 int
Number of well-known users 2 int
Number of superspreaders 2 int
Average botscores 7 float
Average botscore original tweets 1 float
Average botscore shares 1 float
Percentage of bots 1 float

HANDCRAFTED LINGUISTIC FEATURES

Polarity score (TextBlob) 1 float
Subjectivity score (TextBlob) 1 float
Number of exclamation marks 1 int
Percentage exclamation marks 1 float
Number of capital letters 1 int
Number of continuous capital letters 1 int
Percentage capital letters 1 int
Hashtags 2 int, binary
Mentions 2 int, binary
Tweet length 1 int
Emojis sentiment score 1 float
Emojis 1 binary
Hedges 2 int, binary
Positive words 2 int, binary
Negative words 2 int, binary
Valence, arousal, dominance 3 float
Weak subjective words 2 int, binary
Strong subjective words 2 int, binary
Assertive verbs 2 int, binary
Factive verbs 2 int, binary
Implicative verbs 2 int, binary
Report verbs 1 int
Verbs of attribution 2 int, binary
Discourse connectives 2 int, binary
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Chapter 5

Classification Model

As explained in the previous chapter the features are represented by time series con-
cerning different snapshots of the diffusion network. Therefore, misinformation de-
tection can be considered a sequence classification problem in this case. Given the
fact that we want to measure the performance of different features the following
research question was formulated:

SQ3. What classification model is able to incorporate all feature spaces while
being able to evaluate each feature space independently from one and other?

Based on earlier research that used time series data for misinformation detection (see
Chapter 2) we decided to use a recurrent neural network as classifier. Additionally,
several methods were integrated in the detection model to better fit the purposes
of this study. In this chapter, we give a detailed description of the inner-workings
of a recurrent neural network and furthermore describe, and motivate, the model
choices that have been made.

5.1 Recurrent Neural Network

Recurrent neural networks (RNNs) belong to a set of machine learning algorithms
called artificial neural networks (ANNs). These are self-learning algorithms that
learn to recognize patterns and use this for prediction. The general working of a
simple type of feedforward neural networks, the multilayer perceptron, is been ex-
plained in Section 3.4.3, where it was used as a topic classifier. Unlike traditional
feedforward neural networks, RNNs are used for sequence prediction problems.
RNNs use their internal state as a memory in which information from previous steps
in the sequence is remembered. As such, an RNN can model the temporal dynamics
of a sequence. This property has already proven to be effective for modeling the dis-
semination of misinformation on online social networks by Liu and Wu (2018) and
Ma et al. (2016).

Figure 5.1 depicts the general architecture of an RNN. As is shown, the hidden cells
have a feedback loop (WH) that redirects the output as an input value. The recur-
rence of this hidden state is better illustrated by unfolding the RNN into multiple
time steps. In doing so, we see that at each time step (t = [1...n]) the model receives
an input vector (xt) —that represent the feature values in each snapshot— and a
hidden input from the previous time step (ht−1). A linear combination of these input
values and related weights is then used to compute the activation of the hidden cells
which represents the information that is propagated through the network. This is
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FIGURE 5.1: Architecture of a recurrent neural network (Khuong,
2019).

called forward propagation and is eventually used to generate a predicted output.
Equation 5.1 shows how this activation is being computed for a single hidden cell:

at = WHht−1 + WHxt + b (5.1)

Where WX and WH represent the input and hidden weights and b denotes the bias.
This bias is a constant value that helps to shift the activation to a value that fits best
for the given data. This is analogous to the constant value in a linear equation, which
is used to effectively transpose the line with a constant value. The activation is com-
puted for all hidden cells, from which the amount is decided by hyper-parameter d,
and together represent the internal state or "memory" of the network (see the green
block in Figure 5.1). The output of a hidden cell (ht) depends on the type of cell
that is being used. A vanilla RNN cell often uses a nonlinear function such as a
hyperbolic tangent to generate the output:

ht = tanh(at) =
e2at − 1
e2at + 1

(5.2)

The nonlinearity of this activation function is important because it enables the net-
work to create a nonlinear decision boundary for classification. In this work, we use
a different type of cell which will be explained in the next section. Finally, to predict
the class of an input sequence a final output has to be computed. Because we have a
binary classification problem we use a sigmoid function to generate the probability
of the input sequence being misinformation (see eq. 5.3).

yt = (WYht) =
1

1 + e−WYht
(5.3)

5.1.1 LSTM cell

Since a vanilla RNN cell does not work well with long-term decencies the Long
Short-Term Memory (LSTM) cell was introduced by Hochreiter and Schmidhuber
(1997). An LSTM uses gates (input, output, and forget) to regulate the information
that goes through. These cells have shown to effectively learn what information to
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remember and whatnot, even for longer sequences. In figure 5.2 an example of an
LSTM cell is illustrated that receives an input xt and a hidden input (ht−1). Addition-
ally, the LSTM cell uses an internal state ct which functions as a long-term memory
that remembers information from earlier in the sequence.

FIGURE 5.2: Diagram that illustrates the inner-workings of an LSTM
cell (Gulli and Pal, 2017).

To compute the internal state three different gates are used. The first gate ( ft) is
called the forget gate and consists of a sigmoid layer σ that uses the current input xt
and previous output (ht−1) to compute what information to get rid of, see equation
5.4. In this equation W and b represent the weights and biases, respectively. The
computed value is between 0 and 1 and defines how much information is forgotten.

ft = σ(W f · [ht−1, xt] + b f ) (5.4)

The next gate is called the input gate and decides what information has to be stored
in the cell state (c). This gate consists of two parts: one sigmoid layer that decides
which input values should be inserted into the cell state (Eq. 5.5) and one tanh layer
that computes new values that could be given to the cell state (Eq. 5.6).

it = σ(Wi · [ht−1, xt] + bi) (5.5)

ct = tanh(Wc · [ht−1, xt] + bc) (5.6)

By combining old information that should be remembered (forget gate) with the new
information that should be stored (input gate) we can update the cell state. Equation
5.7 shows how this is done by multiplying the previous cell state (ct−1) with the
output of the forget gate ( ft). Afterwards the new information (it ∗ ct) is added which
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results in an updated cell state. The cell state functions as the "memory" of the cell
and is continuously updated after each time step.

ct = ft ∗ Ct−1 + it ∗ ct (5.7)

Finally, to compute the output —that recurs as input in the next iteration— the cell
uses the output gate. This gate again uses a sigmoid layer (Eq. 5.8) to determine
which part of the cell state should be outputted and filters the cell state by applying
a hyperbolic tangent function (Eq. 5.9).

ot = σ(Wo · [ht−1, xt] + bo) (5.8)

ht = ot ∗ tanh(ct) (5.9)

5.1.2 Learning

In the previous sections, we described how activation is propagated through the
network so it can predict which class (misinformation or trusted information) an
article belongs to. To let the network learn from previous instances backpropagation
is being applied. This technique improves the network by adjusting the weights
according to the loss, which is the error between the predicted and targeted output.
Due to the recursive nature of the weights and their effect on the loss, which spans
over time, a slightly different variant of backpropagation called backpropagation through
time (BPTT) is used. Using gradient descent a local minimum for the loss function is
determined. In this process, the difference between the prediction and actual output
is being minimized. Although different loss functions exist we use the most common
one for binary classification problems, called binary cross-entropy:

Lt(y, ŷ) = −(ytlog(ŷt) + (1− y) ∗ log(1− ŷt)) (5.10)

Where y is the target label [0, 1] and ŷt the predicted probability (0, 1). To compute
the loss for an entire sequence the loss of every time step is accumulated:

Ltotal(y, ŷ) = −
T

∑
t=1

(ytlog(ŷt) + (1− y) ∗ log(1− ŷt)) (5.11)

Now to improve the network the weights (WX, WH, WY) should be updated in a way
that minimizes the total loss. This is done at the end of a sequence by using Equation
5.12.

Wi := Wi − η
∂Ltotal(y, ŷ)

∂Wi
(5.12)

In this equation i = [X, Y, H] as a shorthand for the three weight matrices and η the
learning rate between 0 and 1. The learning rate is a hyper-parameter that deter-
mines to what extend the weights should be adjusted. The higher the learning rate
the faster the network will learn but this should be decided carefully because a too
high learning rate can have as result that the algorithm will not convergence since a
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minimum is skipped. In the equation above the gradient is represented by ∂Ltotal(y,ŷ)
∂Wi

which means that a partial derivative of the loss function with respect to a weight
matrix is being computed. Since the loss function is composite function the chain
rule can be applied to do this. For the output weights WY the following equation is
used:

∂Lt(y, ŷ)
∂WY

=
∂Lt

∂ŷt

∂ŷt

∂zt

∂zt

∂WY
(5.13)

Using the chain rule the gradient for WY can be computed by iterating over each
time step:

∂Ltotal(y, ŷ)
∂WY

=
t

∑
n=1

∂Lt

∂WY
(5.14)

Similar calculations should be done for the gradient of WX and WH but this appears
to be more difficult. To propagate the loss back to the hidden layer the derivative of
the loss function depends on the derivative of the loss function in the previous state
as shown here:

∂Lt(y, ŷ)
∂WX

=
∂Lt

∂ŷt

∂ŷt

∂zt

∂zt

∂ht

∂ht

∂hk
(5.15)

where k is equal to t− 1. Note that, within ht, hk also includes WX. This means that
the chain rule should recursively be applied until h0 is reached, or in other words,
the error should be back propagated through time. This is done by using recursion:

∂Lt(y, ŷ)
∂WX

=
t

∑
k=0

∂Lt

∂ŷt

∂ŷt

∂zt

∂zt

∂ht

∂ht

∂hk

∂hk

∂WX
(5.16)

To finally compute the gradient for WX the loss again has to be accounted for each
time step:

∂Ltotal(y, ŷ)
∂WY

=
t

∑
n=1

t

∑
k=0

∂Lt

∂ŷt

∂ŷt

∂zt

∂zt

∂ht

∂ht

∂hk

∂hk

∂WX
(5.17)

Since WX and WH are analogous to each other the same computations are applied to
compute the gradient for WH. Using the gradients the update rule of Equation 5.12
can be applied and the network is able to learn.

5.2 Model Architecture

The described recurrent neural network is a part of larger deep learning model that
serves as our classifier. This model was implemented using Keras (Chollet, 2015)
and is visualized in Figure 5.3. In this section, the other techniques that are part of
this neural network are being described, which consists of an attention mechanism,
late fusion, and Dropout.
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FIGURE 5.3: Model architecture.

5.2.1 Attention Mechanism

The function of an attention mechanism is to dynamically highlight relevant fea-
tures in the input sequence. While originally developed to optimize an RNN in an
encoder-decoder framework the mechanism has now been adopted in various neu-
ral architectures (Galassi et al., 2019). As a result, different implementations of the
attention mechanism exist that depend on the architecture and data that is being
used. In our case, we add an attention mechanism in between the input layer and
the hidden LSTM layer to function as a dynamic feature weighting technique (Ko-
hita et al., 2018). Thus, unlike conventional attention mechanisms for RNNs, that
compute weights for various time steps, this attention layer learns to weight fea-
tures depending on the input. The advantage of using this technique is two-fold.
First, it learns the feature importance by linking input values to the target value
(misinformation or trusted information). This means that the feature importance is
context-dependent which results in different features being important for different
misinformation articles. Secondly, it can give a deeper insight into which features
are useful in general or for some specific cases of misinformation. This enables us to
evaluate the contribution of specific linguistic and network features for the detection
of misinformation articles.
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FIGURE 5.4: Architecture of the attention mechanism.

The implemented attention mechanism consists of a dense layer between the input
layer and the hidden layer (LSTM), as illustrated in Figure 5.4. Since this mechanism
determines the feature importance of each individual feature, the size of this layer
is equal to the number of features. At each time step the layer functions as a simple
feed-forward layer1 that uses softmax as activation function. This softmax function
normalizes the activation of the cells in this layer as follows:

an =
eWAn·xn

∑N
j=1 eWAj·xj

(5.18)

Applying this function for all input features, at every time step, creates an attention
matrix (A). The weights regarding the attention layer WA are updated similarly to
the input weights WX (see Section 5.1.2). Because this attention layer represents the
feature importance at every time we multiply the input vector with the attention
vector to create weighted features. Afterwards the weighted features are fed to the
hidden layer as usual.

5.2.2 Late Fusion

Multi-task learning (MTL) is a subfield of machine learning in which multiple learn-
ing tasks are integrated into the same model. This field is inspired by human learn-
ing because when humans start learning new tasks they often apply knowledge that
is acquired by learning related tasks. For example, when a baby learns to recognize
faces it also uses this knowledge to recognize other objects. Based on this principle
researchers have proposed various methods to perform multi-task learning in deep

1See Section 3.4.3 for more information on feed-forward layers.
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neural networks. The most commonly used method to do this is by hard parame-
ter sharing of the hidden layer, which was originally proposed by Caruana (1993).
This method learns a combined representation from multiple input streams by con-
catenating the hidden layers with each other. It turns out that this technique is not
only effective for multitask learning but also for single tasks when having multiple
input streams. This is demonstrated in various tasks (Volkova et al., 2017; Karpa-
thy et al., 2014) and often referred to as late fusion. The advantage of late fusion is
that the model first focuses on the individual strength of the features in each input
stream and afterwards fuses the semantic representations of those streams. In this
study, we extracted two semantically different feature groups, namely network and
linguistic features, and therefore we decided to use this method to combine these
feature spaces. Besides, it enables us to easily measure the performance of one fea-
ture group by using only one input stream and discarding the concatenation layer.
As is shown in Figure 5.3 both input streams have an attention mechanism. This
means that the feature importance is only measured within one feature group.

5.2.3 Dropout

To prevent the network from overfitting a regularization method called Dropout (Sri-
vastava et al., 2014) is being used. Overfitting occurs when the decision boundary
that is learned by the network is too closely fit by a limited set of training data points.
As a result, the algorithm is not able to generalize and performs poorly on unseen
data. Dropout helps to prevent this from happening by randomly dropping cells,
along with their connections, during training time. The number of cells that are be-
ing dropped is determined by a hyperparameter called the Dropout rate. This rate
ranges from 0 to 1 and refers to the percentage of cells that is being dropped. In the
proposed model, the Dropout layer is inserted between the hidden and concatenate
layer (or output layer when using only one input stream), as is shown in 5.3. This
means it will randomly drop cells of the hidden layer.

Summary

Collectively, this chapter presented a deep learning model in which both temporal-
network and temporal-linguistic features can be integrated while also being able
to evaluate these feature groups, and individual features, independently from one
and other. First, a recurrent neural network is described in detail and enables the
model to learn from the temporal information represented by time series data. Fur-
thermore, an attention mechanism was integrated that serves as an internal feature
weighting technique while it also increases the interpretability of the model. By
evaluating the attention scores the feature importance of individual features can be
measured during classification. Finally, a technique called late fusion was used to bet-
ter combine the different feature spaces (network and linguistic) by using two input
streams that have their own RNN while afterwards being fused together. Moreover,
this enables us to evaluate one feature group by using only one input stream.
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Chapter 6

Results & Discussion

To evaluate the performance of the proposed detect method and the effectiveness of
different features we conducted a set of experiments. In this chapter, these experi-
ments and their results will be discussed to eventually give answer to the following
research questions.

SQ4. Using the classification model from SQ3 and the identified relevant
features from SQ2 to detect misinformation, what is the relative contribution of

these feature spaces?

SQ5. How do the different feature spaces perform with respect to the earliness
of detection?

Furthermore, we describe the feature importance of the different features that have
been used during these experiments based on the attention mechanism of our clas-
sification model.

6.1 Experimental Settings

The various feature groups have resulted in five different models represented by the
following acronyms: LSTM-N (network features), LSTM-H (handcrafted linguistic
features), LSTM-T (tweet embeddings), LSTM-L (all linguistic features), and LSTM-
ALL (combines LSTM-N and LSTM-L). For experimentation, we divided the data set
into a validation set (20%) and a train/test set (80%). The validation set was used for
hyper-parameter optimization based on 10-fold cross-validation with a grid search.
The optimal hyper-parameters for our models are shown in Table 6.1. To train the al-
gorithm we applied stochastic gradient descent with the Adam update rule (Kingma
and Ba, 2014) and Dropout (Srivastava et al., 2014) was used for regularization. The
number of epochs was set to 100 and early stopping was applied when the validation
loss saturated for 10 epochs.

LSTM-N LSTM-H LSTM-T LSTM-L LSTM-ALL
Learning rate 0.01 0.001 0.001 0.001 0.001
Batch size 20 20 20 20 20
# LSTM cells 50 50 500 600 50 & 600
Dropout rate 0.1 0.1 0.1 0.1 0.1

TABLE 6.1: Model configurations obtained by doing a grid search.
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To find out how different models perform with respect to the earliness of detection
and the available temporal information we conducted different experiments. First,
we investigated if our models were able to learn from temporal information by using
snapshots of a diffusion network. We did this by choosing two detection deadlines
(15 minutes and 4 hours) and varied the number of snapshots for these time win-
dows. Secondly, we used the optimal number of snapshots to perform the rest of
our experiments with detection deadlines between 1 minute and 10 days. For ev-
ery configuration, we applied 10-fold cross-validation on the 80% train/test data
set and computed the average accuracy, AUC, F1-score, precision, and recall plus
their standard deviations. A Wilcoxon signed-rank test was performed to measure
significance and we reject the null hypothesis when the p-value is lower than 0.05.

6.2 Model Performance

The results of all experiments conducted with the aforementioned configurations
can be found in Appendix B. In this section we present and discuss the results that
show how model performances differ with respect to the number of snapshots and
detection deadlines. Furthermore, we compare different models according to the fea-
tures that have been used.

6.2.1 Snapshots

The performance of all models with a detection deadline of 4 hours and varying
amounts of snapshots is shown in Figure 6.1. We observe that the accuracy of most
models decreases with a larger number of snapshots except for LSTM-N. The net-
work features can take advantage of the temporal information and show an increase
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FIGURE 6.1: Model accuracy for varying snapshots and a detection
deadline of 4 hours.
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in accuracy when the number of snapshots is 4 instead of 1, although not signifi-
cant (Z = 13.0, p = 0.138). For higher amounts of snapshots the performance of all
models degrades strongly. We repeated this experiment for a detection deadline of
15 minutes and found similar results, as shown in Table 6.2. Together, the presented
findings confirm that our models do not benefit from temporal information for the
early detection of misinformation.

When comparing our results to the state-of-the-art that successfully combined tem-
poral features with an RNN as classifier (Liu and Wu, 2018), it must be pointed
out that we provided the classifier with different temporal data. As described, we
created a tweet volume-independent detection method by introducing the use of
snapshots while the model by Liu and Wu (2018) is tweet volume-dependent (see
Section 2.4). An advantage of a tweet volume-independent model is that we do not
rely on the number of tweets to define the detection deadline but instead use abso-
lute detection deadlines. This also enables us to compare performances of different
feature spaces based on the absolute detection deadline instead of the number of
tweets. However, as the results suggest the use of snapshots causes the disappear-
ance of valuable temporal information. This is most likely because we include mul-
tiple tweets per time step (snapshot) instead of having one tweet per time step. To
conclude, the use of multiple snapshots to create temporal data does not add value
to our detection model. We therefore performed the remaining experiments using
only 1 snapshot.

6.2.2 Detection Deadlines

Figure 6.2 shows how the different models perform for ascending detection dead-
lines. We observe that each model improves when the detection deadline increases.
This effect is observed more clearly for the network features than for the linguistic
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FIGURE 6.2: Model accuracy using 1 snapshot and varying detection
deadlines.
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features, a result also found by Vosoughi et al. (2017). This increased accuracy makes
sense because more social context (e.g. tweets) becomes available as time passes, and
with that more information that discriminates misinformation from trusted informa-
tion. However, for our best detection model (LSTM-ALL) this improvement is min-
imal, observing an average increase in accuracy of 4.2 percent between a detection
deadline of 1 minute and 10 days. For the LSTM-N model this increase in accuracy
is much higher, namely 11 percent on average. Nevertheless, these differences might
also be (partly) because the LSTM-N model performs poorly at a detection deadline
of 1 minute and has, therefore, more room for improvement.

Another noticeable finding is that there is a drop in accuracy for LSTM-H when the
detection deadline shifts from 1 minute to 5 minutes. A plausible explanation for
this is that the handcrafted linguistic features become noisier when the detection
deadline increases since we average the feature values over all the tweets in a snap-
shot. Why this decline is resurrected after a detection deadline of 4 hours is most
likely because the added valuable information surpasses the poor feature presenta-
tion. This occurrence implies that our feature representations are not optimal for the
handcrafted linguistic features.

6.2.3 Model Comparison

The classification accuracy of all experiments is presented in Table 6.2. We find that
linguistic features (both handcrafted and tweet embeddings) outperform the net-
work features for all detection deadlines. Especially for a detection deadline of 1
minute, the linguistic features perform much better which indicates that these fea-
tures are more reliable for near real-time detection. These findings are consistent
with other research that compared linguistic and network features for different de-
tection deadlines (Kwon et al., 2017; Vosoughi et al., 2017).

Detection
Deadline S LSTM-N LSTM-H LSTM-T LSTM-L LSTM-ALL
1 min 1 76.8± 5.6 85.8± 4.4 87.6± 4.3 89.9± 4.4 93.4± 2.5
5 min 1 76.4± 4.8 83.3± 5.5 88.8± 3.0 90.1± 4.7 91.4± 3.7
15 min 1 79.0± 5.6 83.7± 4.3 87.9± 3.5 90.4± 3.6 92.3± 3.8

3 81.4± 6.5 85.1± 4.0 88.2± 3.0 90.4± 6.9 94.0± 3.6
15 81.6± 4.5 84.6± 3.0 86.9± 2.9 91.6± 4.3 93.3± 2.4

1 hour 1 80.6± 3.8 84.2± 4.8 88.9± 3.5 91.3± 4.3 95.2± 2.5
4 hours 1 81.4± 4.4 89.2± 3.2 92.8± 2.3 94.0± 3.1 95.5± 2.2

4 86.0± 4.2 88.3± 3.4 90.7± 3.0 94.6± 3.1 95.8± 2.8
16 83.7± 4.3 88.5± 4.4 77.1± 14.5 93.7± 3.5 93.5± 2.1
48 78.2± 7.5 89.0± 3.9 77.4± 15.7 66.1± 13.3 81.0± 6.5

1 day 1 85.9± 4.9 91.9± 3.2 93.9± 3.5 95.1± 2.5 95.7± 2.3
3 days 1 86.7± 5.0 92.0± 3.5 93.9± 2.3 95.4± 2.8 95.4± 2.9
10 days 1 87.8± 5.6 92.0± 3.1 95.4± 1.7 95.0± 2.8 97.6± 1.4

60 86.8± 4.2 81.2± 10.3 78.4± 14.0 69.6± 11.6 92.0± 5.6

TABLE 6.2: Misinformation detection accuracy and their standard de-
viation by doing 10-fold cross validation for different detection dead-

lines and number of snapshots (S).

Between the different linguistic models we observe that the tweet embeddings are
slightly better than the handcrafted features for a detection deadline of 1 minute,
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however, no significant difference was found (Z = 14.0, p = 0.169). When compar-
ing all linguistic features (LSTM-L) with the tweet embeddings (LSTM-T) again no
significant difference is found (Z = 11.0, p = 0.171). Nevertheless, by comparing
all linguistic features (LSTM-L) with the handcrafted linguistic features (LSTM-H)
a significant difference is found (Z = 0.0, p = 0.012). These results reveal that the
handcrafted linguistic features and tweets embeddings can supplement each other
to improve model performances which was also found by Volkova et al. (2017).

Ultimately, we find that a combination of linguistic and network features (LSTM-
ALL) outperforms all other models for near real-time detection (p < 0.05). This
model can classify articles as misinformation with an accuracy of 93.36 percent after
1 minute. For all other detection deadlines, the LSTM-ALL model also outperforms
the others and reaches a maximum classification accuracy of 97.60 percent when the
detection deadline is 10 days.

Comparing these results directly with other research on early misinformation detec-
tion is arbitrary because we evaluate our model on a novel dataset that is focused
on political misinformation. Nevertheless, when looking at the state-of-the-art de-
tection models that we described in Section 2.4 it is at least remarkable that our
LSTM-ALL model can detect misinformation with extremely high accuracy in near
real-time. For example, Vosoughi et al. (2017), who also compared linguistic, net-
work, and temporal features, achieved very poor accuracy for near real-time detec-
tion (55%). On the other hand, Liu and Wu (2018) suggested that their model detects
misinformation within 5 minutes with 92% accuracy. However, as mentioned earlier
their model needs approximately 40 tweets to reach this accuracy while our model is
tweet volume-independent, and reaches a detection accuracy of 93% after 1 minute.

6.3 Feature Importance

As described in Chapter 5 an attention mechanism has been integrated into our de-
tection algorithm to function as a feature weighting technique. In this subsection,
the activation values of this attention layer will be presented and we will take a look
at the degree of attention that is received by each feature during classification. From
these results, we can determine which individual features are most important for
misinformation detection with respect to the earliness of detection. This is only done
for the network and handcrafted linguistic features because the tweet embeddings
are presented by a latent feature space and are therefore not directly interpretable.

The attention scores are based on the input values (features), attention weights, and
the softmax function. Since the attention weights are initialized randomly and af-
terwards updated using stochastic gradient descent the final weights used during
classification are non-deterministic. This means that the same model configurations
may result in slightly different attention weights. Besides, the input features also
vary per article. To minimize the effects of non-determinism and give a good indica-
tion about how important each feature is in general we report the cumulative atten-
tion scores over all test articles during the aforementioned 10-fold cross-validation.
We perform a Wilcoxon Signed Rank test to measure if there are any significant dif-
ferences in attention scores when the detection deadline varies.
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FIGURE 6.3: Average attention over a 10-fold cross validation using
the LSTM-N model with 1 snapshot and different detection deadlines.
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6.3.1 Network Features

In Figure 6.3 the cumulative attention scores of the network features for various de-
tection deadlines are being shown. The results clearly show that there are consider-
able differences in importance between different features and between different de-
tection deadlines. In this section, we discuss how the features performed in general
and examine the most notable differences between features for different detection
deadlines.

Starting with unimportant features we observe that the number of likes and average
likes per cascade get no attention at all. Since these features are both related to the
number of likes tweets and cascades of tweets receive we can conclude that likes do
not have any discriminative power. On the other hand, relative increase in number of
nodes, relative number of cascades, relative number of well-known users, relative number
of superspreaders, average botscore (network), and average botscore shares are all impor-
tant for classification regardless of the detection deadline. Although, the degree of
importance differs between detection deadlines.

Most notable is the average botscore (network), as it has the highest attention score
for most detection deadlines. This feature refers to the Botometer score that uses
network-related features to compute the likeliness of a user being a bot. Interestingly
is that for later detection deadlines this feature becomes even more important while
for a detection deadline of 1 minute the other Botometer scores, that are based on
different features such as user or friends, are more important. Noteworthy is that the
average botscore (all features), which uses all feature types (more than 1200 features)
to compute a botscore, receives almost no attention at all, however, it is unclear why
this happened. Average botscore shares is the average Botometer score over all shares
(retweets, quote, and reply tweets) and becomes more important when the detec-
tion deadline increases. This makes sense because for near real-time detection only
a few, or even no, shares have been posted. The average botscore original tweets repre-
sents the average Botometer score in the original tweets and receives more attention
for early detection deadlines. This may indicate that bots are used to amplify the
spread of misinformation in an early stage, a result also found in another study that
analyzed misinformation data that was collected using Hoaxy (Shao et al., 2018b).
In general, we can conclude that Botometer scores are useful features for detecting
misinformation regardless of the time of detection.

The other features with decent attention scores across different detection deadlines
are the previously mentioned relative increase in number of nodes, relative number of
cascades, relative number of well-known users, and relative number of superspreaders. Es-
pecially the first two features show that the structure of a twitter diffusion network is
beneficial for discriminating misinformation from trusted information. Surprisingly
is that these features seem to be quiet robust across all detection deadlines. Perform-
ing Wilcoxon Signed Rank tests we find that for a detection deadline of 1 minute,
4 hours, and 1 day there is no significant difference (p > 0.05). Only for detection
deadline of 10 days, there is significantly more attention going towards the relative
increase in number of nodes and relative number of cascades (p ≤ 0.05). Because diffu-
sion networks expand when the detection deadline increases we expected that later
detection would benefit from this as more structural information becomes available.
Although this is slightly the case these results show that structural features are use-
ful for near real-time detection as well. When comparing these two features with
each other we find that the relative number of cascades outperforms the number of
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nodes in terms of attention. As for the relative number of well-known users and relative
number of superspreaders, we observe that the feature importance depends more on
the detection deadline. For example, with a detection deadline of 4 hours or 1 day,
the relative number of superspreaders is far more important than with a detection dead-
line of 1 minute or 10 days. This example shows how the time of detection influences
the performance of a feature during classification.

It is worth mentioning that we varied with the representation of a feature. We used
both absolute and relative values as described in Chapter 4. Looking at the attention
scores of these features we find that in most cases that the relative feature values
lead to attention across all detection deadlines while absolute values highly vary
in attention scores between detection deadlines. This indicates that relative feature
values are more consistent with respect to the time of detection.

Finally, we found a remarkable attention score for the relative number of followers.
For all detection deadlines the feature receives no attention except for a detection
deadline of 1 minute, for this model the feature has the highest cumulative attention
score. Together with the good performance of the relative number of well-known users
and relative number of superspreaders it shows that the number of followers of a user
has a good discriminative power.

6.3.2 Linguistic Features

In Figure 6.5 the cumulative attention scores for the handcrafted linguistic features
are being shown. The results show that there are only a few features that receive the
majority of the attention. Among these features there is the percentage of capital letters
that is very important for all detection deadlines. To find out which class contains
more capital letters we plotted the percentage of capital letters for all the tweets in
the entire dataset in Figure 6.4. This figure clearly shows that misinformation tweets

FIGURE 6.4: Percentage capital letters per tweet for the entire dataset.
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FIGURE 6.5: Average attention over a 10-fold cross validation using
the LSTM-H model with 1 snapshot and different detection deadlines.
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are generally composed of a higher percentage of capital letters than tweets that
broadcast trusted news articles. The great use of capitalization may suggest that
more people try to convey importance or urgency, emphasize a though, or grab at-
tention when a news article contains misinformation.

The other peaks in attention are found for the tweet length, positive words (binary),
and the dominance score. All these features have in common that they receive (almost)
no attention for a detection deadline of 1 minute while high attention scores for later
detection deadlines. For the tweet length this makes sense because more tweets
become available when the detection deadline increases, as a result, the average
tweet length that is used per snapshot contains less variation and is therefore better
generalizable.

Apart from these orthographic features relate the positive words (binary) and the dom-
inance score more to the semantic characteristics of the tweets. Interestingly to see is
that positive words (binary) is not important for a detection deadline of 1 minute while
negative words (binary) is. When observing later detection deadlines we see that ex-
actly the opposite is true. This may indicate that the sentiment of the tweets changes
over time. The dominance score refers to the dominance or power of the words in a
tweet. These scores are based on psychological experiments that examined the ex-
tent to which words trigger emotional responses. It is therefore interesting to see
that this feature is of major importance for detection deadlines of 1 and 10 day(s)
as this indicates that especially after the news articles have been broadcast for some
time there is a difference in the use of strong language between misinformation and
trusted information.

Furthermore, we find that for the emoji sentiment score there is no significant differ-
ence in attention score between detection deadlines (p > 0.05). This means that
regardless of the time of detection the emojis that have been used in the tweets are
of discriminative power when separating misinformation from trusted information.
Finally, we find that the hashtag (binary) and mention (binary) features receive signif-
icantly more attention for a detection deadline of 1 minute than for later detection
deadlines (p ≤ 0.05). These features indicate the presence of a hashtag or mention
in a tweet. Using these hashtags and mentions a bigger audience can be reached
and therefore bots use this as a strategy, as found by Shao et al. (2018b).1 The good
performance of these features might therefore be related to the presence of bots since
we also found that the bot indicators are important network features.

1This study also analyzed misinformation data that was collected using Hoaxy.
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Chapter 7

Conclusion & Future work

In this chapter, we recapitulate the relevance of this work, list our most important
findings, and draw conclusions from this. Furthermore, we identify the shortcom-
ings of this study and provide suggestions for future work.

7.1 Conclusion

With the increased usage of online social networks, misinformation has become a se-
rious problem for societies worldwide. In this work, we argued that detecting misin-
formation in real-time, when it begins to spread, is crucial for solving this problem.
However, due to the diversity, versatility, and complexity of misinformation, this is
a challenging task. Misinformation detection is time-sensitive and topic-dependent,
and therefore the main objective of this thesis was to find out which features are
most effective for the early detection of political misinformation on online social
networks.

Sections 2.5 and 3.1 comprised the challenges that occur when evaluating misinfor-
mation detection models. In summary, publicly available, ground-truth datasets are
lacking, and constructing high-quality datasets is difficult because labeling misin-
formation is costly and datasets quickly become outdated. We therefore proposed a
method for constructing topic-dependent misinformation datasets that based its la-
bels on source credibility. By utilizing existing tools for tracking the spread of news
articles on Twitter we constructed a political misinformation dataset without using
many resources. Based on previous research, which showed that misinformation
detection is topic-dependent, we believe that the topic classifier has contributed to
the good performance of our detection model. To our knowledge, this is the first
study that used a topic classifier as a first filter and therefore may be considered a
promising aspect.

Utilizing the novel Twitter dataset a comprehensive set of linguistic and network
features was extracted, and combined this with temporal information about diffu-
sion networks. Unlike previous studies, temporal information was represented as
tweet volume-independent time series by taking snapshots of the Twitter diffusion
network. To evaluate and compare the performances of these feature groups, and
individual features, a recurrent neural network was used as classifier. Moreover,
an attention mechanism was integrated to function as an internal feature weighting
technique. In addition to weighting features ensured this mechanism that the im-
portance of different features during classification could be quantified. In this way,
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the decisions our model makes are better interpretable than existing detection mod-
els that utilize neural networks for classification. Important to mention is that the
interpretability is directly related to the interpretability of the features that are be-
ing used, e.g. tweet embeddings are uninterpretable features (devoid of semantic
content) and are therefore also not interpretable through the attention mechanism.

Experiments with the proposed detection model and dataset demonstrated that lin-
guistic features (both handcrafted and tweet embeddings), extracted from tweets,
are favorable compared to network features for near real-time detection of misinfor-
mation articles. This shows that the linguistic content of tweets contains discrimi-
native information that is rightly captured by the features that we extracted, even in
an early stage when only few tweets are available. Extensive knowledge about the
contribution of individual handcrafted linguistic features for misinformation detec-
tion was provided through the attention mechanism. This showed that especially
the percentage of capital letters in a tweet is a good indicator to discriminate misin-
formation from trusted information at an early stage of dissemination. Nonetheless,
the main conclusion that can be drawn from our results is that the effectiveness of
individual handcrafted linguistic features is highly dependent on the time of detec-
tion. The same accounts for most of the network features. However, in general, we
can conclude that the Botometer scores, which indicate the likeliness of a user being
a bot, are good features regardless of the time of detection. This is consistent with
other research that showed how social bots play a major role in the dissemination
of misinformation on online social networks. Furthermore, it was found that us-
ing multiple snapshots decreased performances and therefore we conclude that the
temporality of the network is not rightly captured by using snapshots. This is proba-
bly because valuable temporal information is being lost when splitting the diffusion
networks into arbitrary sizes. Nevertheless, using snapshots enabled the model to
be tweet volume-independent, which means it does not depend on the number of
available tweets, and therefore actual detection times could be measured.

In summary, this study casts a new light on the trade-off that exists between the ef-
fectiveness and efficiency of misinformation detection models. We showed how the
detection time influences the performance of various linguistic and network features
that are extracted from online social networks. With a strong focus on early misin-
formation detection, we proposed a model that achieves outstanding detection accu-
racy (93%) for detecting political misinformation articles on Twitter in near real-time.
Besides, the proposed model provides a potential mechanism for making detection
models more interpretable while concurrently integrating dynamic feature weight-
ing. The proposed model is specially designed to detect potential misinformation,
rather than debunk it. This could help fact-checkers to filter the huge amount of
news articles that are being published on online social networks, after which an-
other verification step is needed to determine the veracity of the news articles.

7.2 Future Work

A major problem in the development of misinformation detection methods is how
to evaluate these methods correctly. In this study, we showed how a large topic-
dependent dataset can be constructed based on source credibility. Nevertheless, be-
cause the labels are not manually verified, this dataset is considered silver standard.
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This limits the reliability of our results. Moreover, it is arguable if even with man-
ual verification it is possible to create ground truth labels because misinformation is
hard to observe objectively. We therefore suggest that more research should focus
on better evaluation methods for misinformation detection. For example, it would
be helpful to deploy our proposed model on Twitter and evaluate its performance
in good collaboration with fact-checkers. Another suggestion would be to test the
performance of unsupervised learning methods since these methods do not require
labeled data. Furthermore, it would help to develop detection models that are better
explainable since this enables researchers to find out why the model makes certain
decisions.

Future research should also consider the potential benefits of temporal information
more carefully. This study showed how the effectiveness of various features is highly
dependent on the time of detection. Interestingly would be to use temporal informa-
tion to integrate this trade-off between effectiveness and efficiency into the detection
model. Which means, determine the effectiveness of the detection model at every
time step and only do a final prediction when the effectiveness/efficiency trade-off
is as desired. This would help to find the optimal balance between the effectiveness
and efficiency of the detection model for each news article dynamically.

Ultimately, to steer research towards developing real-time detection methods, we
suggest studying the effectiveness of features that are extracted from the content
of the article itself. Because this information is available in real-time, it is the only
way to detect misinformation before people got exposed to it. Although it has been
argued that detecting misinformation based on the text of the article is nontrivial
(Shu et al., 2017), the increasing knowledge about misinformation due to academic
research will help to better discriminate misinformation from trusted news articles.
Moreover, since natural language processing techniques are rapidly advancing they
might be able to find patterns that discriminate misinformation from trusted news
articles better than humans can do.
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Appendix A

News Sources

A.1 Low Credibility Sources

21stcenturywire.com
70news.wordpress.com
abcnews.com.co
activistpost.com
addictinginfo.org
americannews.com
americannewsx.com
amplifyingglass.com
anonews.co
beforeitsnews.com
bigamericannews.com
bipartisanreport.com
bluenationreview.com
breitbart.com
burrardstreetjournal.com
callthecops.net
christiantimes.com
christwire.org
chronicle.su
civictribune.com
clickhole.com
coasttocoastam.com
collective-evolution.com
consciouslifenews.com
conservativeoutfitters.com
countdowntozerotime.com
counterpsyops.com
creambmp.com
dailybuzzlive.com
dailycurrant.com
dailynewsbin.com
dcclothesline.com
demyx.com
denverguardian.com
derfmagazine.com
disclose.tv
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duffelblog.com
duhprogressive.com
empireherald.com
empirenews.net
empiresports.co
en.mediamass.net
endingthefed.com
enduringvision.com
flyheight.com
fprnradio.com
freewoodpost.com
geoengineeringwatch.org
globalassociatednews.com
globalresearch.ca
gomerblog.com
govtslaves.info
gulagbound.com
hangthebankers.com
humansarefree.com
huzlers.com
ifyouonlynews.com
infowars.com
intellihub.com
itaglive.com
jonesreport.com
lewrockwell.com
liberalamerica.org
libertymovementradio.com
libertytalk.fm
libertyvideos.org
lightlybraisedturnip.com
nationalreport.net
naturalnews.com
ncscooper.com
newsbiscuit.com
newslo.com
newsmutiny.com
newswire-24.com
nodisinfo.com
now8news.com
nowtheendbegins.com
occupydemocrats.com
other98.com
pakalertpress.com
politicalblindspot.com
politicalears.com
politicops.com
politicususa.com
prisonplanet.com
react365.com
realfarmacy.com
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realnewsrightnow.com
redflagnews.com
redstate.com
rilenews.com
rockcitytimes.com
satiratribune.com
stuppid.com
theblaze.com
thebostontribune.com
thedailysheeple.com
thedcgazette.com
thefreethoughtproject.com
thelapine.ca
thenewsnerd.com
theonion.com
theracketreport.com
therundownlive.com
thespoof.com
theuspatriot.com
truthfrequencyradio.com
twitchy.com
unconfirmedsources.com
USAToday.com.co
usuncut.com
veteranstoday.com
wakingupwisconsin.com
weeklyworldnews.com
wideawakeamerica.com
winningdemocrats.com
witscience.org
wnd.com
worldnewsdailyreport.com
worldtruth.tv
yournewswire.com

A.2 Trusted Sources

CBS News
CNN
USA Today
ABC News
The Washington Post
The New York Times
Fox News
NBC News
Huffington Post
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Appendix B

Algorithms

B.1 Doc2Vec

In Section 4.3.2 of this thesis the Word2Vec algorithm (Mikolov et al., 2013), on which
the Doc2Vec algorithm (Le and Mikolov, 2014) is heavily based, has already been
described. As with Word2Vec the algorithm comes in two flavours: skip-gram and
continues back of words (CBOW). Since a CBOW implementation of the Doc2Vec
algorithm is used in Section 3.4.2 of this thesis, this version will be described here.

The Doc2Vec algorithm uses a neural network to predict a word in the document
given its context. The input consists of a randomly taken sample of consecutive
words from the document and takes one word out which it has to predict. How-
ever, additional to Word2Vec the model adds an extra paragraph id as input which
is illustrated in Figure B.1. This simple extension of the Word2Vec model enables
the model to learn an paragraph vector for each sample that is taken from the doc-
ument. Finally, a document embedding is computed by averaging or concatenating
all the paragraph vectors it has learned. In this study an averaged document embed-
ding was used because a concatenated document embedding results in a very high
dimensional feature space.

FIGURE B.1: Architecture of the Doc2Vec algorithm (Shperber, 2017).
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Appendix C

Results

C.1 Model Performance

Detection
Deadline S AUC-ROC F1-score Precision Recall Accuracy
1 min 1 98.56± 1.33 93.61± 2.30 91.50± 5.48 96.15± 3.10 93.36± 2.52
5 min 1 98.00± 1.79 91.19± 4.02 92.30± 5.34 90.77± 7.73 91.35± 3.65
15 min 1 98.03± 1.45 92.41± 3.72 91.79± 5.68 93.46± 5.52 92.31± 3.80

3 99.13± 0.89 94.56± 2.56 94.41± 4.61 95.00± 4.05 94.52± 2.58
15 98.47 ±1.17 93.16 ±2.54 94.39 ±3.87 92.31 ±5.37 93.27 ±2.39

1 hour 1 98.93±0.86 95.24 ±2.40 95.05 ±4.20 95.58 ±2.73 95.19 ±2.47
4 hour 1 99.50 ±0.47 95.47 ±2.28 95.28 ±2.44 95.77±3.73 95.48 ±2.24

4 99.44± 0.43 95.90± 2.57 94.30± 4.46 97.69± 2.07 95.77± 2.76
16 99.18 ±0.60 93.34 ±2.31 94.68 ±4.01 92.50 ±6.11 93.46 ±2.10
48 90.84 ±4.40 80.01 ±7.78 83.93 ±8.55 78.27 ±13.07 80.96 ±6.46

1 day 1 99.61± 0.36 95.69± 2.25 95.77± 4.57 95.96± 4.42 95.67± 2.29
3 day 1 99.70 ±0.37 95.25 ±3.37 95.70 ±3.49 94.62 ±7.61 95.38 ±2.94
10 days 1 99.83 ±0.34 97.62 ±1.39 97.26 ±3.00 98.08 ±1.72 97.60 ±1.44

60 97.44 ±2.72 92.24 ±5.44 90.86 ±7.22 94.04 ±6.11 92.02 ±5.57

TABLE C.1: Different metrics for the evaluation of the LSTM-ALL
model using different time ranges and number of snapshots (S).
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Detection
Deadline S AUC-ROC F1-score Precision Recall Accuracy
1 min 1 85.27 ±4.33 76.58 ±4.76 78.46 ±7.61 75.38 ±5.56 76.83 ±5.55
5 min 1 85.64 ±4.90 76.37 ±5.33 76.09 ±4.56 77.12 ±8.40 76.35 ±4.79
15 min 1 88.50 ±4.25 78.17 ±7.02 80.97 ±5.88 76.15 ±9.59 79.04 ±5.64

3 89.96± 5.71 80.81± 7.24 82.78± 6.74 79.81± 10.92 81.35± 6.45
15 91.11± 5.12 82.28± 4.35 79.63± 4.59 85.38± 5.97 81.63± 4.50

1 hour 1 89.55 ±3.03 79.99 ±4.39 82.23 ±4.17 78.27 ±7.40 80.58 ±3.79
4 hour 1 89.70 ±3.08 80.69 ±4.38 84.72 ±7.16 77.50 ±5.71 81.44 ±4.37

4 94.31± 2.97 85.67± 4.12 87.97± 6.13 83.85± 5.39 85.96± 4.17
16 93.21 ±2.85 83.16 ±5.08 85.77 ±6.28 81.73 ±92.33 83.65 ±4.30
48 89.16 ±4.90 79.59 ±4.79 77.14 ±8.40 83.46 ±7.10 78.17 ±7.52

1 day 1 93.45± 3.82 85.84± 5.41 85.58± 5.39 86.73± 8.83 85.87± 4.87
3 day 1 93.47 ±4.30 86.33 ±5.48 88.29 ±4.28 84.62 ±7.25 86.73 ±4.97
10 days 1 94.84± 3.37 87.50± 5.54 90.31± 7.29 85.19± 6.08 87.79± 5.64

60 94.21± 3.31 86.79± 4.56 86.73± 4.83 87.31± 7.51 86.83± 4.15

TABLE C.2: Different metrics for the evaluation of the LSTM-N model
using different time ranges and number of snapshots (S).

Detection
Deadline S AUC-ROC F1-score Precision Recall Accuracy
1 min 1 96.61± 2.25 89.94± 4.48 89.26± 5.22 91.35± 8.48 89.90± 4.35
5 min 1 96.76± 2.49 90.44± 4.43 88.58± 7.01 92.88± 5.71 90.10± 4.67
15 min 1 96.84 ±1.89 90.46 ±3.57 89.72 ±3.94 91.35 ±4.73 90.38 ±3.57

3 98.55± 1.23 94.16± 3.61 92.72± 5.14 95.96± 5.12 94.04± 3.64
15 97.97± 1.79 91.84± 4.09 90.48± 6.38 93.85± 6.42 91.63± 4.26

1 hour 1 97.80 ±2.02 91.54 ±4.12 89.59 ±6.60 94.04 ±5.54 91.25 ±4.29
4 hour 1 98.94 ±0.97 94.15 ±2.84 93.61 ±5.47 95.00 ±3.57 94.04 ±3.07

4 99.12± 0.82 94.47± 3.48 95.71± 3.52 93.65± 6.78 94.62± 3.14
16 98.90 ±1.02 93.59 ±3.68 93.80 ±4.34 93.85 ±6.87 93.65 ±3.47
48 82.06 ±8.01 66.15 ±23.52 59.41 ±23.33 77.69 ±28.04 66.06 ±13.31

1 day 1 98.88 ±1.37 95.19 ±2.55 93.58 ±3.99 97.12 ±4.41 95.10 ±2.52
3 day 1 99.25 ±0.87 95.34 ±2.83 95.94 ±3.85 95.00 ±4.88 95.38 ±2.75
10 days 1 99.54 ±0.54 95.12 ±2.75 93.06 ±4.78 97.69 ±5.15 95.00 ±2.75

60 73.88 ±12.52 75.87 ±9.17 64.88 ±11.52 94.23 ±13.16 69.62 ±11.62

TABLE C.3: Different metrics for the evaluation of the LSTM-L model
using different time ranges and number of snapshots (S).
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Detection
Deadline S AUC-ROC F1-score Precision Recall Accuracy
1 min 1 92.24± 3.39 85.81± 4.22 85.87± 5.36 85.96± 5.02 85.77± 4.40
5 min 1 90.62± 4.39 83.06± 5.69 84.05± 5.90 82.31± 6.98 83.27± 5.53
15 min 1 91.88 ±3.43 83.70 ±4.17 83.68 ±4.99 83.85 ±4.40 83.65 ±4.32

3 92.97± 3.09 84.75± 4.32 86.40± 3.95 83.46± 6.73 85.10± 3.95
15 92.54± 3.23 84.76± 2.66 84.36± 4.21 85.38± 3.77 84.62± 3.01

1 hour 1 93.11 ±4.15 84.59 ±4.51 83.20 ±6.16 86.35 ±5.47 84.23 ±4.75
4 hour 1 95.66 ±1.84 89.18 ±3.31 89.41 ±3.02 89.04 ±4.55 89.23 ±3.18

4 95.71± 2.67 87.99± 3.45 90.01± 3.44 86.15± 4.62 88.27± 3.35
16 96.22 ±2.14 88.37 ±4.54 89.20 ±5.25 87.88 ±6.02 88.46 ±4.39
48 95.98 ±2.63 89.08 ±3.65 89.75 ±6.57 88.85 ±4.54 89.04 ±3.92

1 day 1 96.99 ±2.06 91.90 ±3.19 92.26 ±4.09 91.73 ±4.64 91.92 ±3.17
3 day 1 97.01 ±2.16 92.04 ±3.50 91.68 ±3.67 92.50 ±4.51 92.02 ±3.50
10 days 1 97.02 ±1.75 92.07 ±3.08 91.40 ±3.49 92.88 ±4.39 92.02 ±3.10

60 91.78 ±4.75 82.34 ±7.19 82.02 ±12.28 84.81±9.44 81.15 ±10.26

TABLE C.4: Different metrics for the evaluation of the LSTM-H model
using different time ranges and number of snapshots (S).

Detection
Deadline S AUC-ROC F1-score Precision Recall Accuracy
1 min 1 95.92± 2.46 87.64± 4.42 87.95± 7.41 88.65± 9.71 87.59± 4.26
5 min 1 96.56± 1.92 88.70± 3.29 89.40± 6.61 89.04± 8.02 88.75± 2.95
15 min 1 96.04± 1.79 88.53± 2.87 85.19± 6.25 92.69± 4.37 87.88± 3.45

3 96.65 ±1.82 88.29 ±3.08 87.99 ±7.15 90.00 ±9.18 88.17 ±2.95
15 95.20± 1.70 87.79± 2.27 83.20± 5.33 93.46± 4.57 86.92± 2.92

1 hour 1 97.27 ±1.46 88.81 ±4.03 88.77 ±5.65 89.81 ±8.90 88.85 ±3.45
4 hour 1 98.07 ±1.02 92.84 ±2.51 91.56 ±3.39 94.62 ±6.37 92.79 ±2.25

4 98.19± 0.93 91.03± 2.58 89.13± 6.90 93.85± 5.82 90.67± 3.01
16 93.23 ±3.16 81.99 ±8.98 73.92 ±15.41 95.58 ±5.84 77.12 ±14.49
48 91.60 ±4.38 75.50 ±26.26 70.32 ±27.01 84.04 ±28.43 77.40 ±15.71

1 day 1 99.03 ±0.73 93.76 ±3.83 94.12 ±4.92 94.04 ±7.57 93.85 ±3.47
3 day 1 98.70 ±0.78 94.12 ±2.18 91.99 ±3.93 96.54 ±3.30 93.94 ±2.32
10 days 1 99.34 ±0.48 95.32 ±1.82 96.32 ±3.26 94.62 ±4.70 95.38 ±1.71

60 89.35 ±7.97 75.15 ±26.18 71.54 ±26.57 81.35 ±28.94 78.37 ±13.95

TABLE C.5: Different metrics for the evaluation of the LSTM-T model
using different time ranges and number of snapshots (S).
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