
Dynamic coding in a neural model of

activity-silent working memory

Bachelor’s Project Thesis

Chiel Wijs, s3199886, c.wijs@student.rug.nl

Supervisor: Dr J.P. Borst

Abstract: Temporary strengthening of neural connections has been shown to be a mechanism
capable of storing items in working memory without the need for persistent neural activity.
While this type of activity-silent working memory does not depend on neural activity for the
maintenance of a working memory item, it does for the encoding of that item. Moreover, the
neural state, a snapshot of neural connectivity, rapidly changes during this encoding period,
a phenomenon called dynamic coding. This study expanded on an existing neural model, that
used short-term synaptic plasticity to model activity-silent working memory, by implementing a
simplification of neural connectivity from the human visual system into the sensory part of the
model. Analysis of the functional model shows that the resulting distributed response latency,
in combination with the short-term synaptic plasticity mechanism, produces dynamic coding
measures similar to those seen from analysis of human EEG data. Performance of the model
decreases slightly compared to human performance when items are required to be remembered
over a longer period of time. Implementation of attention control could reduce the differences we
see in dynamic coding measures between the model and human subjects.

1 Introduction

Working memory (WM) is the cognitive process by
which we retain information over a short span of
time, keeping that information in such a state that
it is readily available for use (Baddeley, 2003). The
prevalent theory has long been that the retention
of information in working memory is the result of
persistent neural activity (Goldman-Rakic, 1995;
Curtis and D’Esposito, 2003). Recent studies like
Lundqvist, Herman, and Miller (2018) and Sreeni-
vasan, Curtis, and D’Esposito (2014) show different
results; they found that information maintenance in
WM is not necessarily accompanied by persistent
neural activity.

Pals et al. (2020) showed that such activity-
silent WM could be modelled using the mech-
anism of short-term synaptic plasticity (STSP)
(Zucker and Regehr, 2002). Their spiking-neuron
model performed a retrospective cue (retro-cue)
delayed-response task (Figure 1.1) (Wolff, Jochim,
Akyürek, and Stokes, 2017). During such a task a
participant is shown a stimulus, followed by a delay
period and a subsequent probe to which the partic-
ipant must compare the stimulus. Pals et al. used
their model to simulate the experiments from Wolff
et al.. Their model matched the human behavioural
data from the article, making it a functional model.

STSP causes temporary changes to neural con-
nectivity by facilitating (increasing) synaptic effi-

Figure 1.1: Experiment 1; a retro-cue delayed-response task. The participant has to decide whether
a probe shows a clockwise or counter-clockwise rotation compared to a stimulus. A cue indicates
to the participant which of the two stimuli will be probed. Reprinted from Pals et al. (2020)

1



cacy in areas of the brain related to, but not lim-
ited to, WM (Wang, Markram, Goodman, Berger,
Ma, and Goldman-Rakic, 2006). This facilitation of
connections is the net effect of a temporary facil-
itation of synaptic efficacy as a result of calcium
buildup in the presynaptic terminal, and a shorter
lasting depression of synaptic efficacy as a result of
resource (read: neurotransmitter) depletion, both
due to neural spiking. This mechanism maintains
information in WM such that, when a novel stim-
ulus is presented, the activity resulting from these
facilitated connections represents the stimulus that
was being retained during a delay.

A momentary capture of the state of these con-
nections is called the neural state. In the context
of activity-silent WM this is called a hidden neu-
ral state, because they are immeasurable during
activity-silence, and can only be analyzed after ex-
citation.

Wolff et al. (2017) performed a cross-temporal
decoding analysis (CTDA) on their EEG data, a
type of decoding analysis that uses a sliding tem-
poral window, such that it can be used to determine
the consistency of the activation of a neural popula-
tion. From their analysis they found that decodabil-
ity was high at a time point t1 when the decoding
classifier was trained on a time point t2 that was
close or the same as t1. Poor decodability was found
when t1 and t2 were different, non-neighboring time
points.

This phenomenon is the focus point of this paper
and is called dynamic coding: The neural state that
stores a static WM item changes over time, while
maintaining a representation of that item (Mey-
ers, Freedman, Kreiman, Miller, and Poggio, 2008;
Stokes, 2015). From a CTDA, where t1 and t2 are
set as x- and y-axis, we would see high-decodability
at the points on the graph where t1 equals t2. We
would see this collection of points as a line across
the diagonal of the graph. The counterpart to this
phenomenon would be static, or sustained, coding
of information where the neural state remains the
same for the period that the item could be decoded.
For this type of coding, a CTDA would show addi-
tional high decodability values at points where t1
does not equal t2. In the graph this would show as
a square of high decodability values.

The model from Pals et al. (2020) does not ex-
plain the dynamic coding patterns as we them from
human data. One goal of this paper was to extend

the model such that it can explain these dynamic
coding patters. Wolff et al. (2017, p.870) proposed
that “Activity-dependent transformations in hid-
den states determine the temporary coding prop-
erties of memory networks, i.e., dynamic coding”.
One of the mechanism that causes such activity-
dependent transformations is STSP, the mechanism
implemented by Pals et al.. Therefore, this model
was chosen as the basis for our own model.

1.1 Sensory connectivity

While Pals et al. (2020) their model behavior
matched the results from Wolff et al. (2017), the de-
coding analysis of the period following stimulus pre-
sentation showed results different from analysis of
the human data. This decoding analysis determines
how we well we can decode the WM item from a
neural signal 1. For the model we saw an almost in-
stantaneous drop in decodability after stimulus pre-
sentation. Conversely, decodability declined more
gradually over time for the human subjects. The
second goal of this paper was to extend the sensory
part of the model from Pals et al. such that it can
explain the gradual decline in activity we see from
human data.

Connectivity in the sensory part of the model
from Pals et al. (2020) was only in one direction
and without any delay. While functional, this sim-
ple connection cannot produce the patterns seen
from neural activity when it traverses across the
human brain.

Lamme and Roelfsema (2000) studied the tem-
poral and spatial characteristics of neural activity
patterns caused by a visually presented stimuli in
the brains of macaque monkeys. In the feedforward
sweep information travels from low-level visual ar-
eas, through high-level areas into the rest of the
brain. One of the areas that visual information will
reach by this route is the prefrontal cortex (PFC),
which is associated with WM (Wang et al., 2006).
Lamme and Roelfsema identified three types of con-
nections within the visual system: feedforward con-
nections that provide input from lower level areas;
parallel connections which receive inputs from neu-
rons at the same level; and feedback connections
that provide input from higher level neurons. As a

1This analysis also shows up as the diagonal of a CTDA,
where the time of training and testing is at the same time
point.

2



result of the various connections, pieces of stimulus-
related information reach brain areas like the PFC
across a latency distribution, where some pieces of
information reach a brain area earlier than others.

1.2 Current study

In this study a simplified version of the connectivity
of the human visual system was implemented into
the sensory part of the neural model of activity-
silent working memory made by Pals et al. (2020).
The goal was to create a model that we can use
to explain two neural phenomena as seen from hu-
man data presented by Wolff et al. (2017). The first
phenomenon is the dynamic coding that we see dur-
ing encoding of a WM item. We examined this dy-
namic coding using a cross-temporal decoding anal-
ysis (CTDA). The second is the gradual decrease in
WM content decodability after stimulus presenta-
tion, which we examined using a standard decoding
analysis. The model would have to produce these
phenomena by a distributed latency of brain ac-
tivity, and the facilitation of neural connection by
short-term synaptic plasticity.

2 Model

The model was implemented using Nengo2: a
python library that can be used to build and simu-
late neural models (Bekolay, Bergstra, Hunsberger,
DeWolf, Stewart, Rasmussen, Choo, Voelker, and
Eliasmith, 2014). Nengo consists of a front-end and
a back-end.

The front-end is used to create a neural model
to the users specifications. Models consist of a Net-
work that contains different Nengo objects: Nodes,
Ensembles, and Neurons. These objects can be con-
nected to one another using Connections and data
can be collected from them using Probes. A node is
used to provide non-neural input to Nengo objects
and an ensemble is a group of neurons. These neu-
rons are of a specified type (e.g. a leaky integrate-
and-fire neurons) and the neural activity of an en-
semble, which represents information, is stored as
a vector. A connection transfers these vectors be-
tween objects and allows for transformation of said
vectors. Connections can change given certain in-
puts, and so the model can learn over time.

2https://www.nengo.ai/nengo

The back-end is a simulator that takes a network
and builds data structures so that we can simulate
the neural network, made with the front-end, fol-
lowing specified mathematical rules.

To improve the computational speed of the
simulations we use a Nengo back-end called
Nengo DL3. This simulator uses TensorFlow as
its computational framework and allows us to run
multiple simulations simultaneously as a batch.
Because the model uses a custom neuron type that
implements the calcium and resource dynamics,
as well as a custom learning rule that uses these
calcium and resource values to alter the strength
of the connection weights, it is required that we
add implementations for these to the Nengo DL
back-end. All code discussed can be found on:
https://github.com/ChielWijs/Dynamic-Coding-
in-Working-Memory.

2.1 Model Architecture

Figure 2.1 shows the model architecture of the
model used by Pals et al. (2020)4, indicated by the
“Old Connection”, and the model from this paper.

For the model from Pals et al. (2020), the “Sen-
sory” population transform the visual input into a
vector representing neural activity. Activity in the
“Memory” population increases the calcium level
and depletes the resources of the neurons in this
population. The recurrent memory connection is
mediated based on these values, storing the neural
response associated with the given input. When the
probe is presented, the “Comparison” population
integrates the information from the “Sensory” pop-
ulation, representing the probe, and the “Memory”
population, representing the remembered stimulus.
The “Decision” population interprets the difference
between the probe and stimulus.

For an in-depth explanation of the methods for
converting the visual imagery, calculating the cal-
cium and resource levels in the memory population,
and interpreting the activity from the “Comparison
module” please see Pals et al. (2020).

The changes made to this model were imple-
mented between the “Input” node and “Sensory”
ensemble. Instead of a single connection between
these two objects, a new ensemble called “Eye”

3https://www.nengo.ai/nengo-dl/
4https://github.com/Matthijspals/STSP

3



Figure 2.1: Model architecture. The model is divided in two modules (only one is pictured) repre-
senting the two hemispheres. Temporary adaptation of the recurrent memory connection by the
STSP mechanism represents storage of a WM item. The “Old connection” indicates the model
from Pals et al. (2020). The multiple forward connections between the eye and sensory popula-
tion indicate the multiple neuron-to-ensemble connections, implemented in the new model, which
take their synaptic value from a distribution. A single recurrent connection allows the sensory
population to excite the eye population.

was placed between them. A single connection was
made between the “Input” node and the “Eye” en-
semble. This connection is the same as the con-
nection between “Input” and “Sensory” in the old
model and thus now it is the “Eye” ensemble that
is responsible for transforming the input into a vec-
tor. The connection between “Eye” and “Sensory”
is a more complex connection and the focus point
of the new model.

Instead of connecting the “Eye” and “Sensory”
ensemble-to-ensemble, individual neurons from the
“Eye” population were connected to the “Sensory”
ensemble using a neuron-to-ensemble connection.
Each of these connections was given a synaptic
delay from a distribution based on the findings
from Lamme and Roelfsema (2000). The result is
a distributed response latency across the rest of
the model with a mean of 141ms and an onset
of 51ms. A single recurrent connection between
the “Sensory” population and the “Eye” popula-
tion, in combination with the feedforward neuron-
to-ensemble connections, implemented the visual
system organization as discussed in the introduc-
tion.

Two parameters we adjusted to fit the model
are: the connection strength of the distributed feed-
forward connections (FF), the connection strength
of the recurrent connection (REC). Changing the
strength of a connection is done by multiplying the
weights matrix with a scalar. We set these param-
eters as FF = 1.50 and REC = 0.030.

The third parameter we adjusted is the amount
of noise for certain neural populations (NOISE).
For the model from Pals et al. (2020), the tuning
curves for the neurons of the “Eye”, “Sensory”, and
“Memory” populations were set to a range such
that no spiking occurs when no input is passed to
the neural populations. This range is set using the
intercepts parameter of an ensemble. From Wolff
et al. (2017) we see that an EEG signal is not with-
out noise. To implement this finding we added some
white noise to the neural signal of these popula-
tions. White noise is a type of random noise, where
the value added to the signal of a neuron is ran-
domly taken from a distribution at each timestep.
We chose a gaussian distribution with mean = 0
and SD = 0.010. The result is spontaneous spiking
in about 15% of the neural population.

Adjusting these three parameters allowed us to
create a great variety of results for the CTDA. It
is important to note though, that not all combi-
nations of these parameters produce a functional
model. In Appendix A a more thorough discussion
of these parameters is provided, as well as a figure
showing the CTDA’s from one of the parameter
sweeps.

2.2 Nengo DL Implementation

This code discussed in this section can be found in
the stp dl implementation.py file.

Neuron. The custom neuron type called stpLIF

4



is an extension of the spiking version of the leaky
integrate-and-fire (LIF) neuron model that is part
of the Nengo library. To the regular LIF neurons
it adds a resource and calcium level, these were
implemented using two parameters: the relaxation
time constants for the resources and calcium, called
tau x and tau u respectively, and the calcium base
level U. The resource base level does not need to
be added as a parameter as it has a value of one.
The step math method implements the calculations
for the calcium and resource dynamics at each time
step. A function called build stpLIF is used to add
the stpLIF neuron type to the Nengo build process
so that we can use it when making the model.

When using the Nengo DL simulator we need an
additional class, called a neuron builder, that al-
lows us to specify how to simulate a neuron using
TensorFlow. The Nengo DL library contains, in ad-
dition to the neuron builders for the regular neuron
types, a generic builder that will work for any cus-
tom neuron type, like stpLIF. However, writing a
custom neuron builder improves on build and sim-
ulation speed.

In contrast to the stpLIF class, which is a child
class for a Nengo intrinsic neuron type, the stpLIF-
Builder class does not inherit from a neuron builder
from Nengo DL: The order of inheritance is differ-
ent for the Nengo DL neuron builders than it is for
the Nengo neuron types and this causes issues re-
garding the absence of certain parameters. To over-
come this problem, instead of using inheritance, the
relevant lines of code were copied from the neuron
builder for a LIF neuron, a class called LIFBuilder,
from the Nengo DL documentation. These lines of
code are under the “### LIF ###” comments
in the stpLIFBuilder class.

The computational framework used by Nengo
DL, TensorFlow, uses what is called a tensor as
the structure in which it stores information, simi-
lar to how regular Nengo uses NumPy arrays. The
metadata of these data structures is represented in
the Nengo (DL) simulator by a tensor signal and
Nengo signal, respectively.

The init method of stpLIFBuilder creates ten-
sors and tensor signals with the values from the pa-
rameters of the stpLIF neuron type. It makes use
of the combine function that creates a tensor signal
for each equivalent Nengo signal and then combines
those into a single tensor signal. The op constant
function is used to build a tensor that represents a

constant parameter. The step method is equivalent
to the stpLIF.step math method and contains the
calculations that need to be performed at each time
step. The build step method is responsible for gath-
ering tensors from the tensor signal so that they can
be used for calculations. It then sends the updated
tensors back into the tensor signal, a process called
scattering.

Learning Rule. The STP learning rule uses the
presynaptic neuron resource and calcium values,
initial calcium values (also called U), and initial
connection weight values to determine the connec-
tion weigths between neurons.

The class simSTP is an Operator, which means it
handles the calculations inside of a simulator. Like
the stpLIF neuron class the simSTP class needs
some additional code for us to be able to use it
in the front-end. A LearningRuleType type class
called STP is necessary so that the simulator knows
which signals it should modify and which signals
it can probe. The name of the LearningRuleType
class is also the name we pass to a connection in the
front-end to indicate which learning rule we want to
use. The build stp function is used to add the STP
rule, calculated by simSTP, to the Nengo builder.
The SimSTP operator receives the various signals
it needs for the weight calculations in the init
method. The class contains a number of methods
so that it can read out the values from these signals
and use them to calculate the new weights in the
make step method.

The custom neuron needed a custom neuron
builder to be used with Nengo DL and likewise
we need a builder for the custom learning rule.
This custom builder is called SimSTPBuilder. The
init method takes the parameters from simSTP

and makes tensor signals and tensors out of them
using the combine function, which we saw in the
neuron builder, and the tf.constant function respec-
tively. We can not use the op constant function
here because we are not reading a constant param-
eter but the initial value of a signal. However, the
tf.constant function performs the the actual creat-
ing of the tensor inside of the op constant func-
tion so the result can be used the same way. The
build step method gathers the tensors it needs from
the various signals and uses these to calculate the
connection weights according to the STP rule. The
last thing it does is scatter the adjusted weight ten-
sors back into the tensor signals.

5



3 Method

Experiment 1 (Experiment 1 from Wolff et al.
(2017)) was a retro-cue delayed-response task. For
this version of the task, participants had to store
the angle of a visual grating in working memory,
such that they could later determine whether a
probe was oriented clockwise or counter-clockwise
with respect to that stimulus (Figure 1.1).

Two stimuli were presented simultaneously, fol-
lowed by a short delay period after which a cue, in
the form of an arrow, indicated which one of the
stimuli would be probed. The probe was presented
after a second, longer, delay period. A generic im-
pulse was presented during the delay period be-
tween cue and probe to examine the content of
WM, as was done by Wolff et al. (2017).

The model simulates Experiment 1 for 30 partic-
ipants that each perform 1344 trials, the same as
human participants in Wolff et al..

In addition to Experiment 1, generalization of
the model was evaluated by simulating a second
WM experiment. Experiment 2 (Experiment 2 from
Wolff et al. (2017)) was also a delayed-response
task.

For this experiment, the participant had to com-
pare the visual gratings of two stimulus-probe pairs
(Figure 3.1). Both stimuli were presented simul-
taneously at the beginning of the experiment and
the participant knew beforehand which of the stim-
uli would be probed first. This translates to the
model as the late-tested stimulus being presented at
90% strength. The participant again had to decide
whether a probe showed a clockwise or counter-
clockwise rotation with respect to the original stim-
ulus. A generic impulse, prior to both probes, was
presented to examine the content of WM during
the delay period.

The model simulates Experiment 2 for 19 partic-
ipants that each perform 1728 trials, the same as
human participants in Wolff et al..

For an in-depth explanation of the experimental
simulation for both Experiments 1 and 2 please see
Pals et al. (2020).

3.1 Analysis

To analyse the model behaviour, the proportion of
clockwise responses was calculated for all angular
differences between stimulus and probe. This was
done for the single tested stimulus from Experiment
1 and separately for the early and late tested stimuli
for Experiment 2.

A decoding analysis was used to determine the
decodability of WM content from the signal of the
model’s memory population during, and shortly af-
ter, presentation of a WM item. For the first ex-
periment, a single decodability score is calculated
from the combined scores of both memory items.
These items are combined because no distinction
is made between the two before the cue. For the
second experiment, separate decodability scores are
calculated for the early and late tested module.

This analysis was also used to determine the de-
codability of WM content from the same signal
around the presentation of the generic impulse, that
was presented before each probe.

In addition, a CTDA was used to analyse
whether the neural state was static or dynamic dur-
ing encoding of a WM item. Figure 3.2 shows pos-
sible results for a CTDA. The axes represent the
times at which a decoder is trained or tested. De-
codability is indicated in red and no decodability is
indicated in green.

In the upper-right graph of Figure 3.2 we see how
a CTDA would look for a system where decoding
is possible around (or at) only a single time point.
The lower-left graph shows results of a CTDA of a
system that shows static/sustained coding of infor-
mation. For the entire time that the information is
decodable, it does not matter on which time point
we train or test the decodability classifier. The state

Figure 3.1: Experiment 2. The participant knows which stimulus will be probed first. Reprinted
from Pals et al. (2020)

6



Figure 3.2: Possible results for a cross-temporal
decoding analysis. The bottom-right graph
shows the results for a dynamic population code.
Adapted from Stokes (2015)

of decodable information does not change over time
(cross-time generalization). When looking at the
bottom-right graph we see a CTDA that would
show the dynamic coding of information. The in-
formation is decodable over an extended period of
time, as opposed to the upper-right graph, but it
is only decodable when it is decoded using a clas-
sifier trained at the same temporal window as it is
tested (no cross-time generalization). Or: the state
the information is by changes over time.

For an excellent explanation of the method used
for the decoding analysis and the CTDA please see
the Bachelor’s thesis written by Loran Knol (Knol,
2020).

The performance, WM content decoding analy-
ses, and CTDA’s were compared to human data
from Wolff et al. (2017).

4 Results

4.1 Experiment 1

The behavioural results of Wolff et al. (2017) and
the model are shown in Figure 4.1. The proportion
of clockwise responses for all angular differences be-
tween memory and probe of the model shows a sim-

Figure 4.1: A comparison between human per-
formance and model performance for Experi-
ment 1. Error bars indicate 95% CI of the mean.

ilar s-shape as human responses from Wolff et al..
The model performs slightly worse for the the small
angular differences.

Figure 4.2a shows the decodability of WM con-
tent from the neural signal. We see a strong increase
in decodability shortly after the onset of stimulus
presentation. Then, for a short period, we see a
persistent high decodability value. After this, the
decodability value smoothly decreases towards its
start value, reaching it before the end of the graph.
The human data shows a more oscillating curve
(Figure 4.2b). Instead of the stable high value pe-
riod, we see two “peaks” connected by a “valley”.
These “peaks” are near the time point at which the
stable period of the model analysis starts and ends.
The decrease in value is a little bit less steep for the
human participants. Also the decodability value is
not back to its value at the start of the trial when
the graph ends.

The CTDA of the model shows a high decodabil-
ity at on-diagonal time points and a low decodabil-
ity at off-diagonal time points (Figure 4.2d). This
diagonal, with a similar slightly widening pattern,
can also be seen in the CTDA of the human data
(Figure 4.2c). The onset and duration of both diag-
onals are similar. Alongside the diagonal pattern is
the presence of a set of “arms” in the model anal-
ysis; these extend from just after the onset of the
diagonal, parallel to the axes, up to the same period
where the diagonal ends.

A decoding analysis of the impulse response
shows that the cued item can be decoded slightly

7



Figure 4.2: A and b show how well a WM item could be decoded from the neural signal in the
memory population for Experiment 1. C and d show the CTDA for the data and the model.

better than the uncued item, but the difference is
small (Figure 4.3). In comparison, from the human
data we see a large difference in decodability. The
cued item shows a strong decodability due to the
impulse. Decodability of the uncued item does not
seem to be affected by the impulse.

Figure 4.3: Decodability of WM content due to
the impulse presented during the delay period
for Experiment 1. The analyses shows the de-
codability of the cued and uncued item from
both the human data and the model.

4.2 Experiment 2

The behavioural results of Wolff et al. (2017) and
the model are shown in Figure 4.4. For the early-
tested stimulus, the proportion of clockwise re-
sponses for all angular differences between mem-
ory and probe of the model shows a similar s-shape
as human responses from Wolff et al.. The model
performs slightly less for the the small angular dif-
ferences. For the late-tested stimuli we see a overall
flatter response curve, indicating less performance
from the model for these late-tested items.

Figure 4.5a shows the decodability of WM con-
tent from the neural signal. We see a strong increase
in decodability for both memory items shortly af-
ter the onset of stimulus presentation. Then, for a
short period and also for both memory items, we
see a persistent high decodability value. After this,
the decodability value smoothly decreases towards
its start value, both reaching it before the end of
the graph. Onset of this decrease is slightly earlier
for the late-tested item, but the shape of the curve
is almost identical. The same figure for the human
data shows a more oscillating curve (Figure 4.2b).

8



Figure 4.4: A comparison between human per-
formance and model performance for Experi-
ment 2. Error bars indicate 95% CI of the mean.

The decodability of the late-tested remains below
that of the early-tested item throughout the graph.
While the peak of the late-tested item is lower than
that of the early-tested item, the rate of decrease
is quite similar for the two. Both the early- and
late-tested item do not show the second “peak” as
we saw during Experiment 1 (Figure4.2a). The de-
crease in value for both items is again less steep in
the data than in the model. The decodability value
for the early-tested item is still well-above its start
value when at the end of the graph.

The CTDA of the model for the early-tested
stimulus shows a high decodability at on-diagonal
time points and a low decodability at off-diagonal
time points (Figure 4.5). This diagonal can also be
seen in the CTDA of the early-tested stimulus from
the human data. The onset of both diagonals is
similar, however when the diagonal from the model
CTDA ends, the human data shows a persisting,
widening, decodability pattern. Alongside the di-
agonal pattern we see set of “arms” in both the
model and human data analysis. the arms are how-
ever much more pronounced in the model.

The CTDA of the model for the late-tested stim-
ulus shows results very similar to that of the early-
tested stimulus, albeit slightly lower values. The
diagonal of the human data for the late-tested item
is skinnier than that of the model and this CTDA
also does not show the “arms” seen with the early
tested stimuli. The onset and duration of the model
and human data diagonals are similar.

A decoding analysis of the model for the first

Figure 4.6: Decodability of WM content due to
both impulses presented during the delay pe-
riods of Experiment 2. The analyses shows the
decodability of the late- and early-tested item
from both the human data and the model.

impulse response shows that the late-tested item
can be decoded slightly better than the early-tested
item, but the difference is very small (Figure 4.3).
Conversely, from the human data we see a larger
difference in decodability following the first im-
pulse. The early-tested item shows a definite higher
decodability value than the late-tested item. Analy-
sis of the second impulse shows a higher decodabil-
ity value for the late-tested stimulus. The human
data also shows a higher decodability for the late-
tested item.

5 Discussion

We have extended a model of activity-silent work-
ing memory by implementation of a simplified ver-
sion of the human visual system. This model is able
to perform a WM task while producing dynamic
coding as seen from human EEG analysis.

We first discuss the model behaviour and what,
we think, caused the decreased performance for
the late-tested stimulus from Experiment 2. We

9



Figure 4.5: A and b show how well a WM item could be decoded from the neural signals in the
memory populations for Experiment 2. C and d show the CTDA for the data and the model.

then discuss the decodability analysis for the pe-
riod during/following stimulus presentation, which
shows an overall good fit to the human data. Then
we discuss the decodability analysis for the period
around the generic impulse. The fit for this measure
is the only one that shows surprisingly different re-
sult compared to the human data. We then discuss
the results of the CTDA, which shows a very nice
dynamic coding pattern. We provide suggestion for
future research, as well as a comparison to a related
model.

5.1 Behaviour

The decrease in model performance for the late-
tested item from Experiment 2 (see Figure 4.4) can
only be attributed to our implementation of the
model’s sensory system, as the original model did
not show this decay in performance for the longer
delay period. We do not think that the added noise
is responsible for this decrease in performance. This
is because we set the amount of noise below the
value for which we saw any real decrease in de-

codability of the signal during the generic impulse,
which we saw as a good indicator as to how well a
stimulus was remembered.

We think that the connectivity implementation
is responsible for the decrease in performance as it
effectively splits up the information we get from the
image. A simplified way to think about this is by
imaging that we split the information we get from
an image into two parts, left and right. The left and
right information from the stimulus presented at a
time point t1 will not reach the memory population
simultaneously. In addition, it can happen that two
lefts, one from t1 and another from a different time
point t2, reach the memory population at the same
time, while no right information is acquired.

The memory population does not seem to effec-
tively integrate the left and right information from
a stimulus at a single time point back into a whole.
This is not a problem for the model when the delay
period is kept short but it does influence perfor-
mance for a longer delay period.

10



5.2 Neural activity following stimu-
lus presentation

The decoding analysis of WM after stimulus pre-
sentation shows that we achieved one of the goals
we had with the adaptation of the neural model.
The decrease of decodability was very steep for the
original model from Pals et al. (2020). The curve we
have now resembles the curve from the human data
quite well. That the peaks we see from the human
data in Figure 4.2a match the start and end of the
period of high decodability indicates that our im-
plementation of the human visual system can pro-
duce the temporal characteristics we see from the
human data. This also indicates that the values and
distribution type used for the distributed response
latency are not far from the true human distribu-
tion values. From the results of Experiment 2 for
this analysis, we see that in the model there is little
difference between the early and late-tested stimu-
lus (Figure 4.5b).

This shows that the model is not able to capture
the entire process by which two stimuli are pro-
cessed, in the way required for Experiment 2. This
was already seen for the model behaviour, and it
is a conclusion often drawn throughout this discus-
sion.

5.3 Revealing the hidden state

Eliciting a response by presenting a generic stimuli
during activity-silence allows us to reveal the hid-
den neural state (Wolff et al. (2017)). This analysis
is one for which our results show some significant
difference from those of Wolff et al.. For Experiment
1 we can see that there is only a small difference
between the cued and uncued item for the model
while there is a large difference between these items
for the human data. From this we can infer that the
slow decay of the neural state that stores a mem-
ory item is not the only way by which we forget a
working memory item, otherwise the model would
have showed a larger difference between the cued
and uncued module. It seems like humans can ac-
tively forget this memory. This does not mean that
we think about forgetting something, as this make
just very little sense. Rather, the brain can let go of
the information once it knows that it is no longer
relevant. This is obviously a useful asset for the
brain, as it is a system of limited-capacity.

5.4 Dynamic coding and attention

One difference between the model and human
CTDA is the longer lasting, strongly widening, di-
agonal seen in the early-tested dynamics of the hu-
man data (Figure 4.5).

We can infer that an additional mechanism is re-
quired to explain this difference. From the results of
the parameter sweep (Appendix A) we know that
the model is already able to produce something
like this longer lasting, strongly widening, diago-
nal. However, this would mean different parameters
setting for the two modules. We cannot have differ-
ent parameters for the early- and late-module as
this would result in a model where the early-tested
would have to be presented to the same module, or
brain hemisphere, for each trial. Human participant
obviously do not have this limitation.

As participants that performed Experiment 2
knew which item would be tested first we can as-
sume that the participants exert some kind of at-
tentional control.In this light, we can think of the
early-tested stimulus to be attended and the late-
tested stimulus to be unattended. This control of
attention is implemented in the model by a slightly
weaker presentation of the stimulus that would be
tested second.

From EEG studies we know that a visual stim-
ulus elicits a larger response from neurons in the
visual cortex when a subject directs its covert
spatial attention to the location of that stimu-
lus (McAdams and Maunsell, 1999). So far, this
experimental implementation of attention seems
very plausible. However, attentional control does
not consist of only the scaling of sensory re-
sponses; Neuroimaging studies show that a network
of frontal and parietal regions is also involved in
the control of attention (Purves, Cabeza, Huettel,
LaBar, Platt, Woldorff, and Brannon, 2008, p.213).

A second difference between the model and hu-
man CTDA are the “arms” (Figure 4.2 and Figure
4.5). While we also see these for the early-tested
stimuli from human data, the “arms” are much
more pronounced in the model. It could be that
these “arms” seen in the human data are also the
result of attentional control, as we do not see them
for the unattended stimulus. The issue then is that
we see them in the model without the explicit addi-
tion of an attentional control mechanism. The pres-
ence of these “arms” was persistent throughout a

11



parameter sweep and could already be seen from
analysis of the original model by Pals et al. (2020)
(see Appendix B).

But what knowledge can we infer from these
“arms”? They indicate that a decoder trained on
the signal around 150ms can be used to decode
the signal between 150ms and 600ms (where these
values are only a rough estimation for explana-
tory purposes). The reverse is also true, a decoder
trained on the signal at any point between 150ms
and 600ms can be used to decode the signal around
150ms.

We cannot draw any proper theoretical conclu-
sions from this but perhaps we can think of this
signal around 150ms as containing information in
such a way that it represents all possible states that
the model uses to represent the stimulus.

5.5 Future research

For future research, the model could be expanded
by the implementation of “reentrant” activity
(Woldorff, Liotti, Seabolt, Busse, Lancaster, and
Fox, 2002; Purves et al., 2008, p.190). “Reentrant”
activity is seen as an increase in EEG signal in the
lower-level cortical areas. This increase in signal is
seen later than, and separate from, the increase
in activity associated with the scaling of neural
tuning curves as discussed earlier. This suggest a
separation between attention-modulated enhance-
ment during the early and late processing of visual
stimuli. A strong argument for the use of “reen-
trant” activity comes from analysis of activity lat-
eralization in the posterior regions during Experi-
ment 2 (Wolff et al., 2017). The hemisphere that
processes the attended item shows an increase in
activity, during the time frame associated associ-
ated with “reentrant” activity, with respect to the
other hemisphere. The difference in model and hu-
man data results are mostly seen in Experiment
2, so it might very well be possible that this im-
plementation will improve the model over multiple
measures.

Further model exploration presents itself in the
form of two parameters that have not been exam-
ined for this study: the amount of neurons (in both
the eye/sensory populations and the memory pop-
ulation) and the strength of stimulus presentation.
While we have no results about the influence of
the former, we do have some about the latter. The

decoding values for the CTDA of the model show
an overall slight decrease for the late-tested stim-
uli (4.5), where the stimulus was presented at 90%
strength. Perhaps a further decrease in presenta-
tion strength could reduce the prominence of these
“arms”.

5.6 CTDA interpretation

One aspect of the CTDA that warrants caution is
that the range at which we display decodability val-
ues for the CTDA has a large influence on the final
figure. It can cause stronger or weaker coloring of
parts of the diagonal, as well as stronger or weaker
coloring of the “arms”.

5.7 Related research

We have not been able to compare the dynamic
coding measures of our model to that of other WM
models, as we could not find any papers that ana-
lyzed such models using a CTDA or a similar anal-
ysis.

This leaves the question whether the mecha-
nisms that cause dynamic coding in our model are
the only mechanisms that cause these measures in
the human brain. Obviously, this is very unlikely.
Cognitive models are always a simplification and
choices have to be made as to which promising find-
ings from research will be implemented in a model.

One study that discusses neural dynamics within
a modelling framework is Singh and Eliasmith
(2006). This study implemented a type of neuron
with a two-dimensional tuning curve. The response
characteristic of this neuron is not only stimulus-
but also time-dependent. This model however is not
a model of activity-silent working memory.

With our model we have shown that there is no
need for this type of complex tuning curve to pro-
duce dynamic coding . From our analysis it seems
than any network with activity-dependant adaptiv-
ity of connection weights can show dynamic coding
measures.

The short-term synaptic plasticity as imple-
mented by Pals et al. (2020) is one possible mecha-
nism responsible for the dynamic coding measures
created in this fashion (see Appendix B). We have
shown that the addition of a distributed response
latency across their neural model produces an even
more dynamic neural state.

12



5.8 Model parameters

The parameters for the distributed response la-
tency were taken from a study using macaque mon-
keys, not human participants. Also the shape of the
distribution was not based on literature but was
chosen arbitrary as a gamma distribution with a
shape parameter k, with k = 2.

The delay for the recurrent connection in the sen-
sory system was also chosen arbitrarily. This value
was set to just above twice the mean value of the
latency distribution.

6 Conclusion

To conclude, our model shows that dynamic cod-
ing in working memory can be the explained by
the combination of: the activity-dependent adapta-
tion of neural connections by short-term synaptic
plasticity; our simplified implementation of the hu-
man visual system, that results in a distributed la-
tency of brain activity; and the addition of sponta-
neous spiking to the neural population responsible
for storage of a working memory item.

In addition, we have provided arguments for the
implementation of attentional control to further
bridge the gap between the results from analysis
of our model and that of human data.

As we have found no published literature that has
provided similar results and insights, we proudly
present to you the first activity-silent working
memory model that shows dynamic coding.

References

Alan Baddeley. Working memory: looking back and
looking forward. Nature reviews neuroscience, 4
(10):829–839, 2003.

Trevor Bekolay, James Bergstra, Eric Hunsberger,
Travis DeWolf, Terrence Stewart, Daniel Ras-
mussen, Xuan Choo, Aaron Voelker, and Chris
Eliasmith. Nengo: a Python tool for building
large-scale functional brain models. Frontiers in
Neuroinformatics, 7(48):1–13, 2014. ISSN 1662-
5196. doi: 10.3389/fninf.2013.00048.

Clayton E Curtis and Mark D’Esposito. Persistent
activity in the prefrontal cortex during working

memory. Trends in cognitive sciences, 7(9):415–
423, 2003.

Patricia S Goldman-Rakic. Cellular basis of work-
ing memory. Neuron, 14(3):477–485, 1995.

Loran Knol. Dynamic coding in a large-scale, func-
tional, spiking-neuron model. 2020.

Victor AF Lamme and Pieter R Roelfsema. The
distinct modes of vision offered by feedforward
and recurrent processing. Trends in neuro-
sciences, 23(11):571–579, 2000.

Mikael Lundqvist, Pawel Herman, and Earl K
Miller. Working memory: delay activity, yes! per-
sistent activity? maybe not. Journal of Neuro-
science, 38(32):7013–7019, 2018.

Carrie J McAdams and John HR Maunsell. Ef-
fects of attention on orientation-tuning functions
of single neurons in macaque cortical area v4.
Journal of Neuroscience, 19(1):431–441, 1999.

Ethan M Meyers, David J Freedman, Gabriel
Kreiman, Earl K Miller, and Tomaso Poggio. Dy-
namic population coding of category information
in inferior temporal and prefrontal cortex. Jour-
nal of neurophysiology, 100(3):1407–1419, 2008.

Matthijs Pals, Terrence C Stewart, Elkan G
Akyürek, and Jelmer P Borst. A functional
spiking-neuron model of activity-silent working
memory in humans based on calcium-mediated
short-term synaptic plasticity. PLOS Computa-
tional Biology, 16(6):e1007936, 2020.

Dale Purves, Roberto Cabeza, Scott A Huettel,
Kevin S LaBar, Michael L Platt, Marty G
Woldorff, and Elizabeth M Brannon. Cognitive
neuroscience. Sunderland: Sinauer Associates,
Inc, 2008.

Ray Singh and Chris Eliasmith. Higher-
dimensional neurons explain the tuning and dy-
namics of working memory cells. Journal of Neu-
roscience, 26(14):3667–3678, 2006.

Kartik K Sreenivasan, Clayton E Curtis, and Mark
D’Esposito. Revisiting the role of persistent neu-
ral activity during working memory. Trends in
cognitive sciences, 18(2):82–89, 2014.

13



Mark G Stokes. ‘activity-silent’working memory
in prefrontal cortex: a dynamic coding frame-
work. Trends in cognitive sciences, 19(7):394–
405, 2015.

Yun Wang, Henry Markram, Philip H Goodman,
Thomas K Berger, Junying Ma, and Patricia S
Goldman-Rakic. Heterogeneity in the pyramidal
network of the medial prefrontal cortex. Nature
neuroscience, 9(4):534–542, 2006.

MG Woldorff, M Liotti, M Seabolt, Laura Busse,
JL Lancaster, and PT Fox. The temporal dy-
namics of the effects in occipital cortex of visual-
spatial selective attention. Cognitive Brain Re-
search, 15(1):1–15, 2002.

Michael J Wolff, Janina Jochim, Elkan G Akyürek,
and Mark G Stokes. Dynamic hidden states un-
derlying working-memory-guided behavior. Na-
ture Neuroscience, 20(6):864, 2017.

Robert S Zucker and Wade G Regehr. Short-term
synaptic plasticity. Annual review of physiology,
64(1):355–405, 2002.

14



A Parameter influence on CTDA results

Figure A.1 shows the CTDA results for a variety of parameter combination, chosen from the results of an
earlier sweep. Along the x-axis are various combination of the strengths of the distributed feedforward
connections in the sensory part of the model and the recurrent connection in the sensory part of the
model. This strength is the value by which we multiply the weights matrix of a connection. Along the
y-axis the amount of noise added to the memory population is varied for all models, the noise increases
as we progress downwards. This noise value is the standard deviation of a gaussian distribution with a
mean value of zero. We can see that we can create a large variety of results. As interesting as this is, not
all of the models result in a functional model. Especially, a high amount of noise causes a large decrease
in overall decodability, and thus performance. The values of these parameters for the final model are
shown in Table A.1.

Figure A.1: The CTDA results for a variety of models.

15



Parameter value
Connection strength of the distributed feed-forward connections 1.50

Connection strength of the recurrent connection 0.30
Standard deviation of the noise distribution 0.010

Table A.1: Parameter setting for the sensory system of the model and the noise added to the
memory population.

16



B Dynamic coding in the model from Pals et al. (2020) and the
influence of the synaptic spike filter

The memory population of the model is read out with a synpatic spike filter. We can best think of this
value as the effect that the skull has on readout of the EEG signal. Figure B.1 shows the effect that this
parameter has on the result of the CTDA. The model used to produce this graph is the model form Pals
et al. (2020). We see that this model already shows dynamic coding. The value used for the analyses in
this study is 0.05; we judged this value to show the diagonal indicative of dynamic coding without too
much off-diagonal decodability.

Figure B.1: CTDA of the model from Pals et al. (2020) for various values for the synaptic spike
filter.

17


