
Multimodal Fusion for System-Wide Anomaly

Detection through Multiple Log Files

Bachelor’s Project Thesis

Nathan Bosch, s3475344, n.g.bosch@student.rug.nl,

Supervisor: Prof Dr Lambert Schomaker

Abstract: Complex software-intensive systems write information about their runtime behavior
into log files, which are frequently used for both post-mortem and real-time analyses. These anal-
yses can be used to determine anomalous occurrences in the log files. Machine learning techniques
have previously been used to automate these analyses on single log files. However, as complex
systems often produce many log files, each representative of some differing abstraction level or
subsystem, it is difficult to use the existing techniques for system-wide anomaly detection. In this
thesis, we aim to fill this gap by approaching multi-log anomaly detection from a multimodal
perspective, designing and evaluating two early fusion models and one late fusion model to detect
anomalies in log files. The models were evaluated on internal base station test data at Ericsson
AB and, for the presentation of results, on open-source log file data. On the open-source data,
the early fusion models both achieved an F1-Score greater than 0.95 when detecting system
anomalies, whereas the late fusion model achieved an F1-Score of 0.88. However, we found that
the performance of the models is dependent on the dependencies and relations between the log
data, indicating that different fusion strategies may perform better in different situations.

1 Introduction

Many companies develop and operate complex,
software-intensive systems that produce log files
of system behaviour. These logs are often the pri-
mary measure by which system behaviour can be
analysed, both in run-time or as part of a post-
mortem analysis. These analyses can serve a multi-
tude of purposes, such as debugging system errors
and faults, detecting anomalous system behaviour,
and building predictive models. As the complexity
of systems grow, the need for large-scale logging
efforts are great and efforts concerning the gener-
ation and analysis of log files have grown signifi-
cantly in both industry and research over the last
few decades.

With complex systems running for significant pe-
riods of time, log data grows unmanageably large
for performing the traditional, manual analysis
techniques in reasonable time. It is for this rea-
son that statistical techniques and machine learn-
ing have been employed to perform the detection
of anomalies and the classification of the state or

future state of the system. The benefits of this are
numerous. By delegating analysis tasks to a ma-
chine learning model, the great effort of manual
analysis can be avoided and sped up considerably.
It also allows for real-time detection of anomalies
or errors, which may be used to raise alarms and
employ graceful degradation.

To manage complexity, large systems are made
up of subsystems, each with its own responsibili-
ties and tasks. Furthermore, it is common to run
a single product on multiple servers, with numer-
ous applications running on each server. In such
cases, it is unreasonable to record holistic system
behaviour in a single log file, as this is both imprac-
tical and less useful for manual analysis, given the
separation and differing levels of abstraction be-
tween processes. Therefore, determining cross-log
anomalies in a system requires a model which aims
to detect anomalies in the system as a whole.

Despite the increasing use of machine learning
in the logging analytics community, there is lim-
ited research on models or protocols to address an
environment in which multiple logs are present. In

1



cases where there are many underlying processes
writing to multiple logs during run-time, it can be
more effective to detect anomalous behaviour and
predict future system behaviour when incorporat-
ing information from multiple log files. Any holis-
tic anomaly detection model which aims to detect
anomalies across a system likely needs to take mul-
tiple logs into account before it can provide satisfi-
able results.

In this paper, we propose three models for de-
tecting anomalies in multiple event-based log files.
The first two models approach the task through an
early multimodal fusion approach, where the data
from separate logs are integrated into a single input
for a machine learning algorithm. The second model
approaches the task through a late multimodal fu-
sion approach, where machine learning algorithms
are first trained on unimodal features before inte-
grating the resultant data afterwards (Snoek, Wor-
ring, and Smeulders, 2005).

This paper addresses the following research ques-
tion: Does the performance of late fusion
anomaly detection models outperform early
fusion anomaly detection models when ap-
plied to multimodal system events gathered
through log files? The contribution of this pa-
per, therefore, is to define and validate approaches
by which multi-log anomaly detection can be done
and determine whether early fusion or late fusion
of data is the best approach for this task.

The models were evaluated on internal base sta-
tion test data at a case company, Ericsson AB. For
the purpose of the presentation of results, we eval-
uate the models on open source system log files
collected from the loghub data repository (Zhu,
He, Liu, He, Xie, Zheng, and Lyu, 2019). Specif-
ically, we evaluate the models on the BlueGene/L
dataset, which contains annotated alerts and non-
alerts. These logs were generated by a BlueGene su-
percomputer at Lawrence Livermore National Labs
(Oliner and Stearley, 2007).

The remainder of this paper is organized as fol-
lows. In the next section, we present the back-
ground and related work. Subsequently, in sec-
tion 3, we present the early and late multimodal fu-
sion approaches to the multi-log problem in greater
detail. The data and specifics regarding the imple-
mentation and evaluation of the model are outlined
in section 4. We provide our results and an analysis
thereof in section 5. Finally, we provide a discussion

and conclusion in section 6.

2 Background

2.1 System Log Anomaly Detection
Models

The quantity of research on the analysis of logs
through machine learning and process mining has
grown significantly over the last few decades, no
doubt related to the increase in system log file size
and complexity. As systems and their resultant logs
become more complex, the traditional, grep (regex)
based analysis of logs struggles to capture faulty se-
quences of system events or changes in parameter
values of certain log statements.

The vast majority of the existing log anomaly de-
tection techniques can be organised in the following
taxonomy:

Process Mining: The aim of process mining is
to discover and act on real processes extracted from
event logs (van der Aalst et al., 2012). In process
mining, there are a host of methods which can be
applied to an event log to extract processes, such as
the HeuristicsMiner Algorithm (Weijters, van der
Aalst, and de Medeiros;, 2006). In general terms,
process mining techniques attempt to effectively ex-
tract the real dependencies between events in logs,
which can, subsequently, be used to detect when
deviations from normal system behaviour occur.

Workflow Methods: Finite state automata
or other dependency representations between log
events are employed to determine normal workflows
in logs. Both Fu, et al. (2009) and Yu, et al. (2016)
use workflow methods to represent normal runtime
behaviour, but use additional information such as
the time between log events to improve their mod-
els.

Rule-Based Methods: These methods define
a rule-based approach to detect software failures
or intrusions in log files (Lazarevic, Kumar, and
Srivastava, 2005). This approach is often very ef-
fective, but requires significant effort and domain
knowledge to build. Cinque, et al. (2013) achieved
strong results when applying a rule-based approach
on detecting faults in Apache webserver and TAO
Open DDS logs, but this approach requires access
to the source code and the ability to access log
events before these are written to a log file.

2



Clustering Methods: One of the most widely
used techniques in anomaly detection is clustering.
LogCluster (Vaarandi and Pihelgas, 2015) and Bee-
hive (Yen, Oprea, Onarlioglu, Leetham, Robert-
son, Juels, and Kirda, 2013) use hierarchical clus-
tering and an adapted version of k-means clus-
tering, respectively, to detect anomalies in system
events. Anomalies are detected either by determin-
ing whether the distance to existing clusters ex-
ceeds some threshold, or if it is part of an anoma-
lous cluster. These techniques often require signifi-
cant amounts of preprocessing, as a single log event
does not contain enough contextual information to
be effectively clustered.

LSTM Language Modelling: Long Short
Term Memory neural networks have seen great suc-
cess in language modelling, an example of which
being sequence to sequence models (Sutskever,
Vinyals, and Le, 2014). When applied to log
files, LSTM modelling has seen similar success in
anomaly detection (Du et al., 2017), (Brown et
al., 2018). In 2017, Du, Li, Zheng, and Srikumar
proposed DeepLog, an anomaly detection frame-
work which used LSTMs for both system event
workflow and system parameter anomaly detection.
They achieved state of the art performance when
applied to HDFS (Hadoop File System) and Open-
Stack logs. The self-supervised nature of their train-
ing steps does not require labelled data or access to
the source code, which sets it apart from rule-based
and data mining methods.

Given that sequences in log files are generated
through the execution of structured source code,
the log file sequences can be interpreted similarly
to natural language, where there are complex rules
underlying in the relations between log events in
sequences. For further explanation of using LSTMs
for log anomaly detection, see section 3.

2.2 Multi-log Anomaly Detection

As outlined by Abad, et al. in 2003, there are cer-
tain types of anomalies which are not deemed sta-
tistically relevant enough by single-log anomaly de-
tection methods. Abad, et al. found that many
anomaly detection approaches lead to significant
numbers of false positives.

Despite these observations, most existing log
anomaly detection research is limited to single log
analysis. There have been several cases where mul-

tiple logs have been used to detect intrusion or
faults in systems. Jia, et al. (2018) developed a net-
work anomaly detection algorithm, which used four
logs present in servers. Lu, et al. (2019) combined
traffic and multiple log data to develop TLCD
(Traffic-Log Combined Detection). While both of
these methods operate effectively in their respective
domains, the methods used to combine logs require
extensive domain knowledge and prior knowledge
about the interaction between logs.

In our research, we found that there are few, if
any, generalizable approaches to address a multi-
log environment, despite a surge of generalizable,
machine learning models for single-log anomaly de-
tection.

2.3 Multimodal Fusion

To form a generalizable approach for anomaly de-
tection in multiple logs, it is necessary to fuse infor-
mation or models derived from multiple logs. These
logs present different representations, or modali-
ties, of partially overlapping subsets of the same
underlying system. The process by which multiple
logs can be incorporated in one model is through
multimodal fusion (Atrey, Hossain, El Saddik, and
Kankanhalli, 2010).

There are three approaches to multimodal fusion:

1. Early (or Recognition-based) Fusion is
achieved by fusing the features of the different
modalities to generate an input for a model.
There are several benefits to this. In early fu-
sion, it is only necessary to train one model
for the input data and the early correlations
between inputs are recognised in the model,
which often improves task performance. How-
ever, an early fusion approach can be difficult
to apply in some tasks, as significant effort
may be required to find an effective strategy to
merge features early on. In the case of multi-
log anomaly detection, differing average times
between events between logs can make the fu-
sion process of log events difficult.

2. Late (or Decision-based) Fusion is
achieved by forming models for different
modalities and merging the outputs of each
of the models through a decision function (re-
ferred to as fusion at the ’semantic level’ by

3



Atrey, et al.). It is often far easier to per-
form fusion at the semantic level, as the format
of each model’s output will be very similar.
Late fusion is not necessarily appropriate when
there are strong dependencies between the fea-
tures of the modalities of input, because these
dependencies may be lost in the modelling pro-
cess. Also, more time is frequently required to
train the models (Snoek et al., 2005).

3. Hybrid Multi-Level Fusion is a combina-
tion of early and late fusion. For example, two
very similar logs can be fused together at a
feature level (early fusion), which can then be
fused at the semantic level with other logs
(late fusion). This can take advantage of the
benefits of both approaches, but may require
a greater degree of domain knowledge or ex-
ploratory analysis to build an effective model.

Because of the additional requirements that a hy-
brid multi-level fusion approach contains, this pa-
per will only discuss the early and late fusion ap-
proaches to building a multi-log anomaly detection
model. Further explanation of how we implement
an early and late fusion approach in our task is
presented in section 3.

3 Models

In this section, we outline how the early and late
fusion models are implemented. The base predictor
in these models is the Long Short Term Memory
Network. A further explanation of LSTMs is pro-
vided in the following subsection, after which we
outline how LSTMs can be used for anomaly de-
tection, after which the early fusion and late fusion
models are introduced.

3.1 Long Short Term Memory Net-
works

A Long Short Term Memory network is a type
of recurrent neural network introduced by Hochre-
iter and Schmidhuber (1997). A standard feed-
forward neural network architecture has static in-
put to output matching, where activation propa-
gates in one direction. These are used as universal
function approximators and update their weights

through backpropagation. The limitation of feed-
forward neural networks is there is no memory of
previous states, causing it to be unsuitable to model
dynamic systems, such as sequential input. A recur-
rent neural network keeps an internal memory of
previous states. Because of this, RNNs can serve as
function approximators for dynamic systems. This
makes them well suited to time-series, sequences
and language modelling, as there are relations in
each ’step’ of input information.

RNNs often suffer from exploding or van-
ishing gradients. Because of the nature of se-
quential data, the back-propagation of RNNs is
done through time. The Back-Propagation Through
Time (BPPT) and Real-Time Recurrent Learning
(RTRL) algorithms achieve this by propagating
activity gradients backwards or forwards, respec-
tively (Williams and Zipser, 1995). As discussed by
Hochreiter, these methods propagate far backwards
or forwards. To calculate the errors for previous
time steps, the recurring weight (used to connect
the hidden layers to previous time steps) will be
multiplied by itself (through gradient descent) mul-
tiple times. If the recurring weight is greater than
1 this can lead to exploding gradients and if the re-
curring weight is less than 1 this can lead to vanish-
ing gradients. This leads to difficulty in modelling
long term dependencies. For a more detailed dis-
cussion of this, we refer to Hochreiter (1998) and
Bengio, Simard, and Frasconi (1994).

Figure 3.1: LSTM cell (rectangular boxes repre-
sent layers, whereas circular elements represent
pointwise operators)

LSTMs counteract this vanishing and exploding
gradient problems by allowing constant error flow
through the LSTM cell (Hochreiter and Schmidhu-
ber, 1997). The architecture is shown in Figure 3.1.
Each LSTM cell has three inputs, ht−1, Ct−1 and

4



xt, where xt is the input at this time step and ht−1

and Ct−1 are passed in from a previous cell. The cell
state, Ct−1 only goes through minor, linear trans-
formations, allowing error to flow through. The out-
put of the cell, ht, is dependent on the cell state,
which allows it to model problems without suffer-
ing long term dependency problems to the same
degree.

3.2 LSTMs for System Log Anomaly
Detection

LSTMs have seen success in modelling time-series
(Malhotra, Vig, Shroff, and Agarwal, 2015), lan-
guages, and sequences (Sutskever et al., 2014). As
mentioned in section 2, system events in logs con-
tain a structure similar to natural language gram-
mar (Malhotra et al., 2015) and the sequential na-
ture of log events make them a prime candidate for
LSTM modelling.

In the case of system logs, we define an anomaly
as a deviation from normal workflow behaviour. An
LSTM can, therefore, be trained to predict the
next log event given a sequence of previous log
events. When exposed to a new log after having
been trained on logs expressing normal workflow
behaviour, a log event prediction can be compared
to the actual, observed log event. In the case that
the prediction is substantially different from the ob-
served log event, the observation can be considered
anomalous.

There may be cases where there are multiple po-
tential events which could occur from a given input
sequence of events. In such cases, there is no de-
viation from normal workflow behaviour, but the
predicted log event may be different from the ob-
served log event. To account for this, we follow an
approach outline by Du et al. (2017), where we con-
sider an event anomalous if it is not in the top k
predicted log events. This approach is somewhat
naive and a better method to account for this is
outlined by Malhotra et al. (2015).

3.3 Early Fusion Model

In an early fusion model, fusion is done at the fea-
ture level. In this paper, we aim to detect anomalies
at the event level. Therefore, we must merge logs
at the event level to generate input and output vec-
tors.

In Figure 3.2, the early fusion model is described.
The logs are first merged at an event level into a
representation where single-log anomaly detection
techniques can be applied. Then, sequences and the
event which occurs after the sequence are extracted
from the merged log. The sequence is served as in-
put to the LSTM model, which predicts the subse-
quent log event. The predicted event is compared
with the observed event. If there is a substantial
difference, then we consider the predicted event
anomalous.

Figure 3.2: Early fusion model architecture for
multi-log anomaly detection

There are two methods we identified by which
this merge can be done:

(a) Match events in logs by timestamp. First,
a log is selected to serve as the base log. For
each log entry in the base log, we find the
nearest entry by time in the other logs. The
matched log is therefore a list of tuples, each
associated to an entry in the base log and some
entries in the other logs. One of the drawbacks
of this method is that it does not predict log
events, but rather tuples of log events.

(b) Merge logs into one by timestamp. We
treat the logs as if they are a single log. We
add all the log entries into a single merged log
sorted by the time when the entry occurred.

The merging strategies are explained in more de-
tail in section 4.

3.4 Late Fusion Model

In a late fusion model, fusion is done at the se-
mantic level. The semantic level, in this case, is a
prediction of whether an anomalous event has oc-
curred. To achieve this, independent predictors are

5



trained on each individual log, where the result of
each is combined into a single prediction.

The late fusion model is described in Figure 3.3.
Event sequences are extracted from logs, each serv-
ing as input to an LSTM. The LSTM is trained to
predict the next event in their log. When the ob-
served next event is substantially different from the
predicted event, the predictor returns an anomaly.
The fusion of the separate predictions is done
through leaky integrator fuzzy matching, an expla-
nation of which is defined in the following subsec-
tion.

Figure 3.3: Late fusion model architecture for
multi-log anomaly detection

As logs can describe separate system processes
and are generally event-driven, log entries will of-
ten not occur at the same time. The results of
an independent predictor will contain the time of
the observed deviation from normal workflow, but,
even if there is a system-wide anomaly, these times
will only infrequently match between logs. The final
prediction must, therefore, not merge simply by an
exact timestamp, but must fuse the results of the
individual predictors based on time.

3.4.1 Leaky Integrator Anomaly Detection

To catch system-wide anomalies we need to merge
the resultant predictions of the individual predic-
tive models. One could imagine a case in which one
anomalous event occurs and another occurs very
quickly afterwards. This scenario could indicate a
system-wide anomaly. In practice, if an anomaly is
predicted and another anomaly is predicted quickly
afterwards, then we can consider these events to be
more anomalous than other events in the log files,
as there may be some large-scale system fault oc-
curring.

To take advantage of this property of logs, we can

use a leaky integrator with an adjustable decay rate
to place a greater weight on anomalies which occur
in the presence of other anomalies. The process by
which these weights can be applied requires a for-
wards and backwards pass over the logs. In each
pass, the weights can be assigned as outlined in
pseudocode (see Appendix A.1).

To explain this intuitively, a predicted anomalous
event in the log causes an activation of g, whereas
a predicted non-anomalous event in the log causes
an activation of 0. For each event in the log, its
activation as well as the time-decaying activation
of previous log events are calculated and summed
together, the sum representing the total activation
or weight for that log event.

The activation values of each log event in both
the forward pass and the backwards pass are
summed together, leading to a list of the total ac-
tivations or weights of each event in the logs com-
bined by time. A threshold is then applied to pre-
dict anomalies in the log, leading to the final pre-
diction of the late fusion model.

4 Methods

This section will detail the general preprocessing
required to transform a set of logs into input for
the models, it will outline the implementation of the
two early fusion models and the late fusion model in
more detail, and it also outlines what data is used
to evaluate the models and the parameters used for
each model.

4.1 Preprocessing of Data

4.1.1 General Preprocessing

We have previously defined an anomaly as a devi-
ation from normal workflow behaviour. To be able
to detect this deviation in log events, each log event
needs to be represented numerically. This is done
by representing log events through log keys, which
are unique mnemonics in the set of process tokens
that will not conflict with other text strings in the
log output. A log key can be determined through
the extraction of generalizable non-parameter prop-
erties of log entries, which can then be mapped
numerically. An entire log can, therefore, be rep-
resented as a sequence of log keys, which can serve
as input to the defined models.

6



As outlined in section 3, the further matching
or merging of log events will require the extrac-
tion of timestamps from log files. A preprocessed
log can be conceptualized as a list of tuples, con-
taining both the log key and the timestamp of the
event. The approaches outlined in this paper, there-
fore, assume that the timestamp of a log event is
extractable and that a log event can be effectively
mapped to a log key.

For the defined models, we require that each log
file has been preprocessed in the outlined manner.

4.1.2 Early Fusion Match Preprocessing

The preprocessing algorithm is outlined in the
pseudocode (see Appendix B.1).

To explain the pseudocode intuitively: First de-
fine a base log. For each tuple event in the base log,
the timestamps are used to find the closest tuple log
event in all other logs. A new event is formed us-
ing the log keys of the original tuple event and the
closest tuple log events. The list of all new events
can be considered a merged log of all input logs.

After this matching is done, each new tuple event
of log keys is one-hot encoded and a window is run
over the list to generate input sequences and output
events, as described in section 3.

4.1.3 Early Fusion Merge Preprocessing

The preprocessing algorithm is outlined in the
pseudocode (see Appendix C.1).

To explain the pseudocode intuitively: While we
have not reached the end of each log, we loop over
the logs and find the log event with the earliest
timestamp. The found log event is added to a list
which can be considered the new log. It is impor-
tant to note that overlapping key values for logs
are problematic in this case as there will be several
log events with the same log key. Therefore, it is
advisable to account for this by ensuring there is
no overlap.

4.1.4 Late Fusion Postprocessing

For late fusion, no preprocessing other than the out-
lined general preprocessing is required. However,
there is a need to process the outputs of the in-
dividual predictors in the late fusion model. This
process was outlined in subsection 3.4.1.

4.2 LSTM Log Key Prediction
Model

As outlined in section 3, both the early fusion
model and the late fusion model use an LSTM to
predict a subsequent log event given a sequence of
log events.

In figure D.1 in the appendix, we outline how
the model is implemented. First, we reduce the
dimensionality of the one-hot encoded log events
using a dense feed-forward layer. This is done to
avoid the LSTM simply predicting the previous log
event (Okafor and Schomaker, 2018). The reduced
dimensional sequences are then used as input to an
LSTM, which predicts a low dimensionality repre-
sentation of the predicted log event. Then, another
dense feed-forward layer is used to scale the reduced
representation of the predicted log event to a vector
the size of the input vector.

To train the model, the Adam optimizer (Kingma
and Ba, 2015) is used. The Adam optimizer lever-
ages the benefits of the AdaGrad and RMSProp
optimizers and is generally considered the default
optimizer to use in practice.

As is common for most categorical classification
tasks, we use cross-entropy loss as the criterion of
our model.

4.3 Data and Experimental Setup

We use BGL log data gathered from the loghub
repository (Zhu et al., 2019) to evaluate our mod-
els. This data was generated by Lawrence Liver-
more National Labs through a BlueGene/L super-
computer system and has annotated alert and non-
alert messages (Oliner and Stearley, 2007). At the
case company, Ericsson, we evaluated the models
on two logs, denoted in tables and figures as ELog
A and ELog B, respectively.

The open-source log data had a tendency to re-
peat the same event many times, so we removed all
repeating lines. This change was made as it may
be difficult for the LSTM to learn the underlying
sequential behavior of the log files when the input
sequences do not exhibit this progression. We be-
lieve that this is a reasonable change to make, as
this sort of preprocessing can be done even during
runtime and the progression of events remains the
same. This reduced the number of log entries from
4,747,963 to 660,810.

7



As the open-source data is in a single log format,
we split the log in two by considering all events from
the kernel as part of log A and all other events as
part of log B. We believe that this split is reason-
able as there is a clear difference in the source of
both log A and log B. Of the 660,810 log entries,
log A consists of 572,417 log entries, whereas log B
consists of 88,393 log entries. In log A, 2.46% of log
entries are anomalous, whereas 8.21% of log entries
in log B are anomalous. While there is a clear im-
balance in the number of log entries and anomalies
per log, this is often the case in real, industry appli-
cations. Log files often operate at different levels of
abstraction or operate on less used processes, so we
believe this is common and representative of indus-
try. It is important to mention that neither of these
preprocessing steps were necessary for the industry
log data at Ericsson, as log entries tended not to
repeat frequently and there were multiple log files
present in the original dataset, so no split had to
be made.

For the early fusion match model, the first log
was chosen as the base log. This was done to take
advantage of the greater quantity of data present.

For each model, random partitions of test and
train sequences were made. 80% of the data was
used for training and 20% was used to test the
model. For the Late Fusion log B predictor, the
testing sets were determined by selecting all se-
quences of log entries which overlapped with se-
quences in the testing set of log A. The training
set of log B was selected from all log sequences not
added into the testing set. This means that the ra-
tio between the length of the training and testing
sets for log B were not always the same. All anoma-
lous log sequences in the training sets were removed
to ensure that the model was training on normal log
data.

5 Evaluation

In Table 5.1, we outline the training and test-
ing dataset splits for the open-source BlueGene/L
log data. These were determined using a input se-
quence length of 2. For the Late Fusion Model pre-
dictor for Log B, the number of log entries used for
training and testing differed for the reasons men-
tioned in the experimental setup.

To evaluate both the performance of each model

Table 5.1: Number of sequences of length 2 in
data sets

Model Training Set Test Set Number of
Log Keys

Early Fusion 457929 114483 4015
Match Model
Early Fusion 528643 132160 1299
Merge Model

Late Fusion Model 457932 114483 570
Log A

Late Fusion Model - - 729
Log B

in predicting the next log entry and in its ability
to predict anomalies, we use four standard perfor-
mance measures: Accuracy, Recall, Precision, and
F1-Score. In standard binary classification prob-
lems, recall is the fraction of the number of true
positives and the number of true positives plus the
number of true negatives, this gives an indication
of how complete the predictions of a model are.
Precision is the fraction of the number of true pos-
itives and the number of true positives plus false
positives, this gives an indication of how exact the
model is in its predictions. The F1-Score is the har-
monic mean between the precision and recall of a
test.

As the prediction of a next log entry is a not a bi-
nary classification problem, but is instead a multi-
class classification problem, we use the weighted
variants of recall and precision. The weighted vari-
ants of recall and precision are a weighted average
of each label’s recall or precision, where the weight
is determined by the frequency of the class in the
dataset.

For the evaluation of each model regarding
anomaly detection, the class bias between anoma-
lous events and non-anomalous events will lead
to inflated values for the performance measures.
Therefore, we use the macro variants of recall and
precision to find the unweighted mean between the
classes. This should give a stronger indication of the
performance of the model in detecting anomalies.

For the BlueGene/L dataset, all the models had
the following properties. By default, the size of the
hidden layer in the neural network model is 64,
the size of each sequence is 2 entries long, and the
number of epochs used to train the model is 20.
For the anomaly detection section of our model, we
use k ≈ 0.35 ∗ nLogKeys, where if the observed
log event is in the top k predictions made by the

8



LSTM model, we don’t consider the event anoma-
lous. For the Late Fusion model, we use a decay rate
of 0.8 and a threshold of 2 for detecting anomalies.
All parameters were found by optimizing for model
performance on randomly partitioned test sets.

For the Ericsson dataset, the size of the hidden
layer in the neural network model is 512. The length
of the sequences were also longer, at 10 entries long.
We used 10 epochs to train the model. The same
decay rate and threshold used for the BlueGene/L
dataset were used.

The performance measures regarding how well
each model is able to predict the next log entry
(or, in the Early Fusion Match Model, a tuple of
log entries) given a sequence are outlined in Table
5.2. The performance measures presented in Table
5.2 are the mean of 10 runs with different data par-
titions.

Table 5.2: Weighted performance measures (Ac-
curacy, Recall, Precision, and F1-Score) for pre-
dicting the next log entry ± the standard devi-
ation over 10 runs

Model Accuracy Recall Precision F1-Score
Early Fusion Match Model 0.911 ± 0.0014 0.911 ± 0.0014 0.938 ± 0.0009 0.924 ± 0.0011
Early Fusion Merge Model 0.902 ± 0.0008 0.902 ± 0.0008 0.919 ± 0.0011 0.910 ± 0.0009
Late Fusion Model Log A 0.909 ± 0.0011 0.909 ± 0.0011 0.921 ± 0.0013 0.915 ± 0.0011
Late Fusion Model Log B 0.776 ± 0.0427 0.776 ± 0.0427 0.853 ± 0.0250 0.813 ± 0.0349

As shown in Table 5.2, the performance of the
early fusion models is quite strong. The early fusion
match model outperforms the early fusion merge
model marginally. The Late Fusion predictor for
log A performs very well, but the log B predictor
does not perform nearly as well as the other models.
This is to be expected, as the log B predictor has
far less data to train and test on than the other
models.

Tables E.1 and E.2 in Appendix E contain infor-
mation about the Ericsson log data and the per-
formance of the models at predicting the next log
entry given a sequence of log entries. The perfor-
mance of the models is acceptable, achieving F1-
Scores close to 0.8. It is also clear that the Early
Fusion Match Model struggles to match the perfor-
mance of the other models, as the number of possi-
ble input values grows exponentially with lower de-
pendencies between the logs. As the industry data
did not have labels, the anomaly detection perfor-
mance is not quantitatively known. A basic quali-
tative description of our results is provided in the
end of this section and in section 6. A more detailed

description of the performance on the Ericsson log
data can be found in Appendix E.

In Figure 5.1, we can see the performance of each
of the models at detecting anomalies in the logs
with growing k values. Both early fusion models
achieve a macro F1-Score of around 0.95 and an
accuracy over 99%. The early fusion merge model
achieves slightly better performance than the early
fusion match model but the difference is negligible,
with Macro F1-Scores of 0.970 and 0.966, respec-
tively. The late fusion model performs worse than
the early fusion models in this case, peaking at a
Macro F1-Score of 0.877.

Figure 5.1: Anomaly Detection Performance of
Early and Late Fusion Models

In Figure 5.2, we can see the influence of dif-
ferent sequence and hidden layer sizes on the per-
formance of the models. We see that, despite the
models struggling to retain information with very
small hidden layers, a hidden layer size of 64 is suf-
ficient for achieving strong performance, with no
clear improvement when using higher dimensional-
ities. For the early fusion models, sequence length
has no influence on the model performance. For the
late fusion model, however, the performance of the
models are much lower. The reason for this is be-
cause we partition the test and train datasets to en-
sure overlap between log A and log B test sequences
in the late fusion models. With longer sequences,
the log B test set sequences often contain log keys
which were not present in the training set, leading
to worse performance. It is important to note that
we did not experience such a drop in performance
with the Ericsson log data.

In Figure 5.3, the effects of decay and threshold

9



Figure 5.2: Anomaly Detection Performance of
Early and Late Fusion Models with Differing Se-
quence Length and Hidden Layer Size

are shown on the late fusion models. It is clear that
the performance of the model peaks at a thresh-
old of 2, which is the base activation achieved for
an anomaly detected by an individual predictor
(after the forward and backward pass). For this
dataset, there is rarely a similarity between the
times anomalies occur between logs, therefore the
late fusion approach was far less effective and could
only leverage the results of the individual predic-
tors. In the figure, higher decays performed better
when the threshold was under 2 as this would as-
cribe less activation to events which were not de-
tected as anomalous, but were close to an anomaly.

Figure 5.3: Anomaly Detection Performance of
the Late Fusion Model with Differing Decay
and Threshold Parameters. A high decay rate
indicates lower time-based activations between
nearby log events.

It is clear that the early fusion models outper-
form the late fusion models for this log data. As the

original log data came from a single log, the time-
based dependencies between the respective log en-
tries are likely strong. In cases where log file data is
more separate, the late fusion model may perform
better. At the case company, we observed that the
Late Fusion Model outperformed both Early Fusion
Models when applied to log files with low entry-
level dependencies over time. The Early Fusion
Merge Model performed reasonably well but strug-
gled to find cross-log anomalous events, whereas the
Early Fusion Match Model did not perform nearly
as well, mainly because with less dependency be-
tween the log files the dimensionality of the input
grows dramatically. This growth means that there
will be many inputs present in a test set not present
in the training set, leading to worse performance.

6 Conclusion

Many companies develop and operate complex,
software-intensive systems that produce log files of
system behavior. In many cases, multiple log files
are generated throughout the runtime of a system,
each containing information at different levels of
abstraction or about different subsystems.

Despite the extensive research which has been
done in log file analysis and log file anomaly de-
tection, there is a lack of existing approaches to
effectively combine log files for improved results. In
this paper, we outlined three generalizable strate-
gies by which one could approach a multi-log file
scenario.

We address the research question: Does the
performance of late fusion anomaly de-
tection models outperform early fusion
anomaly detection models when applied to
multimodal system events gathered through
log files? We found that early fusion models per-
form better when there is a strong, causal depen-
dency over time in the feature (event) level of the
log. However, late fusion models may perform bet-
ter when these dependencies are less strong, as was
found in our evaluation of the Ericsson log data.

6.1 Future Work

While we achieved strong success in the early fusion
approaches and moderate success in our late fusion
approach, these approaches ignore the complex de-

10



pendencies and interactions between the systems
underlying the log files. In addition to this, detect-
ing system-wide anomalies could be improved using
other performance measures present in the system.
For instance, CPU or RAM usage, number or type
of active connections, and other such performance
measures could serve as additional parameters in
models to improve their performance in this appli-
cation.

Most importantly, there are many other possible
combinations of log data possible. A hybrid fusion
approach may serve better in more complex cases,
where some logs are merged together at the event
level, which are subsequently merged at the seman-
tic level with other logs. The influence of the type
predictors present in the models may also be in-
vestigated. For example, convolutional neural net-
works may also serve as more stable predictors than
LSTMs and one-class classification methods (Tax,
2001) may serve as an interesting alternative to the
existing approach. Future research will look into
defining further approaches to detecting anomalies
in a multi-log environment.

Acknowledgement

I would like to thank my academic supervisor, Prof
Dr Lambert Schomaker, and my supervisor at Er-
icsson AB, Maria-Bianca Andersson, for their help
and guidance with this bachelor’s thesis.

References

Cristina Abad, Jed Taylor, Cigdem Sengul, William
Yurcik, Yuanyuan Zhou, and Ken Rowe. Log cor-
relation for intrusion detection: A proof of con-
cept. In Proceedings - Annual Computer Security
Applications Conference, ACSAC, 2003. ISBN
0769520413. doi: 10.1109/CSAC.2003.1254330.

Pradeep K. Atrey, M. Anwar Hossain, Abdulmo-
taleb El Saddik, and Mohan S. Kankanhalli. Mul-
timodal fusion for multimedia analysis: A survey.
Multimedia Systems, 2010. ISSN 09424962. doi:
10.1007/s00530-010-0182-0.

Yoshua Bengio, Patrice Simard, and Paolo Fras-
coni. Learning Long-Term Dependencies with
Gradient Descent is Difficult. IEEE Transactions

on Neural Networks, 1994. ISSN 19410093. doi:
10.1109/72.279181.

Andy Brown, Brian Hutchinson, Aaron Tuor, and
Nicole Nichols. Recurrent neural network at-
tention mechanisms for interpretable system log
anomaly detection. In Proceedings of the 1st
Workshop on Machine Learning for Comput-
ing Systems, MLCS 2018 - In conjunction with
HPDC, 2018. ISBN 9781450358651. doi:
10.1145/3217871.3217872.

Marcello Cinque, Domenico Cotroneo, and Antonio
Pecchia. Event logs for the analysis of software
failures: A rule-based approach. IEEE Trans-
actions on Software Engineering, 2013. ISSN
00985589. doi: 10.1109/TSE.2012.67.

Min Du, Feifei Li, Guineng Zheng, and Vivek Sriku-
mar. DeepLog: Anomaly detection and diagno-
sis from system logs through deep learning. In
Proceedings of the ACM Conference on Com-
puter and Communications Security, 2017. ISBN
9781450349468. doi: 10.1145/3133956.3134015.

Qiang Fu, Jian Guang Lou, Yi Wang, and
Jiang Li. Execution anomaly detection in dis-
tributed systems through unstructured log anal-
ysis. In Proceedings - IEEE International Con-
ference on Data Mining, ICDM, 2009. ISBN
9780769538952. doi: 10.1109/ICDM.2009.60.

Sepp Hochreiter. Recurrent neural net learn-
ing and vanishing gradient. Int. Journal of
Uncertainity, Fuzziness and Knowledge-Based
Systems, 1998. ISSN 0899-7667. doi:
10.1142/S0218488598000094.

Sepp Hochreiter and Jürgen Schmidhuber. Long
Short-Term Memory. Neural Computation, 1997.
ISSN 08997667. doi: 10.1162/neco.1997.9.8.1735.

Zhanpei Jia, Chao Shen, Xiao Yi, Yufei Chen, Tian-
wen Yu, and Xiaohong Guan. Big-data anal-
ysis of multi-source logs for anomaly detection
on network-based system. In IEEE Interna-
tional Conference on Automation Science and
Engineering, 2018. ISBN 9781509067800. doi:
10.1109/COASE.2017.8256257.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A
method for stochastic optimization. In 3rd In-
ternational Conference on Learning Representa-

11



tions, ICLR 2015 - Conference Track Proceed-
ings, 2015.

Aleksandar Lazarevic, Vipin Kumar, and Jaideep
Srivastava. Intrusion detection: A survey. In
Managing Cyber Threats, pages 19–78. Springer,
2005.

Jiazhong Lu, Fengmao Lv, Zhongliu Zhuo, Xi-
aosong Zhang, Xiaolei Liu, Teng Hu, and Wei
Deng. Integrating traffics with network device
logs for anomaly detection. Security and Com-
munication Networks, 2019. ISSN 19390122. doi:
10.1155/2019/5695021.

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff,
and Puneet Agarwal. Long Short Term Mem-
ory networks for anomaly detection in time se-
ries. In 23rd European Symposium on Arti-
ficial Neural Networks, Computational Intelli-
gence and Machine Learning, ESANN 2015 -
Proceedings, 2015. ISBN 9782875870148.

Emmanuel Okafor and Lambertus Schomaker.
Integrated dimensionality reduction and se-
quence prediction using lstm. 2018. URL
http://www.ictopen2015.nl/. ICT.Open
2018, Amersfoort, The Netherlands; ICT.Open
: The Interface for Dutch ICT-Research,
ICT.Open ; Conference date: 24-03-2015
Through 25-03-2015.

Adam Oliner and Jon Stearley. What supercom-
puters say: A study of five system logs. In Pro-
ceedings of the International Conference on De-
pendable Systems and Networks, 2007. ISBN
0769528554. doi: 10.1109/DSN.2007.103.

Cees G M Snoek, Marcel Worring, and Arnold
W M Smeulders. Early versus late fusion in
semantic video analysis. In Proceedings of the
13th ACM International Conference on Multi-
media, MM 2005, 2005. ISBN 1595930442. doi:
10.1145/1101149.1101236.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Pro-
cessing Systems, 2014.

David Martinus Johannes Tax. One-class classifica-
tion; Concept-learning in the absence of counter-
examples. Delft University of Technology, 2001.
ISSN 00218979. doi: 10.1063/1.3605545.

Risto Vaarandi and Mauno Pihelgas. LogClus-
ter - A data clustering and pattern min-
ing algorithm for event logs. In Pro-
ceedings of the 11th International Conference
on Network and Service Management, CNSM
2015, 2015. ISBN 9783901882777. doi:
10.1109/CNSM.2015.7367331.

Wil Van Der Aalst et al. Process mining mani-
festo. In Lecture Notes in Business Information
Processing, volume 99 LNBIP, pages 169–194,
2012. ISBN 9783642281075. doi: 10.1007/978-
3-642-28108-2 19.

A.J.M.M. Weijters, W M P van der Aalst, and
A K Alves de Medeiros;. Process Mining with
the HeuristicsMiner Algorithm, 2006.

Ronald J. Williams and David Zipser. Gradient-
based learning algorithms for recurrent networks
and their computational complexity. Back-
propagation: Theory, architectures and Applica-
tions, 1995. doi: 10.1080/02673039508720837.

Ting Fang Yen, Alina Oprea, Kaan Onarlioglu,
Todd Leetham, William Robertson, Ari Juels,
and Engin Kirda. Beehive: Large-scale log analy-
sis for detecting suspicious activity in enterprise
networks. In ACM International Conference Pro-
ceeding Series, 2013. ISBN 9781450320153. doi:
10.1145/2523649.2523670.

Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin,
Hui Zhang, and Guofei Jiang. CloudSeer: Work-
flow monitoring of cloud infrastructures via inter-
leaved logs. In International Conference on Ar-
chitectural Support for Programming Languages
and Operating Systems - ASPLOS, 2016. ISBN
9781450340915. doi: 10.1145/2872362.2872407.

Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He,
Qi Xie, Zibin Zheng, and Michael R. Lyu. Tools
and Benchmarks for Automated Log Parsing.
In Proceedings - 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: Soft-
ware Engineering in Practice, ICSE-SEIP 2019,
2019. ISBN 9781728117607. doi: 10.1109/ICSE-
SEIP.2019.00021.

12



A Appendix

Algorithm A.1 Calculates weights for each log
event

Require: decay > 0, g > 0, detectedT imes 6=
emptylist, times 6= emptylist
weights⇐ emptylist
memory ⇐ 0
prevAnom⇐ NULL
for all time in times do

if prevAnom 6= NULL then
timeDelta⇐ abs(time− prevAnom[0])
val⇐ e−decay∗timeDelta

else
val⇐ 0

end if
appended⇐ false
for i⇐ memory to len(detectedT imes) do

if detectedT imes[i] = time then
prevAnom⇐ (time, val + g)
weights.append(val + g)
memory ⇐ i
appended⇐ true
break

else if time < detectedT imes[i] then
weights.append(val)
appended⇐ true
break

end if
end for
if appended = false then
weights.append(val)

end if
end for
return weights

B Appendices

Algorithm B.1 Match Log Entries Preprocessing

Require: logs 6= emptylist, baseLogIdx >= 0
newLog ⇐ emptylist
for all entry in logs[baseLogIdx] do
newEntry = [entry[0]]
for i⇐ 0 to len(logs) do

if i = baseLogIdx then
continue

end if
ne, td⇐ NULL
for all entry2 in logs[i] do

timeDelta⇐ abs(entry[1]− entry2[1])
if td = NULL or timeDelta < td then
td⇐ timeDelta
ne⇐ entry2[0]

else
break

end if
end for
newEntry.append(ne)

end for
newLog.append(newEntry)

end for
return newLog

13



C Appendix

Algorithm C.1 Merge Logs into One Preprocess-
ing

Require: logs 6= emptylist
logLengths⇐ emptylist
indices⇐ emptylist
for i⇐ 0 to len(logs) do
logLengths.append(len(logs[i])− 1)
indices.append(0)

end for
newLog ⇐ emptylist
while indices 6= logLengths do
lt, ce, wi⇐ NULL
for i⇐ 0 to len(logs) do

if indices[i] = logLengths[i] then
continue

end if
entry ⇐ logs[i][indices[i]]
if le = NULL or entry[1] < le then

ce⇐ entry[0]
le⇐ entry[1]
wi⇐ i

end if
end for
indices[wi]⇐ indices[wi] + 1
newLog.append(ce)

end while
return newLog

D Appendix

Figure D.1: The neural network model used to
predict log events given a sequence of log events

14



E Appendix

Table E.1: Number of sequences of length 10 in
the Ericsson log data set

Model Training Set Test Set Number of
Log Keys

Early Fusion 483845 162158 10543
Match Model
Early Fusion 2078600 913733 1614
Merge Model

Late Fusion Model 484034 201435 709
ELog A

Late Fusion Model 1593874 711925 905
ELog B

As shown in Table E.1, the number of log
keys grows significantly in the Early Fusion Match
Model. This is because the time-dependencies be-
tween the logs are not as strong, causing an explo-
sion of possible log entry pairs between the logs.

Table E.2: Weighted performance measures (Ac-
curacy, Recall, Precision, and F1-Score) for pre-
dicting the next log entry in the Ericsson log
data

Model Accuracy Recall Precision F1-Score
Early Fusion Match Model 0.679 0.679 0.807 0.738
Early Fusion Merge Model 0.784 0.784 0.829 0.806
Late Fusion Model ELog A 0.782 0.782 0.806 0.794
Late Fusion Model ELog B 0.798 0.798 0.830 0.814

In Table E.2, the performance of the models for
predicting the next log entry is shown on the Eric-
sson log data. While the performance on the data
is not as strong as on the BlueGene/L dataset, this
can, in large part, be attributed to the higher degree
of complexity underlying the generation of the logs.
This high degree of complexity is clear, as the mod-
els achieve the highest performance with a sequence
length of 10 and a hidden layer size of 512. With
better performance on higher sequence lengths, the
longer-term dependencies in the logs are evident.
Similarly, the large number of parameters in the
hidden layer indicate that the underlying system
behavior present in the logs is complicated.

As the Ericsson data set was not labelled, we
cannot quantitatively report on the anomaly detec-
tion performance exhibited by the models on this
data. As indicated by both Table E.2 and observa-
tions of model behavior, however, it is clear that
the Early Fusion Match Model is not comparable
to the other models unless there is a very strong

relation between individual entries between the log
files. The Early Fusion Merge Model and the Late
Fusion Model initially performed equally well but,
by tuning the decay and threshold parameters, the
Late Fusion Model was found to perform better on
the dataset.

15


