
Casimir screening of the
QGEM-protocol

Coming one step closer in exploring the quantumness of gravity

Thomas W. van de Kamp

A bachelors thesis presented for the Bachelor degree program of

Physics

University of Groningen
First Supervisor: Prof. Dr. A. Mazumdar
Second Supervisor: Prof. Dr. D. Roest

July 2020



Casimir screening of the QGEM-protocol

Coming one step closer in exploring the quantumness of gravity

Thomas W. van de Kamp

Abstract

The Quantum Gravity induced Entanglement of Masses (QGEM)-protocol is an experiment whose goal is
to test the quantum nature of gravity by bringing two, mesoscopic, test masses both in a spatial superposition
and letting them entangle through their gravitational interaction. Measuring the entanglement implies that
the communicator responsible for the entanglement, which is gravity, is of a quantum nature. One of the
problems of the current setup of the QGEM-protocol is that this communicator, depending on the separation
of the masses, can also be of electromagnetic nature, since the Casimir-Polder force can entangle the test
masses. This restricts the length scale in which the gravitational force is dominant, limiting the mass and
superposition size needed to measure the entanglement induced by the gravitational interaction. Therefore, in
this thesis, a slight modification to this setup is proposed: the insertion of a thin perfectly conducting plate in
between the test masses which effectively screens the Casimir-Polder potential, but introduces a Casimir force
between the plate and the test masses. With this modified setup, one can measure entanglement for masses
and superposition sizes of one order magnitude lower than suggested in the original proposal, from 10−14 to
10−15 kg and 200 to 23µm respectively. Consequently, this also reduces the need to use a highly advanced
magnetic field gradient of 106 Tm−1, to create the superposition, to a laboratory allowed magnetic field
gradient of 104 Tm−1. This brings needed parameters for the Stern-Gerlach interferometry closer towards
a currently allowed parameter space. The new modified setup is also able to better probe theorized Ultra-
Violet deviations from the known 1/r potential of gravity as one can measure the entanglement with shorter
separations between test masses. The decoherence on the test masses was modeled according to “which-
path” information loss through absorption/scattering and/or emission of environmental particles/photons,
which is an unavoidable source of decoherence in the QGEM-protocol.
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1 Introduction

Gravity is the most famous but yet least understood force in our universe, as gravity, as understood up till
now, is still incompatible with quantum physics. Tying gravity to quantum physics is, therefore, if proven,
one of the most important discoveries in physics as quantum gravity can provide explanations for various
problems in physics such as the big bang singularity [1] and the cosmological constant problem. However,
the theory of quantum gravity involves most of the time the quantization of space-time, which up to now is
understood to be a classical configuration [2]. There is still no evidence that proves that quantum gravity
even exists at all, however, recently Bose & Mazumdar et al [1] proposed an experiment that can conclude
if gravity has a quantum mechanical origin or not. Therefore this experiment could give a solution to one
of the most challenging and famous problems of physics: is quantum mechanics compatible with general
relativity? A similar proposal of this experiment was presented by Marletto and Vedral [3] on the same
day. The similar experiments, which will be referred to as the Quantum Gravity induced Entanglement
of Masses (QGEM)-protocol, relies on entangling two neutral mesoscopic test masses, both in a spatial
superposition, through their gravitational interaction [1]. Such an entanglement can only occur if gravity is
a quantum entity as it would otherwise violate the Local Operation and Classical Communication (LOCC)
theorem [1, 4, 5]. Therefore, measuring the entanglement provides evidence that gravity has a quantum
nature [1] and should be mediated by a quantum mediator such as the theorized virtual Graviton [5]. The
QGEM-protocol, see Sec.(6), is for its time an advanced experiment relying on futuristic technologies. One
of which is the need of a high spatial superposition size, ∼ 200µm, for relatively high masses, ∼ 10−14 kg,
which needs a high magnetic field gradient of 106 Tm−1 to create the spatial superposition to produce a
significant entanglement to overcome the main source of decoherence: collisional decoherence of the environ-
ment [6, 7]. The main reason for this limitation is that with the current QGEM-protocol the gravitational
force is not the only force which can entangle the test masses, as the so-called Casimir force [8, 9, 10] can also
entangle them. This will limit the separation between the closest states of the test masses from below, as
will be shown in Sec.(7), limiting the degree of entanglement. To overcome this limitation a modification of
the QGEM-protocol will be introduced, see Sec.(8), which consists of the insertion of a perfectly conducting
plate between the test masses. This plate will act as a Faraday cage, which screens the electromagnetic
interaction between the test masses, thus overcoming the separation limit as the Casimir-Polder potential is
unable to entangle the test masses. Consequently, this allows, in principle, for smaller seperations between
the test masses. This will, as shown in Sec.(10), allow for smaller masses ∼ 10−15 kg as well as lower super-
position sizes of ∼ 23µm, which are attainable through a laboratory allowed magnetic field gradient of 104

Tm−1 [1]. Although the mass and the superposition size are still too large to create a superposition with
the current technology of Stern-Gerlach (SG) interferometers [11, 12, 13], it brings theory and experiment
closer together making the QGEM-protocol one day closer to being realized.

In Sec.(2) up to Sec.(5), of this thesis, a theoretical background will be given on underlying aspects of the
QGEM-protocol such as: the superposition principle, entanglement, decoherence, and the Casimir force. In
Sec.(6) and Sec.(7) the current QGEM-protocol and its limitation will in more detail be discussed. Here,
one of the most crucial terms called the “effective entanglement phase” (Φeff) will be introduced, which
is related to the degree of entanglement pointed out earlier. The modified setup of the QGEM-protocol,
consisting of the Casimir-screening with the conducting plate will be introduced, and explained, in Sec.(8),
followed by the discussion in Sec.(9) about the entanglement entropy, which is the actual indication of the
degree of entanglement. In this section a suitable entanglement witness (W) for measuring the entanglement
of the QGEM-protocol will also be discussed.

In Sec.(10) the comparison between both the current setup and the newly introduced modified setup with
the Casimir screening of the QGEM-protocol will be made. Here, it will be concluded that the modified
setup allows for masses with smaller superposition sizes and lower magnetic field gradients as mentioned
briefly before. It will also be shown that if one falls back to the high magnetic field gradient of 106 Tm−1,
one is with the modified setup more robust against decoherence of the environment. Consequently, this
reduces the expectation value of the witness to 〈W 〉 ∼ −0.5, which is almost double the value of the current
setup, which is 〈W 〉 ∼ −0.26, and thus fewer measurements are needed to conclude if gravity has a quantum
nature. The build-up of this section is as follows:
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1.) In Sec.(10.1) the maximization of the effective entanglement phase for a given mass will be performed
to achieve the largest entanglement for a given mass for the largest magnetic field gradient of 106 Tm−1.
The results for this are displayed as the minimum mass needed in achieving a required entanglement phase.
These “required” phases are taken one order apart and are given by: Φeff ∼ 1,Φeff ∼ 0.1 and Φeff ∼ 0.01 rad.
2.) In Sec.(10.2) the same procedure will be followed for the modified setup, for the same magnetic field
gradient, to see how this already affects the possibilities if one allows for this relatively high magnetic field
gradient.
3.) In Sec.(10.3) the same procedure will be done for both setups, but for the lower magnetic field gradients
of 105 Tm−1 and 104 Tm−1. Here, one will see that the current QGEM-protocol is incapable of generating
the required entanglement phases, whereas the modified setup can still generate all the phases for a magnetic
field gradient of 105 Tm−1 and up to the requirement of Φeff ∼ 0.01 rad for a magnetic field gradient of 104

Tm−1.
4.) In Sec.(10.4) the mass possibilities for both setups will be compared for all magnetic field gradient, which
will give the reader already an indication of the huge improvements that this modified setup can provide.
5.) In Sec.(10.5) an expression for the decoherence of both setups in terms of “which-path” information loss
due to interactions with the environmental gas/photons and emission of photons [1, 6, 7] will be derived in
terms of the parameters of the experiment as well as environmental controllable parameters (temperature
and number density of the environmental gas). In this section, it will also be shown how the change of the
size/mass of the test masses will alter the decoherence of the superposition for certain parameters.
6.) Finally, in Sec.(10.6), the results of Sec.(10.1) up to Sec.(10.5) will be combined to show for which
parameters of the environment and the experiment the QGEM-protocol can measure possible entanglement
induced by quantum gravity.

In Sec.(11) it will be argued how the modified setup, with the smaller separation between test masses, has a
significant advantage to probe deviation from the Newtonian gravitational potential, which also arises from
linearized quantum gravity (see Sec.(6.4)) [5, 14, 15]. Here it will also be shown how the strength of the de-
viation from the Newtonian potential will impact the detectability of the entanglement of the modified setup
with the reduced parameter space. In Sec.(12) it will be shown how the highly hypothetical decoherence of
the collapse models [6, 7, 16] will negatively influence the QGEM-protocol. This analysis is based on the
theoretical results obtained in Ref.[6] on the decoherence of different collapse models on a spatially separated
superposition of a microscopic object. Finally, in Sec.(13), some extra considerations that have to be taken
into account with the modified setup will be discussed. Including for which parameters the plate will not get
vibrationally excited, such that it does not act as an extra “which-path” information source of the system
and, therefore, does not decrease the coherence of the test masses. The perfect conductor assumption and
the extra challenge in bringing back the superposition will also be discussed in this section.

2 Superposition Principle

To understand and improve the current QGEM-protocol, first, a light should be thrown on the theoretical
aspects underlying this promising project. One of these theoretical aspects is the superposition principle [7].
This states that if multiple states satisfy the Schrödinger equation (SE) for a specific system (S) then the
linear combination of them also satisfies the SE [7, 17]:

|Ψ〉 =
∑

cn |Ψn〉 (1)

Here, |〉 denotes a state and |Ψ〉 is the total state of the system consisting of all the individual states |Ψn〉 of
the system. All these individual states can under a (complex) basis transformations made such that they are
orthogonal to each other, having that, in such a case, the inner product of two individual states becomes:

〈Ψm|Ψn〉 = δmn (2)

The (complex) constant cn indicates how likely it is to “find” the system in the state |Ψn〉 upon observation,
which for superpositions can be time and position dependent1, with a probability of |cn|2. Here, the sum of

1This time and position dependence is exactly how interference patterns from superpositions can be observed [7, 18].
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all individual probabilities should, of course, add up to 1 for the system to have a sensible probability [17]:∑
|cn|2 = 1 (3)

The important thing to remember from the quantum nature of the superposition principle, which will be
important later on, is that the system can be simultaneously in all the individual states (|Ψn〉) instead of
just being in one of them like for mixed states2 [7]. This means that when you perturb the system, with for
example a magnetic field, you will affect all the states in the superposition.

An example of a superposition that will be important for the QGEM-protocol is the superposition of a
system where the only degree of freedom of the different states is its spin. This spin can be spin up (↑) or
spin down (↓) with equal probability (and sign), such that the superposition is given by:

|Ψ〉 =
1√
2

(|↑〉+ |↓〉) (4)

The factor of 1/
√

2 makes sure that that |Ψ〉 is normalized.

3 Entanglement

The individual states (|Ψn〉) of a system S span the Hilbert space (H) of that system [19]. If one has two
different systems (S1& S2), than in the combined Hilbert space of those systems (H=H1⊗H2) one can have
that the total state of the combined system (S) can be written either as a tensor product of the two states
of both systems, or not [19]. If one has the former then the state of the combined system can be expressed
as:

|Ψ〉 = |Ψ〉1 ⊗ |Ψ〉2 =
∑∑

cncm |Ψn〉1 |Ψm〉2 (5)

From this we see that a particular state |Ψm〉 in S2 couples to all individual states |Ψn〉 of S1 in a similar
manner, hence the states are separable [19]. This implies that a measurement on S2 gives no information
about the conditions of S1 [7], having that the total system S can just be described by S1 and S2 separably.
However, when the states of S upon coupling of S1 and S2 cannot be written as a tensor product, like in
Eq.(5), we have that the systems are entangled [7, 19], implying that both systems are no longer separable
[19]. This non-separability implies that a measurement on S2 directly influences the result of a measurement
on S1. The degree of entanglement of pure states, or in other words the degree in which a measurement on S2

influences that of S1, can be expressed by the von Neumann entropy3 [7, 19]. If two systems are maximally
entangled than one can get the most information out of S1 by measurements on S2, this corresponds to the
von Neumann entropy by a value of log2(d), with d the dimension of the Hilbert space4 [19]. When SVN

equals zero the states are not entangled, they are separable, and the system is in the form of Eq.(5). The
von Neumann entropy with regards to the QGEM-protocol will in more detail be discussed in Sec.(9) as
more concepts underlying this protocol need to be addressed first.

Entanglement can occur in different ways, in the famous Einstein-Podolsky-Rosen (EPR) paradox entangle-
ment occurs due to conservation laws after the decay of a particle [17]. In this “paradox” the decay of a
neutral pion into a positron and an electron is considered:

π0 → e− + e+ (6)

As the pion does not carry a spin (S = 0) one has by conservation of angular momentum that the electron
and positron should have an opposite spin and the combined system has to be in the singlet configuration

2Mixed states are already in one of the pure states |Ψn〉 before measurements are taken [7].
3One can also express the degree of entanglement utilizing the state negativity [19]. However, in this thesis, only the von

Neumann entropy (SVN) will be considered for the degree of entanglement.
4It should be noted that this entropy is determined for one system only so, for example, concerning S1. This entropy comes

from the effect the other system, S2, has on the reduced density matrix of S1. The concept of this “reduced density matrix”
will be explained in the next section.
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as they have S = 0 after the decay [17]. This means that the state for the spin degree of freedom, for the
combined electron-positron system, after decay looks like [17]:

|Ψ〉 =
1√
2

(
|↑〉− |↓〉+ − |↓〉− |↑〉+

)
(7)

Here, the subscript (-) is understood to correspond to the electron and the subscript (+) to the positron.
We can see that Eq.(7) is not of the form of Eq.(5) as not all the state combinations are included, therefore,
the electron and the positron are entangled. The other thing to note is that the system is also maximally
entangled as a measurement on the spin of the positron would automatically tell you what the spin of the
electron should be, as one can see from Eq.(7)5. For example, if the positron is measured to be “spin-up”
the electron should, as one can infer from Eq.(7), instantaneously collapse to the “spin-down” state to not
violate conservation of angular momentum [17], therefore, a subsequent measurement on the electron would
reveal that it has “spin-down”. This instantaneous collapse into the “spin-down” state is independent on
the distance between the electron and positron. One might, therefore, think that this violates causality,
however, one has to remember that if one wants to compare the measurements, one has to transmit the
outcomes to one another with normal, subluminal, methods as one cannot make copies of the system, due
to the no-cloning theorem [17]. Therefore, causality is not violated.

Entanglement can also occur under the time evolution of interactions of different states of a superposition
with those of another superposition, like in the QGEM-protocol. The time evolution of entanglement of the
QGEM-protocol is induced by the gravitational force, and the interfering electromagnetic force (in the form
of the Casimir-Polder potential), of 2 spatially separated mass superpositions, as will be discussed in Sec.(6).
Another consequence of entanglement is that a single superposition can easily entangle with states of the
environment, such as scattered air molecules, which will lead to decoherence of the superposition [6, 7, 18]
as will be discussed in the next section.

One of the principles underlying entanglement is that Local Operations and Classical Communication
(LOCC) cannot entangle systems which are initially separable [1, 4, 5]. This means that if we have two
systems, A and B, both being influenced by their local operations, e.g. measurements by experimentalists,
scattering with the environment or altercation by external fields, then these systems cannot become entan-
gled if the communication between them happens through a classical channel. An example of this is that if
we have say two quantum coins: Alice’s coin (system A) and Bob’s coin (system B), with the coin having
two sides, head or tails. Then, if both Alice’s and Bob’s coin are flipped countless times there is no way that
a coin flip of Alice’s coin can influence the outcome of Bob’s coin or vice versa if the communication between
them is through a classical channel and thus no entanglement can occur. The implication, as we will see in
Sec.(6.4), is that entanglement of both test masses of the QGEM-protocol cannot occur through a classical
gravitational potential as this is a classical communicator. Suggesting that a measured entanglement of the
two test masses should be of quantum nature and thus provides possible evidence for the quantum nature
of their communicator: gravity.

4 Decoherence

4.1 General formalism

In reality, holding a superposition, as created in the QGEM-protocol, is very difficult due to decoherence
effects. Decoherence is the loss of information of a system due to the entanglement of the system with the
environment [7]. To understand the mathematical formulations around decoherence and how it ties to the
QGEM-protocol, I have to introduce some theoretical formulations underlying the decoherence such as the
density matrix of a system, which is defined as [7, 19]:

ρ = |Ψ〉 〈Ψ| (8)

5That the system is maximally entangled can, also, be shown mathematically using the von Neumann entropy (SV N ), as one
can show that the reduced density matrix, a concept to be introduced in the next section, of the electron/positron is proportional
to the identity matrix. This implies that SV N =1=log2(2)=log2(d) and, thus, a maximum entanglement is present. How the
reduced density is related to the von Neuman entropy is in more detail explained in Sec.(9).
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For a two-component superposition, as indicated by Eq.(1), one will have that the reduced density matrix
becomes:

ρ =

(
|c1|2 c1c

∗
2

c2c
∗
1 |c2|2

)
(9)

It should be stressed that this form of the density matrix depends on the basis of interest [7]. If we would, for
example, have the basis of the superposition in the orthonormal basis, one would have that the off-diagonal
terms in Eq.(9) are zero. On the other hand, if one would have expressed the superposition in a different
basis than the off-diagonal terms are not necessarily zero [7].

If the superposition of the system is now “inserted” into an environment we have that each component of
the system can interact differently with the states of the environment, having that the environment contains
information of the system6 [7]. Hence, as described in Sec.(3), this will result in entanglement of our n-
component super-positioned system with the environment given by [7, 18]:

|Ψ〉 =
∑

cn |ψn〉 |En〉 (10)

In general it is impossible to know how this entanglement looks like due to the difficulty in expressing how
|En〉 will unfold. However, luckily for us, one is only interested in the desired system (S) composed of |ψn〉.
One can extract the information of this desired system by means of the reduced density matrix [7, 18]:

ρS = TrE(ρSE) =
∑
〈φk|ρSE |φk〉 (11)

Here, TrE(ρSE) implies that the trace of the density matrix of our combined system-environment system
with respect to the orthonormal basis in the environment system should be taken (“tracing out the degrees
of freedoms of the environment”), which are the |φk〉 states [7]. This results in the last expression of Eq.(11).
If one uses Eq.(10) for ρSE than one would get using a similar approach as equation 2.49 in [7] that the
reduced density matrix of the system will be:

ρS =

N∑
nm=1

cnc
∗
m |ψn〉 〈ψm| 〈Em|En〉 (12)

A similar expression can be found (without the explicit notation of the summation sign) in section 3.3.2
of Ref.[19]. By implementing the superposition of the spins as introduced by Eq.(4) in Sec.(2), where one
should note that cn=1/2 for both n=1,2, the reduced density matrix of the system reduces to:

ρS =
1

2
(|↑〉 〈↓|+ |↓〉 〈↓|+ |↑〉 〈↓| 〈E2|E1〉+ |↓〉 〈↑| 〈E2|E1〉) = 1/2

(
1 〈E2|E1〉

〈E2|E1〉 1

)
(13)

From this expression, one can observe that the off-diagonal elements, the coherence terms, are completely
dependent on the overlap of the two environmental states. If the two environmental states are completely
distinguishable (〈E2|E1〉=0) one has that the off-diagonal terms are zero and we will lose all coherence of the
system [18], meaning a complete decoherence of the system. This is because the off-diagonal terms will be
zero no matter the basis transformation on the system, implying that we will never measure the superposition
of the system by employing only measurements on the system itself [18] due to the complete entanglement
with the environment. The only way the retrieve this information is by doing measurements on the com-
bined SE system, however, the states of the environment are usually inaccessible, making it impossible [18]
to measure. On the other hand, if the two environmental states are completely indistinguishable then the
overlap of the states is just unity, implying that ρS is the same as it would be if there was no environment
present, having no external decoherence effects acting the system.

The relation of this overlap of the two resulting environmental states |E1〉 & |E2〉 and the decoherence of
system S can formally be understand by the term “which-path” information, “which-state” information

6This is formally known as ”which-path” information [7], which will in more detail be discussed at the end of this subsection
and for the example of the scattering model of Sec.(4.2).
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[7] or “which-way” information [18]. This expresses that the resulting environmental states carry certain
information of the system after interaction with the system, resulting in the entanglement with the system. If
the environmental states carry the same information than in no way will a measurement on the environment
tell you anything about the system itself, having no decoherence of the system. However, in the other
extreme case of no overlap of these states, we saw a complete decoherence of the system. This can with
the “which-path” information be understood by the fact that |E1〉 & |E2〉 carry complete, but opposite,
information of the system, implying that if one were to measure the environment to be in |E1〉 than the
system would collapse to |Ψ1〉 in our case [18]. In between these extreme cases, the states of the environment
carry partial-information of the system and this would reduce the coherence of the system to a certain degree
[18].

4.2 Scattering model

In the QGEM-protocol, with the spatial superposition of a mesoscopic test mass, the main source of
decoherence comes from the leaking of “which-path” information upon the scattering of environmental par-
ticles/photons7. One can see why this will lead to decoherence with the following reasoning: The state
of the scattered particle depends on the energy and the position of the scattering center, however as the
superimposed states of the test mass are spatially separated , one has that the positional state of the scat-
tered particle will depend on which state of the test mass we are dealing with. Therefore, the scattered
particle carries away “which-path” as the final state will give information about the particular states of the
superposition. For a single scattered particle this leakage will not be significant [7] but as the number of
scattered particles increases the leakage will grow and grow, eventually leading to full decoherence of the
superposition. As this leakage depends on the scattering rate, one can intuitively guess that the decoherence
of the system is time-dependent. In this section a derivation on this time dependence will be provided which
is known as the scattering model [7]. This derivation follows the key points and assumptions made of the
derivation given in Ref.[7], therefore, for a more detailed analysis of this derivation of the scattering model
I refer the reader to Ref.[7].

In the scattering model we have that the two massive, superimposed states, of system are described by their
position states, |x〉, and are hit by the environmental particles, which can be molecules or photons, which can
be described by their initial state |χi〉 before interaction. The first assumption made is that the environment
and system are initially uncorrelated [7], implying that their density matrices can be written as a tensor
product at time t=0. The second assumption made is that the combined system-environment system is
invariant under space translations [7], which is valid for an isotropic environment. The third assumption
made is that the object of the system is much more massive than the environmental particles [7]. Therefore,
it can safely be assumed that there is no recoil on the object of the system, hence |x〉 is not affected by the
scattering and stays intact. Combining the above assumptions, one will arrive as derived in Ref.[7] that the
product of superimposed state with the scattered particle becomes:

|x〉 |χi〉 → |x〉 |χ(x)〉 ; |χ(x)〉 = e−iq·x/h̄Ŝ0e
iq·x/h̄ |χi〉 (14)

Here, q is the momentum of the scattered environmental particle and Ŝ0 is the scattering operator acting on
the scattering center (the systems object) located at the center, such that e−iq·x/h̄Ŝ0e

iq·x/h̄ = Ŝx is called
the translated scattering operator. If one would do the same procedure for the other superimposed state
with position state |x′〉 one would logically arrive that the final state of the scattered particle is given by
|χ(x′)〉. Then, by using Eq.(14) together with the first assumption and Eq.(12) with cn=1, one will as shown
in Ref.[7] have that the evolution of the reduced density matrix of the system is given by:

ρS(x,x′, 0)→ ρS(x,x′, 0) 〈χ(x′)|χ(x)〉 (15)

From this equation, we note that the diagonal terms do not evolve in time as they correspond to the same
superimposed state (x’=x), and the off-diagonal terms depend on the overlap of the final environmental

7There will also be a contribution of leaking of “which-path” information of the systems by absorption of the environmental
photons and emission of photons from the test masses itself [6]. The leaking of “which-path” information of these sources will
also be implemented in Sec.(10.5).
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states (〈χ(x′)|χ(x)〉), which is consistent with the arguments of Sec.(4.1).

The next step includes the calculation of 〈χ(x′)|χ(x)〉, using Eq.(15) one will get that 〈χ(x′)|χ(x)〉 =

〈χi|Ŝx′
†
Ŝx|χi〉, which is just the expectation value of Ŝx′

†
Ŝx. This can also be calculated with the tracing

rule in the environmental system [7], because 〈O〉 =TrE(ρEO). Therefore, we get that 〈χ(x′)|χ(x)〉 is given
by:

〈χ(x′)|χ(x)〉 = TrE(ρE(0)Ŝx′
†
Ŝx) (16)

From here on, the assumption is made that the environmental particles are confined in a box like volume
[7], which fixes the allowed momentum states in the volume, where we call this “momentum-set” QV . Using

the normalized momentum states in this box (|q̃〉 = ( (2πh̄)3

V )1/2 |q〉), one will have that the density matrix
of the environment at t = 0 can be expressed as [7]:

ρE(0) =
(2πh̄)3

V

∑
q ∈ QV

µ(q) |q̃〉 〈q̃| , (17)

Here, V is the volume of the box, and µ(q) is the momentum space operator given by [20]:

µ(q) = (
1

2πmkBT
)3/2e−q2/(2mkbT ) (18)

Then, one can substitute Eq.(17) in Eq.(16), where one can also use that Ŝ0 can be expressed as Ŝ0 = Î+ iT̂ ,
where T̂ is the T-matrix that is diagonal in the orthonormal basis of the momentum {|q̃〉} [7]. Doing so, one
will have that the overlap function becomes:

〈χ(x′)|χ(x)〉 = 1−
∫
dqµ(q)

(2πh̄)3

V

∫
dq′(1− ei(q-q’)·(x-x’)/h̄)| 〈q|T̂ |q′〉 |2 (19)

The intermediate steps and expressions used in arriving to this result can be found in section 3.2 of Ref.[7].

By substituting this expression in Eq.(15) the reduced density matrix reduces to:

ρS(x,x′, 0)→ ρS(x,x′, 0) ×
(

1−
∫
dqµ(q)

(2πh̄)3

V

∫
dq′(1− ei(q-q’)·(x-x’)/h̄)| 〈q|T̂ |q′〉 |2

)
(20)

The next step includes calculating the transition probability of the environmental particle to go from mo-
mentum q→ q′ upon scattering (| 〈q|T̂ |q′〉 |2). This calcultation can be done by noting that | 〈q|T̂ |q′〉 |2 =

1
(2πmh̄)2 δ

2(E − E′)|f(q,q′)|2 [7]. Here, |f(q,q′)|2 is the differential cross-section of the scattering process.

The delta function can be evaluated using its Fourier integral representation:

δ(E − E′) =
1

2πh̄
lim
T ′→∞

∫ T ′/2

−T ′/2
ei(E−E

′)t/h̄dt (21)

Substituting that in the expression of the transition probability and taking a time T to be sufficiently larger
than the scattering time such that limT ′→∞ = T one will arrive at:

δ2(E − E) = δ(E − E′) 1

2πh̄
lim
T ′→∞

∫ T ′/2

−T ′/2
ei(E−E

′)t/h̄dt = δ(E − E′) T

2πh̄
(22)

T is also assumed to be smaller than the decoherence time, this is valid because it takes a lot of collisions

for the system to decohere [7]. Then, after taking the limit of the integral, and by using E(′) = |q(′)|
2m m, one

will (as shown in Ref.[7]) have that | 〈q|T̂ |q′〉 |2 becomes:

| 〈q|T̂ |q′〉 |2 =
mT

(2πh̄)3

δ(|q| − |q′|)
|q|

|f(q,q′)|2) (23)
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This equation tells us that, due to presence of the delta-function, we have that upon integration the magni-
tudes of the momentum are equal before and after the collision [7], which allows us to write dq′=|q|2dn′ &
q(′)=|q(′)|n(′), where dn′ is a solid angle in momentum space. Substituting these expressions together with
Eq.(23) in Eq.(20) gives us as shown in Ref.[7]:

ρS(x,x′, 0)→ ρS(x,x′, 0) ×
(

1− T
∫
dqµ(q)

|q|
mV

∫
dn′(1− eiq(n-n’)·(x-x’)/h̄)|f(qn, qn′)|2

)
(24)

Next, we can set |q|m = v(q) in the above expression, with v(q) denoting the velocity of the particle of
a certain momentum q8. The obtained expression is valid for a single scattering event, however, we are
interested in multiple scattering events (where we call this number N). Therefore, one can simply multiple
the obtained expression by N and make our final assumption: the incoming particles/photons have an
isotropic distribution, this implies that one can write [7]

dqµ(q) =
N

4πV
d|q| %(q)dn , (25)

having that Eq.(24) becomes:

ρS(x,x′, 0)→ ρS(x,x′, 0) × (1− T F(x− x′))

With F(x-x′) given by:

∫
dq%(q)v(q)

∫
dndn′

4π
(1− eiq(n-n’)·(x-x’)/h̄)|f(qn, qn′)|2 (26)

Here, F(x-x′) is what we call the decoherence factor. This equation gives the general description of the
evolution of the off-diagonal terms of the reduced density matrix [7] and thus gives a description of the
decoherence of our superposition.

4.3 Short- and long-wavelength limit

Eq.(26) is still a very general equation that describes the collisional decoherence. Therefore, to get analytical
results, one can distinguish between two limiting cases, namely the short- and long-wavelength limit [7]. The
short-wavelength limit relies on the assumption that the wavelengths (λ) of the environmental particles/pho-
tons are much smaller than the superposition size (|x − x′| = ∆x), whereas for the long-wavelength it is
the other way around. For the derivation of both limiting cases, I will again follow the main points of the
derivation of Ref.[7].

• As mentioned earlier in the short wavelength limit we have that

λ << |x− x′| = ∆x , (27)

implying that q∆x/h̄ = 2π∆x
λ >> 1. Consequently, the contribution of the exponent in the integral

w.r.t to the factor of 1 of F(x-x′) can be neglected as it oscillates very rapidly [7]. Therefore, one will
arrive at the following approximation for the decoherence factor:

F (x− x′) =

∫
dq%(q)v(q)

∫
dndn′

4π
|f(qn, qn′)|2 (28)

As defined earlier, |f(qn, qn′)|2 is the differential cross-section, therefore, integrating over the solid
angle dn′ will give us the cross section of momentum q in the n direction. Hence, performing the
integral over dn/4π will average over all the momentum q and we will get the total cross-section for

8After substitution of
|q|
m

= v(q) the expression for these particles will be the same if one deduced the same expressions for

photons, because than the previously used energy would have been E=|q|c instead of E(′) =
|q(′)|
2m

. One should also note that
for photons one has v(q) = c.
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momentum q:
∫

dndn′

4π |f(qn, qn′)|2 = σtot(q) [7]. Next, we realise that %(q)v(q)σtot(q) is nothing else
than the scattering rate for an incoming environmental particle/photon with momentum q (Γ(q)) [7],
hence, one arrives at the following description for the decoherence factor for the short wavelength limit
[7]:

F (x− x′) =

∫
dq Γ(q) = Γtot (29)

Here, Γtot is the total scattering rate of the environmental particles.

• For the long wavelength limit one has that

λ >> |x− x′| = ∆x , (30)

hence the term in the exponent in Eq.(26) is now much smaller than 1. Therefore one can Taylor
expand the exponent to the first relevant term. This firt relevant term is the quadratic term of the
expansion, because the “1” cancels with the 1 already present in F(x-x’), and the linear term results
in the integral to be zero. This is because the linear term is odd in (n-n′), while |f(qn, qn′)|2 is even
in (n-n′) [7]. With the first relevant term the expression for F(x-x’) will reduce to:

F (x− x′) =

∫
dq%(q)v(q)q2

∫
dndn′

8πh̄
[(x− x′) · (n− n′)]2|f(qn, qn′)|2 (31)

The next step in the derivation includes making the assumption that the scattering cross-section is
isotropic, i.e. only depends on the momentum and the scattering angle (Θ) [7]. With this assumption
one will as argued in [7] arrive at:

F (x− x′) = (x− x′)2

∫
dq%(q)v(q)q2

∫
dcosΘ2π

3h̄2 (1− cosΘ)|f(q, cos(Θ)|2 (32)

The intermediate steps in arriving at the above equation can also be found in Ref.[7]. Defining the sec-
ond integral as the effective cross section (h̄−2σeff(q)), and after that defining

∫
dq%(q)v(q)q2h̄−2σeff(q) =

Λ, with Λ as the scattering constant, one will get that the resulting decoherence factor F(x-x’) for the
long wavelength limit results in [7]:

F (x− x′) = Λ(x− x′)2 (33)

Combining the expression for the long- wavelength limit, Eq.(33), with the equation for the short- wavelength
limit, Eq.(29), in the equation of the decoherence factor, Eq.(26), and making the assumption that we are
dealing with N different types of short-wavelength particles/photons and M long wavelength particles/pho-
tons one will have that Eq.(26) becomes:

ρS(x,x′, T ) = ρS(x,x′, 0) × (1− T (

N∑
i

Γtot,i +

M∑
j

Λj(x− x′)2) (34)

Then the final assumption is made: the change in the reduced density matrix due to collisional decoherence
is the most significant contribution in the change of the reduced density matrix, such that its time evolution
is dominantly determined by Eq.(34)9. With this assumption, one will have that the time evolution of the
reduced density matrix can be written as:

ρS(x,x′, T )− ρS(x,x′, 0)

T
= −ρS(x,x′, 0)(

N∑
i

Γtot,i +

M∑
j

Λj(x− x′)2) (35)

9One has to note again that there is also a significant decoherence contribution form absorption and emission of photons,
but they can be modelled in a similar fashion [6], and will just be an addition to the summation over Λj as we will see in
Sec.(10.5) and App.(B.2).
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The term on the right is nothing else then the differential limit of the reduced density matrix with respect
to T . So by taking this differential limit and rewriting the time variable as t, as normally done for time, one
obtains:

∂ρS(x,x′, t)

∂t
= −ρS(x,x′, t)(

N∑
i

Γtot,i +

M∑
j

Λj(x− x′)2) (36)

This is just a first order differential equation. By noting that
∑N
i Γtot,i +

∑M
j Λj(x− x′)2 is for a constant

superposition size, in a constant isotropic medium, time independent, we obtain:

ρS(x,x′, t) = ρS(x,x′, 0)e−γt ; γ =

N∑
i

Γtot,i +

M∑
j

Λj(x− x′)2 (37)

This equation describes the time evolution of the off-diagonal terms of the reduced density matrix of the sys-
tem in terms of the decoherence rate (γ) assuming that this is the only “source” that influences the reduced
density matrix. From this equation we also make the observation that as time evolves, the off-diagonal terms
are reduced exponentially, meaning that decoherence of the system is exponential in time. The strength of
the decoherence is determined by the decoherence rate, which in turns depends on the scattering rates &
constants of the environmental particles/photons, and the size of the superposition.

We will also see that, during some steps of the QGEM-protocol, the superposition size (x-x’) is depended
on time, in that limit Eq.(36) will reduce to:

ρS(x,x′, t) = ρS(x,x′, 0) exp

−
 N∑

i

Γtot,it+

M∑
j

Λj

∫
(x(t)− x′(t))2dt

 (38)

In the rest of the thesis, the term in the exponent will be written down as:

∫
γkdt =

∑
k

γk∆t =

 N∑
i

Γtot,it+

M∑
j

Λj

∫
(x(t)− x′(t))2dt

 (39)

4.4 Master equations

In the previous subsection it was assumed that to get from Eq.(34) to Eq.(37) there were no other factors
that give a time-dependent contribution to the time evolution of the reduced density matrix of the system.
However, besides the external decoherence, we also have the contribution of the self Hamiltonian of the
system on the evolution of ρS , which can be altered by the environment and will be denoted by HS′ . To
see that this Hamiltonian changes the reduced density matrix we make use of the Schrödinger equation and
follow the derivation of Ref.[21]. Neglecting the decoherence for the moment we have:

∂ρS
∂t

=
∂

∂t
(|ψ〉 〈ψ|) (40)

Here, use has been made of the definition of Eq.(8). By expending the differential expression on the right
and by using the definition of the Schrödinger equation as indicated by equation 1.25 in Ref.[21], we obtain:

∂ρS
∂t

= − i
h̄

(HS′ρS − ρSHS′) = − i
h̄

[HS′ , ρS ] (41)

This term will for time-independent Hamiltonians not lead to decoherence in the long time limit, but will
give an oscillation of the off-diagonal terms in terms of the energy terms of the states [21], or in the case
of the free hamiltonian will lead to a growing coherence length of the system [7]. Therefore, such unitary
Hamiltonians are not the worrying part for the evolution of the density matrix in terms of decoherence.
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Combining Eq.(41) with a general decoherence term, D, will give a general description of the time evolution
of the off-diagonal terms of the reduced density matrix of a system, which is called a master equation [7].
The general form of the master equation is therefore

dρS
dt

= − i
h̄

[HS′ , ρS ] +D[ρS ] , (42)

where all terms are understood to be operators. One can get to more simplified master equations by making
some additional assumptions on the system. Some examples of these simplified master equations are the
Born-Markov master equation or the Lindblad form, which can be found in chapter 4 of [7]. However, in this
thesis, we focus our interest only on the worrying term of the evolution of ρS , which is the decoherence term
D[ρS ]. For the scattering of environmental particles on a superposition, this term can as derived earlier be
represented by the right term of Eq.(36)10.

5 Casimir Effect

Another important aspect related to the QGEM-protocol is the Casimir Effect. From quantum field theory
we now that fields, like the electric field, possess the so-called vacuum energy with an infinite constant energy
[22]. This will in our daily life not cause any problems as we are measuring energy differences. However,
when one imposes boundary conditions on the field one will get a difference in the vacuum energy in between
those boundaries, as there is a restriction the allowed eletromagnetic wave modes in between the boundarie.
This causes a force to exhibit between those boundaries [10] as the pressure of the fluctation of the vacuum
from the outside of the boundaries is different from that of in between the two boundaries. It is good to
note that this force is a manifestation of quantum field theory and would with a classical treatment not be
present. Consequently, this force is a quantum communicator and can entangle two systems.

For the electromagnetic (EM) field such boundary conditions arise when one puts two dielectric/conducting
materials very close to each other as this fixes the allowed electromagnetic wave modes in between and
outside of the two materials [10] and this fixes, therefore, the allowed fluctuations of the EM-field in the
different regions. This phenomenon was first studied by H. Casimir who showed that the insertion of two
perfect conducting plates very close to each other led to an attractive force between these plates [10], this is
why we call this phenomenon the “Casimir effect”.

Logically different boundary conditions will give rise to different forms of the Casimir force. Besides the
geometrical shapes of the objects, the type of material (dielectric, conductor, perfect conductor) will also
affect the boundary conditions as the type of material affects the transmission of electromagnetic waves.
This transparency of the material plays an important part in the boundary conditions as lower transparent
materials lower the amount of distinguishable electromagnetic wave modes outside and inside the boundaries,
lowering the Casimir force [9].

In this thesis, we are interested in the Casimir force caused by two types of boundary conditions:
1.) The Casimir force caused by two dielectric spheres, as in the QGEM-protocol two diamond test masses
approach each-other up to around 200 µm [1], which will restrict the experiment as we will see in Sec.(7).
The test masses can be assumed to be spherical [1] and because diamond is a dielectric we get the boundary
conditions for two dielectric spheres.
2.) The Casimir force between a dielectric sphere and a conductive plate. In Sec.(8), the modified setup
for the QGEM-protocol will be proposed in which the test mass are very close to a conductive plate, in
the order of 10µm. This causes a force to exhibit between the dielectric test mass and the conductive plate,
which will also cause a restriction on the experiment. Therefore, the manifestation of this Casimir force
should also be modeled.

10It should be noted that writing the decoherence term this way is also what comes forward for the decoherence term for
scattering events if the master equation would be written in the Lindblad form [7].
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For the case of the dielectric spheres, the mesoscopic test masses of the QGEM-protocol will be modeled
as large neutral atoms, which is also what is done in the original paper [1]. The resulting Casimir force
of two neutral atoms was calculated by Casimir and Polder [8] and as we are dealing with relatively large
separations with respect to the size of the objects, R ∼ 100nm−1µm, we can apply the large distance limit
giving the potential energy between the two test masses of [8]:

VCP = −23h̄c

4π

α(A)α(B)

x7
= −23h̄c

4π

α2(A)

x7
(43)

Here, x is the separation of the two test masses and α(A) & α(B) are the static polarizabilities of both test
masses. In the last line use has been that we are dealing with identical test masses such that their static
polarizabilities are equal.

Using that the test masses are only made out of diamond, are again spherical, and are in a high vacuum
environment [1] the static polarizibility can as in Ref.[23] be modelled to be:

α(A) = R3 ε− 1

ε+ 2
(44)

Here, R is the radius of the test mass and ε is the dielectric constant of the test mass. Substituting this
expression in Eq.(43) gives the Casimir-Polder potential between the diamond test masses of [1] to be:

VCP = −23h̄c

4π

R6

x7

(
ε− 1

ε+ 2

)2

(45)

The Casimir force between a dielectric sphere and a conducting plate was derived in Ref.[24]. However, for
complete screening of electromagnetic waves by the conducting plate the assumption will be made that the
plate is a perfect conductor (reflective for all electromagnetic waves). The validity of this assumption will be
discussed in Sec.(13.2). In the perfect conducting limit the Casimir force between the plate and the dielectric
test mass is also given in Ref.[24] and is given by:

Fcasimir = − 1

4πx4

∫ ∞
0

dω α1(ω)[3sin(2ωx)− 6ωxcos(2ωx)− 6ω2x2sin(2ωx) + 4x3ω3cos(2ωx)] , (46)

here, x is again a separation, but now between sphere and plate, α1(ω) is the real part of the polarizability of
the sphere and ω is the frequency of the electromagnetic waves in the medium in between the sphere and the
plate. The polarizability of the sphere is again the static polarizibility of Eq.(44), but now with a frequency
dependence on the dielectric constant11 [24]:

α = R3 ε(ω)− 1

ε(ω) + 2
(47)

6 QGEM-protocol

As mentioned before, the QGEM-protocol aims to prove the existence of the quantum nature of gravity
through the entanglement of spatially separated superpositions of two mesoscopic test masses utilising the
difference in gravitational interactions [1]. To provide evidence for this quantum nature of gravity, the cur-
rent setup of the experiment consists of three steps which will thoroughly be explained in this section. These
steps are also displayed in Fig.(1) with the relevant parameters.

11In Sec.(8) this static polarizibility will again reduce to the one of Eq.(44) as α of the test mass can be assumed to be
frequency independent for diamond.
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Figure 1: Setup of the current proposition of the QGEM-protocol. First, two superpositions are created by
spin coupling to the NV-point of diamond. The states of the superposition will be spatially separated by
a Stern-Gerlach interferometer (step 1). After this, both superpositions will become entangled by mutual
gravitational interaction during a free fall (step 2), this entanglement can only occur if gravity has a quantum
nature. The last step (step 3) consists of bringing the superpositions back by “reversing” the magnetic field
of the Stern-Gerlach interferometer of step 1, followed by a measurement of the entanglement with a suitable
entanglement witness W. It is good to realize that the indicated distances and paths traveled in each step
are not drawn on a scale.

6.1 Step 1

Step 1 consists of creating a superposition of the test mass of significant size [1]. To create the superposition
spin coupling to the Nitrogen-Vacancy(NV)-point defect of the diamond test mass is used12. This makes
the initial center of mass of the test mass “split up” into two spin-dependent superimposed states: the left
localized state |L, ↑〉 and the right localized state |R, ↑〉13 [1]. For further analysis, the shorthand notation of
|↑〉 for the left and |↓〉 for the right localized state will be used. Although, usually, one would use spin-up and
spin-down states which have a magnitude of S=h̄/2, we are in this context dealing with S=h̄ [11], meaning
that |↑〉 refers to a state with ms=h̄ & |↓〉 refers to a state with ms=-h̄. The superposition that with this
coupling mechanism is created is of the same form as in Eq.(4).

Now that a spin-dependent superposition is created the separation of these states can be increased utilizing a
Stern-Gerlach matter-wave interferometer [1, 11]. The Stern-Gerlach interferometer makes use of the Stern-
Gerlach effect, where objects with opposite spin are accelerated in the opposite direction when imposed in
an inhomogeneous magnetic field [17]. By only caring about the motion in the horizontal direction (x̂) of
Fig.(1)14 one has the Hamiltonian of one of the states given by:

H =
p̂2
x

2m
− µsBx̂ (48)

Here, µs is the magnetic moment of the spin, px the momentum of the state, mass m, in the x-direction and B

12For this it is assumed that there are no other point or surface defects present on the test masses itself and that the NV-point
is in the center [11] of the test masses.

13We call the two spatially localized states left and right localized because the “left” state will be accelerated to the left and
the “right” state to the right of Fig.(1) as we will see further on in this subsection. It is also good to note that this superposition
is simultaneously created for both test masses.

14We also have, due to the free fall, gravitational potential energy in the vertical direction. However, this is not of importance
for the superposition size created.
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the magnetic field strength, which we assume to be only directed in the x-direction. This is the Hamiltonian
which is taken into consideration in the original proposal of the QGEM-protocol [1, 11]. However, what
was not realized and what was pointed out in Ref.[25] is that the test mass itself, made out of diamond,
becomes magnetized when subjected to the magnetic field of the interferometer. This introduces an extra
term in the Hamiltonian independent on the spin but is dependent on the bulk material of the test mass.
Assuming the test mass to be spherical and only made out of diamond, as done before, we have that the
total Hamiltonian, of one of the states, is represented in the horizontal direction by [25]:

H =
p̂2
x

2m
− µsBx̂−

χV
2µ0(1 + χV )

B2x̂ (49)

Here χV is the volume magnetic susceptibility of the diamond test mass, which is χV ∼ −2.2 · 10−5 and V
is the volume of the test mass. As shown in Ref.[25], the introduction of this magnetization term, let us call
this the diamagnetic-energy term, will lead to an oscillatory motion15 of the states around an equilibrium
position, which depends if the state is spin-up or spin-down. This will restrict the maximum achievable
superposition size, independent of the strength of the magnetic field gradient. For the given period of step 1
of the experiment of 500 ms [1], this will give a maximum superposition size of ∼ 10 nm for the mass of 10−14

kg. This is 5 orders of magnitude lower than what is needed for the original QGEM-protocol. Therefore,
one needs to work around this new term in the Hamiltonian to make the experiment achievable. To do this,
one needs to observe that diamond is a diamagnetic material, as χV is negative, therefore, the induced mag-
netic field inside the diamond is opposite to the external magnetic field. That is why the diamond test mass
is attracted to the low magnetic field region and thus works against the gradient in the SG-interferometer.
Paramagnetic and ferromagnetic materials, on the other hand, have a positive magnetic susceptibility and,
therefore, align their induced magnetic field gradient towards the direction of the external magnetic field.
Hence, such materials are attracted towards the high magnetic field region and work along the magnetic field
gradient. Therefore, by coating the diamagnetic diamond core by a paramagnetic/ferromagnetic shell it is
possible to cancel the induced diamagnetic energy of the core with that of the paramagnetic/ferromagnetic
shell. This implies that one can cancel, or reduce significantly, the diamagnetic energy term in Eq.(49). The
best suitable material for the coating and the most suitable way of coating, one layer or an extra diamond
layer on top to keep the surface properties of diamond, are beyond the scope of this thesis, but in theory, it
is, as argued, possible to make the diamagnetic energy contribution in the creation of the superposition size
negligible and retrieve the Hamiltonian of Eq.(48).

A detailed description of how the superposition is reached with the SG-interferometer, with the Hamiltonian
of Eq.(48), can be found in Ref.[11]. I will only go into the use-full points made to get the corresponding
formula for the superposition size (∆x) in terms of the variable parameters: the magnetic field gradient and
the mass of the test mass. For this derivation, I will first focus on the “traveled” distance of one of the
superimposed states, for example, |L, ↑〉.

As described in Refs.[1, 11], we are dealing with a homogeneous magnetic field gradient (∂xB), thus, one can
infer from the Hamiltonian of Eq.(48) that the acceleration in the horizontal direction of Fig.(1) is given by:

a = amag = ẍ =
µs · ∂xB

m
=
gµB
mh̄

Sx∂xB (50)

Here, µB is the Bohr magnetic moment , g the Lande g factor and Sx is either spin up (h̄) or spin down (-h̄).
From Eq.(50), one can observe that the acceleration is constant. Therefore, if the state is accelerated by a
time of τ

2 (with τ=500 ms as proposed in the original paper [1]) one will have that the travelled distance
(∆x1) will just be:

∆x1 =
a(τ/2)2

2
(51)

15This oscillatory motion is true as a magnetic field source with B = 0 at the center of the superposition is taken. If one
wold have taken a mangetic field that has no zero point in the considered gradient region, we would not achieve an oscillatory
motion but a translational one. Still the argument of the reduction of this diamangetic term is still relevant for such a magnetic
source as this would also dimish this translational motion.
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As mentioned in the QGEM-protocol (Ref.[1]) a spin flip happens at t = τ/2, meaning that the acceleration
will be directed in the opposite direction, leading to a deceleration of the state. This deceleration has also a
period of t=τ/2, leading to a further travelled distance of ∆x2 given by:

∆x2 = −a(τ/2)2

2
+ a(τ/2)2 =

a(τ/2)2

2
(52)

Combining the distance travelled by both the acceleration and deceleration period will give the total travelled
distance of a single state ∆x3 = ∆x1 + ∆x2:

∆x3 =
a(τ/2)2

2
+
a(τ/2)2

2
= a(τ/2)2 =

gµB
mh̄

Sx∂xB(τ/2)2 (53)

It is important to know that up to now only the “travelled” distance of a single state has been treated.
Both the spin up and spin down state have the same magnitude of |Sx| = h̄, but are orientated in different
directions. Therefore, they are accelerated in different directions and they both will have travelled a distance
∆x3 in opposite direction, giving a separation between the two states of:

∆x = 2∆x3 = 2
gµB
mh̄

Sx∂xB(τ/2)2 =
gµB∂xB

2m
τ2 (54)

This expression matches the one given in the original paper [1]. It is also important to note that because the
acceleration and deceleration period have the same time period, we get that the states are stationary with
respect to the horizontal axis of Fig.(1) at the end of step 1.

6.2 Step 2

In this step the spin is coupled to its nuclear counterpart to make the states unaffected by the magnetic field
[1]. However, one can also turn of the magnetic field inside the interferometer to accomplish the same goal.
This implies that there is only a free fall towards the gravitational center of the earth (the vertical direction
in Fig.(1)) for the two systems for a given time (tint) which was originally proposed to be 2.5 s [1]. It is also
good to note that the superposition created in step 1 is done for both test masses in adjacent Stern-Gernlach
interferometers, which are initially a distance d apart. So we will get a situation with the indicated distances
as shown in step 2 of Fig.(1).

In the QGEM-protocol it is assumed that we only have an entanglement in this step of the experiment16

such that we initially have in step 2 of the experiment that the combined state of both test masses is given
by [1]:

|Ψ(t = 0)〉 =
1

2
(|↑〉1 + |↓〉1)(|↑〉2 + |↓〉2) (55)

The subscript 1 or 2 indicates with which interferometer/system, or in other words which test mass, we are
dealing with. It is also good to observe that this equation is just of the form as written down in Eq.(5), having
that the two systems are not entangled (yet). The entanglement comes from the difference in phase evolution
of the interaction of the different states given by eiEitint/h̄, where Ei indicates the energy of the different
combination of the states of Eq.(55), and h̄ is the reduced plancks constant. Because the combination of
states all have a different energy evolution we get that their phases (Eitint/h̄) are different. This implies
that in general Eq.(55) cannot be written as a tensor product anymore, but is given by:

|Ψ(t)〉 =
1

2
[eiE1t/h̄ |↑〉1 |↓〉2 + eiE2t/h̄ |↑〉1 |↑〉2 + eiE3t/h̄ |↓〉1 |↓〉2 + eiE4t/h̄ |↓〉1 |↑〉2] (56)

The goal of the experiment is that these phases are purely generated by the gravitational force. However,
with the distances used to make the phase evolution measurable there is also a contribution of the Casimir-
Polder interaction [1]. In order to have the phase evolution to depend mainly on the gravitational force I

16In Sec.(10.6) the evolution of the entanglement phase during step 1 and step 3 will, also, be included for a more realistic
picture.
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demand in this thesis that the graviational induced potential (VG) is one order of magnitude larger than
the Casimir-Polder potential (VCP ), just as what is originally proposed in Ref.[1] and will give better results
than smaller ratios [26]. With this requirement it is also fairly reasonable to assume that the entanglement
phases are generated by the gravitational force, as the induced phases will have the same order of magnitude
difference. By assuming that the gravitational acceleration of the different states towards each-other is
negligible, which is pretty accurate as we will see later on, one has that the horizontal distances between the
states as indicated in Fig.(1) remain constant. Consequently, we get, with the distances indicated in Fig.(1),
that Eq.(56) becomes at a time t=tint:

|Ψ(tint)〉 =
1

2
[ei

Gm2

h̄(d+∆x)
tint |↑〉1 |↓〉2 + ei

Gm2

h̄d tint |↑〉1 |↑〉2 + ei
Gm2

h̄d tint |↓〉1 |↓〉2 + ei
Gm2

h̄(d−∆x)
tint |↓〉1 |↑〉2] (57)

Where I used that the energy between the states (Ei) is the Newtonian gravitational potential between two
spheres17 which is given by:

VG = −Gm
2

x
(58)

With G the gravitational constant, m the mass of the test mass (assumed to have identical test masses), and

x is again the separation between two states. By renaming Gm2

h̄d tint = φ, φ↑↓ = Gm2

h̄(d+∆x) tint,φ↓↑ = Gm2

h̄(d−∆x) tint,

∆φ↑↓ = φ↑↓ − φ, and ∆φ↓↑ = φ↓↑ − φ, one gets that Eq.(57) can be written as:

|Ψ(tint)〉 =
1

2
eiφ[|↑〉1 {|↑〉2 + ei∆φ↑↓ |↓〉2}+ |↓〉1 {e

i∆φ↓↑ |↑〉2 + |↓〉2}] (59)

This is exactly the same expression as the one given in Ref.[1]. We can also pull out the exponent of the
second term in the equation to read:

|Ψ(tint)〉 =
1

2
eiφ[|↑〉1 {|↑〉2 + ei∆φ↑↓ |↓〉2}+ ei∆φ↓↑ |↓〉1 {|↑〉2 + e−i∆φ↓↑ |↓〉2}] (60)

From this we see that when the phase in the exponent of the last term represents the exact same phase as
the one of the first term (∆φ↑↓ represents the same phase as −∆φ↓↑) we have that {|↑〉2 + ei∆φ↑↓ |↓〉2} is the
same as {|↑〉2 + e−i∆φ↓↑ |↓〉2}, meaning that Eq.(60) can be factorized as:

|Ψ(t)〉 =
1

2
(|↑〉1 + ei∆φ↓↑ |↓〉1)(|↑〉2 + ei∆φ↑↓ |↓〉2) (61)

One can observe from this expression that it is in the form of Eq.(5), hence we have no entanglement. How-
ever, when ∆φ↑↓ does not represent the same phase as −∆φ↓↑, we have that Eq.(60) cannot be factorized
as in Eq.(61), hence it is not of the form of Eq.(5), implying that the two systems are entangled.

Saying that ∆φ↑↓ represents the same phase as −∆φ↓↑ is the same as saying:

−∆φ↓↑ = 2nπ + ∆φ↑↓ → ∆φ↑↓ + ∆φ↓↑ = 2nπ ; n is an integer (62)

This is the same as the requirement mentioned in Ref.[1]. Here it should be mentioned that the entanglement
is maximum when ∆φ↑↓ + ∆φ↓↑ = π as we will see in Sec.(9). Therefore, Eq.(63) below can be thought of
representing how much the systems are entanglement, which is also what comes forward in Sec.(9) and this
quantity will be called “the effective entanglement phase” throughout this thesis and has the exact form of:

Φeff = ∆φ↑↓ + ∆φ↓↑ = φ↑↓ + φ↓↑ − 2φ =
Gm2

h̄
tint

(
1

d−∆x
+

1

d+ ∆x
− 2

1

d

)
(63)

17This is as indicated in Ref.[1] and based on the results of Ref.[15] valid for the distance and non-relativistic regime we are
dealing with. However, this is a classical approach, but as discussed in Sec.(3) we need a quantum potential for the systems to
get entangled. This potential will be discussed in Sec.(6.4) and will give rise to the the same potential in the linearized gravity
regime in the non-relativistic limit of the experiment.
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6.3 Step 3

The last step of the experiment consists of proving that the entanglement of the two systems, as established
in step 2 of the experiment, is indeed present. The first part of this step of the QGEM-protocol consists
of bringing back the created superpositions. This is done first by “switching” the magnetic field back on by
coupling the spin back from the nuclear part to the electronic state, or by simply turning the field back on.
As mentioned before, the acceleration of the states towards each other is negligibly small in step 2 of the
experiment, meaning that we can safely assume that the separation between the individual states and the
size of the superposition remained constant during the free fall. Therefore, to bring the superposition back
we can apply the same mechanism and time for both the acceleration and deceleration period (τ/2) of step
1, but now in the inward direction. This makes that the superposition is brought back after a time of τ and
is stationary [1] at the end.

After the superposition is brought back, one can measure the possible entanglement created in step 2 by
measuring the spin of both test masses in different bases and look for the correlation between them. This is
possible as we saw in Sec.(3) that entanglement of systems means that outcome of separate measurements
on both systems are correlated to one another and, therefore, the spins (which is our degree of freedom)
of both systems should be correlated if the systems are entangled. Certain combinations of measurements
on the spin basis give rise to the so-called entanglement witness (W) [1, 19, 26]. The expectation value of
this witness can distinguish if the two systems are separable (no correlation between the measurements), or
entangled (correlation between the measurements). The most suitable operator for this witness will in more
detail be discussed in Sec.(9).

As mentioned in Sec.(3), if one finds that 〈W〉 is, after statistical analysis, such that it would conclude
that the two systems are entangled we have as argued by the LOCC theorem of Sec.(3) that gravity and
its communicator (the Graviton) are of a quantum nature as will in more detail be explained in the next
subsection. Therefore, this measurement determines the fate of gravity, is it classical or quantum?

6.4 Quantum potential

During the QGEM-protocol all external fields that are acting on, and being experienced by, both test
masses18 can only make local operations on both systems [1]. Therefore, the entanglement of both systems
as represented by Eq.(59), with the phase of Eq.(63), cannot be created by a classical communicator, which
is in our case the Newtonian gravitational potential.

A classical potential is the construction of a potential that causes the interaction of two bodies without
any mediating field and causes the so-called “action at a distance” [27], which is in violation with special
relativity. In this picture, a particle acts as the source of the potential in which other particles scatter and a
perturbation of this potential is instantaneously felt by the scattering particle (action at a distance). This is
precisely what happens with Newton’s gravity and is, therefore, the classical potential that cannot entangle
the systems. A quantum interaction, on the other hand, is no longer an action at a distance but is mediated
by a so-called “virtual” particle between the involved particles [27]. To see this, one has to look at the
transition matrix arising from quantum mechanics which lies in the center of quantum field theory. This
transition matrix relates the final state (f) and initial state (i) of interacting particles through the potential
and looks, in a second order expansion, like:

Tfi = 〈f |V |i〉+
∑
j 6=i

〈f |V |j〉 〈j|V |i〉
Ei − Ej

+ ... (64)

Here, j denotes the intermediate state present in the time after the initial state and before the final state.
The first term in this equation is exactly how one would represent a scattering through a fixed potential and
represents the classical scenario [27]. The second term is the “scattering via an intermediate state j” [27],

18These external fields can come for example from the interaction with the environment causing the decoherence or gravita-
tional fields of the apparatus, or interactions with the conducting plate, which will be introduced in the next section.
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having that the force is no longer an action at a distance but is mediated by an exchange particle from the
intermediate states [5, 27]. To be more precise, the force carrier is a superposition of all the possible media-
tors arising from all possible intermediate states j. Therefore, the mediator is a mathematical construct of
quantum nature [27] and, thus, we have that the communication between the particles is not classical any
more. If one has, for example, the interaction a + b → c + d, then one can have that the virtual particle is
“released” from state a as well as being released from state b [27]. Denoting these two mediators by X and
X̃ ′ respectively, one has the two intermediate states j = c + b + X and j̃′ = d + a + X̃ [27] respectively.
From Eq.(64), one can see that both these time-ordered intermediate steps should be taken into account in
the interaction and the combination of these two events is the actual picture, giving rise to the superposition
of X and X ′. Graphically this results in the famous Feynman diagram, a key subject of quantum field
theory [27]. The combination of the matrix elements of the intermediate states is what we call the Feynman
propagator [27] and represents the physics of the virtual particle. From this propagator, one can infer that
the virtual exchange particle doesn’t obey the Einstein energy-momentum relation [27], such particles are
called “off-shell”, giving another indication that this communicator is not a classical entity [5]. For all known
forces, except the gravitational force, the existence of these virtual particles and thus the quantum nature
has been confirmed. The hypothetical virtual particle of gravity is what we call the Graviton and, as it is in
a superposition and it is off-shell, it is not limited by the LOCC principle as it is a quantum communicator.
Therefore, it can entangle the test masses of the QGEM-protocol and measuring this entanglement would
besides proving the quantum nature of gravity also confirm the existence of the Graviton.

Now that we know that we need a quantum gravitational field to entangle the test masses, one might ask
the question whether the potential arising from the mediation of the Graviton would give the same 1/r
dependence as the classical Newtonian potential, as this potential is used in arriving at the entanglement
phase of Eq.(63). The potential can be calculated by integrating over all spatial momentum states of the
Feynmann propagator from one vertex to the other [5]. As the masses are non-relativistic we have that the
vertexes are just given by the 00 component of the energy-momentum tensor so that we get for the two
masses [5]:

T 00
1 (−k) = mδ0

0δ
0
0δ

(3)(r) = mδ(3)(r) T 00
2 (k) = mδ0

µδ
0
νδ

(3)(0) = mδ(3)(0) (65)

Here, δνµ just represents the unit matrix in Einstein notation, k the four-momentum vector, and the particles
are assumed to be separated a distance r = x apart. The gravitational interaction between the two vertices
can, as argued before, be represented by the Feynman diagram, which for this interaction looks in first-order
like depicted in Fig.(2):

Figure 2: First order Feynman diagram of the Graviton exchange (G) between two states of the test masses.
The test masses are identical in mass and the initial and final state of a single test mass are identical (both
represented by “m”). The initial and final state of a single test masses are, as can be seen from the diagram,
joint by the vertices where the Graviton originates from. The horizontal axis is understood to be the space
axis and the vertical axis is the time axis. The manifestation of the graviton is possible due to the Heisenberg
uncertainty principle.
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For the linearized weak gravity regime which we are working in, we have that the Feynman propagator of
the Graviton of Fig.(2) can be expressed as [5]:

Πµνρσ(k) =

(
P2
µνρσ

k2
−
P0
s,µνρσ

2k2

)
(66)

Here, P2 is the spin-2 projector of the Graviton, and P0
s its corresponding spin-0 component. As derived

in Ref.[28] one has the following property of the combination of energy-momentum tensor and the Feynman
propagator of the Graviton of Eq.(66):

Tµν(−k)Πµνρσ(k)T ρσ(k) = Tµν(−k)
1

2k2
(ηµρηνσ + ηνρηµσ − ηµνηρσ)T ρσ(k) (67)

Therefore, the propagation of the Graviton reduces in our case to:

T 00(−k)Π000(k)T 00(k) =
m2

2k2
(68)

Then, by performing the integration over the spatial momenta of this propagation, using the relevant coupling
strength of the gravitational field, one will as shown in Ref.[5] arrive at:

VG = −Gm
2

x
(69)

This is exactly the same potential as one would expect classically, meaning that the entanglement of Eq.(63)
would have the same expression for this quantum gravity theory. The only difference is that the entangle-
ment is now possible as we have the Graviton as the quantum mediator. This potential still has the 1/r
singularity and exploration of how the QGEM-protocol can be used to test theories that account for this
singularity, and how these theories will affect the results, will be explained in Sec.(11).

7 Limitation of the QGEM-protocol

As mentioned before, we require that the magnitude of the gravitational potential is one order of magnitude
larger than that of the Casimir-Polder potential. The superimposed states that we are dealing with are
spheres with the gravitational potential given by Eq.(69). As explained in Sec.(5), the Casimir-Polder
potential for two dielectric spheres can be expressed by Eq.(45). With these expressions one can compute
the ratio of the two potentials to be:

VCP
VG

=
1

x6

23h̄cR6

4πGm2

(
ε− 1

ε+ 2

)2

(70)

From this equation, one can observe that the potential ratio is proportional to x−1/6. Therefore, the re-
quirement that the gravitational potential should be one order of magnitude larger than the Casimir-Polder
potential breaks down first at the smallest separation, which is the separation between the states |↓〉1 and
|↑〉2 of Fig.(1). This implies that this particular separation is the worrying aspect of the experiment. The
separation between these states is (d-∆x), making that the potential ratio of Eq.(70) of the interactions of
these states becomes:

VCP
VG

=
1

(d−∆x)6

23h̄cR6

4πGm2

(
ε− 1

ε+ 2

)2

(71)

Assuming the diamond spheres to have a homogeneous mass distribution, meaning that R = 3m
4πρ , with ρ the

density of diamond, we get that the potential ratio reduces to:

VCP
VG

=
1

(d−∆x)6

23h̄c

4πG

(
3

4πρ

ε− 1

ε+ 2

)2

=
A

(d−∆x)6
, (72)
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Where A = 23h̄c
4πG

(
3

4πρ
ε−1
ε+2

)2

. From this equation we observe that the potential ratio is not dependent on

the mass of the spheres, meaning that our only variable is the separation distance (d-∆x). This insinuates
that with the required potential ratio of VCP

VG
= 1/10 the separation of the nearest states of the experiment

is bounded from below by a constant:
(d−∆x) ≥ (10A)

1
6 (73)

This limited lower bound of the separation gives a limitation on what is possible for the experiment as we will
see in Sec.(10). This lower bound ((10A)1/6) is with the appropriate constants equal to ∼ 157µm. For the
experiment to run as smoothly as possible, one wants to maximize the entanglement and, thus, the entan-
glement phase for a given mass. Or to phrase it more appropriate for the rest of the analysis: If one requires
a certain entanglement phase for detection, e.g. 1 rad, what is the minimum mass that attains such a phase?19

From Eq.(63) one can observe that by fixing the separation of the closest states of the two systems by the
lower bound of Eq.(73), we have that lowering the mass has two consequences:

1.) Lowering the mass will lower the common factor of Gm2

h̄ for all terms in Eq.(63), lowering the effective
phase.
2.) Lowering the mass will increase ∆x as can be seen from Eq.(54). Therefore, for a fixed distance (d−∆x)
we have that d should be larger, making the third term, which is larger than the second term, in Eq.(63)
less dominant, thus, increasing the effective phase.
In general the effect of point 2.) is less significant than that of 1.), for the reason that in general d−∆x >> d,
making the effect of an increased d not significant. Consequently, lowering the mass will result in a decrease
in the phase, having that for a given phase requirement, e.g. Φeff ∼ 1 rad, there is a limitation on what is
possible for the minimum mass of the diamond sphere, giving an upper-bound for the decoherence. This
limits for what experimental parameters the entanglement is measurable, as we will see in Sec.(10). The
actual expressions for the maximum entanglement phase and the minimum mass for a given phase require-
ment will be derived in Sec.(10.1) and are fully dependent on the limitation of the lower bound of Eq.(73).

With the lowest separation of the states we have as argued in this section that the gravitational force is the
dominant force. With this closest separation of the states, we will have a gravitational acceleration of one
of the states of:

ag =
Gm

(d−∆x)2
=

Gm

(10A)1/3
(74)

We will see, in Sec.(10), that a mass range of 10−16-10−14 kg will be considered. This corresponds to a
gravitational acceleration of at most ∼ 10−17 m/s2, which leads to a truly negligible traveled distance during
the free fall, which has a duration in the order of seconds.

8 Modified setup, perfect conducting plate

To overcome the limitation on the separation of the closest states (d − ∆x) of the current setup of the
QGEM-protocol, as explained in the previous section, a modification of step 2 of the experiment is pre-
sented in Fig.(3). In this case, a conducting plate is put in the middle of the c.o.m. of both test masses.
This plate is compared to the size of the test mass of an infinite extent in the vertical plane of Fig.(3). The
conducting plate is assumed to be a perfect conductor, this makes that the electromagnetic waves cannot
travel from one side of the plate to the other side, as a perfect conductor is completely reflective of all elec-
tromagnetic waves [24]. Therefore, by insertion of the plate in the system, we have that the Casimir-Polder
potential between the states |↓〉1 and |↑〉2 is no longer present. This can also be seen by the fact that the
plate will act as a faraday cage between system 1 and system 2. As we know from a farady cage, if you are

19This is because (as we will see later on in the analysis) a smaller mass will, in general, give smaller decoherence rates.
However, in some cases, the decoherence rate might even by larger for smaller masses (large magnetic field gradient and lower
phase requirements). But we will also see that the expression that maximizes the entanglement phase for this setup is the same
for all masses, Eq.(100). Therefore, this reformulation does not change the outcome and one will always find the maximum
phase for a given mass.
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Figure 3: Modified setup for the QGEM-protocol which only changes step 2 of the experiment. There is
a thin perfectly conducting plate, of assumingly infinite vertical extend, inserted midway between the two
interferometers. This will destroy the Casimir force directly between the nearest states but will generate a
significant Casimir force between the plate and the nearest states, which will accelerate the nearest states
towards the plate. This will give a horizontal distance change of s at the end of step 2. The plate will
for further analysis be assumed to be clamped at both ends along the “infinite” axis and will free-fall with
the test masses. The length of the plate in consideration will be assumed to be L = 1mm together with a
thickness of W = 1µm. The plate is also assumed to be a square plate with the length into the paper equal
in magnitude to L. The length of 1mm will make sure that the infinite plate assumption is valid as the size
of the test masses is at least 4 orders of magnitude lower.

inside the cage, you cannot feel the electromagnetic interaction of the outside. Here it is exactly the same,
system 2 cannot electromagnetically interact with system 1 and vice versa. Therefore, vacuum fluctuations
between system 1 and 2 cannot be present, and the only difference in vacuum fluctuations that will cause
the Casimir force on system 1, is the one induced by the plate and the system, and not with system 2. This
also means that vacuum fluctuations induced by the boundary conditions on the side of system 2 (by plate
and states), are unable to cause a difference on the Casimir force on the states of system 1. Consequently,
the Casimir force of system 1 is not influenced by the boundary conditions of system 2 and vice versa, such
that we lose the Casimi-Polder force between the systems. The “loss” of this Casimir-Polder force means
that one does not have to worry about the Casimir-Polder force entangling both systems, having that only
the gravitational force can entangle the two systems20. Therefore, the QGEM-protocol is no longer limited
by the separation of the closest states of Eq.(73) anymore, implying that in principle we can go to much
lower masses for the same effective phase.

Although at first glance this idea seems favorable with respect to the current setup there will, however, be
other limitations on the closest separation. With the insertion of the conducting plate, there will now be, as
mentioned briefly before, a Casimir force present between the nearest state (|↓〉1 or |↑〉2) and the plate, as
there can still be electromagnetic waves present in these regions. The corresponding Casimir force between
the dielectric sphere and the perfect conductor, as derived in Ref.[24], is given by Eq.(46) in Sec(5).

In the rest of the analysis of Ref.[24] it is assumed that the dielectric constant is given by the drude model,
which is valid for metals, however, we are dealing with diamond which is a dielectric. Luckily for us, the

20Assuming that there is not a fifth unknown force present which we are not aware of.
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dielectric constant of diamond has a negligible small imaginary part [29], so the real part of the dielectric
constant also gives the real part of Eq.(47). Furthermore, the dielectric constant of diamond is barely
dependent on the frequency of the electromagnetic waves [30, 31]. Therefore, we can safely make the
assumption that the dielectric constant of diamond is constant with respect to frequency, making that
Eq.(46) can be written as:

Fcasimir = − R3

4πx4

(
ε− 1

ε+ 2

)∫ ∞
0

dω[3sin(2ωx)− 6ωx cos(2ωx)− 6ω2x2sin(2ωx) + 4x3ω3cos(2ωx)] (75)

The integral can be evaluated by multiplying it with a frequency dependent exponent (e−bω) and taking the
limit b→ 0 giving:

limb→0

∫ ∞
0

dω e−bω[3sin(2ωx)− 6ωx cos(2ωx)− 6ω2x2sin(2ωx) + 4x3ω3cos(2ωx)] =
6

x
(76)

Substituting that in Eq.(75) gives us the expression for the Casimir force between the plate and the nearest
state of one of the test masses:

Fcasimir = −3h̄c

2π

(
ε− 1

ε+ 2

)
R3

x5
(77)

Here it should be noted that I inserted back in h̄c as Ref.[24] used natural units. As ε = 5.7 > 1, one has that
the Casimir force is attractive, suggesting that for sufficiently close separations the states will significantly
be accelerated towards the plate, resulting in a change of the horizontal distance, denoted by s in Fig.(3),
during the free fall period of the experiment.

We will see that, with this modified setup, the shortest separation of the states of both masses (d−∆x) is in
the order of ∼ 10µm, for such a separation the gravitational induced acceleration between the test masses is
for the mass range in consideration (10−16-10−14 kg) at most 10−15 m/s2. This is for our free-fall time in the
order of seconds again a negligible effect. However, with the inserted plate in this suggested modification of
the experiment we also have to deal with the gravitational interaction of the thin plate with the states. As
we assume a plate of infinite extent with respect to the states in the vertical direction as well as the direction
in the paper of Fig.(3), one will have by imposing the appropriate Gaussian surface that with Gauss Law
the gravitational interaction is given by [32]:

g = 2πGσ → g = 2πGρpW (78)

Here, σ and ρp are respectively the surface and volume mass density of the plate, and W is the thickness of
the conducting slab, which we assume to be 10−6 m, as, for example, copper plates are already in production
by American Elements with this thickness [33]. With such a thickness and a density of 8.96 g/cm3 [33], the
gravitational acceleration is in the order of 10−11 m/s2. This implies that with the interaction time which is
in the order of seconds [1] there will be a horizontal distance change in the order of 10−11 m, which is truly
negligible compared to the sizes of the test masses21. There is also a Casimir force present between the outer
states of Fig.(3) and the plate since the test masses are made out of diamond, which is a dielectric, making
it possible for electromagnetic waves to propagate through the inner states. As will be justified in Sec.(10.2)
and Sec.(10.3), the acceleration on these outer states caused by the Casimir force with the plate can also be
neglected in all cases except one and will, therefore, be included for this exception.

Therefore, for the most cases (which are also the cases taken into account for further analysis after Sec.(10.4)),
the only significant acceleration is the one caused by the Casimir force with the inner states, which causes
the acceleration sketched in Fig.(3) to be only caused by this force. From Eq.(77) we observe that when
such a state/sphere approaches the edge of the plate ( x → 0) the force and thus the acceleration of the
sphere will go to infinity. This suggests that there exists a separation of the states with respect to the
plate for which the magnitude of the acceleration of the Casimir force (aCasimir) is greater than that of the
constant acceleration of the magnetic field (amagnetic), which is indicated by Eq.(54). This causes a problem

21We will see in Sec.(10) that the sizes of relevant masses are in the order of 10−7 m and thus 4 orders of magnitude larger
than the gravitationally induced distance change.
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for the experiment because if one were to switch back on the magnetic field when the separation of the inner
states with respect to the plate is such that aCasimir > amagnetic, then the states will keep on accelerating
towards the plate, instead of being accelerated in the opposite position. Therefore, the superposition cannot
be brought back in step 3 of the experiment for such a separation, having that the entanglement cannot be
measured. Hence, we have that this setup will also give rise to a lower bound on the separation of d −∆x
as one cannot go the separations in which aCasimir > amagnetic.

This limitation will give the following restriction on the setup: We demand that the separation (d−∆x)/2
of the states |↓〉1 and |↑〉2 with respect to the plate is at the beginning of the free fall such that at the end
of the free fall this separation, (d − ∆x)/2 − s as indicated in Fig.(3), is in agreement with the following
requirement:

aCasimir

amagnetic
<

1

10
(79)

If the magnetic field is switched back on at the end of the free-fall there would still be a residual velocity in
the direction of the plate. Therefore, the factor of 1/10 is chosen instead of 1 to not get a situation where the
Casimir force becomes dominant over the magnetic force. That the magnetic force is one order of magnitude
higher also makes sure that it will not take the |↓〉1 and |↑〉2 states long to accelerate away from the plate
to not get a situation in which the state would not be stationary at the end of step 3. More on this will be
discussed in Sec.(13).

9 Entanglement Entropy & Witness

9.1 Reduced density matrix of the QGEM-protocol

To look at how exactly the measurements on the system are affected by the decoherence, we have to look at
the reduced density matrix of the system. The entangled state of our combined system is for both setups
given by Eq.(59). The only difference is that the phases in the exponents take different values for the same
mass and interaction time. With this equation one has the reduced density matrix of the combined system
will become:

ρS1S2 = ρ = |ψ〉 〈ψ| = 1

4


1 e−i∆φ↑↓ e−i∆φ↓↑ 1

ei∆φ↑↓ 1 ei(∆φ↑↓−∆φ↑↓) ei∆φ↑↓

ei∆φ↓↑ e−i(∆φ↑↓−∆φ↑↓) 1 ei∆φ↓↑

1 e−i∆φ↑↓ e−i∆φ↓↑ 1

 (80)

Where Si indicates the system of a single superposition of a test mass in a single interferometer. This
expression is the ideal reduced density matrix when there are no decoherence effects taken into account.
However, realistically one needs to include the decoherence of the system. In this thesis the decoherence
term is modelled according to the scattering model (as explained in Sec.(4.2)), in which the off-diagonal
terms decay exponentially as given by Eq.(37) and Eq.(38), meaning that the reduced density for both
superpositions becomes22:

ρS1
=

(
1 e−γt

e−γt 1

)
ρS2

=

(
1 e−γt

e−γt 1

)
(81)

The collisioned particles/photons of one superposition will in general not lead to scattering and thus entan-
glement with the other superposition, so for the environmental degrees of freedom we can combine this two
density matrices by a tensor product, giving:

ρ = ρS1
⊗ ρS2

=


1 e−γt e−γt e−2γt

e−γt 1 e−2γt e−γt

e−γt e−2γt 1 e−γt

e−2γt e−γt e−γt 1

 (82)

22Note that in this equation I have not included the initial constants ρ0 of the off diagonal terms, as these will come from
Eq.(80), which are not relevant at this stage. Also note that I used the form in the exponent of Eq.(37) and not Eq.(38) for
simplicity. The only thing that would have changed if one used Eq.(38) is that the terms in the exponent would be longer.

26



It is good to note that Eq.(82) is a combination of the reduced density matrices of the systems with respect to
the environmental scattering, therefore the degrees of freedom of the environment are already traced out in
this expression and is in agreement with Ref.[26]. On the other hand, Eq.(80) describes the density matrices
of both systems without any inclusion of the environment. Therefore we can insert Eq.(82) in Eq.(80) as
inclusion of the environmental effect after tracing this out. This suggests that the components of Eq.(80)
should be multiplied with those of Eq.(82) as the components of Eq.(80) can be thought of as the ρS(x,x′, 0)
of Eq.(37). With this, one would arrive at the reduced density matrix of:

ρ =
1

4


1 e−i∆φ↑↓e−γt e−i∆φ↓↑e−γt e−2γt

ei∆φ↑↓e−γt 1 (ei(∆φ↑↓−∆φ↑↓))e−2γt ei∆φ↑↓e−γt

ei∆φ↓↑e−γt (e−i(∆φ↑↓−∆φ↑↓))e−2γt 1 ei∆φ↓↑e−γt

e−2γt e−i∆φ↑↓e−γt e−i∆φ↓↑e−γt 1

 (83)

By tracing out the degrees of freedom of system S2 by means of the direct method [19], one obtains the
reduced density matrix of system S1

23. This direct method is just taking the partial trace in each 2x2 matrix
of the Eq.(83) as the matrix is in the right order of the state combinations, this will give us:

ρS1
= Tr(ρS1S2

) =
1

4

 Tr

(
1 e−i∆φ↑↓e−γt

ei∆φ↑↓e−γt 1

)
Tr

(
e−i∆φ↓↑e−γt e−2γt

(ei(∆φ↑↓−∆φ↑↓))e−2γt ei∆φ↑↓e−γt

)
Tr

(
ei∆φ↓↑e−γt (e−i(∆φ↑↓−∆φ↑↓))e−2γt

e−2γt e−i∆φ↑↓e−γt

)
Tr

(
1 ei∆φ↓↑e−γt

e−i∆φ↓↑e−γt 1

)


(84)
This reduces then to the desired reduced density matrix of:

ρS1 =
1

4

(
2 e−γt(e−i∆φ↓↑ + ei∆φ↑↓)

e−γt(ei∆φ↓↑ + e−i∆φ↑↓) 2

)
(85)

As a validity check we see that if there would be no decoherence (γ=0), we would obtain the same result as
the reduced density matrix given in appendix B of Ref.[5].

Eq.(85) could also have been obtained with a more formal method. The formal method is more applicable in
more general entanglements as this is independent of picking the right order of the reduced density matrix
as is the case for the direct method. For this formal method, we can implement the formal expression
of the reduced density matrix of Eq.(12) with the total wave-function of the system of Eq.(59), which for
argumentation sake I will rewrite as:

|Ψ〉 =
1

2
eiφ
[
|↑〉1 |↑〉2 + ei∆φ↑↓ |↑〉1 |↓〉2 + |↓〉1 e

i∆φ↓↑ |↑〉2 + |↓〉1 |↓〉2
]

(86)

Then we can implement Eq.(12) to obtain the reduced density matrix of S1. Here we note that, in order to
get ρS1 , the |ψn〉 states are the spin-up and -down states of S1 and the |En〉 states are the spin-up and -down
states of S2. Also, in order to make the derivation less lengthy, we make the observation that the spin up
and down states of the same system are orthogonal states, therefore, 〈↑|↓〉22 = 〈↓|↑〉22 = 0. Secondly, we also
have that the states are normalized, such that 〈↑|↑〉22 = 〈↓|↓〉22 = 1. Then, by utilizing these observations,
we can implement Eq.(12) with Eq.(86) to get the reduced density matrix of system S1:

ρS1
=

1

4

(
|↑〉1 〈↑|1 + |↑〉1 〈↑|1 + |↓〉1 〈↓|1 + |↓〉1 〈↓|1 + e−i∆φ↓↑ |↑〉1 〈↓|1 + ei∆φ↑↓ |↑〉1 〈↓|1 +i∆φ↓↑ |↓〉1 〈↑|1 + e−i∆φ↑↓ |↓〉1 〈↑|1

)
=

1

4

(
2 |↑〉1 〈↑|1 + 2 |↓〉1 〈↓|1 + (e−i∆φ↓↑ + ei∆φ↑↓) |↑〉1 〈↓|1 + (ei∆φ↓↑ + e−i∆φ↑↓) |↓〉1 〈↑|1

)
=

1

4

(
2 e−i∆φ↓↑ + ei∆φ↑↓

ei∆φ↓↑ + e−i∆φ↑↓ 2

)
(87)

This is, after implementing Eq.(81) for the decoherence decay of the off-diagonal elements, the same expres-
sion as the reduced density matrix of Eq.(85), obtained by the direct tracing.

23It should be noted that the reduced density matrix of system S2 will be the same, as one would expect, because of the
anti-symmetry of Eq.(83).
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9.2 Von Neumann Entropy

To quantify the degree of entanglement between systems one can use, as explained in Sec.(3), the von
Neumann Entropy. This is defined based on the Shannon entropy known from thermodynamics and is given
by [19]:

SVN = −Tr (ρSi log2(ρSi)) , (88)

where ρSi is again the reduced density matrix of system Si. One can also express this in terms of the
eigenvalues of the reduced density matrix (λi). This gives that the von Neumann entropy can be defined as
[19]:

SVN = −
∑
i

λilog2(λi) (89)

This entropy is bounded by 0 ≤ S ≤ log2(d) [19], with d the dimension of the reduced density matrix. As
the dimension of the reduced density matrix in the case for the QGEM-protocol, with a two component
superposition, is two, we have

0 ≤ SVN ≤ 1 , (90)

where zero entropy (S = 0) corresponds to the case that the systems are seperable and, thus, no entanglement
has occurred. A maximum entropy of S = 1 corresponds to a maximum entanglement of the two systems [19].

For the reduced density matrix of a single superposition, as derived in Eq.(85), one can compute the eigen-
values with

det (ρS1
− λI) = 0 , (91)

which will give the two eigenvalues of:

λ± =
1

2
± e−γt

2
[
1

2
(1 + cos(Φeff))]1/2 (92)

Here, Φeff is again the effective entanglement phase represented by Eq.(63). As a validity check, we see that
these eigenvalues are the same as in Ref.[5] by neglecting the decoherence (γ = 0). With these eigenvalues
one will get that the corresponding von Neumann entropy of the system, using Eq.(89), is given by:

SVN = −(λ−log2(λ−) + (λ+log2(λ+)) (93)

Without any decoherence this again reduces back to the result of Ref.[5]. However, this description of the
entanglement is more realistic due to the inclusion of the collisional decoherence. From Eq.(92) and Eq.(93)
we make the following striking observations:
1.) By neglecting the decoherence factor we can see the following: When the effective phase (Φeff) is π we
have λ±= 1

2 , meaning that SVN = 1, which indicates a maximum entanglement between the two systems.
Similarly a phase of 2π will give rise to no entanglement (SVN = 0) as we have λ+=1 and λ−=0. These two
statements are in agreement with the arguments made in Sec.(6). Also, as we are considering Φeff of at most
around 1 rad (< π), we have that increasing the entanglement phase will give a higher entropy and thus a
higher degree of entanglement. Which is why we want to maximize the entanglement phase for a given mass.
2.) We also observe that when the decoherence is maximum, e−γt → 0 , one also obtains SVN = 1, such that
the system is again maximally entangled. The difference is that now this maximum entanglement is due to
the entanglement with the environment, which is consisted with arguments made in Sec.(4), and not with
the desired system S2.
3.) We can also observe that larger decoherence rates lead to higher reductions of the second term of Eq.(92),
implying a growth towards the maximum entanglement. However, as argued in point 2, this entropy is due
to the interaction with the environment and not with the gravitational entanglement of the test masses.

As we want to measure only the entanglement of systems S1 and S2 and as the decoherence term is usually
not completely understood, it might be wise to measure the entanglement differently and not with respect
to the entropy. A more suitable way for this is, therefore, to measure the entanglement by measuring cor-
relations between S1 and S2, since these correlations can also determine if the two systems are entangled.
This can be accomplished by using an entanglement Witness, as in more detail will be discussed in the next
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subsection. It is important to note that the entropy, and thus the entanglement phase, can still be used to
describe the degree of entanglement of the two systems.

9.3 Entanglement Witness

In the original paper (Ref.[1]), it was suggested to measure the entanglement employing the entanglement
witness (W). This is a functional which can conclude if a system is entangled or separable as in Eq.(5). This
functional is, as described in Sec.(6), based upon spin measurements in different bases of both test masses,
from which one can determine from the expectation value if the systems are entangled or separable. The
requirement on the expectation value is based on how W is build up [19], but in general, and also for the
QGEM-protocol [26], it is such that when

〈W 〉 = Tr(Wρ) < 0 , (94)

the systems are confirmed entangled and otherwise, 〈W〉 > 0, no conclusion can be drawn [19, 26]. ρ is again
the reduced density matrix of the combined system.

For the original QGEM-protocol, the construction of W in terms of the complementary spin basis was such

that the witness was composed to be W = I(1) ⊗ I(2) − σ(1)
x ⊗ σ(2)

z − σ(1)
y ⊗ σ(2)

y [1, 26]. Here, the σi are the
different pauli spin operators in the three spatial directions (x,y,z), with z the direction of the “spin-up” .
The superscript (i) indicates in which system, S1 or S2, the corresponding measurement is taken. However,
more recently, in Ref.[26], a more effective entanglement witness for the QGEM-protocol was found to be:

W = I(1) ⊗ I(2) − σ(1)
x ⊗ σ(2)

x − σ(1)
y ⊗ σ(2)

z − σ(1)
x ⊗ σ(2)

z (95)

With this construction of W, one can just multiply it with the obtained expression of ρ of Eq.(83) and take
the trace operation, of Eq.(94), to obtain just as shown in Ref.[26]:

〈W〉 = Tr(Wρ) = 1− e−γt(sin ∆φ↑↓ + sin ∆φ↓↑)−
e−2γt

2
(1 + cos (∆φ↑↓ −∆φ↓↑)) (96)

From this we see that higher decoherence rates actually increase the value of the expactation value of the
witness, indicating that measuring the entanglement requires larger accumulated phases (the sin and cosine
terms). Additionally, a more negative value of the witness will decrease the number of measurements needed
to determine if quantum gravity exists [26], making larger negative values more suitable for the experiment,
since this lowers the run-time.

From Eq.(96) one can make the distinction between high entanglement phases (Φeff ∼ 1 rad), and low en-
tanglement phases (Φeff ∼ 0.01 rad). For high phases there is no direct correlation between the effective
entanglement phase and the minimum value of 〈W〉. However, it is still wise to maximize the effective entan-
glement phase in this limit as this will still give rise to a certain minimum mass for which the combination
∆φ↑↓ and ∆φ↑ accumulate to the most optimal terms of the sines and cosines. Then, one can adjust the
parameters of the experiment, as long as the requirements in Sec.(7) and Sec.(8) are not violated, such that
the mass with the lowest decoherence rate attains these parameters. We will see, in Sec.(10.6), that the most
optimal cases will still correspond to the cases where the mass is minimized for a given phase requirement.

However, in this thesis, we are more interested in the smaller phases as these are the phases one can obtain
if one would apply more achievable experimental parameters of the futuristic experiment, such as achievable
magnetic field gradients of 104 Tm−1, together with masses one or two orders of magnitude lower than the
proposed 10−14 kg. For these low phases, one can do a first-order Taylor expansion to obtain that Eq.(96)
reduces to [26]:

〈W〉 = Tr(Wρ) = 2γt− Φeff (97)

This clearly shows the need to maximize the entanglement phase as this will minimize W.
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10 Comparison

As explained in Sec.(7), the current setup limits the possibilities in reducing the mass, since the minimum
separation (d−∆x) of the two closest states is limited by the potential ratio VCP

VG
. However, for the modified

setup we have this limitation by the strength of the Casimir force of the states with the plate relative to the
magnetic force. In this section a comparison between the two setups will be provided by means of mass min-
imization for given phase requirements on the effective phase of Φeff=0.1,Φeff=0.01 & Φeff=1. In Sec.(10.1)
and Sec.(10.2) this analysis will be done for the suggested experimentally demanding magnetic field gradient
106 Tm−1 for both setups. Following this section, in Sec.(10.3), the same analysis will be performed for the
lower magnetic field gradients of 105 Tm−1 and 104 Tm−1. In Sec.(10.5) the analysis of the decoherence
induced by the environment, based on the theory of Sec.(4), will be performed in terms of the mass and
magnetic field gradient for a range of environmental parameters. The comparison of both setups will be
concluded by a comparison of 〈W〉 in terms of the results obtained in the previously mentioned sections.

10.1 Mass minimization current setup

(a) Φeff=0.01 (b) Φeff=0.1

(c) Φeff=1

Figure 4: These figures display the maximum entanglement phase, generated in step 2 of the current setup,
as a function of mass for the parameters indicated next to the graph. The optimal distances between the
test masses was found to be d−∆x ∼ 157µm in all cases.

From Eq.(63) it can be observed that for a given mass the maximum entanglement phase is given by the lowest
value of d−∆x, however, as we saw from Eq.(73), this distance is for the current setup bounded from below
by (10A)1/6. Hence, for a given mass, one has that the maximum phase is obtained by d−∆x = (10A)1/6.
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This will give us that the optimized distance d between the c.o.m’s of the two diamond spheres can be
expressed as:

d = ∆x+ (10A)
1
6 (98)

The superposition size ∆x obtained in step 1 of the experiment was derived to be given by Eq.(54). Therefore,
by using this expression and “plugging back in” the value of A, one has that the total expression for the
c.o.m. separation distance d is given by:

d =
gµB∂xB

2m
τ2 +

(
10

23h̄c

4πG
(

3

4πρ

ε− 1

ε+ 2
)2

) 1
6

(99)

As suggested by prof A. Mazumdar, values for the magnetic field gradient in the range of 104-106 Tm−1 could
be explored as well as an exploration of the interaction times (tint) in the range of 1-3 s. As explained earlier,
a larger d, for a fixed distance d−∆x, will result in larger phase for a given mass, therefore, from Eq.(99),
it is clear that the magnetic field gradient of 106 Tm−1 will result in the highest phase for a given mass.
This magnetic field gradient is also the value that will be explored in this section. From Eq.(63) it is pretty
straightforward to conclude that a higher tint will give rise to a larger phase for a given mass 24. This means
that the interaction time of 3s generates the highest phase. However, it should be noted that this is larger
than the suggested 2.5s of the Ref.[1], therefore, I will use both the value for 3s and 2.5s for the graphical
visualization. The other interaction times will not be visually represented but can be of importance when
the decoherence is sufficiently large with respect to the entanglement phase and will give solutions when the
higher interaction times will not, as we will see in Sec.(10.6). Another value of importance is the time period
of step 1 (and also step 3) of the protocol, which is τ , for which I will use a value of τ=500 ms as suggested
in the original paper (Ref.[1]). Additionally, because diamond is used, we have a density of ρ = 3.5 g/cm3

and a dielectric constant of ε=5.7 [1].

By substituting Eq.(99) and Eq.(54) in the expression for the effective phase, Eq.(63), the maximum effective
entanglement as a function of mass will reduce to:

Φeff,max =
Gm2

h̄
tint(

1

(10A)
1
6

+
1

2 gµB∂xB2m τ2 + (10A)
1
6

− 2
1

gµB∂xB
2m τ2 + (10A)

1
6

) (100)

This function has been graphically presented for a range of masses around the required phases as mentioned
earlier for the values mentioned earlier. The results can be found in Fig.(4).

One can read of the minimum mass for a given phase requirement from Fig.(4). However, Eq.(100) could
also have been rewritten as function of mass to get the minimum mass for a given phase. This will result in
the equation, after only using the positive mass solution, given by:

m =
−3(10A)1/6Φeff,maxB −B

√
(10A)1/6Φeff,max((10A)1/2Φeff,max + 16DB2)

2((10A)1/2Φeff,max − 2DB2)
(101)

Here B=2 gµB∂xB
( τ2 )

2 and D=Gtint

h̄ . Using the same parameters as used for the results of Fig.(4) and with

Φeff,max=0.01,0.1 and 1 rad, we will get the minimum masses as displayed in Tab.(1) of App.(A). These
values match the ones, one can read off from Fig.(4).

10.2 Mass minimization modified setup, conducting plate

As explained in Sec.(8), we have for the modified setup that the only significant force that alters the motion
of is the attractive Casimir force of the nearest states with respect to the conducting plate. The force is
given by Eq.(77), which will result in the equation of motion of these states given by:

ẍ =
Fcasimir

m
= − 3

2mπ

(
ε− 1

ε+ 2

)
R3

x5
h̄c = − 9h̄c

8π2ρ

(
ε− 1

ε+ 2

)
1

x5
= − Z

x5
[m/s2] (102)

24It should be noted that this is only the case as we are considering entanglement phases far below the phase of Φeff ∼ 2π,
which is obviously the upper-bound of a phase.
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Here, m is again the mass of the test mass, ρ its corresponding density and Z = 9h̄c
8π2ρ

(
ε−1
ε+2

)
. This second order

differential equation in x can be solved numerically by utilizing expression of the second order differential
equation:

ẍ =
x(t+ ∆t)− 2x(t) + x(t−∆t)

(∆t)2
(103)

Here, ∆t is a constant time interval taken sufficiently small. With this expression the equation of motion of
the sphere reduces to:

x(t+ ∆t) = − Z

x(t)5
(∆t)2 + 2x(t)− x(t−∆t) → xn+1 = − Z

x5
n

(∆t)2 + 2xn − xn−1 (104)

This function can be iterated to give the relative position xn of the states with respect to the plate at a time
n∆t. From Fig.(3), we see that the initial separation of the nearest state with respect to the center of the
plate can be expressed as by (d−∆x)/2. Additionally, by denoting the thickness of the plate, as mentioned
in Sec.(8), by W we have a separation of (d −∆x)/2 −W/2 of the inner states with the edge of the plate.
As the states are stationary at the beginning of step 2 their initial velocity is zero25. This will mean that
the two initial positions needed to solve Eq.(104) are given by:

x0 = (d−∆x)/2−W/2 & x1 = x0 + v0 ·∆t = x0 (105)

Using the expression for the superposition size, Eq.(54), one has that Eq.(104) can now be iterated for the
same parameters as done for the current setup for a given mass and distance d. However, the condition im-
posed in Eq.(79) should also be implemented. Therefore, the iteration is stopped whenever this requirement
is violated. This means that for values of m and d for which the requirement is violated before the final
interaction time is reached, the interaction time would obviously be shorter to not violate the requirement.

Eq.(104) gives the relative position of the state with respect to the plate as explained before. However, for
further analysis, it is more use-full to use the horizontal travelled distance of the state with respect to the
initial separation of this state, x0, this “extra” distance travelled during the free fall is depicted by s in
Fig.(3). By also “slicing” this distance s up in different time intervals, one has that at a time n∆t the value
of sn can be expressed as:

sn = x0 − xn (106)

With this expression we can observe from Fig.(3), that the relative distances between the different states at
a time n∆t are given by:

(x|↑〉1−x|↑〉2)n = (x|↓〉1−x|↓〉2)n = d−sn (x|↑〉1−x|↓〉2)n = d+∆x (x|↓〉1−x|↑〉2)n = d−∆x−2sn (107)

By taking the infinitesimal limit of ∆t one has a steady phase evolution during the time period ∆t for a
certain distance sn. By implementing the obtained distances of Eq.(107) in the phase evolution, Eq.(63),
one gets that the steady phase evolution during the time interval of ∆t at a position sn is given by:

Φeff,n =
Gm2

h̄
∆t

(
1

d−∆x− 2sn
+

1

d+ ∆x
− 2

1

d− sn

)
(108)

Then one can take a Riemann sum over all attained values sn to get the total accumulated effective phase
during the free fall:

Φeff =
Gm2

h̄
∆t
∑
n

(
1

d−∆x− 2sn
+

1

d+ ∆x
− 2

1

d− sn

)
(109)

For a fixed value of d − ∆x there are, for different masses, no changes in sn
26. If we than also fix the

mass, similar to the current protocol, one has for the same reason as for the current setup that the highest

25The attraction of the plate with respect to the plate can be neglected during step 1 of the experiment as the magnetic field
is several orders of magnitude larger at all times in step 1 for the relevant parameters.

26As we saw that the acceleration is mass independent, see Eq.(102). For this statement the acceleration requirement is not
taken into account as this would lower the total accumulated summation when this requirement is violated.

32



magnetic field gradient will give the best results. However, for smaller interaction times we can start at
smaller initial separations then for the higher interaction times as smaller values of sn can be achieved before
the acceleration requirement, Eq.(79), is violated and thus before the iteration is stopped. Consequently,
the differences in results for interaction times are less significant than for the current setup. This is why the
whole 1-3s region will be graphically displayed.

From Eq.(109), and the iteration equations, Eq.(104) & Eq.(106), and the acceleration requirement of
Eq.(79), one can see that for a given mass the only factor that influences the other variable in the effective
phase, which is sn, is the distance d. A suitable expression for this distance would be:

d = ∆x+NR ; N is a positive (half) integer (110)

With this expression for d, Eq.(104) has been iterated using Eq.(54) and Eq.(116) for a range of values of
N and a range of masses and these results have been implemented in Eq.(109) using Eq.(106). The python
code used for this can be found in App.(C) and the results for the most optimal cases of N for the same
phase requirements and for the same parameters as for the current setup can be found in Fig.(5).

From these figures, we observe first of all that all lines, depending on N and tint, terminate at a certain
minimum mass (corresponding to the lowest phase). These masses are characteristic for when the iteration
of Eq.(104) transitions from being stopped due to violation of the acceleration requirement, Eq.(79), to
being stopped because the given interaction time is reached. As the masses below the lowest mass have their
iteration stopped because of the acceleration requirement they should, therefore, have a shorter interaction
time than the ones indicated by their label. Therefore, those masses are not suitable for the experiment for
the given interaction times and values of N indicated by their respective labels and are for that reason not
displayed. Masses above the minimum mass are, on the other hand, allowed values for the experiment as
they do not violate the acceleration requirement. To see this, one can rewrite the acceleration requirement
in terms of the separation between one of the inner states and the plate (x):

acasimir

amag
≤ 0.1⇒ x ≥

(
90h̄c

6π

(
ε− 1

ε+ 2

)
R3

gµB∂xB

)1/5

(111)

This equation tells us that, to not violate the acceleration requirement, the separation of the state with re-

spect to the plate should always be larger than
(

90h̄c
6π

(
ε−1
ε+2

)
R3

gµB∂xB

)1/5

, let’s call this minimum separation

the minimum distance. As this minimum distance scales with R3/5 and the initial separation of the state
with the plate ((d − ∆x −W )/2) scales with R27 one has that when the mass, and thus R, is increased,
the states move further from the plate than the minimum distance of the acceleration requirement does. By
also noting that the acceleration towards the plate is independent of the size/mass of the test masses, one
has that higher masses, after the free fall, will be further from the plate than lower masses, since they are
initially placed further from the plate due to the scaling with R. There is a “certain mass” for which the
initial (d−∆x−W )/2 separation is such that after the free fall the separation of the state with respect to the
plate coincides with the minimum distance. Therefore, as the acceleration is independent of size/mass and
(d−∆x−W )/2 scales faster than the minimum distance, an increase of mass with respect to the “certain
mass” will give, after the free fall, a larger distance of the states with the plate than the minimum distance.
Thus, a stopping of the iteration due to the time limit is reached, and these masses are allowed to use for
the experiment for the given values indicated in the graph. Vice versa we have due to the size-independent
acceleration and the faster scaling of the initial separation with respect to the minimum distance that smaller
mass with respect to the “certain mass” will give a separation of the state with respect to the plate, after
the free fall, smaller than the minimum allowed distance. Therefore, these masses are disallowed to use for
the given parameters in the graph as they violate the acceleration requirement. This is why the curves in the
graph have a minimum mass (corresponding to the lowest phases) as lowering the mass will give no viable
solutions for the experiment and are, therefore, not displayed.

27It should be stressed that this scaling of R of (d − ∆x −W )/2 is not a physical result, but is purely coming from the
numerical method, as to highlight the minimum achievable for the phase requirements, as will be explained later on.

33



(a) Φeff=0.01 (b) Φeff=0.1

(c) Φeff=1

Figure 5: These figures display the maximum entanglement phase generated during step 2 of the modified
set-up of the QGEM-protocol as a function of mass, for different values of N , and for the indicated phase
requirements of the sub-graphs. N is related to the test mass separation d before step 1 of the experiment
is carried out, by d = ∆x+NR. The lowest mass with the lowest phase, for a given N & tint, characterizes
the mass for which the acceleration requirement is barely met. Hypothetical masses below this mass are,
therefore, disallowed and cannot be used for the experiment. All masses above the minimum mass, as
displayed in the graph, are, on the other hand, usable.

One wants to go to a scenario in which the initial separation of the test masses, d, is such that the acceler-
ation requirement is barely met after a given interaction time, tint, as this will give the shortest distances,
sn, between the nearest state with respect to the plate and hence give the largest effective phase. Therefore,
one wants the minimum mass (with the lowest phase) to coincide with the given phase requirement as this
will, therefore, minimize the mass for that phase. This is why the lowest masses are very close to the given
phase requirement in the plots of Fig.(5). The minimum masses for a given phase requirement and given
interaction, which can be read of from Fig.(5), are displayed in Tab.(1). One should also note that the
lower the mass, the shorter the initial separation of the state with respect to the conducting plate is, due to
the smaller value of NR. This is mainly because the acceleration of the Casimir force is mass-independent,
while the acceleration due to the magnetic field is inversely proportional to the mass. This means that the
acceleration of the magnetic field is stronger for lower masses and we can get closer to the plate without
violating Eq.(79). For the smallest mass of around 3.5 · 10−16 kg, the closest distance with respect to the
edge of the plate will be around 8µm, or 28R.

Lastly, we have to check whether the assumption that the most outer states of Fig.(3) are stationary holds
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with the new Casimir force introduced by the conducting plate. As is clear from Fig.(3), the distance of the
outer states with respect to the plate is d+∆x

2 −W/2. By using Eq.(110), one gets a separation of:

(x|↑〉1 − xPlate) = (x|↓〉2 − xPlate) =
2∆x+NR

2
− W

2
(112)

From this expression it is clear that when 2∆x+NR has the smallest values, the separation is the smallest
and the Casimir force will, thus, be the most significant. Therefore, if we check that the acceleration due
to the Casimir force is insignificant for the mass corresponding to the smallest value of 2∆x + NR for the
masses of Fig.(5)/ Tab.(1), it will be insignificant for all the masses in our mass region. From Eq.(54) it is
clear that, for a given magnetic field gradient of 106 Tm−1, ∆x is the smallest for the largest mass. From
Fig.(5) we see that the largest mass is approximately 5.7·10−15, corresponding to ∆x ∼407µm. Even if we
neglect the contribution of NR in Eq.(112) we would already end up with a negligible acceleration of ∼ 10−12

m/s2 28, where use has been made of Eq.(102). As this ∆x is, as mentioned before, the smallest value for
our mass region, we have a negligible acceleration of the outer masses towards the plate for all situations in
Fig.(5), justifying the assumption.

10.3 Lower magnetic field gradients

In the previous sections we assumed a magnetic field gradient of 106 Tm−1, however, as mentioned in Ref.[1],
achieving such high magnetic field gradients can only be achieved when the test masses are very close to the
magnetic source with a very precise separation of 10µm, which requires four different magnets co-moving
with the test masses at a very precise (same) speed during the free-fall [1]. Additionally one needs to ac-
count for distortion of the motion of the test masses due to the Casimir force with the magnets and for
patch-potentials for such small separations. However, lower magnetic field gradients, such as 104 Tm−1, are
favorable as they can be achieved in normal laboratories [1] and allow for a much larger separation of the
states with the magnetic source, having a significant reduction in the effects of the Casimir force and patch
potentials. Consequently, it would not be mandatory to apply the advanced futuristic setup of the high
magnetic field gradient and, therefore, this section will deal with exploring the comparison of both setups
for magnetic field gradients of lower magnetic field gradients of 105 Tm−1 and 104 Tm−1.

10.3.1 Current setup

Following the same procedure for the current setup as in Sec.(10.1), the effective phase has been computed
for a mass region of 10−14-10−12 kg for the magnetic field gradient of 105 Tm−1 and the result is displayed
in Fig.(6).

From Fig.(6), we observe that the effective entanglement phase approaches a certain value, which depends
on the interaction time. However, with our maximum interaction time of 3s, we cannot get much higher
than a phase of Φeff ∼ 0.05 rad. This implies that phase requirements of 0.1 and 1 rad will never be reached,
limiting the experiment to be measured for the requirement of Φeff ∼ 0.01 rad. The physical reason that the
higher phase requirements cannot be reached is that for this lower magnetic field gradient the magnetic field
is unable to split the superposition of the test mass, for masses which would normally lead to entanglement of
the desired requirement, to a significant size required to generate a significant differences in phase evolution
of the state combinations, to overcome the closest separation of states of 157µm. For a mass of 10−14 kg
we have that ∆x is approximately 20µm, which is one order of magnitude smaller than the 157µm of the
closest state separation. Consequently, we have that the gravitational interaction of all test masses will
approximately be the same, and will even be more so for higher masses as they have a smaller superposition
size. Therefore, they will not increase the effective entanglement phase as normally would be the case. One
can see this mathematically by approximating Eq.(100). By substituting back in ∆x = gµB∂xB

2m τ2, Eq.(100)

28One can also safely neglect the contribution of W
2

as this is only 0.5µm which is negligible with respect to the superposition
size.
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Figure 6: This figure displays the maximum entanglement phase ,generated during step 2, of the current
setup of the QGEM-protocol as a function of mass for the parameters indicated next to the graph. The
optimal distance between the test masses, before the splitting of step 1, was found to be d−∆x ∼ 157µm.
It should be noted that the mass axis is on a logarithmic scale.

can be rewritten as:

Φeff,max =
Gm2

h̄
tint

1
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1
6
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1
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As argued before ∆x << (10A)
1
6 , hence we can approximate the two fractions in the bracket by a geometric

series (1/(1− x) =
∑∞

0 xn). Expanding this up to second order (n=2) for both fractions will give us
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this reduces further to:

Φeff,max =
Gm2

h̄
tint
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1
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2
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(115)

This is just a constant and with the relevant values this constant coincides exactly with the values which can
be read of from Fig.(6). The phase of 0.01 rad can, as we see from Fig.(6), be reached and with Eq.(101),
one will obtain that this phase is reached for the masses shown in Tab.(2).

One can do a similar procedure for the magnetic field gradient of 104 Tm−1 and one will obtain that with
Eq.(115) the phase will not get higher than 5.2·10−4 rad. Consequently, with this setup, and this magnetic
field gradient, a phase of 0.01 rad cannot be reached or even approached closely.
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10.3.2 Modified setup

For the modified setup we have to check, again, whether the acceleration of the outer states, of Fig.(3), due
to the Casimir force with respect to the plate can be neglected. We will see that the highest mass, and thus
the lowest superposition size, for an interaction time in the order of seconds, is 0.95·10−14 kg. For such a
mass and the lower magnetic field gradient of 105 Tm−1 we get a lower initial separation with the plate as
indicated by Eq.(112). For a mass of 0.95·10−14 kg and with N=26, as we will see, this will, by using the
initial separation, lead to an acceleration of approximately 0.01/R s−2, where use has been made of Eq.(102).
Consequently, one can again neglect the acceleration of the outer states (|↑〉1 and |↓〉2) with the similar argu-
ments made in in Sec.(10.2). With this assumption the iteration follows the same procedure as in Sec.(10.2),
where only the value of the magnetic field gradient is one order of magnitude lower, this will result in Fig.(7).

(a) Φeff=0.01 (b) Φeff=0.1

(c) Φeff=1

Figure 7: These figures display the maximum entanglement phase generated during step 2 of the modified
set-up of the QGEM-protocol as a function of mass for different values of N , for the indicated phase
requirements of the sub-graphs. N is related to the test mass separation d before step 1 of the experiment
is carried out, by d = ∆x+NR. The lowest mass with the lowest phase, for a given N & tint, characterizes
the mass for which the acceleration requirement is barely met. Hypothetical masses below this mass are,
therefore, disallowed and cannot be used for the experiment. All masses above the minimum mass, as
displayed in the graph, are, on the other hand, allowed to be used.

From Fig.(7) we observe that we can go up to phases of 0.1 and 1 rad, which was not possible for the current
setup. The physical reason for this is that although ∆x is much smaller than what one could achieve with the
higher magnetic field gradient, we still have a reasonable superposition size compared to the initial separation
of the closest states, which is at most the same order of magnitude as the superposition size. Furthermore,
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the inner states also get attracted to the plate during the free fall, therefore, the superposition size is even
more enhanced during this period. Consequently, we have, due to these two reasons, that the gravitational
interaction between the different state combinations of the two systems can be sufficiently be distinquished
from one another. This has the result that the second and third term of the effective phase, Eq.(118), are
relatively low with respect to the first term, instead of being approximately the same. Henceforth, we still
are able to generate significant entanglement phases. This is also possible because the separation of the
closest states (d−∆x) is one order of magnitude lower than before, since we can now go up to a separation
in the order of 10µm, instead of the 157µm of the current setup. This makes the terms in the bracket for
the effective phase already an order of magnitude larger for a given mass and, therefore, already gives an
advantage for what is possible for the required phases.

One can also observe that figure c of Fig.(7) has a relatively small increase in phase after the minimum mass
(with the lowest phase) compared to the other figures. This has mainly to do with the way the solution
has been iterated, but has also to do with the limitation of the experiment. For the iteration, use has been
made of the dynamic parameter NR, this parameter is, therefore, larger for the higher masses. This makes
the considered initial separation between the test masses larger for higher masses. This will have several
negative effects on the phase of higher masses. All negative influences of an increased mass are:
1.) First of all this larger initial separation of the states, due to NR, will lead to a less effective enlargement
of the superposition size as the acceleration of the Casimir force, Eq.(102), is smaller. Thus, making the
three terms in Eq.(118) more similar to one another.
2.) Larger separations of the test masses, again due to NR, with the lower Casimir acceleration also has the
consequence that the inner states are not as close to each other as before. This implies that the magnitudes
of the terms in the brackets in Eq.(118) are smaller.
3.) The last negative effect of higher masses is independent of this dynamic parameter but is because a
higher mass leads to a smaller ∆x, meaning that the terms in the brackets of Eq.(118) are similar to one
another and thus lowers the phase.
It is important to realise that point 1 and 2 are purely iteration effects and point 3 is a purely physical effect.
The three points mentioned above all lower the term in the bracket of Eq.(118), however, one also notes that
a higher mass will increase the common factor outside of the bracket, because of the m2 proportionality.
Normally this effect is much larger than the 3 points mentioned above and this is why for other plots the
phase increases more rapidly. However, in this case, the three terms have a relatively larger negative contri-
bution on the phase, leading to a much smaller increase of the effective phase. If one were to go to higher
masses than indicated in the figure, one would see a decrease in the phase, due to the larger contribution of
the three points on the phase than the m2 proportionality.

One should, again, note that the minimum masses are forced to coincide around the phase requirement as
this maximizes the interaction time. Other values of N , would lead the minimum mass to coincide with
other phases than the required phase and, therefore, as explained in the previous section, the masses that
will correspond to the phase requirement are not optimal.

For the even lower magnetic field gradient of 104 Tm−1 we have to check, again, whether the assumption of
stationary outer states will hold. For the masses of the phase requirement of 0.01, this assumption is still
valid. However, as we will see later on, we will go up to masses of around 10−14 kg, and d = ∆x+ 33 · 10−6

m, see Fig.(9), to get to a maximum phase. For these masses, the acceleration of the outer states is approx-
imately 0.3 µm/s2, which is, with the acceleration time of 3s, in the order of the radius of the test mass.
Therefore, one has to include the Casimir attraction of the plate on the outer states, |↑〉1 & |↓〉2 of Fig.(3).

This procedure can be modelled similar to what was done for the inner states in Sec.(10.2), where only the
initial condition will be different. From Fig.(3), one can deduce that the initial conditions of the outer states
are given by:

x
(2)
0 = (d+ ∆x)/2−W/2 & x

(2)
1 = x

(2)
0 + v

(2)
0 ·∆t = x

(2)
0 (116)

Here, x
(2)
0 is used for the distance of the outer states with the plate, instead of x0, to distinguish from the

position of the inner states. Following the same procedure as for the inner states, one obtains the change of
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the distance for the outer states similar as for the inner states to be:

rn = x
(2)
0 − x(2)

n (117)

With this effective distance change of the outer states (rn), we have that the second term of Eq.(109) will
be different. Additionally, by observing Fig.(3), with now the outer states also moving inwards, we get that
the expression of the effective phase becomes:

Φeff =
Gm2

h̄
∆t

N∑
n=0

(
1

d−∆x− 2sn
+

1

d+ ∆x− 2rn
− 2

1

d− sn − rn

)
(118)

Using this expression for the effective phase and following the same procedure of the iteration as done in
Sec.(10.2), one obtains the result of Fig.(8) for a magnetic field gradient of 104 Tm−1. It should be stressed
that for these masses we also could have used the effective phase equation, with corresponding iteration, of
Eq.(118), since here the acceleration of the outer states is, also, only 0.01/R s−2 and can for that reason also
be neglected.

As we can see from Fig.(8), there is only a plot for a phase of 0.01 rad, this is because the other phase
requirements could not be reached. This is already hinted by the fact that the increase of the phase after
the minimum mass in Fig.(8) is not as steep as we are used to and this decrease of steeping can, again, be
explained by the previously mentioned arguments used for the last plot of the magnetic field gradient of 105

Tm−1.

However, we can get very close to an effective phase requirement of 0.1 rad. To show the maximum phase
we can achieve, a slight altercation of the iterative expression of d, of Eq.(110), will be made and is given
by:

d = ∆x+N · 10−6 [m] (119)

The reason for this is to have an equal separation for all masses, making the maximum independent on the
way the iteration has been carried out, since we are no longer interested in observing the minimum mass.
This makes it easier to find the actual maximum as the separation between the closest states is now the same
for all masses. By using different values for N , in steps of 0.5, for the same iteration methods as before, we
will get the results for the value of N which results in the highest maximum of the phase, as displayed in
Fig.(9).

The transition from solid to dashed line indicates the transition from allowed masses to masses that are
disallowed to use for the experiment for the indicated parameters. Additionally, the maxima correspond
to the highest entanglement phases that can be generated by this setup of the QGEM-protocol, for the
indicated parameters. The maxima have again an iterative explanation but is, in this case, not due to the
way the iteration is carried out but is due to the violation of the acceleration requirement as will now be
explained. The acceleration caused by the Casimir force is, as we saw previously in Eq.(102), independent
on the size/mass of the test masses. Consequently, all masses are accelerated to the same extend for a given
initial separation with the plate, so one might think that higher masses will automatically generate a higher
phase as the distances will be the same. However, one should also remember that we implemented the condi-
tion that the acceleration caused by the Casimir force should be at a maximum of one-tenth of the magnetic
field acceleration, see Eq.(111). This resulted in a minimum separation of the state with respect to the plate.
From Eq.(111) one can see that increasing the mass will increase the minimum allowed separation distance
of the inner state with the plate. With this in mind, it is pretty straight forward to conclude that, with the
mass-independent acceleration, there is for a fixed distance d a maximum mass in which the acceleration
requirement is barely met after the interaction time is reached. Therefore, higher masses have their iteration
stopped before this time is reached, having that the summation of Eq.(118) is automatically lower as the
final few terms which would normally be there are not included. This iterative effect together with that the
superposition size is smaller, meaning a less effective separation as mentioned previously and a smaller differ-
ence between the bracket terms, are together larger than the m2 proportionality which causes the maximum.
It is also good to realise that these masses are disallowed for the indicated interaction times, since theiritter-
ation is stopped before the interaction time is reached. Also, logically, all masses below the maximum have
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Figure 8: This figures displays the maximum entanglement phase generated during step 2 of the modified
setup of the QGEM-protocol as a function of mass for different values of N , for a phase requirement of
Φeff = 0.01 Rad. N is related to the test mass separation d before step 1 of the experiment is carried out, by
d = ∆x+NR. The lowest mass with the lowest phase, for a given N & tint, characterizes the mass for which
the acceleration requirement is barely met. Hypothetical masses below this mass are, therefore, disallowed
and cannot be used for the experiment. All masses above the minimum mass, as displayed in the graph, are,
on the other hand, allowed to be used.

their iteration not stopped due to violation of the acceleration requirement and are, therefore, allowed values.

Choosing a higher value of N will lead to the peak shifted to the right towards higher masses. Choosing this
higher value of Nhas three effects on the phase:
1.) An increase in phase due to the m2 proportionality.
2.) A decrease in phase because the test masses are separated further from each other at all times during
the free fall.
3.) A decrease in phase due to smaller ∆x, leading to a smaller effective phase as mentioned previously.
It turns out that the “battle” between point 1 and points 2 & 3 leads to the highest peak for the given N
displayed in Fig.(9). One can make the opposite arguments for a lower value of N . This makes that the
indicated values of N are actually the ones corresponding to the largest entanglement phases one can achieve
with this modified setup for this particular magnetic field gradient.

One should note that these maximum phases are an upper bound estimation. One can infer, by comparing
the last value of the iteration of Eq.(106) with the value of ∆x of Eq.(54), that for masses around 10−14 kg,
∆x is the same order of magnitude as the maximum value of s, meaning that there is already a significant
Casimir interaction during step 1 of the experiment. This implies that the separation of the test masses
should be somewhat further, lowering the maximum phase by a small amount, not much as the acceleration
of the magnetic field is still stronger here. The maximum here was just to show what is in general possible
for the modified setup, but will not be used further on in this thesis as we are only interested in the phase
requirement values. However, for setting up this experiment, one can do a similar analysis done in the rest
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Figure 9: This figure displays the maximum entanglement phase generated during step 2 of the modified
setup of the QGEM-protocol as a function of mass, for different values of N for the maximum possible phase.
N is related to the test mass separation d before step 1 of the experiment is carried out, by d = ∆x+N ·10−6

m. The transition from solid to dashed line characterizes the mass for which the acceleration requirement
is barely met. Masses above this transition are disallowed and cannot be used for the experiment for the
indicated interaction times and value of N . All masses below this transition, on the other hand, are allowed
to be used.

of the thesis if one wants to maximize the phase.

The results of the minimum masses for a given phase requirement for the lower masses for both setups can
be read off from the figures and all results are also concluded in Tab.(2) and Tab.(3) of App.(A).

I want to stress again that for the phase requirement of Φeff ∼ 0.01 rad together with the magnetic field
gradient of 104 Tm−1 for the modified setup, the acceleration of the outer states can safely be neglected as
this is important for the rest of the analysis.

10.4 Comparison minimum mass

Tab.(1), of App.(A) shows the relevant values for the mass minimization for a given phase requirement for
the magnetic field gradient of 106 Tm−1, as graphically displayed in Fig.(4) and Fig.(5). From Tab.(1) and
comparing Fig.(4) with Fig.(5) we see that with a perfect conductor in between the nearest states much
smaller masses can be reached for a given phase requirement as the separation between the closest states
can be made much smaller. It is also clear that the larger the phase requirement, the more significant
this effect is, because for a phase requirement of 0.01 rad and an interaction time of 3s we have a ratio of

mcurrent

mconducting plate
≈ 2.7, whereas for a requirement of 0.1 rad we will have mcurrent

mconducting plate
≈ 3 and for a require-

ment of 1 rad we have mcurrent

mconducting plate
≈ 4.7. We also observe that for a given phase requirement the shorter

interaction times of 1s for the modified setup are generating lower masses than interaction times of 3s for the
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current setup. This will give an even more suitable option in terms of decoherence as we will see later on.
However, it should be noted that the for the modified setup we assumed the plate to be a perfect conductor,
but realistically perfect conducting materials do not exist and there will still be some electromagnetic waves
propagating through the plate, giving rise to the presence of a small Casimir force between the nearest states,
this assumption will be discussed in Sec.(13.2).

For a magnetic field gradient 105 Tm−1 we can only compare the 0.01 phase requirement as the current
setup is unable to generate higher phases as we saw earlier. The mass ratio for this requirement for this is

mcurrent

mconducting plate
≈ 4.5. We also observe that an effective phase requirement of 0.1 for the modified setup al-

ready gives better results than the 0.01 phase requirement of the current setup. For a magnetic field gradient
104 Tm−1 we only can go to modified setup, meaning that for laboratory allowed gradients we are limited,
as we will see in Sec.(10.6), by conducting the experiment with the modified setup only. This already shows
that the modified setup is far better equipped to utilize these lower gradients.

The discussion above shows qualitatively the favorability of the modified setup with regards to the current
setup, however, it is not quantitatively discussed what the impact of this will be in terms of the measurability
of the entanglement. In Sec.(10.6), we will see how much the modification of the setup would benefit the
measurability of the quantum nature of gravity with the QGEM-protocol. However, first, the analysis of
the collisional decoherence will be performed in the next section as this is also a significant contribution to
the detectability as we saw in Sec.(9).

10.5 Impact on decoherence

In both the current and the modified setup we are, during all the steps of the experiment, dealing with two
superpositions of two test masses. Therefore, the scattering model for the decoherence derived in Sec.( 4)
will be used as this model deals with the decoherence of such a system29. For this, one can, as derived
in that section, use Eq.(38) to model the decoherence of the off-diagonal elements for the ever-changing
superposition size.

This decoherence term for the QGEM-protocol depends on two kinds of particles: gas molecules and
thermal photons30. The impact of this decoherence source depends on the environmental temperature (Te),
the number density of the gas (nV ), the internal temperature of the test masses (Tint), the size of the
test masses (R) and the size of the superposition (∆x). In this thesis we stick to the suggested internal
temperature of 0.15K in Ref.[1] and we will look at how this decoherence source can be modeled in terms
of the environmental parameters (Te and nV ), and the experimental parameters (R and ∆x) and how this
would affect the experiment. For the environmental parameters, we consider the external temperatures range
of 1-4K and the number density range of 107 − 108 m−3 31.

10.5.1 Short- and long-wavelength approximations

To determine if we are dealing with short- or long-wavelength particles/photons, the wavelength of the
environmental particles should be determined and compared to the superposition size of the test masses.
For air molecules, inside the ultra-high vacuum setting of the experiment [1], we are dealing with gaseous
particles, which we assume to have to the same composition as in the air. The thermal wavelength of such
thermal molecules is given by [6]:

λair =

√
2πh̄2

mairkbTe
(120)

29There are also other decoherences of the test masses, such as spin decoupling of the test masses, but these have already
sufficient coherence times for internal temperatures around 77K, whereas we are dealing with a internal temperature of only
0.15K and should not be of a problem [1, 34] as lower temperatures give longer coherence periods. Another form of decoherence,
which is very hypothetical, are the collapse models and this will be discussed in Sec.(12).

30Influences of photons from the environment outside the experiment, such as CMB- radiation, can easily be shielded from
playing part in the decoherence of the system.

31As these ranges corresponds roughly to the pressure of 10−15 suggested in [1]. The ideal gas law can easily be applied in
this scenario as the molar volumes considered make inter-molecular interactions and sizes of the molecules negligible.
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To analyse which wavelength limit to apply, the lowest external temperature of 1K will be used as this
maximizes the wavelength. Taking the typical mass of an air molecule to be 28.97 amu and assuming the
gas to be in thermal equilibrium with the environment, one would obtain a wavelength of λ ∼ 0.32 nm.
Such a superposition size is in step 1 of the experiment in the worst case (using Eq.(51) for the highest
masses and lowest magnetic field gradients) already reached after a couple of milliseconds. Therefore, after
at most a couple milliseconds, the short wavelength limit for the superposition of states in step 1 of the
experiment can already be applied. For step 3 of the protocol we have a similar period at the end where the
wavelength is larger than the separation size ∆x. Therefore, we get in the worst case, again, a time of the
order of milliseconds where the total superposition is not larger than the wavelength of the environmental
air molecules. However, the total duration of the experiment, with the created superposition, is at least
2τ+tint=2 · 0.5 + 1=2 s 32, which is three orders of magnitude larger than the order of the millisecond.
Consequently, we can safely assume the short wavelength limit for the scattering of the environmental air
molecules to be applicable. As higher external temperatures will only lead to shorter wavelengths of the air
molecules (Eq.(120)), we have that for higher external temperatures this assumption is even more valid.

In the scattering model we assumed, for photons, only scattering of the environmental photons. However,
absorption of environmental photons and emission of photons from the test mass will also give “which-path”
information loss of the system and should also be taken into account in the decoherence. The decoherence
from these two sources can, luckily, be modeled similarly to the scattered photons [6].

The thermal wavelength of photons, which are present due to emission of blackbody radiation of the apparatus
and the test masses, can be expressed as [6]:

λphotons =
π2/3h̄c

kbTe,(int)
(121)

For the environmental scattering of photons, which are again assumed to be in thermal equilibrium with the
environment, we have that the temperature is the external temperature and for temperatures of a few Kelvin
this corresponds to a wavelength in the order of mm. The largest superposition size that is achieved for our
mass region is the one corresponding to the smallest mass with the highest magnetic field gradient, which for
the values of Tab.(1) are at most in the order of mm (by using Eq.(54))33. This implies that for the extreme
cases the wavelength and the superposition size are of the same order, meaning that the long-wavelength
limit is a loose estimate for this extreme case. However, the long-wavelength will still give an upper-bound
estimate to the solutions [1, 6] for such cases. Additionally, the long-wavelength limit is still valid for masses
which are an order of magnitude larger and/or magnetic field gradients of an order of magnitude smaller as
we took an extreme case. Therefore, the long-wavelength limit will be applied to these kinds of photons.

Besides the scattering photons, as was explained before also decoherence due to the absorption of envi-
ronmental photons. These absorbed photons have the same environmental temperature as the scattered
photons, hence we can also apply the long-wavelength limit for the absorbed photons. Although the term
“scattering” constant sounds weird for these absorbed photons, I will use it for expressing the decoherence
rate of this interaction.

Another type of photons, that cause decoherence, are the photons that emission from the test masses [6]. The
wavelength of these photons depends on the internal temperature and as this temperature has been set to
0.15K, we have that the wavelength is one order of magnitude larger than the environmental photons, since
the wavelength is inversely proportional to the temperature, see Eq.(121. Consequently, the long-wavelength
limit is even more applicable for these kinds of photons and will, therefore, be used.

32The at least statement comes from the fact that for the modified setup the superposition size is enhanced to ∆x + s,
meaning that τ should be larger in step 3 of the experiment to bring the superposition back. Also for tint the lowest value of
1s of Tab.(1) is used to get another at least statement. This means that our assumption is even more valid in general.

33To be more precise one also has to include the extra superposition size created by sn of figure 2. However, this is, at most,
one order of magnitude smaller than ∆x and makes, therefore, no significant contribution to the argument.

43



By applying the short- and long-wavelength limit for the relevant air molecules and black-body photons, one
obtains using Eq.(37) and Eq.(39) the decoherence factor of:∫

γkdt =
∑
k

γk∆t = Γairt+

3∑
i=1

Λi

∫
(x|↑〉k − x|↓〉k)2dt ; Λ1 = Λsc , Λ2 = Λe , Λ2 = Λa (122)

Here, Λsc is the scattering constant of the scattered environmental photons, Λa that of the absorbed pho-
tons, Λe that of the photons of the emission of the test mass, and Γair is the scattering rate of air molecules.
(x|↑〉k − x|↓〉k) denotes the distance between the states of the superposition inside a single interferometer at
a time t = k. This distance is not constant during the experiment as this distance changes in step 1 and 3
of both the current and modified setup as well as in step 2 of the modified setup.

10.5.2 Parameter influence total decoherence

The scattering constant for air molecules can be expressed in terms of the scattering rate and its thermal
wavelength [6], giving:

Γair = λ2
airΛair (123)

A derivation of the scattering constant for air molecules can be found in App.(B.1) and can also be found in
section 3.4.2 of Ref.[7]. Then, combining Eq.(170) of App.(B.1), with the wavelength of the air molecules,
Eq.(120), gives the scattering rate of the gas molecules:

Γair =

√ 2πh̄2

mairkbTe

2

4R2

3h̄2

N

V

√
πmair (2kbTe)

3/2
=

16πnVR
2

3

√
2πkbTe
mair

(124)

This expression is similar to expression (27) in Ref.[6] by applying the ideal gas law and noting that the
mean velocity is given by

√
3kbTe/m.

The expressions for the scattering constant of the interacting photons of Eq.(122) are derived/given in
App.(B.2) and can also be found in [6, 7] and are given by:

Λsc = 8!ζ(9)
8cR6

9π

(
kbTe
h̄c

)9

Re

(
ε− 1

ε+ 2

)2

; Λ(e)a =
16π5cR3

189

(
kbT(i)e

h̄c

)6

Im

(
ε− 1

ε+ 2

)
(125)

As mentioned earlier, (x|↑〉k − x|↓〉k) is a dynamic quantity, hence γk is dynamic and different for all steps
of the experiment. Therefore one has to integrate/sum Eq.(122) differently for all steps of the experiment.
Additionally, one should also distinguish between both the current and the modified setup as the decoher-
ence of step 2 and step 3 require a different evaluation. Consequently, the evaluation of the decoherence
factor will be done for two cases. The first case is the case that during the free fall the superposition size,
∆x, is constant during the free fall, which is true for the current setup and is also a good estimate for the
modified setup of the experiment with a magnetic field gradient of 106 Tm−1. The second case is that the
superposition size changes during the free fall, which is a small perturbation for the modified setup for a
magnetic field gradient of 104 Tm−1 and the higher masses for the magnetic field gradient of 105 Tm−1 as
here the largest value of sn is one order of magnitude smaller than the superposition size.

For the first case it can analytically be derived that the decoherence factor of Eq.(122) reduces to:

exp

[
−
∫
γkdt

]
= exp

[
−

[
Γair(tint + 2τ) + 2a2

(τ
2

)4 3∑
i=1

Λi

(
46

15

τ

2
+ 2tint

)]]
(126)

Here, a is the acceleration of a single state and is given by Eq.(50). The derivation of this formula can
be found in App.(B.3). It should also be noted that this expression is exact for the current setup of the
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QGEM-protocol and is a very sufficient first order estimate of the modified setup with the conducting plate
for the highest magnetic field gradient.

Important to observe from Eq.(126) is that one can infer from the definitions of Γair, Λi, and a of Eq.(124),
Eq.(125) and Eq.(50) that the dependence of the decoherence factor on the size of the test mass is given by:

exp

[
−
∫
γkdt

]
∝ exp

[
−(C1R

2 + C2 + (C3 + C4)R−3)
]

(127)

The relevant constant for the size dependence are C1,C3 and C4, where C1 ∝ nV T 1/2
e ,C3&C4 ∝ (∂xB)2T 6

(i),e

and C2, which arises from the combination of Λsc and a, is just a constant. We can simplify this propor-
tionality even further to:

exp

[
−
∫
γkdt

]
∝ exp

[
−C1R

2(1 +
C3 + C4

C1

1

R5
)

]
;

C1 =
Γair(tint + 2τ)

R2
, C(3)4 = 2

(
aR3

)2 (τ
2

)4
(

46

15

τ

2
+ 2tint

)
Λ(e)a

R3
(128)

If one has that 1 > C3+C4

C1

1
R5 in the mass region for ∂xB = 106 Tm−1 34, then the decoherence factor would

dominantly increase with the exponential of the square of the radius. Vice versa, one would have that the
decoherence factor would decrease with the exponential of R−3. It should be noted that this is truly due
to the fact that higher masses will have smaller superposition sizes, thus decreasing decoherence for the
photon terms, for the same acceleration periods but have, on the other, larger sizes, which increases all
constants/scattering rates. If one were to consider the same superposition size for all masses, then one would
obtain, as one would expect, that the decoherence will always decrease with a decrease in size of the test mass.

In the original paper (Ref.([1])), a pressure of 10−15 Pa was proposed, this corresponds with the ideal gas
law, footnote 31, to a number density low to high in the order of 107 m−3, depending on the temperature.
Therefore, a range of number densities of 107 − 108 m−3 will be considered. For this number density range
and a temperature of 1 K, we have that C3+C4

C1

1
R5 ranges in the considered mass region from the order of 10−1

to the order of 10−5. Consequently, we have an increase in decoherence by an increase in mass. However, if
one would have the largest considered external temperature of 4K, one would go to a scenario like depicted
in Fig.(10).

From this figure, one can observe that for masses roughly below 5 ·10−15 kg ,the decoherence would decrease
with an increase of mass, since 1 < C3+C4

C1

1
R5 , and as this is a large amount of the mass range we are consid-

ering, 〈W〉 of Eq.(96) would increase with an increase of mass. This is undesirable as we want 〈W〉 < 0 to be
able to detect quantum gravity. The calculation of the entanglement witness with taking this into account
will be done in the next section. It can be shown that altering the interaction time in the 1-3s regime will
not have any noticeable effect on the results of Fig.(10).

For the second case, which applies to the lower magnetic field gradient of 104 Tm−1 of the modified setup and
the masses around a phase of 1 rad for 105 Tm−1 for this setup, we have that the constant ∆x assumption
is loose and the change of sn should be taken into account. The expression for this is derived in App.(B.3.2)
and is given by:

exp[−
∑
k

γk∆t] = exp

[
−

[
Γair(tint + τ + τ1)+

3∑
i=1

Λi

(
46

15
a2{
(τ

2

)5

+
(τ1

2

)5

}+ 4a2
(τ

2

)4

tint +
∑
k

(4a
(τ

2

)2

sk + s2
k)∆t

)]]
(129)

34This corresponds to masses in between 3.5 · 10−16 − 2 · 10−14 as can be inferred from Tab.(1).
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Figure 10: Heatmap of the C3+C4

C1

1
R5 ratio for different values of nV and the mass. The colorcode indicates

the value of this ratio for the parameters next to the colorcode. The white region indicates the region in
which C3+C4

C1

1
R5 > 1. It should be stressed that by changing the interaction time in the region 1-3s, the

results will not have a noticeable effect on the results of the graph.

Here, τ1 = 2

√(
τ
2

)2
+

skmax

2a
35 and we see that with skmax

<< ∆x we retrieve Eq.(126). In this expression it
is assumed that the inner states instantaneously turn around after the free fall, so when the magnetic field
is turned back on. More on this assumption will be discussed in Sec.(13.3). Important to observe is that sn
evolves differently for all masses (given in Tab.(2) and Tab.(3)) of the modified setup, since all these masses
have a different initial distance with the plate, as NR is different. However, one could still do the analysis
for if the decoherence would increase by an increase of mass by considering sn to cause a small perturbation
on Eq.(128). As one can show that in these cases sn is at most one order of magnitude smaller than ∆x,
hence, one can still compute the C3+C4

C1

1
R5 ratio. For a magnetic field gradient of 105 Tm−1, one would

obtain Fig.(11) for the temperature of 4K for this ratio. It can be shown that altering the interaction time
in the 1-3s regime will not have any noticeable effect on the results of Fig.(11).

From Fig.(11), one can observe that for almost the whole mass range we get an increase in decoherence
due to an increase in mass. As we also have that the ratio is smaller than 0.01, the inclusion of sn in the
superposition size would not result in the ratio becoming bigger than 1 for these masses, as sn was a small
perturbation. Therefore, we still have an increase in decoherence for an increase in mass.

35skmax is the value of sn at the end of the free fall period and was denoted by s in Fig.(3). This value is automatically also
the largest value of sn.
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Figure 11: Heatmap of the C3+C4

C1

1
R5 ratio for different values of nV and mass. The colorcode indicates the

value of this ratio for the parameters next to the colorcode. The white region indicates the region in which
C3+C4

C1

1
R5 > 1. It should be stressed that by changing the interaction time in the region 1-3s, the results will

not have a noticeable effect on the results of the graph.

For a magnetic field gradient of 104 Tm−1, for the relevant mass range of Tab.(3), we have that the ratio
ranges from 10−2 to 10−3, for the largest external temperature of 4K, indicating that here we also have an
increase in decoherence for an increase in mass.

10.6 Resulting Entanglement Witness

In this section the results obtained for phase maximization and the decoherence effects of the previous
subsections will be used and combined to give the expression for the measurable entanglement witness
shown in Sec.(9), to check for which parameters the entanglement can be measured. The environmental
parameters will be in the ranges discussed in Sec.(10.5) and the parameters for magnetic field gradients,
masses, and interaction times are the ones used in Sec.(10.1) up to Sec.(10.4). First, the analysis will be
done for the current setup to see what the possibilities currently are. After that, it will be shown how the
modified setup can be used to overcome the limitations of the current setup.

10.6.1 Expectation value witness current setup

From the phase part of Eq.(100), one can split the effective phase up into the two effective phases desired
by the expression of W , Eq.(96). Consequently, these two phases read:

∆Φ↓↑ =
Gm2

h̄
tint

(
1

(10A)
1
6

− 1
gµB∂xB

2m τ2 + (10A)
1
6

)
, (130)
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and

∆Φ↑↓ =
Gm2

h̄
tint

(
1

2 gµB∂xB2m τ2 + (10A)
1
6

− 1
gµB∂xB

2m τ2 + (10A)
1
6

)
(131)

For a more realistic picture one should also include the phase generated during step 1 and step 3 of the
experiment. These “extra” phases are derived in App.(B.4) and are given by:

∆Φ↓↑,e = 2
Gm2

h̄

− ln

(
| aτ2 −

√
ad|

aτ
2 +
√
ad

)
2
√
ad

+
2√

4d1a− (aτ)
2

arctan

 aτ√
4d1a− (aτ)

2

− τ

d

 (132)

and

∆Φ↑↓,e = 2
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(aτ)

2
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Since we now have the total relevant phase evaluations given by Eq.(130), Eq.(131), Eq.(132), and Eq.(133),
one can calculate the expectation value of the entanglement witness for the experiment with Eq.(96). In
previous sections we argued that phase maximization would lead to the lowest value, e.g. more negative, of
〈W〉. To see this, the value of 〈W〉 has been computed for different values of d, which still do not violate
the potential requirement of Eq.(73), for the magnetic field gradient of 106 Tm−1 together with the different
interaction times for the relevant mass region and the results are shown in Fig.(12). Note that the decoher-
ence is, for the the moment, neglected (γ = 0), since we are here purely interested in the response of the
entanglement witness to the phases.

From Fig.(12), one can observe that for all the interaction times the most negative values of the witness, for
the relevant masses, is indeed achieved for the distance corresponding to the maximization of the phase. Ad-
ditionally, the minimum is also achieved for the lower masses. This is useful for the low external temperatures
as we discussed in Sec.(10.5) that smaller masses give smaller decoherence effects, therefore, this distance is
the most suitable separation of the closest states. However, in Sec.(10.5) we also saw that for higher external
temperatures, the experiment is more favorable for the higher masses for this high magnetic field gradient.
From Fig.(12), one sees that for the absolute highest masses and for the larger interaction times (2 and 3s),
higher values of d give better results, therefore, these options will be taken into consideration for the higher
external temperatures in the rest of the analysis of this section.

By considering the environmental decoherence of the system, we can use the derived expression of the deco-
herence factor of Sec.(10.5), which is given by Eq.(126), together with the relevant phase equations (Eq.(130),
Eq.(131), Eq.(132), and Eq.(133)), in the expectation value of W, Eq.(96). For the magnetic field gradient
of 106 Tm−1 one would obtain, for the discussed ranges of nV and m, the results for a temperature of 1K
as depicted in Fig.(13). The white area corresponds to parameter combination which leads to a value of
〈W〉 > 0 and these combinations are therefore not allowed. One should note that this figure displays the
results for the interaction time which gives rise to the most negative values of 〈W〉 and as discussed, based on
the results of Fig.(12), the most suitable distance of d, which is the minimum distance of d = ∆x+(10A)1/6.

We see that with these parameters the entanglement can easily be measured with the best results for a
mass of 8.4 · 10−15 kg, corresponding to 〈W〉 ∼ −0.26 as a lower value of the witness corresponds to fewer
measurements needed to confirm the results [26]. One would for temperatures of 2 and 3K still find allowed
values for 〈W〉. One can also show that for the lowest number density of 107 m3 the lowest mass that will
give 〈W〉 < 0 is for a mass of around 10−15 kg, but this corresponds to a superposition size in the order of
millimeters.

For the temperature of 4K one will find that there are no parameter combinations that will give 〈W〉 < 0
for interaction times of 2-3s. One can see this by noting from Fig.(10) that, first of all, the decoherence of
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(a) tint = 3s (b) tint = 2s

(c) tint = 1s

Figure 12: These figures display 〈W〉 for the relevant mass region of the current setup of the QGEM-protocol
for different separations indicated by the label, for the parameters indicated next to the graph. We indeed
observe that d−∆x = (10A)1/6 will give the best results. However, as we can see, this is not the most viable
option for all masses, which can be of importance if one takes into the account the results of the previous
sub-section.

thermal photons for the masses considered becomes around the same order as decoherence induced by the
scattering of air molecules. Therefore, to have measurable results, one has to have lower number densities36

to combat the increased decoherence. Consequently, from Fig.(10), one can observe that this implies that
one has to go for higher masses to minimize the decoherence, for example masses above around 1.4·10−15

kg. However, from Fig.(12) one sees that to have optimum results for these masses, one has to go larger
values of d, which leads to much smaller values of 〈W〉. This effect, together with the previously mentioned
increased magnitude of the decoherence, makes 〈W〉 > 0, having that the entanglement is not measurable.
For the interaction time of 1s, on the other hand, we see from Fig.(12) that for these higher masses, one still
has reasonable values for the witness, making this option favorable. This point together with the fact that
the overall decoherence factor is lower, as this is proportional to etint , makes that one finds allowed values for
the witness for lower interaction times. It was again found that the best values for the witness correspond
to a distance of d = ∆x+ (10A)1/6 and the result is displayed in Fig.(14). From this figure, one can observe
that the options for this temperature are extremely limited in terms of the mass of the test masses and
the number density of the environmental gas. The maximum value correspond to a value of 〈W〉 ∼ −0.046
for a mass of ∼ 1.35·10−14 kg. The minimum mass that allows for 〈W〉 < 0 occurs for a mass around 10−14 kg.

Problems also start to occur when the magnetic field gradient is lowered, as we saw that the gradient of

36With lower number densities, densities below 2·107 m−3 are meant, as we will see that below this number density measurable
values are found for the lower interaction time 0f 1s, see Fig.(14).
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Figure 13: Heatmap of 〈W〉 for a range of values of nV and mass. The colorcode indicates the value of 〈W〉
and the parameters used are given next to the colorcode. The white region indicates the region in which the
expectation value is larger than zero. The most optimal witness value are in the pink region, with the most
optimal value of 〈W 〉 ∼ −0.26 for mass of 8.4 · 10−15 kg.

105 Tm−1 does not generate sufficient entanglement phases for the relevant masses, see Fig.(6). If one
would try to find 〈W〉 < 0 for the parameters we discussed, one would not find any allowed parameter
combination that would satisfy this37. This implies that detection of the entanglement is not achievable
with the current setup by lowering the magnetic field gradient by one order of magnitude with respect to
the original proposal. One can see this as the effect that the decoherence is much stronger than the phase
accumulation of the entanglement. This is mathematically visible by noting that for masses up to around
10−14 kg we have ∆Φ↓↑& ∆Φ↑↓ around 0.1 rad. Consequently, we can safely expend the expression of the
entanglement witness, Eq.(96), up to first order to get the result of Eq.(97). By changing the notation of γt
to our expression for the dynamic decoherence constant, one has:

〈W〉 = 2γt− (∆Φ↓↑ + ∆Φ↑↓) +O(n) = 2

∫
γkdt− Φeff +O(n) (134)

This implies that for 〈W〉 < 0 one has satisfy the following condition:

Φeff

2
∫
γkdt

> 1 (135)

This ratio has been evaluated using Eq.(126) for the decoherence factor and the sum of Eq.(130), Eq.(131),
Eq.(132), and Eq.(133) for the effective phase. The ratio has been computed for the environmental param-
eters in which decoherence would attain the minimum value (nV ∼ 107m−3 and Te=1K), to get the largest

37One can again show that without decoherence the best witness value is again obtained for d = ∆x+ (10A)1/6.
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Figure 14: Heatmap of 〈W〉 for a range of values of nV and mass. The colorcode indicates the value of 〈W〉
and the parameters used are given next to the colorcode. The white region indicates the region in which the
expectation value is larger than zero. The most optimal witness value are in the pink region, with the most
optimal value of 〈W〉 ∼ −0.046 for mass around 10−14 kg.

value of the LHS of Eq.(135) and the result is displayed in Fig.(15) for different interaction times. From this
figure, one can observe that this ratio rarely approaches one and, therefore, the entanglement of the test
masses cannot be measured. The maximum of the graph however, corresponds to a value of 1.05 for a mass
of 4.3 · 10−15 kg, which might suggest that we have 〈W〉 < 0. However, one should keep in mind that we
just used an approximation of the witness value, if one would compute the actual value of the witness, for
these parameters, without approximation, one would find 〈W〉 ∼ 0.002 > 0. This means that detection of
the entanglement is still impossible. Consequently, one cannot go to the low magnetic field gradient of 105

Tm−1 for the current setup of the QGEM-protocol.

For a magnetic field gradient of 104 Tm−1 the results are even worse. This can be seen by following the same
procedure and by observing that the phase accumulation is in the order of 10−4 rad (much lower than the
10−1 rad of 105 Tm−1) and that the decoherence is the same as for 105 Tm−1, since the decoherence of air
molecules is the dominant term, see Sec.(10.5). Thus, one cannot go to lower magnetic field gradients, which
are achievable in laboratories, with the current setup. Consequently, one is limited in using the magnetic
field gradient of 106 Tm−1 in order to detect quantum gravity with the current setup of QGEM.
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Figure 15: Graph of the ratio of Eq.(135) as a function of mass for the current setup for the parameters
indicated next to the figure. That the phase/decoherence ratio is smaller than 1 means that the entanglement
and thus quantum gravity can not be measured. The result that the peak for tint is above 1.0 is slightly
misleading as here entanglement is also not measurable, since this graph results from an approximation.

10.6.2 Solution of the modified setup

As we saw, the current setup is limited by high magnetic field gradients and partially limited by low temper-
atures. However, as we saw in Sec.(10.2) up to Sec.(10.4) the proposed modified setup generates significant
phases for lower masses then the current setup and can even generate phases in the order of 0.01 rad for
masses in the order of 10−16 and 10−15 kg. This will, as will be shown in this section, be sufficient to generate
〈W〉 < 0 for measuring the entanglement of both systems. For the higher temperature solution we focus on
the mass of 6 ·10−15 kg with N = 29 & tint = 1s as depicted in Fig.(5). For the lower magnetic field gradient
we stick to a mass of 10−15 kg with N = 57 & tint = 1s, since this parameter combination is capable of
generating a phase of order 0.01 rad as can be seen from Fig.(8).

As explained in App.(B.4), we can express the effective entanglement phase generated in step 1 of the
experiment, similar to the current setup, by the sum of Eq.(132) and Eq.(133)38. For step 3 of the experiment
we have the extra entanglement phase displayed by the same expressions, but now with τ → τ1 and d →
d−smax, see footnote 38. For the free fall period, the effective phase is displayed by Eq.(109) in Sec.(8) from
which we can see that:

∆Φ↓↑ =
Gm2

h̄
∆t

N∑
n=0

(
1

d−∆x− 2sn
− 1

d− sn

)
(136)

and

∆Φ↑↓ =
Gm2

h̄
∆t

N∑
n=0

(
1

d+ ∆x
− 1

d− sn

)
(137)

38These equations should be divided by two, to account for the fact that step 1 and step 3 are now considered separately.
For the expression of step 3 it is assumed, just as in Sec.(10.5), that the inner states instantaneously turn around after the free
fall, so when the magnetic field is turned back on. More on this assumption will be discussed in Sec.(13.3).
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The mass of 6 · 10−15 kg has been chosen as this is around the point in which increasing the mass will have
negative effects on the decoherence ratio for high values nV , as shown in Fig.(10), because such high densities
are easier to achieve as they correspond to lower pressures. N = 29 & tint = 1s were chosen as these are
allowed combination, as we saw in Fig.(5) of Sec.(8), and this would give better results then the higher inter-
action times with the higher N . With these parameters one can compute, just as is done in the previously
section, the value of 〈W 〉 with Eq.(129) for the decoherence term and the equations Eq.(132), Eq.(133),
Eq.(136) and Eq.(137) for the relevant phases, with the altercations explained above Eq.(136). This will for
the discussed ranges of nV and Te result in Fig.(16). From this figure, one can observe that for all values
in the discussed ranges we have allowed values of 〈W〉. Consequently, the entanglement is measurable for
the higher temperatures combined with the higher number densities, whereas for the current setup we are
limited by probing lower densities for these temperatures. Additionally, we can observe from Fig.(16) that
the values of 〈W〉 are significantly lower than for the current setup, implying that fewer measurements are
needed to determine the quantumness of gravity [26]. The lowest value of the witness for these parameters
corresponds to 〈W 〉 ∼ −0.5. One can also show that for the lowest temperature of 1K one can go up to a
number density of ∼ 3.7 · 108 m−3.

Figure 16: Heatmap of 〈W〉 of a range of nV and temperature for the modified setup. The color-code
indicates the value of this expectation for the parameters next to the color-code. The indication that there
is not a white region indicates that〈W〉 < 0 at all times for these parameters. The best results are, ofcourse,
obtained for the lowest number density and temperature considered, giving a witness value of 〈W 〉 ∼ −0.5.

For the lower magnetic field gradient with the mass of 10−15 kg, N = 57 & tint = 1s, we have that ∆Φ↓↑
& ∆Φ↑↓ are both in the order of 0.01 rad, after all steps of the experiment are completed, so one can still
expand Eq.(94) to obtain the requirement of Eq.(135). However, now that we fixed the parameters of the test
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masses and the separation between the states, we have that Φeff is fixed, giving us that with the equations
mentioned briefly before we have39: ∑

k

γk∆t <
Φeff

2
∼ 0.076 (138)

With this limitation on the decoherence rate, one can, using the derived expression of Eq.(129), compute for
what parameters of nV and Te the requirement of Eq.(138) is violated. This is graphically shown in Fig.(17),
where all values of nV below the black dotted line are allowed values. From this figure, one can observe that
for all temperatures of our discussed range we have values of nV in the discussed range which give suitable
solutions for measuring the entanglement. This means that we have a huge advantage by using this modified
setup as we are now able to measure the entanglement of the test masses by gravity for laboratory allowed
magnetic field gradients.

Figure 17: Graph of the decoherence factor for different temperatures as a function of the the number density
of the gas together with the maximum allowed decoherence factor (black dotted line). The number density
region displayed, is the lower portion of the considered range and the different curves indicate the different
external temperatures in the considered range. All parameter combinations below the maximum allowed
decoherence factor can be used for the detection of quantum gravity with the modified setup.

One can compute the values of 〈W〉 for the allowed parameter combinations and one would logically find the
most negative value for the parameters of nV = 107 m−3 and Te=1K. This most optimal value corresponds
to 〈W〉 ∼ −0.01, which is one order of magnitude smaller than for the gradient of 106 Tm−1. Consequently,
one needs to perform more measurements to determine or exclude the quantum nature of gravity.

From the analysis done in this section it is good to take away that for the current setup one could only achieve
measurable entanglements with a large superposition size, ∼ 230 µm, together with a relatively larger mass
of m ∼ 10−14 kg. To achieve this, one needs a relatively high magnetic field gradient of 106 Tm−1, which
requires and advanced setup with co-moving magnets relatively close to the test masses. The most optimal

39Note that we have Φ ∼ 0.152, which is greater than the Φeff ∼ 0.1 obtained in Sec.(10.3). This is because the phase
evolution in step 1 and 3 of the experiment has not been accounted for in Sec.(10.3).
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results are obtained for the most negative value of the entanglement witness, which corresponds to an optimal
mass of ∼ 8 · 10−15 kg for an external temperature of 1K and m ∼ 1.4 · 10−14 kg for an external temperature
of 4K. Additionally, we saw that we are limited by a number density of nV ∼ 8 ·107 m−3 for the temperature
of 1K and already by nV ∼ 2 · 107 for the temperature of 4K. If one would hypothetically implement the
proposed modified setup for this enthusiastic gradient of 106 Tm−1, one can implement higher and thus
easier achievable gas densities of 108 m−3 for all temperatures of 1K-4K. Furthermore, one can double the
expectation value of the witness and thus measure the entanglement with fewer measurements. However,
the most striking result of the modified setup is that one can create a measurable entanglement with only
a superposition size of ∼ 20µm which can be created with a magnetic field gradient which is laboratory
allowed and is two orders of magnitude smaller than for the current setup. This result corresponds to a mass
of 10−15 kg and is achievable as long as the number density of the gas is relatively low, nV < 1.5 · 107 m−3

for Te=4K and nV < 3 ·107 m−3 for Te=1K. From Fig.(17), one can observe that other decoherence sources
are not causing any problems as long as the decoherence rates for these sources are in the order of γ ∼ 10−3

s−1 or lower.

11 Deviation from Newtonian gravity

As mentioned in Sec.(6.4), the quantum gravitational potential used in this thesis does not provide a solution
for the 1/r singularity of the gravitational potential. Currently, we only have upper-bounds on the distances
in which the 1/r potential is valid [15], and we have no confirmation of a deviation from that potential. In
Ref.[15] the upper-bound for the Yukawa gravitational potential of

VG =
Gm2

r
(1 + α · exp{−r/λ}) , (139)

was shown for different values of α and λ. For α=1 the upper-bound corresponds to λ = 56µm [15], which
is in the order of the distances used in the modified setup of the QGEM-protocol, such that it is possible
that deviations from the 1/r potential are of importance. In this section, it will be analyzed how the actual
deviation of the gravitational potential can potentially be probed better with the newly proposed modified
setup and how this would affect the experiment itself. For this, the potential will be treated as a result
of a solution for the Ultra-Violet (UV)-dispersion, which arises from a quantum field theory approach [5].
However, the arguments for the Yukawa potential follow the same line of arguments.

For the modelling of the gravity in the UV region, the results of the infinite derivative ghost free theory
of gravity (IDG) of Ref.[5] will be used. According to the results of this paper, one has that the Feynman
propagator of the Graviton is given by:

Πµνρσ(k) = exp

{
− k2

M2
s

}(P2
µνρσ

k2
−
P0
s,µνρσ

2k2

)
(140)

Here, Ms is the fundamental scale of non-locality. By following the same method as in Sec.(6.4) the gravi-
tational potential between the two test masses will as shown in Ref.[5] reduce to:

VIDG =
Gm2

x
erf

(
Msx

2

)
; erf(y) =

∫ y

0

e−t
2

dt (141)

Here erf indicates the error function. From this expression we see that Ms indicates the distance at which
VIDG starts to deviate from the the Newtonian potential energy. This is, because the error function is equal
to one for distance roughly above y = 1 and approaches 2y√

π
for values of y < 1. Consequently, in these

limits, Eq.(141) reduces to:

x >
2

Ms
; VIDG = VG x <

2

Ms
; VIDG =

Gm2Ms√
π

(142)
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Here, VG is the Newtonian potential used throughout the thesis. From this we see that depending on the
value Ms, we can get a deviation from the Newtonian gravity potential, where this deviated potential is a
constant one. This deviation implies that the entanglement phases of Eq.(100) and Eq.(109) will differ from
there usual expression. Assuming, for the moment, that only the closest states experience a real change in
this altercation of the newtonian potential, one has for the current setup:

Φeff =
Gm2

h̄
tint(

1

d−∆x
erf

(
Ms(d−∆x)

2

)
+

1

d+ ∆x
− 2

1

d
) (143)

and for the modified setup:

Φeff =
Gm2

h̄
∆t
∑
n

(
1

d−∆x− 2sn
erf

(
Ms(d−∆x− 2sn)

2

)
+

1

d+ ∆x
− 2

1

d− sn
) (144)

These equations will differ from Eq.(100) and Eq.(109) depending on the strength of the value of Ms in the
error function. If the value of Ms is such that we have (d − ∆x) < 2

Ms
, or (d − ∆x − 2sn) < 2

Ms
for the

modified setup, then the error function will give a significant contribution to the entanglement phase and
will. Therefore, this will alter the measurements of the entanglement witness and the entropy, and will,
consequently, be different from the Newtonian case. Currently, the value of Ms ,for this theory, is not known
[14]. However, by translating this value to the λ = 56µm and α = 1 case for the Yukawa potential, Ms can
be derived to have a minimum value of Ms=0.004 eV [14]. This corresponds then to a value of 2/Ms ∼ 10−4

m∼ 100µm in the error function, meaning that if the d−∆x seperation is below this value, one could expect
significant changes in the measured entanglement witness and the entropy. For the current setup one is
limited by a separation of the closest states of d−∆x ∼ 157µm, see Eq.(73). This will give us that the error

function becomes erf
(
Ms(d−∆x)

2

)
∼ 0.994. This is a small effect, however, as denoted in Ref.[5], this will

change both the entropy and the expectation value of the entanglement witness of the current setup by only
0.001 [5]. Measuring such differences in the theoretical and experimental values of the witness/entropy could
give an indication of truth of UV-dispersion theories of gravity and is therefore an additional aspect which
can be probed with the protocol. However, one should note that in order to accomplish this, all decoherence
sources should be completely understood as they also alter the witness value. One should keep in mind that
this deviation of 0.001 is only true when the Ms is given by the lower-bound value of Ms. If the theory is
true, Ms can also be larger than 0.004 eV, implying that the separation at which the error function kicks in
is even lower, making the current setup ineffective to probe this theory. However, luckily for us, we can with
the modified setup probe smaller separations and thus larger values of Ms. For the parameters surrounding
the mass of 6 · 10−15 kg of Sec.(10), where the relevant parameters are displayed in Fig.(16), one has a
separation of the closest states of around 10µm. For the parameters surrounding 10−15 kg, as denoted next
to Fig.(17), one will have the closest separation of around 19µm. These are both one order of magnitude
smaller than the limiting separation of 157µm of the current setup. Therefore, one can probe values of Ms

of one magnitude higher with the newly proposed modified setup. For the separation of 10µm, the distance
at which the witness value starts to differ is for a value Ms ∼ 2/x ∼ 0.04 eV, therefore, one can probe values
of Ms roughly up to this value. It is also good to observe that as the modified setup can always be set for
distances in between 157µm and 10µm without violating any requirement, one can always probe this whole
distance range in finding where Ms can optimally be found40.

For the parameters surrounding the mass of the test mass of 10−15 kg and the gradient of 104 Tm−1, this
gravity model could, in principle, make measurements of the entanglement impossible, since we are limited
to probe the entanglement for a separation of the closest states of 19µm. Implying that for low values of Ms,
corresponding to a length of 56µm, the gravitational interaction of the closest states becomes significantly
suppressed by the error function and approaches the constant of Eq.(142). As this closest separation is
without the error function contribution the most dominant term of Eq.(145), one will have a significant

40It should be noted that this is only the case for the parameters surrounding the magnetic field gradient of 106 Tm−1, as
we saw that for the current setup this generates sufficient entanglement for the distance of 157µm (upper bound) and with the
modified setup the distance can be brought down to 10µm (lower bound). Therefore, the whole range 157µm-10µm, generates
sufficient entanglement and can be explored with the modified setup. The gradient of 104 Tm−1 is not suitable for this as we
saw that we need the small separation of 19µm to generate a sufficient entanglement phase.
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reduction of the entanglement phase when the error function is significant for the low values of Ms. This
could have serious consequences on the expectation value of the entanglement witness as this could make
the expectation value positive and, thus, makes it impossible to determine if entanglement occurred. To
see when for which value of Ms measuring the entanglement becomes impossible, Eq.(145) is treated more
generally to include the error function also for the second and third term, to read:

Φeff,erf =
Gm2

h̄
∆t
∑
n

(
1

d−∆x− 2sn
erf

(
Ms(d−∆x− 2sn)

2

)
+

1

d+ ∆x
erf

(
Ms(d+ ∆x)

2

)
− 2

1

d− sn
erf

(
Ms(d− sn)

2

))
(145)

One must also include the error function into the phase evolution during step 1 and step 3 of the experiment
to give the accumulate discretized entanglement phase during the whole protocol. By using Eq.(193) and
Eq.(195) of App.(B.4) we get with the inclusion of the the IDG potential a build up phase in step 1 of:

Φeff,1 =
Gm2

h̄
∆t
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And for step 3 we have, as argued in Sec.(B.4), the same expression as for step 1 but with d→ d−smax = d′

and τ → τ1. Henceforth, we have the build up phase during this step, including the IDG potential, of:

Φeff,3 =
Gm2
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By implementing the sum of these phases in the analysis of the entanglement witness of Sec.(10.6), we have
in this low phase limit:

〈W〉 = 2
∑
k

γk∆t− (Φeff,erf + Φeff,1 + Φeff,3) (148)

Then, by doing the analysis for the most optimal environmental parameters of Te ∼ 1 K and nV ∼ 107 m−3,
as shown in Sec.(10.6), one will obtain 〈W〉 as a function of Ms as displayed in Fig.(18). The red dotted line
indicates the resulting value of 〈W〉 in the linearized gravity model without the UV contribution as obtained
in Sec.(10.6). From this we observe that for Ms < 0.021 eV, measuring the entanglement becomes impossible
as 〈W〉 > 0. One can also observe that the expectation value of the witness approaches the obtained witness
value of the 1/r potential of the obtained results of Sec.(10.6). One can explain this by noting that for high
values of Ms, the non-locality occurs at distances smaller than the separation of the closest states in the
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QGEM-protocol. Consequently, the error function approaches unity and the phase evolution, and thus the
expectation value of the witness, is the same for both gravity models. The sudden increase around 0.01 eV
can be explained by noting that this corresponds to around the region where the third term of Φeff,erf will not
be suppressed by the error function. Therefore, only the first term (closest state interaction) is suppressed
and the phase will logically be negative. Therefore, as we can see from Eq.(148), the expectation value of
the witness will increase. The decrease after the maximum can be explained by noting that this corresponds
to a value of Ms where the first term also starts to lose its suppression of the error function. Henceforth,
the effective phase starts the become positive again, decreasing the expectation value of the witness.

Figure 18: Graph of the expectation value of the entanglement witness as a function of the fundamental
scale of non-locality for the parameters indicated next to the figure. The red dotted line represents the case
of Ms = ∞ used previously, as this is the witness corresponding to the usual 1/r potential of Newtonian
gravity. From the graph we observe that for Ms < 0.021 eV, quantum gravity can not be measured as
〈W〉 > 0.

12 Impact collapse models

The decoherence due to the scattering of environmental particles/photons is an experimentally proven con-
cept of decoherence on a spatially separated superposition [7]. However, it is noteworthy to mention that,
there could be another type of decoherence coming from the so-called collapse model which, up to now,
only exists in theory. From quantum physics we know that if a measurement is performed on a superim-
posed system, the wavefunction of this system collapses to one of the states such that you only measure one
state and not all states of the superposition [17]. This phenomena cannot be explained by the Schrödinger
equation [7, 16]. Collapse models give a modification to the Schrödinger equation to explain this collapse
phenomenon. Such collapse models form a serious problem for the QGEM-protocol, as we are dealing with
mesoscopic test masses which, as we will see shortly, collapse to a definite state very quick with the collapse
models, losing the superposition and, thus, gives serious restriction on the magnitude of the entanglement
with the other test mass.

One such a collapse model is the Continuous Spontaneous Localization (CSL) model [6, 7, 16]. This model
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adds a stochastic noise term to the Schrödinger equation [6, 7], while still obeying the laws of quantum
physics [16]. This makes that the superposition randomly collapses into one of the superimposed states.
This “randomness” gets enhanced the larger the system is, meaning that mesoscopic objects collapse, and
thus localize, at a much faster rate [7, 16] than microscopic objects. Two other important parameters of
the CSL model are the spatial correlation function of the noise (rc) and the collapse strength (λ) [16]. The
rc term of the CSL model determines for which superposition size the noise can distinguish between the
superimposed states, and, thus, gives an indication for which sizes the collapse becomes significant. This
value of rc is modeled to be 1µm [16], which is small compared to ∆x of the QGEM-protocol of both
setups and, therefore, gives already an indication of a fast decoherence in this model. The λ parameter
gives an indication on the rate at which the superposition loses its coherence, which by different studies has
been modeled to be either 10−16 Hz or 10−8 Hz [6, 16]. In Ref.[6], the coherence time of a superposition of
macroscopic objects due to the CSL model was theoretically modeled, using the value of λ = 10−16 Hz, to
get a lower bound on the decoherence rates. In Sec.(10.6) we came to the exciting conclusion that, for the
QGEM-protocol, we can reduce the mass and the superposition size by one order of magnitude together
with a reduction of the magnetic field gradient by 2 orders of magnitude. However, a mass of ∼ 10−15 kg cor-
responds to a diameter of around 800 nm. From figure 10 of Ref.[6], we already see that for a diameter of 500
nm, the decoherence time is already 0.1 ms for a superposition 0.1 µm, whereas we demand a superposition
size of ∆x ∼ 20µm to measure the entanglement, which would lead to even smaller coherence times for our
larger test object with the even larger superposition size. Therefore, as we need coherence in the order of sec-
onds, the current CSL-model makes the QGEM-protocol impossible to implement for both proposed setups.

Besides modeling of the CSL model, Ref.[6] also computed the decoherence rates for collapse models build
upon wormholes smaller than the Planck scale induced by quantum gravity as well as a models based upon
Newtonian gravity and upon the K-model. I will not go into detail of the physical derivation of these models.
However, I will implement the results obtained in Ref.[6] for the decoherence of a macroscopic superposition,
on to our parameters of the QGEM-protocol for both setups obtained in previous sections.

The collapse model based upon quantum gravity is based on the collapse/localization of the macroscopic
object with tiny wormholes smaller than the Planck scale [6]. This model shows greater decoherence then
the CSL model [6]. Therefore, if this model is true, it also makes the QGEM-protocol not achievable.

The collapse model based on Newtonian gravity is the decoherence caused by a potential of the form of the
(Newtonian) gravitational interaction of the superimposed states [6]. As we saw that the linearized gravity
model of Sec.(6.4) results in the same potential, the model will be the same. In the QGEM-protocol we
are, for both setups, dealing with superposition sizes much larger than the size of the test mass. Therefore,
according to Ref. [6], we get that the decoherence rate is independent of the superposition size, and is given
by:

Γ =
6Gm2

5Rh̄
=

6G

5h̄

(
4πρ

3

)1/3

m5/3 (149)

Here, we already see a strong dependence on the mass of the test mass. For the total interaction time of
tint + τ + τ1, we get the decoherence factor

∑
k γk∆t of:

∑
k

γk∆t = Γ(tint + τ + τ1) = exp

[
6G

5h̄

(
4πρ

3

)1/3

m5/3(tint + τ + τ1)

]
(150)

For the parameters surrounding m = 10−15 kg with the gradient of 104 Tm−1, as depicted next to Fig.(17),
one would obtain that

∑
k γk∆t ∼ 3.8, which is 3 orders of magnitude larger than what is needed for the

requirement of the decoherence of Eq.(138). Consequently, this model would also spoil the experiment,
making it impossible to conduct the experiment41.

41As the 10−15 kg mass is the lowest mass we could go to with both setups and the decoherence value for this collapse
model is also too large for the higher phases, generated by the higher masses, this collapse model will, also, make measurements
impossible for all cases of both setups. This can be shown by implementing this decoherence term in Eq.(96), by doing this one
would find that for the considered parameters, for both setups, the entanglement witness would never be negative and, thus,
measuring the entanglement is impossible.
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The K-model is based on the collapse of the superposition due to the incompatibility of quantum physics,
general relativity, and the structure of spacetime [6]. From figure 13 of Ref.[6] we can infer that, for the
QGEM-protocol, with the minimum diameter of 800 nm, as argued before, the coherence time is already
smaller than 0.1 s for a superposition size of 2 µm. However, for the QGEM-protocol, the superposition
size is one order of magnitude larger and as the coherence time scales as 1/(∆x)2 we have that, if this model
is true, the coherence time would again be too small to produce a detectable entanglement.

13 Extra considerations

13.1 Decoherence induced by the plate

In section 10.6 we saw that the modified setup will give better results around the proposed parameters
in Ref.[1]. Furthermore, we saw that this modified setup can even generate measurable entanglements for
laboratory achievable magnetic field gradients. However, this is all under the condition that the introduced
conducting plate will not act as a significant decoherence source on the two superpositions. In Sec.(4) we saw
that the decoherence on a system is defined by the leakage of the “which-path” information and, thus, by
the overlap of the different states that the environment, which is the plate, can attain upon interaction with
the system. Here, the system are the superpositions of the test masses. For the plate these environmental
states are the possibility of (vibrational) excitation due to the force experienced by the test masses. In this
section, we will see that for all the different state combinations (also valid for collapse to certain states),
the deflection of the plate will be smaller than the ground-state spread of the plate. This is also the case
if one takes into account a significant uncertainties of the placement of the test masses. Consequently, the
plate will not be excited and, thus, no leakage of “which-path information” of the systems into the plate will
occur. This implies that the plate will not act as a decoherence source. The analysis will be done for both
the masses and their parameters suggested in Sec.(10.6)42, but can in principle be done for all parameters.

The force of the conducting plate with respect to one of the states is as argued in Sec.(8) given by:

FCasimir = − 3

2π
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ε− 1
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)
R3

x5
= −3h̄c

2π

(
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)
R3

x5
[kg ·m/s2] (151)

In a real-life scenario both test masses will not be placed exactly at the same distance from the plate, as what
is shown in Fig.(3), and this can cause there to be a net force acting on the conducting plate, resulting in a
bending of the plate, which in turn can cause the plate to oscillate, possibly leading to excitation and thus
“which-path” information loss. This oscillation of the plate is caused by the force of the inner states acting on
the plate because, as we saw in the analysis of Sec.(10), the force on the inner states is dominant with regards
to the outer states43. Another negative effect of the oscillation of the plate is that the force on the states
oscillates with time and can cause serious problems for the experiment as this alters the phase evolution
and causes a problem in bringing back the superposition, or collisions of the plate with the states can occur.
Therefore, the geometrical parameters of the plate have to be chosen such that the bending will be negligible.

With the uncertainty of placement of the test masses, the argued decoherence can occur for force imbalances
on the plate caused by four different kinds of combinations of states. Using the parameters of Fig.(3) we have
force imbalances on the plate happening for the combination of states |↓〉1 |↑〉2,|↑〉1 |↓〉2 and the two similar
contributions of |↓〉1 |↓〉2 and |↑〉1 |↑〉2. As the force on the plate for the combination |↑〉1 |↓〉2 is obviously
less significant than |↓〉1 |↑〉2, we have that if we show that no decoherence will occur for the |↓〉1 |↑〉2 state,
then it will suffice to conclude that also no decoherence will occur for the |↑〉1 |↓〉2 combination of states.
The |↑〉1 |↓〉2 combination, with the given placement uncertainty, is also the net effect of the bending of the
plate, by summing over all the state combinations, since these two individual states are the only significant

42This corresponds to the mass of 6 · 10−15 kg with N = 29, t = 1s and ∂xB = 106 Tm−1 and to the mass of 10−15 kg with
N = 57, t = 1s and ∂xB = 104 Tm−1

43To avoid confusions the “inner” states are the ones close to the plate, so |↓〉1 and |↑〉2 of Fig.(3), and the “outer” states are
the ones the furthest from the plate, so |↑〉1 and |↓〉2 of Fig.(3).
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“force-sources”. The |↓〉1 |↓〉2 and |↑〉1 |↑〉2 contributions have the same magnitude of bending of the plate
but opposite directions, so one can treat the possible decoherence similarly, hence only the |↑〉1 |↑〉2 combi-
nation will be taken into account for these two combinations. The force imbalances caused by these states
will have the largest magnitude if the center of masses of both test masses are, with the given uncertainty in
the placement, displaced both to the right or left of Fig.(3) and this will be used to maximize the bending.
It is again important to stress that if the bending of the plate for all state combinations will not lead to
excitation of the plate then there will be no way to tell from the plate in which states the superpositions are
(as all state combinations will not alter the state of the plate) and, therefore, no extra decoherence term will
act on the system. To model this, the wavefunction of the plate will be modeled as a harmonic oscillator
[17], as we will see that the induced bending acts like an harmonic oscillator. Therefore, the bending of the
plate will be compared to the corresponding ground state spread of the harmonic oscillator [35].

First let us define the directions in Fig.(3). Setting the axis along the length of the plate to be the z-axis,
the axis perpendicular to this, on the paper, the x-axis, and the direction into the paper the y-axis. As the
superimposed states of the test masses are all on the same line on the x-axis, as indicated in Fig.(3), we
can assume the contribution of all forces of the states with respect to the plate to act as a point force on
the plate along the x-axis. That this is a point force is also justified by the fact that plate is of an infinite
extension in the z-axis compared to the sizes of the states. Therefore, we can approximate the bending of
the plate to be caused by a point force along the x-axis. As the plate was assumed to be clamped at the
ends of the z-axis, as described in the description of Fig.(3), which is reasonable to keep the plate at its
place during the free fall, we get that the displacement/bending for such a point source at the midpoint is
as derived in Ref.[36] given by:

δd =
FL3

192EI
(152)

Here, E is the young modulus of elasticity of the plate, and I is the area moment of inertia of the cross-section
perpendicular to the axis around which the plate is bend (z-axis), which is the xy plane of Fig.(3). It is also
important to note that this is the displacement of the center of the plate, which is the maximum displace-
ment possible. If the force acts on a different point along the length of the plate the resulting maximum
displacement would be smaller [36]. However, by assuming the force to always act on the midpoint during
the free fall we get an upper-bound on the bending of the plate.

As the force acts along the x-axis, we require the area moment of inertia to be Iy and assuming the plate to
have a length of H along the y-axis we get:

Iy =

∫ H/2

−H/2

∫ W/2

−W/2
x2dxdy =

1

12
W 3H ; W thickness of the plate along the y-axis (153)

For the QGEM-protocol, the thickness W is our fixed value, however, H is completely free as long as the
infinite plate assumption holds. Iy is maximum, thus δd minimized, when we have a square plate, thus
H = L. By substituting Iy with H = L in Eq.(152) we get:

δd =
FL2

16EW 3
(154)

For the next part of the analysis we assume that the uncertainty of the placement can range from 0 to R/2,
with R the radius of the test mass. If we then denote this displacement by uR, with u ranging from u = 0 to
u = 0.5, we get that the initial separation of the inner states of Fig.(3), before the free fall, can be denoted
by (d−∆x)/2−W/2±uR. For the state combination |↓〉1 |↑〉2 the maximum displacement will then logically
occur, as mentioned before, when both systems are placed an amount of uR to the right, or left but we will
consider right for arguments sake, of Fig.(3), as this maximizes the difference in the Casimir force of the two
states with respect to the plate. Consequently, for the maximum bending, we get an initial displacement of
(d−∆x)/2−W/2−uR for the state |↓〉1, and (d−∆x)/2−W/2+uR for the |↑〉2 state, with respect to the plate.

The Casimir force of the plate with respect to the |↓〉1 state will act as an attractive force on the plate
towards the left of Fig.(3), and for the |↑〉2 state we have an attractive force on the plate to the right,
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causing a net force to act to the left or right on the plate. As the left system is closer to the plate, and thus
has a higher attraction, this net force will be to the left. Furthermore, as the Casimir force goes as 1/x5

this net force will be the largest at the end of the free fall. Consequently, the point force of Eq.(154) obtains
its maximum at the end of the free fall, and thus gives the largest displacement of the plate. Denoting the
Casimir force of the plate with respect to |↓〉1 as F|↓〉1 , and the Casimir force of the plate with respect to

the |↑〉2 as F|↑〉2 we get a maximum deflection of44:

δd,max =
FmaxL

2

16EW 3
=
|F|↓〉1(x(tint)) + F|↑〉2x(tint))|L2

16EW 3
(155)

For the combination of |↑〉1 |↑〉2, we only have the contributing force, acting on the plate, by the |↑〉2 state45,
therefore, with the same argument that the force is maximum at the end of the free fall, we have the bending
of the plate given by:

δd,max =
FmaxL

2

16EW 3
=
|F|↑〉2x(tint))|L2

16EW 3
(156)

As Eq.(154) is also proportional to L2, it is also wise to go for less lengthy plates to lower the deflection,
which can be achieved if we let the plate free fall with the test masses. In this limit, we can set the length
of the plate to be 1 mm3, as this is still 4 to 5 orders of magnitudes larger than the sizes of the test
masses, implying that the plate is still of infinite extend with respect to the size of the test masses. An-
other important aspect of lowering the size of the plate is that it will reduce the cost of acquiring such plates.

In order to calculate the Casimir forces on the plate, one can just use the iteration technique of Eq.(104) of
Sec.(10.2), with a small altercation on the initial placement d. As we model the situation for the uncertainty
of placement to the right of Fig.(3) we have the initial condition of placement of Eq.(110) given by:

d = ∆x+ (N ± u)R (157)

Here, the + sign corresponds to the states of system 1, and the - sign to the states of system 2. Next, by us-
ing this new placement condition in the iteration technique described in Sec.(10.2), without the acceleration
condition, one can compute the force exerted on the plate by both the |↓〉1 and the |↑〉2 states by inserting
the last iterated value of Eq.(104) in the equation of the Casimir force, Eq.(151).

As we also fixed the values of L and W , the only variable left is the Youngs modulus (E). For this, I will
assume, for the moment, that the plate is made out of pure copper. The modulus of copper was measured
in Ref.[37] up to 4K to fit the behavior of 137-1.27·10−4T 2 GPa, so for our external temperature range of
1-4K, we can take E∼ 137 GPa. By taking E∼ 137 GPa and the values and the iteration technique described
earlier, the deflection of the center of the plate has been calculated for both the parameter combinations
mentioned in the beginning of this section, for both the |↓〉1 |↑〉2 and the |↑〉1 |↑〉2 state combination, for the
discussed uncertainty range, and the results can be found in Fig.(19).

From Fig.(19), one can observe that the deflection of the plate is at least 12 orders of magnitude smaller
than the width of the plate, causing no harm-full force differences on the states. However, as mentioned
before, this deflection should not cause the plate to go to an excited state as this can lead to decoherence
on the two test masses. The possibility for this will now be analyzed.

As we are dealing with a high vacuum and the Casimir force will go away, since the states are accelerated
away from the plate, to bring the superposition back, we have that the center of the plate will oscillate with a
minimalistic damping. We can determine the stiffness (k) from Eq.(154), as F = kx→ k = F/δd. Therefore

44It is good to note that I included the direction of the forces as I wrote bold letters for the force. If one were to use only the
magnitudes one would have a minus sign between the forces as the directions of both forces are in opposite directions.

45This is because, as argued before, the magnitude of the force of the outer states is small compared to that of the inner
states.

62



Figure 19: Deflection of the center of the plate due to uncertainty of test mass placement for an uncertainty
ranging from 0 to 0.5R for the parameters and state combinations indicated by the respective labels. One
can observe that the deflection of the plate is at least 12 orders of magnitude smaller than the thickness of
the plate.

the induced bending is like an harmonic oscilattor, which follows the same force law, and as we know from

a harmonic oscillator that the frequency of oscillation is ω =
√

k
mp

, we will get an oscillation frequency of

ω =

√
k

mp
=

√
16EW 3

mL2
=

√
16EW 2

ρpL4
, (158)

where ρp is the density of copper, which is around 8.96 g/cm3.

As mentioned before, the plate is modeled as a harmonic oscillator for which the spread of position of the
states is given by [35]:

∆X =

√(
n+

1

2

)
h̄

mpω
(159)

Here, mp is the mass of the object modeled as the oscillator, which we assume to be the whole plate. n is an
integer indicating the excited state, with n = 0 being the ground state. Then, if the deflection of the plate,
caused by the different state combinations, is smaller than the ground state spread of the oscillator, the plate
will not be found in one of the excited states as these positional spreads for excited states are larger with a
constant positional spread/energy separation between excitations.

For the ground state spread we then have just:

S =

√
h̄

2mpω
=

 h̄

2ρpWHL
(

16EW 2

ρL4

)1/2


1/2

=
1

W

√
L

H

√
h̄

2ρp
√

16E
=

1

W

√
h̄

2ρp
√

16E
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Where in the last line the square plate assumption, of H = L ,is used. As this expression needs to be larger
than the displacement due to bending, we get:

S > δd,max →
1

W

√
h̄

2ρ
√

16E
>
FmaxL

2

16EW 3
→ W 2

L2
>

Fmax

(16E)3/4

√
2ρ

h̄
(161)

If we fix W , as we have done in the analysis of the thesis, we get the requirement on the length to be:

W 2

L2
>

Fmax

(16E)3/4

√
2ρp
h̄
→ L <

(
1

W 2

Fmax

(16E)3/4

√
2ρ

h̄

)−1/2

(162)

Here, Fmax is the force experienced by the plate, depending on the combination of states, and is denoted by
Eq.(155) or Eq.(156) for the relevant states. This maximum allowed length, in order for the displacement
to be smaller than the ground state spread, is again computed for both the masses and their parameters for
both the |↓〉1 |↑〉2 and |↑〉1 |↑〉2 combination, for the range of uncertainties and the result can be found in
Fig.(20).

Figure 20: Maximum length of the plate to not be found in an excited vibrational state as a function of
uncertainty of placement of the test masses for the different state combinations with their corresponding
parameters, indicated by their respective labels. One can observe that for the parameters and state combi-
nations surrounding the mass of 10−15 kg a plate of length 100 mm, will suffice for no decoherence to occur.
Similarily for the mass of 6 · 10−15 kg, this corresponds to a length of 10 mm. Consequently, the chosen
length of 1mm is more then sufficient for both cases.

From Fig.(20), we observe that the maximum length never exceeds 10 mm for the parameters around the
gradient of 106 Tm−1, and for the parameters of the laboratory allowed magnetic field gradient of 104 Tm−1

we are not even exceeding the 100 mm range. Therefore, the chosen length of L = 1mm is an excellent choice
for the experiment as this will give a deflection of the plate much smaller than the actual ground-state spread,
having no excitation of the plate for all the different state combinations. Therefore, no “which-path” in-
formation will leak into the plate having that the plate does not act as a decoherence source on both systems.
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13.2 Perfect Conductor

For the whole derivation of the modified setup with the conducting plate, the assumption of the perfect
conducting plate has been made. A perfect conductor has an infinite conductivity, which cannot be achieved
with normal materials. However, for materials with a high reflectivity over a great portion of the electromag-
netic spectrum, this will be a pretty reasonable assumption. In the previous section we assumed the plate to
be made out of copper as it is a very rigid material, copper has also a high conductivity at low temperatures
[37]. However, copper is not a great reflector at low frequencies, so one might have to look for composite
materials with for example aluminum or silver, which are considered to be good metallic reflectors, but
have lower rigidities. Therefore, a composite material of the sort should have an elastic Young-Modulus,E,
such that the length-limit of Eq.(162) is not violated as to have no decoherence source coming from the plate .

For such a composite plate the requirement should be that one has a strong reduction of the Casimir-Polder
potential between the closest states, such that the gravitational force between the states is still the dominant
force. For the parameters surrounding the mass of 10−15 kg with the magnetic gradient of 104 Tm−1, one
has the separation of the closest states during the free fall around d − ∆x ∼ 24µm. Consequently, when
there is no plate in between the test masses the ratio of the gravitational potential over the Casimir-Polder
potential has a magnitude of Eq.(72):

VG
VCP

∼ 10−4 (163)

Therefore, one needs the composite plate to screen the Casimir-Polder potential at least by a factor of 105

to have VG
VCP

> 10. People have already shown on the Armstrong length scale that a sheet of graphene in be-
tween two silica plates, would shield the Casimir force according to a 1/x law, with x the separation between
silica plate, see Ref.[38]. Extending this to our distance would already reveal a 105 reduction on the Casimir
force. Although the materials and geometries are completely different with respect to the QGEM-protocol,
it already shows the possibility in the strong reduction of the Casimir force.

Another method to obey the perfect conductor assumption is to let the metallic plate act as a tiny Faraday
cage [39]. For this, we have an empty space (cavity) inside the plate itself, which makes sure that the
electromagnetic waves cannot travel through this cavity [39]. This implies that there cannot be standing
electromagnetic waves present between two states on opposite sides of the plate and thus annihilating the
possible Casimir force between the two.

13.3 Bringing back the superposition

As mentioned throughout this thesis, one of the difficulties of this new, advanced, setup is that one has to
be careful how the superposition is brought back in step 3 of the experiment, due to the acceleration of
the inner states towards the conducting plate. At the end of the free-fall there is still a residual velocity
of the states present due to the Casimir force, implying that when the magnetic field is switched back on
there is still a residual velocity towards the plate. This means that the inner states, |↓〉1 and |↑〉2 of Fig.(3),
do not instantaneously turnaround as assumed in the analysis of Sec.(10). Consequently, if one keeps the
magnetic field gradient similar for both the inner and outer states of step 3, the superimposed states do not
“meet” at the same place, having not a significant overlap of the wave-packets of the states, and we have no
superposition that is brought back. This can, in principle, be solved by imposing a slightly inhomogeneous
magnetic field gradient that is different for both the inner and outer states, such that they will meet at the
end. This usually means that the inner states are subjected to a slightly higher gradient than the outer states.

However, we still have to check the instantaneously turnaround assumption to validate the results of Sec.(10).
As we saw that only the inner states of Fig.(3) are significantly affected by the conducting plate, we have
that when the magnetic field is switched back on, they will still feel the effect of the “pulling” force of the
plate. The equation of motion for these states is, at the start of step 3 of the experiment ,similar to as
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derived in Sec.(10.2) but with the addition of the magnetic field gradient:

ẍ =
FCasimir

m
+
Fmagnetic

m
= − 9h̄c

8ρπ2

(
ε− 1

ε+ 2

)
1

x5
+
gµB∂xB

m
(164)

Where use has been made of Eq.(50) and Eq.(102). Using the same iteration technique as in Sec.(10.2) we
obtain that this second-order differential equation can be solved by iterating:

xn+1 = − Z

x5
n

(∆t)2 + 2xn − xn−1 +
gµB∂xB

m
(∆t)2 (165)

The initial conditions are determined by the end position and end velocity after the free-fall time of step 2.
With these conditions, one can determine how long it would take for the state to come to a “hold” before
it turns around and accelerates backward, to bring the superposition back. This stationary point can be
determined using the same iteration technique as in Sec.(10.2) with our newly determined initial conditions.
The python code used for this section can be found in App.(C). For the iteration, we assume, for the moment,
that the magnetic field gradient is still the same as in step 1 of the experiment but, in reality, it should,
as argued before, be slightly higher, which will only benefit the results. Using the parameters surrounding
the mass of 6 · 10−15 kg with the gradient of 106 Tm−1, and the mass of 10−15 kg with the gradient of 104

Tm−1, as used in the analysis of Sec.(10.6), one would then find that the turnaround times are 1 ms and
32 ms respectively. Although in the second case it seems significant, one has to remember that the total
time of step 3 is one order of magnitude larger, and the total run time of the experiment is even two orders
of magnitude larger. Therefore, this contribution would only alter the results of Sec.(10.6) by a very small
perturbation. However, as mentioned before, one has to impose fluctuating gradients for the inner states to
bring back the superposition which lowers the turn-time. For a doubling of the gradient, one would reduce
the time of the turning point to 16 ms and for a quadrupling, this would already reduce to approximately 9
ms, justifying the assumption even more.

One can even get rid of the problem of turning point times and the need of inhomogeneous magnetic field
gradients, by modifying the setup of the experiment even further. For this one implements the parallel
setup proposed in Ref.[40]. With this setup, the superposition of the test masses are parallel to each other46

instead of along the same line. This implies that the acceleration of the Casimir force induced by the plate
will not alter the superposition size and one can use the same magnetic field gradient for the recombina-
tion of the superposition. Although this setup can for the same separation of the closest states generate
larger entanglements, the test masses should initially be placed further from one another as there is also
a significant acceleration towards the plate in step 1 and step 3 of the experiment and is present for all
states. Consequently, the effectiveness of this setup depends on how fast the spin measurements on the
test masses ,after recombination, can be taken as to have no collisions of the test masses47. The effective-
ness of this setup is something to explore in further research as this setup ,if suitable, will make our life easier.

14 Discussion

In this thesis, it was shown that with the current setup of the QGEM-protocol, one cannot reduce the
magnetic field gradient of 106 Tm−1 by even one order of magnitude, as one needs a large superposition size
to generate a sufficient entanglement to overcome the limiting separation, of the closest states, d −∆x, of
157µm. This limiting separation was obtained under the assumption that the test masses are modeled as
neutral atoms just as in Ref.[1]. Although the masses can be made relatively neutral [1], these masses still
have a magnetic susceptibility [1]. Consequently, when the test masses are subjected to the magnetic field of
the interferometer, the test masses will become magnetized. This will affect the obtained expression for the
Casimir-Polder potential, Eq.(45), as this would alter the allowed electromagnetic wave modes in between

46So a single superposition is along the vertical direction and, thus, along the length of the plate of Fig.(3), instead of being
on the same line on the horizontal axis of this figure.

47One can pull the plate away after the recombination of the test masses as this will not affect the entanglement anymore
and one can, thus, lower the velocity of the test masses this way
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the states which can alter the limiting separation distance of 157µm. This effect has not been taken into
account in this thesis.

The decoherence on the system was modeled as to be a result of “which-path” information loss of the spatial
superposition of a test mass by interaction, of the superposition, with the environmental gas and photons,
and by the emission of black-body photons of the test mass itself. In this model, the internal temperature
of the test mass of ∼ 0.15K initially proposed in Ref.[1] was used, and a range of number densities of the
environmental gas ,ranging from 107 to 108 m−3 , and an external temperature range of 1-4K were consid-
ered. The latter two parameters combined, correspond to pressures of ∼ 10−16 − 5 · 10−15 which is around
the original proposed pressure of 10−15 Pa [1]. To arrive at the model for this decoherence source several
assumptions were made throughout the analysis of Sec.(4) and Sec.(10.5) under which: an isotropic medium,
no recoil of the test masses and the applicability of short- and long-wavelength limits. For the isotropic
medium assumption, one has to realize that the test masses alter the environment itself, as they influence
the distribution of the environmental particles/photons, therefore, one test mass gives a perturbation on
the hypothetical isotropic medium of the other test mass. As the thermal wavelength of the environmental
photons is an order of magnitude larger than the distance between test masses, for the best scenarios of
Sec.(10.6), scattering or emission of photons might influence the scattering on the other test masses during
the free-fall period. This effect has not been taken into account in the analysis, but can be considered to cause
a reasonable small perturbation on the results, as we are already dealing with a low-density environment and
this effect depends on a specific angle of scattering. By treating the no recoil assumption as an elastic scat-
tering between gas and test mass, one can show that, for the obtained masses 10−15−10−14 kg, this leads to
a residual velocity around 10−27 − 10−28 m/s and is, thus, negligible as assumed. The relevant assumptions
for the short- and long-wavelength limits used are as argued in Sec.(10.5) pretty reasonable, as we are dealing
with a minimum mass of around 10−15 kg, for which the most “loose” upper-bound is for the environmental
photons with the external temperature of 4K and the high magnetic field gradient of ∂xB ∼ 106 Tm−1. For
these parameters, the wavelength is in the same order as that of the superposition size, ∆x, nevertheless,
the long-wavelength limit still gives an upper-bound on the decoherence as argued in Ref.[6] and Sec.(10.5).
Also, as this only a loose upper-bound for this extreme scenario and is acceptably valid for higher masses
and lower gradients, the results are pretty accurate for the best case scenario’s/parameters of the experiment.

With the validity of the above assumptions it was, with the maximization of the entanglement phase and the
modeling of the decoherence of the above-mentioned model, shown that, with the entanglement witness of
Ref.[26], the best results for measuring the quantum gravity induced entanglement are obtained for a mass
of around 8 · 10−15 kg for an external temperature, Te of 1K, and a mass of 1.4 · 10−14 kg for Te ∼ 4K. This
corresponds to 〈W 〉 ∼ −0.26 and 〈W 〉 ∼ −0.046 respectively for the lowest number density of nV ∼ 107

m−3. Entanglement can, for Te ∼1K, be measured for nV < 8 · 107 m−3 and reduces to nV < 2 · 107 m−3

for Te ∼ 4K. However, as mentioned before, this current setup of the QGEM-protocol is due to significant
entanglement of the test mass through the Casimir-Polder potential, at short distances, limited by the clos-
est state separation of the states of 157µm. Therefore, large superposition sizes should be created, in the
order of the closest separation of 157µm, to generate a significant gravitational induced entanglement. This
makes it impossible to reduces the magnetic field gradient of the SG-interferometer used to split the spatial
superposition even by one order magnitude, from 106 to 105 Tm−1, to measure the entanglement of the test
masses. It is also noteworthy that with Te ∼1 K & nV ∼ 107 m−3, one can go to a mass of 10−15 kg to have
〈W〉 < 0, but requires ∆x ∼ 2mm which is a huge separation compared to the result of the modified setup
which will now be discussed.

To overcome the limitation imposed by the Casimir-Polder potential a perfectly conducting plate was in-
troduced between the two test masses, see Fig.(3), which screens the Casimir-Polder potential between the
two systems. This allowed the test masses to come closer together, as one no longer has to worry about
the entanglement of the test masses through the Casimir-Polder potential. This resulted that for the same
enthusiastic magnetic field gradient of 106 Tm−1 one has no bound on the number density of the gas and the
temperature in the considered ranges of 107−108 m−3 and 1-4K. Also one has for the most optimal environ-
mental parameters 〈W〉 ∼ −0.5, which is double that for the current setup shown before and thus allowing
for fewer measurements needed to determine the quantumness of gravity. For this result, the parameters
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surrounding a mass of 6 · 10−15 kg were used48, and the dynamics of the states during the free-fall ,due to
interaction with the newly introduced plate, were taken into account. The requirement on the dynamics was
such that that the states should be in a position such that the strength of the attraction of the plate never
exceeded an order of 0.1 of the magnetic field strength needed to bring the superposition back. However, the
most intriguing effect of this modification of the setup, is that one can produce a measurable entanglement,
〈W〉 < 0, for a mass of 10−15 kg with only a superposition size of ∼ 23µm 49. This can be accomplished,
utilizing laboratory allowed magnetic field gradients of 104 Tm−1, which is a reduction of two orders of
magnitude with respect to the current setup. This detection of quantum gravity is, as can be inferred from
Fig(17), possible when nV < 3.1 · 107 m−3 for Te ∼ 1K, and nV < 1.6 · 107 m−3 for Te ∼ 4K. With the
closer allowed separation of the closest states, one has with the newly proposed setup, as argued in Sec.(11),
a better advantage in probing UV deviation theories of quantum gravity. For the theoretical model used in
Ref.[5], this allows exploration of the fundamental scale of non-locality, Ms, up to around a value of ∼ 0.04
eV. It should be noted that for the parameter space surrounding the mass of 10−15 kg, Ms > 0.021 eV in
order to measure entanglement, whereas for current measurements Ms can be a minimum of Ms ∼ 0.004 eV.
One can make similar arguments for other models that try to explain the 1/r singularity of gravity, such as
the Yukawa-potential approach.

Another issue that is not explored in this thesis, is the possibility for a fifth unknown force that can entangle
the system, or which can make non-local operations. The former option can cause stronger entanglement
than the gravitational entanglement causing deviations from the observed entanglement witness, and for the
latter makes the LOCC assumption no longer valid.

With the introduction of the conducting plate, one can also encounter new problems with regards to decoher-
ence, one of which is that the interaction with different state combinations of both test masses could induce
vibrational excitation of the plate, leading to “which-path” information loss and thus decoherence effects.
However, as argued in Sec.(13.1), if we fix the square plate by a length L ∼ 1µm, and a width W ∼ 1µm,
there will not be vibrational excitation of the plate, and the plate will, therefore, not carry information
about the superposition and, consequently, does not act as a decoherence source. One should note that the
contribution of surface defects on the plate have not been analyzed in this thesis and should be explored
for a real-life experiment. The plate itself also perturbs the environment and can, therefore, also alter the
scattering of environmental photons/particles on the test masses, as they can scatter off the plate on to
the test masses, and can increase the decoherence, on the other hand, the plate also shields environmental
particles. Therefore, it can potentially also decrease the decoherence of the test masses. These effects have,
quantitatively, not been taken into account in this analysis, but should be taken into account in further
research.

As argued before, the environmental decoherence was taken into account to look at the possibilities for
both setups. However, there are still other decoherence sources present during the experiment, such as
decoherence of the spin decoupling of the NV-point of the test masses, magnetic polarization of the test
masses, or collapse models. The coherence of the spin can, as argued in the original paper (Ref.[1]), for our
internal temperature of 0.15K, based on the results of Ref.[34], easily be realized. The test masses will also
be magnetized in the inhomogeneous magnetic field of the experiment, as pointed out in Sec.(6.1), this will,
as argued and pointed out in Ref.[25], alter the trajectory of the states in creating the superposition, to an
oscillatory motion. This limits the maximum superposition size which can be created far below the sizes
needed to make the entanglement measurable. As argued in Sec.(6.1), we can make the change in trajectory
due to this magnetization negligible by coating the diamagnetic diamond core of the test masses with param-
agnetic/ferromagnetic materials. The material engineering aspect in achieving the optimal coating in terms
of the number of layers, the thickness of the layers, and kind of coating materials, definitely needs further
exploration, as this is an important aspect in creating a superposition of significant size in a laboratory.
One can infer, from Fig.(17), that, if the other decoherence sources have an accumulative decoherence rate

48This corresponds to a free fall time of 1s, an initial separation of the test masses of d ∼ 408µm, and a splitting period of
τ = 500ms.

49The other parameters corresponding to this possibility are: an initial separation of test masses of d ∼ 47µm, and again an
interaction time of 1s, and splitting time of τ = 500ms.

68



in the order of 10−3 Hz, it will not give any trouble in the obtained results for the measurability of the
entanglement. It was shown that with the current hypothesized collapse models, the decoherence imposed
by current models, for the parameter space surrounding both the current and the proposed setup, would be
too large to measure the entanglement between the two test masses.

Another issue to combat with the modified setup is that the interaction of the plate with the test masses
causes a different trajectory, during the free-fall, of the superposed states of the test masses. Therefore,
the magnetic field needs to have “extra” in-homogeneities in step 3 of the QGEM-protocol to bring the
superposition back. One can also combat this by imposing the superposition of the test masses to be parallel
to the length of the plate, such that ∆x is not affected by the interaction with the plate, however, this
approach requires further analysis. The effectiveness of this parallel setup relies on the speed in which spin
measurements can be taken, but can in principle generate higher phases for a given separation of the test
masses with respect to the plate. Furthermore, we saw the possibility for realising the assumption of the
perfect conductor by looking at (composite) material for which the reduction of the Casimir-Polder potential
between the closest states is such that the gravitational force is still the dominant entangling source. For the
parameters surrounding the mass of 10−15 kg, this corresponds to a needed reduction of around 105 of the
Casimir-Polder potential. Promising results for such a Casimir screening by a graphene sheet were already
obtained in Ref.[38]. It should also be noted that for a reduction, but not complete annihilation of the
Casimir-Polder force, the magnitude of the Casimir interaction between plate and states is lowered as the
plate is not fully reflective to EM-waves. Consequently, the trajectory perturbation of the states becomes
less significant, which is in favor for bringing the superposition back.

The last point to make is that, in the most optimal scenario, we can with the plate limit the superposition
size to ∼ 23µm for the magnetic field gradient of 104 Tm−1 with the mass of 10−15 kg. However, such
a superposition size with such a mass is still unachievable with current possibilities of SG-interferometry
[11, 12, 13]. Therefore, experimental possibilities are still out of reach for the experiment and improvements
from this side are still needed for this challenging project. On the other hand, theoretical improvements
can still be obtained from the design side. As mentioned before, one can look at the parallel setup to have
sufficient phase evolution for lower superposition sizes, or one can look at multi-component entanglement.
With this, it is meant that instead of two test masses we have let us say three or four test masses in a super-
position, each in a separate compartment. All compartments are separated by Casimir screening plates, to
increase the entanglement of the test masses and, thus, generating higher entanglement phases. Such designs
might reduce the needed masses and superposition sizes even further. This is an important aspect which
can be probed for further analysis to bring experiment and theory closer together for this exciting project.

15 Conclusion

In Ref.[1], a promising experiment to test the quantum nature of gravity was proposed, which consists of
entangling two diamond, mesoscopic, test masses, which are both in a spatial superposition. The entangle-
ment between the two test masses of the experiment, which was refered to as the QGEM-protocol, can only
occur if gravity is of a quantum nature. Therefore the purpose of this protocol is to go after the detection
of the gravitationally induced entanglement between the two test masses. However, in the current protocol,
masses of ∼ 10−14 kg together with a superposition sizes of ∼ 200µm are needed to prove the entanglement,
which requires a magnetic field gradient of 106 Tm−1. Such a high magnetic field gradient does not allow
for laboratory allowed magnetic field gradients and requires co-moving magnets close to the test masses,
leading to alteractions in the motion of the test masses, together with an increase in the decoherence of the
test masses. Additionally, the parameters of the mass and superposition size are too far of a reach for state
of the art Stern-Gernlach interferometers. In this thesis, the restriction on the parameters was shown by
modeling the decoherence according to “which-path” information loss by interaction with the environment.
This modelling together with the restriction of the Casimir-Polder potential, makes it for the current protocol
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impossible to detect the entanglement for lower magnetic field gradients than the order of 106 Tm−1 50. As
one needs a relatively large superposition size to create a significant entanglement to overcome the limited
separation of the test masses induced by the Casimir-Polder potential. The Casimir-Polder interaction limits
this separation as this is another quantum communicator which could entangle the system, which is not a
desirable effect, as one wants the entanglement to come dominantly from the gravitational interaction. By
imposing that the gravitational potential should be at least one order of magnitude larger than the Casimir-
Polder potential, one has that the closest separation between states is limited by 157µm.

To overcome this limitation, a modification for the QGEM-protocol was proposed in this thesis, which
consisted of the insertion of a perfectly conducting plate in between the test masses which ameliorates the
Casimir-Polder interaction between those test masses by acting as a Faraday cage. Consequently, the entan-
glement can only occur through the gravitational force, allowing, in principle, for much smaller separations
between the test masses. The introduced plate however, still generates a significant Casimir force between
the plate and the different states of the test masses. This attractive force needs to be lower than the magnetic
force required to bring the superposition back, giving rise to another limitation of the setup. Nonetheless,
one is, even with this limitation, still able to detect the entanglement of the test masses for masses around
∼ 10−15 kg with superposition sizes of ∼ 23µm. This is a huge improvement compared to the current pro-
tocol, as one can reduce both the mass and the superposition size by one order of magnitude. Additionally,
one can create the superposition with a laboratory achievable magnetic field gradient of 104 Tm−1, which is
an astonishing two orders of magnitude lower than for the current setup and makes it easier to control the
motion of the test mass. It was also shown that with this new setup, one has a better possibility to probe
deviations from the known 1/r potential of gravity (provided that gravity is of a quantum nature). Since one
can probe the entanglement for separations, between the test masses, of one order of magnitude smaller than
for the current setup. Another aspect shown in this thesis is that the interaction of the spatially separated
states of both test masses with the plate, does not lead to an extra decoherence source for a square plate of
length 1mm and width 1µm, as such a plate will, for all state combinations, not get vibrational excited. Im-
plying that no “which-path” information can leak into the plate as the plate cannot discriminate between the
different state combinations of the test masses and, therefore, carries no information about those test masses.

Although we are now able to detect the entanglement for masses and superposition sizes one order of mag-
nitude smaller than initially proposed, the new parameters are still too large for the current matter-wave
interferometers. Therefore, improvements from both experimentalists and theorists should be made to bring
the difference of the parameters space of the growing technology and the allowed parameter space closer
together. Such that we tackle one of the most sought after questions of the century: “Can we tie gravity to
quantum mechanics to obtain a theory of everything?”
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A Relevant tables

Setup tint (s) ∂xB (Tm−1) Φeff (rad) minimum mass (kg)·10−14

Current 3 106 0.01 0.095
Current 2.5 106 0.01 0.105
Current 3 106 0.1 0.336
Current 2.5 106 0.1 0.375
Current 3 106 1 1.654
Current 2.5 106 1 1.960

Conducting Plate 3 106 0.01 ∼ 0.035
Conducting Plate 2.5 106 0.01 ∼ 0.037
Conducting Plate 2 106 0.01 ∼ 0.041
Conducting Plate 1.5 106 0.01 ∼ 0.045
Conducting Plate 1 106 0.01 ∼ 0.054
Conducting Plate 3 106 0.1 ∼ 0.111
Conducting Plate 2.5 106 0.1 ∼ 0.119
Conducting Plate 2 106 0.1 ∼ 0.128
Conducting Plate 1.5 106 0.1 ∼ 0.145
Conducting Plate 1 106 0.1 ∼ 0.165
Conducting Plate 3 106 1 ∼ 0.36
Conducting Plate 2.5 106 1 ∼ 0.39
Conducting Plate 2 106 1 ∼ 0.425
Conducting Plate 1.5 106 1 ∼ 0.49
Conducting Plate 1 106 1 ∼ 0.55

Table 1: Table displaying the minimum mass required for a given entanglement phase (0.01, 0.1 or 1 rad) to
be met for a given interaction time and a magnetic field gradient of 106 Tm−1. It should be noted that the
given initial separation of the test masses are not indicated but can be found in Fig.(4) and Fig.(5).
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Setup tint (s) ∂xB (Tm−1) Φeff (rad) minimum mass (kg)·10−14

Current 3 105 0.01 0.165
Current 2.5 105 0.01 0.196
Current 3 105 0.1 -
Current 2.5 105 0.1 -
Current 3 105 1 -
Current 2.5 105 1 -

Conducting Plate 3 105 0.01 ∼ 0.036
Conducting Plate 2.5 105 0.01 ∼ 0.039
Conducting Plate 2 105 0.01 ∼ 0.043
Conducting Plate 1.5 105 0.01 ∼ 0.048
Conducting Plate 1 105 0.01 ∼ 0.056
Conducting Plate 3 105 0.1 ∼ 0.126
Conducting Plate 2.5 105 0.1 ∼ 0.134
Conducting Plate 2 105 0.1 ∼ 0.148
Conducting Plate 1.5 105 0.1 ∼ 0.16
Conducting Plate 1 105 0.1 ∼ 0.192
Conducting Plate 3 105 1 ∼ 0.53
Conducting Plate 2.5 105 1 ∼ 0.58
Conducting Plate 2 105 1 ∼ 0.62
Conducting Plate 1.5 105 1 ∼ 0.74
Conducting Plate 1 105 1 ∼ 0.95

Table 2: Table displaying the minimum mass required for a given entanglement phase (0.01, 0.1 or 1 rad) to
be met for a given interaction time and a magnetic field gradient of 105 Tm−1. It should be noted that the
given initial separation of the test masses are not indicated but can be found in Fig.(6) and Fig.(7).
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Setup tint (s) ∂xB (Tm−1) Φeff (rad) minimum mass (kg)·10−14

Current 3 104 0.01 -
Current 2.5 104 0.01 -
Current 3 104 0.1 -
Current 2.5 104 0.1 -
Current 3 104 1 -
Current 2.5 104 1 -

Conducting Plate 3 104 0.01 ∼ 0.052
Conducting Plate 2.5 104 0.01 ∼ 0.055
Conducting Plate 2 104 0.01 ∼ 0.06
Conducting Plate 1.5 104 0.01 ∼ 0.07
Conducting Plate 1 104 0.01 ∼ 0.089
Conducting Plate 3 104 0.1 -
Conducting Plate 2.5 104 0.1 -
Conducting Plate 2 104 0.1 -
Conducting Plate 1.5 104 0.1 -
Conducting Plate 1 104 0.1 -
Conducting Plate 3 104 1 -
Conducting Plate 2.5 104 1 -
Conducting Plate 2 104 1 -
Conducting Plate 1.5 104 1 -
Conducting Plate 1 104 1 -

Table 3: Table displaying the minimum mass required for a given entanglement phase (0.01, 0.1 or 1 rad) to
be met for a given interaction time and a magnetic field gradient of 104 Tm−1. It should be noted that the
given initial separation of the test masses are not indicated but can be found in Fig.(8).

B Derivations Sec.(10)

B.1 Scattering constant air molecules

This subsections consists of deriving the scattering constant for air molecules on the superposition following
the procedure of Ref.[7].

The first step includes the assumption that the size of the test masses is much larger than the wavelength
of the air molecules [7]. This is valid as the lowest mass in Tab.(1) corresponds to a radius in the order
of at least ∼ 100 nm, while the wavelength of the air molecules was calculated to be in the order of ∼0.1
nm. With this assumption we can state that the differential cross-section ,|f(qn, qn′)|2, is constant and
that the cross-section of scattering is just the geometrical cross-section of scattering [7]. This gives rise to
|f(qn, qn′)|2 = R2/4 [7]. With this we get that the second integral in Eq.(32) becomes:

πR2

6h̄2

∫ 1

−1

dcos(Θ) (1− cos(Θ) =
πR2

6h̄2

(
cos(Θ)− cos2(Θ)

2

) ∣∣∣1
−1

=
πR2

3h̄2 (166)

This gives rise to the scattering constant given by [7]:

Λair =
πR2

3h̄2

∫
dq%(q)v(q)q2 (167)

By using the Maxwell-Boltzmann distribution for our gas of air molecules as denoted by equation 3.71 in
Ref.[7] and substituting v(q) = q/m back in we get:

Λair =
4π2R2

3mh̄2

N

V

1

(2πmkbT )3/2

∫ ∞
0

dq q5 exp

(
−q2

2mkbT

)
(168)
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By making the substitution q2/(2mkbT ) = x→ dq = (2mkbT )/(2q)dx we get that the integral in the above
equation becomes: ∫ ∞

0

dq q5 exp

(
−q2

2mkbT

)
=

(2mkbT )3

2

∫ ∞
0

dxx2e−x = (2mkbT )3 (169)

Substituting that in Eq.(168) we obtain:

Λair =
4π2R2

3mh̄2

N

V

1

(2πmkbT )3/2
(2mkbT )3 =

4R2

3h̄2

N

V

√
πm (2kbTe)

3/2
(170)

Which is our final expression for the scattering constant of the air molecules in the QGEM-protocol. Note
that I rewrote T by Te to express that the temperature we are dealing with is the environmental tempera-
ture. It should also be noted that this expression reduces to the expression given in [6] if one applies to ideal
gas law, which is valid for the low-density gas we are dealing with, as the conditions are for example more
extreme than in outer space .

B.2 Scattering constants environmental photons

This derivation follows the one given in Ref.[7], so for a more detailed analysis I will refer the reader to
section 3.4 of Ref.[7].

For photons, which are scattered upon interaction with the superimposed test masses, the differential cross-
section can be written according to the Rayleigh law, which is given by equation 3.59 in Ref.[7]51. This will
have the result that the second integral in Eq.(32) becomes:

q4R6

h̄6 Re
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ε+ 2
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π

3

∫ 1

−1

dcos(Θ) (1− cos(Θ)(1 + cos2(Θ)) (171)

Where Re denotes the real part, this integral reduces to:
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(172)

Substituting that equation into the second integral of Eq.(32) together with v(q) = c for photons one obtains:

Λsc =
R6

h̄6 Re

(
ε− 1

ε+ 2

)2
8πc

9

∫ ∞
0

dq %(q)q6 (173)

Using the Planck distribution for the thermal photons of the environment, one obtains the density as indicated
by equation 3.63 of Ref.[7], where the assumption is made that the momenta of the thermal photons are
isotropically distributed. By substituting that expression in our equation above we will arrive at:

Λsc =
8cR6

9πh̄9 Re

(
ε− 1

ε+ 2

)2 ∫ ∞
0

dq
q8

exp[cq/(kbT )]− 1
(174)

Then by making the substitution x = cq/(KbT )→ dq = dx kbT/c we obtain the expression:

Λsc =
8cR6

9πh̄9 Re
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ε− 1

ε+ 2

)2(
kbT

c

)9 ∫ ∞
0

dx
x8

exp[x]− 1
(175)

Using the zeta Riemann function ,ζ(n), as defined by equation 3.65 in [7] one obtains the final expression
given by:

Λsc = 8!ζ(9)
8cR6

9π

(
kbTe
h̄c

)9

Re

(
ε− 1

ε+ 2

)2

(176)

51Here it should be noted that the real part of polarizibility of the sphere is already taken into account in Schlosshausser’s
expression.
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Here I again changed T to Te to express that we are dealing with the environmental temperature [6].

What changes for absorption of environmental photons and emission of photons from the test masses is
that the differential cross-section used in obtaining Eq.(171) is different or that it describes the probability
of emission. This will result that the “scattering” constants for absorption and emission and photons is
according to Ref.[6] is given by:

Λ(e)a =
16π5cR3

189

(
kbT(i)e

h̄c

)6

Im

(
ε− 1

ε+ 2

)
(177)

here Ti denotes the temperature of the test masses, because this is the temperature the thermal photons are

emissioned around, and Im denotes the imaginary part of
(
ε−1
ε+2

)
.

B.3 Derivation total decoherence of the QGEM-protocol

In this section of the appendix the analytic expression for the total collisional decoherence of the experiment,
for both setups, will be derived for both the case where the superposition size is constant during the free-fall
as well as the case where this is not the case. This will be done by noting that the superposition evolves
differently in all 3 parts of the experiment. The analysis first focuses on giving the second term of

∫
γkdt of

Eq.(122).

B.3.1 Constant superposition size

This sub-subsection focuses on the case for the constant superposition size.

step 1: In this part of the experiment we have, for both setups, a constant acceleration of both states in
the superposition , with the acceleration given by Eq.(50). For the acceleration part of the experiment we
than have that |x|↑〉k − x|↓〉k | = 2 · a2 t

2 = at2. This will give that we can write the second summation of the
second term as:

(x|↑〉k − x|↓〉k)2 = a2t4 (178)

This will give us that the integral of the second term can be evaluated as∫
(x|↑〉k − x|↓〉k)2dt = a2

∫ τ/2

0

t4dt =
a2

5

(τ
2

)5

(179)

During the deceleration period of this step we have, as argued in Sec.(6), the reverse of the magnetic field

giving us that the dynamic superposition distance becomes |x|↑〉k −x|↓〉k | = −at
2 + 2a τ2 t+a

(
τ
2

)2
, where the

second term and third term are the initial velocity and superposition size caused by the acceleration period.
This will give similar to the acceleration period that the integral for this part becomes:∫

(x|↑〉k − x|↓〉k)2dt =

∫ τ/2

0

(
−at2 + 2a

τ

2
t+ a

(τ
2

)2
)2

dt = −a
2

5

(τ
2

)5

+
46

15
a2
(τ

2

)5

(180)

Combining the expression for the acceleration and deceleration period we obtain that that during step 1 of
the experiment the second term in Eq.(122) becomes:

3∑
i=1

Λi

∫
(x|↑〉k − x|↓〉k)2dt =

3∑
i=1

Λi
46

15
a2
(τ

2

)5

(181)

Step 2: As argued before, for the modified setup, sn is at most 2 orders of magnitude smaller than ∆x for
the high magnetic field gradient and the lower masses of the gradient of 105 Tm−1. Therefore we can safely
make the assumption that, during this step, we have a pretty much constant separation of ∆x for both the
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modified setup with the plate and the current setup. Therefore for a given interaction time tint with the
constant superposition size the second term of Eq.(122) becomes:

3∑
i=1

Λi

∫
(x|↑〉k − x|↓〉k)2dt =

3∑
i=1

Λi(∆x)2tint =

3∑
i=1

Λi4a
2
(τ

2

)4

tint (182)

In the last line use has been made of Eq.(54) and Eq.(50) from which it can be seen that ∆x = 2a
(
τ
2

)2
.

Step 3 The derivation for this step is pretty similar as for step 1, except for the directions of the magnetic
field and the initial conditions. As described in section 6 we have the stationary states at the end of the
free-fall52. Therefore we have that the separation distance of the superimposed states during the acceleration

period towards each other becomes: |x|↑〉k−x|↓〉k | = −at
2+∆x = −at2+2a

(
τ
2

)2
. Using the similar approach

as for step 1 we obtain:∫
(x|↑〉k − x|↓〉k)2dt =

∫ τ/2

0

(
−at2 + 2a

(τ
2

)2
)2

dt = −a
2

5

(τ
2

)5

+
46

15
a2
(τ

2

)5

(183)

This is to no surprise the same as Eq.(180) as it is the reverse action.

For the deceleration period we get using the initial velocity and position of the last velocity and position of

the superposition of the acceleration period that |x|↑〉k − x|↓〉k | = at2 − 2a τ2 t + a
(
τ
2

)2
. This will give that

the integral for this step becomes:∫
(x|↑〉k − x|↓〉k)2dt =

∫ τ/2

0

(
at2 − 2a

τ

2
t+ a

(τ
2

)2
)2

dt =
a2

5

(τ
2

)5

(184)

This is to no surprise the same as Eq.(179) as it is again the reverse action. Hence we will get just as for
step 1 that the second term of Eq.(122) becomes:

3∑
i=1

Λi

∫
(x|↑〉k − x|↓〉k)2dt =

3∑
i=1

Λi
46

15
a2
(τ

2

)5

(185)

Now that we have the analytic expression for the second term of Eq.(122) for all steps of the experiment we
can substitute the obtained expressions, Eq.(181),Eq.(182), and Eq.(185), in Eq.(122) to obtain:∫

γkdt = Γair(tint + 2τ) + 2a2
(τ

2

)4 3∑
i=1

Λi(
46

15

τ

2
+ 2tint) (186)

Then by substituting this expression in Eq.(38) one will obtain that the decoherence factor of superposition
is given by:

exp[−
∫
γkdt] = exp[−[Γair(tint + 2τ) + 2a2

(τ
2

)4 3∑
i=1

Λi(
46

15

τ

2
+ 2tint)]] (187)

B.3.2 Changing superposition size

In the case of the modified setup, for the lower magnetic field gradients, step 1 is still the same giving the
same expression as Eq.(181), however, for step 2 we have no longer the constant distance ∆x. As we can
see from figure 3 and the analysis done in Sec.(10.2) we have for the modified setup that the superposition
distance, during the free-fall, changes by a factor of sn as the inner states, for the relevant masses, travel

52For the modified setup the inner states are not stationary as we have the acceleration towards the conductive plate, however
for the high magnetic field gradient it will take around a millisecond extra to turn the states around and bring the superposition
back and can be considered to be negligible compared to the acceleration period.
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a distance sn and the acceleration of the outer states can be neglected,see Sec.(10.3). As sn was obtained
numerically the integral of Eq.(122) should be replaced by a summation with an infinitesimal limit of ∆t to
obtain the second term of Eq.(122) for this step:

3∑
i=1

Λi
∑
k

(x|↑〉k − x|↓〉k)2∆t =

3∑
i=1

Λi
∑
k

(∆x+ sk)2∆t =

3∑
i=1

Λi[4a
2
(τ

2

)4

tint +
∑
k

(4a
(τ

2

)2

sk + s2
k)∆t]

(188)
Here use has been made of Eq.(182) and the definition of ∆x.

For the third step we have that a larger time then τ = 500 ms is needed to bring the superposition back
as the superposition size at the end of the free fall is now ∆x + skmax

. The assumption will be made that
the inner state will instantly “turn around” when the magnetic field is turned back on. This assumption is
discussed in Sec.(13). With this assumption we have that the when the magnetic field is switched back on
the superposition size that needs to be brought back is ∆x+skmax

. At the end of the acceleration period this
distance should be half that and with the constant acceleration of the magnetic field this becomes:

∆x+ skmax

2
= at2 → t =

√(τ
2

)2

+
skmax

2a
(189)

This is the acceleration time, and because the deceleration time is the same we have that τ becomes:

τ → 2

√(τ
2

)2

+
skmax

2a
= τ1 (190)

We see that this reduces back to τ when skmax
=0. With this expression we can just substitute this new value

for τ in Eq.(185) to obtain:

3∑
i=1

Λi
∑
k

(x|↑〉k − x|↓〉k)2∆t =

3∑
i=1

Λi
46

15
a2
(τ1

2

)5

(191)

The last observation to be made is that the time of τ1 also changes the whole time of the experiment to tint+
τ + τ1. This last observation together with Eq.(181), Eq.(188) and Eq.(191), will give a total decoherence
factor of:

exp[−
∑
k

γk∆t] = exp

[
−

[
Γair(tint + τ + τ1)+

3∑
i=1

Λi

(
46
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a2{
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2

)5

+
(τ1

2

)5

}+ 4a2
(τ

2

)4

tint +
∑
k

(4a
(τ

2

)2

sk + s2
k)∆t

)]]
(192)

From this expression, one can see that with skmax
= 0 we retrieve Eq.(187).

B.4 Accumulated phases step 1 and step 3 of the QGEM-protocol

For generalization I will stick to the notation that d is the initial separation of both setups as depicted in
figures 1 and 3. During the acceleration period of step 1 the superposition is split up due to the acceleration
created by the magnetic field gradient, for both setups, as the acceleration due to the plate is negligible in
this step for the modified setup. This has the consequence that the phase evolution of Eq.(63) during this
acceleration period of τ/2 reduced to:

Φeff =
Gm2

h̄

∫ τ
2

0

(
1

d− at2
+

1

d+ at2
− 2

d

)
dt
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Gm2

h̄

− ln

(
| aτ2 −
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2 +
√
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)
2
√
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+
arctan

(
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2
√
ad

)
√
ad

− τ

d

 (193)
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During the deceleration period, we get with the initial conditions determined by the acceleration period then
the equation given by:

Φeff =
Gm2

h̄

∫ τ
2

0

(
1

d+ at2 − aτt− a
(
τ
2

)2 +

1

d− at2 + aτt+ a
(
τ
2

)2 − 2

d

)
dt (194)

Now by defining d1 = d− a
(
τ
2

)2
and d2 = d+ a

(
τ
2

)2
, one arrives at effective phase accumulated during the

deceleration period:

Φeff =
Gm2

h̄

(
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2

arctan

 aτ√
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(195)

Where the assumptions are made that 4d1a > (aτ)
2

and (aτ)
2
< 4ad2. These assumptions are valid for

the current setup as well as for the parameters of the modified setup used for the calculations in Sec.(10.6).
Therefore, Eq.(193) and Eq.(195) describe the total phase evolution during step 1 of the experiment.

In step 3 of the experiment, we have to distinguish between the current and modified setup. For the current
setup as we have no significant forces acting on the states and as step 3 is the inverse of step 1, the phase
evolution will have the same outcome as the total phase evolution of step 1 and is, therefore, represented by
the sum of Eq.(193) and Eq.(195), just as is the case for step 1.

For the modified setup, on the other hand, we have that the superposition size is slightly enhanced, towards
∆x + smax, but as ∆x is an order of magnitude larger it is fairly reasonable to make the assumption that
the phase evolution of step 3 is the same as step 1 with τ → τ1 and d → d − smax = d′ as step 3 is the
inverse mechanism as step 1. With τ1 and d′ the assumptions 4d′1a > (aτ1)

2
and (aτ1)

2
< 4ad′2 still hold.

Therefore the total phase evolution during step 1 and step 3 for the alternatiive setup are given by Eq.(193)
and Eq.(195) for step 1 and the same equations with τ → τ1 and d→ d− smax = d′ for step 3.

C Python codes

C.1 Python code Sec.(10.2) and Sec.(10.3)

Below is the python code used for the results of the modified setup obtained in Sec.(10.2) and Sec.(10.3):

import numpy as np
import math
import matp lo t l i b . pyplot as p l t
import numpy as np
de f heatmap3 ( dens i ty ,m1,m2,N, t i n t , t acc , grad B ,W) :

de f p o t e n t i a l 2 (m, grad B , dens i ty , t i n t ,N, t acc ,W) :
bohr =9.274∗10∗∗−24
g =2.00231930436256
e p s i l o n =5.7
c =2.998∗10∗∗8
d e l t a x =2∗g∗bohr∗grad B ∗( t a c c /2)∗∗2/m
R=(3∗m/(4∗np . p i ∗ dens i ty ∗10∗∗3))∗∗ (1/3)
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d=d e l t a x+N∗R
hbar =1.054571800∗10∗∗−34
G=6.67408∗10∗∗−11
x0=(d−d e l t a x )/2
i n i t i a l = [ x0−W/2 , x0−W/2]
i n i t i a l 2 =[ d e l t a x+x0−W/2 , d e l t a x+x0−W/2]
acc magnet ic=bohr∗g/m∗grad B
A=−9/(8∗dens i ty ∗10∗∗3∗np . p i ∗∗2)∗ ( ep s i l on −1)/( e p s i l o n +2)∗hbar∗c
time =0.001
dt=time
t s = [ time ]
v a l s = [ 0 ]
va l s 2 =[1/(2∗x0 ) ]
va l s 3 =[1/(d ) ]
va l s 4 =[1/(d+d e l t a x ) ]
tmax=t i n t
whi l e time < tmax :

n2 , n1 = i n i t i a l
n5 , n4=i n i t i a l 2
n3=A/n2∗∗5∗dt∗∗2+2∗n2−n1
n6=A/n5∗∗5∗dt∗∗2+2∗n5−n4
acc=A/n3∗∗5
D=d+d e l t a x
i n i t i a l =(n3 , n2 )
i n i t i a l 2 =(n6 , n5 )
i f abs ( acc)>acc magnet ic /10 :

break
v a l s . append ( x0−W/2− i n i t i a l [ 0 ] )
va l s 2 . append (1/(2∗ x0−2∗(x0−W/2− i n i t i a l [ 0 ] ) ) )
va l s 3 . append (1/( d−( d e l t a x+x0−W/2− i n i t i a l 2 [0 ] ) − ( x0−W/2− i n i t i a l [ 0 ] ) ) )
va l s 4 . append (1/(D−2∗( d e l t a x+x0−W/2− i n i t i a l 2 [ 0 ] ) ) )
t s . append ( time )
time += dt

t imes=np . array ( t s )
phas e f a c to r=G∗m∗∗2/ hbar
phase RL=phase f a c to r ∗dt∗sum(np . array ( va l s2 ) )
phase LR=phase f a c to r ∗dt∗sum(np . array ( va l s4 ) )
phase LL=phase f a c to r ∗dt∗sum(np . array ( va l s3 ) )
i f l en ( t imes)< t i n t /dt :

phase=−0.01
e l s e :

phase=abs ( phase RL+phase LR−2∗phase LL )
return phase

M=np . l i n s p a c e (m1,m2,1 0 0 )
T=len (M)
i t =0
S =[ ]
h =[ ]
whi l e i t<T:

data1=p o t e n t i a l 2 (M[ i t ] , grad B , dens i ty , t i n t ,N, t acc ,W)
S . append ( data1 )
i t+=1
h . append (S)
S =[ ]
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data1=np . array (h)
data1=data1 [ data1>0]
M=M[ l en (M)− l en ( data1 ) : ]
r e turn data1 ,M

It should be noted that this code corresponds to the data of the graph around the given phase requirements
and not for the maximum phase of Fig.(9). For this a slight altercation in the code is used and can be given
upon request.

C.2 Python code Sec.(13.3)

Below is the python code used for the results obtained in Sec.(13.3):

import numpy as np
de f backtrack (m, grad B , dens i ty , t i n t ,N, t acc ,W) :

bohr =9.274∗10∗∗−24
g =2.00231930436256
e p s i l o n =5.7
c =2.998∗10∗∗8
K=8.98755∗10∗∗9
d e l t a x =2∗g∗bohr∗grad B ∗( t a c c /2)∗∗2/m
R=(3∗m/(4∗np . p i ∗ dens i ty ∗10∗∗3))∗∗ (1/3)
d=d e l t a x+N∗R
hbar =1.054571800∗10∗∗−34
G=6.67408∗10∗∗−11
de f p o t e n t i a l 2 8 9 (m, grad B , dens i ty , t i n t ,N, t acc ,W) :

x0=(d−d e l t a x )/2
i n i t i a l = [ x0−W/2 , x0−W/2]
i n i t i a l 2 =[ d e l t a x+x0−W/2 , d e l t a x+x0−W/2]
acc magnet ic=bohr∗g/m∗grad B
A=−9/(8∗dens i ty ∗10∗∗3∗np . p i ∗∗2)∗ ( ep s i l on −1)/( e p s i l o n +2)∗hbar∗c
time =0.001
dt=time
t s = [ time ]
v a l s = [ 0 ]
va l s 2 =[1/(2∗x0 ) ]
va l s 3 =[ d e l t a x /2 ]
va l s 4 =[1/(d+d e l t a x ) ]
va l s 5 =[0 ]
tmax=t i n t
whi l e time < tmax :

n2 , n1 = i n i t i a l
n5 , n4=i n i t i a l 2
n3=A/n2∗∗5∗dt∗∗2+2∗n2−n1
n6=A/n5∗∗5∗dt∗∗2+2∗n5−n4
acc=A/n3∗∗5
v e l o c i t y =(n3−n2 )/ dt
D=d+d e l t a x
i n i t i a l =(n3 , n2 )
i n i t i a l 2 =(n6 , n5 )
v a l s . append ( i n i t i a l [ 0 ] )
va l s 3 . append ( d e l t a x /2+x0−W/2− i n i t i a l [ 0 ] )
va l s 5 . append ( v e l o c i t y )
t s . append ( time )
time += dt
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t imes=np . array ( time )
d i s t anc e=np . array ( v a l s )
s u p s i z e=np . array ( va l s 3 )
ve lo=np . array ( va l s5 )
re turn d i s t anc e [−1] , ve l o [−1] , s u p s i z e [−1]

x0 , v0 , sup=p o t e n t i a l 2 8 9 (m, grad B , dens i ty , t i n t ,N, t acc ,W)
acc magnet ic=g∗bohr∗grad B/m
time =0.001
dt=time
i n i t i a l =[v0∗dt+x0 , x0 ]
va l s 7 =[x0 , v0∗dt+x0 ]
va l s8 =[v0 ]
va l s 9 =[sup , sup+v0∗dt ]
tmax=0.05
t imes =[time , time+dt ]
A=−9/(8∗dens i ty ∗10∗∗3∗np . p i ∗∗2)∗ ( ep s i l on −1)/( e p s i l o n +2)∗hbar∗c
whi l e time<tmax :

n2 , n1=i n i t i a l
n3=A/n2∗∗5∗dt∗∗2+2∗n2−n1+acc magnet ic ∗dt ∗∗2
ve l =(n3−n2 )/ dt
i n i t i a l =(n3 , n2 )
va l s7 . append ( i n i t i a l [ 0 ] )
va l s 8 . append ( ve l )
va l s 9 . append ( sup+x0− i n i t i a l [ 0 ] )
time+=dt
t imes . append ( time+dt )

t imes2=np . array ( t imes )
t i j d=np . l i n s p a c e (0 , 0 . 25 , 5000 )
d i s t a n c e s=np . array ( va l s7 )
d i s t a n c e s 2=np . array ( va l s9 )
v e l o c i t y=np . array ( va l s8 )
mymin = np . min ( d i s t a n c e s )
m in po s i t i on s = [ i f o r i , x in enumerate ( d i s t a n c e s ) i f x == mymin ]
turnpo intt ime=times2 [ m in po s i t i on s ]
no ca s im i r=acc magnet ic ∗ t i j d ∗∗2/2+np . amin ( d i s t a n c e s )
n 0 c a s i m i r v e l=acc magnet ic ∗ t i j d
re turn turnpo intt ime
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