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Abstract

By describing the matter distribution of the Universe at the largest of scales, ingrained
within the cosmic web is an abundance of information on the history of structure formation
within our Universe. However, due to its non-linear nature and ambiguous definitions in
defining the different constituents, cosmologists have difficulty analysing the cosmic web,
leaving essential information out of reach. Over the decade’s numerous formalisms have
been developed to try and extract this hidden information. The report focuses on two
formalisms, namely DisPerSE and NEXUS+, and begins with dissecting the mathematical
formalisms they incorporate in their algorithm. More explicitly, DisPerSE uses a topological
approach in its analysis of the cosmic web while NEXUS+ adopts a scale-space approach.
After building up the required knowledge to get a grasp on the algorithm and how they
differ, simulations were conducted on a pre-defined Universe to compare both qualitative
and quantitative results. The results found that although DisPerSE is more mathematically
robust, it has issues when tracing the different environments due to its topological approach
being unable to preserve the shape and size of the various constituents. Contrariwise, results
showed that NEXUS+ was successful in the delineation of the environments and rendered
better results due to its geometrical approach in identifying the different regions resulting
in better quantitative results as well. The success NEXUS+ has in portraying the different
constituents combined with the scale-space approach taken to probe more efficiently the
intricacies within the cosmic web suggests that NEXUS+ provides a better analysis of the
cosmic web with its scale-space, geometrical approach.
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1 Introduction

The cosmic web describes the distribution of matter on scales of tens to hundreds of
mega-parsecs induced as a result of the minute perturbations in the primordial Gaussian
density field of the Universe as well as gravitational instability (Bond et al., 1996). Upon
observation, four key characteristics that define the cosmic web have emerged raising
complexities for a tool to rigorously analyse the environment.

The cosmic web consists of rich anisotropic structures all interconnected with one another
moulding the wispy-like pattern observed today. For instance vast, empty voids dominate
the volume content of the Universe and engulf the sheet-like walls, whom themselves
envelope filamentary networks that branch off from clusters and act as a highway that
distributes the matter content of the Universe. These morphological elements together
constitute the intricate web-like pattern observed today, and though it may seem
stochastic, countless N-body simulations have shown that this pattern arises naturally
through gravitational instabilities (Gott (1987); van de Weygaert and Bond (2008)).
Another observation is that the cosmic web is a multi-scale environment and this results
from the hierarchical nature in structure formation, in which small structures form and
over time coagulate with one another merging into more massive structures as illustrated
in figure 1-1 giving for a range of possible densities the different environments can
comprise of. As the Universe evolves, gravity causes these environments to clump towards
denser regions and a vast asymmetry between overdense and underdense regions emerges,
giving the cosmic web another defining characteristic since the lesser dense regions end up
dominating the volume composition of the Universe.

To date, the Sloan Great Wall is the largest structure observed measuring at around 400h−1

Mpc (Gott et al., 2005). On the other hand, the oldest example of a morphological element
was detected as a filament by the Subaru survey at a redshift z ≈ 3 (Matsuda et al., 2005)
providing strong evidence of the existence of these pronounce cosmic structures at earlier
epochs. These multi-scale observations of the cosmic web, as well as the knowledge of it
being a prominent feature at earlier aeons, has instigated an abundance of research to be
conducted due to its link with cosmic structure formation processes.

Since the pattern observed is induced by the primordial Gaussian density field, analysis
of the morphological features emerging from the cosmic web allows for information on the
nature of dark matter and dark energy as well as the formation and evolution history of
galaxies to be obtained. For instance, voids have been used as a testing site to probe the
nature of dark energy and dark matter as well as test theories of gravity (Lavaux and
Wandelt (2010a)), while filaments may hold essential information on the missing baryonic
matter component of the Universe (Fukugita et al., 1998). To extract the plethora of
information ingrained within the cosmic web a multitude of studies have been conducted
over the decades using both N-body simulations as well as galactic redshift surveys.

By analysing DisPerSE, a topologically motivated formalism and that of a geometrical one
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provided by NEXUS+ which incorporates a scale-space analysis, it’s found that NEXUS+
has more success in delineating and identifying the different environments, especially the
tenuous structures and subsequently provides more reliable qualitative and quantitative
information on the cosmic web as opposed to DisPerSE.

1.1 Outline of the paper

This thesis is composed of five main sections, in section 2 the constituents of the cosmic
web as well as some defining features of the cosmic web are introduced to provide the
reader justification as to why the cosmic web is so hard to study. Section 3 will dissect
the mathematical theories behind both formalisms providing a better understanding as to
why the discrepancies in their results emerge. Afterwards, a description of a chosen model
Universe in section 4 will be given followed up by a comparison between quantitative and
qualitative results obtained using both formalisms in section 5. The results obtained will be
used to support the final conclusion of the paper given in section 6, which will also mention
possible room for improvements in the study.

Figure 1-1: Structures not yet fully developed are composed of denser smaller sized substructures formed at an earlier time making
it a prime example of the hierarchical development of the structure. The image illustrates this by showing clusters being composed of
galaxies and dwarf galaxies, while at larger scales they can form super-clusters situated at nodes, or if the distribution is sparse enough,
filaments or walls and producing the intricate web-like pattern observed at the largest of scales. (image courtesy of Springel (2005))
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2 The Cosmic Web

The Sloan Digital Sky Survey (SDSS) (Fukugita et al. (1998); Gunn et al. (1998)) shows
that at the mega-parsec scale, the spatial distribution of galaxies and clusters of galaxies
form a wispy-like environment composed of different constituents. This intricate pattern
emerges due to the primordial density field of the Universe and gravitational instabilities.

Numerous papers have shown that the Universe had a primordial Gaussian random
density field expressed by a power spectrum of density fluctuations (Adler (1981); Bardeen
et al. (1986); Bennett et al. (2003)) which also manifests itself in the observed
temperature fluctuations of the Cosmic Microwave Background (Planck Collaboration
et al., 2014). The second mechanism behind the web-like pattern observed is due to the
evolution of perturbations as a consequence of gravity (Peebles, 1980). Dense regions such
as clusters or nodes become denser over time as they accrete mass and continue to
contract onto themselves, while sparse environments such as voids expand and have their
mass outsourced to denser environments. Based on the initial conditions induced from the
primordial density field and how perturbations evolve, four key characteristics describing
the cosmic web have emerged upon its observation, making it hard for algorithms to
analyse it rigorously.

Figure 2-1: Probability density function (PDF) graph of the different
morphological environments in the cosmic web as found by Cautun et al.
(2014) using NEXUS+.

First and foremost, the
different morphological environments
form complicated geometrical
patterns giving its rich anisotropic
nature, meaning identification of
environments cannot stem solely from
the appearance. These components
not only have an anisotropic
nature but a hierarchical one
too leading to it’s multi-scale nature
in terms of mass and size. The idea
is that structures emerge out of less
massive but denser substructures which
end up coagulating with one another
giving for no well-defined structures
at a particular scale or density, in turn
causing the delineation of the different environments extremely difficult as there is no
optimal scale at which to analyse the cosmic web as well as the fact that environments
comprise of a range of different sizes and densities. In fact, upon observations the cosmic
web spans six orders of magnitude in densities, with the density distribution of different
environments tending to overlap with one another as illustrated in figure 2-1. This overlap
of their density distribution means that an algorithm can’t identify environments purely
based on their densities either. These environments are all interconnected with one
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another forming the last key characteristic of the cosmic web since clusters of galaxies end
up forming the nodes of the environment in which filaments branch out from, diverging
into sparser void regions. These filamentary networks are enveloped by the sheet-like walls
who in turn get engulfed by the surrounding void regions giving for a high connectivity
between the different environments causing the environment to be intricate by nature.

Figure 2-2: The figure shows the morphological components making up the cosmic web. Bright yellow spots show the denser regions
and represent clusters. Filaments connect clusters situated at the nodes and form a network, all the while vast empty regions called
voids dominate the volume of the Universe and engulf them. (image courtesy of the Millennium Simulation Project).

To better understand the different constituents of the cosmic web, a few terminologies are
introduced. Figures 2-2 and 2-3 are also added to support these definitions.

Definition 2.1 (Voids): Voids are underdense regions and practically devoid of galaxies.
They dominate the volume fraction of the Universe (Cautun et al., 2014) and come in a range
of sizes, anywhere between 20-50h−1Mpc (Libeskind et al., 2018). Our galaxy neighbours
such a void called, rightfully so, the Local Void, whose diameter is 30h−1Mpc (Tully, 1987).
Their spherical shape and structure are suggested to provide a direct reflection on the nature
of dark energy (Lavaux and Wandelt (2010b); Lavaux and Wandelt (2012)) providing a
natural environment to investigate such phenomena, and as alluded to in section 1, also
happens to be a good testing ground for gravitational theories due to its lack of matter.
These regions engulf the elongated filaments, sheet-like walls and dense clusters of the
cosmic web.

Definition 2.2 (Walls): Walls are the most tenuous coherent structure observed in
the large-scale Universe, making them difficult to detect even with the help of N-body
simulations. These structures have undergone gravitational collapse only about one of its
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axes, causing its sheet-like appearance and form the boundary between filaments and voids.
They contain low luminosity galaxies and have low densities making them hard to observe
as well as less prominent a feature compared to filaments (Cautun et al., 2014).

Definition 2.3 (Filaments): Filaments are structures that have undergone gravitational
collapse along two axes and are the most prominent feature of the cosmic web. They are
the elongated structures that branch off one another and tend to distribute matter from
underdense regions to overdense ones, acting as the cosmic highway for matter.

Definition 2.4 (Clusters): Though stars and galaxies make up some portion of their
mass, clusters are often called dark matter haloes due to dark matter dominating its mass
composition. These overdense structures form the nodes of the cosmic web environment in
which rich clusters can have up to several thousands of galaxies in a relatively small volume
of only a few mega-parsecs (van de Weygaert et al., 2009).

Figure 2-3: The Sloan Digital Sky Survey showing the distribution of galaxies
up to a redshift of z ≈ 0.15. Filament networks, as well as vast empty voids
and cluster regions, are observed and help illustrate the connectivity between
the environments as well as the pattern that makes up the cosmic web. (image
courtesy of Fukugita et al. (1998))

Though easy to
distinguish by eye, these different
structures are difficult to analyse
computationally due to the
characteristics of the cosmic web
leading to a lack of mathematical
and clear definitions which to
describe them as. Though clusters
can be defined mathematically
by being gravitationally
stable environments, filaments
and walls have yet to have
a rigorous definition attributed to
them. Nonetheless, an abundance
of research is conducted
to attempt to obtain the
copious amount of information
ingrained within the cosmic web
with the use of both observational
data and of N-body simulations, a
tool necessary in the investigation
at the non-linear regime, induced
by the ever-growing density
perturbations of the cosmic web.
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3 Theory

3.1 Methods of Analysis for the Cosmic Web

At first order, the Universe is composed primarily of dark energy and dark matter due to
its baryonic mass fraction being insignificant. This approximation allows for more efficient
computation since there is a vast amount of different baryonic processes such as stellar
formation that no longer need to be processed. The other two mass constituents, dark
energy and dark matter are only linked to one process be it the cosmic expansion rate of
the Universe or gravitational interactions. This simplification leads to two different types
of N-body simulators; a dark matter simulation and a hydrodynamical simulation (Cautun,
2014). This report focuses on the first class of simulations, which has the advantage of
being processed quickly as well as being simple to implement as it only takes into account
the gravitational interactions between halo particles.

To extract the information ingrained within the cosmic web a variety of algorithms have
been developed over the decades. González and Padilla (2010) developed an algorithm that
analyses the morphological environments based on particular physical criteria with the help
of a tessellation-based density estimator. Genovese et al. (2010), on the other hand, used
a non-parametric formalism utilising the medial axis of the data distribution to represent
the filamentary network. Nowadays, most modern algorithms attempt to implement the
morphological information rooted in the gradient of the Hessian density or potential field.
The two formalisms the report investigates makes use of the density field, allowing for a
more thorough analysis of the multi-scale nature of the matter distribution at the cost of
noise sensitivity as well as the limitation of not being directly correlated to the underlying
dynamics of structure formation, which the tidal field otherwise is (Cautun et al., 2013).

Since it is hard to provide a conclusive comparison on two formalisms that analyses an
environment so ambiguous in form, the following points give a general overview on what
makes an algorithm successful when tracing the cosmic web:

• Successful in tracing the defining features and therefore rendering of the anisotropic
pattern exhibited in the cosmic web for both a discrete particle distribution as well
as observational data.

• The algorithm should be able to account for the hierarchical nature of the cosmic web
to provide users with a user-free, adaptable fashion of identifying environments.

• The algorithm should be able to examine the multi-scale nature of the cosmic web by
identifying both significant structures as well as the tenuous ones.

The first point is particularly important since many errors manifest themselves in
observational data. Errors such as projection effects like Finger-of-God or magnitude
limitations can all affect one’s data. N-body simulations are therefore often used since
they provide a fully sampled 6-dimensional phase space and density field for any given
Universe at any given time, giving for a wealth of information for cosmologists who now
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have free reigns on their data.

This paper investigates two Hessian density-based methods. DisPerSE[1], whose code is
online for the public, looks at the topology of the field to delineate morphological
environments while NEXUS+ takes a scale-space and geometrical approach in its analysis.
The following subsections of the report will discuss the theory behind the two formalisms
to understand how they analyse the cosmic web.

3.2 Delaunay Tessellation Field Estimator

Tessellations appear all around us, be it a brick wall or the gridded squares in your notebook,
they happen to form a crucial part in both formalisms since by construct they are sensitive
to the spatial distribution of the data points. This sensitivity to the spatial distribution
of particles is useful for the cosmic web as it makes it sensitive to the anisotropic patterns
displayed within the environment giving for more reliable morphological detections in a
fashion that doesn’t employ bias introduced by user parameters.

Delaunay Tessellation Field Estimator, or DTFE for short, is used by both NEXUS+ and
DisPerSE and was developed by Schaap and van de Weygaert (2000) with the premise of
constructing a continuous density field from a given discrete sample of N-body particles in
a parameter-free manner. DTFE constructs the continuous density field by first processing
the Delaunay and Voronoi tessellation of a given data set. From this, it then proceeds
to linearly interpolate the density field based on the density values at the vertices of the
contiguous Voronoi cell (figure 3-1).

To understand why it is so successful in doing so, a brief overview of Voronoi tessellations
is given in Appendix A, while the following section will introduce the concept of
tessellations with a focus on Delaunay tessellations. van de Weygaert and Schaap (2009)
define a tessellation as:

Definition 3.2.1 (Tessellation): A tessellation in d-dimensional Euclidean space Rd is
a set T = {X0, X1...Xi} of d-dimensional cells Xi ⊂Md such that:

1. Xi ∩Xj = ∅

2.
⋃
iXi = Rd

3. #{Xi ∈ T : Xi ∩B 6= 0} <∞, ∀ bounded B ⊂ Rd

One can think of a tessellation as an arrangement of a finite amount of non-overlapping
geometric structures, in this case, simplices (introduction in Appendix B), that span the
complete d-dimensional Euclidean space Rd and can come in a variety of forms, for instance,
Delaunay tessellations. A Delaunay tessellation is the partitioning of space into triangles
whose vertices are formed by points within the data set. DTFE exploits a few properties

[1] http://www2.iap.fr/users/sousbie/web/html/indexd41d.html?
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associated with Delaunay tessellations to construct its continuous density field (Aragón-
Calvo et al., 2007):

1. Delaunay tessellations are sensitive to the local point density causing every cell to be
unique.

2. Delaunay tessellations are sensitive to the local geometry of this sample point
distribution.

3. A Delaunay tessellation will try and maximise its angles. It will try to maximise the
smallest angle without necessarily decreasing its maximum angle.

These properties allow an adaptable reconstruction of a full volume covering and volume-
weighted continuous density field. More precisely, the first property provides DTFE with
an estimate of the local density based on the inverse contiguous volume of a specific cell
(van de Weygaert and Schaap, 2000), while the second property allows DTFE to trace
the anisotropic features exhibited in the cosmic web in a scale-free manner. Finally, the
third property makes DTFE adaptive to a given sample set. This property makes DTFE
a powerful tool for the analysis of the cosmic web as its adaptability provides sensitivity
to all levels of the substructure present and therefore probes the hierarchical nature of the
cosmic web.

The success of DTFE in reconstructing the density field is accentuated by its ability to not
pollute the given distribution with any artificial features, which would otherwise introduce
errors (Aragón-Calvo et al., 2010).

Figure 3-1: Left Frame: Illustration of Voronoi tessellations (solid lines) and Delaunay tessellations (dashed). Right Frame: The
contiguous Voronoi cell is shaded in and shows all the Delaunay cells that overlap the Voronoi cell shaded in from the left hand image.
(image courtesy of van de Weygaert and Schaap (2000))

By utilising properties of both Voronoi and Delaunay tessellations, DTFE has many
advantages when compared to other reconstruction techniques. For one, DTFE
reconstructs a volume-weighted and volume-covering density field spanning the volume of
Rd in a way that preserves the local geometry of the point distribution. Some methods are
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unable to do so and provide a grid rather than a continuous field. By reconstructing a
continuous field, more information on the cosmic web can be extracted, providing
researchers with better results. Another advantage DTFE has over other algorithms is
that it implements volume-weighted averages rather than mass-weighted averages
simplifying its computation a great deal (van de Weygaert and Schaap, 2000).
Furthermore, other algorithms tend to be insensitive towards the sampling field causing
far from optimal performance in both high and low-density regions. The user often fixes
this issue in a non-natural manner which not only affects the computational resources
needed but also introduces bias and errors within the data set (van de Weygaert and
Schaap, 2000). DTFE bypasses this limitation due to exploitation of the minimum
triangulation property making it adaptive by nature and further limiting the errors
induced during the reconstruction of the density field in a way that preserves the
hierarchical and multi-scale nature of the cosmic web.

Figure 3-2: A sequence of images zooming in on a filament illustrating the adaptive nature of the DTFE. (image courtesy of van de
Weygaert et al. (2009))

By being able to recover the density distribution for a wide range of magnitudes, DTFE has
proven to be a useful computational tool upon analysis of the cosmic web given its multi-
scale nature (van de Weygaert and Schaap, 2000). DTFE has also shown to successfully
reproduce the anisotropic patterns observed in the cosmic web as well as take into account
the hierarchical nature of the cosmic web without adding any artificial noise in a scale-
free and adaptable fashion. All this amounts to a reliable reconstruction of the continuous
density field and therefore makes it an essential algorithm for which both DisPerSE and
NEXUS+ use when analysing the cosmic web.
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3.3 Topological Approach

What is a hole? A hole is an abstract concept, one without precise meaning in the dictionary
and only makes sense based on a given context. For instance, one understands that a cup
has a hole which allows for liquid to flow in and out, however, if you continuously deform
the glass and flatten it, at what point does this hole disappear? Does a bowl have a hole?
Topology is a branch in mathematics that looks at fixing this ambiguity by relating holes
with topological invariants, highlighting the underlying structure of a given manifold.

Figure 3-3: A sequence of images showing how a glass is topologically equivalent to a plate.

Topology studies the geometrical properties and spatial relations of surfaces which are
invariant under continuous transformations. For the case of the mug and the doughnut in
figure 3-4, one can continuously deform one of the objects to form the other, meaning they
are topologically equivalent. The same reasoning follows as to why a mug and a glass aren’t
topologically equivalent, because both a mug and a glass have different types of ’holes’. For
a mug to be deformed into a cup, a non-continuous transformation needs to occur either by
adding or removing material.

Figure 3-4: A sequence of images showing how a mug can be deformed continuously to form a donut and vice versa.

If two objects are topologically equivalent, as is the case between a glass and a plate as well
as a mug and a donut, there exists a homeomorphism that describes the deformation of one
surface to form the other. A homeomorphism is a bicontinuous and bijective function that
maps elements on one manifold onto another. Formally this can be defined as (Gyulassy,
2008):

Definition 3.3.1 (Homeomorphism): A homeomorphism is a bijective and
bicontinuous function that maps all elements in X onto Y , f : X → Y . If such a function
exists, then X and Y are said to be topologically equivalent.

10



The condition of bijectivity implies that there is a one-to-one correspondence for each point
within the set and that no two points can share a point once mapped. Bijectivity, therefore,
conserves the notion of continuity as it implies that material can neither be added nor
subtracted in the transformation. By being bicontinuous, the function as well as its inverse
are both continuous functions. Hence why it is possible to deform a mug into a doughnut
and a donut back into a mug.

This branch of mathematics allows for quantitative analysis of the cosmic web since
cosmologists can define environments and geometrical objects based on their invariants.
Topological invariants such as the Betti number denoted as βn (see Appendix D), allows
for a quantitative description of the topology of a given manifold via the counting of
k-cycles. Conceptually a d-dimensional Euclidean space will have d different types of
holes, or Betti numbers, ranging in dimensions between 0 and d − 1. For a 3D space the
set of Betti numbers can be seen as (van de Weygaert et al., 2010):

• β0 being the set of independent components in the manifold. These can be thought
of as disconnected points.

• β1 shows the number of independent tunnels. A tunnel can be thought of as a region
of space in which going one direction and it’s opposite will lead to no meeting of a
boundary, but other directions will.

• β2 denotes the number of holes or cavities within a surface. A shell, for instance, will
have a β2 number of one since it encloses a volume.

This extraction of topological information forms the foundation of DisPerSE since by
analysing information on the topological properties of excursion sets, one can characterise
the morphology of the different environments and delineate structures formed by the
underlying density field with features induced by Poisson noise.

3.3.1 Morse Theory

Morse theory captures the relationship between the geometrical and topological properties
of a function (Sousbie et al., 2008). The geometric properties of a function are ones that
are unaffected by translations or rotations of the surface, for instance, how many edges
a particular domain has or the location of its features. Topological properties, on the
other hand, are invariant under homeomorphisms giving information on the connectivity of
points. In cosmological terms, one may think of this as the number of galaxies in a given
volume which is mathematically described by Betti numbers or the Euler characteristic and
by analysing the evolution of topological invariants through different filtration levels allows
for a delineation of structures formed by Poisson noise with ones formed by the underlying
density field. DisPerSE also uses discrete Morse theory to partition a domain into a complex
of ascending and descending manifolds to form a discrete Morse-Smale complex, providing
a mathematical equivalence for each environment. To understand how and why this is
allowed, a few definitions from Sousbie (2011) are given.
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Definition 3.3.1 (kth Order Critical Point): A critical point is defined as a point
whose derivative df

dx is equal to zero. In d dimensions there will be d + 1 different types of
critical points. For instance, two dimensions has a minima (critical point of order k = 0),
a saddle (k = 1) and a maxima (k = 2).

Critical points show locations in which there is no preferential direction in the gradient
flow. The order of the critical point is determined by the sign of the eigenvalues of the
corresponding Hessian matrix H.

Definition 3.3.2 (Morse Function): A Morse function is a smooth function f on a
differentiable manifold M such that f : M→ R while satisfying the following properties:

1. None of the critical points are degenerate. That is to say, for all x such that∇f(x) = 0,
Det Hf (x) 6= 0.

2. No two critical points of the function share the same value, making all critical points
distinct from one another.

A Morse function is a function which links the critical points, the gradient and the topology
of the level set. One can imagine this link between the three by thinking of a topographic
map in which adjacent contour lines show how steep an ascent is and dots the peak of
a mountain in a local neighbourhood. By removing a specific critical point or peak, one
understands that the whole dynamic and shape of the topographic map changes. Morse
theory, therefore, highlights the fact that all changes in the topology of a Morse function
occurs around critical points on a given manifold (Gyulassy, 2008). This idea of investigating
the evolution of level-sets also roots itself in persistence homology, a topological method
used by DisPerSE to delineate structure formed by Poisson noise to those formed by the
density field.

Though critical points have no preferential direction by definition, non-critical points within
the function tell the gradient in which way to flow. Following the gradient flow leads to an
important concept since it allows partitioning of space into the set of integral lines.

Definition 3.3.3 (Integral Lines): Integral lines, or field lines, are defined as a curve

L(t) ∈ Rd where dL(t)
dt = ∇f(L(t)) and satisfy the following conditions:

1. The integral lines origin and destination is a critical point. Mathematically this is
denoted as orgf = lim

x→−∞ f(x) and destf = lim
x→∞ f(x).

2. No two integral lines can intersect. That is to say, no two integral lines can share the
same point, however, they can share the same origin and destination.

3. The set of all integral lines spans Rd.

The properties mentioned allow for a classification of every point in space based on their
origin and destination. In turn, this allows for a partition in space based on the set of
ascending and descending manifolds.
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Definition 3.3.4 (Ascending/Descending d-manifolds): Given a Morse function
defined over Rd with a critical point P of order k, the ascending (d − k)-manifold defines
the region of space with dimensions (d − k) in which the set of points reached by integral
lines originate from P . The descending k-manifold shows the region of space with dimension
k of the set of points reached by integral lines with destination P and is illustrated in figure
3-5.

The important concept to take from this is that an ascending or descending d-manifold
always spans a domain of dimension d. In other words, a 0-manifold looks at vertices,
1-manifolds a line, 2-manifolds a surface and 3-manifold a volume (Sousbie, 2011).
Subsequently, this provides a mathematical equivalence to the different environments since
vertices are associated with clusters, lines to filaments, surfaces to walls and volumes to
voids.

Figure 3-5: Left Frame: The set of ascending manifolds for a given complex. The red points denote critical points of order d (maxima),
green points show critical points of order (d − n) where n 6= d signifying saddle points and blue points illustrating minima’s, critical
points of order 0. Right Frame: The set of descending manifolds for the same complex. Notice the link to tessellations in which the
cells of the complex for either frame show the set of points closest to its nuclei (maxima or minima) based on the weighted gradient.
(image courtesy of Sousbie (2011))

Figure 3-5 illustrates how Morse theory allows for partitioning of space into ascending and
descending manifolds based on the gradient of the field. The set of its ascending and
descending manifolds constitutes the Morse complex, which gets further dissected via the
Morse-Smale function.

Definition 3.3.5 (Morse-Smale Function): A Morse function is a Morse-Smale function
if its ascending and descending manifolds only intersect transversely.

This condition of transversal intersections ensures that the intersection between manifolds
is defined at every location with the intersection between a p-ascending manifold with a

13



q-ascending manifold having a dimension of n = min(p, q). The set of points attributed to
an intersection are called the Morse-Smale n-cells.

Definition 3.3.6 (Morse-Smale n-cell): A Morse-Smale n-cell is a non-zero intersection
between a p and q-ascending manifold of a Morse-Smale function such that n = min(p, q).
A 1-cell is called an arc, 2-cell a quad and a 3-cell a crystal.

For a 2-manifold, a 2-cell of the descending Morse complex corresponds to the maximum
of the Morse function f , the 1-cell corresponds to the saddle points and the 0-cells the
minimum. For an ascending 2-manifold the 2-cell corresponds to the minimum, the 1-cell
the saddle points and the 0-cell the maximum.

Definition 3.3.7 (Morse-Smale Complex): A Morse-Smale complex is the set of all
n-cells attributed to the Morse-Smale function f . Figure 3-6 illustrates the idea.

A Morse-Smale complex allows for a natural partitioning of space based on the gradient
flow and is the set of integral lines with a common destination and origin. Another way
to look at it is that a Morse-Smale complex is a complex made of both the ascending and
descending manifolds defined by a Morse-Smale function and so each cell comprises of the
set of integral lines with a common origin and destination.

Figure 3-6: The Morse-Smale complex of the same Morse function that partitioned the space into a set of ascending and descending
manifolds in figure 3-5. The purple region represents a quad and shows the intersection of a red descending 2-manifold with that of an
ascending 2-manifold shaded in blue. The yellow segment in the blue region denotes an arc and represents the intersection of the green
ascending 1-manifold with that of the blue descending 2-manifold. (image courtesy of Sousbie (2011))
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3.3.2 Discrete Morse Theory

Though Morse theory gives for a mathematical equivalence between the environments within
the cosmic web in a rigorous manner, observational data provides researchers with discrete
data and so an algorithm needs to be able to partition space using non-continuous data.

Discrete Morse theory builds on the ideas implemented by Morse theory by using discrete
functions defined over simplicial complexes which allow the construction of a continuous
function by interpolating the field over a given cell. In turn, one can analyse the gradient
field allowing for the partitioning of space into a Morse-Smale complex. This allows for
a mathematically rigorous tool in which astrophysical data sets can be analysed from the
distribution of different topological properties.

To understand how one transitions from continuous to discrete samples, a few definitions
from Sousbie (2011), as well as an overview of simplices in Appendix B, are provided.

A discrete function f defined over a simplicial complex K associates a real-valued function
f(αk) for every simplex in the complex K.

Definition 3.3.8 (Discrete Morse Function): A discrete function is a discrete Morse
function if and only if for each simplex αk ∈ K:

1. There exists at most one facet σk−1 of αk such that f(αk) ≤ f(σk−1)

2. There exists at most one co-facet βk+1 of αk such that f(αk) ≥ f(βk+1)

These properties ensure that the non-degeneracy of the Hessian matrix in Morse theory is
conserved in discrete Morse functions such that in its local neighbourhood a simplex will
have a higher value f(αd) than its facets and a lower value than its co-facets. It gives a
scalar value to every cell in the complex while the facets and co-facets of the cell determine
whether it is critical or not.

Definition 3.3.9 (Critical k-simplex): A k-simplex αk is critical for a given discrete
Morse function provided the following conditions are met:

1. There exists no facets σk−1 of αk such that f(αk) ≤ f(σk−1).

2. There exists no co-facets βk+1 of αk such that f(βk+1) ≤ f(αk).

Critical simplices act the same way as critical points. For two dimensions, a minimum is a
critical vertex or 0-simplex, a saddle-point is a 1-simplex and a maximum a critical triangle,
or a 2-simplex. By using the previous definition of a discrete Morse function, one sees that
there are only two possible configurations for a simplex αk. Either, one of its co-facets
and all its facets have a lower value than a given simplex or all its co-facets and one of its
facets have a larger value (Sousbie, 2011). This gives rise to a gradient flow as there is a
defined preferential direction between a simplex and its co-facets (or facets) allowing for the
partitioning of space into a discrete Morse-Smale complex.
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The discrete gradient field that defines this complex obeys several properties (Sousbie, 2011):

1. If a simplex αk has exactly one lower-valued co-facet βk+1 then [αk, βk+1] forms a
gradient arrow.

2. If a simplex αk has exactly one higher valued facet σk−1 then [σk−1, αk] forms a
gradient arrow

3. The lowest valued f(α) simplex is the tail while the highest values the head, this
entails that the gradient flows opposite to normal mathematical convention.

4. Critical simplices do not belong to an arrow and show the origin and destination of
integral lines, making them analogous to critical points.

Condition three causes the previous definitions of ascending and descending manifolds
(definition 3.3.4) to be reversed since it reverses the gradient flow. An ascending manifold
now constitutes the set of integral who have a common destination while the descending
manifold denotes the set of integral lines with a common origin giving for a final formal
definition.

Definition 3.3.10 (Discrete Ascending/Descending d-manifolds:) Discrete
ascending (d − k)-manifolds constitute the set of k-simplices that originate from a critical
simplex αk, or have a common minimum following the discrete gradient field. The discrete
descending k-manifold, on the other hand, represents the set of k-simplices that have αk
as their destination.

A discrete Morse complex has the same definition as a continuous Morse-Smale complex
(definition 3.3.7), the only difference being it uses the discrete ascending and descending
manifolds. The computation of the discrete Morse complex is the end goal of the algorithm
since it provides a natural delineation of the environment, thus making it a mathematically
rigorous tool in the analysis of the cosmic web. The ascending manifold of a minimum
(order k = 0) constitutes a three-dimensional cell, a 1-saddle point of a two-dimensional cell
signifying a surface, a 2-saddle signifying an arc or line segment and a maximum (k = 3)
which corresponds to a vertex, subsequently relating itself to voids, walls, filaments and
clusters respectively.

Though discrete Morse theory gives for a mathematical equivalent for the various
environments in a way that doesn’t employ approximations, it comes with a few
downsides. Computationally, the use of discrete Morse theory causes the processing of
results to be time-consuming as well as using a large amount of computational resources.
The topological method adopted is also unable to characterise the width of environments
affecting its rendering of the different constituents when sampled on a grid if one wants to
extract quantifiable information. Nonetheless, by implementing discrete Morse theory,
DisPerSE has a reputation of delineating the underlying filamentary skeleton of a given
data set with great success.
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3.3.3 Persistence

Due to DTFE being both a scale-free method in the reconstruction of the density field as
well as being unable to distinguish noise from features, DTFE has the limitation of
exaggerating Poisson noise induced by the sample and therefore introduces artificial
topological features (Sousbie, 2011). Dr Sousbie found that upon using DisPerSE without
topological simplification, 94% of the identified features originated from noise (Sousbie,
2011). The abundance of false detections is due to discrete Morse theory capturing an
excess of information about the underlying field, much of which can be deemed
topologically insignificant. To extract only the most essential information as well as to
remove artificial features in a meaningful way, DisPerSE uses the notion of persistent
homology.

Persistence is a mathematical construct first introduced by Edelsbrunner et al. (2000) that
delineates and removes noise from significant structures. Since critical points describe the
structure of the level sets above or below a given filtration value, by analysing the evolution
of the underlying field through different thresholds, one extracts the topologically significant
structures.

For discrete functions, persistence is measured through filtration and analysis of the lifetime
of different topological features, also called k-cycles. A k-cycle of a simplicial complex K
(formally defined in Appendix D) is a k-dimensional topological feature in a d-dimensional
space where 0 ≤ k < d. Analogous to the Betti numbers mentioned in section 3.3, in
three-dimensional space a 0-cycle denotes a non-linked independent component, a 1-cycle a
set of simplices that form a ring and a 2-cycle a shell that encloses some sort of volume. By
seeing how these features evolve as one filters through the level set, quantifiable information
on the structures of the cosmic web can be extracted. Formally, a filtration is defined as
(Sousbie, 2011):

Definition 3.3.10 (Filtration): A filtration F of a given simplicial complex K is a
sequence of N + 1 sub-complexes Ki of K such that:

1. ∅ = K0 ⊆ K1... ⊆ KN = K

2. Ki+1 = Ki ∪ δi

where δi is the subset of the simplices in K. In other words, only simplices with a value
lower than the threshold τi, or f(α) < τi, belong to Ki and make up the sub-level set.

DisPerSE uses persistence by first applying a large threshold value onto the field. Taking
function A in figure 3-7 as an example, by skimming the density field with τρ = 22 there
is a single maximum detected. As the filtration threshold is decreased to τρ = 21, another
feature is detected and remains unpaired until another feature is identified. The elder
rule states that the most recently identified point be paired up with this recently detected
topological feature, meaning that ρ = 21 and ρ = 20 are linked after the third filtration,
as seen by the small figure between both the upper panel and lower panel graphs. The
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Figure 3-7: Two different data sets over a 1D function. The upper frame shows two functions (left) and a discrete distribution taken
from these functions (right). The lower half of the figure shows the evolution of sub-level sets as the threshold τ(ρ) decreases. The
green arrow emphasises the lifetime of certain topological features. The persistence pairs are denoted by the line squished between both
frames. (image courtesy of Sousbie (2011))

persistence ratio shows the difference in ρ between the pair, so in this case, the persistence
ratio amounts to 1. The larger the persistence ratio, the more significant a feature is,
allowing the removal of noise in a mathematically robust manner.

As filtration of the field continues and the threshold decreases, the population of the sub-
level set increases, with new k-simplices creating or destroying topological features. Newly
detected simplices can fill in holes or create new ones, changing β1 as well as having the
potential to form volumes or destroy existing ones, in turn changing β2. In other words,
as the sub-level set grows, new features may be born and old ones may be destroyed.
Persistence homology allows for filtration of noise as the k-cycle lifetimes attributed to noise
are shorter than those of topologically significant structures (Zomorodian, 2005), which is
reflected upon when comparing the discretely sampled graphs and the continuous ones
in figure 3-7. More explicitly, notice that the links between pairs describing topological
features for both graphs are larger for significant features when compared to the links
between spurious ones.

3.3.4 Persistence in the Cosmic Web

Persistence allows a global delineation of the topological features with that of noise found in
the cosmic web (Zomorodian and Carlsson, 2005). The interval length between a persistent
pair allows DisPerSE to distinguish topological significant features with that of noise as it
shows how much one has to change a function for a feature to be either removed or added
(Gyulassy, 2008). DisPerSE implements persistence in its algorithm by providing the user
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with a parameter, denoted by nσ, in which to filter the data. Any pair with a persistence
ratio larger than nσ will be conserved, while ones with a lower value eliminated from the
data set. Figure 3-8 illustrates the strength of persistence in cosmological data sets by
showing detected environments using persistence levels nσ = 0, 2, 4 and 6 for a given 2563

particle Universe.

Figure 3-8: The detected filamentary network of a 2563 particle Universe for several different n− σ levels.

Figure 3-8 shows that for nσ = 0 the sample is covered with detected filaments and within
two levels of nσ, the number of detections drastically reduces providing a coherent network
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of filaments. This over-detection for nσ = 0 only reiterates the fact that via discrete Morse
theory, most of the detected environments are caused by Poisson noise. In his original paper,
Sousbie (2011) found that a 2 − σ level has a 5% error false identification of significant
features with that of noise while at 4− σ this value drops to 0.006%, showing the strength
of persistent homology in the simplification of data sets.

Figure 3-9: The detections marked in a red circle are spurious detections due
to DTFE interpolating the density field in large void regions which subsequently
perceives noise as a dominant feature. The detections marked in white show
high-density regions in which filamentary detections are disjointed since the area
is quite dense such that even significant filamentary structures will be labelled as
insignificant compared to its surroundings.

Due to persistence analysing the
lifetime of k-cycles, there are
still spurious detections in voids,
even at these relatively large nσ
as illustrated in the nσ = 4
frame with an identified structure
at (x, y) = (60, 190). This
is understood since any form
of noise in voids will have a
large contrast in density with the
background making the algorithm
distinguish it as a significant
feature. It also explains why
errors occur more often in large
voids where DTFE interpolates
the density field over a large region
of space since it causes Poisson
noise to be more pronounced.
Following the same reasoning,
in regions where the density
is high, significant structures
may be labelled as topologically
insignificant compared to their
local neighbourhood and therefore
eliminated from the sample as seen
by the discontinuous filamentary network identified at higher persistence levels, as
illustrated in figure 3-9. From this, one concludes that persistence trims topological features
rather than only filtering out the noise, making it not adaptable when analysing the cosmic
web.

Figure 3-8, as well as the information provided in this section help illustrate that although
persistence has trouble in delineating tenuous structures from noise due to its topological
approach, it provides an extremely successful mathematical tool in simplifying the data set.

3.3.5 DisPerSE

Discrete Persistent Structure Extractor (DisPerSE for short) implements a scale-free,
topological approach when analysing the cosmic web for both observational data and
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N-body simulations. Based on discrete Morse theory, it partitions space into a set of
ascending and descending d-manifolds allowing for the identification of the different
morphological environments. Figure 3-10 illustrates the delineation of the constituents
with large empty voids defined as ascending 3-manifolds, walls being thin planar
structures correspond to ascending 2-manifolds, filaments ascending 1-manifolds and
clusters ascending 0-manifolds when using discrete Morse theory. To reduce the noise and
provide reliable results, DisPerSE uses persistent homology to look at the k-cycle lifetime
of critical pairs. The mathematical mechanisms described in the previous sections allow
DisPerSE to extract topological properties of the environment in a rigorous fashion that
doesn’t necessitate an arbitrarily chosen user-defined scale.

Figure 3-10: For a given dark matter distribution in a simulation (shown by the top-left frame), the top right frame shows the
ascending 3-manifolds (voids), the bottom left frame shows walls (ascending 2-manifolds) while the skeleton of the filaments (ascending
1-manifolds) are shown in the right bottom frame. (image courtesy of Sousbie (2011))

It is possible to summarise the DisPerSE formalism through four steps (Sousbie, 2011):

1. After the reconstruction of the density field via DTFE, every point is given a certain
density value of ρ. A discrete Morse function is then heuristically defined over the
complex with particular weight values given to each d-dimensional simplex.
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2. The algorithm proceeds to compute the discrete gradient from the given function to
form a discrete Morse-Smale complex.

3. Analysis of the topological and geometrical properties of the given density field is done
via the discrete Morse-Smale complex. Critical points overlapping the ascending and
descending manifolds are identified between the different environments.

4. Based on the user-given persistence level nsig, filtration of the discrete Morse-Smale
complex occurs by removing any pair below the given ratio. Both artificial noise and
topologically insignificant structure are then robustly removed.

Figure 3-11: DisPerSE provides users with an interactive way when choosing the persistence threshold. The x-axis shows the smaller
valued critical point between the pair, the background density. The y-axis denotes the persistence of the pair, or the difference in the
discrete Morse function value taken at the specified point.

DisPerSE provides the user with an interactive way of selecting a filtration level in the form
of a plot shown in figure 3-11. The plot above shows a persistence pair’s lowest value in
the x-axis, entailing that as you move along the x-axis, the denser the local environment is.
The y-axis denotes the persistence of the pair, such that as you go up the y-axis, the more
structurally significant the structure is.

When choosing a persistence level, the user wants to select a value in which the cut off
provides only a few distinct points. This value is chosen by control-clicking the plot at the
y coordinate you want, as can be seen in pink with a nsig = 9.12 value. This value is too
large as we see a distinction between features at lower values with green squares representing
a saddle/maxima pair start to disperse at earlier ratios.

This figure also illustrates the excess amount of features obtained when using low persistence
ratios. The sheer amount of green squares and blue circles denoting minima’s (or voids)
is staggering and only supports the notion of persistence homology being essential for a
mathematically coherent trimming of the network to occur.
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In general, DisPerSE identifies the critical points of the density field via Morse theory and
does so before classifying whether they are minima’s, maxima’s or saddle points. By
tracing the intrinsic topological features of a given field and attributing them as features
within the different environments of the cosmic web, DisPerSE gives a concrete
mathematical equivalent to each environment making it commonly used by researchers
upon their investigation of filaments (Schneider et al. (2013); Ho et al. (2018); Bonjean
et al. (2019); Kraljic et al. (2020)). Having now taken the time to gain the mathematical
knowledge on understanding the mechanism behind DisPerSE, it is now time to dissect
the NEXUS+ algorithm.
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3.4 Scale-Space, Geometric Approach

Mathematically less rigorous than DisPerSE, NEXUS+ investigates the cosmic web using
a scale-space analysis to extract the geometrical information ingrained in the underlying
density field. This scale-space approach NEXUS+ adopts allows for the tracing of the
substructures present within the environment and allows for the identification of the more
tenuous structures.

3.4.1 Hessian Density Matrix

The cosmic web theory states that different morphological environments can be
distinguished based on the eigenvalues of the tidal field (Bond et al., 1996). Similarly, the
density field and more precisely, the Hessian matrix, can be used to delineate the different
morphological constituents. The Hessian matrix of the density field forms the basis of
NEXUS+, and although DisPerSE uses it as well to distinguish the critical points of the
Morse function, it is more apt to place it within the NEXUS+ discussion due to its more
pronounced link to it.

The Hessian matrix is a square matrix comprising of second-order partial derivatives,
describing a particular field. Mathematically this amounts to:

H =


∂2f
∂x2

1
. . . ∂2f

∂x1∂xn
...

. . .
...

∂2f
∂xn∂x1

. . . ∂2f
∂x2
n

 (1)

where the scalar field, f , is a user-inputted density field constructed from a particle sample
with the help of DTFE that works for both observational data as well as N-body simulations.

The density field and its local geometry allows NEXUS+ to detect and preserve the shape
and size of the different environments since Taylor expanding the density field around a
point and conserving second-order terms, information on the local geometry of a point is
obtained. Hahn et al. (2007) expanded on this by proposing that the eigenvalues of the
Hessian matrix determine the structures of the cosmic web based on specific constraints,
shown in table 1, with voids being the unidentified regions.

Structure Eigenvalue Ratios Eigenvalue Constraint

Cluster λ1 ≈ λ2 ≈ λ3 λ1 < 0, λ2 < 0, λ3 < 0
Filament λ1 ≈ λ2 >> λ3 λ1 > 0, λ2 < 0, λ3 < 0

Wall λ1 >> λ2 ≈ λ3 λ1 > 0, λ2 > 0, λ3 < 0

Table 1: The different morphological environments and their corresponding eigenvalues based on Hahn et al. (2007)

One can understand the link between the eigenvalues of the Hessian matrix and the different
environments by imagining a relief map of the density field which has bumps signifying
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areas with densities larger than the cosmic mean density, and crevices, under-dense regions
with ρ/ρ̄ < 1 or densities lower than the cosmic mean density of the underlying field. By
following the signs of second derivatives, a negative second-order derivative tells you that the
function is approaching a maximum. Since clusters are the densest environment within the
cosmic web, they become local maxima’s on a density relief map. This idea helps illustrate
why and how eigenvalues of the Hessian density matrix form the basis of the NEXUS+
formalism since they provide information on the local geometry of the density field allowing
for identification of the different environments.

In general, the Hessian provides direct information on the local geometry of the field as it
encodes the local curvature of the density field and therefore by using it NEXUS+ renders
results that preserve the shape and structure of the identified environment in a user-free
way giving for accurately rendered results. By computing the local eigenvalues which are
dependent on the local geometry of the field as well as its spatial distribution, the different
morphological structures can be identified (Aragón-Calvo et al., 2010). Although a
second-order Taylor expansion is used as well as identifying environments purely based on
information encoded within the density field, by adopting a scale-space analysis, NEXUS+
bypasses the limitations on its identification technique by examining the substructures
present in the cosmic web such that it can probe the connectivity and intricate nature of
the cosmic web.

3.4.2 Scale-space Analysis

The scale-space analysis was initially used in medicine to investigate walls and blood vessels
(Frangi et al. (1998); Sato et al. (1998)) and was later adapted by Aragón-Calvo et al.
(2010) in the Multiscale Morphology Formalism (hereafter MMF) to investigate the cosmic
web. By incorporating the eigenvalues of the Hessian density matrix for a range of scales,
the MMF examines the substructures present and examines the connectivity between the
environments, highlighting the hierarchical and multi-scale nature of the cosmic web.

Upon computing the eigenvalues of the underlying density fields’ Hessian matrix for a
range of resolutions, the MMF determines the environment for every point based on the
criteria’s given in table 1 as well as certain physically motivated thresholds. Since
eigenvalues are related to the local environment of the field when changing the resolution
the local neighbourhood, the environments signal strength also changes allowing for
probing of the substructures present within the cosmic web. NEXUS+ implements this
formalism using a log-Gaussian density filter and the scale-space analysis MMF provides is
summarised with the following (for more details see Aragón-Calvo et al. (2010)):
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To start, the DTFE constructed density field, fDTFE, is smoothened over a range of log-
Gaussian filters WG with widths Rn such that:

fn(~x) =

∫
fDTFE(~y)WG(~x, ~y)d~y (2)

where Rn =
√

2nR0 (3)

The
√

2n ratio is a value taken from Sato et al. (1998) and introduces a 4% deviation with
respect to the idealised case of a continuous level analysis. After filtering many different
resolutions, a scale-space is constructed by combining the different density maps fn, or
mathematically:

Φ =
⋃
n

fn (4)

Where each point and its corresponding feature is identified via the maximum morphological
signal strength, S, it’s received. The morphological signal strength is determined based on
how well the local neighbourhood of the point correlates to the eigenvalue constraints and
ratios indicated in table 1. NEXUS+ implements a soft filtration method of these points
based on the eigenvalue ratios since this determines the shape of the local environment. For
instance, a cluster region should be somewhat spherical in shape hence why all three of its
eigenvalues should be roughly the same, whereas filaments, who have λ1 and λ2 opposite in
signs but similar values, should be regions collapsed along two if its axis. A more rigorous,
physically motivated filtration also takes place and takes into account either the change in
the total mass of a given environments population as a function of increasing threshold or
via another physically motivated criterion.

The threshold for clusters looks to eliminate small cluster structures while still preserving
the large virialised ones. To determine whether an object is virialised, the average density
of individual clusters must exceed ∆ = 370, a value based on the spherical collapse model
at a redshift of zero (Gunn and Gott, 1972). The signature threshold is taken as the value
in which half of the detections have a density larger than ∆ (Cautun et al., 2013).
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Figure 3-12: Figure showing the change in mass of filaments or walls as a function of significance threshold. (image courtesy of Cautun
et al. (2013))

For filaments and walls, the threshold is different. Let Mf (Sf ) denote the total mass
of all the detected filaments with a signature value equal to or larger than Sf . As one
decreases this signature value, the population constituting the filamentary network grows
and therefore the square of the total population mass M2

f and the square of the difference

in mass, ∆M2
f , will increase. At a certain point, however, decreasing Sf causes most of the

new filaments entering the subset to originate from sparse or insignificant structures and
the value ∆M2

f starts to plateau. This turning point is the threshold used by NEXUS+ as
it illustrates the limit between the detection of significant and spurious structures. Figure
3-12 helps illustrate this idea.

The biggest advantage scale-space analysis has in analysing the cosmic web is via the
identification of the different structures in a user-free manner that allows for probing of
the hierarchical nature of the cosmic web, giving it the ability to adapt and investigate the
cosmic web as well as its multi-scale nature in a coherent fashion. It allows probing of the
multi-scale nature since by using a range of scales, NEXUS+ can extract information on
the more tenuous of environments as well as the significant ones. Furthermore, since walls
are sparse by nature, it is hard to detect them and therefore are not always identified in a
single scale analysis. By using a range of scales, NEXUS+ is also able to render wall
detections successfully.
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3.4.3 A Smoothing Scale Comparison

Figure 3-13: Identification of different morphological environments conducted on a 5123 particle ΛCDM universe for a range of scales.
The density field is visualised in colours where red, bright regions signify dense regions while vast, empty dark regions voids. The green
contour lines signify walls while purple contour lines filaments. A few clusters are identified and highlighted with red contour lines.
Top left: The Universe as analysed by a scale ranging from 0 ≤ n ≤ 1. Top right: Scale analysis of the Universe at scales ranging from
5 ≤ n ≤ 6. Bottom left: Scale analysis of the Universe at scales 0 ≤ n ≤ 0. Bottom Right: Scale analysis of the simulated Universe
using the scales 2 ≤ n ≤ 6.

Figure 3-13 shows four samples of the same Universe each analysed at different scales in
which R0 = 2h−1 Mpc and 0 ≤ n ≤ 6. This range of n corresponds to
Rn = [2.00, 2.83, 4.00, 5.66, 8.00, 11.3, 16.0]h−1 Mpc smoothing filters following equation 6.
The top two frames show the Universe analysed over two scales and the lower ones consist
of an analysis using a larger range of scales. One observes that the larger filter values
(5 ≤ n ≤ 6) tend to identify larger and thicker environments, correlating to significant
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structures. At the other end of the spectrum, smaller filters pick out the tenuous
structures with thin, delicate purple filament and green wall tendrils being identified.
These smaller scales have the limitation that noise becomes more dominant a feature,
giving rise to errors if not taken into consideration and highlights the need for a
scale-space approach when analysing the cosmic web.

The lower two frames show the identification of morphological components corresponding
to smoothing scales with 0 ≤ n ≤ 6 and 2 ≤ n ≤ 6. Upon comparison of the two, one
sees that by using a larger range of scales, NEXUS+ identifies more structures. These
detections, however, don’t necessarily correlate to significant environments and instead
tend to be unaccounted for structures in void regions further showing that at the smaller
scales resolution effects come into play as noise becomes more dominant a feature or haloes
being miss identified as walls or filaments due to their densities. We see that the detections
corresponding to 2 ≤ n ≤ 6 remove these features by not taking into account these smaller
scales.

One also notices from the bottom two frames that by using a range of different scales
NEXUS+ can delineate fragile tendrils of walls and filamentary regions while still
incorporating the large, significant structures found by the larger scales. A combination of
a range of smoothing scales provides not only extraction of information on both these
fragile environments as well as significant ones but also allows for a better rendering of the
shapes and sizes of the different environments in a natural, unbiased fashion.

A more quantifiable comparison between the different smoothing scales are seen in the two
bar graphs below (Appendix E provides the individual pie charts).

Figure 3-14: Bar graphs illustrating the different mass fractions (left frame) and volume fractions (right frame) each environment
occupies within the Universe based on the identification carried out at different smoothing scales.

The figures above show the different mass and volume fractions of the simulated Universe.
By making up the dominant fraction of the mass component of the Universe, filaments
are the most prominent feature within the cosmic web. Clusters, on the other hand, even
though they are the densest environment within the cosmic web, occupy a negligible fraction
of the volume making its mass composition insignificant at first order approximation. On
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the other hand, voids dominate the volume content of the Universe and account for a
significant portion of the mass fraction of the Universe even if, by definition, they make up
the sparsest regions of the cosmic web.

When examining the bars corresponding to the smoothing scale of 0 ≤ n ≤ 1 and 5 ≤ n ≤ 6
compared to those of 0 ≤ n ≤ 6 and 2 ≤ n ≤ 6, we see that the smaller the range of
scales used, the larger the mass bias towards walls is at the detriment of the filaments. This
trend stems from the fact that filaments are elongated structures, collapsed along two axis
and occupy less volume than the sheet-like walls. Without a range of scales to identify the
structure, the filter may skip over an arbitrary resolution which could otherwise provide
a strong significance S towards filaments. It’s easier to skip over an essential scale for
filaments compared to walls since they have undergone collapse upon two of their axis and
also occupy a smaller volume fraction of the Universe. This observation provides insight as
to why a range of scale for the analysis of the cosmic web is necessary since it allows for
better detection of the different environments without skipping essential scales as well as
being able to analyse both tenuous and significant structures.

Furthermore, the 0 ≤ n ≤ 1 scale has a large discrepancy between the volume and mass
fractions occupied by both walls and voids. This difference for walls stems from the detection
of noise and tenuous filaments being incorrectly given a morphological signal corresponding
to walls. By adding the noise and filament detections, the mass fraction of walls will increase
without the volume increasing as much. Conversely, the difference between the volume and
mass fractions of voids compared to the other scales stems from smaller scales analysing
smaller slices of the Universe. By analysing smaller slices without looking at the bigger
picture, NEXUS+ ignores the multi-scale nature of the cosmic web, subsequently making it
identify most of the tenuous regions as voids. Figure 2-1 supports this by showing that the
overall cosmic web and void PDF are similar, leading to small scales detecting most regions
as voids since they are unable to look at the bigger picture and base their signatures by
these larger scales.

The smallest scale, however, does provide for analysis on clusters as well as the intricacies
of the cosmic web. Clusters are dense, compact regions of space and since a smoothing scale
can only analyse environments roughly its size or larger, clusters will only be detected using
small scales, since at larger scales their densities will appear to merge with the surrounding
regions. This also supports the notion that smaller scales will identify noise as structurally
significant structures whereas larger filters will skip it along with the tenuous tendrils of the
filamentary and wall network, leading us to conclude that a wide range of scales is essential
for the investigation of the cosmic web.

By analysing the Hessian matrix of the density field for a range of resolutions, MMF
explicitly allows for a scale-space analysis of the cosmic web making for an essential
formalism that NEXUS+ can expand on. Aragón-Calvo et al. (2007) showed that by using
the MMF, Poisson noise induced by the density field had less of an effect on the detection
of different environments. This all amounts to a successful tracing of the asymmetrical
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pattern exhibited by filaments and walls of the cosmic web as well as its successful probing
of the hierarchical nature of the cosmic web with the major downside being the lack of
rigorous mathematical approach when identifying the environments.

3.4.4 NEXUS+

NEXUS is a formalism which encompasses several different tracers ranging from the tidal
field to the density field to various velocity fields, be it divergence or shear. Though the
tidal field provides information on the nature of the anisotropic gravitational collapse and
therefore essential information about the mechanisms behind structure formation, the sharp
contrast in densities between various environments within the cosmic web makes the density
field an ideal choice for its analysis.

The NEXUS formalism has two different density-based tracers. One uses a simple density
field while the other, NEXUS+, looks at the environment using a log-Gaussian filter and
will be the focal points for this report. Cautun et al. (2013) showed that by using a log-
Gaussian filter, large scale structure of the Universe were rendered better. Furthermore,
since the NEXUS formalism works more efficiently upon comparing structures of similar
values (Cautun et al., 2013) and since different morphological environments can span many
orders of magnitudes in density, by taking the logarithm of the density field the contrast
in densities within the cosmic web only differ by a few integers giving for better results.
This logarithmic density field allows NEXUS+ to be sensitive to both prominent, as well
as tenuous structures of the cosmic web, with the downside being the loss of information
on the large-scale structures around density peaks since their contributions are reduced.

NEXUS+ identifies the different constituents of the cosmic web by following six steps (for
a more thorough overview see Cautun et al. (2013)):

1. After constructing the density field f(x) via DTFE, the logarithm of the field is taken
such that g = log10(f). In doing so, a Gaussian filter WG is applied giving for a
smoothed density field gRn(x) through solving:

gRn(x) =

∫
g(y)WG,Rn(x, y)d3y (5)

In general this is done via the convolution of g(y) with that of the Gaussian filter in
Fourier space such that the integral becomes:

gRn(x) =

∫
1

(2π)3
ĝ(k)eikxe−

k2R2
n

2 d3k (6)

where ĝ(k) is the Fourier field component and e−
k2R2

n
2 the Gaussian exponential.

2. By processing this filter throughout the logarithm of the density field the Hessian
matrix H becomes:

Hij,Rn(x) = R2
n

∂2fRn(x)

∂xi∂xj
(7)
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and the Fourier transform;

Hij,Rn(x) = −kikjR2
nf̂Rn(k) (8)

Multiplying by R2
n allows the terms in the Hessian to get renormalised such that there

is no bias between scales (Cautun et al., 2013).

3. After filtration of the Hessian matrix, the signs of the eigenvalues and their values are
analysed to correlate regions with environments based on the criteria’s shown in table
1, the stronger it correlates to a particular environment, the larger it’s signature S
will be. By placing this criterion, NEXUS+ gives an unbiased characterisation of the
different environments with respect to their shape or size.

4. NEXUS+ then repeats the previous three steps for a range of scales chosen by the
user in increments of Rn =

√
2nR0, giving for a different morphological signature S

for each point at each smoothened scale.

5. By combining the results for all the scales, NEXUS+ obtains a multi-scale, parameter-
free analysis on the different environments based on their eigenvalues. For every point
it will assign the morphological environment based on the maximum morphological
signature the point was assigned through the range of scales:

S(x) = max
levels n

SRn(x) (9)

6. The final step applies the clusters as well as walls/filaments thresholds that were
briefly discussed in section 3.4.2. By filtering through the signatures based on these
physical criterion, noise gets further eliminated giving for more reliable results.

In his study, Cautun et al. (2014) investigated the cosmic web using all the different NEXUS
formalisms and found that the mass and volume fraction between one another differed by
< 10%, this suggests that its thresholding is physically motivated and does not depend on
the underlying field.

Many studies have used NEXUS+ in its analysis of the cosmic web (Hellwing (2016);
Ganeshaiah Veena et al. (2018); Ganeshaiah Veena et al. (2019)). In the paper that
introduced the formalism (Cautun et al., 2013), it’s found that by adopting a scale-space
approach in analysing the cosmic web, NEXUS+ allowed for better detection of the
tenuous structures while still preserving the filamentary and wall networks of the cosmic
web. Hellwing (2016) reiterated this in his paper by showing that due to the discrepancy
between the dispersion of different morphological environments, NEXUS+ provides a
robust algorithm in delineating the different constituents.

From the steps mentioned above, it is clear that NEXUS+ provides a scale-space analysis of
the cosmic web and on paper seems to agree with the attributes of what makes a cosmic web
tracing algorithm successful, mentioned in section 3.1. It gives a direct comparison between
environments by looking at the eigenvalues for a range of scales, allowing for coherent
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information on the connectivity between different environments to be extracted. Section
3.4.2 illustrated its ability in finding the more tenuous structures as well as successfully
delineating the more significant ones, and does so by using a log-Gaussian filter on the input
density field. Bonnaire et al. (2019) provides a summary on the formalism by describing it as
an algorithm that provides a scale-space representation of the density field, where different
environments are defined by their corresponding eigenvalues of the Hessian density matrix
obtained through the DTFE method.

3.4.5 NEXUS+ vs. NEXUS den

As stated in the previous section, NEXUS incorporates different density tracers. Though
both methods generally follow the same algorithm, NEXUS+ examines the underlying
density field with a range of log-Gaussian smoothing filters, while NEXUS den
incorporates a linear Gaussian filter, causing some discrepancies in their results.

As we have seen, the cosmic web encompasses many orders of magnitudes of densities. Since
NEXUS is more efficient when structures have similar values, a log-Gaussian filter will work
better since the density field will have a narrower range in densities and this, in turn, will
allow detection of tenuous features to occur.

Figure 3-15: Left Frame: The cosmic webs filament and wall detections using NEXUS den. Right Frame: The cosmic webs filament
and wall detections when using NEXUS+

Although NEXUS+ has more success when tracing the anisotropic structures of the
cosmic web, it struggles when detecting clusters. Since clusters are dense regions of space,
by using a log-Gaussian filter, the contribution of a highly dense core will be minimised,
therefore having more chance of being left undetected. For this reason, the report will
utilise NEXUS den when examining the cluster regions.
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Straight away one observes from figure 3-15 that both algorithms trace the significant
features of both walls and filaments well. Nonetheless, the filamentary network found
by NEXUS+ is much thinner and smoother than the one detected by NEXUS den. Since
NEXUS den incorporates a linear Gaussian filter, a large range in values will cause detected
environments to smudge itself over a wider region since densities will need to differ by a
larger amount if it wants to be identified as a different environment. This causes identified
regions to absorb both underdense regions (as seen in figure 3-15 with the long wall and
filament detection at (x, y) = (260, 250) as well as cluster regions. When examining figure
3-15, one notices that in dense regions, NEXUS den identifies circular-shaped filaments
contrary to the elongated ones found by NEXUS+. The detection found by NEXUS+
better correlates to the shape one would expect from an environment collapsed along with
two of its axis while cluster regions illustrate perfectly the smudging effect that occurs when
using NEXUS den. Since cluster regions are dense, compact regions of space assumed to
be spherical in shape, the outskirts of a cluster region will induce significant smudging of a
detected environment, manifesting itself in a circular form as observed in the figures.

Figure 3-16 highlights the success NEXUS+ has in identifying the tenuous filaments as most
of its uncommon detections lie on the outskirts of the network in the shape of thin tendrils
whom branch off from the main filamentary network and tending towards sparser regions.
The fact that NEXUS den is unable to pick out the tenuous features of the cosmic web
suggests that NEXUS+ allows for a better analysis of the connectivity between different
environments.

Figure 3-16: The differences in the detection of filaments. Blue
contour lines denote uncommon detections found by NEXUS+ while
green contour lines denote the uncommon detections found using
NEXUS den.

The two frames in figure 3-17 show
zoomed-in slices at certain sections of
the field. On the left-hand side, we
see a filamentary network, on the right-
hand side the identified walls. The figure
further illustrates the success NEXUS+
has in the identification of the more fragile
structures of the cosmic web since it
shows features lying in void-like regions
branching off from the network. Though
it is hard to conclude with certainty
whether they are genuine features, with
the knowledge that the NEXUS formalism
works better when values incorporate a
narrower range of densities as well as
the thin detections NEXUS+ finds with
regards to filaments and walls branching off
the network, one concludes that NEXUS+
renders better results which subsequently
manifest themselves in the quantitative
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results extracted.

Figure 3-17: Left Frame: A zoomed-in slice of detected filaments where green denotes identified structures using NEXUS den and
blue contour lines those of NEXUS+. Right Frame: A zoomed-in slice of the wall network as detected by NEXUS den in green and
NEXUS+ in blue.

The differences in the identified wall network are similar to the ones found between their
filamentary network. In most cases, the walls found using NEXUS den envelope those of
NEXUS+. Again, one observes that NEXUS+ identifies tenuous or fragile wall features
branching off into void regions in the form of delicate tendrils (i.e at the void (x, y) =
(230, 50)). The fact that these detections are thin and branch off from dense regions to
underdense ones suggests that NEXUS+ is better at delineating tenuous features. If these
detections were thick such as the one found at (x, y) = (170, 30) one could assume a large
fraction of error. Furthermore, gaps appear in the structure identified by NEXUS den.
These gaps are due to walls now and again consisting of dense halos. Due to its linear
analysis of the cosmic web, NEXUS den will identify these dense halo regions as non-wall
like but rather as filaments or clusters.

Figure 3-18: The mass fraction of the different environments as detected by NEXUS den (left) and NEXUS+ (right)
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The mass fraction shown in figure 3-18 is similar between both algorithms. Nevertheless, a
few discrepancies emerge due to the qualitative effects discussed earlier. The smudging of
dense regions into underdense ones manifests themselves in the mass portion of voids with
the one detected by NEXUS den being roughly 2% larger than that found by NEXUS+.
With voids identified as the remaining environment, its mass fraction illustrates the
discrepancy in the overall detection of both algorithms. By detecting wider environments,
void regions will inevitably be absorbed, causing the mass attributed to voids via
NEXUS den to decrease at the benefit of both walls and filaments.

Figure 3-19: The volume fraction of the different environments as detected by NEXUS den (left) and NEXUS+ (right)

The reason why filaments gain less mass than those of walls is that filaments are denser
than walls and so when smearing occurs, underdense regions will be falsely identified as
filaments leaving for a smaller effect on its mass, whereas for walls there’s more chance
that denser regions will be absorbed giving it a more pronounced mass increase. This effect
manifests itself in the volume and mass fraction of both Universe as seen in figure 3-18 and
3-19 where the mass fraction of walls exhibit a large difference, whereas, for filaments, the
difference in volume becomes more pronounced between the two algorithms.

Cumulative distribution function (CDF) plots are good at underscoring the distribution of
detections for different algorithm and helps illustrate the discrepancy in tenuous detections
between the two algorithms.
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Figure 3-20: The cumulative distribution function of the different environments density as found by NEXUS den and NEXUS+.

The three plots all show that the log-Gaussian approach taken by NEXUS+ has more
success in detecting the tenuous features of the cosmic web for both walls and filaments
since it incorporates a higher percentage of the total identified population. As alluded
to, this causes the remaining environment, voids, to have less of structurally significant
identifications explaining the reason as to why the distribution seems to flip for the CDF
of voids.

Particularly noteworthy is that there are consistently more significant filamentary detections
made by NEXUS den as opposed to tenuous ones, but the same cannot be said about walls
with the two trend lines intersecting. NEXUS den has a large portion of its detections at a
section near the upper end of the densities due to walls enveloping filaments and so upon
using a linear Gaussian smoothing, the smudging will cause walls to overlap with filaments
and therefore the tenuous boundaries of filamentary structures, which tend to be denser
than walls, being falsely identified as walls.

The above qualitative and quantitative analysis shows that not only does NEXUS+ give
for better rendering of the anisotropic structures, but it also allows for better detection of
tenuous features, something essential for studying such a fragile environment. Based on
previous papers (Cautun et al. (2013); Cautun et al. (2014)) as well as the results found in
this section, this report uses NEXUS+ in the comparison of the anisotropic features and
will use NEXUS den for cluster identification, which only highlights the adaptability the
NEXUS formalism provides its user.
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4 The Simulation

The particle positions provided by Roi Kugel are based on the Universe simulated by Bos
(2016) for his PhD thesis.

4.1 ΛCDM Universe

The Universe is a periodic 2563 ΛCDM Universe with the following parameters; Ωm = 0.268,
ΩΛ = 0.732, Ωb = 0.044, h = 0.704, σ8 = 0.776 and n = 0.948 (Bos, 2016). Ωm and Ωb

signify the mass composition of both dark matter and baryonic matter respectively while
ΩΛ denotes the dark energy composition of the Universe. This model correlates to the
current standard model in cosmology and takes into account cold dark matter as well as the
cosmological constant, which coincides with observations and results recorded at the largest
of scales, for instance, the accelerating expansion rate of the Universe (Riess et al., 1998).
For the remaining terms; σ8 gives the density field fluctuation root mean square value at
the 8h−1 Mpc scale, n represents the power-law index of the primordial power spectrum
and h the Hubble parameter of modern-day measurements in scales of 100Mpc km−1 s.

Using NEXUS+ on a 2563 simulation, a minute amount of clusters are identified due to
the resolution constraints. However, upon computing a 5123 sampled Universe, DisPerSE
was so computationally intensive using over 150GB worth of memory on the norma
supercomputers at the Kapteyn Institute, that it felt more suitable to analyse a 2563

Universe to give researchers and PhD students priority while keeping in mind that a
comparison of both algorithms will not differ too much as long as both simulate the same
Universe. Furthermore, the main goal of the report is to investigate the differences in
detection of the morphological environments with an ambiguous definition, that is voids,
walls and filaments. Due to clusters being virialised environments, we can define them
based on a physically motivated definition, and so their analysis isn’t essential for the
report. Nonetheless, this causes an issue in our comparison as one formalism detects an
environment that the other doesn’t identify. To fix this, the volume and mass constituents
correlating to clusters will be removed from the sample for NEXUS+, while DisPerSE
automatically incorporates them into whichever environment it identifies the regions as.
Although this difference may change the mass composition of the Universe, the volume
composition will remain constant.

In the end, a cube with sides 300h−1 Mpc representing the density field traced by the dark
matter particles are obtained. For an overview, all the parameters of the sampled Universe
are given in table 2.

Parameters Ωm Ωb ΩΛ σ8 n h z

Value 0.268 0.044 0.732 0.776 0.948 0.704 0

Table 2: The parameters of the simulated Universe. All values were taken from Bos (2016).
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Finally, as seen by figure 4-1 different slices will have various identifiable features within
it. Although the quantifiable information such as density profiles or mass content will
use information obtained of the fully sampled Universe, the qualitative analysis uses the
projection of a slice at z = 47Mpc, a value arbitrarily chosen.

Figure 4-1: Different slices of the sample 2563 sampled
Universe described in section 4.1 all using the same smoothing
scale. Top Frame: Slice of the Universe at z = 300Mpc.
Middle Frame: Slice of the Universe at z = 150Mpc. Bottom
Frame: Slice of the Universe that will be used during the
qualitative analysis, along z = 47Mpc

4.2 Persistence Level Parameter

Along with what features the user wants to
identify, be it voids, walls or filaments, DisPerSE
provides a user-input on the significance level
of structures to topologically simplify the
underlying field.

As mentioned earlier, a nsig level of two gives
rise to 5% artificial features while a nsig level
of four corresponds to an error of 0.006%.
Though it is not mathematically supported, the
analysis will revolve around a level of nsig = 3.
This value was chosen based on countless studies
using it, much of them had the developer Dr
Sousbie himself as help. Furthermore, when
trying to use the interactive persistence diagram
to choose a better value, the coma machines in
the Kapteyn Institute would crash without fail.

4.3 Smoothing Scales

As seen by figure 3-13, different smoothing
scales will amount to different environments
being identified. For the qualitative and
quantitative analysis, a smoothing scale of Rn ∈
[4.00, 5.66, 8.00, 11.3, 16.0]h−1 Mpc or 2 ≤ n ≤ 6
will be used. The minimum smoothing scale
was selected since going below 2Mpc, or the
Nyquist range, resolution effects are introduced
in the identification of the environments as noise
becomes more dominant a feature for these
smaller scales.
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4.4 DisPerSE: Tracing of the Filaments

In general, DisPerSE is used to extract the skeleton of the cosmic web, allowing cosmologists
to visualise the underlying structure of the network (Appendix F discusses the extraction
process further). This extraction of the filamentary skeleton also means that when sampling
results on a grid, the environment will be rendered poorly since DisPerSE provides no
information on its shape or size.

After processing the field, DisPerSE will provide users with a skeleton file giving coordinates
of all points identified towards a particular environment. By determining the connectivity
between coordinates, using a 3D software such as ParaView one can observe the underlying
structure of the cosmic web as illustrated by the filamentary network in figure 4-2.

Figure 4-2: The skeleton extraction DisPerSE provides on a 4 × 4 × 4 Mpc3 slice. Top Left Frame: Persistence level nσ = 2. Top
Right Frame: Persistence level nσ = 3. Bottom Frame: Persistence level nσ = 4.
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This 3D visualisation of the Universe for different persistent levels not only shows the success
persistence has in trimming out noise while still preserving significant structures but also
illustrates the strength DisPerSE has in highlighting the connectivity between filaments,
making it a successful filamentary extractor.

NEXUS+ identifies environments in a scale-space fashion by evaluating the morphological
signal at each cell. NEXUS+ then identifies the morphological environments based on the
most significant signal obtained when combining all the resolution maps. This method
implies that NEXUS+ is unable to find which structures belong to which network, rather
it only identifies environments based on the individual cell.

This method was also selected after consolidating with Dr Kooistra, who has experience
with DisPerSE. Dr Kooistra mentioned that he often makes identified cells use a somewhat
arbitrary thickness. This thickness can be defined as 2h−1 Mpc for instance, which coincides
to the radius of prominent filaments (Colberg et al. (2005); González and Padilla (2010);
Bond et al. (2010)), nonetheless, by implementing a user-defined size for environments
systematic errors will arise giving for poor results. For this report, however, this will not
be the case as I aim to compare the algorithm in identical fashion such that any differences
in results arise purely based on the method they adopt when analysing the cosmic web.
Instead, I will sample the extracted coordinates onto a grid with the same resolution as the
provided density map, which in turn depends on the number of particles present within the
simulation.
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5 Results

The results are split into two. The first part compares the qualitative results both formalisms
obtain while the second section develops a quantitative analysis focusing on different density,
mass and volume properties of the Universe as well as their different filtration methods.

The qualitative results examine the detected features in a 9 Mpc slice unless stated
otherwise.

5.1 A Qualitative Comparison

5.1.1 Clusters

Both DisPerSE and NEXUS+ have issues in identifying clusters. DisPerSE cannot delineate
the nodes no matter the resolution (Libeskind et al., 2018) and upon using a poorly sampled
2563 particle Universe, NEXUS+ identifies only a few clusters (highlighted in red under
Appendix G) such that no detections were found in the chosen slice the qualitative portion
of the results focuses on. Since clusters still make up an essential constituent of the cosmic
web, for this section only, a simulation involving 5123 particles was conducted using the
NEXUS den formalism to gain some insight regarding nodes.

Figure 5-1: Detected clusters by NEXUS+ highlighted in
green for a 5123 particle Universe.

The volume and mass fractions found
in section 3.4.3 for the smoothing scale
2 ≤ n ≤ 6 are similar to those
found by other formalisms (Libeskind
et al., 2018), suggesting that at higher
resolutions NEXUS den identifies clusters
well. Nonetheless, figure 5-1 shows a few
nodes left unidentified by NEXUS den when
we compare it with our perception of the
slice.

By using the mass and density properties
to distinguish if a cluster is virialised or
not, The NEXUS formalism adopts a robust
method in filtering out cluster populations.
The density threshold discussed in section
3.4.2 causes at least half of the clusters to be
left unidentified by construct since they are
too small and underdeveloped. Moreover,
since cluster regions correspond to regions
with extremely dense cores, a poorly resolved sample causes the density peak at a point to
merge with its surrounding areas, this decreases its core density and causes a change in its
morphological significance resulting in the Hessian matrix’s eigenvalues to change.
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5.1.2 Filaments

Figure 5-2: Two figures side by side showing the detected filamentary network by both DisPerSE and NEXUS+. The slice is focused
at z = 47 Mpc but includes detections at a range of z = [42, 51] Mpc Left: Filamentary network as detected by DisPerSE.
Right: Filamentary network detected by NEXUS+.

Figure 5-2 shows the filamentary network extracted by both formalisms. Projection effects
(better illustrated in Appendix H) cause filaments, an environment that has collapsed along
two of its axis, to appear as dots when projected on a two-dimensional plane rather than
a surface. Näıvely, one also sees that DisPerSE traces the filamentary network with more
success compared to NEXUS+, which has gaps and discontinuity between detections for
instance at (x, y) = (170, 80).

One reason why DisPerSE traces the filamentary network nicely is due to its initial
assumption that filaments link regions of density maximums via the tracing of its
ascending 2-manifold in a discrete Morse-Smale complex. This delineation causes regions
between density peaks to be identified as filaments no matter their density as long as it
falls within the tracing of the ascending manifold. Although this provides a reliable
detection on the significant structures by providing them with a mathematical foundation
to fall back on and also allows tracing of the multi-scale nature of the environments, false
detections will occur as well as a loss of information on the more tenuous filaments
situated in a void or sparser region. At (x, y) = (250, 130) and (250, 220) we see examples
of different void regions being detected as filaments. Appendix G visualises the
discrepancy in filamentary detections between DisPerSE and NEXUS+, which is also due
to the critical points being locally defined, amounting to a surplus of detections on this
ill-defined scale.

NEXUS+ does not have this assumption as it provides analysis for all points for a range
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of scales based on certain physically motivated constraints defined by the Hessian
eigenvalues. This scale-space analysis allows NEXUS+ to investigate the connectivity
between the data points for a range of scales, highlighting the hierarchical nature of the
cosmic web and allowing for better identification of the tenuous structures while still
preserving the significant features of the cosmic web. Nonetheless, cluster regions signified
by the white and yellow environments, are identified in this slice as filaments by NEXUS+
which only reiterates the fact that due to poor resolution, the density disperses into the
surrounding such that the cluster morphological signal isn’t as dominant. Since filaments
are the next densest environment, these cluster regions are identified as filaments. This
merging of the two environments accentuates this idea that it isn’t suitable to identify the
different constituents solely based on their density properties, and a more mathematically
rigorous approach needs to be adopted when delineating the cosmic web.

In addition to the tracing of ascending manifolds, by being a topological based algorithm,
DisPerSE is unable to characterise the thickness profile of filaments since it only extracts
the skeleton (see Appendix F), and this is reflected by its lack of variety of different sized
filaments detected. The lack of a thickness profile causes the detected filaments to be
thicker than other formalisms including NEXUS+ (Libeskind et al., 2018) making it
absorb both void-like and wall-like regions, giving for further false-detections as well as a
loss of information on the fragile features. Contrariwise, NEXUS+ can preserve the shape
and size of the different environments by adopting a geometrical and scale-space approach.
By using geometrical information encoded within the Hessian density matrix, NEXUS+
allows itself to obtain information on the size and shape of the different environments, and
upon analysing it over a range of smoothing scales, NEXUS+ better filters the identified
environment giving researchers a nicely user-free rendered environment. Subsequently,
NEXUS+ provides more reliable quantitative results.

Figure 5-3 shows the similarities and differences in filamentary detections between both
formalisms. Starting with the similarities, we see that the figure is very similar to the one
observed by NEXUS+ in figure 5-2, suggesting that NEXUS+ either under detects filaments
or provides fewer false detections. In general, we can see that both formalisms allow tracing
of the significant structures as the contours overlap the denser, brighter regions and traces
well the network seen.

On the other hand, the figure on the right-hand side has its filamentary detections on
the outskirts of the significant filaments, as well as a few detections situated in tenuous
regions. DisPerSE has much more of these non-common detections due to the thickness of
the network it portrays. More interestingly is that NEXUS+ has smaller length uncommon
detections as well as a smaller fraction of these detections being in sparse regions. This
difference is noteworthy as it suggests that DisPerSE not only removes the tenuous features
that branch off significant filaments, but also reiterates the fact that DisPerSE has many
false detections by not only identifying filaments as regions connected by density maximums,
but also needing a user-defined thickness giving rise to systematic errors in its rendering of
the cosmic web.
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Figure 5-3: Left: Figure showing the common filaments detected between both formalisms. Right: Figure showing the filaments
detected only by either NEXUS+ (highlighted in light blue) or DisPerSE (highlighted in purple). The slice for the detection’s for this
figure are projected along an infinitesimal slab at z = 47 Mpc.

When comparing by eye, one concludes that DisPerSE tends to over-identify filaments
whereas NEXUS+ tends to under detect them. It is harder to make a conclusion on the
tracing NEXUS+ provides since the figure shows a slice of the given Universe while the
network we observe in the underlying density field can go much deeper than the observed
slice, possibly explaining this lack of detection. Nonetheless, based on the differences,
one concludes that although persistence provides a mathematically rigorous tool in the
filtration of the cosmic web, it also removes some of the more intricate structures making
up the boundary of filamentary networks and introduces systematic errors since it needs a
user-defined scale when rendering the environment.

5.1.3 Voids

Figure 5-4 shows the voids identified by both formalisms. Since the figures show the
identified voids with a 9 Mpc range in thickness, there may be identified regions that
overlap with the filamentary network. Appendix I shows the void detections for an
infinitesimal slice of the cosmic web as a comparison and helps emphasise the differences
in both formalisms. The dots observed in both figures are due to the same projection
effects discussed previously for filaments.
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Figure 5-4: Two figures showing regions identified as voids for both DisPerSE (left) and NEXUS+ (right).

NEXUS+ identifies more voids compared to DisPerSE (see Appendix J for detections on
the infinitesimal slice) and this is due to many factors, including the lack of a width profile
DisPerSE obtains in its approach. For DisPerSE, we see a disconnected network of voids,
with many being individual constituents appearing as patches. In contrast, NEXUS+ has
the Universe engulfed by void regions, one that better correlates with the cosmic web theory
and better traces the environment based on what we can delineate by eye.

Moreover, by construct NEXUS+ interprets all non-identified regions as voids, causing
for an over-detection of them. Since NEXUS+ has a physically motivated threshold on
the different morphological environments, underdeveloped and non-significant regions are
often left undetected and end up identified as voids. This discrepancy in the number of
detections between the two formalisms manifests itself in both the density distribution as
well as volume and mass composition of the Universe as we will see in later sections of
the report, however based on the rendering of the environment one can see that NEXUS+
provides better results when tracing the void regions of the cosmic web.
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5.1.4 Walls

Figure 5-5: The detection of walls for the given Universe using both DisPerSE (left) and NEXUS+ (right).

Similarly to filaments, DisPerSE detects a larger amount of walls than NEXUS+. By
analysing the cosmic web at a range of scales NEXUS+ analyses the multi-scale and
hierarchical nature of the different environments, its log-Gaussian filter allows it to nicely
delineate between void-like and wall-like regions which DisPerSE does not have the luxury
in doing.

DisPerSE doesn’t investigate the hierarchical nature of the cosmic web with the same success
as NEXUS+. Its scale-free approach leads DisPerSE to ignore the concept of substructures
and instead analyses every point as a specific structure without looking at the complete
picture and how the different environments are connected. Furthermore, with walls being
sparse and having a similar density profile to voids, a topological approach has difficulties
when delineating between the two environments, often mistaking void regions as walls and
vice-versa due to the lack of topological features within them.

Although identifying environments based on density is less than ideal due to the range
of densities environments can consist of, a log-Gaussian filter allows NEXUS+ to identify
regions with great success, including the more tenuous environments in walls.

Based on these qualitative observations, it is clear that both formalisms can trace the
anisotropic pattern present in the cosmic web. Although the report uses an N-body
simulation, this is also the case for observational data if we keep in mind that NEXUS+ is
an improved version on MMF (Jones et al. (2010); Luber et al. (2019)) meaning that they
both successfully meet two of the requirements needed for a successful cosmic web tracing
formalism. With that being said, by eye, it is also clear that NEXUS+ traces the
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environments better with the help of its geometrical analysis, but it should be stated that
NEXUS+ tends to focus on giving better-rendered results whereas DisPerSE mainly
focuses on the singularity structure of filaments.

Nonetheless, if quantifiable information needs to be extracted, researchers need an adequate
rendering of results such that the rendered grid can then be applied to the underlying density
field to extract the plethora of information ingrained within the cosmic web. This means
that although NEXUS+ uses a second-order approximation as well as information ingrained
within the density field to identify environments, the use of the Hessian density matrix allows
for a better rendering of the different environments in a user-free way that preserves the
shape and structure of the environment, resulting in better quantifiable results.

5.2 Mass and Volume Content of the Universe

The table below shows the mean density of the different environments:

Filaments Walls Voids

DisPerSE 2.80 0.563 0.278
NEXUS+ 5.73 1.29 0.408

Table 3: The average density, ρ/ρ̄, of the different environments detected.

Due to clusters being undetected by DisPerSE, their density components are often absorbed
within the filamentary network, while ones identified by NEXUS+ are ignored. Even so,
NEXUS+ obtains a larger density for filaments due to DisPerSE identifying regions such
as voids and walls to filaments, causing a decrease in the overall mean density of filaments.

The difference in mean density computed by either formalism manifests itself in the volume
and mass composition of the Universe. The figures below show the volume composition of
the Universe obtained by both formalisms.

Figure 5-6: Volume fraction of the different constituents detected by either formalisms.

Since clusters make at most a few percent of the volume fraction of the Universe (Hahn
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et al. (2007); Aragón-Calvo et al. (2010); Cautun et al. (2014); Libeskind et al. (2018)) its
quantities will not alter the results exhibited here.

Based on previous results, one expected DisPerSE to have a more even distribution
compared to NEXUS+ so this shouldn’t come as a surprise. By not being able to detect
the width of filaments and walls, both their volume fraction increase. This lack of
preservation of shape or size of structures has such an effect that voids are no longer the
dominant feature within the cosmic web, contrary to what the cosmic web theory expects.
This stark contrast in the computed volume fraction of voids gives the most direct
evidence that NEXUS+ provides a better analysis on the cosmic web, since it’s own
volume distribution better correlates with predictions of the cosmic web and better
highlights the rich asymmetrical nature of the cosmic web.

Although NEXUS+ has the tendency to over-detect voids based on it identifying regions
as the remaining environment, the increase it gets by absorbing under-developed structures
doesn’t induce a large difference in its computed volume fraction.

Figure 5-7: Mass fraction of the different constituents detected by either formalisms.

By over-detecting filaments, DisPerSE has a bias towards its mass composition, and with
cluster regions having the possibility to be identified as filaments this is even more prominent
a fact. Figure 5-7 illustrates this since filamentary detection make up an overwhelming part
of the mass the Universe according to DisPerSE, while for NEXUS+, it is not as dominant
a feature. Nonetheless, they both delineate filaments as the dominant mass constituent of
the Universe coinciding with other algorithms as well as our real-life observations of the
cosmic web since they are the most prominent constituent.

The approach NEXUS+ adopts in classifying voids also affects its computed mass fraction.
By having underdeveloped regions filtered out, the mass comprising of these regions will
be accounted for in the void fraction, causing both its mean density and mass fraction to
increase.

The probability density function (PDF) in the figures below show that both formalisms
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are successful in analysing the multi-scale range in densities environments can incorporate.
DisPerSE has its trendlines skewed left as well as having narrower tails, signifying a smaller
mean density as well as less variety in its results. This difference in distributions between
the two formalisms is understood since filaments absorb both wall-like and void-like regions,
who have low densities causing a shift towards lower values. Following the same logic, voids
tend to be falsely identified as walls, causing a shift in the density distribution of walls
towards lower densities.

Figure 5-8: PDF of the different environments for both DisPerSE (left) and NEXUS+ (right).

The differences in the results found in the qualitative section of the analysis manifest itself
in the quantitative results. Nonetheless, the results found shows that both formalisms
successfully probe the multi-scale nature of the cosmic web in which environments can
span a range of magnitudes. However, since one observes that the distribution function
extracted by NEXUS+ has wider tails compared to those of DisPerSE it suggests that
NEXUS+ provides a more coherent way in successfully analysing the multi-scale nature of
the cosmic web.
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5.3 Persistence vs. Scale-Space Filtration

Figure 5-9 shows the result of filamentary identification using different persistence and
smoothing scale values.

Figure 5-9: The detection of filaments for different persistent levels (top frame) and smoothing scales (bottom frame).

At first glance, we see that a nσ = 2 level practically covers the whole map only leaving the
most underdense regions, signified by dark patches, undetected which is expected based on
the discussion about figure 3-11. Within two significance levels, a more coherent network
starts to form which traces the filaments nicely as void regions tend to empty first.
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When looking at the difference in detection induced by different smoothing scales, there
isn’t as drastic a difference. Although the rendering varies, the lesser pronounced difference
between smoothing scales not only implies that the geometric approach taken by NEXUS+
is reliable when incorporating a scale-space analysis, but also suggests that NEXUS+ is
more adaptable to probing the hierarchical nature of the cosmic web.

Another way to look at the difference in detections both methods obtain and why an
adaptable approach is essential for the analysis of the cosmic web, is by analysing the CDF
plots seen in figure 5-10 situated on the next page.

A CDF plot emphasises the shift in the PDF distributions as it bins all identified points to
its corresponding log-density ratio with respect to the overall cosmic mean density ρ̄, and so
one is better able to see the running total of a particular environments population. The three
plots for DisPerSE all follow the same trend, nσ = 2 identifies more features with a lower
density while nσ = 4 detects mostly dense, significant structures. The discussion provided in
section 3.3.3 and figure 3-8 alluded to this fact since by increasing the persistence threshold
a large fraction of tenuous features will get removed since their density contrast with the
background isn’t large, therefore being labelled as topologically insignificant. Trimming the
tenuous features causes a lot of information on the intricacies of the cosmic web to be lost.
Based on this, one concludes that although persistence is a mathematically rigorous method
with lots of advantages, it may not be suitable for the analysis of the cosmic web - at least
not in the fashion DisPerSE adopts that causes a local filtration of all structures based on
a global criterion. This use of persistent homology to simplify the field could be improved
upon in the algorithm by filtering features based on a local criterion. A local criterion would
allow for the preservation of tenuous features but will also increase the computation time
and depending on the fashion it is implemented, the number of user-parameters.
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Figure 5-10: The CDF for the different constituents of the cosmic web. The left hand side shows the CDF based on DisPerSE
detections and the right hand side the CDF based on NEXUS+ detections.

The CDF plots corresponding to NEXUS+ are more varied, showing its adaptable nature
when analysing the environment. This flexibility is illustrated with the smoothing scale 4−6
detecting more tenuous filaments than the other two filters while also having a larger fraction
of its void and wall populations towards the higher densities compared to the smoothing
scale 2 ≤ n ≤ 6. The reason behind this is understood when looking at table 3, as well
as the PDF’s provided in figure 5-8. Since filaments tend to be the densest environment
of the three, by observing only larger scales any region corresponding to a relatively large
density will give a morphological signal related to filaments. Large smoothing scales analyse
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large regions, and so dense, compact regions will be diluted with the surrounding void or
wall-like regions inevitably causing the overall filament density to be reduced. This trend
isn’t reciprocated in the distribution exhibited for the other two environments since walls
and voids have similar density values. Since the volume fractions of walls and voids make
up a significant portion of the Universe, a large scale filter won’t affect results as much when
diluting the wall densities over a larger region, especially since it may also absorb filaments
in the process which inevitably increases its density distribution.

Due to smoothing filter 1 − 3 analysing at a smaller scale, noise becomes more dominant
a feature and explains its bias towards denser structures. This trend hints towards some
features detected at this scale being dependent on Poisson noise, giving support towards
a scale-space approach since it is hard to define an optimal scale at which to analyse the
cosmic web.

Analogous to the formalism itself, the difference between both filtration method is clear.
One takes a mathematically robust approach in identifying topologically significant
structures and provides a rigorous mathematical foundation towards detections, with the
limitation being the removal of fragile features. The other formalism incorporates a
scale-space mechanism in its filtration, allowing to investigate the intricate nature of the
cosmic web and making it better in identifying tenuous structures and therefore, the
connectivity between environments. Though its filtration method isn’t as rigorous as the
one adopted by DisPerSE, the scale-space approach taken by NEXUS+ is more adaptable,
resulting in better identification of the substructures present as well as a better rendering
of the environment.
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6 Conclusion

The report begins by introducing the cosmic web and different ways researchers investigate
its fragile nature. By building up knowledge on the mathematics behind both formalisms,
section 5 provided a comparison based on results obtained using a pre-defined Universe.
Although both algorithms were successful in tracing the different environments of the cosmic
web and successful in showing the multi-scale nature of the cosmic web, there was a large
discrepancy in both qualitative and quantitative results.

Both formalisms account for the hierarchical and multi-scale nature of the cosmic web
with the use of DTFE, which interpolates and reconstructs the density field based on the
geometry of the particle distribution in a scale-free, adaptable manner. Nonetheless, they
do so with varying success. By adopting a global persistence ratio on a local neighbourhood,
DisPerSE robustly trims out intricate features of the cosmic web whereas NEXUS+ with
a scale-space approach is more adaptable, providing better results on both tenuous and
significant features of the cosmic web, a fact highlighted with its wider tails in figure 5-8.

Furthermore, although DisPerSE provides a mathematical equivalence between the
constituents with theorems, it is unable to characterise the shape or size of the different
environments causing a poor rendering of results as well as introducing a systematic error
as it needs a user-defined thickness. On the other hand, by identifying which cells
correspond to which environment and analysing the geometrical information encoded in
the second-order derivatives of the density field, NEXUS+ provides researchers with a
user-free rendering on the environment by preserving both the shape and size of the
different constituents and therefore yields better quantitative results as well as qualitative
results.

It is clear upon looking at the two PDF’s given in figure 5-8 that environments shouldn’t
be defined based solely on densities since they overlap. NEXUS+ avoids this by looking at
many scales and only uses the information ingrained in the density field to identify regions
possibly correlating to certain environments based on the best-fit result found for a wide
range of scales. The strength in its rendering of the cosmic web is thanks to the geometrical
information it obtains from the Hessian density matrix.

Based on these facts as well as the bonus of being less computationally intensive compared
to DisPerSE, one concludes that the geometric, scale-space approach adopted by NEXUS+
is better at tracing and analysing the cosmic web compared to the topological approach
implemented by DisPerSE.

Nonetheless, there is always room for improvement and the same can be said about
NEXUS+. Though the method NEXUS+ adopts allows it to be successful in tracing the
cosmic web, there are still improvements to be made. NEXUS+ doesn’t provide a concrete
mathematical equivalence to the different environments, and so ambiguity arises in its
tracing of the cosmic web. Furthermore, the 4% discrepancy in results with respect to a
continuous scale-space analysis may affect the identification of certain smaller features.
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Future research may want to investigate how DisPerSE would perform on a
better-sampled grid compared to NEXUS+ as the thickness of filaments between figures
3-8 and 5-2 already have a large discrepancy. Furthermore, the report focuses on a dark
matter based simulation. Given more time, it would be insightful to test and compare
either algorithm on observational data to understand how the formalism goes about fixing
possible observational errors such as finger-of-god effects or magnitude as well as
observational limitations, rendering lesser sampled results.
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Appendix A: Voronoi Tessellations

Voronoi tessellations have been heavily used in the research of the cosmic web and form
the foundation of the Voronoi Clustering Model (van de Weygaert and Schaap, 2009). The
Voronoi Clustering Model links the different morphological environments to the different
components of a cell in an idealised manner as can be seen in table 4, providing a link
between Voronoi tessellations with the natural pattern observed of the cosmic web induced
by the dynamics of matter. Voronoi tessellations appear to naturally represent asymptotic
configurations for a range of gravitational instability scenarios and also depicts the reason
behind void regions being such a prominent feature within the cosmic web (van de Weygaert,
2002).

Geometric Component Cosmic Web Equivalent

Voronoi Cell Void
Voronoi Wall Walls
Voronoi Edge Filaments

Voronoi Vertex Clusters

Table 4: The different geometric components and their corresponding morphological environments.

A Voronoi tessellation constitutes of a manifold partitioned into numerous cells that show
the set of points closest to it’s respective nuclei, which for DTFE is taken as the critical
point. Mathematically this is written as (Zomorodian, 2005):

Definition A.1 (Voronoi Cell): A Voronoi cell Vu of u ∈ Rd is the set of points for
which u minimises the weighted distance such that:

Vu = {x ∈ Rd|gu(xu, y) ≤ gv(xv, y), ∀v ∈ K}

and the union of Voronoi cells makes the Voronoi tessellation V =
⋃
i Vu,i where gu is the

Euclidean weighted distance between x and y. Figure A.1 illustrates the concept.

One can imagine the nuclei of each Voronoi cell being a peak in its local neighbourhood.
By placing a ball at the maxima, a Voronoi cell shows the possible set of paths the ball
can travel, the boundary showing the possible final destinations making it analogous to
ascending and descending manifolds.

As one can expect from definition A.1, Voronoi tessellations are extremely sensitive to the
geometrical composition of the discrete sample, and this is in part due to its dependence
on the relation of clustering extent and clustering strength of the node. This sensitivity
has allowed for reliable reconstruction of density fields, and its properties have allowed it
to replicate the super-Hubble-like velocity flows found in voids (Schaap and van de
Weygaert, 2003). The node distribution roots itself into the underlying field by being a
topological invariant that isn’t dependent on the galaxy population of the walls, filaments
or cluster elements of the tessellation. Subsequently, this topological property allows for
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Figure A.1: Example of a weighted Voronoi 2D tessellation where the black dots show the nuclei of the cell.

robust quantitative measurements about the properties of the sampled matter
distribution.

Delaunay tessellations are the dual of the Voronoi tessellation since one can construct a
Delaunay tessellation by connecting the nuclei of the Voronoi cells, a mathematical property
DTFE revolves around. Figure A.2 shows the relation between the two tessellations.

Figure A.2: The left frame shows the Voronoi tessellation of a given discrete sample set, shown in the central frame. The right-hand
side shows its dual, the Delaunay tessellation. (image courtesy of van de Weygaert and Schaap (2000))
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Appendix B: Simplices

Simplices are essential within computational analysis due to computers having a finite
amount of storage, making it difficult for them to represent surfaces. Simplices allows
a reduction of both the processing time and computational resources used by being the
simplest d-dimensional geometric object in Euclidean space of dimensions d that preserves
the topological and geometrical properties of a given sample (Zomorodian, 2005).

Both DisPerSE and NEXUS+ use DTFE, which takes advantage of different Delaunay
tessellation properties to separate topological properties with geometrical properties of a
given domain. It is therefore essential to provide a brief overview of some of the jargons
within the mathematical formalism.

Definition B.1 (d-Simplex): A d-simplex, αd, is a geometrical structure in a
d-dimensional space which has d+ 1 points. This notion is illustrated below in figure B.1.

Figure B.1: Examples of simplices corresponding to different dimensions (numbered under).

Another way of interpreting a simplex is that a d-simplex is the convex hull of d+ 1 points,
a convex hull being the smallest envelope to enclose all d+ 1 points within the set.

DisPerSE needs to compute values of the field at different regions to define it’s discrete
Morse function. It does this by giving a certain weight to each simplex, including its facets
within the simplicial complex, but to understand the process better a few more definitions
are provided. Most definitions are from Sousbie (2011), whereas the definition of a facet is
from Gyulassy (2008).

Definition B.2 (Facet): Given an individual d-simplex, αd, is an element of the simplicial
complex K where ȧ denotse it’s boundary, the cells σl ∈ K ∩ ȧ denote the facets of αd. If
the difference in the dimension is one, d− l = 1, we say that σl is the face of αd.

Definition B.3 (Co-facet): For a simplex αd within the simplicial complex K, a co-
facet, βl, is a simplex of a higher dimension, that is l > d. Here a parallel with the previous
definition can be seen with αd being a face of βl if l − d = 1.

A facet of a particular simplex αd is a simplex which has a lower dimension than αd, while
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a co-facet is a simplex with a higher dimension than αd. The following figure illustrates
this idea:

Figure B.2: Illustration conveying the idea of facets and co-facets. In this example, the face of the sheet-like surface would be the
1-simplicial edges while the 0-simplicial vertices are its facets. For the edges, the vertices are its face and the surface its co-face. (image
courtesy of Gyulassy (2008))

Definition B.4 (Simplicial Complex): A simplicial complexK is a finite set of simplices
such that obeys the following properties:

1. Any face of a simplex in K also belongs to K. This means that for αd ∈ K, σd−1 also
belongs to K.

2. Any intersection of two simplices in K is either empty or a simplex of a dimension
lower or equal to the highest dimension they share.

A simplicial complex will partition space into a set of d-simplices which span the whole
space based on the discrete points given acting as vertices. This explains why simplices
are fundamental in computational analysis, as it allows to preserve the geometrical and
topological properties of a surface while using the least resources to do so and spanning the
whole d-dimensional Euclidean space.
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Appendix C: Manifolds

DisPerSE revolves around manifolds and so an explicit definition is necessary to properly
understand the analogies between the different cosmic web elements and d-dimensional
ascending and descending manifolds. To understand what a manifold is, a few definitions
are taken from Gyulassy (2008).

Definition C.1 (Set): A set is defined as a finite or infinite collection of elements a. a ∈ S
means that the element a is in the set S. On the other hand, if a set S contains no elements
and is empty, it is called the null set and is represented by ∅.

Definition C.2 (Subset): A set U is a subset of set S if all the elements in U , a ∈ U ,
also make up the set S. This is denoted as U ⊆ S.

Definition C.3 (Union): The union of two sets, indicated with ∪, gives a new set
consisting of all elements in A and B and is denoted as A ∪ B. Figure C.1 illustrates this
idea below.

Figure C.1: The union between two sets A,B denoted as A ∪ B.

Definition C.4 (Intersection): The intersection between two sets A and B is denoted
as A ∩B. It is the set consisting of all the common elements between sets A and B and is
figure C.2 represents this.

Figure C.2: The intersection between two sets A,B denoted as A ∩ B is highlighted in purple.
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The following definition is taken from MathWorld (Rowland and Weisstein) and describes
a topological space.

Definition C.5 (Topological Space): A topological space is a set S, along with a
collection of open subsets U , that obey the following three axioms;

1. The null set ∅ as well as the set U belong to S. Mathematically: ∅, U ⊆ S.

2. The union of i sets in S, whether it is a finite or infinite amount, are also in S.
Mathematically this is given as

⋃
i Si ∈ S.

3. The intersection of a finite or infinite amount of sets in S are also in S such that⋂
i Si ∈ S.

Definition C.6 (Hausdorff space): A topological space X is called a Hausdorff space
if for every x, y ∈ X where x 6= y, there exists neighbourhoods A,B of x, y such that
A∩B = ∅. This means that two points x and y can be separated from a topological space
if their neighbourhoods have no common elements between one another and figure C.3 helps
illustrate this.

Figure C.3: An illustration of a Hausdorff space.

Given the definition of a homeomorphism given in section 3.3, the formal definition of a
manifold can now be introduced.

Definition C.7 (Manifold): A separable Hausdorff space X, that is a space with a finite
amount of neighbourhoods, is a d-manifold if at every point x ∈ X it has a neighbourhood
homeomorphic to Rd.

Another way to approach its definition is that for every point p = {p0, p1...pi} ∈ S, there is
an open neighbourhood U of these points p as well as a homeomorphism f : U −→ V that
maps the set U onto V ∈ Rd.

This means that a d-dimensional manifold is a topological space in which its local
neighbourhood looks like the d dimensional Euclidean space Rd. Therefore a 0-manifold is
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a topological space that locally resembles a 0-dimensional Euclidean space, a 1-manifold
one that locally resembles a 1-dimensional Euclidean space etc.

In the given context a zero-dimensional manifold, 0-manifold, can be perceived as a vertex,
a one dimensional manifold (1-manifold) a curve, a 2-manifold a surface and a 3-manifold
a volume. This concept of manifolds is the fundamental reason as to why DisPerSE defines
clusters as 0-manifolds, filaments 1-manifolds, walls 2-manifolds and voids 3-manifolds in a
way that is mathematically rigorous.
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Appendix D: Betti Numbers

Homology is a mathematical formalism that provides a quantitative description of the
connectivity of space by analysing the existence of holes via the description of their
boundaries.

The Euler characteristics and Betti numbers are two topological properties which allow
researchers to obtain quantifiable information on a given manifold. The Euler characteristic,
χ, shows the alternating sum of simplices on the surface of an object and is given by:

χ = V − E + F = β0 − β1 + β2...+ (−1)dβd (10)

Where V denotes vertices, E edges and F the faces. However, the Poincaré duality implies
that χ = 0 for the set of all 3-manifolds. The Poincaré duality combined with the fact
that the Euler characteristic denotes the alternating sum of simplices - analogous to Betti
numbers - suggests that Betti numbers provide more of a descriptive analysis on the topology
of a given domain.

Though Betti numbers are only briefly mentioned in the report due to them being out of the
scope of the study, it is still necessary to define them since they are a topological invariant
which allows DisPerSE to analyse the environment so rigorously by looking at particular
features’ lifetimes.

Betti numbers are topological invariants that represent the nth homology group. Homology
is a mathematical formalism that distinguishes holes on a manifold based on the connectivity
between elements within the constrained space and describes the boundaries between these
holes in a mathematical construct called cycles. For a d-dimensional manifold there will be
d different types of holes ranging from d ∈ [0, d−1]. These holes correspond to the different
Betti numbers and provide a rigorous method when analysing the cosmic web.

Formal definitions from Edelsbrunner et al. (2000) as well as Sousbie (2011) are provided
below to build up the required jargon needed to understand Betti numbers better.

Definition D.1 (k-Chain): A k-chain is defined as the subset of all simplices in a complex
K of dimension k. For a complex spanning R3, this would entail the set of vertices, segments,
facets or tetrahedrons. Mathematically a k-chain can be defined as;

ck =
∑
i=1

niαi, where ni = {0, 1} and αi ∈ K

Notice that ni can be either one or zero, and therefore not all simplices within the complex
make up the k-chain.
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Definition D.2 (k-Chain Group): A k-chain group is the set of all its k-chains, that is:

Ck = ck + c′k =
∑
i

(ni + n′i)αi

Definition D.3 (Boundary Operator): The boundary operator is denoted as ∂k, and
the boundary of an αk simplex denotes the collection of it’s k − 1 dimensional faces.

An important property of the boundary operator is that the boundary of a boundary is the
null set, that is ∂k+1∂k = ∅. This states that a boundary is a cycle, and since cycles have
no boundaries, it forms an empty set. The boundary operator allows to connect different
chain groups of different dimensions in the following manner:

...Ck+1
∂k+1−−−→ Ck

∂k−→ Ck−1...

Definition D.4 (kth Cycle Group): Zk indicates the kth cycle group and it is the kernel
of the boundary operator ∂k. Following the property of the boundary operator, when the
cycle group c has the boundary applied to it, it becomes an empty set such that ∂k(c) = 0.
Mathematically this is defined as:

Zk ≡ ker ∂k = {c ∈ Ck|∂k(c) = 0}

Zk can be understood as the set of k-chains with an empty boundary.

Definition D.5 (kth Boundary Group): Bk is used to represent the kth boundary
group. This is the image of the boundary operator and represents the collection of (k− 1)-
chains that are boundaries of the k-chains. Formally this is defined as being:

Bk ≡ im ∂k = {d ∈ Ck−1|∃c ∈ Ck : d = ∂k(c)}

From definitions D.3, D.4 and D.5 it can be seen that Bk ⊆ Zk ⊆ Ck and this is illustrated
in figure D.1 below.

Figure D.1: Illustration showing the relation between chains, cycles and boundary groups with the boundary operator. (image courtesy
of Edelsbrunner et al. (2000))
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As can be seen, the kth boundary group makes up the k + 1 chain group, while the kth
cycle group has no boundaries in and of itself.

Definition D.6 (kth Homology Group): The kth homology group, Hk is given as
Hk = Zk

Bk
. The kth homology group is the set of all the k-chains neglecting those of the

boundary group. This gives rise to the possibility of separating groups based on their
boundaries.

Definition D.7 (kth Betti Number): The kth Betti number, βk, is the rank of it’s kth
homology group, or more formally βk = rank Hk. It corresponds to the number of k-cycles
in a given set.

Figure D.2: Different surfaces along with the corresponding Betti numbers attributed to them.

For cosmology, there will be three different Betti numbers. Mentioned already in section
3.3, β0 or the 0-cycle shows the number of isolated components of a surface, β1 the number
of tunnels and β2 the number of enclosed volumes.

Figure D.2 gives examples of different surfaces and their Betti numbers. A flat circle that’s
filled in will have one independent component (the circle itself), as well as having no tunnels
or holes. This gives rise to Betti numbers β0 = 1, β1 = 0, β2 = 0 respectively. On the other
hand, by observing the torus on the right-hand side of figure D.2 we see that the torus
encloses a volume giving it a value of β2 = 1 while also enclosing two tunnels, that is to say,
it is possible to draw two different circles on the surface shown by the dashed red and blue
lines amounting to a 1-cycle value of β1 = 2. The concept of Betti numbers is important
due to it providing a complete depiction of the topology of a given manifold, allowing for
robust analysis of the field.
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Appendix E: Pie Charts showing how the mass and volume
composition of a 5123 Universe depends on the smoothing
scale.

Figure E.1: Mass fraction of the Universe based on the smoothing scales used in the MMF. The unlabelled filter corresponds to the
scale 2 ≤ n ≤ 6 and is unlabelled due to being the default Universe upon the comparison with DisPerSE.

Figure E.2: Volume composition of the simulated Universe at a range of scales. Again, the unlabelled pie chart corresponds to the
smoothing scale 2 ≤ n ≤ 6.
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Appendix F: Extracting the cosmic web’s skeleton

This section provides a general overview of how DisPerSE characterises the skeleton of the
filaments, for a more thorough discussion see Sousbie et al. (2008).

Figure F.1: Image showing the probability map that certain
pixels are attributed to a skeleton. (image courtesy of Sousbie
et al. (2008))

Due to the discrete nature of the data,
Poisson noise gets introduced and potentially
affects the shape of the different environments
found by DisPerSE. DisPerSE computes a
probability distribution dependent on the
gradient flow to fix this error. By mapping
the probability distribution on the field, pixels
are processed by an algorithm to find which
set of integral lines or environment it most
likely corresponds to.

The algorithm computes a probability for
each pixel based on the gradient flow and
the corresponding probability distribution of
its 3d − 1 neighbours, where d denotes the
dimension of the data set provided. Figure
F.1 illustrates this by showing the probability
distribution of a filamentary network where red regions show areas most likely to be
attributed as filaments. To construct the probability distribution the algorithm starts at the
minimum (or void region) then iterates in an ascending fashion until a new local minimum
is detected. At this point, it looks for the saddle point between the two critical points as
this corresponds to regions where filaments will arise, and with the help of the probability
distribution of each pixel, DisPerSE is then able to delineate the filament.

Figure F.2: The figure above illustrates the sub-pixel resolution delineation of filaments DisPerSE implements. Red crosses show the
weighted average position where there is an equal probability that it belongs to one of the two pixels with different indices (blue denotes
minima’s, green saddle points and red maxima’s). A blue cross then marks a new weighted average this time corresponding to a face of
the cube based on the position of three or more red crosses that occupy the segments or edges. From these blue crosses, the filaments
are traced. (image courtesy of Sousbie et al. (2008))
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This method, however, still has issues with the structure being discontinuous due to
resolution effects and so a further smoothing parameter has to be given to render better
results. By taking eight neighbouring pixels in the field (forming the vertices of a cube),
DisPerSE identifies each region whether it is a minimum, maxima or saddle point. For two
neighbouring vertices in a cube where manifolds intersect, if their corresponding index
i 6= j, DisPerSE computes a gradient weighted average position in which the filament is
most likely to emerge. This weighted average between pixels gives for sub-pixel resolution
and therefore better tracing of the skeleton and is illustrated in figure F.2. This process
allows tracing of the ridges induced by the gradient flow of the underlying field and
therefore, allows extraction of sub-pixel resolution of the skeleton of the network.
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Appendix G: 3D representation of the filamentary network
detected by both DisPerSE and NEXUS+.

Figure G.1: Figure showing the identified filaments (blue dots) using both formalisms for the 2563 particle Universe. Top frame shows
the detections using DisPerSE and the bottom frame that of NEXUS+. The red in the NEXUS+ shows the detected nodes
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Appendix H: Example of projection effects induced on
detected filaments due to taking an infinitesimal slice.

Figure H.1: Figure showing the projection effects acting on a filamentary network detected by NEXUS+. The detections are all points
identified to be filaments at a z = 47 Mpc slice. The projection effect manifests itself in the identification of filaments by making a
non-negligible fraction of the population appear as dots, this means that the filaments are not going sideways in the chosen slice and
has a direction tangent to the plane we are observing.

77



Appendix I: Void regions identified in an infinitesimal slice of
the simulated Universe.

Figure I.1: Figure showing the identified void regions for both DisPerSE and NEXUS+ for an infinitesimal thickness. The two figures
here show much better how the void regions form the boundary of the filamentary network and walls and the discrepancy between the
results.
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Appendix J: 3D representation of the voids detected by both
DisPerSE and NEXUS+.

Figure J.1: Figure showing all the identified void regions using either DisPerSE or NEXUS+. The two figures further emphasise the
discrepency in void identification between the two formalisms.
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Appendix K: Zel’dovich Formalism

Though not necessary for our understanding of the two formalisms, the Zel’dovich
approximation will be briefly discussed simply due to its significance on the study of the
cosmic web as it provides a good description of the evolution of the cosmic web in the
linear regime. The Zel’dovich approximation provides a natural way in describing the
anisotropic collapse in the linear regime (as shown in Coles et al. (1993)) and has been
used countless times as the initial conditions for N-body simulations.

Starting from the equation that traces the motion of an element;

x(t) = q0 +D(t)∇ψ(q)

where q0 is the initial position of a given element, D(t) is the linear growth factor and
ψ(q) the Lagrangian displacement potential (for more information see Peebles (1980)), it
is possible to rearrange it to obtain a function that describes how the mass of a particular
element evolves as a function of time;

ρ(x) =
ρ̄

(1−Dλ1(q))(1−Dλ2(q))(1−Dλ3(q))

where ρ̄ is the average density of the environment and λi denotes the eigenvalue of the
deformation tensor given as;

ψij(q) =
∂2ψ(q)

∂qi∂qj

This equation is imperative to the study of the cosmic web as it allows a classification of
morphological environments based on the eigenvalues given in the deformation tensor ψ (see
table 5), while also providing a natural description on the sequence of the formation of the
constituents of the cosmic web as well as the anisotropic nature of their collapse.

The anisotropic nature of structure formation can be seen by the trend that in general
λ1 6= λ2 6= λ3 and the hierarchical nature of structure formation by the fact that the
dominant direction of the collapse takes place towards the largest eigenvalue (by convention
here, λ1 < λ2 < λ3).

Structure Eigenvalue Constraint

Cluster λ1 > 0, λ2 > 0, λ3 > 0
Filament λ1 > 0, λ2 > 0, λ3 < 0

Sheet λ1 > 0, λ2 < 0, λ3 < 0
Void λ1 < 0, λ2 < 0, λ3 < 0

Table 5: The different morphological environments and their corresponding eigenvalues.

80



As alluded to, the approximation breaks down once the simulation or the environment leaves
the linear regime and different elements start to cross paths. This breakdown can be seen
by a Taylor expansion of the density equation ρ(x) and seeing how the density contrast
relates with these eigenvalues (see Hidding et al. (2014) for more). More intuitively, once
the paths of two different elements intersect the linear regime is no longer valid as their
motion are now dominated by the gravitational fields of the non-linear structure (Cautun
et al., 2014).
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