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Abstract
The Maxwell group, an extension of the Poincaré group, which contains space-

time transformations in special relativity, can itself be extended repeatedly. We
examine one of these extensions, Maxwell3, derive from it equations of motion
obeying its symmetries using two different methods and interpret these equa-
tions. One of these methods produces equations of motion of a particle travelling
in an electromagnetic field linear in space and time; the other one produces the
same external field, but grants an additional term of a particle which is linearly
polarized by the external field, such that the electric and magnetic polarizabili-
ties are equal and opposite.

1 INTRODUCTION

One of the revolutionary notions of special relativity was the discovery of the relative nature
of distance between two points. The space-time interval between two events in Minkowski
space replaced the concept of spatial distance as an inertial frame independent quantity.
The Lorentz transformations are used to interchange inertial frames of reference leaving the
space-time interval invariant and (initially) keeping the origin at the same space-time coor-
dinates of the previous frame.

Because of its property of leaving the space-time interval intact, the set of Lorentz transfor-
mations forms a symmetry group for special relativity. This group is a so-called Lie group,
roughly meaning that there exists a function which parameterizes the group while obeying
certain conditions of differentiability1. Together with spacetime translations, the Lorentz

1Understanding Lie groups and algebras is required for understanding this report, therefore I highly recommend
reading the appendix on page 15 for an explanation of those parts of group theory which are necessary here.
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group forms the Poincaré Lie group. The Poincaré group, which includes all of the spatial
transformations leaving the spacetime interval between two events intact, can subsequently
be extended into the Maxwell group. The equations of motion satisfying Maxwell symme-
try2 are those of a particle travelling in a constant external electromagnetic field, see [8]. The
Maxwell group has applications in, for instance, studying the cosmological constant [2] and
particles in homogeneous electromagnetic fields.
Here, in this report largely based on the 2017 paper by Gomis and Kleinschmidt [6], we in-
vestigate further extensions of the Maxwell group, dubbing the Maxwell group Maxwell2 and,
frankly, mostly focusing on the extension immediately succeeding Maxwell2, namely Maxwell3.

In [6], Gomis and Kleinschmidt outline a method for deriving the most general Lagrangian –
and hence equations of motion, obeying Maxwelln symmetry. The process, one of non-linear
realization [5], is to derive the most general covariant3 quantities under Maxwelln transfor-
mation, using the Maurer-Cartan one-form g−1d g 4, where g is the generalized group ele-
ment5. This one-form resides inside the group’s Lie algebra, where the coefficients in front of
the generators are the sought-after covariant quantities. These quantities can be combined
to form the most general Lagrangian.

In an earlier paper [7], Gomis Gibbons Pope use two different methods of combining the
covariant quantities into a Lagrangian for Maxwell2 and show their equivalency.
Here, it is our goal to show that this equivalency does not hold for Maxwell3. We will first re-
construct Maxwell3 from the ground up, rederive its Maurer-Cartan one-form and then con-
struct the Lagrangian using the two methods, which we will describe below. Consequently,
we will derive the equations of motion from both Lagrangians and demonstrate that they ac-
quire a significantly different physical interpretation.

In brief, the two methods differ in the following way: in [6], Gomis introduces new distinct
variables akin to canonical momenta, fab , fabc , . . ., to construct the Lagrangian6. Let ωab ,
ωabc be the Maxwell-covariant quantities dependent on the particle trajectory and the exter-

2For an EOM to satisfy a symmetry, it means that the equation of motion still holds when applying a group
transformation to the coordinates the EOM depends on.

3A quantity is invariant if it stays constant under a certain transformation, covariant if it changes with the trans-
formations, but retains its original information. For instance, in regular Euclidian space, the length of an
object is invariant, because it does not vary under rotations and translations, but its position vector’s coeffi-
cients are covariant, as those do depend on those particular transformations as applied to the basis vectors,
even though the vector itself will always point to the same absolute position in space.

4Informally, a one-form is a mathematical object constituted by a number of differentials d xn and correspond-

ing coefficients. Hence, d g =∑N
n=1

∂g
∂xn

d xn .
5Meaning that the parameters of the function which parameterizes the Lie group are left as variables, so as to

signify any possible element.
6These variables resemble canonical momenta, because fab = ∂L/∂θ̇ab , where θab is one of the variables on

which the Lagrangian depends. This is by definition the canonical momentum corresponding to θab . A similar
story holds for fabc .
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nal electromagnetic field. Then the Lagrangian is constructed as follows:

L = mω2
1 +

1

2
fabω

ab
2 + 1

2
fabcω

abc
3 ,

implying the Einstein summation convention. This would be the formulation for a Maxwell3

Lagrangian, with more terms being present for higher level extensions. The alternative method
described in earlier literature is to simply say that

L = mω2
1 +

a

2
ω2

2 +
b

2
ω2

3.

Now, we will proceed to construct the Maxwell3 algebra and run through the steps of deriva-
tion.

2 THE MAXWELL ALGEBRA

The Poincaré group is the Lie group of the isometries of Minkowski space, i.e. all transforma-
tions of the space that leave the spacetime interval intact. The Poincaré algebra consists out
of two types of generators, Mab for boosts and rotations and Pa for translations, where a and
b both range from 0 to 3. In the Poinceré Algebra, its translation generators commute. For
more information on Lie groups and algebras, see [3] or page 15.
The Maxwell group (i.e. the first extension of Poincaré) is the group of symmetries of a par-
ticle travelling in a uniform electromagnetic field. Its algebra is given by an extension of the
Poincaré algebra, where the translation generators no longer commute, but satisfy

[Pa ,Pb] = Zab .

The resulting Lie algebra can be extended once more, using the commutation relation

[Zab ,Pc ] = Yabc .

For each of the generators, it is possible to assign a level l such that for any two non-commuting
generators Gl=l1 and Gl=l2 , the generator resulting from their commutation relation satisfies[

Gl=l1 ,Gl=l2

]=Gl=l1+l2 ,

where the generators of the Lorentz algebra Mab correspond to level l = 0 and the generators
for Poincaré Pa to level l = 1. It can then easily be seen that Zab and Yabc have levels 2 and 3
associated to them respectively, see [4].
Because every subsequent extension has a higher level generator associated to it, it is natural
to call each associated group and algebra by the level of its highest level generator, such that
the first extension of Poincaré with Zab becomes Maxwell2 and the second extension with
Yabc Maxwell3. The Maxwell2 group is traditionally called the Maxwell group.
It can also be seen that if the highest level generator present has level l = n, then any com-
mutation relation that would result in a generator of a level higher than n, should vanish.
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This process of extending can be continued indefinitely, approaching Maxwell∞, see for in-
stance [4, 7]. Here we will restrict ourselves to Maxwell2 and Maxwell3. I will use the term
Maxwell without any subscript loosely to refer to any of the extensions beyond Poincaré itself
in general.
These are thus the commutation relations for Maxwell3:

[Mab , Mcd ] = gbc Mad − gbd Mac − gac Mbd + gad Mbc

[Mab ,Pc ] = gbc Pa − gac Pb

[Pa ,Pb] = Zab

[Mab , Zcd ] = gbc Zad − gbd Zac − gac Zbd + gad Zbc

[Zab , Zcd ] = 0

[Zab ,Pc ] = Yabc

[Mab ,Ycde ] = gbc Yade − gac Ybde + gbd Ycae − gad Ycbe + gbe Ycd a − gae Ycdb

[Pa ,Ybcd ] = [Zab ,Ycde ] = [
Yabc ,Yde f

]= 0,

where gµν = (−1,1,1,1). It can be seen that, since Yabc is the highest level generator, any com-
mutation relation which would result in a generator of a higher level than Yabc , vanishes. For
greater Maxwell extensions, those commutation relations would become non-vanishing. The
levels associated to each generator can be seen in table 1.

l (level) 0 1 2 3
Generator Mab Pa Zab Yabc

Table 1: All generators.

2.1 GOLDSTONES

Interestingly, the equations of motion that obey Maxwell symmetry, give rise to solutions
that spontaneously break the given symmetry. Any particle world line in space necessarily
violates translation and rotational symmetries, although any of these translated and rotated
word lines still satisfy the equations of motion. It is possible to shift from symmetry breaking
solution to symmetry breaking solution by applying a Maxwell transformation.
If G is a generator for a specific type of transformation, then the degree to which that type of
transformation is applied in a transformation T can be modelled using the mapping from Lie
algebras to Lie groups

T = emG ,

where m is some scalar indicating how much space has shifted under the generator G .
In the context of spontaneous symmetry breaking, m is called a Goldstone7.

7In field theoretical spontaneous symmetry breaking, broken symmetries imply the existence of massless parti-
cles called Goldstone bosons.
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The Goldstones associated to the generators Pa , Zab and Yabc are xa , θab and ξabc respec-
tively.

We can interpret the Goldstone xa ’s value as the degree to which space has shifted around
some reference point. Thus, if we parameterize xa in some particle’s proper time, conversely,
it can be seen as that particle’s position in space with respect to the origin in some rest frame.
Therefore it is our goal to construct a particle Lagrangian out of these goldstons with this par-
ticular interpretation, while still preserving Maxwell symmetry.
The other Goldstones would acquire a different interpretation when parameterized in the
particle’s proper time. When the Lagrangian is constructed out of the given Goldstones, then
θ and ξ become separate parameters which determine the value of the Lagrangian. Hence
they can be seen to determine the "background" in which the particle is situated at any given
moment of its proper time. This can be observed from the equations of motion as they are
derived later in this report.

3 MAURER-CARTAN ONE-FORM

To construct the most general Lagrangian for a particle subject to Maxwell symmetries, we
require quantities which are covariant under Maxwell transformations. Using these as build-
ing blocks, we can construct a Maxwell invariant Lagrangian, from which we can also derive
the most general equations of motion. As mentioned in the introduction, in the method of
nonlinear realizations these covariant quantities can be derived from the Maurer-Cartan one-
form.
The Maurer-Cartan one-form is defined as

Ω= g−1d g ,

where g is the generalised group element8.
We are however not interested in all elements of Maxwell. We wish to observe the particle
from a particular inertial reference frame and we are therefore interested in fixing a Lorentz
gauge9. Therefore, we do not include Lorentz transformations in the generalised group ele-
ment and only consider generalised group elements from the quotient group

Maxwelln/Lorentz.

The one-form will be an element of the coset’s Lie Algebra:

Ω=Ωa
1 Pa + 1

2
Ωab

2 Zab +
1

2
Ωabc

3 Yabc .

8That is an element of the Lie group where the parameters of the Lie group are left as variables as to encompass
any possible element. d denotes the exterior derivative on g , which in our case is just using the chain rule to

differentiate: d g =∑N
n=1

∂g
∂xn

d xn .
9This means that we do not allow variance over boosts and rotations.
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The coefficients in front of the generators will be the most general combination of Goldstones
covariant under Maxwell transformations.
In this section, we will derive the Maurer-Cartan one-form for Maxwell2 and Maxwell3 explic-
itly.

3.1 COMPUTING THE MAURER-CARTAN ONE-FORM

An element of the coset is given by

g = exa Pa e
1
2θ

ab Zab e
1
2 ξ

abc Yabc ,

where every generator with its corresponding Goldstone is exponentiated exactly once through
the Einstein summation convention. The 1

2 in front of Zab and Yabc comes from the fact that
Zab =−Zba and Yabc =−Ybac . Without this fraction, each generator would be counted twice.
The one-form d g is given by

d g = ∂g

∂xa d xa + ∂g

∂θab
dθab + ∂g

∂ξabc
dξabc

We will compute each partial derivative.

We know that

∂g

∂xk
= d

d xk
exa Pa e

1
2θ

ab Zab e
1
2 ξ

abc Yabc

=
(

d

d xk
exa Pa

)
e

1
2θ

ab Zab e
1
2 ξ

abc Yabc .

Remember that we cannot just write Pk in front of the exponential for the derivative, because
the different Ps do not commute.

d

d xk
exa Pa = d

d xk

∞∑
n=0

(xaPa)n

n!

Where
d

d xk
(xaPa)n =

n−1∑
m=0

(xaPa)mPk (xaPa)n−1−m

We can keep using commutation relations to move Pk to the right. Then we get

n−1∑
m=0

(xaPa)mPk (xaPa)n−1−m = n(xaPa)n−1Pk −
n−1∑
m=1

(m)(xaPa)m−1xb Zbk (xaPa)n−m−1

= n(xaPa)n−1Pk −
1

2
(n −1)(n)(xaPa)n−2xb Zbk −

1

6
(n −2)(n −1)(n)(xaPa)n−3xb xc Ybkc .
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The Zab term only appears for n ≥ 2 and the Yabc term only for n ≥ 3. Hence,

d

d xk
g =

( ∞∑
n=0

(xaPa)n

n!
Pk −

∞∑
n=0

(xaPa)n

n!

(
1

2
xb Zbk

)
−

∞∑
n=0

(xaPa)n

n!

(
1

6
xb xc Ybkc

))
e

1
2θ

ab Zab e
1
2 ξ

abc Yabc

= exa Pa

(
Pk −

1

2
xa Zak −

1

6
xa xbYakb

)
e

1
2θ

ab Zab e
1
2 ξ

abc Yabc

Because Zab and Yabc commute, we can now immediately move them all the way to the right.
Pk does not commute with Zab , therefore

Pk e
1
2θ

ab Zab = Pk

∞∑
n=0

(1
2θ

ab Zab
)n

n!

=
∞∑

n=0

(1
2θ

ab Zab
)n

n!
Pk −

∞∑
n=1

n
(1

2θ
ab Zab

)n−1

n!

1

2
θabYabk

= e
1
2θ

ab Zab

(
Pk −

1

2
θabYabk

)
.

So the partial derivative becomes

∂g

∂xk
= g

(
Pk −

1

2
xa Zak −

1

2
θabYabk −

1

6
xa xbYakb

)
.

Fortunately, since the Z and Y generators commute, we can take the other partial derivatives
by immediately writing the generators on the right:

∂g

∂θkl
= g

1

2
Zkl

∂g

∂ξklm
= g

1

2
Yklm

Thus,

d g = g

(
Pk d xk − 1

2
xa Zak d xk − 1

2
θabYabk d xk − 1

6
xa xbYakbd xk + 1

2
Zkl dθkl + 1

2
Yklmdξklm

)
= g

(
d xaPa + 1

2

(
dθab +d xa xb

)
Zab +

1

2

(
dξabc −θabd xc + 1

3
d xa xb xc

)
Yabc

)
.

So, the Maurer-Cartan one-form for Maxwell3 is

Ω= d xaPa + 1

2

(
dθab +d xa xb

)
Zab +

1

2

(
dξabc −θabd xc + 1

3
d xa xb xc

)
Yabc

Then, if we project the same symmetry onto the coefficients as their respective generators10:
Ωa

1 = d xa

Ωab
2 = dθab + 1

2

(
d xa xb −d xb xa

)
Ωabc

3 = dξabc − 1
3

(
2θabd xc −θbc d xa −θcad xb

)+ 1
6

(
d xa xb −d xb xa

)
xc

(3.1)

10This means that we use the symmetry properties of the generators and Goldstones to rearrange the terms, so
that the coefficients acquire the same symmetry as the generators themselves, while keeping the value of the
Maurer-Cartan one-form fixed.
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For Maxwell2, Yabc = 0, effectively cancelling the last term in the MC one-form. Therefore
only the first two omegas would be relevant for that level extension.

4 EQUATIONS OF MOTION

In this section, we will model a particle exhibiting Maxwell2 and Maxwell3 symmetry. First
we will construct its Lagrangian using the Maurer-Cartan one-form derived in the previous
section, then we will derive its equations of motion using the Euler-Lagrange equation. We
will also explore the two methods of building the particle Lagrangian mentioned before.
In this section, we will purely focus on the equations of motion in their mathematical form.
The next section will be dedicated to their interpretation.

To interpret xa as a point particle’s position in space, we let the Goldstones depend on the
proper time τ. Then equation 3.1 becomes

Ωa
1 = ẋadτ

Ωab
2 = θ̇abdτ+ 1

2

(
ẋa xb − ẋb xa

)
dτ

Ωabc
3 = ξ̇abc dτ− 1

3

(
2θab ẋc −θbc ẋa −θca ẋb

)
dτ+ 1

6

(
ẋa xb − ẋb xa

)
xc dτ.

We can then define
ωa

1 = ẋa

ωab
2 = θ̇ab + 1

2

(
ẋa xb − ẋb xa

)
.

ωabc
3 = ξ̇abc − 1

3

(
2θab ẋc −θbc ẋa −θca ẋb

)+ 1
6

(
ẋa xb − ẋb xa

)
xc .

(4.1)

Which will be the Maxwell3 covariant quantities which we will construct the Lagrangian out
of. For Maxwell2, ωabc

3 can be ignored. In derivations, we will omit the subscripts 1 2 3, as the
level associated to the ωs can easily be observed looking at the number of indices.
As these are the Maxwell covariant quantities, I will reference these as the MCQs.

4.1 MAXWELL2

Using the MCQs from equation 4.1, we construct the Lagrangian as follows11

L = mω2
1 +

a

2
ω2

2.

As a tensor with upper indices is contravariant and with lower indices is covariant, a con-
tracted tensor produces an invariant scalar. Thus we can see that this Lagrangian is indeed
invariant under Maxwell transformations.
We can then use the Euler-Lagrange equation for each of the Goldstones xk and θkl . We will
also use the contracted tensor chain rule,

∂ω2

∂ j k
= 2ωA

∂ωA

∂ j k
, (4.2)

11ω2 should be interpreted as ω contracted with itself: ωAω
A , summing over the set of indices A.
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where A indicates the ω’s indices and j k is an arbitrary variable on which ωA depends.
We arrive at

ω̇kl = 0, (4.3)

when varying with respect to θkl and,

mẍk +aωka ẋa = 0, (4.4)

when varying with respect to xk .

4.2 MAXWELL3: CONTRACTED MCQS

We will use the same method for the Maxwell3 equation of motion. Again using equation 4.1,
we construct the Lagrangian.

L = mω2
1 +

a

2
ω2

2 +
b

2
ω2

3.

When we use the Euler-Lagrange equation and equation 4.2, varying with respect to ξklm , we
arrive at

ω̇klm = 0. (4.5)

Doing the same for θkl we get,

aω̇kl =−b

3
(2ωkl a −ωakl −ωl ak ) ẋa ,

and then using the Jacobi identity12

aω̇kl =−bωkl a ẋa . (4.6)

Then varying with respect to xk ,

2mẍk +2aωka ẋa −bωabk θ̇
ab +bωkab

(
ẋa xb − ẋb xa

)
= 0,

which using the Jacobi identity, simplifies to

mẍk +aωka ẋa − b

2
ωabkωab = 0. (4.7)

4.3 MAXWELL3: MOMENTUM-MCQ COUPLING

In this section, we reconstruct the Lagrangian using an alternative method, resulting in dif-
ferent equations of motion.
We use the same MCQs from equation 4.1. Then as in [6], we introduce two new independent
variables fab and fabc , which we use in the Lagrangian as follows:

L =−m
√

−ωaωa + 1

2
fabω

ab
2 + 1

2
fabcω

abc
3 .

12This is explained in the section on Lie algebras inside the appendix on page 15.

9



These f variables resemble canonical momenta, because fab = ∂L/∂θ̇ab . This is by definition
the canonical momentum corresponding to θab . The same story holds for fabc and ξabc . In
[7], it is shown that this and the previous method are equivalent for Maxwell2.

Using the Euler-Lagrange equations as before for the canonical momenta, we acquire

ωklm = 0,

and,
ωkl = 0.

Varying with respect to ξklm gives
ḟklm = 0. (4.8)

Using the Euler-Lagrange equations for the other variables, is more interesting. Varying with
respect to θkl ,

ḟkl =− fkl a ẋa . (4.9)

Then we do the same for xk ; we get

mẍk + fka ẋa + 1

2
ẋa xb

(
fbka + fabk +

1

3

(
2 fkab − fakb − fbka

))= 0.

This simplifies to
mẍk + f ka ẋa = 0. (4.10)

5 THE EQUATIONS OF MOTION’S INTERPRETATION

We are left with three sets of equations of motion.
For Maxwell 2, {

mẍa +aωab ẋb = 0, (equation 4.4)

ω̇ab = 0. (equation 4.3)

For Maxwell 3, from the f Aω
A method,

mẍa + f ab ẋb = 0, (equation 4.10)

ḟ ab + f abc ẋc = 0, (equation 4.9)

ḟ abc = 0. (equation 4.8)

For Maxwell 3, from the ω2 method,
mẍa +aωab ẋb − b

2ω
bcaωbc = 0, (equation 4.7)

aω̇ab +bωabc ẋc = 0, (equation 4.6)

ω̇abc = 0. (equation 4.5)

We can simplify these by partially solving the equations.
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5.1 MAXWELL2

Let us first examine the Maxwell2 case. Since ω̇ab = 0, we know that ωab is a constant. Let

qF ba = aωab .

Because ωab is antisymmetric, we can interpret qF ba as a particle’s charge multiplied by the
electromagnetic field tensor. Then the equation of motion becomes

mẍa +qF ba ẋb = 0. (5.1)

Which is identical to the equation of motion of the Lorentz force inside a constant electro-
magnetic field.

5.2 MAXWELL3, MOMENTUM-MCQ COUPLING

The f Aω
A approach is easier to analyse than the contracted MCQs approach. Similarly, be-

cause ḟ abc = 0, we know that f abc is constant. Let

−qSabc = f abc .

Then ḟ ab + f abc ẋc = ḟ ab −qSabc ẋc = 0. Then we can simply integrate ḟ ab . Let

f ab = qF ba = q
∫

Sabc ẋc dτ= q
(
Sabc xc +H ab

)
,

where H ab is a constant of integration (also anti-symmetric in its indices). Here too, F ba can
be interpreted as the electromagnetic field tensor, as it is antisymmetric, but now it is linear
in space. {

mẍa +qF ba ẋb = 0,

F ba = Sabc xc +H ab ,
(5.2)

where the tensors Sabc and H ab are constant.

5.3 MAXWELL3, CONTRACTED MCQS

The equations of motion which result from this method, are interesting, as there is an extra
term present. In the same way, let

−qSabc = bωabc ,

where Sabc is a constant. Then, because aω̇ab =−bωabc ẋc ,

aωab = q
∫

Sabc ẋc dτ= q
(
Sabc xc +H ab

)
.

The last term in the equation of motion is −b
2ω

bcaωbc . This term then becomes

q2

2a
Sbca

(
Sbcd xd +Hbc

)
.
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If we choose
F ba = Sabc xc +H ab ,

then the equations of motion become{
mẍa +qF ba ẋb + q2

2a

(
∂aF bc

)
Fbc = 0

F ba = Sabc xc +H ab .
(5.3)

Interpreting F ba as the electromagnetic field tensor, these equations of motion represent a
particle again in an external electromagnetic field which is linear in space, but also a term of
this particle’s dipole moment, induced by the external field, interacting with the field itself.
We will expand on this in the next section.

Here, it is briefly interesting to note that, since the electromagnetic field tensor depends on
the different ωs and the ωs in turn depend on all three Goldstones, the Goldstones θab and
ξabc are indeed responsible for the particle’s environment (i.e. the forces that apply to it).

DIPOLE INTERACTIONS

In order to interpret equation 5.3 properly, we will examine the equation of motion of a par-
ticle with an electric and magnetic dipole moment and demonstrate that this bears equiva-
lence to equation 5.3.
A charged particle moving in an external electromagnetic field with a dipole moment, has the
following Lagrangian

L = m

2
ẋ2 +q Aµẋµ− 1

2
FµνDµν,

where Aµ is the four-potential and Dµν is the anti-symmetric dipole tensor, see [1].

The dipole tensor can be split into the magnetic and electric part as follows

Dµν = P [µẋν] + 1

2
εµνκλMκẋλ,

where P [µẋν] = 1
2 (Pµẋν−Pνẋµ).

We will manipulate these quantities, to show that those specific manipulations result in the
equation of motion we desire. The electric field and the magnetic field can be derived from
the electromagnetic tensor as follows

Eµ = Fµνẋν Bµ = 1
2ε

µνρσFνρ ẋσ,

so for dipole moments proportional to their corresponding fields, we have

Pµ =αEµ

=αFµλẋλ

Mκ =βBκ

= β

2
εµνκλFµνẋλ,
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Figure 5.1: The particle described by our equations of motion. The electric polarization P
points along the electric field, the magnetic polarization points antiparallel to the
magnetic field. The field orientation is arbitrary.

whereα is the electric polarizability and β the magnetic susceptibility. So the dipole moment
tensor becomes

Dµν =−αFλ[µẋν]ẋλ+
β

4
εκµνλεκαβγFαβẋγẋλ.

Because εκµνλεκαβγ =−6δµ[αδ
ν
β
δλ
γ],

13 the magnetic part

β

4
εκµνλεκαβγFαβẋγẋλ =

β

2

(
Fµν−Fλµẋνẋλ+Fλνẋµẋλ

)
=−β

(
Fλ[µẋν]

)
+ β

2
Fµν.

Here we have used that xµxµ =−1. So,

Dµν =−(α+β)Fλ[µẋν]ẋλ+
β

2
Fµν,

and if we pick α=−β, we acquire a neat

Dµν = β

2
Fµν.

This is equivalent to picking the electric polarizability to be equal and opposite to the mag-
netic susceptibility. See figure 5.1.

13The indices surrounded by square brackets indicates summing over all the combinations of indices, adding a

minus sign for odd permutations: δ
µ
[αδ

ν
β
δλ
γ] = 1

6

(
δ
µ
αδ

ν
β
δλγ +δµβδνγδλα+δµγδναδλβ−δ

µ

β
δναδ

λ
γ −δµγδνβδλα−δµαδνγδλβ

)
.
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The total Lagrangian becomes

L = m

2
ẋ2 +q Aµẋµ− β

4
FµνFµν,

and using the Euler-Lagrange equation

d

dτ

∂L

∂ẋk
= d

dτ

(
mẋk +q Ak

)
= mẍk +q

(
∂µAk

) d xµ

dτ
= mẍk +q

(
∂µAk

)
ẋµ,

where we recall that the potential Aµ depends on spacetime coordinates.

∂L

∂xk
= q

(
∂k Aµ

)
ẋµ− β

2

(
∂k Fµν

)
Fµν.

Combining all the terms, we get

mẍk +q
(
∂µAκ−∂κAµ

)
ẋµ+ β

2

(
∂k Fµν

)
Fµν = 0.

Which, because of the definition of the potential, equals

mẍa +qF ba ẋb +
β

2

(
∂aF bc

)
Fbc = 0. (5.4)

We see that this exactly matches 5.3, when β = q2

a . Hence we can see that the equations of
motion obeying Maxwell3 symmetry, using theω2 method, are identical to those of a particle
moving through a linear external field, undergoing linear polarization, in such a way that the
electric and magnetic polarizabilities are equal but opposite.

6 CONCLUSION

We can thus see that there indeed is a significant difference between the equations of motion
and their physical interpretation depending on which method of Lagrangian construction is
used. The contracted MCQs method produces the equations of motion of a particle travelling
in an external electromagnetic field where the particle has a linear polarizability as an electric
and magnetic dipole, where the electric polarizability is equal and opposite to the magnetic
polarizability. The method of coupling the canonical momenta to the MCQs produces the
same external field, but for a particle without any polarizability.
Hence, in this particular case, one can see that the method where the Lagrangian is formed
through the contraction of the omegas is the more expansive.14

14We can attempt to recover the equations of motion of the momentum coupling case from the MCQ contracted
case, by sending a → ∞ in equation 5.3. Trying to keep the external field fixed, this requires ωab → 0 in
equation 4.7. We can see that then the last term drops out. We however also lose the antisymmetric property
of the electromagnetic field tensor, since ωab becomes uniform. This means that we cannot keep an external
field and we regain a particle travelling in a straight line (of infinite charge, but without any field to influence
it).
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APPENDIX: LIE GROUPS AND THEIR ALGEBRAS

The goal of this section is to informally explain Lie groups and algebras in addition to some
preliminaries of group theory. For more information, proofs and a text that is less dense, see
[3].

PRELIMINARIES

A group G is a set of elements defined together with an operation ·, such that ∀g , g1, g2, g3 ∈G

1.g1 · g2 ∈G (Closure)

2.g1 · (g2 · g3) = (g1 · g2) · g3 (Associativity)

3.∃e ∈G s.t. e · g = g ·e = g (Existence of identity)

4.∃g−1 ∈G s.t. g · g−1 = g−1 · g = e (Existence of inverse)

Any group H ⊂ G is called a subgroup of G . H is an invariant subgroup of G if ∀h ∈ H and
g ∈G , g hg−1 ∈ H .
The set g H = {

g h|h ∈ H
}

is defined as a left coset of H . One can see this as multiplying a
subgroup by a group element, creating a set where all elements of the subgroup have been
multiplied by g . A right coset of H , H g , is defined as

{
hg |h ∈ H

}
. It is important to note that

cosets are not (sub-)groups generally. Also, if g2 ∈ g1H , then g2H = g1H .
Cosets partition the group in subsets of equal magnitude. This means that ∀g ∈G there exists
exactly one g H given H which includes g .

It is possible to define a multiplication law between cosets themselves, such that the set
of all cosets forms a group, only if H is an invariant subgroup. This multiplication law is
defined as follows g1H · g2H = (g1 · g2)H . Hence then if H is an invariant subgroup, then
G/H = {

g H |g ∈G
}

is the quotient group pronounced G over H. When constructing a quotient
group, one effectively divides out the subgroup, for instance let our group be

G =C\{0}

with the operation of regular complex multiplication and

H =
{

e iθ|θ ∈ [0,2π)
}

.

Then a general coset becomes

g H =
(
r e iφ

)
H

=
{

r e i (φ+θ)|θ ∈ [0,2π)
}

=
{

r e iθ|θ ∈ [0,2π)
}

= r H .
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So the quotient group equals
G/H = {r H |r > 0}

and we recover (a group isomorphic to) the real positive number line. In other words, dividing
out H entails removing all elements from the group that were obtainable only by transforma-
tion through H . The real positive number line remains, because solely those elements do not
require a phase shift to obtain when starting from identity.

LIE GROUPS

Taken from [3], a Lie group G is a differentiable manifold G which is also a group, such that
the group multiplication · : G ×G →G and the map f (g ) = g−1 are differentiable maps.
Informally and for the purpose of this report, this can be seen as a group whose elements are
given by a differentiable function. Let us say that g = g (x) = g (x1, x2, . . . , xn), then g is every-
where differentiable. The number of parameters necessary is called the group’s dimension.
Techincally, this description is in general only valid locally, as manifolds resemble Euclidian
space locally only.

LIE ALGEBRAS

It is possible to construct a map from a so-called Lie algebra to any component of a Lie group
that is connected to the identity element. A Lie algebra is a vector space which is constructed
as follows: Let G be a Lie group with elements g (x) = g (x1, x2, . . . , xn). Let D(g (x)) or simply
D(x) be a matrix representation of element g (x). The generators of the group are then given
by

X a = ∂

∂xa
D(x)|x=0

where xa is the ath group coordinate and X a its corresponding generator. The generators
form a basis for the vector space.

It is now possible to express elements from the group using the elements from the Lie al-
gebra. If all generators commute, we get

g (x) = exa Xa ,

using Einstein’s summation convention. If the generators do not commute, it is necessary to
have multiple exponentials. Let {X1, X2, . . . , Xk } and {Y1,Y2, . . . ,Yl } be two sets of commuting
generators, then

g (x, y) = exa X a
e ya Y a

.

It is possible in general to retrieve any element of the connected subgroup, the component of
the Lie group connected to the identity element, with a finite number of exponentials. Using
a vector space instead of a Lie group can greatly expedite the process of doing computations.

A Lie algebra L is a vector space endowed with the product [a,b], the commutator between
two elements, with the properties that ∀a,b,c ∈ L
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1.[a,b] ∈ L

2.
[
αa +βb,c

]=α [a,c]+β [b,c] ∀α,β ∈R
3.[a,b] = − [b, a]

4.[a, [b,c]]+ [b, [c, a]]+ [c, [a,b]] = 0

The last property is called the Jacobi identity.
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